Science.gov

Sample records for neutral bose gas

  1. Large N Model of Bose Gas

    NASA Astrophysics Data System (ADS)

    Ke, Ke; Radzihovsky, Leo

    2010-03-01

    We construct the large N model of bose gas. Using an artificial parameter 1/N to do the perturbative analysis to study two models: U(N) bose gas and U(1) xO(N) bose gas. We find that for U(N) bose gas we get Bogoliubov spectrum and LHY thermal dynamical relations which is the same as the usual weak coupling bose gas models. For U(1) xO(N) bose gas model, however, we calculate the non-perturbative quantum correction to the depletion, chemical potential, free energy and dispersion relations.

  2. Excitation picture of an interacting Bose gas

    SciTech Connect

    Kira, M.

    2014-12-15

    Atomic Bose–Einstein condensates (BECs) can be viewed as macroscopic objects where atoms form correlated atom clusters to all orders. Therefore, the presence of a BEC makes the direct use of the cluster-expansion approach–lucrative e.g. in semiconductor quantum optics–inefficient when solving the many-body kinetics of a strongly interacting Bose. An excitation picture is introduced with a nonunitary transformation that describes the system in terms of atom clusters within the normal component alone. The nontrivial properties of this transformation are systematically studied, which yields a cluster-expansion friendly formalism for a strongly interacting Bose gas. Its connections and corrections to the standard Hartree–Fock–Bogoliubov approach are discussed and the role of the order parameter and the Bogoliubov excitations are identified. The resulting interaction effects are shown to visibly modify number fluctuations of the BEC. Even when the BEC has a nearly perfect second-order coherence, the BEC number fluctuations can still resolve interaction-generated non-Poissonian fluctuations. - Highlights: • Excitation picture expresses interacting Bose gas with few atom clusters. • Semiconductor and BEC many-body investigations are connected with cluster expansion. • Quantum statistics of BEC is identified in terms of atom clusters. • BEC number fluctuations show extreme sensitivity to many-body correlations. • Cluster-expansion friendly framework is established for an interacting Bose gas.

  3. Stability of a unitary Bose gas.

    PubMed

    Fletcher, Richard J; Gaunt, Alexander L; Navon, Nir; Smith, Robert P; Hadzibabic, Zoran

    2013-09-20

    We study the stability of a thermal (39)K Bose gas across a broad Feshbach resonance, focusing on the unitary regime, where the scattering length a exceeds the thermal wavelength λ. We measure the general scaling laws relating the particle-loss and heating rates to the temperature, scattering length, and atom number. Both at unitarity and for positive a<λ we find agreement with three-body theory. However, for a<0 and away from unitarity, we observe significant four-body decay. At unitarity, the three-body loss coefficient, L(3) proportional λ(4), is 3 times lower than the universal theoretical upper bound. This reduction is a consequence of species-specific Efimov physics and makes (39)K particularly promising for studies of many-body physics in a unitary Bose gas.

  4. Stability of a unitary Bose gas.

    PubMed

    Fletcher, Richard J; Gaunt, Alexander L; Navon, Nir; Smith, Robert P; Hadzibabic, Zoran

    2013-09-20

    We study the stability of a thermal (39)K Bose gas across a broad Feshbach resonance, focusing on the unitary regime, where the scattering length a exceeds the thermal wavelength λ. We measure the general scaling laws relating the particle-loss and heating rates to the temperature, scattering length, and atom number. Both at unitarity and for positive a<λ we find agreement with three-body theory. However, for a<0 and away from unitarity, we observe significant four-body decay. At unitarity, the three-body loss coefficient, L(3) proportional λ(4), is 3 times lower than the universal theoretical upper bound. This reduction is a consequence of species-specific Efimov physics and makes (39)K particularly promising for studies of many-body physics in a unitary Bose gas. PMID:24093273

  5. Clock shifts in the Unitary Bose Gas

    NASA Astrophysics Data System (ADS)

    Fletcher, Richard; Man, Jay; Lopes, Raphael; Navon, Nir; Smith, Robert; Hadzibabic, Zoran

    2016-05-01

    Clock shifts are interaction-induced changes in the transition frequency between atomic spin states. So-called because of their importance as systematic errors in atomic clocks, they reveal details of both the interaction energy within a gas and the particle correlations. In this work, we employ a RF-injection technique to rapidly project a thermal Bose gas into the unitary regime on a timescale much shorter than three-body losses. Working with a two-state system, one of which exhibits strong intrastate interactions, we carry out Ramsey spectroscopy to extract the variation in the clock shift across a Feshbach resonance. Thanks to the relationship between these shifts and particle correlations, we use our measurements to infer the contact as a function of both interaction strength and degeneracy. This quantity plays a central role in the many-body physics of strongly correlated systems, offering a link between few-body and thermodynamic behaviour.

  6. Calorimetry of a Bose-Einstein-condensed photon gas.

    PubMed

    Damm, Tobias; Schmitt, Julian; Liang, Qi; Dung, David; Vewinger, Frank; Weitz, Martin; Klaers, Jan

    2016-01-01

    Phase transitions, as the condensation of a gas to a liquid, are often revealed by a discontinuous behaviour of thermodynamic quantities. For liquid helium, for example, a divergence of the specific heat signals the transition from the normal fluid to the superfluid state. Apart from liquid helium, determining the specific heat of a Bose gas has proven to be a challenging task, for example, for ultracold atomic Bose gases. Here we examine the thermodynamic behaviour of a trapped two-dimensional photon gas, a system that allows us to spectroscopically determine the specific heat and the entropy of a nearly ideal Bose gas from the classical high temperature to the Bose-condensed quantum regime. The critical behaviour at the phase transition is clearly revealed by a cusp singularity of the specific heat. Regarded as a test of quantum statistical mechanics, our results demonstrate a quantitative agreement with its predictions at the microscopic level. PMID:27090978

  7. Europa's Neutral Gas Torus

    NASA Astrophysics Data System (ADS)

    Mauk, B. H.; Mitchell, D. G.; McEntire, R. W.; Paranicas, C. P.; Roelof, E. C.; Williams, D. J.; Krimigis, S. M.; Lagg, A.

    2004-05-01

    In-situ energetic ion measurements from the Galileo spacecraft and remote energetic neutral atom (ENA) images from the Cassini spacecraft have been previously interpreted as revealing an unexpectedly massive torus of gas co-orbiting with Jupiter's moon Europa (Lagg et al., 2003; Mauk et al., 2003). Here we report on the results of detailed modeling of the ENA emission process from the Europa regions. Updates to the distribution and composition of the trapped energetic ion populations are included in the models, as are considerations of the partitioning of the gas products into multiple atomic and molecular species. Comparisons between the models and the Cassini observations reveal a torus with a total gas content equal to (0.5 +/- 0.2) E34 atoms plus molecules. This value is higher than, but within a factor of 3 of, an estimate inferred from a prediction of gas densities derived from Voyager plasma measurements and modeling of the interaction between the plasmas and the gases assumed to be emanating from Europa (Schreier et al., 1993). Lagg, A., N. Krupp, J. Woch, and D. J. Williams, Geophys. Res. Lett., 30, DOI 10.1029/2003GL017214, 2003. Mauk, B. H., D. G. Mitchell, S. M. Krimigs, E. C. Roelof, and C. P. Paranicas, Nature, 241, 920, 2003. Schreier, S., A. Eviatar, V. M. Vasyliunas, and J. D. Richardson, J. Geophys. Res., 98, 21231, 1993.

  8. The shear viscosity of a trapped Bose-condensed gas

    SciTech Connect

    Shahzamanian, M.A.; Yavary, H. . E-mail: hs_yavary@yahoo.com

    2006-05-15

    By obtaining Kubo formula type and using nonequilibrium Green's functions, we calculate the shear viscosity of a trapped Bose-condensed gas below and above the Bose-Einstein condensation temperature (T {sub BEC}). The contributions of the interactions between condensate and noncondensate atoms and between noncondensate atoms take into account to the viscous relaxation time, by evaluating second order self-energies in Beliaev approximation.

  9. Condensation and magnetization of the relativistic Bose gas

    NASA Astrophysics Data System (ADS)

    Elmfors, Per; Liljenberg, Per; Persson, David; Skagerstam, Bo-Sture

    1995-02-01

    We show that the relativistic charged scalar boson gas exhibits a genuine Meissner-Ochsenfeld effect of the Schafroth form at fixed supercritical density. As in the well-known non-relativistic case, this total expulsion of a magnetic field is caused by the condensation of the Bose gas at vanishing magnetic field. In the course of these considerations, we present alternative proofs of the absence of Bose-Einstein condensation of a relativistic scalar boson gas, in any finite local magnetic field in less than five dimensions. The results are discussed in the context of kaon condensation in neutron stars.

  10. Hydrodynamics of a unitary Bose gas

    NASA Astrophysics Data System (ADS)

    Man, Jay; Fletcher, Richard; Lopes, Raphael; Navon, Nir; Smith, Rob; Hadzibabic, Zoran

    2016-05-01

    In general, normal-phase Bose gases are well described by modelling them as ideal gases. In particular, hydrodynamic flow is usually not observed in the expansion dynamics of normal gases, and is more readily observable in Bose-condensed gases. However, by preparing strongly-interacting clouds, we observe hydrodynamic behaviour in normal-phase Bose gases, including the `maximally' hydrodynamic unitary regime. We avoid the atom losses that often hamper experimental access of this regime by using radio-frequency injection, which switches on interactions much faster than trap or loss timescales. At low phase-space densities, we find excellent agreement with a collisional model based on the Boltzmann equation. At higher phase-space densities our results show a deviation from this model in the vicinity of an Efimov resonance, which cannot be accounted for by measured losses.

  11. Anisotropic Expansion of a Thermal Dipolar Bose Gas

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Sykes, A. G.; Burdick, N. Q.; DiSciacca, J. M.; Petrov, D. S.; Lev, B. L.

    2016-10-01

    We report on the anisotropic expansion of ultracold bosonic dysprosium gases at temperatures above quantum degeneracy and develop a quantitative theory to describe this behavior. The theory expresses the postexpansion aspect ratio in terms of temperature and microscopic collisional properties by incorporating Hartree-Fock mean-field interactions, hydrodynamic effects, and Bose-enhancement factors. Our results extend the utility of expansion imaging by providing accurate thermometry for dipolar thermal Bose gases. Furthermore, we present a simple method to determine scattering lengths in dipolar gases, including near a Feshbach resonance, through observation of thermal gas expansion.

  12. Anisotropic Superfluidity in a Dipolar Bose Gas

    SciTech Connect

    Ticknor, Christopher; Wilson, Ryan M.; Bohn, John L.

    2011-02-11

    We study the superfluid character of a dipolar Bose-Einstein condensate (DBEC) in a quasi-two dimensional geometry. We consider the dipole polarization to have some nonzero projection into the plane of the condensate so that the effective interaction is anisotropic in this plane, yielding an anisotropic dispersion relation. By performing direct numerical simulations of a probe moving through the DBEC, we observe the sudden onset of drag or creation of vortex-antivortex pairs at critical velocities that depend strongly on the direction of the probe's motion. This anisotropy emerges because of the anisotropic manifestation of a rotonlike mode in the system.

  13. Neutral gas dynamics in fireballs

    SciTech Connect

    Stenzel, R. L.; Ionita, C.; Schrittwieser, R.

    2011-06-01

    Fireballs are local discharge phenomena on positively biased electrodes in partially ionized plasmas. Electrons, energized at a double layer, heat neutral gas which expands. The gas pressure exceeds the plasma pressure, hence becomes important to the stability and transport in fireballs. The flow of gas moves the electrode and sensors similar to a mica pendulum. Flow speed and directions are measured. A fireball gun has been developed to partially collimate the flow of hot gas and heat objects in its path. New applications of fireballs are suggested.

  14. Bose gas in disordered, finite-layered systems

    NASA Astrophysics Data System (ADS)

    Fortes, Mauricio; Barragán, V. E.; Salas, P.; Solís, M. A.

    2015-03-01

    Disorder effects in the thermodynamic properties of a Bose gas are analyzed. The gas is confined within a layered box of size L in the z-direction and infinite in the other two directions. The layers are first modeled by a periodic array of M Dirac delta-functions of equal intensity. We investigate the effects on the specific heat, energy and entropy when a random set of vacancies is introduced in the layered array. A dramatic increase in the maximum of the specific heat is observed when the system has a 0 . 1 to 0 . 2 fraction of random vacancies compared to the original, periodic array and this maximum, which is reminiscent of a Bose-Einstein condensation for an infinite array, occurs at a higher temperature. We acknowledge support from Grant UNAM-PAPIIT IN111613.

  15. Cooling of a One-Dimensional Bose Gas.

    PubMed

    Rauer, B; Grišins, P; Mazets, I E; Schweigler, T; Rohringer, W; Geiger, R; Langen, T; Schmiedmayer, J

    2016-01-22

    We experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system, we observe substantial cooling. This cooling proceeds through homogeneous particle dissipation and many-body dephasing, enabling the preparation of otherwise unexpectedly low temperatures. Our observations establish a scaling relation between temperature and particle number, and provide insights into equilibration in the quantum world.

  16. Fermion-fermion interaction in a dilute gas-mixture Bose condensate

    SciTech Connect

    Mogilyuk, T. I.

    2011-11-15

    A mixture of a one-component Bose gas and two-component Fermi gas is considered at temperatures at which the Bose gas is completely condensed. Two fermions in such a mixture can interact with each other exchanging bosons from the condensate or supercondensate. The interaction potential, a change in the effective mass, the decay, and fermion spectrum are calculated in this quantum Fermi-Bose mixture.

  17. Bose gas in disordered, finite-layered systems

    NASA Astrophysics Data System (ADS)

    Barragán, V. E.; Fortes, M.; Solís, M. A.; Salas, P.

    2016-05-01

    Disorder effects in the thermodynamic properties of an ideal Bose gas confined in a semi-infinite multi-layer structure within a box of thickness L and infinite lateral extent, are analyzed. The layers are first modeled by a periodic array of M Dirac-delta functions of equal intensity. Then, we introduce structural and compositional disorder, as well as a random set of layer vacancies in the system to calculate the internal energy, chemical potential and the specific heat for different configurations. Whereas structural and compositional disorder do not reveal a significant change, a dramatic increase in the maximum of the specific heat is observed when the system is depleted a fraction of the order of 0.1-0.2 of random layers compared to the original, fully periodic array. Furthermore, this maximum, which is reminiscent of a Bose-Einstein condensation for an infinite array, occurs at higher temperatures.

  18. Anisotropic superfluidity in a dipolar Bose gas

    SciTech Connect

    Ticknor, Christopher; Wilson, Ryan M; Bohn, John L

    2010-11-04

    A quintessential feature of superfluidity is the ability to support dissipationless flow, for example, when an object moves through a superfluid and experiences no drag. This, however, only occurs when the object is moving below a certain critical velocity; when it exceeds this critical velocity it dissipates energy into excitations of the superfluid, resulting in a net drag force on the object and the breakdown of superfluid flow. In many superfluids, such as dilute Bose-Einstein condensates (BECs) of atoms with contact interactions, this critical velocity is simply the speed of sound in the system, where the speed of sound is set by the density and the s-wave scattering length of the atoms. However, for other superfluids, such as liquid {sup 4}He, this is not the case. In {sup 4}He, the critical velocity is set by a roton mode, corresponding to a peak in the static structure factor of the system at some finite, non-zero momentum, with a characteristic velocity that is considerably less than the speed of sound in the liquid. This feature has been verified experimentally via measurements of ion-drift velocity in the fluid, thereby providing insight into the detailed structure of the system. Interestingly, a roton-like feature was predicted to exist in the dispersion relation of a quasi-two-dimensional (q2D) dipolar BEC (DBEC) [16], or a BEC with dipole-dipole interactions. However, unlike the dispersion of {sup 4}He, the disperSion of a DBEC is highly tunable as a function of the condensate density or dipole-dipole interaction (ddi) strength. Additionally, the DBEC is set apart from liquid {sup 4}He in that its interactions depend on how the dipoles are oriented in space. Thus, the DBEC provides an ideal system to study the effects that anisotropies have on the bulk properties of a superfluid, such as the critical velocity. Here we consider a DBEC in a quasi-two-dimensional (q2D) geometry and allow for the dipoles to be polarized at a nonzero angle into the plane

  19. Ground state of a resonantly interacting Bose gas

    SciTech Connect

    Diederix, J. M.; Heijst, T. C. F. van; Stoof, H. T. C.

    2011-09-15

    We show that a two-channel mean-field theory for a Bose gas near a Feshbach resonance allows for an analytic computation of the chemical potential, and therefore the universal constant {beta}, at unitarity. To improve on this mean-field theory, which physically neglects condensate depletion, we study a variational Jastrow ansatz for the ground-state wave function and use the hypernetted-chain approximation to minimize the energy for all positive values of the scattering length. We also show that other important physical quantities such as Tan's contact and the condensate fraction can be directly obtained from this approach.

  20. Transition temperature of a weakly interacting Bose gas

    SciTech Connect

    Kao, Yee-Mou; Jiang, T. F.

    2006-04-15

    We report a theoretical study of the transition temperature of a trapped interacting dilute Bose gas. The system is treated like a two-fluid model consisting of a thermal component and a condensate component. Through the calculation of the energy spectra, the origins of various effects on the transition temperature are derived. We found that the interactive shift is affected by both the thermal component and the condensate component. The latter effect, which is about 34% of the former, has never been reported so far. With these two effects, our calculated interactive shift agrees very well with the recent measurement.

  1. Equilibrium state of a trapped two-dimensional Bose gas

    SciTech Connect

    Rath, Steffen P.; Yefsah, Tarik; Guenter, Kenneth J.; Cheneau, Marc; Desbuquois, Remi; Dalibard, Jean; Holzmann, Markus; Krauth, Werner

    2010-07-15

    We study experimentally and numerically the equilibrium density profiles of a trapped two-dimensional {sup 87}Rb Bose gas and investigate the equation of state of the homogeneous system using the local density approximation. We find a clear discrepancy between in situ measurements and quantum Monte Carlo simulations, which we attribute to a nonlinear variation of the optical density of the atomic cloud with its spatial density. However, good agreement between experiment and theory is recovered for the density profiles measured after time of flight, taking advantage of their self-similarity in a two-dimensional expansion.

  2. Investigation of Bose Condensation in Ideal Bose Gas Trapped under Generic Power Law Potential in d Dimension

    NASA Astrophysics Data System (ADS)

    Mehedi Faruk, Mir; Sazzad Hossain, Md.; Muktadir Rahman, Md.

    2016-02-01

    The changes in characteristics of Bose condensation of ideal Bose gas due to an external generic power law potential U=\\sumi=1dci\\vert xi/ai\\vertni are studied carefully. Detailed calculation of Kim et al. (J. Phys. Condens. Matter 11 (1999) 10269) yielded the hierarchy of condensation transitions with changing fractional dimensionality. In this manuscript, some theorems regarding specific heat at constant volume CV are presented. Careful examination of these theorems reveal the existence of hidden hierarchy of the condensation transition in trapped systems as well.

  3. Postquench dynamics and prethermalization in a resonant Bose gas

    NASA Astrophysics Data System (ADS)

    Yin, Xiao; Radzihovsky, Leo

    2016-03-01

    We explore the dynamics of a resonant Bose gas following its quench to a strongly interacting regime near a Feshbach resonance. For such deep quenches, we utilize a self-consistent dynamic field approximation and find that after an initial regime of many-body Rabi-type oscillations between the condensate and finite-momentum quasiparticle pairs, at long times, the gas reaches a prethermalized nonequilibrium steady state. We explore the resulting state through its broad stationary momentum distribution function, that exhibits a power-law high-momentum tail. We study the dynamics and steady-state form of the associated enhanced depletion, quench-rate-dependent excitation energy, Tan's contact, structure function, and radio-frequency spectroscopy. We find these predictions to be in a qualitative agreement with recent experiments.

  4. Quench dynamics of a strongly interacting resonant Bose gas

    NASA Astrophysics Data System (ADS)

    Yin, Xiao; Radzihovsky, Leo

    2015-03-01

    We explore the dynamics of a resonant Bose gas following its quench to a strongly interacting regime near a Feshbach resonance. For such deep quenches, we utilize a self-consistent dynamic mean-field approximation and find that after an initial regime of many-body Rabi-like oscillations between the condensate and finite-momentum quasiparticle pairs, at long times, the gas reaches a prethermalized nonequilibrium steady state. We explore the resulting state through its broad stationary momentum distribution function, that exhibits a power-law high momentum tail. We study the associated enhanced depletion, quench-rate dependent excitation energy, Tan's contact, structure function and radio frequency spectroscopy. We find these predictions to be in a qualitative agreement with recent experiments We acknowledge the supported by the NSF through DMR-1001240 on this research.

  5. Quench dynamics of a strongly interacting resonant Bose gas

    NASA Astrophysics Data System (ADS)

    Yin, Xiao; Radzihovsky, Leo

    2013-12-01

    We explore the dynamics of a Bose gas following its quench to a strongly interacting regime near a Feshbach resonance. Within a self-consistent Bogoliubov analysis we find that after the initial condensate-quasiparticle Rabi oscillations, at long time scales the gas is characterized by a nonequilibrium steady-state momentum distribution function, with depletion, condensate density, and contact that deviate strongly from their corresponding equilibrium values. These are in a qualitative agreement with recent experiments on 85Rb by Makotyn Our analysis also suggests that for sufficiently deep quenches close to the resonance the nonequilibrium state undergoes a phase transition to a fully depleted state, characterized by a vanishing condensate density.

  6. Quench dynamics of a strongly interacting resonant Bose gas

    NASA Astrophysics Data System (ADS)

    Yin, Xiao; Radzihovsky, Leo

    2014-03-01

    We explore the dynamics of a Bose gas following its quench to a strongly interacting regime near a Feshbach resonance. Within a self-consistent Bogoliubov analysis we find that after the initial condensate-quasiparticle Rabi oscillations, at long time scales the gas is characterized by a nonequilibrium steady-state momentum distribution function, with depletion, condensate density and contact that deviate strongly from their corresponding equilibrium values. These are in a qualitative agreement with recent experiments on 85Rb by Makotyn. Our analysis also suggests that for sufficiently deep quenches close to the resonance the nonequilibrium state undergoes a phase transition to a fully depleted state, characterized by a vanishing condensate density. This research was supported by the NSF through DMR-0321848.

  7. Superfluidity and phase transitions in a resonant Bose gas

    NASA Astrophysics Data System (ADS)

    Radzihovsky, Leo; Weichman, Peter B.; Park, Jae I.

    2008-10-01

    The atomic Bose gas is studied across a Feshbach resonance, mapping out its phase diagram, and computing its thermodynamics and excitation spectra. It is shown that such a degenerate gas admits two distinct atomic and molecular superfluid phases, with the latter distinguished by the absence of atomic off-diagonal long-range order, gapped atomic excitations, and deconfined atomic π-vortices. The properties of the molecular superfluid are explored, and it is shown that across a Feshbach resonance it undergoes a quantum Ising transition to the atomic superfluid, where both atoms and molecules are condensed. In addition to its distinct thermodynamic signatures and deconfined half-vortices, in a trap a molecular superfluid should be identifiable by the absence of an atomic condensate peak and the presence of a molecular one.

  8. Bose gas with generalized dispersion relation plus an energy gap

    NASA Astrophysics Data System (ADS)

    Solis, M. A.; Martinez, J. G.; Garcia, J.

    We report the critical temperature, the condensed fraction, the internal energy and the specific heat for a d-dimensional Bose gas with a generalized dispersion relation plus an energy gap, i.e., ɛ =ɛ0 for k = 0 and ɛ =ɛ0 + Δ +csks , for k > 0 , where ℏk is the particle momentum, ɛ0 the lowest particle energy, cs a constant with dimension of energy multiplied by a length to the power s > 0 . When Δ > 0 , a Bose-Einstein critical temperature Tc ≠ 0 exists for any d / s >= 0 at which the internal energy shows a peak and the specific heat shows a jump. The critical temperature and the specific heat jump increase as functions of the gap but they decrease as functions of d / s . Thermodynamic properties are ɛ0 independent since this is just a reference energy. For Δ = 0 we recover the results reported in Ref. [1]. V. C. Aguilera-Navarro, M. de Llano y M. A. Solís, Eur. J. Phys. 20, 177 (1999). We acknowledge partial support from Grants PAPIIT IN111613 and CONACyT 221030.

  9. Dynamics of a finite temperature Bose gas in atomtronic devices

    NASA Astrophysics Data System (ADS)

    Colussi, Victor; Holland, Murray; Anderson, Dana Z.

    2014-05-01

    We investigate the problem of modeling atomtronic devices that utilize the nonequilibrium dynamics of a finite temperature Bose-condensed gas placed underneath an atom chip to mimic the properties of classical circuit elements. Our model consists of the full dynamics of the condensate and thermal cloud. The thermal cloud is treated semiclassically, in the spirit of the ZNG method (Zaremba, Nikuni and Griffin.) However, we develop a novel procedure to account for collisions between the condensate and thermal cloud which evaluates collision rates directly. We present the results of this model compared to two experiments: the atomtronic battery and transistor [arXiv:1208.3109v2]. Also presented are predictions for more complex circuit elements. This work is funded by the NSF Physics Frontier Center at JILA and by the Air Force Office of Scientific Research.

  10. Superfluid density of a spin-orbit-coupled Bose gas

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Cai; Yu, Zeng-Qiang; Ng, Tai Kai; Zhang, Shizhong; Pitaevskii, Lev; Stringari, Sandro

    2016-09-01

    We discuss the superfluid properties of a uniform, weakly interacting Bose-Einstein condensed gas with spin-orbit coupling, realized recently in experiments. We find a finite normal fluid density ρn at zero temperature which turns out to be a function of the Raman coupling. In particular, the entire fluid becomes normal at the transition point from the zero momentum to the plane wave phase, even though the condensate fraction remains finite. We emphasize the crucial role played by the breaking of Galilean invariance and by the gapped branch of the elementary excitations whose contribution to various sum rules is discussed explicitly. Our predictions for the superfluid density are successfully compared with the available experimental results based on the measurement of the sound velocities.

  11. Interacting Bose gas confined in a Kronig-Penney potential

    NASA Astrophysics Data System (ADS)

    Rodríguez, O. A.; Solís, M. A.

    We analyze the effect of the 1D periodic Kronig-Penney potential, composed of barriers of width b and separated a distance a, over an interacting Bose gas. At T = 0 , the Gross-Pitaevskii equation is solved analytically in terms of the Jacobi elliptic functions for repulsive or attractive interaction between bosons. By applying the boundary conditions for periodic solutions as well as the normalization of the wave function, we arrive to a set of nonlinear equations from which we obtain the density profile and the chemical potential of the condensate as a function of the particle momentum. The profiles for attractive and repulsive interactions are compared with that of the non-interacting case. For attractive interaction we are able to observe a pronounced spatial localization in the middle of every two barriers. We reproduce the well known results when the Kronig-Penney potential becomes a Dirac Comb. We acknowledge partial support from Grants PAPIIT IN111613 and CONACyT 221030.

  12. Measurement of plasma production and neutralization in gas neutralizers

    SciTech Connect

    Maor, D.; Meron, M.; Johnson, B.; Jones, K.; Agagu, A.; Hu, B.

    1986-06-17

    In order to satisfy the need of experimental data for the designing of gas neutralizers we have started a project aimed at measuring all relevant cross sections for the charge exchange of H/sup -/, H/sup 0/ and H/sup +/ projectiles, as well as the cross sections for the production of ions in the target. The expected results of these latter measurements are shown schematically.

  13. Two-state Bogoliubov theory of a molecular Bose gas

    NASA Astrophysics Data System (ADS)

    Peden, Brandon M.; Wilson, Ryan M.; McLanahan, Maverick L.; Hall, Jesse; Rittenhouse, Seth T.

    2015-12-01

    We present an analytic Bogoliubov description of a Bose-Einstein condensate of polar molecules trapped in a quasi-two-dimensional geometry and interacting via internal state-dependent dipole-dipole interactions. We derive the mean-field ground-state energy functional, and we derive analytic expressions for the dispersion relations, Bogoliubov amplitudes, and static structure factors. This method can be applied to any homogeneous, two-component system with linear coupling and direct, momentum-dependent interactions. The properties of the mean-field ground state, including polarization and stability, are investigated, and we identify three distinct instabilities: a density-wave rotonization that occurs when the gas is fully polarized, a spin-wave rotonization that occurs near zero polarization, and a mixed instability at intermediate fields. The nature of these instabilities is clarified by means of the real-space density-density correlation functions, which characterize the spontaneous fluctuations of the ground state, and the momentum-space structure factors, which characterize the response of the system to external perturbations. We find that the gas is susceptible to both density-wave and spin-wave responses in the polarized limit but only a spin-wave response in the zero-polarization limit. These results are relevant for experiments with rigid rotor molecules such as RbCs, Λ -doublet molecules such as ThO that have an anomalously small zero-field splitting, and doublet-Σ molecules such as SrF where two low-lying opposite-parity states can be tuned to zero splitting by an external magnetic field.

  14. Bose-Einstein condensation in an ultra-hot gas of pumped magnons.

    PubMed

    Serga, Alexander A; Tiberkevich, Vasil S; Sandweg, Christian W; Vasyuchka, Vitaliy I; Bozhko, Dmytro A; Chumak, Andrii V; Neumann, Timo; Obry, Björn; Melkov, Gennadii A; Slavin, Andrei N; Hillebrands, Burkard

    2014-03-11

    Bose-Einstein condensation of quasi-particles such as excitons, polaritons, magnons and photons is a fascinating quantum mechanical phenomenon. Unlike the Bose-Einstein condensation of real particles (like atoms), these processes do not require low temperatures, since the high densities of low-energy quasi-particles needed for the condensate to form can be produced via external pumping. Here we demonstrate that such a pumping can create remarkably high effective temperatures in a narrow spectral region of the lowest energy states in a magnon gas, resulting in strikingly unexpected transitional dynamics of Bose-Einstein magnon condensate: the density of the condensate increases immediately after the external magnon flow is switched off and initially decreases if it is switched on again. This behaviour finds explanation in a nonlinear 'evaporative supercooling' mechanism that couples the low-energy magnons overheated by pumping with all the other thermal magnons, removing the excess heat, and allowing Bose-Einstein condensate formation.

  15. Thermodynamics of Ideal Bose Gas Under Generic Power Law Potential in d-dimensions

    NASA Astrophysics Data System (ADS)

    Faruk, M. M.

    Thermodynamic properties of ideal Bose gas trapped in an external generic power law potential are investigated systematically from the grand thermodynamic potential in $d$ dimensional space. The most general conditions for Bose-Einstein condensate and the discontinuous conditions of heat capacity at the critical temperature in presence of generic power law potential are presented in this manuscript. The dependence of the physical quantities on external potential, particle characteristics and space dimensionality are discussed. The more general results obtained in this paper presents an unified illustration of Bose-Einstein condensation of ideal Bose systems as they reduces to the expressions and conclusions available in the literature with appropiate choice of power law exponent.

  16. Two-mode Bose gas: Beyond classical squeezing

    SciTech Connect

    Bodet, C.; Gasenzer, T.; Esteve, J.; Oberthaler, M. K.

    2010-06-15

    The dynamical evolution of squeezing correlations in an ultracold Bose-Einstein condensate distributed across two modes is investigated theoretically in the framework of the Bose-Hubbard model. It is shown that the eigenstates of the Hamiltonian do not exploit the full region allowed by Heisenberg's uncertainty relation for number and phase fluctuations. The development of nonclassical correlations and relative number squeezing is studied in the transition from the Josephson to the Fock regime. Comparing the full quantum evolution with classical statistical simulations allows us to identify quantum aspects of the squeezing formation. In the quantum regime, the measurement of squeezing allows us to distinguish even and odd total particle numbers.

  17. Classical fields method for a relativistic interacting Bose gas

    SciTech Connect

    Witkowska, Emilia; Zin, Pawel; Gajda, Mariusz

    2009-01-15

    We formulate a classical fields method for the description of relativistic interacting bosonic particles at nonzero temperatures. The method relies on the assumption that at low temperatures the Bose field can be described by a c-number function. We discuss a very important role of the cutoff momentum which divides the field into a dominant classical part and a small quantum correction. We illustrate the method by studying the thermodynamics of a relativistic Bose field which is governed by the Klein-Gordon equation with a {lambda}{psi}{sup 4} term responsible for the interactions.

  18. Single-particle spectral density of a Bose gas in the two-fluid hydrodynamic regime

    SciTech Connect

    Arahata, Emiko; Nikuni, Tetsuro; Griffin, Allan

    2011-11-15

    In Bose superfluids, the single-particle Green's function can be directly related to the superfluid velocity-velocity correlation function in the hydrodynamic regime. An explicit expression for the single-particle spectral density was originally written down by Hohenberg and Martin in 1965, starting from the two-fluid equations for a superfluid. We give a simple derivation of their results. Using these results, we calculate the relative weights of first and second sound modes in the single-particle spectral density as a function of temperature in a uniform Bose gas. We show that the second sound mode makes a dominant contribution to the single-particle spectrum in a relatively high-temperature region. We also discuss the possibility of experimental observation of the second sound mode in a Bose gas by photoemission spectroscopy.

  19. Dynamical transition from a quasi-one-dimensional Bose-Einstein condensate to a Tonks-Girardeau gas.

    PubMed

    Ohberg, P; Santos, L

    2002-12-01

    We analyze in detail the expansion of a 1D Bose gas after removing the axial confinement. We show that during its one-dimensional expansion the density of the Bose gas does not follow a self-similar solution. Our analysis is based on a nonlinear Schrödinger equation with variable nonlinearity whose validity is discussed for the expansion problem, by comparing with an exact Bose-Fermi mapping for the case of an initial Tonks-Girardeau gas. For this case, the gas is shown to expand self-similarly, with a different scaling law compared to the one-dimensional Thomas-Fermi condensate.

  20. Bose-Einstein condensation in a two-component Bose gas with harmonic oscillator interaction

    NASA Astrophysics Data System (ADS)

    Abulseoud, A. A.; Abbas, A. H.; Galal, A. A.; El-Sherbini, Th M.

    2016-07-01

    In this article a system containing two species of identical bosons interacting via a harmonic oscillator potential is considered. It is assumed that the number of bosons of each species is the same and that bosons belonging to the same species repel each other while those belonging to different species attract. The Hamiltonian is diagonalized and the energy spectrum of the system is written down. The behaviour of the system in the thermodynamic limit is studied within the framework of the grand canonical ensemble, and thermodynamic parameters, such as the internal energy, entropy and specific heat capacity are calculated. It is shown that the system exhibits a single species Bose-Einstein condensation when the coupling strengths are equal and a dual species condensation when they are different.

  1. Direct Observation of Sub-Poissonian Number Statistics in a Degenerate Bose Gas

    SciTech Connect

    Chuu, C.-S.; Schreck, F.; Meyrath, T.P.; Hanssen, J.L.; Price, G.N.; Raizen, M.G.

    2005-12-31

    We report the direct observation of sub-Poissonian number fluctuation for a degenerate Bose gas confined in an optical trap. Reduction of number fluctuations below the Poissonian limit is observed for average numbers that range from 300 to 60 atoms.

  2. Fermi liquid-to-Bose condensate crossover in a two-dimensional ultracold gas experiment

    NASA Astrophysics Data System (ADS)

    Barmashova, T. V.; Mart'yanov, K. A.; Makhalov, V. B.; Turlapov, A. V.

    2016-02-01

    By controling interparticle interactions, it is possible to transform a fermionic system into a bosonic system and vice versa, while preserving quantum degeneracy. Evidence of such a transformation may be found by monitoring the pressure and interference. The Fermi pressure is an indication of the fermion?ic character of a system, while the interference implies a nonzero order parameter and Bose condensation. Lowering from three to two spatial dimensions introduces new physics and makes the system more difficult to describe due to the increased fluctuations and the reduced applicability of mean field methods. An experiment with a two-dimensional ultracold atomic gas shows a crossover between the Bose and Fermi limits, as evident from the value of pressure and from the interference pattern, and provides data to test models of 2D Fermi and Bose systems, including the most-difficult-to-model strongly coupled systems.

  3. Momentum-Space Correlations of a One-Dimensional Bose Gas.

    PubMed

    Fang, Bess; Johnson, Aisling; Roscilde, Tommaso; Bouchoule, Isabelle

    2016-02-01

    Analyzing the noise in the momentum profiles of single realizations of one-dimensional Bose gases, we present the experimental measurement of the full momentum-space density correlations ⟨δn_{p}δn_{p^{'}}⟩, which are related to the two-body momentum correlation function. Our data span the weakly interacting region of the phase diagram, going from the ideal Bose gas regime to the quasicondensate regime. We show experimentally that the bunching phenomenon, which manifests itself as super-Poissonian local fluctuations in momentum space, is present in all regimes. The quasicondensate regime is, however, characterized by the presence of negative correlations between different momenta, in contrast to the Bogolyubov theory for Bose condensates, predicting positive correlations between opposite momenta. Our data are in good agreement with ab initio calculations.

  4. Equation of state and contact of a strongly interacting Bose gas in the normal state

    SciTech Connect

    Liu, Xia -Ji; Mulkerin, Brendan; He, Lianyi; Hu, Hui

    2015-04-27

    Here, we theoretically investigate the equation of state and Tan's contact of a nondegenerate three-dimensional Bose gas near a broad Feshbach resonance, within the framework of large-N expansion. Our results agree with the path-integral Monte Carlo simulations in the weak-coupling limit and recover the second-order virial expansion predictions at strong interactions and high temperatures. At resonance, we find that the chemical potential and energy are significantly enhanced by the strong repulsion, while the entropy does not change significantly. With increasing temperature, the two-body contact initially increases and then decreases like T–1 at large temperature, and therefore exhibits a peak structure at about 4Tc0, where Tc0 is the Bose-Einstein condensation temperature of an ideal, noninteracting Bose gas. These results may be experimentally examined with a nondegenerate unitary Bose gas, where the three-body recombination rate is substantially reduced. In particular, the nonmonotonic temperature dependence of the two-body contact could be inferred from the momentum distribution measurement.

  5. Equation of state and contact of a strongly interacting Bose gas in the normal state

    NASA Astrophysics Data System (ADS)

    Liu, Xia-Ji; Mulkerin, Brendan; He, Lianyi; Hu, Hui

    2015-04-01

    We theoretically investigate the equation of state and Tan's contact of a nondegenerate three-dimensional Bose gas near a broad Feshbach resonance, within the framework of large-N expansion. Our results agree with the path-integral Monte Carlo simulations in the weak-coupling limit and recover the second-order virial expansion predictions at strong interactions and high temperatures. At resonance, we find that the chemical potential and energy are significantly enhanced by the strong repulsion, while the entropy does not change significantly. With increasing temperature, the two-body contact initially increases and then decreases like T-1 at large temperature, and therefore exhibits a peak structure at about 4 Tc 0 , where Tc 0 is the Bose-Einstein condensation temperature of an ideal, noninteracting Bose gas. These results may be experimentally examined with a nondegenerate unitary Bose gas, where the three-body recombination rate is substantially reduced. In particular, the nonmonotonic temperature dependence of the two-body contact could be inferred from the momentum distribution measurement.

  6. Equation of state and contact of a strongly interacting Bose gas in the normal state

    DOE PAGES

    Liu, Xia -Ji; Mulkerin, Brendan; He, Lianyi; Hu, Hui

    2015-04-27

    Here, we theoretically investigate the equation of state and Tan's contact of a nondegenerate three-dimensional Bose gas near a broad Feshbach resonance, within the framework of large-N expansion. Our results agree with the path-integral Monte Carlo simulations in the weak-coupling limit and recover the second-order virial expansion predictions at strong interactions and high temperatures. At resonance, we find that the chemical potential and energy are significantly enhanced by the strong repulsion, while the entropy does not change significantly. With increasing temperature, the two-body contact initially increases and then decreases like T–1 at large temperature, and therefore exhibits a peak structuremore » at about 4Tc0, where Tc0 is the Bose-Einstein condensation temperature of an ideal, noninteracting Bose gas. These results may be experimentally examined with a nondegenerate unitary Bose gas, where the three-body recombination rate is substantially reduced. In particular, the nonmonotonic temperature dependence of the two-body contact could be inferred from the momentum distribution measurement.« less

  7. Fourier Spectroscopy of a Spin-Orbit Coupled Bose Gas

    NASA Astrophysics Data System (ADS)

    Valdes-Curiel, Ana; Trypogeorgos, Dimitris; Marshall, Erin; Spielman, Ian

    2016-05-01

    We generate spin-orbit coupling in a spin-1 Bose-Einstein condensate using Raman transitions. We are able to measure the system's spin and momentum dependent energy spectrum by looking at the time evolution of the three spin states. We drive transitions at different detunings from Raman resonance and extract the Fourier components of the time dependent evolution to reconstruct the spectrum. We also add a periodic modulation to one Raman field which allows us to have a fully tunable spin-orbit coupling dispersion that we can directly measure using our spectroscopy technique.

  8. Laboratory simulation of cometary neutral gas ionization

    NASA Astrophysics Data System (ADS)

    Chang, T.-F.; Rahman, H. U.; White, R. S.

    1989-05-01

    The laboratory simulation of the interaction of the solar wind with a comet is used to study the cometary neural gas ionization. The experiment is carried out in the UCR T-1 facility with an ice ball as the comet model. Photographs and data are taken with a variety of values of the solar wind velocity, interplanetary magnetic field (IMF), and comet configurations. The results show that the cometary neutral gas ionization depends on both the velocity of the solar wind and the interplanetary magnetic field. The plasma cloud surrounding the comet is visible only when the solar wind velocity and IMF are both above certain minimum values. This velocity dependent phenomena is explained by Alfven's critical ionization velocity effect. The critical magnetic field may be explained by assuming two stream lower hybrid instability as a triggering mechanism for the ionization of the neutral gas by plasma flow. Critical upper and lower limits for the magnetic field, required by anomalous ionization, are also derived that satisfy the experimental observations.

  9. Semiclassical and quantum description of an ideal Bose gas in a uniform gravitational field

    NASA Astrophysics Data System (ADS)

    Bhaduri, Rajat K.; van Dijk, Wytse

    2016-07-01

    We consider an ideal Bose gas contained in a cylinder in three spatial dimensions, subjected to a uniform gravitational field. It has been claimed by some authors that there is discrepancy between the semiclassical and quantum calculations in the thermal properties of such a system. To check this claim, we calculate the heat capacity and isothermal compressibility of this system semiclassically as well as from the quantum spectrum of the density of states. The quantum calculation is done for a finite number of particles. We find good agreement between the two calculations when the number of particles are taken to be large. We also find that this system has the same thermal properties as an ideal five dimensional Bose gas.

  10. Beyond the Tonks-Girardeau Gas: Strongly Correlated Regime in Quasi-One-Dimensional Bose Gases

    SciTech Connect

    Astrakharchik, G.E.; Boronat, J.; Casulleras, J.; Giorgini, S.

    2005-11-04

    We consider a homogeneous 1D Bose gas with contact interactions and a large attractive coupling constant. This system can be realized in tight waveguides by exploiting a confinement induced resonance of the effective 1D scattering amplitude. By using the diffusion Monte Carlo method we show that, for small densities, the gaslike state is well described by a gas of hard rods. The critical density for cluster formation is estimated using the variational Monte Carlo method. The behavior of the correlation functions and of the frequency of the lowest breathing mode for harmonically trapped systems shows that the gas is more strongly correlated than in the Tonks-Girardeau regime.

  11. Universal Behavior of the BEC Critical Temperature for a Multi-slab Ideal Bose Gas

    NASA Astrophysics Data System (ADS)

    Rodríguez, O. A.; Solís, M. A.

    2016-05-01

    For an ideal Bose gas within a multi-slab periodic structure, we discuss the effect of the spatial distribution of the gas on its Bose-Einstein condensation critical temperature T_c, as well as on the origin of its dimensional crossover observed in the specific heat. The multi-slabs structure is generated by applying a Kronig-Penney potential to the gas in the perpendicular direction to the slabs of width b and separated by a distance a, and allowing the particles to move freely in the other two directions. We found that T_c decreases continuously as the potential barrier height increases, becoming inversely proportional to the square root of the barrier height when it is large enough. This behavior is universal as it is independent of the width and spacing of the barriers. The specific heat at constant volume shows a crossover from 3D to 2D when the height of the potential or the barrier width increases, in addition to the well-known peak related to the Bose-Einstein condensation. These features are due to the trapping of the bosons by the potential barriers and can be characterized by the energy difference between the energy bands below the potential height.

  12. Neutral gas density depletion due to neutral gas heating and pressure balance in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Tynan, George R.; Cattolica, Robert

    2007-02-01

    The spatial distribution of neutral gas temperature and total pressure have been measured for pure N2, He/5%N2 and Ar/5%N2 in an inductively coupled plasma (ICP) reactor, and a significant rise in the neutral gas temperature has been observed. When thermal transpiration is used to correct total pressure measurements, the total pressure remains constant regardless of the plasma condition. Neutral pressure is depleted due to the pressure balance when the plasma pressure (mainly electron pressure) becomes comparable to the neutral pressure in high density plasma. Since the neutral gas follows the ideal gas law, the neutral gas density profile was obtained from the neutral gas temperature and the corrected neutral pressure measurements. The results show that the neutral gas density at the centre of the plasma chamber (factor of 2-4 ×) decreases significantly in the presence of a plasma discharge. Significant spatial variation in neutral gas uniformity occurs in such plasmas due to neutral gas heating and pressure balance.

  13. Strong correlation effects in a two-dimensional Bose gas with quartic dispersion

    NASA Astrophysics Data System (ADS)

    Radic, Juraj; Natu, Stefan; Galitski, Victor

    We consider a two-dimensional Bose gas at zero temperature with an underlying quartic single-particle dispersion in one spatial direction. This type of band structure can be realized using the NIST scheme of spin-orbit coupling, in the regime where the lower band dispersion has the form ɛk ~kx4 / 4 +ky2 + ... . We numerically compare the ground state energies of the mean-field Bose-Einstein condensate (BEC) and various trial wave-functions, where bosons avoid each other at short distances. We discover that, at low densities, several types of strongly correlated states have an energy per particle (ɛ), which scales with density (n) as ɛ ~n 4 / 3 , in contrast to ɛ ~ n for the weakly interacting Bose gas. These competing states include a Wigner crystal, quasi-condensates described in terms of properly symmetrized fermionic states, and variational wave-functions of Jastrow type, where the latter has the lowest energy and describes a strongly-correlated condensate. Our results show that even for weakly-interacting bosons in higher dimensions, one can explore the crossover from a weakly-coupled BEC to a strongly-correlated condensate by simply tuning the single particle dispersion or density.

  14. Isobars of an ideal Bose gas within the grand canonical ensemble

    NASA Astrophysics Data System (ADS)

    Jeon, Imtak; Kim, Sang-Woo; Park, Jeong-Hyuck

    2011-08-01

    We investigate the isobar of an ideal Bose gas confined in a cubic box within the grand canonical ensemble for a large yet finite number of particles, N. After solving the equation of the spinodal curve, we derive precise formulas for the supercooling and the superheating temperatures that reveal an N-1/3 or N-1/4 power correction to the known Bose-Einstein condensation temperature in the thermodynamic limit. Numerical computations confirm the accuracy of our analytical approximation, and further show that the isobar zigzags on the temperature-volume plane if N≥14393. In particular, for the Avogadro’s number of particles, the volume expands discretely about 105 times. Our results quantitatively agree with a previous study on the canonical ensemble within 0.1% error.

  15. Isobars of an ideal Bose gas within the grand canonical ensemble

    SciTech Connect

    Jeon, Imtak; Park, Jeong-Hyuck; Kim, Sang-Woo

    2011-08-15

    We investigate the isobar of an ideal Bose gas confined in a cubic box within the grand canonical ensemble for a large yet finite number of particles, N. After solving the equation of the spinodal curve, we derive precise formulas for the supercooling and the superheating temperatures that reveal an N{sup -1/3} or N{sup -1/4} power correction to the known Bose-Einstein condensation temperature in the thermodynamic limit. Numerical computations confirm the accuracy of our analytical approximation, and further show that the isobar zigzags on the temperature-volume plane if N{>=}14 393. In particular, for the Avogadro's number of particles, the volume expands discretely about 10{sup 5} times. Our results quantitatively agree with a previous study on the canonical ensemble within 0.1% error.

  16. Quantum Monte Carlo simulation of a two-dimensional Bose gas

    SciTech Connect

    Pilati, S.; Boronat, J.; Casulleras, J.; Giorgini, S.

    2005-02-01

    The equation of state of a homogeneous two-dimensional Bose gas is calculated using quantum Monte Carlo methods. The low-density universal behavior is investigated using different interatomic model potentials, both finite ranged and strictly repulsive and zero ranged, supporting a bound state. The condensate fraction and the pair distribution function are calculated as a function of the gas parameter, ranging from the dilute to the strongly correlated regime. In the case of the zero-range pseudopotential we discuss the stability of the gaslike state for large values of the two-dimensional scattering length, and we calculate the critical density where the system becomes unstable against cluster formation.

  17. Ground-state properties of a dilute homogeneous Bose gas of hard disks in two dimensions

    SciTech Connect

    Mazzanti, F.; Polls, A.; Fabrocini, A.

    2005-03-01

    The energy and structure of a dilute hard-disks Bose gas are studied in the framework of a variational many-body approach based on a Jastrow correlated ground-state wave function. The asymptotic behaviors of the radial distribution function and the one-body density matrix are analyzed after solving the Euler equation obtained by a free minimization of the hypernetted chain energy functional. Our results show important deviations from those of the available low density expansions, already at gas parameter values x{approx}0.001. The condensate fraction in 2D is also computed and found generally lower than the 3D one at the same x.

  18. Spin waves in a spin-1 normal Bose gas

    SciTech Connect

    Natu, Stefan S.; Mueller, Erich J.

    2010-05-15

    We present a theory of spin waves in a noncondensed gas of spin-1 bosons and provide both analytic calculations of the linear theory and full numerical simulations of the nonlinear response. We highlight the role of spin-dependent contact interactions in the dynamics of a thermal gas. Although these interactions are small compared to the thermal energy, they set the scale for low-energy, long-wavelength spin waves. In particular, we find that the polar state of {sup 87}Rb is unstable to collisional mixing of magnetic sublevels even in the normal state. We augment our analytic calculations by providing full numerical simulations of a trapped gas, explicitly demonstrating this instability. Further, we show that for strong antiferromagnetic interactions, the polar gas is unstable. Finally, we explore coherent population dynamics in a collisionless transversely polarized gas.

  19. Ground state and excitations of a Bose gas: From a harmonic trap to a double well

    SciTech Connect

    Japha, Y.; Band, Y. B.

    2011-09-15

    We determine the low-energy properties of a trapped Bose gas split in two by a potential barrier over the whole range of barrier heights and asymmetry between the wells. For either weak or strong coupling between the wells, our two-mode theory yields a two-site Bose-Hubbard Hamiltonian with the tunneling, interaction, and bias parameters calculated simply using an explicit form of two mode functions. When the potential barrier is relatively low, most of the particles occupy the condensate mode and our theory reduces to a two-mode version of the Bogoliubov theory, which gives a satisfactory estimate of the spatial shape and energy of the lowest collective excitation. When the barrier is high, our theory generalizes the standard two-site Bose-Hubbard model into the case of asymmetric modes, and correctly predicts a full separation of the modes in the limit of strong separation of the wells. We provide explicit analytic forms for the number squeezing and coherence as a function of particle number and temperature. We compare our theory to other two-mode theories for bosons in a double well and discuss their validity in different parameter regimes.

  20. Quench dynamics of a Bose gas under synthetic spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Deng, Tian-Shu; Zhang, Wei; Yi, Wei; Guo, Guang-Can; Wei Yi's Group Team; Wei Zhang`s Group Collaboration

    2016-05-01

    We study the quench dynamics of a Bose-Einstein condensate under a Raman-asssited synthetic spin-orbit coupling. To model the dynamical process, we adopt a self-consistent Bogoliubov approach, which is equivalent to applying the time-dependent Bogoliubov-de-Gennes equations. We investigate the dynamics of the condensate fraction as well as the momentum distribution of the Bose gas following a sudden change of system parameters. Typically, the system evolves into a steady state in the long-time limit, which features a stationary condensate fraction and an oscillating momentum distribution. The condensate fraction of the steady state depends on the quench parameter. We investigate how different quench parameters such as the inter- and intra-species interactions and the spin-orbit-coupling parameters affect the condensate fraction in the steady state. Furthermore, we find that the oscillatory momentum distribution in the long-time limit can be described by a generalized Gibbs ensemble with two branches of momentum-dependent Gibbs temperatures. Our study is relevant to the experimental investigation of dynamical processes in a spin-orbit coupled Bose-Einstein condensate.

  1. Higher-order local and non-local correlations for 1D strongly interacting Bose gas

    NASA Astrophysics Data System (ADS)

    Nandani, EJKP; Römer, Rudolf A.; Tan, Shina; Guan, Xi-Wen

    2016-05-01

    The correlation function is an important quantity in the physics of ultracold quantum gases because it provides information about the quantum many-body wave function beyond the simple density profile. In this paper we first study the M-body local correlation functions, g M , of the one-dimensional (1D) strongly repulsive Bose gas within the Lieb-Liniger model using the analytical method proposed by Gangardt and Shlyapnikov (2003 Phys. Rev. Lett. 90 010401; 2003 New J. Phys. 5 79). In the strong repulsion regime the 1D Bose gas at low temperatures is equivalent to a gas of ideal particles obeying the non-mutual generalized exclusion statistics with a statistical parameter α =1-2/γ , i.e. the quasimomenta of N strongly interacting bosons map to the momenta of N free fermions via {k}i≈ α {k}iF with i=1,\\ldots ,N. Here γ is the dimensionless interaction strength within the Lieb-Liniger model. We rigorously prove that such a statistical parameter α solely determines the sub-leading order contribution to the M-body local correlation function of the gas at strong but finite interaction strengths. We explicitly calculate the correlation functions g M in terms of γ and α at zero, low, and intermediate temperatures. For M = 2 and 3 our results reproduce the known expressions for g 2 and g 3 with sub-leading terms (see for instance (Vadim et al 2006 Phys. Rev. A 73 051604(R); Kormos et al 2009 Phys. Rev. Lett. 103 210404; Wang et al 2013 Phys. Rev. A 87 043634). We also express the leading order of the short distance non-local correlation functions < {{{\\Psi }}}\\dagger ({x}1)\\cdots {{{\\Psi }}}\\dagger ({x}M){{\\Psi }}({y}M)\\cdots {{\\Psi }}({y}1)> of the strongly repulsive Bose gas in terms of the wave function of M bosons at zero collision energy and zero total momentum. Here {{\\Psi }}(x) is the boson annihilation operator. These general formulas of the higher-order local and non-local correlation functions of the 1D Bose gas provide new insights into the

  2. Exploring the thermodynamics of a two-dimensional Bose gas.

    PubMed

    Yefsah, Tarik; Desbuquois, Rémi; Chomaz, Lauriane; Günter, Kenneth J; Dalibard, Jean

    2011-09-23

    Using in situ measurements on a quasi-two-dimensional, harmonically trapped (87)Rb gas, we infer various equations of state for the equivalent homogeneous fluid. From the dependence of the total atom number and the central density of our clouds with chemical potential and temperature, we obtain the equations of state for the pressure and the phase-space density. Then, using the approximate scale invariance of this 2D system, we determine the entropy per particle and find very low values (below 0.1k(B)) in the strongly degenerate regime. This shows that this gas can constitute an efficient coolant for other quantum fluids. We also explain how to disentangle the various contributions (kinetic, potential, interaction) to the energy of the trapped gas using a time-of-flight method, from which we infer the reduction of density fluctuations in a nonfully coherent cloud.

  3. Semiclassical field method for the equilibrium Bose gas and application to thermal vortices in two dimensions

    SciTech Connect

    Giorgetti, Luca; Carusotto, Iacopo; Castin, Yvan

    2007-07-15

    We develop a semiclassical field method for the study of the weakly interacting Bose gas at finite temperature which, contrary to the usual classical field model, does not suffer from an ultraviolet cutoff dependence. We apply the method to the study of thermal vortices in spatially homogeneous, two-dimensional systems. We present numerical results for the vortex density and the vortex pair distribution function. Insight in the physics of the system is obtained by comparing the numerical results with the predictions of simple analytical models. In particular, we calculate the activation energy required to form a vortex pair at low temperature.

  4. Dynamical correlation functions of the 1D Bose gas (Lieb Liniger model)

    NASA Astrophysics Data System (ADS)

    Caux, Jean-Sebastien; Calabrese, Pasquale

    2007-03-01

    The momentum- and frequency-dependent correlation functions (one-body and density-density) of the one-dimensional interacting Bose gas (Lieb-Liniger model) are obtained for any value (repulsive or attractive) of the interaction parameter. In the repulsive regime, we use the Algebraic Bethe Ansatz and the ABACUS method to reconstruct the correlators to high accuracy for systems with finite but large numbers of particles. For attractive interactions, the correlations are computed analytically. Our results are discussed, with particular emphasis on their applications to quasi-one-dimensional atomic gases.

  5. Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas

    PubMed Central

    Rohringer, W.; Fischer, D.; Steiner, F.; Mazets, I. E.; Schmiedmayer, J.; Trupke, M.

    2015-01-01

    We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating. PMID:25867640

  6. Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas

    NASA Astrophysics Data System (ADS)

    Rohringer, W.; Fischer, D.; Steiner, F.; Mazets, I. E.; Schmiedmayer, J.; Trupke, M.

    2015-04-01

    We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating.

  7. Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas.

    PubMed

    Rohringer, W; Fischer, D; Steiner, F; Mazets, I E; Schmiedmayer, J; Trupke, M

    2015-04-13

    We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating.

  8. Critical velocity for vortex nucleation in a finite-temperature Bose gas

    NASA Astrophysics Data System (ADS)

    Stagg, G. W.; Pattinson, R. W.; Barenghi, C. F.; Parker, N. G.

    2016-02-01

    We use classical field simulations of the homogeneous Bose gas to study the breakdown of superflow due to vortex nucleation past a cylindrical obstacle at finite temperature. Thermal fluctuations modify the vortex nucleation from the obstacle, turning antiparallel vortex lines (which would be nucleated at zero temperature) into wiggly lines, vortex rings, and even vortex tangles. We find that the critical velocity for vortex nucleation decreases with increasing temperature and scales with the speed of sound of the condensate, becoming zero at the critical temperature for condensation.

  9. Cooperative scattering measurement of coherence in a spatially modulated Bose gas

    SciTech Connect

    Lu Bo; Vogt, Thibault; Liu Xinxing; Xu Xu; Zhou Xiaoji; Chen Xuzong

    2011-05-15

    Correlations of a Bose gas released from an optical lattice are measured using superradiant scattering. Conditions are chosen so that, after initial incident light pumping at the Bragg angle for diffraction, superradiant scattering into the Bragg diffracted mode is preponderant due to matter-wave amplification and mode competition. A temporal analysis of the superradiant scattering gain reveals periodical oscillations and damping due to the initial lack of coherence between lattice sites. Such damping is used for characterizing first-order spatial correlations in our system with a precision of one lattice period.

  10. Strongly correlated Bose gases

    NASA Astrophysics Data System (ADS)

    Chevy, F.; Salomon, C.

    2016-10-01

    The strongly interacting Bose gas is one of the most fundamental paradigms of quantum many-body physics and the subject of many experimental and theoretical investigations. We review recent progress on strongly correlated Bose gases, starting with a description of beyond mean-field corrections. We show that the Efimov effect leads to non universal phenomena and to a metastability of the low temperature Bose gas through three-body recombination to deeply bound molecular states. We outline differences and similarities with ultracold Fermi gases, discuss recent experiments on the unitary Bose gas, and finally present a few perspectives for future research.

  11. Condensation of N bosons: Microscopic approach to fluctuations in an interacting Bose gas

    SciTech Connect

    Svidzinsky, Anatoly A.; Scully, Marlan O.

    2010-12-15

    We present a microscopic derivation of the master equation for the condensate density matrix for an interacting Bogoliubov-Bose gas of N atoms. We choose the interaction Hamiltonian in a special way that substantially simplifies the master equation, yielding no coupling between diagonal and off-diagonal terms. The present formulation allows us to solve the problem analytically in a steady state and obtain the expression for the distribution function and equilibrium condensate fluctuations. For the first two central moments, our results are equivalent to those obtained in the canonical-ensemble quasiparticle formalism [V. V. Kocharovsky, Vl. V. Kocharovsky, and M. O. Scully, Phys. Rev. Lett. 84, 2306 (2000); Phys. Rev. A 61, 053606 (2000)], in the low-temperature range where these papers are valid, but also give an accurate description at high temperatures. The present analysis for an interacting Bose gas is as accurate as the master equation approach of Kocharovsky et al.[Phys. Rev. A 61, 023609 (2000)] is for an ideal gas.

  12. Finite Size Effect on the Specific Heat of a Bose Gas in Multi-filament Cables

    NASA Astrophysics Data System (ADS)

    Guijarro, G.; Solís, M. A.

    2016-05-01

    The specific heat for an ideal Bose gas confined in semi-infinite multi-filament cables is analyzed. We start with a Bose gas inside a semi-infinite tube of impenetrable walls and finite rectangular cross section. The internal filament structure is created by applying to the gas two, mutually perpendicular, finite Kronig-Penney delta potentials along the tube cross section, while particles are free to move perpendicular to the cross section. The energy spectrum accessible to the particles is obtained and introduced into the grand potential to calculate the specific heat of the system as a function of temperature for different values of the periodic structure parameters such as the cross-section area, the wall impenetrability, and the number of filaments. The specific heat as a function of temperature shows at least two maxima and one minimum. The main difference with respect to the infinite case is that the peak associated with the BE condensation becomes a smoothed maximum, namely there is not a jump in the specific heat derivative, whose temperature no longer represents a critical point.

  13. Strong correlation effects in a two-dimensional Bose gas with quartic dispersion

    NASA Astrophysics Data System (ADS)

    Radić, Juraj; Natu, Stefan S.; Galitski, Victor

    2015-06-01

    Motivated by the fundamental question of the fate of interacting bosons in flat bands, we consider a two-dimensional Bose gas at zero temperature with an underlying quartic single-particle dispersion in one spatial direction. This type of band structure can be realized using the NIST scheme of spin-orbit coupling [Y.-J. Lin, K. Jiménez-Garcia, and I. B. Spielman, Nature (London) 471, 83 (2011), 10.1038/nature09887], in the regime where the lower-band dispersion has the form ɛk˜kx4/4 +ky2+... , or using the shaken lattice scheme of Parker et al. [C. V. Parker, L.-C. Ha, and C. Chin, Nat. Phys. 9, 769 (2013), 10.1038/nphys2789]. We numerically compare the ground-state energies of the mean-field Bose-Einstein condensate (BEC) and various trial wave functions, where bosons avoid each other at short distances. We discover that, at low densities, several types of strongly correlated states have an energy per particle (ɛ ), which scales with density (n ) as ɛ ˜n4 /3 , in contrast to ɛ ˜n for the weakly interacting Bose gas. These competing states include a Wigner crystal, quasicondensates described in terms of properly symmetrized fermionic states, and variational wave functions of Jastrow type. We find that one of the latter has the lowest energy among the states we consider. This Jastrow-type state has a strongly reduced, but finite, condensate fraction, and true off-diagonal long-range order, which suggests that the ground state of interacting bosons with quartic dispersion is a strongly correlated condensate reminiscent of superfluid helium-4. Our results show that even for weakly interacting bosons in higher dimensions, one can explore the crossover from a weakly coupled BEC to a strongly correlated condensate by simply tuning the single-particle dispersion or density.

  14. Level density of a bose gas and extreme value statistics.

    PubMed

    Comtet, A; Leboeuf, P; Majumdar, Satya N

    2007-02-16

    We establish a connection between the level density of a gas of noninteracting bosons and the theory of extreme value statistics. Depending on the exponent that characterizes the growth of the underlying single-particle spectrum, we show that at a given excitation energy the limiting distribution function for the number of excited particles follows the three universal distribution laws of extreme value statistics, namely, the Gumbel, Weibull, and Fréchet distributions. Implications of this result, as well as general properties of the level density at different energies, are discussed.

  15. Quantum Joule-Thomson effect in a saturated homogeneous Bose gas.

    PubMed

    Schmidutz, Tobias F; Gotlibovych, Igor; Gaunt, Alexander L; Smith, Robert P; Navon, Nir; Hadzibabic, Zoran

    2014-01-31

    We study the thermodynamics of Bose-Einstein condensation in a weakly interacting quasihomogeneous atomic gas, prepared in an optical-box trap. We characterize the critical point for condensation and observe saturation of the thermal component in a partially condensed cloud, in agreement with Einstein's textbook picture of a purely statistical phase transition. Finally, we observe the quantum Joule-Thomson effect, namely isoenthalpic cooling of an (essentially) ideal gas. In our experiments this cooling occurs spontaneously, due to energy-independent collisions with the background gas in the vacuum chamber. We extract a Joule-Thomson coefficient μJT>10(9)  K/bar, about 10 orders of magnitude larger than observed in classical gases.

  16. Quantum Joule-Thomson effect in a saturated homogeneous Bose gas.

    PubMed

    Schmidutz, Tobias F; Gotlibovych, Igor; Gaunt, Alexander L; Smith, Robert P; Navon, Nir; Hadzibabic, Zoran

    2014-01-31

    We study the thermodynamics of Bose-Einstein condensation in a weakly interacting quasihomogeneous atomic gas, prepared in an optical-box trap. We characterize the critical point for condensation and observe saturation of the thermal component in a partially condensed cloud, in agreement with Einstein's textbook picture of a purely statistical phase transition. Finally, we observe the quantum Joule-Thomson effect, namely isoenthalpic cooling of an (essentially) ideal gas. In our experiments this cooling occurs spontaneously, due to energy-independent collisions with the background gas in the vacuum chamber. We extract a Joule-Thomson coefficient μJT>10(9)  K/bar, about 10 orders of magnitude larger than observed in classical gases. PMID:24580421

  17. Superfluid Transition in a Bose Gas with Correlated Disorder

    SciTech Connect

    Pilati, S.; Giorgini, S.; Prokof'ev, N.

    2009-04-17

    The superfluid transition of a three-dimensional gas of hard-sphere bosons in a disordered medium is studied using quantum Monte Carlo methods. Simulations are performed in continuous space both in the canonical and in the grand-canonical ensemble. At fixed density we calculate the shift of the transition temperature as a function of the disorder strength, while at fixed temperature we determine both the critical chemical potential and the critical density separating normal and superfluid phases. In the regime of strong disorder the normal phase extends up to large values of the degeneracy parameter, and the critical chemical potential exhibits a linear dependence in the intensity of the random potential. The role of interactions and disorder correlations is also discussed.

  18. Quantum sine-Gordon dynamics on analogue curved spacetime in a weakly imperfect scalar Bose gas

    NASA Astrophysics Data System (ADS)

    Volkoff, T. J.; Fischer, Uwe R.

    2016-07-01

    Using the coherent state functional integral expression of the partition function, we show that the sine-Gordon model on an analogue curved spacetime arises as the effective quantum field theory for phase fluctuations of a weakly imperfect Bose gas on an incompressible background superfluid flow when these fluctuations are restricted to a subspace of the single-particle Hilbert space. We consider bipartitions of the single-particle Hilbert space relevant to experiments on ultracold bosonic atomic or molecular gases, including, e.g., restriction to high- or low-energy sectors of the dynamics and spatial bipartition corresponding to tunnel-coupled planar Bose gases. By assuming full unitary quantum control in the low-energy subspace of a trapped gas, we show that (1) appropriately tuning the particle number statistics of the lowest-energy mode partially decouples the low- and high-energy sectors, allowing any low-energy single-particle wave function to define a background for sine-Gordon dynamics on curved spacetime and (2) macroscopic occupation of a quantum superposition of two states of the lowest two modes produces an analogue curved spacetime depending on two background flows, with respective weights continuously dependent on the corresponding weights of the superposed quantum states.

  19. Nondissipative drag of superflow in a two-component Bose gas

    SciTech Connect

    Fil, D.V.; Shevchenko, S.I.

    2005-07-15

    A microscopic theory of a nondissipative drag in a two-component superfluid Bose gas is developed. The expression for the drag current in the system with the components of different atomic masses, densities, and scattering lengths is derived. It is shown that the drag current is proportional to the square root of the gas parameter. The temperature dependence of the drag current is studied and it is shown that at temperature of order or smaller than the interaction energy the temperature reduction of the drag current is rather small. A possible way of measuring the drag factor is proposed. A toroidal system with the drag component confined in two half-ring wells separated by two Josephson barriers is considered. Under certain condition such a system can be treated as a Bose-Einstein counterpart of the Josephson charge qubit in an external magnetic field. It is shown that the measurement of the difference of number of atoms in two wells under a controlled evolution of the state of the qubit allows one to determine the drag factor.

  20. Bose-Einstein Condensation in a Dilute Gas; the First 70 Years and Some Recent Experiments

    NASA Astrophysics Data System (ADS)

    Cornell, E. A.; Wieman, C. E.

    Bose-Einstein condensation, or BEC, has a long and rich history dating from the early 1920s. In this article we will trace briefly over this history and some of the developments in physics that made possible our successful pursuit of BEC in a gas. We will then discuss what was involved in this quest. In this discussion we will go beyond the usual technical description to try and address certain questions that we now hear frequently, but are not covered in our past research papers. These are questions along the lines of ``How did you get the idea and decide to pursue it? Did you know it was going to work? How long did it take you and why?'' We will review some of our favorites from among the experiments we have carried out with BEC. There will then be a brief encore on why we are optimistic that BEC can be created with nearly any species of magnetically trappable atom. Throughout this article we will try to explain what makes BEC in a dilute gas so interesting, unique, and experimentally challenging. This article is our ``Nobel Lecture'' and as such takes a relatively personal approach to the story of the development of experimental Bose-Einstein condensation. For a somewhat more scholarly treatment of the history, the interested reader is referred to E. A. Cornell, J. R. Ensher and C. E. Wieman, ``Experiments in dilute atomic Bose-Einstein condensation in Bose-Einstein Condensation in Atomic Gases, Proceedings of the International School of Physics ``Enrico Fermi'' Course CXL'' (M. Inguscio, S. Stringari and C. E. Wieman, Eds., Italian Physical Society, 1999), pp. 15-66, which is also available as cond-mat/9903109. For a reasonably complete technical review of the three years of explosive progress that immediately followed the first observation of BEC, we recommend reading the above article in combination with the corresponding review from Ketterle, cond-mat/9904034.

  1. Violation of self-similarity in the expansion of a one-dimensional Bose gas

    SciTech Connect

    Pedri, P.; Santos, L.; Oehberg, P.; Stringari, S.

    2003-10-01

    The expansion of a one-dimensional Bose gas after releasing its initial harmonic confinement is investigated employing the Lieb-Liniger equation of state within the local-density approximation. We show that during the expansion the density profile of the gas does not follow a self-similar solution, as one would expect from a simple scaling ansatz. We carry out a variational calculation, which recovers the numerical results for the expansion, the equilibrium properties of the density profile, and the frequency of the lowest compressional mode. The variational approach allows for the analysis of the expansion in all interaction regimes between the mean-field and the Tonks-Girardeau limits, and in particular shows the range of parameters for which the expansion violates self-similarity.

  2. Large-coordination-number expansion of a lattice Bose gas at finite temperature

    NASA Astrophysics Data System (ADS)

    Navez, Patrick; Queisser, Friedemann; Schützhold, Ralf

    2016-08-01

    The expansion of the partition function for large coordination number Z is a long-standing method and has formerly been used to describe the Ising model at finite temperatures. We extend this approach and study the interacting Bose gas at finite temperatures. An analytical expression for the free energy is derived which is valid for weakly interacting and strongly interacting bosons. The transition line which separates the superfluid phase from Mott insulating or normal gas phase is shown for fillings =1 and =2 . For unit filling, our findings agree qualitatively with quantum Monte Carlo results. Contrary to the well-known mean-field result, the shift of the critical temperature in the weakly interacting regime is apparent.

  3. Critical behavior of the ideal-gas Bose-Einstein condensation in the Apollonian network.

    PubMed

    de Oliveira, I N; dos Santos, T B; de Moura, F A B F; Lyra, M L; Serva, M

    2013-08-01

    We show that the ideal Boson gas displays a finite-temperature Bose-Einstein condensation transition in the complex Apollonian network exhibiting scale-free, small-world, and hierarchical properties. The single-particle tight-binding Hamiltonian with properly rescaled hopping amplitudes has a fractal-like energy spectrum. The energy spectrum is analytically demonstrated to be generated by a nonlinear mapping transformation. A finite-size scaling analysis over several orders of magnitudes of network sizes is shown to provide precise estimates for the exponents characterizing the condensed fraction, correlation size, and specific heat. The critical exponents, as well as the power-law behavior of the density of states at the bottom of the band, are similar to those of the ideal Boson gas in lattices with spectral dimension d(s)=2ln(3)/ln(9/5)~/=3.74. PMID:24032807

  4. Center-of-mass rotation and vortices in an attractive Bose gas

    SciTech Connect

    Collin, A.; Lundh, E.; Suominen, K.-A.

    2005-02-01

    The rotational properties of an attractively interacting Bose gas are studied using analytical and numerical methods. We study perturbatively the ground-state phase space for weak interactions, and find that in an anharmonic trap the rotational ground states are vortex or center-of-mass rotational states; the crossover line separating these two phases is calculated. We further show that the Gross-Pitaevskii equation is a valid description of such a gas in the rotating frame and calculate numerically the phase-space structure using this equation. It is found that the transition between vortex and center-of-mass rotation is gradual; furthermore, the perturbative approach is valid only in an exceedingly small portion of phase space. We also present an intuitive picture of the physics involved in terms of correlated successive measurements for the center-of-mass state.

  5. Spreading of correlations and Loschmidt echo after quantum quenches of a Bose gas in the Aubry-André potential

    NASA Astrophysics Data System (ADS)

    Lo Gullo, Nicola; Dell'Anna, Luca

    2015-12-01

    We study the spreading of density-density correlations and the Loschmidt echo, after different sudden quenches in an interacting one-dimensional Bose gas on a lattice, also in the presence of a superimposed aperiodic potential. We use a time dependent Bogoliubov approach to calculate the evolution of the correlation functions and employ the linked cluster expansion to derive the Loschmidt echo.

  6. Bose-Einstein correlations of charged and neutral kaons in pp and Pb—Pb collisions at the LHC with the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Mikhaylov, Konstantin

    2016-01-01

    Due to the effects of quantum statistics and final state interactions, momentum correlations of two or more particles at small relative velocities, i.e. at small relative momenta in their center-of-mass system, are sensitive to the space-time characteristics of the production processes at the level of fm (10-15 m). Kaons are the perfect tool to study Bose-Einstein correlations due to the fact that they are less influenced by resonance decays and therefore probe more effectively directly produced particles. In conjunction with femtoscopic measurements of pions and protons, they can also reveal properties of collective dynamics in heavy-ion collisions. We report on the results of Bose-Einstein correlations of charged and neutral kaons in pp collisions at√s = 7 TeV and in Pb-Pb collisions at √sNN = 2.76 TeV by the ALICE experiment at the LHC. The results are compared with existing data from Bose-Einstein correlations of identical pions at LHC energies, and of kaons in pp collisions. A comparison of experimental data with theoretical expectations is also carried out.

  7. Thermodynamics of the Noninteracting Bose Gas in a Two-Dimensional Box

    NASA Astrophysics Data System (ADS)

    Li, Heqiu; Guo, Qiujiang; Jiang, Ji; Johnston, David C.

    Bose-Einstein condensation (BEC) of a noninteracting Bose gas of N particles in a two-dimensional (2D) box with Dirichlet boundary conditions is studied. Confirming previous work, we find that BEC occurs at finite N at low temperatures T without the occurrence of a phase transition. We further show that the crossover temperature between weak and strong increases in BEC upon cooling is TE ~ 1 / log (N) at fixed area per boson, so in the thermodynamic limit there is no significant BEC in 2D at finite T. Calculations of thermodynamic properties versus T and area A are presented, including Helmholtz free energy, entropy S, pressure p, ratio of p to the energy density U / A , heat capacity at constant area CV and at constant pressure Cp, isothermal compressibility κT and thermal expansion coefficient αp, obtained using both the grand canonical ensemble (GCE) and canonical ensemble (CE) formalisms. The GCE formalism gives acceptable predictions for S, p, p / (U / A) , κT and αp at large N, T and A, but fails when N is small or BEC is significant, whereas the CE formalism gives accurate results even at low T and/or A where BEC occurs.

  8. Many-body physics in the classical-field description of a degenerate Bose gas

    SciTech Connect

    Wright, T. M.; Davis, M. J.; Proukakis, N. P.

    2011-08-15

    The classical-field formalism has been widely applied in the calculation of normal correlation functions, and the characterization of condensation, in finite-temperature Bose gases. Here we discuss the extension of this method to the calculation of more general correlations, including the so-called anomalous correlations of the field, without recourse to symmetry-breaking assumptions. Our method is based on the introduction of U(1)-symmetric classical-field variables analogous to the modified quantum ladder operators of number-conserving approaches to the degenerate Bose gas, and allows us to rigorously quantify the anomalous and non-Gaussian character of the field fluctuations. We compare our results for anomalous correlation functions with the predictions of mean-field theories, and demonstrate that the nonlinear classical-field dynamics incorporate a full description of many-body processes which modify the effective mean-field potentials experienced by condensate and noncondensate atoms. We discuss the role of these processes in shaping the condensate mode, and thereby demonstrate the consistency of the Penrose-Onsager definition of the condensate orbital in the classical-field equilibrium. We consider the contribution of various noncondensate-field correlations to the overall suppression of density fluctuations and interactions in the field, and demonstrate the distinct roles of phase and density fluctuations in the transition of the field to the normal phase.

  9. JET divertor diagnostic upgrade for neutral gas analysis.

    PubMed

    Kruezi, Uron; Sergienko, G; Morgan, P D; Matthews, G F; Brezinsek, S; Vartanian, S

    2012-10-01

    With installation of the ITER-like wall in JET a major diagnostic upgrade to measure the neutral gas pressure and composition in the sub-divertor region has been completed, to characterise retention and outgassing of the new metallic first wall. The upgrade includes two new magnetically shielded systems consisting of sensitive capacitance manometers and residual gas analysers, both capable of providing data during plasma operation. These enable absolute pressure and gas composition measurements (pressure range: 10(-5)-10(-1) mbar, mass range: 1-200 amu, respectively) and have been used to characterise the neutral gas behaviour under various plasma conditions.

  10. High-density limit of quasi-two-dimensional dipolar Bose gas

    NASA Astrophysics Data System (ADS)

    Pastukhov, Volodymyr

    2016-09-01

    We consider a simple model of the quasi-two-dimensional dipolar Bose gas confined in the one-dimensional square well potential. All dipoles are assumed to be oriented along the confining axis. By means of hydrodynamic approach it is shown that the general structure of the low-lying excitations can be analyzed exactly. We demonstrate that the problem significantly simplifies in the high-density limit for which the density profile in the confined direction as well as the leading-order contribution to the ground-state energy and spectrum of elementary excitations are calculated. The low-temperature result for the damping rate of the phonon mode is also presented.

  11. Thermodynamic properties of a condensed 39K Bose gas in a harmonic trap

    NASA Astrophysics Data System (ADS)

    El-Badry, Azza M.; Hassan, Ahmed S.; Soliman, Shemi S. M.

    2013-02-01

    In this paper, the thermodynamic behavior of a 39K Bose gas with a finite number of atoms confined in a harmonic potential is investigated. By taking into account the conservation of the total number of particles N and using a modified semiclassical approximation, we derive analytically the simple explicit expression for the thermal atoms number in the excited state. This modification assures to include, finite size and indirectly the interatomic interaction effects simultaneously. Various experimental, the critical atoms number and its corresponding temperature are predicted via the graphical representation. The calculated results show that the thermodynamical parameters depend critically on the size, shape, and harmonic nature of the potential. The calculated critical atoms number are coincide with the measured experimental results for 39K, as reported in Tammuz et al. [3] and Smith et al. [4].

  12. Collective modes and the broken symmetry of a rotating attractive Bose gas in an anharmonic trap

    SciTech Connect

    Collin, A.

    2006-01-15

    We study the rotational properties of an attractively interacting Bose gas in an anharmonic potential. Low-energy excitations for the two possible rotational ground-state configurations (vortex and the center-of-mass rotating state) are analyzed. The vortex excitation spectrum is all positive for weak couplings, but as the interactions become stronger, the energy of the lowest mode decreases rapidly to a negative value. The broken rotational symmetry involved in the center-of-mass rotating state induces the appearance of an extra zero-energy mode in the Bogoliubov spectrum. The excitations of the center-of-mass rotational state also demonstrate the coupling between the center of mass and relative motions.

  13. Bose-Einstein condensation of sodium atoms

    NASA Astrophysics Data System (ADS)

    Mewes, Marc-Oliver

    1997-10-01

    Bose-Einstein Condensation in an ultracold gas of neutral sodium atoms has been observed and studied. This was achieved utilizing a combination of laser cooling techniques, magnetic trapping and evaporative cooling. A novel tightly confining dc magnetic trap was developed and demonstrated. This trap combines tight confinement with excellent optical access. Evaporative cooling in this trap produced Bose condensates of 5× 106 atoms, a tenfold improvement over previous results. The Bose-Einstein phase transition was studied and characterized by mapping out the condensed fraction as a function of temperature across the transition point. The characteristic mean-field interaction of particles in the condensate was investigated. Collective excitations of a dilute Bose condensate have been observed. These excitations are analogous to phonons in superfluid helium. The frequencies of the lowest modes were studied for a temperature close to 0 K and compared with theoretical predictions based on mean-field theory. The characteristic damping of one of the modes was measured and compared to damping of 'sound waves' in an ultra-cold gas above the Bose-Einstein transition. We have also demonstrated an output coupler for Bose condensed atoms in a magnetic trap. With short rf pulses Bose condensates were put into a superposition of trapped and untrapped hyperfine states. By varying the rf amplitude we could adjust the fraction of outcoupled atoms between 0 and 100%. This source produces pulses of coherent atoms and can be regarded as a pulsed 'atom laser'. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  14. Atom-molecular oscillations of a Bose gas in an optical lattice

    NASA Astrophysics Data System (ADS)

    Heinzen, Daniel

    2005-05-01

    A Bose gas in an optical lattice can undergo a quantum phase transition between a superfluid and a ``Mott insulator'' state [1]. We have created a Mott insulator state of ^87Rb atoms in an optical lattice with a controllable number of atoms per site, and measured its stimulated Raman photoassociation spectrum. We found that higher density samples exhibited a two-peaked spectrum arising from photoassociation in sites with two and three atoms, respectively. The splitting between these peaks provides a measurement of the atom-molecule scattering length. Raman photoassociation of a sample with a central core of Mott insulator with two atoms per site induced macroscopic coherent oscillations between an atomic and a molecular gas, as predicted by Jaksch et al. [2]. Our result implies that at the point of minimum atom number, we have created a molecular quantum gas with one molecule in each lattice site. In addition, we have carried out Bragg spectroscopy of the gas [3], and found evidence of a gap in the excitation spectrum of the insulating state. This work was carried out in collaboration with C. Ryu, Emek Yesilada, Xu Du, and Shoupu Wan. We acknowledge the support of the R.A. Welch Foundation, the N.S.F., and the D.O.E Quantum Optics Initiative. [1] Markus Greiner et al., Nature 415, 39 (2002). [2] D. Jaksch et al., Phys. Rev. Lett. 89, 040402 (2002). [3] D. Van Oosten et al., cond-mat/0405492 (2004).

  15. Modeling of neutral gas dynamics in high-density plasmas

    NASA Astrophysics Data System (ADS)

    Canupp, Patrick Wellington

    This thesis describes a physical model of chemically reactive neutral gas flow and discusses numerical solutions of this model for the flow in an inductively coupled plasma etch reactor. To obtain these solutions, this research develops an efficient, implicit numerical method. As a result of the enhanced numerical stability of the scheme, large time steps advance the solution from initial conditions to a final steady state in fewer iterations and with less computational expense than simpler explicit methods. This method would incorporate suitably as a module in currently existing large scale plasma simulation tools. In order to demonstrate the accuracy of the numerical technique, this thesis presents results from two simulations of flows that possess theoretical solutions. The first case is the inviscid flow of a gas through a converging nozzle. A comparison of the numerical solution to isentropic flow theory shows that the numerical technique capably captures the essential flow features of this environment. The second case is the Couette flow of a gas between two parallel plates. The simulation results compare well with the exact solution for this flow. After establishing the accuracy of the numerical technique, this thesis discusses results for the flow of chemically reactive gases in a chlorine plasma etch reactor. This research examines the influence of the plasma on the neutral gas and the dynamics exhibited by the neutral gas in the reactor. This research finds that the neutral gas temperature strongly depends on the rate at which inelastic, electron-impact dissociation reactions occur and on atomic chlorine wall recombination rates. Additionally, the neutral gas Aow in the reactor includes a significant mass flux of etch product from the wafer surface. Resolution of these effects is useful for neutral gas simulation. Finally, this thesis demonstrates that continuum fluid models provide reasonable accuracy for these low pressure reactor flows due to the fact

  16. Exact many-body ground states of a spin-1 Bose gas in Tonks-Girardeau limit

    NASA Astrophysics Data System (ADS)

    Jen, Hsiang-Hua; Yip, Sungkit

    2016-05-01

    We investigate the many-body ground states of a one-dimensional spin-1 Bose gas in Tonks-Girardeau (TG) limit. It is known that in TG gas limit of scalar bosons, the system becomes fermionized that bosons do not penetrate each other, and their wavefunctions take the form of noninteracting fermions. For a spin-1 Bose gas with an infinite atom-atom interaction in a harmonic trap, we construct the many-body ground states from the ones of a noninteracting Fermi gas along with the spin degrees of freedom. With zero magnetic field in the sector of Sz = 0 and in the regime of spin-incoherent Luttinger liquid where we assume negligible | a2 -a0 | , the interaction energy becomes spin-independent, and the many-body wavefunctions of a spin-1 Bose gas is also SU(3) invariant. The many-body wavefunction can be derived by calculating the weightings of spin functions using the conjugacy class G of SN symmetric group for the number of atoms N. We then study the first-order correlation function of the density matrix, from which we extract its momentum distribution. Finite-temperature calculation of the wavefunction by including orbital excitations is also investigated to compare with the case of spinless bosons. Ministry of Science and Technology, Taiwan, under Grant Number MOST-101-2112-M-001-021-MY3.

  17. Thermodynamics of the noninteracting Bose gas in a two-dimensional box

    NASA Astrophysics Data System (ADS)

    Li, Heqiu; Guo, Qiujiang; Jiang, Ji; Johnston, D. C.

    2015-12-01

    Bose-Einstein condensation (BEC) of a noninteracting Bose gas of N particles in a two-dimensional box with Dirichlet boundary conditions is studied. Confirming previous work, we find that BEC occurs at finite N at low temperatures T without the occurrence of a phase transition. The conventionally-defined transition temperature TE for an infinite three-dimensional (3D) system is shown to correspond in a 2D system with finite N to a crossover temperature between a slow and rapid increase in the fractional boson occupation N0/N of the ground state with decreasing T . We further show that TE˜1 /logN at fixed area per boson, so in the thermodynamic limit there is no significant BEC in 2D at finite T . Thus, paradoxically, BEC only occurs in 2D at finite N with no phase transition associated with it. Calculations of thermodynamic properties versus T and area A are presented, including Helmholtz free energy, entropy S , pressure p , ratio of p to the energy density U /A , heat capacity at constant volume (area) CV and at constant pressure Cp, isothermal compressibility κT and thermal expansion coefficient αp, obtained using both the grand-canonical ensemble (GCE) and canonical ensemble (CE) formalisms. The GCE formalism gives acceptable predictions for S , p , p /(U /A ) , κT and αp at large N , T and A but fails for smaller values of these three parameters for which BEC becomes significant, whereas the CE formalism gives accurate results for all thermodynamic properties of finite systems even at low T and/or A where BEC occurs.

  18. Thermodynamics of the noninteracting Bose gas in a two-dimensional box.

    PubMed

    Li, Heqiu; Guo, Qiujiang; Jiang, Ji; Johnston, D C

    2015-12-01

    Bose-Einstein condensation (BEC) of a noninteracting Bose gas of N particles in a two-dimensional box with Dirichlet boundary conditions is studied. Confirming previous work, we find that BEC occurs at finite N at low temperatures T without the occurrence of a phase transition. The conventionally-defined transition temperature T(E) for an infinite three-dimensional (3D) system is shown to correspond in a 2D system with finite N to a crossover temperature between a slow and rapid increase in the fractional boson occupation N(0)/N of the ground state with decreasing T. We further show that T(E)∼1/logN at fixed area per boson, so in the thermodynamic limit there is no significant BEC in 2D at finite T. Thus, paradoxically, BEC only occurs in 2D at finite N with no phase transition associated with it. Calculations of thermodynamic properties versus T and area A are presented, including Helmholtz free energy, entropy S, pressure p, ratio of p to the energy density U/A, heat capacity at constant volume (area) C(V) and at constant pressure C(p), isothermal compressibility κ(T) and thermal expansion coefficient α(p), obtained using both the grand-canonical ensemble (GCE) and canonical ensemble (CE) formalisms. The GCE formalism gives acceptable predictions for S, p, p/(U/A), κ(T) and α(p) at large N, T and A but fails for smaller values of these three parameters for which BEC becomes significant, whereas the CE formalism gives accurate results for all thermodynamic properties of finite systems even at low T and/or A where BEC occurs. PMID:26764634

  19. Nonequilibrium and local detection of the normal fraction of a trapped two-dimensional Bose gas

    NASA Astrophysics Data System (ADS)

    Carusotto, Iacopo; Castin, Yvan

    2011-11-01

    We propose a method to measure the normal fraction of a two-dimensional Bose gas, a quantity that generally differs from the noncondensed fraction. The idea is based on applying a spatially oscillating artificial gauge field to the atoms. The response of the atoms to the gauge field can be read out either mechanically from the deposited energy into the cloud or optically from the macroscopic optical properties of the atomic gas. The local nature of the proposed scheme allows one to reconstruct the spatial profile of the superfluid component; furthermore, the proposed method does not require having established thermal equilibrium in the gas in the presence of the gauge field. The theoretical description of the system is based on a generalization of the Dum-Olshanii theory of artificial gauge fields to the interacting many-body context. The efficiency of the proposed measurement scheme is assessed by means of classical field numerical simulations. An explicit atomic level scheme minimizing disturbing effects such as spontaneous emission and light shifts is proposed for 87Rb atoms.

  20. FK-DLR properties of a quantum multi-type Bose-gas with a repulsive interaction

    NASA Astrophysics Data System (ADS)

    Suhov, Y.; Stuhl, I.

    2014-08-01

    The paper extends earlier results from Suhov and Kelbert ["FK-DLR states of a quantum Bose-gas with a hardcore interaction," arXiv:1304.0782] and Suhov et al. ["Shift-invariance for FK-DLR states of a 2D quantum Bose-gas," arXiv:1304.4177] about infinite-volume quantum bosonic states (FK-DLR states) to the case of multi-type particles with non-negative interactions. (An example is a quantum Widom-Rowlinson model.) Following the strategy from Suhov and Kelbert and Suhov et al., we establish that, for the values of fugacity z ∈ (0, 1) and inverse temperature β > 0, finite-volume Gibbs states form a compact family in the thermodynamic limit. Next, in dimension two we show that any limit-point state (an FK-DLR state in the terminology adopted in Suhov and Kelbert and Suhov et al.) is translation-invariant.

  1. Non-equilibrium dynamics around integrability in a one-dimensional two-component Bose gas

    NASA Astrophysics Data System (ADS)

    van Druten, Nicolaas; Wicke, Philipp; Whitlock, Shannon

    2011-05-01

    We investigate a one-dimensional two-component Bose gas near the point of state-independent interactions. At this specific point the system is integrable, in the sense that exact (thermodynamic) Bethe Ansatz solutions can be applied locally. In the experiments, we employ an atom chip and the magnetically trappable clock states in 87Rb. State-dependent potentials are generated by using the polarization dependence of radio-frequency dressing. We show that this allows us to continuously and dynamically tune both the local interactions and the global trapping potential. The experimentally accessible range in interactions includes the region around the integrability point. We study the spin motion that follows upon a sudden change in the system, a quantum quench. When starting from a low-temperature, quantum-degenerate gas in the weakly interacting regime, good agreement with a Gross-Pitaevskii description is found. The experiment allows exploring regimes that go beyond such a description and opens up a novel route to the study of the relation between non-equilibrium dynamics, thermalization and the making and breaking of integrability in quantum many-body physics. Supported by FOM, NWO and EU

  2. Cassini Orbiter Ion and Neutral Gas Mass Spectrometer (INMS) Results

    NASA Astrophysics Data System (ADS)

    Kasprzak, W. T.; Waite, J. H.; Yelle, R.; Cravens, T. E.; Luhmann, J.; McNutt, R.; Ip, W.; Robertson, I. P.; Ledvina, S.; Niemann, H. B.; Fletcher, G.; Thorpe, R.; Gell, D.; Magee, B.

    The Cassini Orbiter Ion and Neutral Gas Mass Spectrometer was built by NASA Goddard Space Flight Center. After the spacecraft's launch, data analysis and operations are being conducted by a facility science team. The instrument measures in-situ neutral gas and positive thermal energy ions in the upper atmosphere of Titan, in the vicinity of the icy satellites and rings, and in the magnetosphere of Saturn, wherever the signal is above the detection threshold. The instrument was opened to the environment of Saturn immediately after the completion of the Saturn orbit capture burn.The Cassini Orbiter Ion and Neutral Gas Mass Spectrometer was built by NASA Goddard Space Flight Center. After the spacecraft's launch, data analysis and operations are being conducted by a facility science team. The instrument measures in-situ neutral gas and positive thermal energy ions in the upper atmosphere of Titan, in the vicinity of the icy satellites and rings, and in the magnetosphere of Saturn, wherever the signal is above the detection threshold. The instrument was opened to the environment of Saturn immediately after the completion of the Saturn orbit capture burn.

  3. Energetic electrons injected into Saturn's neutral gas cloud

    NASA Astrophysics Data System (ADS)

    Paranicas, C.; Mitchell, D. G.; Roelof, E. C.; Mauk, B. H.; Krimigis, S. M.; Brandt, P. C.; Kusterer, M.; Turner, F. S.; Vandegriff, J.; Krupp, N.

    2007-01-01

    We demonstrate that the population of 20-410 keV electrons observed in Saturn's inner magnetosphere result principally from recent injections. Electrons at these energies appear to survive only up to a few days in the neutral gas cloud emitted by gas jets in Enceladus's southern hemisphere. Ions of similar energies have much shorter lifetimes in the gas cloud because of charge-exchange with the ambient neutrals. We have been able to associate fluxes at different energies and times with a single past injection based on the morphology of electron spectrograms from measurements made by Cassini's Magnetospheric Imaging Instrument (MIMI). Once injected, electrons disperse in longitude but the age of the initial injection and its approximate longitude can be reconstructed. Furthermore, the shape of time-dispersed features argues against rigid corotation of the magnetospheric plasma, or a fraction thereof, and instead favors L-dependent flow shear.

  4. Quantum states of dark solitons in the 1D Bose gas

    NASA Astrophysics Data System (ADS)

    Sato, Jun; Kanamoto, Rina; Kaminishi, Eriko; Deguchi, Tetsuo

    2016-07-01

    We present a series of quantum states that are characterized by dark solitons of the nonlinear Schrödinger equation (i.e. the Gross-Pitaevskii equation) for the one-dimensional Bose gas interacting through the repulsive delta-function potentials. The classical solutions satisfy the periodic boundary conditions and we simply call them classical dark solitons. Through exact solutions we show corresponding aspects between the states and the solitons in the weak coupling case: the quantum and classical density profiles completely overlap with each other not only at an initial time but also at later times over a long period of time, and they move together with the same speed in time; the matrix element of the bosonic field operator between the quantum states has exactly the same profiles of the square amplitude and the phase as the classical complex scalar field of a classical dark soliton not only at the initial time but also at later times, and the corresponding profiles move together for a long period of time. We suggest that the corresponding properties hold rigorously in the weak coupling limit. Furthermore, we argue that the lifetime of the dark soliton-like density profile in the quantum state becomes infinitely long as the coupling constant approaches zero, by comparing it with the quantum speed limit time. Thus, we call the quantum states quantum dark soliton states.

  5. Dispersive and classical shock waves in Bose-Einstein condensates and gas dynamics

    SciTech Connect

    Hoefer, M. A.; Ablowitz, M. J.; Coddington, I.; Cornell, E. A.; Engels, P.; Schweikhard, V.

    2006-08-15

    A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock-wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g., traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation, hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical one-dimensional (1D) dissipative and dispersive shock problem shows significant differences in shock structure and shock-front speed. Numerical results associated with the three-dimensional experiment show that three- and two-dimensional approximations are in excellent agreement and 1D approximations are in good qualitative agreement. Using 1D DSW theory, it is argued that the experimentally observed blast waves may be viewed as dispersive shock waves.

  6. Steady state gas efficiency of ion sources for neutral beams

    SciTech Connect

    Vella, M.C.; Berkner, K.H.; Massoletti, D.J.; Owren, H.M.; Willis, J.E.

    1981-09-01

    Gas present in the acceleration grids of a neutral beam line is one cause of divergent beam power. A measure of this problem is the gas efficiency (nuclear) of the ion source, epsilon/sub g/ = I/sub b//I/sub g/, where I/sub b/ denotes the extracted current of beam nuclei, and I/sub g/ the total current of nuclei to the source as gas. For a short pulse beam, less than or equal to 0.1 sec, gas transients make epsilon/sub g/ difficult to observe. Using the fraction size Berkeley LPA (nominally 120 keV, 10A), the gas efficiency of a positive ion, hydrogen neutral beam has been studied with pulses from 0.5 to 28 sec at 80 keV, 5.7 A, and 0.5 sec at 120 keV, 10A. The observed gas efficiency, 20% to 40%, is shown to agree with a simple steady state model. The model indicates that gas efficiency is determined by the degree of arc ionization.

  7. Quantum particle-number fluctuations in a two-component Bose gas in a double-well potential

    SciTech Connect

    Zin, Pawel; Oles, Bartlomiej; Sacha, Krzysztof

    2011-09-15

    A two-component Bose gas in a double-well potential with repulsive interactions may undergo a phase separation transition if the interspecies interactions outweigh the intraspecies ones. We analyze the transition in the strong interaction limit within the two-mode approximation. Numbers of particles in each potential well are equal and constant. However, at the transition point, the ground state of the system reveals huge fluctuations of numbers of particles belonging to the different gas components; that is, the probability for observation of any mixture of particles in each potential well becomes uniform.

  8. Observational Constraints on a Pluto Torus of Circumsolar Neutral Gas

    NASA Astrophysics Data System (ADS)

    Hill, M. E.; Kollmann, P.; McNutt, R. L., Jr.; Smith, H. T.; Bagenal, F.; Brown, L. E.; Elliott, H. A.; Haggerty, D. K.; Horanyi, M.; Krimigis, S. M.; Kusterer, M. B.; Lisse, C. M.; McComas, D. J.; Piquette, M. R.; Sidrow, E. J.; Strobel, D. F.; Szalay, J.; Vandegriff, J. D.; Zirnstein, E.; Ennico Smith, K.; Olkin, C.; Weaver, H. A., Jr.; Young, L. A.; Stern, S. A.

    2015-12-01

    We present the concept of a neutral gas torus surrounding the Sun, aligned with Pluto's orbit, and place observational constraints based primarily on comparison of New Horizons (NH) measurements with a 3-D Monte Carlo model adapted from analogous satellite tori surrounding Saturn and Jupiter. Such a torus, or perhaps partial torus, should result from neutral N2 escaping from Pluto's exosphere. Unlike other more massive planets closer to the Sun, neutrals escape Pluto readily owing, e.g., to the high thermal speed relative to the escape velocity. Importantly, escaped neutrals have a long lifetime due to the great distance from the Sun, ~100 years for photoionization of N2 and ~180 years for photoionization of N, which results from disassociated N2. Despite the lengthy 248-year orbit, these long e-folding lifetimes may allow an enhanced neutral population to form an extended gas cloud that modifies the N2 spatial profile near Pluto. These neutrals are not directly observable by NH but once ionized N2+ or N+ are picked up by the solar wind, reaching ~50 keV, making these pickup ions (PUIs) detectable by NH's Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument. PEPSSI observations analyzed to date may constrain the N2 density; the remaining ~95% of the encounter data, scheduled for downlink in August along with similarly anticipated data from the Solar Wind Around Pluto (SWAP) experiment, should help determine the Pluto outgassing rates. Measurements from SWAP include the solar wind speed, a quantity that greatly enhances PUI studies by enabling us to directly account for the PUI distribution's sensitive dependence on plasma speed. Note that anomalous cosmic ray Si observed at Voyager is overabundant by a factor of ~3000 relative to interstellar composition. This might be related to "outer source" PUIs, but the fact that N2 and Si are indistinguishable in many instruments could mean that N2 is actually driving this apparent Si discrepancy.

  9. Rigorous investigation of the reduced density matrix for the ideal Bose gas in harmonic traps by a loop-gas-like approach

    SciTech Connect

    Beau, Mathieu; Savoie, Baptiste

    2014-05-15

    In this paper, we rigorously investigate the reduced density matrix (RDM) associated to the ideal Bose gas in harmonic traps. We present a method based on a sum-decomposition of the RDM allowing to treat not only the isotropic trap, but also general anisotropic traps. When focusing on the isotropic trap, the method is analogous to the loop-gas approach developed by Mullin [“The loop-gas approach to Bose-Einstein condensation for trapped particles,” Am. J. Phys. 68(2), 120 (2000)]. Turning to the case of anisotropic traps, we examine the RDM for some anisotropic trap models corresponding to some quasi-1D and quasi-2D regimes. For such models, we bring out an additional contribution in the local density of particles which arises from the mesoscopic loops. The close connection with the occurrence of generalized-Bose-Einstein condensation is discussed. Our loop-gas-like approach provides relevant information which can help guide numerical investigations on highly anisotropic systems based on the Path Integral Monte Carlo method.

  10. Neutrally buoyant tracer in gas cleaning equipment: a case study

    NASA Astrophysics Data System (ADS)

    Peng, Weiming; Hoffmann, Alex C.; Dries, Huub W. A.; Regelink, Michiel; Foo, Kee-Khoon

    2005-12-01

    A generic problem when studying the gas flow in gas cleaning equipment is that any conventional tracer, whether solid particles or liquid droplets, is separated out in accordance with the purpose of the equipment. This makes it impossible, for instance, to visualize the core of the vortex in centrifugal gas cleaning equipment. This paper explores the use of a neutrally buoyant tracer. The tracer is soap bubbles filled with helium. The smaller density of the helium relative to the surrounding air is precisely compensated by the mass of the bubble film to create a neutrally buoyant tracer. The method is used to study the flow in a swirl-tube gas-solid separator, highlighting flow features that cannot be shown with, for instance, LDA. Results are shown as controlled exposure time photographs, where pathlines of the tracer show the flow pattern. The results are further clarified by high-time-resolution pressure measurements at the walls. The work shows that the vortex core can be directly visualized using this technique. The vortex core is observed to, under some conditions, bend to—and spin around—the wall of the separator. Under other conditions, the vortex core coincides with the separator axis, and extends to the bottom of the hopper under the swirl tube. Also the flow in the downstream tubing is studied. The possibilities for obtaining quantitative data for the gas velocity field are discussed, and a promising method for doing this is identified.

  11. Analytical theory of mesoscopic Bose-Einstein condensation in an ideal gas

    SciTech Connect

    Kocharovsky, Vitaly V.; Kocharovsky, Vladimir V.

    2010-03-15

    We find the universal structure and scaling of the Bose-Einstein condensation (BEC) statistics and thermodynamics (Gibbs free energy, average energy, heat capacity) for a mesoscopic canonical-ensemble ideal gas in a trap with an arbitrary number of atoms, any volume, and any temperature, including the whole critical region. We identify a universal constraint-cutoff mechanism that makes BEC fluctuations strongly non-Gaussian and is responsible for all unusual critical phenomena of the BEC phase transition in the ideal gas. The main result is an analytical solution to the problem of critical phenomena. It is derived by, first, calculating analytically the universal probability distribution of the noncondensate occupation, or a Landau function, and then using it for the analytical calculation of the universal functions for the particular physical quantities via the exact formulas which express the constraint-cutoff mechanism. We find asymptotics of that analytical solution as well as its simple analytical approximations which describe the universal structure of the critical region in terms of the parabolic cylinder or confluent hypergeometric functions. The obtained results for the order parameter, all higher-order moments of BEC fluctuations, and thermodynamic quantities perfectly match the known asymptotics outside the critical region for both low and high temperature limits. We suggest two- and three-level trap models of BEC and find their exact solutions in terms of the cutoff negative binomial distribution (which tends to the cutoff gamma distribution in the continuous limit) and the confluent hypergeometric distribution, respectively. Also, we present an exactly solvable cutoff Gaussian model of BEC in a degenerate interacting gas. All these exact solutions confirm the universality and constraint-cutoff origin of the strongly non-Gaussian BEC statistics. We introduce a regular refinement scheme for the condensate statistics approximations on the basis of the

  12. Equation of state of an interacting Bose gas at finite temperature: A path-integral Monte Carlo study

    SciTech Connect

    Pilati, S.; Giorgini, S.; Sakkos, K.; Boronat, J.; Casulleras, J.

    2006-10-15

    By using exact path-integral Monte Carlo methods we calculate the equation of state of an interacting Bose gas as a function of temperature both below and above the superfluid transition. The universal character of the equation of state for dilute systems and low temperatures is investigated by modeling the interatomic interactions using different repulsive potentials corresponding to the same s-wave scattering length. The results obtained for the energy and the pressure are compared to the virial expansion for temperatures larger than the critical temperature. At very low temperatures we find agreement with the ground-state energy calculated using the diffusion Monte Carlo method.

  13. FK-DLR properties of a quantum multi-type Bose-gas with a repulsive interaction

    SciTech Connect

    Suhov, Y.; Stuhl, I.

    2014-08-01

    The paper extends earlier results from Suhov and Kelbert [“FK-DLR states of a quantum Bose-gas with a hardcore interaction,” http://arxiv.org/abs/arXiv:1304.0782 ] and Suhov et al. [“Shift-invariance for FK-DLR states of a 2D quantum Bose-gas,” http://arxiv.org/abs/arXiv:1304.4177 ] about infinite-volume quantum bosonic states (FK-DLR states) to the case of multi-type particles with non-negative interactions. (An example is a quantum Widom–Rowlinson model.) Following the strategy from Suhov and Kelbert and Suhov et al., we establish that, for the values of fugacity zϵ(0, 1) and inverse temperature β > 0, finite-volume Gibbs states form a compact family in the thermodynamic limit. Next, in dimension two we show that any limit-point state (an FK-DLR state in the terminology adopted in Suhov and Kelbert and Suhov et al.) is translation-invariant.

  14. Schemes and Optimization of Gas Flowing into the Ion Source and the Neutralizer of the DIII-D Neutral Beam Systems

    SciTech Connect

    Hong, R.M.; Chiu, H.K.

    1999-11-01

    Performance comparisons of a DIII-D neutral beam ion source operated with two different schemes of supplying neutral gas to the arc chamber were performed. Superior performance was achieved when gas was puffed into both the arc chamber and the neutralizer with the gas flows optimized as compared to supplying gas through the neutralizer alone. To form a neutral beam, ions extracted from the arc chamber and accelerated are passed through a neutralizing cell of gas. Neutral gas is commonly puffed into the neutralizing cell to supplement the residual neutral gas from the arc chamber to obtain maximum neutralization efficiency. However, maximizing neutralization efficiency does not necessarily provide the maximum available neutral beam power, since high levels of neutral gas can increase beam loss through collisions and cause larger beam divergence. Excessive gas diffused from the neutralizer into the accelerator region also increases the number of energetic particles (ions and secondary electrons from the accelerator grid surfaces) deposited on the accelerator grids, increasing the possibility of overheating. We have operated an ion source with a constant optimal gas flow directly into the arc chamber while gas flow into the neutralizer was varied. Neutral beam power available for injecting into plasmas was obtained based on the measured data of beam energy, beam current, beam transmission, beam divergence, and neutralization efficiency for various neutralizer gas flow rates. We will present the results of performance comparison with the two gas puffing schemes, and show steps of obtaining the maximum available beam power and determining the optimum neutralizer gas flow rate.

  15. Lasing in Bose-Fermi mixtures

    PubMed Central

    Kochereshko, Vladimir P.; Durnev, Mikhail V.; Besombes, Lucien; Mariette, Henri; Sapega, Victor F.; Askitopoulos, Alexis; Savenko, Ivan G.; Liew, Timothy C. H.; Shelykh, Ivan A.; Platonov, Alexey V.; Tsintzos, Simeon I.; Hatzopoulos, Z.; Savvidis, Pavlos G.; Kalevich, Vladimir K.; Afanasiev, Mikhail M.; Lukoshkin, Vladimir A.; Schneider, Christian; Amthor, Matthias; Metzger, Christian; Kamp, Martin; Hoefling, Sven; Lagoudakis, Pavlos; Kavokin, Alexey

    2016-01-01

    Light amplification by stimulated emission of radiation, well-known for revolutionising photonic science, has been realised primarily in fermionic systems including widely applied diode lasers. The prerequisite for fermionic lasing is the inversion of electronic population, which governs the lasing threshold. More recently, bosonic lasers have also been developed based on Bose-Einstein condensates of exciton-polaritons in semiconductor microcavities. These electrically neutral bosons coexist with charged electrons and holes. In the presence of magnetic fields, the charged particles are bound to their cyclotron orbits, while the neutral exciton-polaritons move freely. We demonstrate how magnetic fields affect dramatically the phase diagram of mixed Bose-Fermi systems, switching between fermionic lasing, incoherent emission and bosonic lasing regimes in planar and pillar microcavities with optical and electrical pumping. We collected and analyzed the data taken on pillar and planar microcavity structures at continuous wave and pulsed optical excitation as well as injecting electrons and holes electronically. Our results evidence the transition from a Bose gas to a Fermi liquid mediated by magnetic fields and light-matter coupling. PMID:26822483

  16. Lasing in Bose-Fermi mixtures

    NASA Astrophysics Data System (ADS)

    Kochereshko, Vladimir P.; Durnev, Mikhail V.; Besombes, Lucien; Mariette, Henri; Sapega, Victor F.; Askitopoulos, Alexis; Savenko, Ivan G.; Liew, Timothy C. H.; Shelykh, Ivan A.; Platonov, Alexey V.; Tsintzos, Simeon I.; Hatzopoulos, Z.; Savvidis, Pavlos G.; Kalevich, Vladimir K.; Afanasiev, Mikhail M.; Lukoshkin, Vladimir A.; Schneider, Christian; Amthor, Matthias; Metzger, Christian; Kamp, Martin; Hoefling, Sven; Lagoudakis, Pavlos; Kavokin, Alexey

    2016-01-01

    Light amplification by stimulated emission of radiation, well-known for revolutionising photonic science, has been realised primarily in fermionic systems including widely applied diode lasers. The prerequisite for fermionic lasing is the inversion of electronic population, which governs the lasing threshold. More recently, bosonic lasers have also been developed based on Bose-Einstein condensates of exciton-polaritons in semiconductor microcavities. These electrically neutral bosons coexist with charged electrons and holes. In the presence of magnetic fields, the charged particles are bound to their cyclotron orbits, while the neutral exciton-polaritons move freely. We demonstrate how magnetic fields affect dramatically the phase diagram of mixed Bose-Fermi systems, switching between fermionic lasing, incoherent emission and bosonic lasing regimes in planar and pillar microcavities with optical and electrical pumping. We collected and analyzed the data taken on pillar and planar microcavity structures at continuous wave and pulsed optical excitation as well as injecting electrons and holes electronically. Our results evidence the transition from a Bose gas to a Fermi liquid mediated by magnetic fields and light-matter coupling.

  17. Realization of a Strongly Interacting Bose-Fermi Mixture from a Two-Component Fermi Gas

    SciTech Connect

    Shin Yongil; Schirotzek, Andre; Schunck, Christian H.; Ketterle, Wolfgang

    2008-08-15

    We show the emergence of a strongly interacting Bose-Fermi mixture from a two-component Fermi mixture with population imbalance. By analyzing in situ density profiles of {sup 6}Li atoms in the BCS-BEC crossover regime, we identify a critical interaction strength, beyond which all minority atoms pair up with majority atoms and form a Bose condensate. This is the regime where the system can be effectively described as a boson-fermion mixture. We determine the dimer-fermion and dimer-dimer scattering lengths and beyond-mean-field contributions. Our study realizes a gedanken experiment of bosons immersed in a Fermi sea of one of their constituents, revealing the composite nature of the bosons.

  18. High-temperature superfluidity of the two-component Bose gas in a transition metal dichalcogenide bilayer

    NASA Astrophysics Data System (ADS)

    Berman, Oleg L.; Kezerashvili, Roman Ya.

    2016-06-01

    The high-temperature superfluidity of two-dimensional dipolar excitons in two parallel transition metal dichalcogenide (TMDC) layers is predicted. We study Bose-Einstein condensation in the two-component system of dipolar A and B excitons. The effective mass, energy spectrum of the collective excitations, the sound velocity, and critical temperature are obtained for different TMDC materials. It is shown that in the Bogoliubov approximation, the sound velocity in the two-component dilute exciton Bose gas is always larger than in any one-component exciton system. The difference between the sound velocities for two-component and one-component dilute gases is caused by the fact that the sound velocity for a two-component system depends on the reduced mass of A and B excitons, which is always smaller than the individual mass of A or B exciton. Due to this fact, the critical temperature Tc for superfluidity for the two-component exciton system in a TMDC bilayer is about one order of magnitude higher than Tc in any one-component exciton system. We propose to observe the superfluidity of two-dimensional dipolar excitons in two parallel TMDC layers, which causes two opposite superconducting currents in each TMDC layer.

  19. First and second sound in a two-dimensional harmonically trapped Bose gas across the Berezinskii–Kosterlitz–Thouless transition

    SciTech Connect

    Liu, Xia-Ji Hu, Hui

    2014-12-15

    We theoretically investigate first and second sound of a two-dimensional (2D) atomic Bose gas in harmonic traps by solving Landau’s two-fluid hydrodynamic equations. For an isotropic trap, we find that first and second sound modes become degenerate at certain temperatures and exhibit typical avoided crossings in mode frequencies. At these temperatures, second sound has significant density fluctuation due to its hybridization with first sound and has a divergent mode frequency towards the Berezinskii–Kosterlitz–Thouless (BKT) transition. For a highly anisotropic trap, we derive the simplified one-dimensional hydrodynamic equations and discuss the sound-wave propagation along the weakly confined direction. Due to the universal jump of the superfluid density inherent to the BKT transition, we show that the first sound velocity exhibits a kink across the transition. These predictions might be readily examined in current experimental setups for 2D dilute Bose gases with a sufficiently large number of atoms, where the finite-size effect due to harmonic traps is relatively weak.

  20. Role of neutral gas in scrape-off layer tokamak plasma

    SciTech Connect

    Bisai, N.; Jha, R.; Kaw, P. K.

    2015-02-15

    Neutral gas in scrape-off layer of tokamak plasma plays an important role as it can modify the plasma turbulence. In order to investigate this, we have derived a simple two-dimensional (2D) model that consists of electron continuity, quasi-neutrality, and neutral gas continuity equations using neutral gas ionization and charge exchange processes. Simple 1D profile analysis predicts neutral penetration depth into the plasma. Growth rate obtained from the linear theory has been presented. The 2D model equations have been solved numerically. It is found that the neutral gas reduces plasma fluctuations and shifts spectrum of the turbulence towards lower frequency side. The neutral gas fluctuation levels have been presented. The numerical results have been compared with Aditya tokamak experiments.

  1. Star Formation as a Function of Neutral Hydrogen Gas Density in Local Group Galaxies

    NASA Astrophysics Data System (ADS)

    Carlson, Erika K.; Madore, Barry F.; Freedman, Wendy L.

    2016-06-01

    We present a study of the efficiency and timescales of star formation as a function of local neutral hydrogen gas density in four Local Group galaxies: M33, NGC 6822, the LMC, and the SMC. In this work, we conceptualize the process of star formation as a cycle of two major phases - (1) a gas dynamics phase in which neutral hydrogen gas coalesces into clouds, and (2) a stellar phase in which stars have formed and interrupt further gas coalescence during their active lifetimes. By examining the spatial distribution and number densities of stars on maps of neutral hydrogen, we estimate the timescale of the gas coalescence phase relative to the timescale of the stellar phase and infer an efficiency of star formation as a function of neutral hydrogen gas density. From these timescales and efficiencies, we will calculate star formation rates as a function of neutral hydrogen gas density in these galaxies.

  2. Trap- and population-imbalanced two-component Fermi gas in the Bose-Einstein-condensate limit

    SciTech Connect

    Silotri, S. A.

    2010-01-15

    We study equal mass population imbalanced two-component atomic Fermi gas with unequal trap frequencies (omega{sub a}rrow upnot =omega{sub a}rrow down) at zero temperature using the local density approximation (LDA). We consider the strongly attracting Bose-Einstein condensation (BEC) limit where polarized (gapless) superfluid is stable. The system exhibits shell structure: unpolarized superfluid->polarized superfluid->normal state. Compared to the trap symmetric case, when the majority component is tightly confined the gapless superfluid shell grows in size leading to reduced threshold polarization to form a polarized (gapless) superfluid core. In contrast, when the minority component is tightly confined, we find that the superfluid phase is dominated by the unpolarized superfluid phase with the gapless phase forming a narrow shell. The shell radii for various phases as a function of polarization at different values of trap asymmetry are presented and the features are explained using the phase diagram.

  3. Theory of coherence in Bose-Einstein condensation phenomena in a microwave-driven interacting magnon gas

    SciTech Connect

    Rezende, Sergio M.

    2009-05-01

    Strong experimental evidences of the formation of quasiequilibrium Bose-Einstein condensation (BEC) of magnons at room temperature in a film of yttrium iron garnet (YIG) excited by microwave radiation have been recently reported. Here we present a theory for the dynamics of the magnon gas driven by a microwave field far out of equilibrium that provides rigorous support for the formation of a BEC of magnons in a YIG film magnetized in the plane. We show that if the microwave driving power exceeds a threshold value the nonlinear magnetic interactions create cooperative mechanisms for the onset of a phase transition leading to the spontaneous generation of quantum coherence and magnetic dynamic order in a macroscopic scale. The theoretical results agree with the experimental data for the intensity and the decay rate of the Brillouin light scattering from the BEC as a function of power and for the microwave emission from the uniform mode generated by the confluence of BEC magnon pairs.

  4. Stimulated thermalization of a parametrically driven magnon gas as a prerequisite for Bose-Einstein magnon condensation

    NASA Astrophysics Data System (ADS)

    Clausen, P.; Bozhko, D. A.; Vasyuchka, V. I.; Hillebrands, B.; Melkov, G. A.; Serga, A. A.

    2015-06-01

    Thermalization of a parametrically driven magnon gas leading to the formation of a Bose-Einstein condensate at the bottom of a spin-wave spectrum was studied by time- and wave-vector-resolved Brillouin light scattering spectroscopy. It has been found that the condensation is preceded by the conversion of initially pumped magnons into a second group of frequency-degenerated magnons, which appear due to parametrically stimulated scattering of the initial magnons to a short-wavelength spectral region. In contrast to the first magnon group, in which wave vectors are orthogonal to the wave vectors of the magnons at the lowest energy states, the secondary magnons can effectively scatter to the bottom of the spectrum and condense there.

  5. Spontaneous Demagnetization of a Dipolar Spinor Bose Gas in an Ultralow Magnetic Field

    SciTech Connect

    Pasquiou, B.; Marechal, E.; Bismut, G.; Pedri, P.; Vernac, L.; Gorceix, O.; Laburthe-Tolra, B.

    2011-06-24

    We study the spinor properties of S=3 {sup 52}Cr condensates, in which dipole-dipole interactions allow changes in magnetization. We observe a demagnetization of the Bose-Einstein condensate (BEC) when the magnetic field is quenched below a critical value corresponding to a phase transition between a ferromagnetic and a nonpolarized ground state, which occurs when spin-dependent contact interactions overwhelm the linear Zeeman effect. The critical field is increased when the density is raised by loading the BEC in a deep 2D optical lattice. The magnetization dynamics is set by dipole-dipole interactions.

  6. Magnetic and nematic phases in a Weyl type spin-orbit-coupled spin-1 Bose gas

    NASA Astrophysics Data System (ADS)

    Chen, Guanjun; Chen, Li; Zhang, Yunbo

    2016-06-01

    We present a variational study of the spin-1 Bose gases in a harmonic trap with three-dimensional spin-orbit (SO) coupling of Weyl type. For weak SO coupling, we treat the single-particle ground states as the form of perturbational harmonic oscillator states in the lowest total angular momentum manifold with j = 1, m j = 1, 0, -1. When the two-body interaction is considered, we set the trail order parameter as the superposition of three degenerate single-particle ground-states and the weight coefficients are determined by minimizing the energy functional. Two ground state phases, namely the magnetic and the nematic phases, are identified depending on the spin-independent and the spin-dependent interactions. Unlike the non-SO-coupled spin-1 Bose-Einstein condensate for which the phase boundary between the magnetic and the nematic phase lies exactly at zero spin-dependent interaction, the boundary is modified by the SO-coupling. We find the magnetic phase is featured with phase-separated density distributions, 3D skyrmion-like spin textures and competing magnetic and biaxial nematic orders, while the nematic phase is featured with miscible density distributions, zero magnetization and spatially modulated uniaxial nematic order. The emergence of higher spin order creates new opportunities for exploring spin-tensor-related physics in SO coupled superfluid.

  7. Pioneer Venus Sounder Probe Neutral Gas Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.; Hodges, R. R., Jr.; Wright, W. W.; Blevins, V. A.; Duerksen, K. D.; Brooks, L. D.

    1980-01-01

    A neutral gas mass spectrometer was flown to Venus as part of the Pioneer Venus Multiprobe to measure the composition of its lower atmosphere. The instrument, mounted in the Sounder Probe, was activated after the probe entered the top of the atmosphere, and it obtained data during the descent from 62 km to the surface. Atmospheric gases were sampled through a pair of microleaks, the effluent from which was pumped by a combination of ion and getter pumping. A pneumatically operated valve, controlled by the ambient atmospheric pressure, maintained the ion source pressure at a nearly constant value during descent while the atmospheric pressure varied by three orders of magnitude. A single focusing magnetic sector field mass spectrometer with mass resolution sufficient to reasonably separate argon from C3H4 at 40 amu provided the mass analysis and relative abundance measurements. A microprocessor controlled the operation of the mass spectrometer through a highly efficient peak-tip stepping routine and data compression algorithm that effected a scan of the mass spectrum from 1 to 208 amu in 64 sec while requiring an information rate of only 40 bits/sec to return the data to earth. A subscale height altitude resolution was thus obtained. Weight, size, and power requirements were minimized to be consistent with interplanetary flight contraints.

  8. Observation of a Rosensweig Instability and Stable Quantum Droplets in a Dipolar Bose Gas

    NASA Astrophysics Data System (ADS)

    Pfau, Tilman; Ferrier Barbut, Igor; Kadau, Holger; Schmitt, Matthias; Wenzel, Matthias

    2016-05-01

    Ferrofluids show unusual hydrodynamic effects due to the magnetic nature of their constituents. For increasing magnetization a classical ferrofluid undergoes a Rosensweig instability and creates self-organized ordered surface structures or droplet crystals. We observe a related instability in a Bose-Einstein condensate with strong dipolar interactions resulting in surprisingly stable droplet crystals. We find that quantum fluctuations which are the origin of genuine quantum many-body effects cannot be neglected and provide a stabilizing mechanism. We study experimentally individual stable quantum droplets containing about 800 atoms which are expected to collapse at the mean-field level due to the essentially attractive interaction. By systematic measurements on individual droplets we demonstrate quantitatively that quantum fluctuations stabilize them against the mean-field collapse. We observe in addition interference of several droplets indicating that this stable many-body state is phase coherent.

  9. Half-Quantum Vortex Molecules in a Binary Dipolar Bose Gas

    NASA Astrophysics Data System (ADS)

    Shirley, Wilbur E.; Anderson, Brandon M.; Clark, Charles W.; Wilson, Ryan M.

    2014-10-01

    We study the ground state phases of a rotating two-component, or binary, Bose-Einstein condensate, wherein one component possesses a large permanent magnetic dipole moment. A variety of nontrivial phases emerge in this system, including a half-quantum vortex (HQV) chain phase and a HQV molecule phase, where HQVs bind at short distances. We attribute these phases to the development of a minimum in the HQV interaction potential, which emerges without coherent coupling or attractive interactions between the components. Thus, we show that the presence of dipolar interactions in this system provides a unique mechanism for the formation of HQV molecules and results in a rich ground state phase diagram.

  10. Half-Quantum Vortex Molecules in a Binary Dipolar Bose Gas

    NASA Astrophysics Data System (ADS)

    Wilson, Ryan; Shirley, Wilbur; Anderson, Brandon; Clark, Charles

    2015-03-01

    We discuss the ground state phases of a rotating two-component, or binary Bose-Einstein condensate, wherein one component possesses a large permanent magnetic dipole moment. A variety of non-trivial phases emerge in this system, including a half-quantum vortex (HQV) chain phase and a HQV molecule phase, where HQVs bind at short distances. We attribute these phases to the development of a minimum in the HQV interaction potential, which emerges without coherent coupling or attractive interactions between the components. Thus, we show that the presence of dipolar interactions in this system provides a unique mechanism for the formation of HQV molecules and results in a rich ground state phase diagram.

  11. Half-quantum vortex molecules in a binary dipolar Bose gas.

    PubMed

    Shirley, Wilbur E; Anderson, Brandon M; Clark, Charles W; Wilson, Ryan M

    2014-10-17

    We study the ground state phases of a rotating two-component, or binary, Bose-Einstein condensate, wherein one component possesses a large permanent magnetic dipole moment. A variety of nontrivial phases emerge in this system, including a half-quantum vortex (HQV) chain phase and a HQV molecule phase, where HQVs bind at short distances. We attribute these phases to the development of a minimum in the HQV interaction potential, which emerges without coherent coupling or attractive interactions between the components. Thus, we show that the presence of dipolar interactions in this system provides a unique mechanism for the formation of HQV molecules and results in a rich ground state phase diagram.

  12. Investigation of Sterilization Mechanism for Geobacillus stearothermophilus Spores with Plasma-Excited Neutral Gas

    NASA Astrophysics Data System (ADS)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-09-01

    We investigate the mechanism of the sterilization with plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals are separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas uses humidified mixture of nitrogen and oxygen. Geobacillus stearothermophilus spores and tyrosine which is amino acid are treated by the plasma-excited neutral gas. Shape change of the treated spore is observed by SEM, and chemical modification of the treated tyrosine is analyzed by HPLC. As a result, the surface of the treated spore shows depression. Hydroxylation and nitration of tyrosine are shown after the treatment. For these reasons, we believe that the sterilization with plasma-excited neutral gas results from the deformation of spore structure due to the chemical modification of amino acid.

  13. Transport of an interacting Bose gas in 1D disordered lattices

    SciTech Connect

    D'Errico, C.; Chaudhuri, S.; Gori, L.; Kumar, A.; Lucioni, E.; Tanzi, L.; Inguscio, M.; Modugno, G.

    2014-08-20

    We use ultracold atoms in a quasiperiodic lattice to study two outstanding problems in the physics of disordered systems: a) the anomalous diffusion of a wavepacket in the presence of disorder, interactions and noise; b) the transport of a disordered superfluid. a) Our results show that the subdiffusion, observed when interaction alone is present, can be modelled with a nonlinear diffusion equation and the peculiar shape of the expanding density profiles can be connected to the microscopic nonlinear diffusion coefficients. Also when noise alone is present we can describe the observed normal diffusion dynamics by existing microscopic models. In the unexplored regime in which noise and interaction are combined, instead, we observe an anomalous diffusion, that we model with a generalized diffusion equation, where noise- and interaction-induced contributions add each other. b) We find that an instability appearing at relatively large momenta can be employed to locate the fluid-insulator crossover driven by disorder. By investigating the momentum-dependent transport, we observe a sharp crossover from a weakly dissipative regime to a strongly unstable one at a disorder-dependent critical momentum. The set of critical disorder and interaction strengths for which such critical momentum vanishes, can be identified with the separation between a fluid regime and an insulating one and can be related to the predicted zero-temperature superfluid-Bose glass transition.

  14. Gibbons-Hawking effect in the sonic de Sitter space-time of an expanding Bose-Einstein-condensed gas.

    PubMed

    Fedichev, Petr O; Fischer, Uwe R

    2003-12-12

    We propose an experimental scheme to observe the Gibbons-Hawking effect in the acoustic analog of a (1+1)-dimensional de Sitter universe, produced in an expanding, cigar-shaped Bose-Einstein condensate. It is shown that a two-level system created at the center of the trap, an atomic quantum dot interacting with phonons, observes a thermal Bose distribution at the de Sitter temperature.

  15. Gibbons-Hawking effect in the sonic de Sitter space-time of an expanding Bose-Einstein-condensed gas.

    PubMed

    Fedichev, Petr O; Fischer, Uwe R

    2003-12-12

    We propose an experimental scheme to observe the Gibbons-Hawking effect in the acoustic analog of a (1+1)-dimensional de Sitter universe, produced in an expanding, cigar-shaped Bose-Einstein condensate. It is shown that a two-level system created at the center of the trap, an atomic quantum dot interacting with phonons, observes a thermal Bose distribution at the de Sitter temperature. PMID:14683099

  16. Satyendranath Bose: Co-Founder of Quantum Statistics

    ERIC Educational Resources Information Center

    Blanpied, William A.

    1972-01-01

    Satyendranath Bose was first to prove Planck's Law by using ideal quantum gas. Einstein credited Bose for this first step in the development of quantum statistical mechanics. Bose did not realize the importance of his work, perhaps because of peculiar academic settings in India under British rule. (PS)

  17. A new apparatus for studies of quantized vortex dynamics in dilute-gas Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Newman, Zachary L.

    The presence of quantized vortices and a high level of control over trap geometries and other system parameters make dilute-gas Bose-Einstein condensates (BECs) a natural environment for studies of vortex dynamics and quantum turbulence in superfluids, primary interests of the BEC group at the University of Arizona. Such research may lead to deeper understanding of the nature of quantum fluid dynamics and far-from-equilbrium phenomena. Despite the importance of quantized vortex dynamics in the fields of superfluidity, superconductivity and quantum turbulence, direct imaging of vortices in trapped BECs remains a significant technical challenge. This is primarily due to the small size of the vortex core in a trapped gas, which is typically a few hundred nanometers in diameter. In this dissertation I present the design and construction of a new 87Rb BEC apparatus with the goal of studying vortex dynamics in trapped BECs. The heart of the apparatus is a compact vacuum chamber with a custom, all-glass science cell designed to accommodate the use of commercial high-numerical-aperture microscope objectives for in situ imaging of vortices. The designs for the new system are, in part, based on prior work in our group on in situ imaging of vortices. Here I review aspects of our prior work and discuss some of the successes and limitations that are relevant to the new apparatus. The bulk of the thesis is used to described the major subsystems of the new apparatus which include the vacuum chamber, the laser systems, the magnetic transfer system and the final magnetic trap for the atoms. Finally, I demonstrate the creation of a BEC of ˜ 2 x 106 87Rb atoms in our new system and show that the BEC can be transferred into a weak, spherical, magnetic trap with a well defined magnetic field axis that may be useful for future vortex imaging studies.

  18. Gas utilization in TFTR (Tokamak Fusion Test Reactor) neutral beam injectors

    SciTech Connect

    Kamperschroer, J.H.; Gammel, G.M.; Kugel, H.W.; Grisham, L.R.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1987-08-01

    Measurements of gas utilization in a test TFTR neutral beam injector have been performed to study the feasibility of running tritium neutral beams with existing ion sources. Gas consumption is limited by the restriction of 50,000 curies of T/sub 2/ allowed on site. It was found that the gas efficiency of the present long-pulse ion sources is higher than it was with previous short-pulse sources. Gas efficiencies were studied over the range of 35 to 55%. At the high end of this range the neutral fraction of the beam fell below that predicted by room temperature molecular gas flow. This is consistent with observations made on the JET injectors, where it has been attributed to beam heating of the neutralizer gas and a concomitant increase in conductance. It was found that a working gas isotope exchange from H/sub 2/ to D/sub 2/ could be accomplished on the first beam shot after changing the gas supply, without any intermediate preconditioning. The mechanism believed responsible for this phenomenon is heating of the plasma generator walls by the arc and a resulting thermal desorption of all previously adsorbed and implanted gas. Finally, it was observed that an ion source conditioned to 120 kV operation could produce a beam pulse after a waiting period of fourteen hours by preceding the beam extraction with several hi-pot/filament warm-up pulses, without any gas consumption. 18 refs., 7 figs., 2 tabs.

  19. Pioneer Venus Orbiter neutral gas mass spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Niemann, H. B.; Booth, J. R.; Cooley, J. E.; Hartle, R. E.; Kasprzak, W. T.; Spencer, N. W.; Way, S. H.; Hunten, D. M.; Carignan, G. R.

    1980-01-01

    The Pioneer Venus Orbiter Neutral Mass Spectrometer (ONMS) is designed to measure the vertical and horizontal density variations of the major neutral constituents in the upper atmosphere of Venus. The mass spectrometer sensor includes a retarding potential ion source, hyperbolic quadrupole rod analyzer, and electron multiplier detector. The supporting electronic system consists of hybrid integrated circuits to reduce weight and power. The ONMS instrument was launched aboard the Pioneer Venus Orbiter on May 20, 1978, and turned on in orbit around Venus on December 4, 1978. It has operated flawlessly for over a Venus year (243 earth days) and has returned data of the composition of the major constituents in the Venus atmosphere between the altitudes of 150 and 350 km.

  20. Preliminary experiment of high-speed gas flow generation by a compact toroid injection into a gas neutralizer

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Liu, D.; Shoji, T.; Nakanishi, R.; Fukumoto, N.; Sekioka, T.; Kikuchi, Y.; Nagata, M.

    2007-11-01

    A supersonic gas jet injection has been considered to be a new technique for future reactor fuelling and disruption mitigation in tokamak devices [1]. We have recently started to investigate a production of high-speed gas flow by using a compact toroid (CT) injection into a hydrogen gas neutralizer. The electron density of the CT plasma is 1˜4 x10^21 m-3, and the CT speed is 30˜70 km/s in the preliminary experiment. The kinetic-energy measurements of ions and neutrals after the neutralization were carried out by using an electrostatic ion energy analyzer and time-of-flight technique. An enhancement of the Hβ emission level, a significant decay of the CT plasma density and the magnetic field profile have been observed after the neutralization when the neutral pressure is about 10-3 Torr. It could be considered that high-energy neutral particles were generated by a charge exchange process from the CT plasma to the neutral particles. [1] V. Rozhansky, et al., Nucl. Fusion 46, 367 (2006).

  1. Elastic light scattering by the atoms of a Bose gas confined in a parabolic trap

    SciTech Connect

    Alekseev, V. A.

    2008-09-15

    It is shown that the emergence of a condensate fraction in a gas confined in a trap leads to a sharp increase in the intensity of elastic scattering (scattering not accompanied by a change in the quantum numbers describing the motion of gas atoms in the trap) of light. Under typical experimental conditions, this intensity may be thousands of times greater than the intensity of inelastic scattering, which is hardly affected by the condensate. The angular distribution of elastic scattering of light allows one to determine the size of the condensate, and its intensity makes it possible to determine the number of particles trapped in the condensate.

  2. Neutral gas heating via non-resonant optical lattices

    NASA Astrophysics Data System (ADS)

    Cornella, Barry Michael

    The influence of intense optical lattices on atoms or molecules offers a particularly useful method for energy and momentum deposition into a non-resonant gas. In this investigation, a proof-of-concept experiment was conducted to validate high intensity pulsed optical lattices as a means of creating high temperature gases for a myriad of aerospace, basic physics, and nanotechnology applications. Traditional methods for creating these flows have either involved altering the chemical composition of the initial gas sample through combustion or ionization or relied on laser resonant interactions with internal energy modes through laser pyrolysis. Due to its non-resonant nature, the use of optical lattices might be beneficial compared to existing methods since it provides an arbitrary, localized, high temperature gas that is tunable and does not introduce unwanted chemical species or high ionization concentrations. As an intermediate step toward verifying optical lattice gas heating, a coherent Rayleigh-Brillouin scattering (CRBS) study was also performed to verify the presented methodology. CRBS is a gas diagnostic technique used for non-intrusive probing of gas thermodynamic properties. In addition to the experimental investigation, a complementary numerical study was conducted using a direct simulation Monte Carlo approach. The numerical study used a modified version of SMILE to predict the gas phenomena within the strong optical potential fields. The goal of substantiating optical lattice heating was accomplished by detecting the acoustic wave generated from the heated volume. The magnitude of the resulting acoustic wave was shown to vary with the optical lattice phase velocity, peaking on the order of the gas' most probable speed. The trend with lattice velocity is consistent with both theory and the numerical study and eliminates other possible heating mechanisms such as laser-induced ionization or molecular dissociation. Limitations for the investigated heating

  3. Releasing the trapped 1d Bose gas: from integrability and renormalization to Generalized Gibbs ensembles

    NASA Astrophysics Data System (ADS)

    Caux, Jean-Sébastien

    2013-05-01

    In this talk, we consider the out-of-equilibrium evolution of a one-dimensional bosonic gas (as described by the Lieb-Liniger model) after release from a parabolic trapping potential. We present a new method based on combining the theory of integrable models with numerical renormalization, which allows to reconstruct the post-quench dynamics of the gas all the way to infinite time. We also present a framework by which the generalized Gibbs ensemble, which has been suggested as the effective theory governing this dynamics, can be explicitly constructed. We compare predictions for reequilibration from this ensemble against the long-time dynamics observed using our method. Supported by FOM and NWO (Netherlands).

  4. Investigation of accelerated neutral atom beams created from gas cluster ion beams

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, A.; Kirkpatrick, S.; Walsh, M.; Chau, S.; Mack, M.; Harrison, S.; Svrluga, R.; Khoury, J.

    2013-07-01

    A new concept for ultra-shallow processing of surfaces known as accelerated neutral atom beam (ANAB) technique employs conversion of energetic gas cluster ions produced by the gas cluster ion beam (GCIB) method into intense collimated beams of coincident neutral gas atoms having controllable average energies from less than 10 eV per atom to beyond 100 eV per atom. A beam of accelerated gas cluster ions is first produced as is usual in GCIB, but conditions within the source ionizer and extraction regions are adjusted such that immediately after ionization and acceleration the clusters undergo collisions with non-ionized gas atoms. Energy transfer during these collisions causes the energetic cluster ions to release many of their constituent atoms. An electrostatic deflector is then used to eliminate charged species, leaving the released neutral atoms to still travel collectively at the same velocities they had as bonded components of their parent clusters. Upon target impact, the accelerated neutral atom beams produce effects similar to those normally associated with GCIB, but to shallower depths, with less surface damage and with superior subsurface interfaces. The paper discusses generation and characterization of the accelerated neutral atom beams, describes interactions of the beams with target surfaces, and presents examples of ongoing work on applications for biomedical devices.

  5. Method and apparatus for confinement of ions in the presence of a neutral gas

    DOEpatents

    Peurrung, A.J.; Barlow, S.E.

    1999-08-03

    The present invention is an apparatus and method for combining ions with a neutral gas and flowing the mixture with a radial flow component through a magnetic field so that the weakly ionized gas is confined by the neutral gas. When the weakly ionized gas is present in sufficient density, a weakly ionized non-neutral plasma is formed that may be trapped in accordance with the present invention. Applications for a weakly ionized non-neutral plasma exploit the trap`s ability to store and manipulate ionic species in the presence of neutral gas. The trap may be connected to a mass spectrometer thereby permitting species identification after a fixed period of time. Delicate and/or heavy particles such as clusters may be held and studied in a ``gentle`` environment. In addition, the trap can provide a relatively intense, low-energy source of a particular ion species for surface implantation or molecular chemistry. Finally, a long trap may permit spectroscopy of unprecedented accuracy to be performed on ionic species. 4 figs.

  6. Method and apparatus for confinement of ions in the presence of a neutral gas

    DOEpatents

    Peurrung, Anthony J.; Barlow, Stephan E.

    1999-01-01

    The present invention is an apparatus and method for combining ions with a neutral gas and flowing the mixture with a radial flow component through a magnetic field so that the weakly ionized gas is confined by the neutral gas. When the weakly ionized gas is present in sufficient density, a weakly ionized non-neutral plasma is formed that may be trapped in accordance with the present invention. Applications for a weakly ionized non-neutral plasma exploit the trap's ability to store and manipulate ionic species in the presence of neutral gas. The trap may be connected to a mass spectrometer thereby permitting species identification after a fixed period of time. Delicate and/or heavy particles such as clusters may be held and studied in a "gentle" environment. In addition, the trap can provide a relatively intense, low-energy source of a particular ion species for surface implantation or molecular chemistry. Finally, a long trap may permit spectroscopy of unprecedented accuracy to be performed on ionic species.

  7. Finite-momentum superfluidity and phase transitions in a p-wave resonant Bose gas

    SciTech Connect

    Choi, Sungsoo; Radzihovsky, Leo

    2011-10-15

    We study a degenerate two-species gas of bosonic atoms interacting through a p-wave Feshbach resonance as, for example, realized in a {sup 85}Rb-{sup 87}Rb mixture. We show that, in addition to a conventional atomic and a p-wave molecular spinor-1 superfluidity at large positive and negative detunings, respectively, the system generically exhibits a finite-momentum atomic-molecular superfluidity at intermediate detuning around the unitary point. We analyze the detailed nature of the corresponding phases and the associated quantum and thermal phase transitions.

  8. p-Wave Resonant Bose Gas: A Finite-Momentum Spinor Superfluid

    NASA Astrophysics Data System (ADS)

    Choi, Sungsoo; Radzihovsky, Leo

    2010-03-01

    We study a degenerate gas of two-species bosonic atoms interacting through a p-wave Feshbach resonance (as realized in, e.g., a ^85Rb-^87Rb mixture). We show that this model exhibits a finite-momentum atomic-molecular superfluid(AMSF), sandwiched by a molecular p-wave (orbital spinor) superfluid and by an s-wave atomic superfluid at large negative and positive detunings, respectively. The magnetic field can be used to tune the modulation wave vector of the AMSF state, as well as to drive quantum phase transitions in this rich system.

  9. p-Wave Resonant Bose Gas: A Finite-Momentum Spinor Superfluid

    NASA Astrophysics Data System (ADS)

    Choi, Sungsoo; Radzihovsky, Leo

    2009-10-01

    We study a degenerate gas of two-species bosonic atoms interacting through a p-wave Feshbach resonance (as realized in, e.g., a ^85Rb-^87Rb mixture). We show that this model exhibits a finite-momentum atomic-molecular superfluid (AMSF), sandwiched by a molecular p-wave (orbital spinor) superfluid and by an s-wave atomic superfluid at large negative and positive detunings, respectively. The magnetic field can be used to tune the modulation wave vector of the AMSF state, as well as to drive quantum phase transitions in this rich system.

  10. Finite-momentum superfluidity and phase transitions in a p-wave resonant Bose gas

    NASA Astrophysics Data System (ADS)

    Choi, Sungsoo; Radzihovsky, Leo

    2011-10-01

    We study a degenerate two-species gas of bosonic atoms interacting through a p-wave Feshbach resonance as, for example, realized in a 85Rb-87Rb mixture. We show that, in addition to a conventional atomic and a p-wave molecular spinor-1 superfluidity at large positive and negative detunings, respectively, the system generically exhibits a finite-momentum atomic-molecular superfluidity at intermediate detuning around the unitary point. We analyze the detailed nature of the corresponding phases and the associated quantum and thermal phase transitions.

  11. p-Wave Resonant Bose Gas: A Finite-Momentum Spinor Superfluid

    NASA Astrophysics Data System (ADS)

    Radzihovsky, Leo; Choi, Sungsoo

    2009-08-01

    We show that a degenerate gas of two-species bosonic atoms interacting through a p-wave Feshbach resonance (as realized in, e.g., a Rb85-Rb87 mixture) exhibits a finite-momentum atomic-molecular superfluid (AMSF), sandwiched by a molecular p-wave (orbital spinor) superfluid and by an s-wave atomic superfluid at large negative and positive detunings, respectively. The magnetic field can be used to tune the modulation wave vector of the AMSF state, as well as to drive quantum phase transitions in this rich system.

  12. p-wave resonant bose gas: a finite-momentum spinor superfluid.

    PubMed

    Radzihovsky, Leo; Choi, Sungsoo

    2009-08-28

    We show that a degenerate gas of two-species bosonic atoms interacting through a p-wave Feshbach resonance (as realized in, e.g., a (85)Rb -- (87)Rb mixture) exhibits a finite-momentum atomic-molecular superfluid (AMSF), sandwiched by a molecular p-wave (orbital spinor) superfluid and by an s-wave atomic superfluid at large negative and positive detunings, respectively. The magnetic field can be used to tune the modulation wave vector of the AMSF state, as well as to drive quantum phase transitions in this rich system. PMID:19792805

  13. Interactions between anionic and neutral bromine and rare gas atoms

    SciTech Connect

    Buchachenko, Alexei A.; Grinev, Timur A.; Wright, Timothy G.; Viehland, Larry A.

    2008-02-14

    High-quality, ab initio potential energy functions are obtained for the interaction of bromine atoms and anions with atoms of the six rare gases (Rg) from He to Rn. The potentials of the nonrelativistic {sup 2}{sigma}{sup +} and {sup 2}{pi} electronic states arising from the ground-state Br({sup 2}P)-Rg interactions are computed over a wide range of internuclear separations using a spin-restricted version of the coupled cluster method with single and double excitations and noniterative correction to triple excitations [RCCSD(T)] with an extrapolation to the complete basis set limit, from basis sets of d-aug-cc-pVQZ and d-aug-cc-pV5Z quality. These are compared with potentials derived previously from experimental measurements and ab initio calculations. The same approach is used also to refine the potentials of the Br{sup -}-Rg anions obtained previously [Buchachenko et al., J. Chem. Phys. 125, 064305 (2006)]. Spin-orbit coupling in the neutral species is included both ab initio and via an atomic approximation; deviations between two approaches that are large enough to affect the results significantly are observed only in the Br-Xe and Br-Rn systems. The resulting relativistic potentials are used to compute anion zero electron kinetic energy photoelectron spectra, differential scattering cross sections, and the transport coefficients of trace amounts of both anionic and neutral bromine in the rare gases. Comparison with available experimental data for all systems considered proves a very high precision of the present potentials.

  14. Measurement of neutral gas temperature in a 13.56 MHz inductively coupled plasma

    SciTech Connect

    Jayapalan, Kanesh K.; Chin, Oi Hoong

    2015-04-24

    Measuring the temperature of neutrals in inductively coupled plasmas (ICP) is important as heating of neutral particles will influence plasma characteristics such as the spatial distributions of plasma density and electron temperature. Neutral gas temperatures were deduced using a non-invasive technique that combines gas actinometry, optical emission spectroscopy and simulation which is described here. Argon gas temperature in a 13.56 MHz ICP were found to fall within the range of 500 − 800 K for input power of 140 − 200 W and pressure of 0.05 − 0.2 mbar. Comparing spectrometers with 0.2 nm and 0.5 nm resolution, improved fitting sensitivity was observed for the 0.2 nm resolution.

  15. Thermodynamics of a trapped Bose-Fermi mixture

    SciTech Connect

    Hu, Hui; Liu, Xia-Ji

    2003-08-01

    By using the Hartree-Fock-Bogoliubov equations within the Popov approximation, we investigate the thermodynamic properties of a dilute binary Bose-Fermi mixture confined in an isotropic harmonic trap. For mixtures with an attractive Bose-Fermi interaction, we find a sizable enhancement of the condensate fraction and of the critical temperature of Bose-Einstein condensation with respect to the predictions for a pure interacting Bose gas. Conversely, the influence of the repulsive Bose-Fermi interaction is less pronounced. The possible relevance of our results in current experiments on trapped {sup 87}Rb-{sup 40}K mixtures is discussed.

  16. Effects of humidity on sterilization of Geobacillus stearothermophilus spores with plasma-excited neutral gas

    NASA Astrophysics Data System (ADS)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-06-01

    We investigate the effects of relative humidity on the sterilization process using a plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals were separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas is nitrogen mixed with 0.1% oxygen, and the relative humidity in the source gas is controlled by changing the mixing ratio of water vapor. The relative humidity near the sample in the reactor chamber is controlled by changing the sample temperature. As a result, the relative humidity near the sample should be kept in the range from 60 to 90% for the sterilization of Geobacillus stearothermophilus spores. When the relative humidity in the source gas increases from 30 to 90%, the sterilization effect is enhanced by the same degree.

  17. Localized collapse and revival of coherence in an ultracold Bose gas

    SciTech Connect

    McGuirk, J. M.; Zajiczek, L. F.

    2011-01-15

    We study the collapse and revival of coherence induced by dipolar spin waves in a trapped gas of {sup 87}Rb atoms. In particular, we observe spatially localized collapse and revival of Ramsey fringe contrast and show how the pattern of coherence depends on the strength of the spin-wave excitation. We find that the spatial character of the coherence dynamics is incompatible with a simple model based only on position-space overlap of wave functions. We show that this phenomenon requires a full phase-space description of the atomic spin using a quantum Boltzmann transport equation, which highlights spin-wave-induced coherent spin currents and the ensuing dynamics they drive.

  18. Neutral gas compression in the Alcator C-Mod divertor, experimental observations

    SciTech Connect

    Niemczewski, A.; LaBombard, B.; Lipschultz, B.; McCracken, G.

    1994-11-01

    One of the high heat flux solutions envisioned for ITER is the gas target divertor. This scheme requires high neutral pressure to be sustained in the divertor chamber with a minimal effect on the pressure in the main tokamak chamber (i.e. high gas compression). The neutral gas compression has been studied in the Alcator C-Mod closed divertor under various central and edge plasma conditions. The neutral pressure measured by a fast, in-situ, ionization gauge, installed behind the divertor target plate was compared with the midplane pressure, measured by a shielded Bayard-Alpert gauge. Divertor pressures up to 30 mTorr with compression factors p{sub div}/p{sub mid} {le} 70 have been observed. It has been found that the neutral pressure in the divertor does not depend strongly on the fueling location but rather on the core plasma density and the resulting divertor plasma regime. Divertor detachment leads to a considerable drop in the compression ratio, suggesting a partial {open_quotes}unplugging{close_quotes} of the divertor volume. An examination of the local particle flux balance in the divertor indicates that the single most important factor determining divertor pressure and compression is the private-flux plasma channel opacity to neutrals.

  19. ALFALFA Discovery of the Nearby Gas-rich Dwarf Galaxy Leo P. V. Neutral Gas Dynamics and Kinematics

    NASA Astrophysics Data System (ADS)

    Bernstein-Cooper, Elijah Z.; Cannon, John M.; Elson, Edward C.; Warren, Steven R.; Chengular, Jayaram; Skillman, Evan D.; Adams, Elizabeth A. K.; Bolatto, Alberto D.; Giovanelli, Riccardo; Haynes, Martha P.; McQuinn, Kristen B. W.; Pardy, Stephen A.; Rhode, Katherine L.; Salzer, John J.

    2014-08-01

    We present new H I spectral line imaging of the extremely metal-poor, star-forming dwarf irregular galaxy Leo P. Our H I images probe the global neutral gas properties and the local conditions of the interstellar medium (ISM). The H I morphology is slightly elongated along the optical major axis. We do not find obvious signatures of interaction or infalling gas at large spatial scales. The neutral gas disk shows obvious rotation, although the velocity dispersion is comparable to the rotation velocity. The rotation amplitude is estimated to be V c =15 ± 5 km s-1. Within the H I radius probed by these observations, the mass ratio of gas to stars is roughly 2:1, while the ratio of the total mass to the baryonic mass is gsim15:1. We use this information to place Leo P on the baryonic Tully-Fisher relation, testing the baryonic content of cosmic structures in a sparsely populated portion of parameter space that has hitherto been occupied primarily by dwarf spheroidal galaxies. We detect the signature of two temperature components in the neutral ISM of Leo P the cold and warm components have characteristic velocity widths of 4.2 ± 0.9 km s-1 and 10.1 ± 1.2 km s-1, corresponding to kinetic temperature upper limits of ~1100 K and ~6200 K, respectively. The cold H I component is unresolved at a physical resolution of 200 pc. The highest H I surface densities are observed in close physical proximity to the single H II region. A comparison of the neutral gas properties of Leo P with other extremely metal-deficient (XMD) galaxies reveals that Leo P has the lowest neutral gas mass of any known XMD, and that the dynamical mass of Leo P is more than two orders of magnitude smaller than any known XMD with comparable metallicity.

  20. Test of a Prototype Instrument for the Direct Measurement of the Neutral Interstellar Gas

    NASA Astrophysics Data System (ADS)

    Wieser, M.; Wurz, P.; Bochsler, P.; Mobius, E.; Quinn, J.; Fuselier, S. A.; DeFazio, J.; Stephen, T. M.

    2002-05-01

    We have constructed and tested a prototype instrument for the direct measurement of neutral interstellar gas (ISG). The particle detection of this instrument bases on the conversion of energetic neutral atoms to negative ions using surface ionization. Special emphasis was put on the actual conversion surfaces and the relevant energy range for the ISG as seen from a spacecraft (10eV to 1keV). The created negative ions are subsequently coarsely energy analyzed via electrostatic deflection and mass analyzed using the time of flight technique. We present data recorded with this instrument from two calibration facilities providing neutral particle beams. From these data we calculate the detection efficiencies and deduce the expected performance for the direct measurement of the interstellar gas flow on future missions, such as Interstellar Pathfinder, Outer heliospheric Imager, or Interstellar Probe.

  1. An apparatus for immersing trapped ions into an ultracold gas of neutral atoms.

    PubMed

    Schmid, Stefan; Härter, Arne; Frisch, Albert; Hoinka, Sascha; Denschlag, Johannes Hecker

    2012-05-01

    We describe a hybrid vacuum system in which a single ion or a well-defined small number of trapped ions (in our case Ba(+) or Rb(+)) can be immersed into a cloud of ultracold neutral atoms (in our case Rb). This apparatus allows for the study of collisions and interactions between atoms and ions in the ultracold regime. Our setup is a combination of a Bose-Einstein condensation apparatus and a linear Paul trap. The main design feature of the apparatus is to first separate the production locations for the ion and the ultracold atoms and then to bring the two species together. This scheme has advantages in terms of stability and available access to the region where the atom-ion collision experiments are carried out. The ion and the atoms are brought together using a moving one-dimensional optical lattice transport which vertically lifts the atomic sample over a distance of 30 cm from its production chamber into the center of the Paul trap in another chamber. We present techniques to detect and control the relative position between the ion and the atom cloud.

  2. An apparatus for immersing trapped ions into an ultracold gas of neutral atoms.

    PubMed

    Schmid, Stefan; Härter, Arne; Frisch, Albert; Hoinka, Sascha; Denschlag, Johannes Hecker

    2012-05-01

    We describe a hybrid vacuum system in which a single ion or a well-defined small number of trapped ions (in our case Ba(+) or Rb(+)) can be immersed into a cloud of ultracold neutral atoms (in our case Rb). This apparatus allows for the study of collisions and interactions between atoms and ions in the ultracold regime. Our setup is a combination of a Bose-Einstein condensation apparatus and a linear Paul trap. The main design feature of the apparatus is to first separate the production locations for the ion and the ultracold atoms and then to bring the two species together. This scheme has advantages in terms of stability and available access to the region where the atom-ion collision experiments are carried out. The ion and the atoms are brought together using a moving one-dimensional optical lattice transport which vertically lifts the atomic sample over a distance of 30 cm from its production chamber into the center of the Paul trap in another chamber. We present techniques to detect and control the relative position between the ion and the atom cloud. PMID:22667603

  3. An enhancement of plasma density by neutral gas injection observed in SEPAC Spacelab-1 experiment

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Obayashi, T.; Kubota, S.; Roberts, W. T.; Reasoner, D. L.; Taylor, W. W. L.; Williamson, P. R.

    1985-01-01

    An enhancement of plasma density observed during a neutral gas injection in Space Experiments with Particle Accelerators by the Space Shuttle/Spacelab-1 is presented. When a plume of nitrogen gas was injected from the orbiter into space, a large amount of plasma was detected by an onboard plasma probe. The observed density often increased beyond the background plasma density and was strongly dependent on the attitude of the orbiter with respect to the velocity vector. This effect has been explained by a collisional interaction between the injected gas molecules and the ionospheric ions relatively drifting at the orbital speed.

  4. Space Charge Neutralization of DEMO Relevant Negative Ion Beams at Low Gas Density

    SciTech Connect

    Surrey, Elizabeth; Porton, Michael

    2011-09-26

    The application of neutral beams to future power plant devices (DEMO) is dependent on achieving significantly improved electrical efficiency and the most promising route to achieving this is by implementing a photoneutralizer in place of the traditional gas neutralizer. A corollary of this innovation would be a significant reduction in the background gas density through which the beam is transported between the accelerator and the neutralizer. This background gas is responsible for the space charge neutralization of the beam, enabling distances of several metres to be traversed without significant beam expansion. This work investigates the sensitivity of a D{sup -} beam to reduced levels of space charge compensation for energies from 100 keV to 1.5 MeV, representative of a scaled prototype experiment, commissioning and full energy operation. A beam transport code, following the evolution of the phase space ellipse, is employed to investigate the effect of space charge on the beam optics. This shows that the higher energy beams are insensitive to large degrees of under compensation, unlike the lower energies. The probable degree of compensation at low gas density is then investigated through a simple, two component beam-plasma model that allows the potential to be negative. The degree of under-compensation is dependent on the positive plasma ion energy, one source of which is dissociation of the gas by the beam. The subsequent space charge state of the beam is shown to depend upon the relative times for equilibration of the dissociation energy and ionization by the beam ions.

  5. The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Benna, Mehdi; King, Todd; Harpold, Daniel N.; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carrigan, Daniel; Errigo, Therese; Holmes, Vincent; Kellogg, James; Jaeger, Ferzan; Raaen, Eric; Tan, Florence

    2014-01-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) is designed to measure the composition, structure, and variability of the upper atmosphere of Mars. The NGIMS complements two other instrument packages on the MAVEN spacecraft designed to characterize the neutral upper atmosphere and ionosphere of Mars and the solar wind input to this region of the atmosphere. The combined measurement set is designed to quantify atmosphere escape rates and provide input to models of the evolution of the martian atmosphere. The NGIMS is designed to measure both surface reactive and inert neutral species and ambient ions along the spacecraft track over the 125-500 km altitude region utilizing a dual ion source and a quadrupole analyzer.

  6. Asymptotic theory of neutral stability curve of the Couette flow of vibrationally excited gas

    NASA Astrophysics Data System (ADS)

    Grigor'ev, Yu N.; Ershov, I. V.

    2016-06-01

    The asymptotic theory of neutral stability curve of the supersonic plane Couette flow of vibrationally excited gas is constructed. The system of two-temperature viscous gas dynamics equations was used as original mathematical model. Spectral problem for an eighth order linear system of ordinary differential equations was obtained from the system within framework of classical theory of linear stability. Transformations of the spectral problem universal for all shear flows were carried along the classical Dunn — Lin scheme. As a result the problem was reduced to secular algebraic equation with a characteristic division on “inviscid” and “viscous” parts which was solved numerically. The calculated neutral stability curves coincide in limits of 10% with corresponding results of direct numerical solution of original spectral problem.

  7. Alfalfa discovery of the nearby gas-rich dwarf galaxy LEO P. V. Neutral gas dynamics and kinematics

    SciTech Connect

    Bernstein-Cooper, Elijah Z.; Pardy, Stephen A.; Cannon, John M. E-mail: spardy@astro.wisc.edu; and others

    2014-08-01

    We present new H I spectral line imaging of the extremely metal-poor, star-forming dwarf irregular galaxy Leo P. Our H I images probe the global neutral gas properties and the local conditions of the interstellar medium (ISM). The H I morphology is slightly elongated along the optical major axis. We do not find obvious signatures of interaction or infalling gas at large spatial scales. The neutral gas disk shows obvious rotation, although the velocity dispersion is comparable to the rotation velocity. The rotation amplitude is estimated to be V {sub c} =15 ± 5 km s{sup –1}. Within the H I radius probed by these observations, the mass ratio of gas to stars is roughly 2:1, while the ratio of the total mass to the baryonic mass is ≳15:1. We use this information to place Leo P on the baryonic Tully-Fisher relation, testing the baryonic content of cosmic structures in a sparsely populated portion of parameter space that has hitherto been occupied primarily by dwarf spheroidal galaxies. We detect the signature of two temperature components in the neutral ISM of Leo P; the cold and warm components have characteristic velocity widths of 4.2 ± 0.9 km s{sup –1} and 10.1 ± 1.2 km s{sup –1}, corresponding to kinetic temperature upper limits of ∼1100 K and ∼6200 K, respectively. The cold H I component is unresolved at a physical resolution of 200 pc. The highest H I surface densities are observed in close physical proximity to the single H II region. A comparison of the neutral gas properties of Leo P with other extremely metal-deficient (XMD) galaxies reveals that Leo P has the lowest neutral gas mass of any known XMD, and that the dynamical mass of Leo P is more than two orders of magnitude smaller than any known XMD with comparable metallicity.

  8. Spacelab 1 experiments on interactions of an energetic electron beam with neutral gas

    NASA Technical Reports Server (NTRS)

    Marshall, J. A.; Lin, C. S.; Burch, J. L.; Obayashi, T.; Beghin, C.

    1988-01-01

    An unusual signature of return current and spacecraft charging potential was observed during the Spacelab 1 mission launched on November 28, 1983. The phenomenon occurred during neutral gas releases from the SEPAC (Space Experiments with Particle Accelerators) magnetoplasma-dynamic arcjet (MPD) concurrent with firings of the PICPAB (Phenomena Induced by Charged Particle Beams) electron gun and was recorded by the instruments of the SEPAC diagnostic package (DGP). Data from the langmuir probe, floating probes, neutral gas pressure gauge, and the plasma wave probes are reported. As the dense neutral gas was released, the return current measured by the langmuir probe changed from positive to negative and a positive potential relative to the spacecraft was measured by the floating probe. The anomalous return current is believed to be attributable to secondary electron fluxes escaping from the spacecraft, and the unusual charging situation is attributed to the formation of a double-layer structure between a hot plasma cloud localized to the MPD and the spacecraft. The charging scenario is supported by a computer simulation.

  9. Enhancement of H{sup -} extraction from a compact source by streaming neutral gas injection

    SciTech Connect

    Mendenilla, Alexander; Takahashi, Hidenori; Kasuya, Toshiro; Wada, Motoi

    2006-03-15

    A new negative ion extraction geometry with streaming neutral gas injector (SNGI) was tested in its performance to enhance negative hydrogen ion (H{sup -}) at low operational pressure. The experiments were performed using a test ion source equipped with a SNGI having the wall perpendicular to the gas emission holes. The results showed that the SNGI was capable of reducing the operating pressure of the ion source from 0.14 to 0.07 Pa. At 0.14 Pa, the operation using the SNGI produced 20% more negative ions than the operation without SNGI. A compact ion source was constructed with a smaller SNGI and having a tapered wall for the gas injection nozzles. The neutral density distribution within the central region of the SNGI within the ion source was simulated using direct simulation Monte Carlo (DSMC) method. It was realized that the neutral density distribution produced by the SNGI with the tapered wall was at most 35% lower than a SNGI structure without the taper.

  10. A Ring with a Spin: Superfluidity in a toroidal Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Ramanathan, Anand Krishnan

    2011-12-01

    Superfluidity is a remarkable phenomenon. Superfluidity was initially characterized by flow without friction, first seen in liquid helium in 1938, and has been studied extensively since. Superfluidity is believed to be related to, but not identical to Bose-Einstein condensation, a statistical mechanical phenomena predicted by Albert Einstein in 1924 based on the statistics of Satyendra Nath Bose, where bosonic atoms make a phase transition to form a Bose-Einstein condensate (BEC), a gas which has macroscopic occupation of a single quantum state. Developments in laser cooling of neutral atoms and the subsequent realization of Bose-Einstein condensates in ultracold gases have opened a new window into the study of superfluidity and its relation to Bose-Einstein condensation. In our atomic sodium BEC experiment, we studied superfluidity and dissipationless flow in an all-optical toroidal trap, constructed using the combination of a horizontal "sheet"-like beam and vertical "ring"-like beam, which, like a circuit loop, allows flow around the ring. On inducing a single quantum of circulation in the condensate, the smoothness and uniformity of the toroidal BEC enabled the sustaining of a persistent current lasting 40 seconds, limited by the lifetime of the BEC due to background gas pressure. This success set the stage for further experiments studying superfluidity. In a first set of experiments, we studied the stability of the persistent current by inserting a barrier in the flow path of the ring. The superflow stopped abruptly at a barrier strength such that the local flow velocity at the barrier exceeded a critical velocity, which supported decay via the creation of a vortex-antivortex pair. Our precise control in inducing and arresting superflow in the BEC is a first step toward studying other aspects of superfluidity, such as the effect of temperature and dimensionality. This thesis discusses these experiments and also details partial-transfer absorption imaging, an

  11. The interaction between the solar wind and the heterogeneous neutral gas coma of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Rubin, Martin; Toth, Gabor; Tenishev, Valeriy; Fougere, Nicolas; Huang, Zhenguang

    2016-07-01

    Comets are surrounded by an extended gas and dust coma. Neutral particles are continuously ionized by solar irradiation and then picked-up by the solar wind. This leads to a complex interaction between the neutral gas coma and the solar wind, which changes over the course of the comet's orbit around the Sun. The European Space Agency's Rosetta spacecraft has been in orbit around comet 67P/Churyumov-Gerasimenko since August 2014. Rosetta carries several instruments to investigate the comet's nucleus and surrounding neutral gas coma and plasma. Part of the payload is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) that consists of two mass spectrometers and a pressure sensor. ROSINA was designed to measure the neutral gas abundance and composition and low energy ions in the coma in situ. ROSINA observations have shown that the coma is very heterogeneous both in total density and composition of the neutral gas. This heterogeneity is driven in large part by the complex shape of the nucleus and the varying illumination conditions associated with the comet's rotation. In this presentation we will show the time-dependent distribution of the major volatiles around the comet constrained by ROSINA observations. Furthermore we will investigate the impact of the highly non-symmetric neutral gas coma on the interaction of the solar wind with the comet.

  12. Bose-Einstein condensation in a dilute gas: the first 70 years and some recent experiments (Nobel Lecture).

    PubMed

    Cornell, Eric A; Wieman, Carl E

    2002-06-17

    Bose-Einstein condensates of dilute gases offer a rich field to study fundamental quantum-mechanical processes, manipulation of the speed at which light propogates, observation of atomic pair-formation and superfluidity, or even simulating white dwarf stars. Still more radical applications are on the horizon. However, their initial creation was a masterpiece of experimental physics. After an initial process of laser cooling (which itself won its developers the 1997 Nobel Prize), atoms in a magnetic-optical trap must be safely transferred into a purely magnetic trap, where the condensation process begins at 170 nK and 20 nK a pure condensate of 2000 atoms could be created. More astonishingly, Wieman and Cornell showed these low temperatures could be achieved in "bench scale" equipment rather than the massive pieces normally demanded by cryoscience. For their 1995 discovery of this new state of matter, they were awarded the 2001 Nobel Prize in Physics. PMID:12465486

  13. Bose-Einstein condensation in a dilute gas: the first 70 years and some recent experiments (Nobel Lecture).

    PubMed

    Cornell, Eric A; Wieman, Carl E

    2002-06-17

    Bose-Einstein condensates of dilute gases offer a rich field to study fundamental quantum-mechanical processes, manipulation of the speed at which light propogates, observation of atomic pair-formation and superfluidity, or even simulating white dwarf stars. Still more radical applications are on the horizon. However, their initial creation was a masterpiece of experimental physics. After an initial process of laser cooling (which itself won its developers the 1997 Nobel Prize), atoms in a magnetic-optical trap must be safely transferred into a purely magnetic trap, where the condensation process begins at 170 nK and 20 nK a pure condensate of 2000 atoms could be created. More astonishingly, Wieman and Cornell showed these low temperatures could be achieved in "bench scale" equipment rather than the massive pieces normally demanded by cryoscience. For their 1995 discovery of this new state of matter, they were awarded the 2001 Nobel Prize in Physics.

  14. Baryonic distributions in galaxy dark matter haloes - I. New observations of neutral and ionized gas kinematics

    NASA Astrophysics Data System (ADS)

    Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.

    2016-07-01

    We present a combination of new and archival neutral hydrogen (H I) observations and new ionized gas spectroscopic observations for 16 galaxies in the statistically representative Extended Disk Galaxy Explore Science kinematic sample. H I rotation curves are derived from new and archival radio synthesis observations from the Very Large Array (VLA) as well as processed data products from the Westerbork Radio Synthesis Telescope (WSRT). The H I rotation curves are supplemented with optical spectroscopic integral field unit (IFU) observations using SparsePak on the WIYN 3.5 m telescope to constrain the central ionized gas kinematics in 12 galaxies. The full rotation curves of each galaxy are decomposed into baryonic and dark matter halo components using 3.6μm images from the Spitzer Space Telescope for the stellar content, the neutral hydrogen data for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. Differences in the inferred distribution of mass are illustrated under fixed stellar mass-to-light ratio (M/L) and maximum disc/bulge assumptions in the rotation curve decomposition.

  15. Upper-thermospheric observations and neutral-gas dynamics at high latitudes during solar maximum

    SciTech Connect

    Tschan, C.R.

    1987-01-01

    The primary objective was to understand the time-dependent dynamics of high-latitude thermospheric neutral winds. A unique 70-orbit December-solstice dataset of Dynamics Explorer 2 (DE-2) satellite data was established, with coverage of both polar caps during the same orbit. Analysis of this data led to the characterization of four basic high-latitude neutral-wind signature categories for each hemisphere under various interplanetary-magnetic-field (IMF) configurations. In addition, neutral-gas forcing simulations for the same solar-maximum December-solstice conditions using the NCAR thermospheric general circulation model (TGCM) showed that the orientation of the pressure-gradient force in the winder northern hemisphere was different from the summer southern hemisphere, explaining the differences in neutral-wind flow patterns systematically observed by DE-2 in opposite hemispheres. The variations in the pressure-gradient forces in opposite hemispheres were ascribed to density variations and temperature gradients, resulting from a superposition of solar-EUV, Joule, and cusp heating. The DE-2 dataset was then used to conduct two different time-dependent tests of the NCAR-TGCM. Finally, a technique for short-range forecasting of the high-latitude ion-convection parameters was noted.

  16. Effects of additional vapors on sterilization of microorganism spores with plasma-excited neutral gas

    NASA Astrophysics Data System (ADS)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-01-01

    Some fundamental experiments are carried out in order to develop a plasma process that will uniformly sterilize both the space and inner wall of the reactor chamber at atmospheric pressure. Air, oxygen, argon, and nitrogen are each used as the plasma source gas to which mixed vapors of water and ethanol at different ratios are added. The reactor chamber is remotely located from the plasma area and a metal mesh for eliminating charged particles is installed between them. Thus, only reactive neutral particles such as plasma-excited gas molecules and radicals are utilized. As a result, adding vapors to the source gas markedly enhances the sterilization effect. In particular, air with water and/or ethanol vapor and oxygen with ethanol vapor show more than 6-log reduction for Geobacillus stearothermophilus spores.

  17. Electron collection enhancement arising from neutral gas jets on a charged vehicle in the ionosphere

    NASA Technical Reports Server (NTRS)

    Gilchrist, Brian E.; Banks, Peter M.; Neubert, Torsten; Williamson, P. Roger; Myers, Neil B.

    1990-01-01

    Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated rocket payload in the ionosphere have been made during the cooperative high altitude rocket gun experiment (CHARGE) 2 using an electrically tethered mother/daughter payload system. The current collection enhancement was observed on a platform (daughter payload) located 100 to 400 m away from the main payload firing an energetic electron beam (mother payload). These results are interpreted in terms of an electrical discharge forming in close proximity to the daughter vehicle during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. The results are also compared with recent laboratory observations of hollow cathode plasma contactors operating in the 'ignited' mode.

  18. Discrete clouds of neutral gas between the galaxies M31 and M33.

    PubMed

    Wolfe, Spencer A; Pisano, D J; Lockman, Felix J; McGaugh, Stacy S; Shaya, Edward J

    2013-05-01

    Spiral galaxies must acquire gas to maintain their observed level of star formation beyond the next few billion years. A source of this material may be the gas that resides between galaxies, but our understanding of the state and distribution of this gas is incomplete. Radio observations of the Local Group of galaxies have revealed hydrogen gas extending from the disk of the galaxy M31 at least halfway to M33. This feature has been interpreted to be the neutral component of a condensing intergalactic filament, which would be able to fuel star formation in M31 and M33, but simulations suggest that such a feature could also result from an interaction between both galaxies within the past few billion years (ref. 5). Here we report radio observations showing that about 50 per cent of this gas is composed of clouds, with the rest distributed in an extended, diffuse component. The clouds have velocities comparable to those of M31 and M33, and have properties suggesting that they are unrelated to other Local Group objects. We conclude that the clouds are likely to be transient condensations of gas embedded in an intergalactic filament and are therefore a potential source of fuel for future star formation in M31 and M33.

  19. Gas-phase structures and thermochemistry of neutral histidine and its conjugated acid and base.

    PubMed

    Riffet, Vanessa; Bouchoux, Guy

    2013-04-28

    Extensive exploration of the conformational space of neutral, protonated and deprotonated histidine has been conducted at the G4MP2 level. Theoretical protonation and deprotonation thermochemistry as well as heats of formation of gaseous histidine and its ionized forms have been calculated at the G4 level considering either the most stable conformers or an equilibrium population of conformers at 298 K. These theoretical results were compared to evaluated experimental determinations. Recommended proton affinity and protonation entropy deduced from these comparisons are PA(His) = 980 kJ mol(-1) and ΔpS(His) ∼ 0 J mol(-1) K(-1), thus leading to a gas-phase basicity value of GB(His) = 947.5 kJ mol(-1). Similarly, gas phase acidity parameters are ΔacidH(o)(His) = 1373 kJ mol(-1), ΔacidS(His) ∼ 10 J mol(-1) K(-1) and ΔacidG(o)(His) = 1343 kJ mol(-1). Computed G4 heats of formation values are equal to -290, 265 and -451 kJ mol(-1) for gaseous neutral histidine and its protonated and deprotonated forms, respectively. The present computational data correct, and complete, previous thermochemical parameter estimates proposed for gas-phase histidine and its acido-basic properties.

  20. Tracing the neutral gas environments of young radio AGN with ASKAP

    NASA Astrophysics Data System (ADS)

    Allison, J. R.; Sadler, E. M.; Moss, V. A.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B. T.; McConnell, D.; Sault, R. J.; Whiting, M. T.

    2016-02-01

    At present neutral atomic hydrogen (H I) gas in galaxies at redshifts above {z ˜ 0.3} (the extent of 21 cm emission surveys in individual galaxies) and below {z ˜ 1.7} (where the Lyman-\\alpha line is not observable with ground-based telescopes) has remained largely unexplored. The advent of precursor telescopes to the Square Kilometre Array will allow us to conduct the first systematic radio-selected 21 cm absorption surveys for H I over these redshifts. While H I absorption is a tracer of the reservoir of cold neutral gas in galaxies available for star formation, it can also be used to reveal the extreme kinematics associated with jet-driven neutral outflows in radio-loud active galactic nuclei. Using the six-antenna Boolardy Engineering Test Array of the Australian Square Kilometre Array Pathfinder, we have demonstrated that in a single frequency tuning we can detect H I absorption over a broad range of redshifts between z = 0.4 and 1.0. As part of our early science and commissioning program, we are now carrying out a search for absorption towards a sample of the brightest GPS and CSS sources in the southern sky. These intrinsically compact sources present us with an opportunity to study the circumnuclear region of recently re-started radio galaxies, in some cases showing direct evidence of mechanical feedback through jet-driven outflows. With the sensitivity of the full ASKAP array we will be able to study the kinematics of atomic gas in a few thousand radio galaxies, testing models of radio jet feedback well beyond the nearby Universe.

  1. Bose Polarons in the Strongly Interacting Regime.

    PubMed

    Hu, Ming-Guang; Van de Graaff, Michael J; Kedar, Dhruv; Corson, John P; Cornell, Eric A; Jin, Deborah S

    2016-07-29

    When an impurity is immersed in a Bose-Einstein condensate, impurity-boson interactions are expected to dress the impurity into a quasiparticle, the Bose polaron. We superimpose an ultracold atomic gas of ^{87}Rb with a much lower density gas of fermionic ^{40}K impurities. Through the use of a Feshbach resonance and radio-frequency spectroscopy, we characterize the energy, spectral width, and lifetime of the resultant polaron on both the attractive and the repulsive branches in the strongly interacting regime. The width of the polaron in the attractive branch is narrow compared to its binding energy, even as the two-body scattering length diverges. PMID:27517776

  2. Bose Polarons in the Strongly Interacting Regime

    NASA Astrophysics Data System (ADS)

    Hu, Ming-Guang; Van de Graaff, Michael J.; Kedar, Dhruv; Corson, John P.; Cornell, Eric A.; Jin, Deborah S.

    2016-07-01

    When an impurity is immersed in a Bose-Einstein condensate, impurity-boson interactions are expected to dress the impurity into a quasiparticle, the Bose polaron. We superimpose an ultracold atomic gas of 87Rb with a much lower density gas of fermionic 40 impurities. Through the use of a Feshbach resonance and radio-frequency spectroscopy, we characterize the energy, spectral width, and lifetime of the resultant polaron on both the attractive and the repulsive branches in the strongly interacting regime. The width of the polaron in the attractive branch is narrow compared to its binding energy, even as the two-body scattering length diverges.

  3. Neutral gas outflows in nearby [U]LIRGs via optical NaD feature

    NASA Astrophysics Data System (ADS)

    Cazzoli, S.; Arribas, S.; Maiolino, R.; Colina, L.

    2016-05-01

    We studied the properties of the neutral gas in a sample of 38 local luminous and ultra luminous infrared galaxies ([U]LIRGs, 51 individual galaxies at z ≤ 0.09), which mainly covers the less explored LIRG luminosity range. This study is based on the analysis of the spatially integrated and spatially resolved spectra of the NaDλλ 5890, 5896 Å feature obtained with the integral field unit (IFU) of VIMOS at the Very Large Telescope. Analyzing spatially integrated spectra, we find that the contribution of the stars to the observed NaD equivalent width is small (<35%) for about half of the sample, and therefore this feature is dominated by inter stellar medium (ISM) absorption. After subtracting the stellar contribution, we find that the pure-ISM integrated spectra generally show blueshifted NaD profiles, indicating neutral gas outflow velocities, V, in the range 65-260 km s-1. Excluding the galaxies with powerful AGNs, V shows a dependency with the star formation rate (SFR) of the type V ∝ SFR0.15, which is in rather good agreement with previous results. The spatially resolved analysis could be performed for 40 galaxies, 22 of which have neutral gas velocity fields dominated by noncircular motions with signatures of cone-like winds. However, a large number of targets (11/40) show disk rotation signatures. Based on a simple model, we found that the wind masses are in the range 0.4-7.5 × 108 M⊙, reaching up to ~3% of the dynamical mass of the host. The mass rates are typically only ~0.2-0.4 times the corresponding global SFR indicating that, in general, the mass loss is too small to slow down the star formation significantly. In the majority of cases, the velocity of the outflowing gas is not sufficient to escape the host potential well and, therefore, most of the gas rains back into the galaxy disk. On average V/vesc is higher in less massive galaxies, confirming that the galaxy mass has a primary role in shaping the recycling of gas and metals. The

  4. Upper-thermospheric observations and neutral-gas dynamics at high latitudes during solar maximum. Doctoral thesis

    SciTech Connect

    Tschan, C.R.

    1987-01-01

    The objective of this theses was to understand the neutral-gas dynamics in the high-latitude regions of the Earth's upper thermosphere. An understanding of the morphology of the neutral winds and the forces that drive or modify them. A unique 70-orbit December solstice data set was established, which included satellite neutral winds and other supporting data from Dynamics Explorer 2 (DE-2), with coverage of both polar caps during the same orbit. Analysis of these data led to the characterization of four basic high-latitude neutral-wind signature categories for each hemisphere under various interplanetary-magnetic-field (IMF) configurations. Furthermore, sunward neutral winds on the duskside of the polar cap, resulting from the mapping of the twin-cell ion convection onto the neutral gas through ion-neutral collisions, were well established in all cases. However, the dawnside sunward neutral winds were not as well established. The existence of a small region of dawnside neutral winds was noted in the winter northern hemisphere, but was usually absent in the summer southern hemisphere. Analysis of the individual neutral gas forces for solar-maximum December-solstice from the NCAR thermospheric general circulation model (TGCM), led to the realization that the polar-cap pressure gradient force in the winter northern hemisphere had a different orientation than in the summer southern hemisphere, resulting in the observed dawnside neutral-wind signatures. The variations in the orientation of the polar-cap-pressure gradient forces in opposite hemispheres were ascribed to temperature gradients, resulting from a superposition of solar EUV, Joule and cusp heating, as well as density variations.

  5. Temperature Variations in the Martian Upper Atmosphere from the MAVEN Neutral Gas and Ion Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Stone, Shane W.; Yelle, Roger; Mahaffy, Paul; Benna, Mehdi; Elrod, Meredith K.; Bougher, Stephen W.; MAVEN

    2016-10-01

    The MAVEN Neutral Gas and Ion Mass Spectrometer (NGIMS) measures composition and variability of neutral and ionic species in the Martian upper atmosphere, allowing us to calculate neutral temperatures from roughly 130 km to 300 km above the surface. Over the past two years at Mars, NGIMS has collected an extensive and useful data set that covers much of the Martian thermosphere and exosphere. We use new, improved algorithms for the most accurate determination of densities from the NGIMS data. We use the densities of inert species (specifically CO2, Ar, and N2) along with a hydrostatic equilibrium model to infer the temperature profile and its uncertainty. Uncertainties include the errors in the density measurements, unknown upper boundary conditions, and horizontal variations in the atmosphere. Our calculations reveal diurnal temperature variations of up to 90 K and maximum latitudinal temperature variations of 130 K. These fluctuations in temperature in the upper atmosphere are surprising because they are significantly larger than those predicted by the latest 3D general circulation models for Mars.

  6. Estimating dry deposition and gas/particle partition coefficients of neutral poly-/perfluoroalkyl substances in northern German coast.

    PubMed

    Wang, Zhen; Xie, Zhiyong; Möller, Axel; Mi, Wenying; Wolschke, Hendrik; Ebinghaus, Ralf

    2015-07-01

    Dry deposition fluxes of 12 neutral poly-/perfluoroalkyl substances (PFASs) were estimated at Büsum located in northern German coast, and their gas/particle partition coefficients were predicted by employing the polyparameter linear free energy relationships (PP-LFERs). The gas deposition flux, particle deposition flux and total (gas + particle) flux of the 12 PFASs during sampling periods were 1088 ± 611, 189 ± 75 and 1277 ± 627 pg/(m(2) d), respectively. The gas deposition of PFASs played a key role during deposition to marine ecosystem. Sensitivity analysis showed that wind speed was the most sensitive parameter for gas deposition fluxes. Good agreements (within 1 log unit) were observed between the measured gas/particle partitioning data of PFASs and the predicted partition coefficients using PP-LFERs, indicating the model can reliably predict the gas/particle partitioning behaviors of atmospheric neutral PFASs.

  7. Cytosine neutral molecules and cation-radicals in the gas-phase

    NASA Astrophysics Data System (ADS)

    Wolken, Jill K.; Yao, Chunxiang; Turecek, Frantisek; Polce, Michael J.; Wesdemiotis, Chrys

    2007-11-01

    Gas-phase cytosine molecules and cation-radicals represent a complex system of several nearly isoenergetic tautomers within each group. Computational methods differ in ordering the relative enthalpies of neutral cytosine tautomers. At our highest level of theory, CCSD(T)/aug-cc-pVTZ calculations find an enol form, anti-2-hydroxy-4-aminopyrimidine (2), to be the most stable neutral tautomer in the gas-phase, followed by its rotamer, syn-2-hydroxy-4-aminopyrimidine (3), the canonical oxo-form, 4-amino-1,2-dihydropyrimidin-2(1H)-one (1), imino-forms, 2-oxo-4-iminodihydro(1H,3H)pyrimidine (4 and 5), and another oxo-form, 4-amino-dihydropyrimidin-2(3H)-one (6). Other tautomers, such as anti-anti, syn-syn and syn-anti-2-hydroxy-4-iminodihydro(3H,4H)pyrimidines (7-9), are less stable. The adiabatic ionization energies of the major cytosine tautomers have been calculated to be 8.71, 8.64, 8.62, 8.58, 8.64, and 8.31 eV for 1, 2, 3, 4, 5, and 6, respectively. Cytosine cation-radicals show very close relative energies that increase in the order of 6+ (most stable) <2+ [approximate] 3+ < 4+ [approximate] 7+ [approximate] 1+ < 5+. In addition, distonic ions having radical centers at C-5 (10+) and C-6 (11+ are found as low-energy isomers of 1+-7+. Metastable cytosine cation-radicals undergo ring-cleavage dissociations by eliminations of CO (major) and HNCO (minor). The energetics of these and other higher-energy dissociations, including the pertinent transition states, have been established by high-level ab initio and density functional theory calculations and plausible mechanisms have been proposed. Collisional neutralization of cytosine cation-radicals with trimethylamine and dimethyldisulfide as electron donors forms stable molecules that are detected as cation-radicals following collisional reionization. The dissociations observed upon neutralization-reionization mainly include ring-cleavages followed by loss of NCO, HNCO, and formation of C2H3N, C2H2N, and CO neutral

  8. Properties of clusters in the gas phase. V - Complexes of neutral molecules onto negative ions

    NASA Technical Reports Server (NTRS)

    Keesee, R. G.; Lee, N.; Castleman, A. W., Jr.

    1980-01-01

    Ion-molecules association reactions of the form A(-)(B)n-1 + B = A(-)(B)n were studied over a range of temperatures in the gas phase using high pressure mass spectrometry. Enthalpy and entropy changes were determined for the stepwise clustering reactions of (1) sulfur dioxide onto Cl(-), I(-), and NO2(-) with n ranging from one to three or four, and onto SO2(-) and SO3(-) with n equal to one; and (2) carbon dioxide onto Cl(-), I(-), NO2(-), CO3(-), and SO3(-) with n equal to one. From these data and earlier hydration results, the order of the magnitude of the enthalpy changes on the association of the first neutral for a series of negative ions was found to parallel the gas-phase basicity of those anions.

  9. Using IBEX data to constrain the heliosphere's large-scale structure: interstellar neutral gas and the Warm Breeze

    NASA Astrophysics Data System (ADS)

    Bzowski, Maciej; McComas, David; Galli, Andre; Kucharek, Harald; Wurz, Peter; Sokol, Justyna M.; Schwadron, Nathan; Heirtzler, David M.; Kubiak, M. Marzena A.; Möbius, Eberhard; Fuselier, Stephen; Swaczyna, Paweł; Leonard, Trevor; Park, Jeewoo

    2016-07-01

    The large-scale structure of the heliosphere is governed by the interaction of the partly ionized, magnetized interstellar gas and the magnetized, fully ionized solar wind, structured in heliolatitude. Determining factors of this interaction are the density and flow velocity of interstellar gas relative to the Sun, the Mach number of this flow and the strength and inclination of the interstellar magnetic field to the flow vector at the interstellar side, and the magnitude of dynamic pressure of solar wind and the strength of its embedded magnetic field at the solar side. As a result of charge exchange interactions operating in the boundary region between the heliosphere and interstellar matter, a new population of neutral atoms is created, in addition to the population of unperturbed interstellar neutral gas. Both of these populations penetrate deep inside the heliosphere, where they can be sampled by the first space probe dedicated to observations of the heliosphere and its immediate surroundings by means of neutral atoms: the Interstellar Boundary Explorer (IBEX). Due to distortion of the heliosphere from axial symmetry, the secondary population of interstellar neutrals, created via charge exchange between the plasma flowing past the heliopause and the unperturbed pristine neutral interstellar gas, appears to be coming from a different direction than the unperturbed interstellar neutral flow. These two directions should be coplanar with the plane defined by the local interstellar magnetic field and the flow direction of the unperturbed gas. IBEX provides an unprecedented opportunity to study and interpret these relations. The IBEX science team have recently accomplished important milestones in researching the primary and secondary populations of interstellar gas and their relation to the local interstellar magnetic fields. First, the temperature and velocity vector of the inflowing interstellar neutral gas has been determined with unprecedented robustness based

  10. Developing QSPR model of gas/particle partition coefficients of neutral poly-/perfluoroalkyl substances

    NASA Astrophysics Data System (ADS)

    Yuan, Quan; Ma, Guangcai; Xu, Ting; Serge, Bakire; Yu, Haiying; Chen, Jianrong; Lin, Hongjun

    2016-10-01

    Poly-/perfluoroalkyl substances (PFASs) are a class of synthetic fluorinated organic substances that raise increasing concern because of their environmental persistence, bioaccumulation and widespread presence in various environment media and organisms. PFASs can be released into the atmosphere through both direct and indirect sources, and the gas/particle partition coefficient (KP) is an important parameter that helps us to understand their atmospheric behavior. In this study, we developed a temperature-dependent predictive model for log KP of PFASs and analyzed the molecular mechanism that governs their partitioning equilibrium between gas phase and particle phase. All theoretical computation was carried out at B3LYP/6-31G (d, p) level based on neutral molecular structures by Gaussian 09 program package. The regression model has a good statistical performance and robustness. The application domain has also been defined according to OECD guidance. The mechanism analysis shows that electrostatic interaction and dispersion interaction play the most important role in the partitioning equilibrium. The developed model can be used to predict log KP values of neutral fluorotelomer alcohols and perfluor sulfonamides/sulfonamidoethanols with different substitutions at nitrogen atoms, providing basic data for their ecological risk assessment.

  11. Observing the Interstellar Neutral He Gas Flow with a Variable IBEX Pointing Strategy

    NASA Astrophysics Data System (ADS)

    Leonard, T.; Moebius, E.; Bzowski, M.; Fuselier, S. A.; Heirtzler, D.; Kubiak, M. A.; Kucharek, H.; Lee, M. A.; McComas, D. J.; Schwadron, N.; Wurz, P.

    2015-12-01

    The Interstellar Neutral (ISN) gas flow can be observed at Earth's orbit due to the motion of the solar system relative to the surrounding interstellar gas. Since He is minimally influenced by ionization and charge exchange, the ISN He flow provides a sample of the pristine interstellar environment. The Interstellar Boundary Explorer (IBEX) has observed the ISN gas flow over the past 7 years from a highly elliptical orbit around the Earth. IBEX is a Sun-pointing spinning spacecraft with energetic neutral atom (ENA) detectors observing perpendicular to the spacecraft spin axis. Due to the Earth's orbital motion around the Sun, it is necessary for IBEX to perform spin axis pointing maneuvers every few days to maintain a sunward pointed spin axis. The IBEX operations team has successfully pointed the spin axis in a variety of latitude orientations during the mission, including in the ecliptic during the 2012 and 2013 seasons, about 5 degrees below the ecliptic during the 2014 season, and recently about 5 degrees above the ecliptic during the 2015 season, as well as optimizing observations with the spin axis pointed along the Earth-Sun line. These observations include a growing number of measurements near the perihelion of the interstellar atom trajectories, which allow for an improved determination of the ISN He bulk flow longitude at Earth orbit. Combining these bulk flow measurements with an analytical model (Lee et al. 2012 ApJS, 198, 10) based upon orbital mechanics improves the knowledge of the narrow ISN parameter tube, obtained with IBEX, which couples the interstellar inflow longitude, latitude, speed, and temperature.

  12. Laser neutralization

    SciTech Connect

    Peterson, O.G.

    1986-06-17

    Laser photodetachment of the excess electron to neutralize relativistic ions offers many advantages over the more conventional collisional methods using gases or thin foils as the neutralization agents. Probably the two most important advantages of laser photodetachment are the generation of a compact and low divergence beam, and the production of intense neutral beams at very high efficiency (approximately 90%). The high intensities or high current densities of the neutral beam result from the fixed maximum divergence that can be added to the beam by photodetachment of the charge using laser intensity of fixed wavelength and incident angle. The high neutralization efficiency is possible because there is no theoretical maximum to the neutralization efficiency, although higher efficiencies require higher laser powers and, therefore, costs. Additional advantages include focusability of the laser light onto the ion beam to maximize its efficacy. There certainly is no residual gas left in the particle beam path as is typical with gas neutralizers. The photodetachment process leaves the neutral atoms in the ground state so there is no excited state fluorescence to interfere with the subsequent beam sensing. Finally, since the beams to be neutralized are very high powered, for a large range of neutralization efficiencies the neutral beam can be increased more by increasing the power to the laser neutralizer than by adding an equal amount of power to the primary accelerator. 26 figs.

  13. Far-Ir Spectroscopy of Neutral Gas Phase Peptides: Signatures from Combined Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Mahé, Jérôme; Gaigeot, Marie-Pierre; Bakker, Daniël; Jaeqx, Sander; Rijs, Anouk

    2016-06-01

    Within the past two decades, action vibrational spectroscopy has become an almost routine experimental method to probe the structures of molecules and clusters in the gas phase (neutral and ions). Such experiments are mainly performed in the 1000-4000 wn fingerprint regions. Though successful in many respects, these spectral domains can be however restrictive in the information provided, and sometimes reach limitations for unravelling structures without ambiguity. In a collaborative work with the group of Dr A.M. Rijs (FELIX laboratory, Radbout University, The Netherlands) we have launched a new strategy where the far-IR/Tera-Hertz domain (100-800 wn domain) is experimentally probed for neutral gas phase molecules. Our group in Paris apply finite temperature DFT-based molecular dynamics (DFT-MD) simulations in order to unravel the complex signatures arising in the far-IR domain, and provide an unambiguous assignment both of the structural conformation of the gas phase molecules (taking into account the experimental conditions) and an understanding of the spectral signatures/fingerprints. We will discuss our experimental and theoretical investigations on two neutral peptides in the 100-800 wn far-IR spectral domain, i.e. Z-Ala6 and PheGly dipeptide, that represent two systems which definitive conformational assignment was not possible without the far IR signatures. We will also present our very recent results on the Phe-X peptide series, where X stands for Gly, Ala, Pro, Val, Ser, Cys, combining experiments and DFT-MD simulations, providing a detailed understanding of the vibrational fingerprints in the far-IR domain. In all exemples, we will show how DFT-MD simulations is the proper theoretical tool to account for vibrational anharmonicities and mode couplings, of prime importance in the far-IR domain. References : J. Mahé, S. Jaeqx, A.M. Rijs, M.P. Gaigeot, Phys. Chem. Chem. Phys., 17 :25905 (2015) S. Jaeqx, J. Oomens, A. Cimas, M.P. Gaigeot, A.M. Rijs, Angew

  14. Effects of neutral gas release on current collection during the CHARGE-2 rocket experiment

    NASA Technical Reports Server (NTRS)

    Gilchrist, B. E.; Banks, P. M.; Neubert, T.; Williamson, P. R.; Myers, Neil B.; Raitt, W. John; Sasaki, S.

    1990-01-01

    Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged rocket payload in the ionosphere are reported. These observations were made during the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother/daughter payload system. The current collection enhancement was observed at the daughter payload located 100 to 400 m away from the mother which was firing an energetic electron beam. The authors interpret these results in terms of an electrical discharge forming in close proximity to the daughter during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. These results can also be compared with recent laboratory observations of hollow cathode plasma contactors operating in the ignited mode. Experimental observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated daughter payload in the nighttime ionosphere were made. These observations were derived from the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother-daughter payload system. The rocket flew from White Sands Missile Range (WSMR) in December, 1985. The rocket achieved an altitude of 261 km and carried a 1 keV electron beam emitting up to 48 mA of current (Myers, et al., 1989a). The mother payload, carried the electron beam source, while the daughter acted as a remote current collection and observation platform and reached a distance of 426 m away from the main payload. Gas emissions at the daughter were due to periodic thruster jet firings to maintain separation velocity between the two payloads.

  15. Neutral gas in Lyman-alpha emitting galaxies Haro 11 and ESO 338-IG04 measured through sodium absorption

    NASA Astrophysics Data System (ADS)

    Sandberg, A.; Östlin, G.; Hayes, M.; Fathi, K.; Schaerer, D.; Mas-Hesse, J. M.; Rivera-Thorsen, T.

    2013-04-01

    Context. The Lyman alpha emission line of neutral hydrogen is an important tool for finding galaxies at high redshift, thus for probing the structure of the early universe. However, the resonance nature of the line and its sensitivity to dust and neutral gas is still not fully understood. Aims: We present measurements of the velocity, covering fraction and optical depth of neutral gas in front of two well-known, local blue compact galaxies that show Lyman alpha in emission: ESO 338-IG 04 and Haro 11. We thus observationally test the hypothesis that Lyman alpha can escape through neutral gas by being Doppler shifted out of resonance. Methods: We present integral field spectroscopy, obtained with the GIRAFFE/Argus spectrograph at VLT/FLAMES in Paranal, Chile. The excellent wavelength resolution allowed us to accurately measure the velocity of the ionized and neutral gas through the Hα emission and Na D absorption, which trace the ionized medium and cold interstellar gas, respectively. We also present independent measurements from the VLT/X-shooter spectrograph that confirm our results. Results: For ESO 338-IG04 we measure no significant shift of neutral gas: the best fit velocity offset is - 15 ± 16 km s-1. For Haro 11, we see an outflow from knot B at 44 ± 13 km s-1, and infalling gas towards knot C with 32 ± 12 km s-1. Based on the relative strength of the Na D absorption lines, we estimate low covering fractions of neutral gas (down to 10%) in all three cases. Conclusions: The Na D absorption most likely occurs in dense clumps with higher column densities than the medium in which the bulk of the Ly α scattering takes place. Still, we find no strong correlation between outflowing neutral gas and strong Ly α emission. The Ly α photons from these two galaxies are therefore likely to be escaping due to a low column density and/or covering fraction. Based on observations made with ESO Telescopes at the Paranal Observatory under program IDs 083.B-0470 and 60.A

  16. Emission and afterglow properties of an expanding RF plasma with nonuniform neutral gas density

    NASA Astrophysics Data System (ADS)

    Chaplin, Vernon H.; Bellan, Paul M.

    2016-08-01

    We describe some notable aspects of the light emission and afterglow properties in pulsed, high-density ( 1018-1020 m-3 ) argon inductively coupled discharges initiated following fast gas injection. The plasma was created in a long, narrow discharge tube and then expanded downstream of the radiofrequency (RF) antenna into a large chamber. Fast camera images of the expanding plasma revealed a multi-phase time-dependent emission pattern that did not follow the ion density distribution. Dramatic differences in visible brightness were observed between discharges with and without an externally applied magnetic field. These phenomena were studied by tracking excited state populations using passive emission spectroscopy and are discussed in terms of the distinction between ionizing and recombining phase plasmas. Additionally, a method is presented for inferring the unknown neutral gas pressure in the discharge tube from the time-dependent visible and infrared emission measured by a simple photodiode placed near the antenna. In magnetized discharges created with fast gas injection, the downstream ion density rose by Δni˜1018 m-3 in the first ˜100 μs after the RF power was turned off. The conditions conducive to this afterglow density rise are investigated in detail, and the effect is tentatively attributed to pooling ionization.

  17. Prediction of a neutral noble gas compound in the triplet state.

    PubMed

    Manna, Debashree; Ghosh, Ayan; Ghanty, Tapan K

    2015-05-26

    Discovery of the HArF molecule associated with H-Ar covalent bonding [Nature, 2000, 406, 874-876] has revolutionized the field of noble gas chemistry. In general, this class of noble gas compound involving conventional chemical bonds exists as closed-shell species in a singlet electronic state. For the first time, in a bid to predict neutral noble gas chemical compounds in their triplet electronic state, we have carried out a systematic investigation of xenon inserted FN and FP species by using quantum chemical calculations with density functional theory and various post-Hartree-Fock-based correlated methods, including the multireference configuration interaction technique. The FXeP and FXeN species are predicted to be stable by all the computational methods employed in the present work, such as density functional theory (DFT), second-order Møller-Plesset perturbation theory (MP2), coupled-cluster theory (CCSD(T)), and multireference configuration interaction (MRCI). For the purpose of comparison we have also included the Kr-inserted compounds of FN and FP species. Geometrical parameters, dissociation energies, transition-state barrier heights, atomic charge distributions, vibrational frequency data, and atoms-in-molecules properties clearly indicate that it is possible to experimentally realize the most stable state of FXeP and FXeN molecules, which is triplet in nature, through the matrix isolation technique under cryogenic conditions. PMID:25891838

  18. Spin Drag in Noncondensed Bose Gases

    SciTech Connect

    Duine, R. A.; Stoof, H. T. C.

    2009-10-23

    We show how time-dependent magnetic fields lead to spin motive forces and spin drag in a spinor Bose gas. We propose to observe these effects in a toroidal trap and analyze this particular proposal in some detail. In the linear-response regime we define a transport coefficient that is analogous to the usual drag resistivity in electron bilayer systems. Because of Bose enhancement of atom-atom scattering, this coefficient strongly increases as temperature is lowered. We also investigate the effects of heating.

  19. Spatial distribution of interstellar dust in the Sun's vicinity. Comparison with neutral sodium-bearing gas

    NASA Astrophysics Data System (ADS)

    Vergely, J.-L.; Valette, B.; Lallement, R.; Raimond, S.

    2010-07-01

    Aims: 3D tomography of the interstellar dust and gas may be useful in many respects, from the physical and chemical evolution of the interstellar medium itself to foreground decontamination of the cosmic microwave background, or various studies of the environments of specific objects. However, while spectral data cubes of the galactic emission become increasingly precise, the information on the distance to the emitting regions has not progressed as well and relies essentially on the galactic rotation curve. Our goal here is to bring more precise information on the distance to nearby interstellar dust and gas clouds within 250 pc. Methods: We apply the best available calibration methods to a carefully screened set of stellar Strömgren photometry data for targets possessing a Hipparcos parallax and spectral type classification. We combine the derived interstellar extinctions and the parallax distances for about 6000 stars to build a 3D tomography of the local dust. We use an inversion method based on a regularized Bayesian approach and a least squares criterion, optimized for this specific data set. We apply the same inversion technique to a totally independent set of neutral sodium absorption data available for about 1700 target stars. Results: We obtain 3D maps of the opacity and the distance to the main dust-bearing clouds within 250 pc and identify in those maps well-known dark clouds and high galactic more diffuse entities. We calculate the integrated extinction between the Sun and the cube boundary and compare this with the total galactic extinction derived from infrared 2D maps. The two quantities reach similar values at high latitudes, as expected if the local dust content is satisfyingly reproduced and the dust is closer than 250 pc. Those maps show a larger high latitude dust opacity in the North compared to the South, reinforcing earlier evidences. Interestingly the gas maps do not show the same asymmetry, suggesting a polar asymmetry of the dust to gas

  20. Effect of neutral gas heating on the wave magnetic fields of a low pressure 13.56 MHz planar coil inductively coupled argon discharge

    SciTech Connect

    Jayapalan, Kanesh K. Chin, Oi-Hoong

    2014-04-15

    The axial and radial magnetic field profiles in a 13.56 MHz (radio frequency) laboratory 6 turn planar coil inductively coupled plasma reactor are simulated with the consideration of the effect of neutral gas heating. Spatially resolved electron densities, electron temperatures, and neutral gas temperatures were obtained for simulation using empirically fitted electron density and electron temperature and heuristically determined neutral gas temperature. Comparison between simulated results and measured fields indicates that neutral gas heating plays an important role in determining the skin depth of the magnetic fields.

  1. Motion of a Distinguishable Impurity in the Bose Gas: Arrested Expansion Without a Lattice and Impurity Snaking

    NASA Astrophysics Data System (ADS)

    Robinson, Neil J.; Caux, Jean-Sébastien; Konik, Robert M.

    2016-04-01

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. When the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton's cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.

  2. Motion of a distinguishable Impurity in the Bose gas: Arrested expansion without a lattice and impurity snaking

    DOE PAGES

    Neil J. Robinson; Caux, Jean -Sebastien; Konik, Robert M.

    2016-04-07

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. In conclusion, when the impurity is injected with a finite center-of-mass momentum,more » the impurity moves through the background gas in a snaking manner, arising from a quantum Newton’s cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.« less

  3. Motion of a Distinguishable Impurity in the Bose Gas: Arrested Expansion Without a Lattice and Impurity Snaking.

    PubMed

    Robinson, Neil J; Caux, Jean-Sébastien; Konik, Robert M

    2016-04-01

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion-a period of quasistationary behavior. When the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton's cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas. PMID:27104716

  4. Infrared Action Spectroscopy of Low-Temperature Neutral Gas-Phase Molecules of Arbitrary Structure.

    PubMed

    Yatsyna, Vasyl; Bakker, Daniël J; Salén, Peter; Feifel, Raimund; Rijs, Anouk M; Zhaunerchyk, Vitali

    2016-09-01

    We demonstrate a technique for IR action spectroscopy that enables measuring IR spectra in a background-free fashion for low-temperature neutral gas-phase molecules of arbitrary structure. The method is exemplified experimentally for N-methylacetamide molecules in the mid-IR spectral range of 1000-1800  cm^{-1}, utilizing the free electron laser FELIX. The technique involves the resonant absorption of multiple mid-IR photons, which induces molecular dissociation. The dissociation products are probed with 10.49 eV vacuum ultraviolet photons and analyzed with a mass spectrometer. We also demonstrate the capability of this method to record, with unprecedented ease, mid-IR spectra for the molecular associates, such as clusters and oligomers, present in a molecular beam. In this way the mass-selected spectra of low-temperature gas-phase dimers and trimers of N-methylacetamide are measured in the full amide I-III range.

  5. Physical properties of neutral gas in M31 and the Galaxy

    NASA Technical Reports Server (NTRS)

    Braun, Robert; Walterbos, Rene A. M.

    1992-01-01

    The present study analyzes, in parallel with published data for the Galaxy, neutral hydrogen (H I) absorption and deduced emission detected along seven lines of sight through the disk of M31. It is shown that the brightness temperature of H I emission is coupled to the opacity of the gas. The Galactic relationship shows asymptotic trends at both large and small opacities. A simple yet effective physical model which accounts for this behavior consists of only two independent components: a high-opacity cool component of fixed mean temperature, and a low-opacity warm component of fixed mean brightness. A lower mean gas pressure by a factor of about 2 is argued to be the most plausible mechanism for accounting for a higher cool-component H I temperature in M31. Deduced volume filling factors of the Galactic H I are about 1 and 15 percent, respectively, for the cool and warm components, while for M31 they are 8 and 30 percent. The large ratio of surface to volume filling factors for both cool and warm H I suggests that these components are distributed predominantly as large sheet- or shell-like structures.

  6. Infrared Action Spectroscopy of Low-Temperature Neutral Gas-Phase Molecules of Arbitrary Structure.

    PubMed

    Yatsyna, Vasyl; Bakker, Daniël J; Salén, Peter; Feifel, Raimund; Rijs, Anouk M; Zhaunerchyk, Vitali

    2016-09-01

    We demonstrate a technique for IR action spectroscopy that enables measuring IR spectra in a background-free fashion for low-temperature neutral gas-phase molecules of arbitrary structure. The method is exemplified experimentally for N-methylacetamide molecules in the mid-IR spectral range of 1000-1800  cm^{-1}, utilizing the free electron laser FELIX. The technique involves the resonant absorption of multiple mid-IR photons, which induces molecular dissociation. The dissociation products are probed with 10.49 eV vacuum ultraviolet photons and analyzed with a mass spectrometer. We also demonstrate the capability of this method to record, with unprecedented ease, mid-IR spectra for the molecular associates, such as clusters and oligomers, present in a molecular beam. In this way the mass-selected spectra of low-temperature gas-phase dimers and trimers of N-methylacetamide are measured in the full amide I-III range. PMID:27661721

  7. Metal enrichment of the neutral gas of blue compact dwarf galaxies: the compelling case of Pox 36

    NASA Astrophysics Data System (ADS)

    Lebouteiller, V.; Kunth, D.; Thuan, T. X.; Désert, J. M.

    2009-02-01

    Context: Evidence has grown over the past few years that the neutral phase of blue compact dwarf (BCD) galaxies may be metal-deficient as compared to the ionized gas of their H ii regions. These results have strong implications for our understanding of the chemical evolution of galaxies, and it is essential to strengthen the method, as well as to find possible explanations. Aims: We present the analysis of the interstellar spectrum of Pox 36 with the Far Ultraviolet Spectroscopic Explorer (FUSE). Pox 36 was selected because of the relatively low foreground gas content that makes it possible to detect absorption-lines weak enough that unseen components should not be saturated. Methods: Interstellar lines of H i, N i, O i, Si ii, P ii, Ar i, and Fe ii are detected. Column densities are derived directly from the observed line profiles except for H i, whose lines are contaminated by stellar absorption, thus needing the stellar continuum to be removed. We used the TLUSTY models to remove the stellar continuum and isolate the interstellar component. The best fit indicates that the dominant stellar population is B0. The observed far-UV flux agrees with an equivalent number of ~300 B0 stars. The fit of the interstellar H i line gives a column density of 1020.3±0.4 cm-2. Chemical abundances were then computed from the column densities using the dominant ionization stage in the neutral gas. Our abundances are compared to those measured from emission-line spectra in the optical, probing the ionized gas of the H ii regions. Results: Our results suggest that the neutral gas of Pox 36 is metal-deficient by a factor ~7 as compared to the ionized gas, and they agree with a metallicity of ≈1/35 Z_⊙. Elemental depletion is not problematic because of the low dust content along the selected lines of sight. In contrast, the ionized gas shows a clear depletion pattern, with iron being strongly depleted. Conclusions: The abundance discontinuity between the neutral and ionized phases

  8. Condensate fluctuations of interacting Bose gases within a microcanonical ensemble

    SciTech Connect

    Wang Jianhui; He Jizhou; Ma Yongli

    2011-05-15

    Based on counting statistics and Bogoliubov theory, we present a recurrence relation for the microcanonical partition function for a weakly interacting Bose gas with a finite number of particles in a cubic box. According to this microcanonical partition function, we calculate numerically the distribution function, condensate fraction, and condensate fluctuations for a finite and isolated Bose-Einstein condensate. For ideal and weakly interacting Bose gases, we compare the condensate fluctuations with those in the canonical ensemble. The present approach yields an accurate account of the condensate fluctuations for temperatures close to the critical region. We emphasize that the interactions between excited atoms turn out to be important for moderate temperatures.

  9. Modelling the interaction between the plasma and the neutral gas in a pulsed glow discharge in nitrogen

    SciTech Connect

    Guiberteau, E.; Bonhomme, G.; Zoheir, C.

    1995-12-31

    We present here the first results obtained from the modelling of a pulsed glow discharge in nitrogen, taking into account the heat transfer to the neutral gas. The aim of modelling is to optimize the plasma process in a nitriding reactor. The iron sample to be nitrided forms the cathode of the glow discharge at low pressure (100 to 200 Pa). The reactor uses two disks of diameter 50 mm as electrodes with a 40 mm gap. It works in a pulsed regime (cycle period varies from 10 to 100 ms) with a discharge duration which can be varied from 0.5 to 10 ms. Experimental studies have been carried out using emission spectroscopy resolved in space (1 mm) and time (1 {mu}s), under various discharge and post-discharge durations. These studies have shown the important effect of energy transfer from the discharge to the neutral gas. In fact this transfer produces an expansion of the negative glow observed when the post-discharge duration is decreased. A realistic modelling should thus be performed bearing in mind that the neutral gas behaves not as a thermostat. Consequently the thermal and hydrodynamic evolution of the neutral gas must be considered in the whole modelling.

  10. PHYSICAL BASIS OF QUANTUM ELECTRONICS: Statistics of an ideal homogeneous Bose gas with a fixed number of particles

    NASA Astrophysics Data System (ADS)

    Alekseev, Vladimir A.

    2001-05-01

    The distribution function w0(n0) of the number n0 of particles is found for the condensate of an ideal gas of free bosons with a fixed total number N of particles. It is shown that above the critical temperature (T > Tc) this function has the usual form w0(n0) = (1 — eμ)eμn0, where μ is the chemical potential in temperature units. In a narrow vicinity of the critical temperature |T/Tc — 1| <= N-1/3, this distribution changes and at T < Tc acquires the form of a resonance. The width of the resonance depends on the shape of the volume occupied by the gas and it has exponential (but not the Gaussian) wings. As the temperature is lowered, the resonance maximum shifts to larger values of n0 and its width tends to zero, which corresponds to the suppression of fluctuations. For N → ∞, this change occurs abruptly. The distribution function of the number of particles in excited states for the systems with a fixed and a variable number of particles (when only a mean number of particles is fixed) prove to be identical and have the usual form.

  11. Dynamic properties of dilute Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Durfee, Dallin S.

    In this thesis, a new apparatus for the study of Bose- Einstein condensation is described, and the first two experiments performed with the new device are discussed. The new instrument was constructed for the creation of dilute gas sodium Bose-Einstein condensates, and features an optical quality quartz cell, a high-flux spin-flip Zeeman slower, a tightly confining magnetic trap, and a high-resolution imaging system. The theory, design, and construction of each component is discussed, including a detailed explanation of non-destructive dispersive imaging. Bose-Einstein condensation was first achieved in the new apparatus in January of this year. Bose condensates consisting of 10 to 25 million atoms can be produced in this apparatus at a rate of two condensates per minute. The first two experiments performed with the new instrument probed the dynamic properties of dilute Bose condensates, allowing comparisons to be made with long standing theories of weakly-interacting degenerate Bose fluids. The first experiment was the study of ``surface wave'' excitations of Bose condensates. Standing and rotating quadrupole and octopole excitations were driven with a novel scanned optical dipole potential, a new tool which allows us to generate arbitrary two-dimensional perturbations to the trapping potential which confines the atoms. The second experiment studied the transition from dissipationless to dissipative flow in a Bose condensate. This study, performed by ``stirring'' the condensate with a focused laser, provided the first experimental evidence for the existence of a critical velocity for dissipation in dilute gas Bose condensates. This experiment is discussed in the context of earlier studies of the critical velocity of superfluid liquid helium. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  12. A World of Bose Particles

    ERIC Educational Resources Information Center

    Sudarshan, E. C. G.

    1975-01-01

    Describes a four page paper written by S. Bose who helped found quantum statistics. The consequences of the paper to modern physics are presented. Contrasted are the scientific relationships of Einstein, Dirac, and Bose. (GH)

  13. The Neutral Gas Desorption and Breakdown on a Metal-Dielectric Junction Immersed in a Plasma

    NASA Technical Reports Server (NTRS)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale; Lyons, Valerie J. (Technical Monitor)

    2002-01-01

    New results are presented of an experimental study and theoretical analysis of arcing on metal-dielectric junctions immersed in a low-density plasma. Two samples of conventional solar arrays have been used to investigate the effects of arcing within a wide range of neutral gas pressures, ion currents, and electron number densities. All data (except video) were obtained in digital form that allowed us to study the correlation between external parameters (plasma density, additional capacitance, bias voltage, etc) and arc characteristics (arc rate, arc current pulse width and amplitude, gas species partial pressures, intensities of spectral lines, and so on). Arc sites were determined by employing a video-camera, and it is shown that the most probable sites for arc inception are trip le-junctions, even though some arcs were initiated in gaps between cells. The effect of surface conditioning (decrease of arc rate due to outgassing) was clearly demonstrated. Moreover, a considerable increase in arc rate due to absorption of molecules from atmospheric air has been confirmed. The analysis of optical spectra (240-800 nm) reveals intense narrow atomic lines (Ag, H) and wide molecular bands (OH, CH, SiH, SiN) that confirm a complicated mechanism of arc plasma generation. The rate of plasma contamination due to arcing was measured by employing a mass-spectrometer. These measurements provided quite reliable data for the development of a theoretical model of plasma contamination, In conclusion, the arc threshold was increased to above 350 V (from 190 V) by keeping a sample in vacuum (20 micronTorr) for seven days. The results obtained are important for the understanding of the arc inception mechanism, which is absolutely essential for progress toward the design of high voltage solar arrays for space applications.

  14. Mass spectrometric measurements of the neutral gas composition of the thermosphere and exosphere of Venus

    NASA Technical Reports Server (NTRS)

    Niemann, H. B.; Kasprzak, W. T.; Hedin, A. E.; Spencer, N. W.; Hunten, D. M.

    1980-01-01

    The neutral gas composition and density in the thermosphere of Venus is being measured with a quadrupole mass spectrometer on the Pioneer Venus orbiter. Data are obtained near periapsis once per day approximately 150-250 km above the surface. The principal gases in the thermosphere are CO2, CO, N2, O, N, and He. Atomic oxygen is the major constituent above 155 km on the dayside and also on the nightside up to 180 km when helium becomes the major constituent. The average values of CO2, CO, N2, O, and N remain nearly constant during day and night, but an abrupt change occurs across the terminator from a high dayside value to a low nightside value. The helium density varies in the opposite way, and a distinct bulge was observed at night near the morning terminator. The data have been used as the basis of an empirical model. Large orbit to orbit variations in densities were also observed on the nightside, suggesting perhaps strong turbulent motion in the atmosphere below. Kinetic temperatures inferred from scale heights are approximately 285 K on the dayside and 110 K at night. The average global temperature obtained from the model is 199 K.

  15. Neutrally Charged Gas/Liquid Interface by a Catanionic Langmuir Monolayer

    SciTech Connect

    Vaknin, David; Bu, Wei

    2010-07-23

    Surface-sensitive synchrotron X-ray scattering and spectroscopic experiments were performed to explore the characteristics of Langmuir monolayers of oppositely charged mixed amphiphiles. A premixed (molar 1:1 stearic acid/stearylamine) solution was spread as a monolayer at the gas/liquid interface on pure water and on mono- and divalent salt solutions, revealing that the negatively charged carboxyl groups and positively charged amine groups are miscible into one another and tend to bond together to form a nearly neutral surface. Similar control experiments on pure stearic acid (SA) and stearylamine (ST) were also conducted for comparison. Due to the strong bonding, hexagonal structures in small domains with acyl-chains normal to the liquid surface are formed at zero surface pressures, that is, at molecular areas much larger than those of the densely packed acyl chains. In-plane X-ray diffraction indicates that the catanionic surface is highly ordered and modifies the structure of the water surface and thus can serve as a model system for interactions of an amino acid template with solutes.

  16. A Tetrapositive Metal Ion in the Gas Phase: Thorium(IV) Coordinated by Neutral Tridentate Ligands

    SciTech Connect

    Gong, Yu; Hu, Han-Shi; Tian, Guoxin; Rao, Linfeng; Li, Jun; Gibson, John K.

    2013-07-01

    ESI of 1:1 mixtures of Th(ClO₄)₄ and ligand TMOGA in acetonitrile resulted in the observation of the TMOGA supported tetracation, Th(L)₃⁴⁺, in the gas phase. Three TMOGA ligands are necessary to stabilize the tetrapositive thorium ion; no Th(L)₂⁴⁺ or Th(L)₄⁴⁺ was observed. Theoretical calculations reveal that the Th(L)₃⁴⁺ complex possesses C₃ symmetry with the thorium center coordinated by nine oxygen atoms from three ligands, which forms a twisted TPP geometry. Actinide compounds with such a geometry feature a nine-coordinate chiral actinide center. The Th-L binding energy and bond orders of Th(L)n⁴⁺ decrease as the coordination number increases, consistent with the trend of concurrently increasing Th-O distances. The Th-O bonding is mainly electrostatic in nature, but the covalent interactions are not negligible. CID of the Th(L)₃⁴⁺ complex mainly resulted in charge reduction to form Th(L)₂(L-86)³⁺oss of neutral TMOGA was not observed. The protic ligand methanol stabilized only tri- and dications of ligated thorium. The intensity of the Th(L)₃⁴⁺ peak was reduced as the percentage of water increased in the Th(ClO₄)₄/TMOGA solution.

  17. Neutral Gas Temperature Estimates in an Inductively Coupled CF4 Plasma by Fitting Diatomic Emission Spectra

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Rao, M. V. V. S.; Sharma, Surendra P.; Meyyappan, M.

    2001-01-01

    This work examines the accuracy of plasma neutral temperature estimates by fitting the rotational band envelope of different diatomic species in emission. Experiments are performed in an inductively coupled CF4 plasma generated in a Gaseous Electronics Conference reference cell. Visible and ultraviolet emission spectra are collected at a power of 300 W (approximately 0.7 W/cc) and pressure of 30 mtorr. The emission bands of several molecules (CF, CN, C2, CO, and SiF) are fit simultaneously for rotational and vibrational temperatures and compared. Four different rotational temperatures are obtained: 1250 K for CF and CN, 1600 K for CO, 1800 K for C2, and 2300 K for SiF. The vibrational temperatures obtained vary from 1750-5950 K, with the higher vibrational temperatures generally corresponding to the lower rotational temperatures. These results suggest that the different species have achieved different degrees of equilibration between the rotational and vibrational modes and may not be equilibrated with the translational temperatures. The different temperatures are also related to the likelihood that the species are produced by ion bombardment of the surface, with etch products like SiF, CO, and C2 having higher temperatures than species expected to have formed in the gas phase.

  18. Estimating dry deposition and gas/particle partition coefficients of neutral poly-/perfluoroalkyl substances in northern German coast.

    PubMed

    Wang, Zhen; Xie, Zhiyong; Möller, Axel; Mi, Wenying; Wolschke, Hendrik; Ebinghaus, Ralf

    2015-07-01

    Dry deposition fluxes of 12 neutral poly-/perfluoroalkyl substances (PFASs) were estimated at Büsum located in northern German coast, and their gas/particle partition coefficients were predicted by employing the polyparameter linear free energy relationships (PP-LFERs). The gas deposition flux, particle deposition flux and total (gas + particle) flux of the 12 PFASs during sampling periods were 1088 ± 611, 189 ± 75 and 1277 ± 627 pg/(m(2) d), respectively. The gas deposition of PFASs played a key role during deposition to marine ecosystem. Sensitivity analysis showed that wind speed was the most sensitive parameter for gas deposition fluxes. Good agreements (within 1 log unit) were observed between the measured gas/particle partitioning data of PFASs and the predicted partition coefficients using PP-LFERs, indicating the model can reliably predict the gas/particle partitioning behaviors of atmospheric neutral PFASs. PMID:25818091

  19. Gaseous rust: thermochemistry of neutral and ionic iron oxides and hydroxides in the gas phase.

    PubMed

    Schröder, Detlef

    2008-12-18

    The experimental and theoretical thermochemistry of the gaseous neutral and ionic iron oxides and hydroxides FeO, FeOH, FeO(2), OFeOH, and Fe(OH)(2) and of the related cationic water complexes Fe(H(2)O)(+), (H(2)O)FeOH(+), and Fe(H(2)O)(2)(+) is analyzed comprehensively. A combination of data for the neutral species with those of the gaseous ions in conjunction with some additional measurements provides a refined and internally consistent compilation of thermochemical data for the neutral and ionic species. In terms of heats of formation at 0 K, the best estimates for the gaseous, mononuclear FeO(m)H(n)(-/0/+/2+) species with m = 1, 2 and n = 0-4 are Delta(f)H(FeO(-)) = (108 +/- 6) kJ/mol, Delta(f)H(FeO) = (252 +/- 6) kJ/mol, Delta(f)H(FeO(+)) = (1088 +/- 6) kJ/mol, Delta(f)H(FeOH) = (129 +/- 15) kJ/mol, Delta(f)H(FeOH(+)) = (870 +/- 15) kJ/mol, Delta(f)H(FeO(2)(-)) = (-161 +/- 13) kJ/mol, Delta(f)H(FeO(2)) = (67 +/- 12) kJ/mol, Delta(f)H(FeO(2)(+)) = (1062 +/- 25) kJ/mol, Delta(f)H(OFeOH) = (-84 +/- 17) kJ/mol, Delta(f)H(OFeOH(+)) = (852 +/- 23) kJ/mol, Delta(f)H(Fe(OH)(2)(-)) = -431 kJ/mol, Delta(f)H(Fe(OH)(2)) = (-322 +/- 2) kJ/mol, and Delta(f)H(Fe(OH)(2)(+)) = (561 +/- 10) kJ/mol for the iron oxides and hydroxides as well as Delta(f)H(Fe(H(2)O)(+)) = (809 +/- 5) kJ/mol, Delta(f)H((H(2)O)FeOH(+)) = 405 kJ/mol, and Delta(f)H(Fe(H(2)O)(2)(+)) = (406 +/- 6) kJ/mol for the cationic water complexes. In addition, charge-stripping data for several of several-iron-containing cations are re-evaluated due to changes in the calibration scheme which lead to Delta(f)H(FeO(2+)) = (2795 +/- 28) kJ/mol, Delta(f)H(FeOH(2+)) = (2447 +/- 30) kJ/mol, Delta(f)H(Fe(H(2)O)(2+)) = (2129 +/- 29) kJ/mol, Delta(f)H((H(2)O)FeOH(2+)) = 1864 kJ/mol, and Delta(f)H(Fe(H(2)O)(2)(2+)) = (1570 +/- 29) kJ/mol, respectively. The present compilation thus provides an almost complete picture of the redox chemistry of mononuclear iron oxides and hydroxides in the gas phase, which serves as a

  20. Four-fluid MHD simulations of the plasma and neutral gas environment of comet 67P/Churyumov-Gerasimenko near perihelion

    NASA Astrophysics Data System (ADS)

    Huang, Zhenguang; Tóth, Gábor; Gombosi, Tamas I.; Jia, Xianzhe; Rubin, Martin; Fougere, Nicolas; Tenishev, Valeriy; Combi, Michael R.; Bieler, Andre; Hansen, Kenneth C.; Shou, Yinsi; Altwegg, Kathrin

    2016-05-01

    The neutral and plasma environment is critical in understanding the interaction of the solar wind and comet 67P/Churyumov-Gerasimenko (CG), the target of the European Space Agency's Rosetta mission. To serve this need and support the Rosetta mission, we have developed a 3-D four-fluid model, which is based on BATS-R-US (Block-Adaptive Tree Solarwind Roe-type Upwind Scheme) within SWMF (Space Weather Modeling Framework) that solves the governing multifluid MHD equations and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates different mass loading processes, including photoionization and electron impact ionization, charge exchange, dissociative ion-electron recombination, and collisional interactions between different fluids. We simulated the plasma and neutral gas environment near perihelion in three different cases: an idealized comet with a spherical body and uniform neutral gas outflow, an idealized comet with a spherical body and illumination-driven neutral gas outflow, and comet CG with a realistic shape model and illumination-driven neutral gas outflow. We compared the results of the three cases and showed that the simulations with illumination-driven neutral gas outflow have magnetic reconnection, a magnetic pileup region and nucleus directed plasma flow inside the nightside reconnection region, which have not been reported in the literature.

  1. Blue-sky bifurcation of ion energies and the limits of neutral-gas sympathetic cooling of trapped ions

    PubMed Central

    Schowalter, Steven J.; Dunning, Alexander J.; Chen, Kuang; Puri, Prateek; Schneider, Christian; Hudson, Eric R.

    2016-01-01

    Sympathetic cooling of trapped ions through collisions with neutral buffer gases is critical to a variety of modern scientific fields, including fundamental chemistry, mass spectrometry, nuclear and particle physics, and atomic and molecular physics. Despite its widespread use over four decades, there remain open questions regarding its fundamental limitations. To probe these limits, here we examine the steady-state evolution of up to 10 barium ions immersed in a gas of three-million laser-cooled calcium atoms. We observe and explain the emergence of nonequilibrium behaviour as evidenced by bifurcations in the ion steady-state temperature, parameterized by ion number. We show that this behaviour leads to the limitations in creating and maintaining translationally cold samples of trapped ions using neutral-gas sympathetic cooling. These results may provide a route to studying non-equilibrium thermodynamics at the atomic level. PMID:27511602

  2. Blue-sky bifurcation of ion energies and the limits of neutral-gas sympathetic cooling of trapped ions

    NASA Astrophysics Data System (ADS)

    Schowalter, Steven J.; Dunning, Alexander J.; Chen, Kuang; Puri, Prateek; Schneider, Christian; Hudson, Eric R.

    2016-08-01

    Sympathetic cooling of trapped ions through collisions with neutral buffer gases is critical to a variety of modern scientific fields, including fundamental chemistry, mass spectrometry, nuclear and particle physics, and atomic and molecular physics. Despite its widespread use over four decades, there remain open questions regarding its fundamental limitations. To probe these limits, here we examine the steady-state evolution of up to 10 barium ions immersed in a gas of three-million laser-cooled calcium atoms. We observe and explain the emergence of nonequilibrium behaviour as evidenced by bifurcations in the ion steady-state temperature, parameterized by ion number. We show that this behaviour leads to the limitations in creating and maintaining translationally cold samples of trapped ions using neutral-gas sympathetic cooling. These results may provide a route to studying non-equilibrium thermodynamics at the atomic level.

  3. Flowing afterglow measurements of the density dependence of gas-phase ion-ion mutual neutralization reactions

    SciTech Connect

    Shuman, Nicholas S.; Viggiano, Albert A.; Johnsen, Rainer

    2013-05-28

    We have studied the dependence of several ion-ion mutual neutralization (MN) reactions on helium density in the range from 1.6 Multiplication-Sign 10{sup 16} to 1.5 Multiplication-Sign 10{sup 17} cm{sup -3} at 300 K, using the Variable Electron and Neutral Density Attachment Mass Spectrometry method. The rate coefficients of the reactions Ar{sup +}+ Br{sub 2}{sup -}, Ar{sup +}+ SF{sub 6}{sup -}, and Ar{sup +}+ C{sub 7}F{sub 14}{sup -} were found to be independent of gas density over the range studied, in disagreement with earlier observations that similar MN reactions are strongly enhanced at the same gas densities. The cause of the previous enhancement with density is traced to the use of 'orbital-motion-limit' theory to infer ion densities from the currents collected by ion-attracting Langmuir probes in a region where it is not applicable.

  4. Blue-sky bifurcation of ion energies and the limits of neutral-gas sympathetic cooling of trapped ions.

    PubMed

    Schowalter, Steven J; Dunning, Alexander J; Chen, Kuang; Puri, Prateek; Schneider, Christian; Hudson, Eric R

    2016-01-01

    Sympathetic cooling of trapped ions through collisions with neutral buffer gases is critical to a variety of modern scientific fields, including fundamental chemistry, mass spectrometry, nuclear and particle physics, and atomic and molecular physics. Despite its widespread use over four decades, there remain open questions regarding its fundamental limitations. To probe these limits, here we examine the steady-state evolution of up to 10 barium ions immersed in a gas of three-million laser-cooled calcium atoms. We observe and explain the emergence of nonequilibrium behaviour as evidenced by bifurcations in the ion steady-state temperature, parameterized by ion number. We show that this behaviour leads to the limitations in creating and maintaining translationally cold samples of trapped ions using neutral-gas sympathetic cooling. These results may provide a route to studying non-equilibrium thermodynamics at the atomic level. PMID:27511602

  5. The Survey for Ionization in Neutral Gas Galaxies. I. Description and Initial Results

    NASA Astrophysics Data System (ADS)

    Meurer, Gerhardt R.; Hanish, D. J.; Ferguson, H. C.; Knezek, P. M.; Kilborn, V. A.; Putman, M. E.; Smith, R. C.; Koribalski, B.; Meyer, M.; Oey, M. S.; Ryan-Weber, E. V.; Zwaan, M. A.; Heckman, T. M.; Kennicutt, R. C., Jr.; Lee, J. C.; Webster, R. L.; Bland-Hawthorn, J.; Dopita, M. A.; Freeman, K. C.; Doyle, M. T.; Drinkwater, M. J.; Staveley-Smith, L.; Werk, J.

    2006-07-01

    We introduce the Survey for Ionization in Neutral Gas Galaxies (SINGG), a census of star formation in H I-selected galaxies. The survey consists of Hα and R-band imaging of a sample of 468 galaxies selected from the H I Parkes All Sky Survey (HIPASS). The sample spans three decades in H I mass and is free of many of the biases that affect other star-forming galaxy samples. We present the criteria for sample selection, list the entire sample, discuss our observational techniques, and describe the data reduction and calibration methods. This paper focuses on 93 SINGG targets whose observations have been fully reduced and analyzed to date. The majority of these show a single emission line galaxy (ELG). We see multiple ELGs in 13 fields, with up to four ELGs in a single field. All of the targets in this sample are detected in Hα, indicating that dormant (non-star-forming) galaxies with MHI>~3×107 Msolar are very rare. A database of the measured global properties of the ELGs is presented. The ELG sample spans 4 orders of magnitude in luminosity (Hα and R band), and Hα surface brightness, nearly 3 orders of magnitude in R surface brightness and nearly 2 orders of magnitude in Hα equivalent width (EW). The surface brightness distribution of our sample is broader than that of the Sloan Digital Sky Survey (SDSS) spectroscopic sample, the EW distribution is broader than prism-selected samples, and the morphologies found include all common types of star-forming galaxies (e.g., irregular, spiral, blue compact dwarf, starbursts, merging and colliding systems, and even residual star formation in S0 and Sa spirals). Thus, SINGG presents a superior census of star formation in the local universe suitable for further studies ranging from the analysis of H II regions to determination of the local cosmic star formation rate density.

  6. Role of neutral gas in scrape-off layer of tokamak plasma in the presence of finite electron temperature and its gradient

    NASA Astrophysics Data System (ADS)

    Bisai, N.; Kaw, P. K.

    2016-09-01

    The role of neutral gas molecules in the Scrape-off Layer (SOL) region of tokamak plasma is important as it is expected to modify the plasma turbulence. Two-dimensional model has been used that consists of electron continuity, molecular ion continuity, quasi-neutrality, electron energy, and neutral molecular gas continuity equations in the presence of electron impact molecular ionizations and other non-ionizing collisions. The growth rate obtained from these equations has been presented using linear theory. It is observed that the growth rate increases with the neutral gas ionization coefficients. The nonlinear equations are solved numerically in the presence and absence of the neutral gas molecules. Radial profiles of plasma density, electron temperature, and electric field have been obtained. It is found that the neutral gas reduces electric fields. More significant reduction of the poloidal electric field has been found by the neutral gas. Time series obtained from the numerical data has been analyzed. A strong decrease in fluctuation of the plasma density, electron temperature, and potential has been found at the outer region the SOL plasma in the presence of the gas molecules.

  7. Spitzer 8μm Emission as a Tracer of Neutral Gas in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Wong, Tony H.; Xue, R.; Whitney, B.; Heitsch, F.; Hughes, A.; Bolatto, A. D.; Robitaille, T.; MAGMA Team

    2014-01-01

    We examine the utility of 8 micron PAH emission as a tracer of neutral gas in the LMC, by comparing the Spitzer SAGE imaging with lower resolution CO and HI imaging, pencil beam UV absorption sight lines, and radiative transfer modeling of simulated clouds. We discuss under what conditions the 8µm emission is sensitive primarily to the UV radiation field and under what conditions it can be used to trace column density.

  8. Gas-phase energies of actinide oxides -- an assessment of neutral and cationic monoxides and dioxides from thorium to curium

    SciTech Connect

    Marcalo, Joaquim; Gibson, John K.

    2009-08-10

    An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry.

  9. Gas-Phase Energetics of Actinide Oxides: An Assessment of Neutral and Cationic Monoxides and Dioxides from Thorium to Curium

    NASA Astrophysics Data System (ADS)

    Marçalo, Joaquim; Gibson, John K.

    2009-09-01

    An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry.

  10. Gas-phase energetics of actinide oxides: an assessment of neutral and cationic monoxides and dioxides from thorium to curium.

    PubMed

    Marçalo, Joaquim; Gibson, John K

    2009-11-12

    An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry. PMID:19725530

  11. Gas-phase energetics of actinide oxides: an assessment of neutral and cationic monoxides and dioxides from thorium to curium.

    PubMed

    Marçalo, Joaquim; Gibson, John K

    2009-11-12

    An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry.

  12. Freezing and Melting of 3D Complex Plasma Structures under Microgravity Conditions Driven by Neutral Gas Pressure Manipulation

    SciTech Connect

    Khrapak, S. A.; Klumov, B. A.; Huber, P.; Thomas, H. M.; Ivlev, A. V.; Morfill, G. E.; Molotkov, V. I.; Lipaev, A. M.; Naumkin, V. N.; Petrov, O. F.; Fortov, V. E.; Malentschenko, Yu.; Volkov, S.

    2011-05-20

    Freezing and melting of large three-dimensional complex plasmas under microgravity conditions is investigated. The neutral gas pressure is used as a control parameter to trigger the phase changes: Complex plasma freezes (melts) by decreasing (increasing) the pressure. The evolution of complex plasma structural properties upon pressure variation is studied. Theoretical estimates allow us to identify the main factors responsible for the observed behavior.

  13. Degenerate Bose gases with uniform loss

    NASA Astrophysics Data System (ADS)

    Grišins, Pjotrs; Rauer, Bernhard; Langen, Tim; Schmiedmayer, Jörg; Mazets, Igor E.

    2016-03-01

    We theoretically investigate a weakly interacting degenerate Bose gas coupled to an empty Markovian bath. We show that in the universal phononic limit the system evolves towards an asymptotic state where an emergent temperature is set by the quantum noise of the outcoupling process. For situations typically encountered in experiments, this mechanism leads to significant cooling. Such dissipative cooling supplements conventional evaporative cooling and dominates in settings where thermalization is highly suppressed, such as in a one-dimensional quasicondensate.

  14. New resonance-polariton Bose-quasiparticles enhances optical transmission into nanoholes in metal films

    NASA Astrophysics Data System (ADS)

    Minasyan, V. N.; Samoilov, V. N.

    2011-01-01

    We argue the existence of fundamental particles in nature, neutral Light-Particles with spin 1, and rest mass m=1.8ṡ10me, in addition to electrons, neutrons and protons. We call these particles Light Bosons because they create the electromagnetic field which represents Planck's gas of massless photons together with a gas of Light-Particles in the condensate. In this respect, the condensed Light-Particles, having no magnetic field, represent the constant electric field. In this context, we predict an existence of polariton-plasmon Bose-quasiparticles with effective masses ml≈10me and mr=0.5me, which are induced by interaction of the plasmon field and the resonance Frölich-Schafroth charged bosons with electromagnetic wave in metal. Also, we prove that the enhancement optical transmission into nanoholes in metal films and Surface Enhanced Raman Spectroscopy are provided by a new resonance-polariton Bose-quasiparticles but not model of surface plasmon-polariton. In this Letter, the quantization Fresnel's equations is presented which confirms that Light-Particles in the condensate are concentrated near on the wall of grooves in metallic grating and, in turn, represent as the constant electric field which provides the launching of the surface Frölich-Schafroth bosons on the surface metal holes.

  15. A simple drift-diffusion model for calculating the neutralization time of H- in xe gas for choppers placed in the LEBT

    SciTech Connect

    Tan, Cheng-Yan; /Fermilab

    2010-03-01

    The neutralization of H{sup -} beam with a gas like Xe is an important part of low energy beam transport (LEBT). It is well known that choppers which use an electric field when placed in the LEBT strongly affects the neutralization of H{sup -}. The question then naturally arises as to whether a magnetic chopper has a better neutralization time than an electric chopper. To answer this question, a simple 1-space, 1 time drift-diffusion model of H{sup -} beam in Xe gas has been used to calculate the neutralization times for the following scenarios: (a) a region initially cleared of Xe+ ions with an electric field but partially neutralized outside, (b) a region within and outside the chopper which is initially partially neutralized.

  16. Interstellar neutral flow characteristics, composition, and interaction with the heliosphere - neutral gas and pickup ion analysis from ongoing observations and perspectives for IMAP

    NASA Astrophysics Data System (ADS)

    Moebius, E.; Bzowski, M.; Drews, C.; Frisch, P. C.; Fuselier, S. A.; Galli, A.; Gloeckler, G.; Kubiak, M. A.; Kucharek, H.; Lee, M. A.; Leonard, T.; McComas, D. J.; Park, J.; Schwadron, N.; Swaczyna, P.; Sokol, J. M.; Wood, B. E.; Wurz, P.

    2015-12-01

    The Sun's motion relative to the surrounding interstellar medium leads to an interstellar neutral (ISN) wind through the heliosphere that is moderately depleted by ionization. This situation allows remote sensing of the ISN through resonant scattering of solar UV and in-situ sampling, first via pickup ions (PUI) and most recently with direct neutral atom imaging. PUI observations have revealed the gravitational focusing cone of interstellar He and Ne as well as the composition of high ionization potential elements. After the first direct ISN He observations with Ulysses GAS, the Interstellar Boundary Explorer (IBEX) observes with high collecting power the ISN flow trajectories very close to their perihelion in Earth's orbit for H, He, O, and Ne from December through March. Meanwhile, IBEX has recorded seven years of ISN observations, with changing solar activity and varying viewing strategies. These recurring and remarkably repeatable observations allow us to consolidate the derived physical parameters and some key compositional aspects of the interstellar medium. IBEX observations provide a very precise relation between ISN flow longitude and speed via the hyperbolic trajectory equation, but with larger uncertainties separately for longitude and speed. Recent concerted studies have led to a velocity vector that is consistent between IBEX and Ulysses, with a substantially higher temperature than found previously. The fact that the IBEX He and O ISN observations contain a substantial secondary neutral contribution adds complexity to the quantitative analysis of the physical interstellar medium parameters. However, their discovery also provides invaluable insight into the interstellar plasma interaction in the outer heliosheath, which is shaped strongly by the interstellar magnetic field. The longitude range of the IBEX observations limits the precision of the ISN velocity vector. The IBEX collection power and its sensitivity to the Earth's magnetosphere limit

  17. Bending and turbulent enhancement phenomena of neutral gas flow containing an atmospheric pressure plasma by applying external electric fields measured by schlieren optical method

    NASA Astrophysics Data System (ADS)

    Yamada, Hiromasa; Yamagishi, Yusuke; Sakakita, Hajime; Tsunoda, Syuichiro; Kasahara, Jiro; Fujiwara, Masanori; Kato, Susumu; Itagaki, Hirotomo; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Yutaka; Ikehara, Yuzuru; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki

    2016-01-01

    To understand the mechanism of turbulent enhancement phenomena of a neutral gas flow containing plasma ejected from the nozzle of plasma equipment, the schlieren optical method was performed to visualize the neutral gas behavior. It was confirmed that the turbulent starting point became closer to the nozzle exit, as the amplitude of discharge voltage (electric field) increased. To study the effect of electric field on turbulent enhancement, two sets of external electrodes were arranged in parallel, and the gas from the nozzle was allowed to flow between the upper and lower electrodes. It was found that the neutral gas flow was bent, and the bending angle increased as the amplitude of the external electric field increased. The results obtained using a simple model analysis roughly coincide with experimental data. These results indicate that momentum transport from drifted ions induced by the electric field to neutral particles is an important factor that enhances turbulence.

  18. Efimov correlations in strongly interacting Bose gases

    NASA Astrophysics Data System (ADS)

    Hofmann, Johannes; Barth, Marcus

    A series of recent hallmark experiments have demonstrated that Bose gases can be created in the strongly interacting unitary limit in the non-degenerate high-temperature regime. These systems display the three-body Efimov effect, which poses a theoretical challenge to compute observables including these relevant three-body correlations. In this talk, I shall present our results for the virial coefficients, the contact parameters, and the momentum distribution of a strongly interacting three-dimensional Bose gas obtained by means of a virial expansion up to third order in the fugacity, which takes into account three-body correlations exactly. Our results characterize the non-degenerate regime of the interacting Bose gas, where the thermal wavelength is smaller than the interparticle spacing but the scattering length may be arbitrarily large. In addition, we provide a calculation of the momentum distribution at unitarity, which displays a universal high-momentum tail with a log-periodic momentum dependence - a direct signature of Efimov physics. In particular, we provide a quantitative description of the momentum distribution at high momentum as measured by the JILA group [Makotyn et al., Nat. Phys. 10, 116 (2014)]. Our results allow the spectroscopy of Efimov states at unitarity.

  19. Coupled two-dimensional edge plasma and neutral gas modeling of tokamak scrape-off-layers

    SciTech Connect

    Maingi, R.

    1992-08-01

    The objective of this study is to devise a detailed description of the tokamak scrape-off-layer (SOL), which includes the best available models of both the plasma and neutral species and the strong coupling between the two in many SOL regimes. A good estimate of both particle flux and heat flux profiles at the limiter/divertor target plates is desired. Peak heat flux is one of the limiting factors in determining the survival probability of plasma-facing-components at high power levels. Plate particle flux affects the neutral flux to the pump, which determines the particle exhaust rate. A technique which couples a two-dimensional (2-D) plasma and a 2-D neutral transport code has been developed (coupled code technique), but this procedure requires large amounts of computer time. Relevant physics has been added to an existing two-neutral-species model which takes the SOL plasma/neutral coupling into account in a simple manner (molecular physics model), and this model is compared with the coupled code technique mentioned above. The molecular physics model is benchmarked against experimental data from a divertor tokamak (DIII-D), and a similar model (single-species model) is benchmarked against data from a pump-limiter tokamak (Tore Supra). The models are then used to examine two key issues: free-streaming-limits (ion energy conduction and momentum flux) and the effects of the non-orthogonal geometry of magnetic flux surfaces and target plates on edge plasma parameter profiles.

  20. Bose-Einstein condensation of chromium.

    PubMed

    Griesmaier, Axel; Werner, Jörg; Hensler, Sven; Stuhler, Jürgen; Pfau, Tilman

    2005-04-29

    We report on the generation of a Bose-Einstein condensate in a gas of chromium atoms, which have an exceptionally large magnetic dipole moment and therefore underlie anisotropic long-range interactions. The preparation of the chromium condensate requires novel cooling strategies that are adapted to its special electronic and magnetic properties. The final step to reach quantum degeneracy is forced evaporative cooling of 52Cr atoms within a crossed optical dipole trap. At a critical temperature of T(c) approximately 700 nK, we observe Bose-Einstein condensation by the appearance of a two-component velocity distribution. We are able to produce almost pure condensates with more than 50,000 condensed 52Cr atoms.

  1. Analytical approach to relaxation dynamics of condensed Bose gases

    SciTech Connect

    Escobedo, Miguel; Pezzotti, Federica; Valle, Manuel

    2011-04-15

    Research Highlights: > Time evolution of perturbations from equilibrium in a condensed Bose gas is studied. > Just below the critical temperature the perturbations vanish algebraically. > Anisotropic perturbations are unstable. > At very low temperature perturbations decay exponentially. - Abstract: The temporal evolution of a perturbation of the equilibrium distribution of a condensed Bose gas is investigated using the kinetic equation which describes collision between condensate and noncondensate atoms. The dynamics is studied in the low momentum limit where an analytical treatment is feasible. Explicit results are given for the behavior at large times in different temperature regimes.

  2. Noise thermometry with two weakly coupled Bose-Einstein condensates.

    PubMed

    Gati, Rudolf; Hemmerling, Börge; Fölling, Jonas; Albiez, Michael; Oberthaler, Markus K

    2006-04-01

    Here we report on the experimental investigation of thermally induced fluctuations of the relative phase between two Bose-Einstein condensates which are coupled via tunneling. The experimental control over the coupling strength and the temperature of the thermal background allows for the quantitative analysis of the phase fluctuations. Furthermore, we demonstrate the application of these measurements for thermometry in a regime where standard methods fail. With this we confirm that the heat capacity of an ideal Bose gas deviates from that of a classical gas as predicted by the third law of thermodynamics. PMID:16711972

  3. Gas-phase reactions of charged phenyl radicals with neutral biomolecules evaporated by laser-induced acoustic desorption.

    PubMed

    Petzold, Christopher J; Ramírez-Arizmendi, Luis E; Heidbrink, Jenny L; Pérez, James; Kenttämaa, Hilkka I

    2002-02-01

    A generally applicable method for the study of phenyl radicals' reactions with neutral biomolecules in the gas phase is demonstrated. Neutral biomolecules were evaporated into a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR) by means of laser-induced acoustic desorption (LIAD) and subsequently reacted with trapped charged phenyl radicals. The structural integrity of the evaporated alanylalanine molecules was verified by reaction with dichlorophosphenium ions. Examination of the reactions of charged phenyl radicals with alanylalanine and thymidine evaporated via LIAD revealed hydrogen atom abstraction for both alanylalanine and thymidine as well as an addition/elimination product for the reaction with thymidine. These reactions are consistent with the results obtained by others in solution. Further, a previously unstudied reaction of the nucleotide of thymine (T1) with charged phenyl radical was found to yield analogous products as the reaction with thymidine.

  4. A SEARCH FOR CO-EVOLVING ION AND NEUTRAL GAS SPECIES IN PRESTELLAR MOLECULAR CLOUD CORES

    SciTech Connect

    Tassis, Konstantinos; Hezareh, Talayeh; Willacy, Karen

    2012-11-20

    A comparison between the widths of ion and neutral molecule spectral lines has been recently used to estimate the strength of the magnetic field in turbulent star-forming regions. However, the ion (HCO{sup +}) and neutral (HCN) species used in such studies may not be necessarily co-evolving at every scale and density, and thus, may not trace the same regions. Here, we use coupled chemical/dynamical models of evolving prestellar molecular cloud cores including non-equilibrium chemistry, with and without magnetic fields, to study the spatial distribution of HCO{sup +} and HCN, which have been used in observations of spectral line width differences to date. In addition, we seek new ion-neutral pairs that are good candidates for such observations, because they have similar evolution and are approximately co-spatial in our models. We identify three such good candidate pairs: HCO{sup +}/NO, HCO{sup +}/CO, and NO{sup +}/NO.

  5. Effects of neutral gas releases on electron beam injection from electrically tethered spacecraft

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.

    1990-01-01

    The presence of high neutral densities at low altitudes and/or during thruster firings is known to modify the spacecraft potential during active electron beam injection. Two-dimensional (three velocity) particle simulations are used to investigate the ionization processes including the neutral density required, the modification of the spacecraft potential, beam profile and spatial distribution of the return current into the spacecraft. Three processes are identified: (1) beam-induced ionization, (2) vehicle-induced ionization, and (3) beam plasma discharge. Only in the first two cases does the beam propagate away with little distortion.

  6. Spin transport in coupled spinor Bose gases

    SciTech Connect

    McGuirk, J. M.

    2010-07-15

    We report direct measurements of spin transport in a trapped, partially condensed spinor Bose gas. Detailed analyses of spin flux in this out-of-equilibrium quantum gas are performed by monitoring the flow of atoms in different hyperfine spin states. The main mechanisms for motion in this system are exchange scattering and potential energy inhomogeneity, which lead to spin waves in the normal component and domain formation in the condensate. We find a large discrepancy in domain formation time scales with those predicted by potential-driven formation, indicating strong coupling of the condensate to the normal component spin wave.

  7. A detector to measure transverse profiles and energy of an H- beam using gas stripping and laser photo neutralization

    NASA Astrophysics Data System (ADS)

    Connolly, R.; Degen, C.; DeSanto, L.; Raparia, D.

    2012-02-01

    A detector has been developed at Brookhaven National Lab (BNL) [1] and installed in the exit beam line of the BNL H- linear accelerator (linac) to measure transverse beam profiles, average beam energy and beam-energy spread. These beam properties are found by deflecting beam electrons, produced by both gas stripping and laser neutralization, into a detector. An H- ion, with a first ionization potential of 0.756 eV, can be neutralized by collisions with background gas and by absorbing the energy of a photon of wavelength shorter than 1.64 m. Free electrons produced by both mechanisms are deflected out of the H- beam by a dipole magnet and into a chamber which measures electron charge vs. energy. Ion-beam profiles are measured by scanning a laser beam across the H- beam and measuring the laser-stripped electron charge vs. laser position. Beam energy is deduced by measuring either the laser-stripped or gas-stripped electron charge which passes through a retarding-voltage grid vs. the grid voltage. Since beam electrons have the same velocities as beam protons, the beam proton energy is the electron energy multiplied by mp/me=1836, [E=(γ-1)mc2].

  8. The Space Station neutral gas environment and the concomitant requirements for monitoring

    NASA Technical Reports Server (NTRS)

    Carignan, George

    1988-01-01

    At 340 km, for typical conditions, the neutral atmospheric density is several times 10E8/cc and is thus more abundant than the ionized component by several factors of 10. At that altitude, the principal series is atomic oxygen with 10 percent N2, and 1 percent He, and trace amounts of O2, H, N, NO, and Ar. The constituent densities are highly variable with local time, latitude, and geophysical indices. The physical interaction with surfaces at orbital velocity leads to large buildup of density on forward faces and great depletions in the wakes of objects. Chemical reactions lead to major modifications in constituent densities as in the case of the conversion of most colliding oxygen atoms to oxygen bearing molecules. The neutral environment about an orbiting body is thus a complex product of many variables even without a source of neutral contaminants. The addition of fluxes of gases emanating from the orbiting vehicle, as will be the case for the Space Station, with the associated physical and chemical interactions adds another level of complexity to the character of the environment and mandates a sophisticated measurement capability if the neutral environment is to be quantitatively characterized.

  9. Bose-Einstein Condensation

    SciTech Connect

    El-Sherbini, Th.M.

    2005-03-17

    This article gives a brief review of Bose-Einstein condensation. It is an exotic quantum phenomenon that was observed in dilute atomic gases for the first time in 1995. It exhibits a new state of matter in which a group of atoms behaves as a single particle. Experiments on this form of matter are relevant to many different areas of physics- from atomic clocks and quantum computing to super fluidity, superconductivity and quantum phase transition.

  10. Double C-H bond activation of hydrocarbons by a gas phase neutral oxide cluster: the importance of spin state.

    PubMed

    Wang, Zhe-Chen; Yin, Shi; Bernstein, Elliot R

    2013-03-21

    The neutral cluster V2O5 is generated and detected in the gas phase. Its reactivity toward butane is studied both experimentally and theoretically. Experimental results show clearly that neutral V2O5 can react with n-butane (C4H10) to generate V2O5H2, indicating double hydrogen atom transfer from C4H10 to V2O5 to produce C4H8. Further experimental evidence indicates that V2O5 is only partially reacted even at very high concentrations of C4H10. Density functional theory (DFT) studies show that the lowest energy triplet state of V2O5 is reactive toward C4H10, whereas the ground state singlet V2O5 is inert. Calculated results are in agreement with experimental findings, and a detailed reaction mechanism is provided. Reactions of V2O5H2 with several oxidants are also studied theoretically to find a path to regenerate V2O5. Neutral (3)V2O5 can also react with C2H6 to form V2O5H2 and C2H4, but only as a minor reaction channel; the major product is the adsorption product V2O5(C2H6). PMID:23441829

  11. Neutral-pion-decay gamma rays from the Galaxy and the interstellar gas content

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1973-01-01

    Knowledge of the total gamma-ray production rate per H atom from the decay of neutral pions produced in interstellar cosmic-ray interactions is essential for determining the possible amount of interstellar H2. This production rate is recalculated here using the latest accelerator data on neutral pion production in p-p interactions up to about 1500 GeV. A simple but accurate approximation used here resolves the past disagreement over the magnitude of this rate. An upper limit is obtained of (1.51 plus or minus 0.23) times 10 to the -25th power/sec, consistent with the observed upper limit of 1.6 times 10 to the -25th power/sec.

  12. Neutral gas temperature measurements of high-power-density fluorocarbon plasmas by fitting swan bands of C{sub 2} molecules

    SciTech Connect

    Bai Bo; Sawin, Herbert H.; Cruden, Brett A.

    2006-01-01

    The neutral gas temperature of fluorocarbon plasmas in a remote toroidal transformer-coupled source was measured to be greater than 5000 K, under the conditions of a power density greater than 15 W/cm{sup 3} and pressures above 2 torr. The rovibrational bands of C{sub 2} molecules (swan bands, d {sup 3}{pi}{sub g}{yields}a {sup 3}{pi}{sub u}) were fitted to obtain the rotational temperature that was assumed to equal the translational temperature. This rotational-translational temperature equilibrium assumption was supported by the comparison with the rotational temperature of second positive system of added N{sub 2}. For the same gas mixture, the neutral gas temperature is nearly a linear function of plasma power, since the conduction to chamber wall and convection are the major energy-loss processes, and they are both proportional to neutral gas temperature. The dependence of the neutral gas temperature on O{sub 2} flow rate and pressure can be well represented through the power dependence, under the condition of constant current operation. An Arrhenius type of dependence between the etching rate of oxide film and the neutral gas temperature is observed, maybe indicating the importance of the pyrolytic dissociation in the plasma formation process when the temperature is above 5000 K.

  13. The regulation of the cold neutral gas mass fraction by turbulent motions

    NASA Astrophysics Data System (ADS)

    Gazol, A.; Villagran, M. A.

    2016-10-01

    We present results from hydrodynamic simulations with forced turbulence at a scale of 50 pc and cooling functions adapted to describe the thermal conditions at four different Galactocentric distances: 8.5, 11, 15, and 18 kpc. These experiments are aimed to study the effects of varying the turbulent velocity vrms on the cold gas mass fraction. With realistic vrms we obtain average one-dimensional cold gas mass fractions which are comparable with the observed values. Our simulations can also lead to an approximately constant cold gas mass fraction for distances ≥11 kpc when considering subsonic perturbations for 15 and 18 kpc. We also find that the average one dimensional cold gas mass fraction and the volumetric cold gas mass fraction do not follow the same radial trends.

  14. Kinetic Modeling of the Neutral Gas, Ions, and Charged Dust in Europa's Exosphere

    NASA Astrophysics Data System (ADS)

    Tenishev, V.; Borovikov, D.; Rubin, M.; Jia, X.; Combi, M. R.

    2015-12-01

    The interaction of the Jovian magnetosphere with Europa has been a subject of active research during the last few decades both through in-situ and remote sensing observations as well as theoretical considerations. Linking the magnetosphere and the moon's surface and interior, Europa's exosphere has become one of the primary objects of study in the field. Understanding the physical processes occurring in the exosphere and its chemical composition is required for the understanding of the interaction between Europa and Jupiter. Europa's surface-bound exosphere originates mostly from ion sputtering of the water ice surface. Minor neutral species and ions of exospheric origin are produced via photolytic and electron impact reactions. The interaction of the Jovian magnetosphere and Europa affects the exospheric population of both neutrals and ions via source and loss processes. Moreover, the Lorentz force causes the newly created exospheric ions to move preferably aligned with the magnetic field lines. Contrary to the ions, heavier and slow-moving charged dust grains are mostly affected by gravity and the electric field component of the Lorentz force. As a result, escaping dust forms a narrow tail aligned in the direction of the convection electric field. Here we present results of a kinetic model of the neutral species (H2O, OH, O2, O, and H), ions (O+, O2+, H+, H2+, H2O+, and OH+), and neutral and charged dust in Europa's exosphere. In our model H2O and O2 are produced via sputtering and other exospheric neutral and ions species are produced via photolytic and electron impact reactions. For the charged dust we compute the equilibrium grain charge by balancing the electron and ion collecting currents according to the local plasma flow conditions at the grain's location. For the tracking of the ions, charged dust, and the calculation of the grains' charge we use plasma density and velocity, and the magnetic field derived from our multi-fluid MHD model of Europa

  15. Radiative ion-ion neutralization: a new gas-phase atmospheric pressure ion transduction mechanism.

    PubMed

    Davis, Eric J; Siems, William F; Hill, Herbert H

    2012-06-01

    All atmospheric pressure ion detectors, including photo ionization detectors, flame ionization detectors, electron capture detectors, and ion mobility spectrometers, utilize Faraday plate designs in which ionic charge is collected and amplified. The sensitivity of these Faraday plate ion detectors are limited by thermal (Johnson) noise in the associated electronics. Thus approximately 10(6) ions per second are required for a minimal detection. This is not the case for ion detection under vacuum conditions where secondary electron multipliers (SEMs) can be used. SEMs produce a cascade of approximately 10(6) electrons per ion impinging on the conversion dynode. Similarly, photomultiplier tubes (PMTs) can generate approximately 10(6) electrons per photon. Unlike SEMs, however, PMTs are evacuated and sealed so that they are commonly used under atmospheric pressure conditions. This paper describes an atmospheric pressure ion detector based on coupling a PMT with light emitted from ion-ion neutralization reactions. The normal Faraday plate collector electrode was replaced with an electrode "needle" used to concentrate the anions as they were drawn to the tip of the needle by a strong focusing electric field. Light was emitted near the surface of the electrode when analyte ions were neutralized with cations produced from the anode. Although radiative-ion-ion recombination has been previously reported, this is the first time ions from separate ionization sources have been combined to produce light. The light from this radiative-ion-ion-neutralization (RIIN) was detected using a photon multiplier such that an ion mobility spectrum was obtained by monitoring the light emitted from mobility separated ions. An IMS spectrum of nitroglycerin (NG) was obtained utilizing RIIN for tranducing the mobility separated ions into an analytical signal. The implications of this novel ion transduction method are the potential for counting ions at atmospheric pressure and for obtaining ion

  16. Bose gases, Bose–Einstein condensation, and the Bogoliubov approximation

    SciTech Connect

    Seiringer, Robert

    2014-07-15

    We review recent progress towards a rigorous understanding of the Bogoliubov approximation for bosonic quantum many-body systems. We focus, in particular, on the excitation spectrum of a Bose gas in the mean-field (Hartree) limit. A list of open problems will be discussed at the end.

  17. {sup 39}K Bose-Einstein Condensate with Tunable Interactions

    SciTech Connect

    Roati, G.; Zaccanti, M.; D'Errico, C.; Catani, J.; Inguscio, M.; Modugno, G.; Modugno, M.; Simoni, A.

    2007-07-06

    We produce a Bose-Einstein condensate of {sup 39}K atoms. Condensation of this species with a naturally small and negative scattering length is achieved by a combination of sympathetic cooling with {sup 87}Rb and direct evaporation, exploiting the magnetic tuning of both inter- and intraspecies interactions at Feshbach resonances. We explore the tunability of the self-interactions by studying the expansion and the stability of the condensate. We find that a {sup 39}K condensate is interesting for future experiments requiring a weakly-interacting Bose gas.

  18. From fractional exclusion statistics back to Bose and Fermi distributions

    NASA Astrophysics Data System (ADS)

    Anghel, Dragoş-Victor

    2013-12-01

    Fractional exclusion statistics (FES) is a generalization of the Bose and Fermi statistics. Typically, systems of interacting particles are described as ideal FES systems and the properties of the FES systems are calculated from the properties of the interacting systems. In this Letter I reverse the process and I show that a FES system may be described in general as a gas of quasiparticles which obey Bose or Fermi distributions; the energies of the newly defined quasiparticles are calculated starting from the FES equations for the equilibrium particle distribution. In the end I use a system in the effective mass approximation as an example to show how the procedure works.

  19. Degenerate Bose-Fermi mixtures of rubidium and ytterbium

    NASA Astrophysics Data System (ADS)

    Tiamsuphat, Jiraphat; Vaidya, Varun; Rolston, Steven; Porto, James

    2016-05-01

    We report the realization of a quantum degenerate mixture of bosonic 87 Rb and fermionic 171 Yb atoms in a hybrid optical dipole trap with a tunable, species-dependent trapping potential. 87 Rb is shown to be a viable refrigerant for the non-interacting 171 Yb atoms, cooling up to 2. 4 × 105 Yb atoms to a temperature of T/ TF = 0.16(2) while simultaneously forming a 87 Rb Bose-Einstein condensate of 3. 5 × 105 atoms. Furthermore we demonstrate our ability to independently tailor the potentials for each species, which paves the way for studying impurities immersed in a Bose gas.

  20. Measurement of neutral gas pressure in the D-module of GAMMA 10/PDX by using ASDEX type fast ionization gauge

    NASA Astrophysics Data System (ADS)

    Ichimura, K.; Fukumoto, M.; Islam, M. M.; Islam, M. S.; Shimizu, K.; Fukui, K.; Ohuchi, M.; Nojiri, K.; Terakado, A.; Yoshikawa, M.; Ezumi, N.; Sakamoto, M.; Nakashima, Y.

    2016-11-01

    In the divertor simulation experiments in the GAMMA 10/PDX tandem mirror, pressure of the neutral gas was investigated by using a fast ionization gauge. The gauge was absolutely calibrated for hydrogen gas by using a capacitance manometer. Change of the gauge sensitivity due to the magnetic field of GAMMA 10/PDX was also evaluated. The typical gas pressure measured in detached plasma experiments was 0.1-10 Pa. The degree of plasma detachment determined from the reduction of heat flux was enhanced as the gas pressure increases. Rapid increase of the gas pressure under the plasma flow was also observed.

  1. Warp or Lag? The Ionized and Neutral Hydrogen Gas in the Edge-on Dwarf Galaxy UGC 1281

    NASA Astrophysics Data System (ADS)

    Kamphuis, P.; Peletier, R. F.; van der Kruit, P. C.; Heald, G. H.

    The properties of gas in the halos of galaxies tell us something about the properties of the interstellar medium. Here we report on deep HI and Hα observations of UGC 1281 in order to determine the existence of extra planar gas and its kinematics. This is the first time the halo characteristics of a dwarf galaxy have been investigated. These observations are compared to 3D models in order to determine the distribution of HI in the galaxy. We find that UGC 1281 has Hα emission up to 25 '' (655 pc,˜0.6 Hα hR) in projection above the plane and in general a low Hα flux. Its HI extends 70 '' (1.8 kpc,˜1.5 HI hR) in projection from the plane. This neutral extra-planar gas can be explained by either a line-of-sight warp or a thick disk with rotational velocities that decline with a vertical gradient of 10.6±3.7 km s-1 kpc-1. The line-of-sight warp model is the preferred model as it is conceptually simpler. In either model the warp starts well within the optical radius.

  2. The effects of neutral gas heating on H mode transition and maintenance currents in a 13.56 MHz planar coil inductively coupled plasma reactor

    SciTech Connect

    Jayapalan, Kanesh K.; Chin, Oi-Hoong

    2012-09-15

    The H mode transition and maintenance currents in a 13.56 MHz laboratory 6 turn planar coil inductively coupled plasma (ICP) reactor are simulated for low pressure argon discharge range of 0.02-0.3 mbar with neutral gas heating and at ambient temperature. An experimentally fitted 3D power evolution plot for 0.02 mbar argon pressure is also shown to visualize the effects of hysteresis in the system. Comparisons between simulation and experimental measurements show good agreement in the pressure range of 0.02-0.3 mbar for transition currents and 0.02-0.1 mbar for maintenance currents only when neutral gas heating is considered. This suggests that neutral gas heating plays a non-negligible role in determining the mode transition points of a rf ICP system.

  3. The effects of neutral gas heating on H mode transition and maintenance currents in a 13.56 MHz planar coil inductively coupled plasma reactor

    NASA Astrophysics Data System (ADS)

    Jayapalan, Kanesh K.; Chin, Oi-Hoong

    2012-09-01

    The H mode transition and maintenance currents in a 13.56 MHz laboratory 6 turn planar coil inductively coupled plasma (ICP) reactor are simulated for low pressure argon discharge range of 0.02-0.3 mbar with neutral gas heating and at ambient temperature. An experimentally fitted 3D power evolution plot for 0.02 mbar argon pressure is also shown to visualize the effects of hysteresis in the system. Comparisons between simulation and experimental measurements show good agreement in the pressure range of 0.02-0.3 mbar for transition currents and 0.02-0.1 mbar for maintenance currents only when neutral gas heating is considered. This suggests that neutral gas heating plays a non-negligible role in determining the mode transition points of a rf ICP system.

  4. Effects of the neutral gas density distribution in a DPF neutron yield

    SciTech Connect

    Milanese, M.; Moroso, R.; Pouzo, J.

    1996-12-31

    The dense plasma gives an average neutron yield Y = 2 {times} 10{sup 8} when it is operated using D{sub 2} at an homogeneous pressure p = 1.5 mb in the discharge chamber, in this p-static operation, the frequency of good shots (Y > 10{sup 7}) is f {approx} 50%. In this work the authors show the results on Y and f when PACO is operated in gas-puff way with two different modalities: (1) A gas cloud is injected into the vacuum, from a set of holes distributed in a diameter of the inner electrode near the Pyrex insulator. The gas is introduced from the back of the hollow inner electrode by means of a fast valve. The cloud expands in the interelectrode space, and reaches the extreme of the coaxial cavity in some hundreds of microseconds from the valve aperture instant. In this way of operation the value of Y remains similar to the p-static operation, but the frequency f is improved up to f {approx} 80%. (2) With a relative low value of p in the discharge chamber a jet of high density D{sub 2} is injected along the axis from the inner electrode just in the focus zone. The jet is produced with a nozzle designed in order to obtain subsonic velocity, and the gas is injected through the same fast valve. In this jet operation mode the PACO performance was improved, reaching f {approx} 70% and Y {approx} 10{sup 9}.

  5. The interaction between an impact-produced neutral gas cloud and the solar wind at the lunar surface

    NASA Technical Reports Server (NTRS)

    Lindeman, R. A.; Vondrak, R. R.; Freeman, J. W.; Snyder, C. W.

    1974-01-01

    On Apr. 15, 1970, the Apollo 13 S-IVB stage impacted the nighttime lunar surface. Beginning 20 sec after impact, the Suprathermal Ion Detector Experiment and the Solar Wind Spectrometer observed a large flux of positive ions (maximum flux of about 3 x 10 to the 8th ions/sq cm/sec/ster) and electrons. Two separate streams of ions were observed: a horizontal flux that appeared to be deflected solar wind ions and a smaller vertical flux of predominantly heavy ions (greater than 10 amu), which probably were material vaporized from the S-IVB stage. An examination of the data shows that collisions between neutral molecules and hot electrons (50 eV) were probably an important ionization mechanism in the impact-produced neutral gas cloud. These electrons, which were detected by the Solar Wind Spectrometer, are thought to have been energized in a shock front or some form of intense interaction region between the cloud and the solar wind. Thus strong ionization and acceleration are seen under conditions approaching a collisionless state.

  6. Number-conserving approach to a minimal self-consistent treatment of condensate and noncondensate dynamics in a degenerate Bose gas

    NASA Astrophysics Data System (ADS)

    Gardiner, S. A.; Morgan, S. A.

    2007-04-01

    We describe a number-conserving approach to the dynamics of Bose-Einstein condensed dilute atomic gases. This builds upon the works of Gardiner [Phys. Rev. A 56, 1414 (1997)] and Castin and Dum [Phys. Rev. A 57, 3008 (1998)]. We consider what is effectively an expansion in powers of the ratio of noncondensate to condensate particle numbers, rather than inverse powers of the total number of particles. This requires the number of condensate particles to be a majority, but not necessarily almost equal to the total number of particles in the system. We argue that a second-order treatment of the relevant dynamical equations of motion is the minimum order necessary to provide consistent coupled condensate and noncondensate number dynamics for a finite total number of particles, and show that such a second-order treatment is provided by a suitably generalized Gross-Pitaevskii equation, coupled to the Castin-Dum number-conserving formulation of the Bogoliubov-de Gennes equations. The necessary equations of motion can be generated from an approximate third-order Hamiltonian, which effectively reduces to second order in the steady state. Such a treatment as described here is suitable for dynamics occurring at finite temperature, where there is a significant noncondensate fraction from the outset, or dynamics leading to dynamical instabilities, where depletion of the condensate can also lead to a significant noncondensate fraction, even if the noncondensate fraction is initially negligible.

  7. Rotating Bose-Einstein condensates with attractive interactions

    SciTech Connect

    Kavoulakis, G.M.; Jackson, A.D.; Baym, Gordon

    2004-10-01

    We examine the phase diagram of a Bose-Einstein condensate of atoms, interacting with an attractive pseudopotential, in a quadratic-plus-quartic potential trap rotating at a given rate. Investigating the behavior of the gas as a function of interaction strength and rotational frequency of the trap, we find that the phase diagram has three distinct phases: one with vortex excitation, one with center-of-mass excitation, and an unstable phase in which the gas collapses.

  8. Neutral gas-plasma interaction - The case of the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Ip, W.-H.

    Recent developments in the study of the gas-plasma interaction at Io and in the Io plasma torus are reviewed. It is suggested that the 'energy crisis' in the hot Io plasma torus may be partially resolved by a local energy generation mechanism such as the magnetic pumping process. It is also argued that the Jovian ring could act as an additional plasma source in injecting cold plasma component into the inner plasma torus, and that the formation of an ion wake may permit a much more extended electromagnetic coupling between Io and the Jovian ionosphere.

  9. The Elusive Bose Metal

    NASA Astrophysics Data System (ADS)

    Phillips, Philip; Dalidovich, Denis

    2003-10-01

    The conventional theory of metals is in crisis. In the past 15 years, there has been an unexpected sprouting of metallic states in low-dimensional systems, directly contradicting conventional wisdom. For example, bosons are thought to exist in one of two ground states: condensed in a superconductor or localized in an insulator. However, several experiments on thin metal-alloy films have observed that a metallic phase disrupts the direct transition between the superconductor and the insulator. We analyze the experiments on the insulator-superconductor transition and argue that the intervening metallic phase is bosonic. All relevant theoretical proposals for the Bose metal are discussed, particularly the recent idea that the metallic phase is glassy. The implications for the putative vortex-glass state in the copper oxide superconductors are examined.

  10. Smoothed MHD equations for numerical simulations of ideal quasi-neutral gas dynamic flows

    NASA Astrophysics Data System (ADS)

    Popov, Mikhail V.; Elizarova, Tatiana G.

    2015-11-01

    We introduce a mathematical model and related numerical method for numerical modeling of ideal magnetohydrodynamic (MHD) gas flows as an extension of previously known quasi-gasdynamic (QGD) equations. This approach is based on smoothing, or averaging of the original MHD equation system over a small time interval that leads to a new equation system, named quasi-MHD, or QMHD system. The QMHD equations are closely related to the original MHD system except for additional strongly non-linear dissipative τ-terms with a small parameter τ as a factor. The τ-terms depend on the solution itself and decrease in regions with the small space gradients of the solution. In this sense the QMHD system could be regarded as an approach with adaptive artificial dissipation. The QMHD is a generalization of regularized (or quasi-) gas dynamic equation system suggested in last three decades. In the QMHD numerical method the evolution of all physical variables is presented in a non-split divergence form. Divergence-free evolution of the magnetic field provides by using a constrained transport method based on Faraday's law of induction. Accuracy and convergence of the QMHD method is verified on a wide set of standard MHD tests including the 3D Orszag-Tang vortex flow.

  11. High-speed digital holography for neutral gas and electron density imaging.

    PubMed

    Granstedt, E M; Thomas, C E; Kaita, R; Majeski, R; Baylor, L R; Meitner, S J; Combs, S K

    2016-05-01

    An instrument was developed using digital holographic reconstruction of the wavefront from a CO2 laser imaged on a high-speed commercial IR camera. An acousto-optic modulator is used to generate 1-25 μs pulses from a continuous-wave CO2 laser, both to limit the average power at the detector and also to freeze motion from sub-interframe time scales. Extensive effort was made to characterize and eliminate noise from vibrations and second-surface reflections. Mismatch of the reference and object beam curvature initially contributed substantially to vibrational noise, but was mitigated through careful positioning of identical imaging lenses. Vibrational mode amplitudes were successfully reduced to ≲1 nm for frequencies ≳50 Hz, and the inter-frame noise across the 128 × 128 pixel window which is typically used is ≲2.5 nm. To demonstrate the capabilities of the system, a piezo-electric valve and a reducing-expanding nozzle were used to generate a super-sonic gas jet which was imaged with high spatial resolution (better than 0.8 lp/mm) at high speed. Abel inversions were performed on the phase images to produce 2-D images of localized gas density. This system could also be used for high spatial and temporal resolution measurements of plasma electron density or surface deformations. PMID:27250423

  12. Absorption Line Studies and the Distribution of Neutral Gas in the Local Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.

    1984-01-01

    Previous published absorption line studies performed at ultraviolet and visual wavelengths are combined with new ultraviolet data in order to map out the distribution of HI within 150 pc of the Sun. Newly presented data for distances less than 50 pc further support the local cloud model as presented by Bruhweiler (1982). The Sun is embedded, near the edge of a diffuse cloud with total column density 2 x 10 to the 19th power/sq cm. Most observed directions within 50 pc away from the cloud body reveal trace amounts of gas (N)HI) approximately 10 to the 18th power/sq cm presumably arising in the outer skin of the local cloud. At greater distances (50 approximately or d approximately or 150 pc) most directions show significant absorption with N(HI) 10(19)/sq cm. Two directions, one toward the northern galactic pole (NGP), the other toward beta CMa exhibit unusually low HI column densities out to distances of 150 to 200 pc. However, substantial amounts of gas N(HI) 10 to the 19th power/sq cm, are seen toward the NGP at greater distances. The implicatons of these results on astronomy at wavelengths shortward of 912A are discussed.

  13. I. I. Rabi Prize Lecture: Paradox Lost and Paradox Regained: Recent Experimental Results in Dilute-Gas Bose-Einstein Condensation

    NASA Astrophysics Data System (ADS)

    Cornell, Eric A.

    1997-04-01

    In the two years since Bose-Einstein condensation was first observed [1,2,3] in dilute vapors of the alkali metals, a wide variety of experimental studies has been performed on these exotic systems. Some of the recent results out of JILA (for instance a critical temperature measurement [4]) have been in excellent agreement with theeoretical expectations. Others (for instance the behavior of low-lying condensate excitations at finite-T [5]) have been more puzzling. I will discuss the recently observed two-component condensates [6] and provide also an overview of recent studies [7] of the coherence properties of condensates. ([1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Science 269, 198 (1995). [2] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, W. Kettle, Phys. Rev. Lett. 75, 3696 (1995). [3] C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett. (in press). [4] J. R. Ensher, D. S. Jin, M. R. Matthews, C. E. Wieman and E. A. Cornell, Phys. Rev. Lett. 77, 4984 (1996). [5] D. S. Jin, M. R. Matthews, J. R. Ensher, C. E. Wieman and E. A. Cornell, Phys. Rev. Lett. (in press). [6] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell and C. E. Wieman, Phys. Rev. Lett. (in press). [7] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn and W. Ketterle, Science (in press).)

  14. On the nature of Bose-Einstein condensation enhanced by localization

    SciTech Connect

    Jaeck, Thomas; Pule, Joseph V.; Zagrebnov, Valentin A.

    2010-10-15

    In a previous paper we established that for the perfect Bose gas and the mean-field Bose gas with an external random or weak potential, whenever there is generalized Bose-Einstein condensation in the eigenstates of the single particle Hamiltonian, there is also generalized condensation in the kinetic-energy states. In these cases Bose-Einstein condensation is produced or enhanced by the external potential. In the present paper we establish a criterion for the absence of condensation in single kinetic-energy states and prove that this criterion is satisfied for a class of random potentials and weak potentials. This means that the condensate is spread over an infinite number of states with low kinetic-energy without any of them being macroscopically occupied.

  15. Generalized Bose-Einstein condensation into multiple states in driven-dissipative systems.

    PubMed

    Vorberg, Daniel; Wustmann, Waltraut; Ketzmerick, Roland; Eckardt, André

    2013-12-13

    Bose-Einstein condensation, the macroscopic occupation of a single quantum state, appears in equilibrium quantum statistical mechanics and persists also in the hydrodynamic regime close to equilibrium. Here we show that even when a degenerate Bose gas is driven into a steady state far from equilibrium, where the notion of a single-particle ground state becomes meaningless, Bose-Einstein condensation survives in a generalized form: the unambiguous selection of an odd number of states acquiring large occupations. Within mean-field theory we derive a criterion for when a single state and when multiple states are Bose selected in a noninteracting gas. We study the effect in several driven-dissipative model systems, and propose a quantum switch for heat conductivity based on shifting between one and three selected states.

  16. Efimov correlations in strongly interacting Bose gases

    NASA Astrophysics Data System (ADS)

    Barth, Marcus; Hofmann, Johannes

    2015-12-01

    We compute the virial coefficients, the contact parameters, and the momentum distribution of a strongly interacting three-dimensional Bose gas by means of a virial expansion up to third order in the fugacity, which takes into account three-body correlations exactly. Our results characterize the nondegenerate regime of the interacting Bose gas, where the thermal wavelength is smaller than the interparticle spacing but the scattering length may be arbitrarily large. We observe a rapid variation of the third virial coefficient as the scattering length is tuned across the three-atom and the atom-dimer thresholds. The momentum distribution at unitarity displays a universal high-momentum tail with a log-periodic momentum dependence, which is a direct signature of Efimov physics. We provide a quantitative description of the momentum distribution at high momentum as measured by P. Makotyn et al. [Nat. Phys. 10, 116 (2014), 10.1038/nphys2850], and our calculations indicate that the lowest trimer state might not be occupied in the experiment. Our results allow for a spectroscopy of Efimov states in the unitary limit.

  17. PIC code modeling of spacecraft charging potential during electron beam injection into a background of neutral gas and plasma, part 1

    NASA Technical Reports Server (NTRS)

    Koga, J. K.; Lin, C. S.; Winglee, R. M.

    1989-01-01

    Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a 2-D electrostatic particle code. The ionization effects on spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged spacecraft produce an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the spacecraft charging potential measured during the SEPAC experiments from Spacelab 1.

  18. Two characteristic temperatures for a Bose-Einstein condensate of a finite number of particles

    SciTech Connect

    Idziaszek, Z.; Rzazewski, K.

    2003-09-01

    We consider two characteristic temperatures for a Bose-Einstein condensate, which are related to certain properties of the condensate statistics. We calculate them for an ideal gas confined in power-law traps and show that they approach the critical temperature in the limit of large number of particles. The considered characteristic temperatures can be useful in the studies of Bose-Einstein condensates of a finite number of atoms indicating the point of a phase transition.

  19. Bose-Einstein condensation on a manifold with non-negative Ricci curvature

    SciTech Connect

    Akant, Levent Ertuğrul, Emine Tapramaz, Ferzan Turgut, O. Teoman

    2015-01-15

    The Bose-Einstein condensation for an ideal Bose gas and for a dilute weakly interacting Bose gas in a manifold with non-negative Ricci curvature is investigated using the heat kernel and eigenvalue estimates of the Laplace operator. The main focus is on the nonrelativistic gas. However, special relativistic ideal gas is also discussed. The thermodynamic limit of the heat kernel and eigenvalue estimates is taken and the results are used to derive bounds for the depletion coefficient. In the case of a weakly interacting gas, Bogoliubov approximation is employed. The ground state is analyzed using heat kernel methods and finite size effects on the ground state energy are proposed. The justification of the c-number substitution on a manifold is given.

  20. Neutral beam monitoring

    DOEpatents

    Fink, Joel H.

    1981-08-18

    Method and apparatus for monitoring characteristics of a high energy neutral beam. A neutral beam is generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange neutralizes the high energy ion beam. The neutral beam is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are further identified.

  1. Abundances of O, Mg, S, Cr, Mn, Ti, Ni and Zn from absorption lines of neutral gas in the Large Magellanic Cloud in front of R136

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Fitzpatrick, E. L.; Savage, B. D.

    1985-01-01

    Weak absorption lines of C I, O I, Mg I, Mg II, Si I, Si II, P I, Cl I, Cr II, Mn II, Fe I, Ni II, Zn II, CO and C2 are detected in neutral gas in front of the 30 Doradus H II region by IUE spectra of R 136. The Large Magellanic Cloud abundances from the absorption lines are a factor of 2 or 3 below those of the Milky Way, in agreement with emission line study results. Neutral gas density and temperature are estimated from the observed excitation and ionization to be about 300/cu cm and 100 K, respectively; this implies a gas pressure of 30,000/cu cm K.

  2. Bose gases near resonance: Renormalized interactions in a condensate

    SciTech Connect

    Zhou, Fei Mashayekhi, Mohammad S.

    2013-01-15

    Bose gases at large scattering lengths or beyond the usual dilute limit for a long time have been one of the most challenging problems in many-body physics. In this article, we investigate the fundamental properties of a near-resonance Bose gas and illustrate that three-dimensional Bose gases become nearly fermionized near resonance when the chemical potential as a function of scattering lengths reaches a maximum and the atomic condensates lose metastability. The instability and accompanying maximum are shown to be a precursor of the sign change of g{sub 2}, the renormalized two-body interaction between condensed atoms. g{sub 2} changes from effectively repulsive to attractive when approaching resonance from the molecular side, even though the scattering length is still positive. This occurs when dimers, under the influence of condensates, emerge at zero energy in the atomic gases at a finite positive scattering length. We carry out our studies of Bose gases via applying a self-consistent renormalization group equation which is further subject to a boundary condition. We also comment on the relation between the approach here and the diagrammatic calculation in an early article [D. Borzov, M.S. Mashayekhi, S. Zhang, J.-L. Song, F. Zhou, Phys. Rev. A 85 (2012) 023620]. - Highlights: Black-Right-Pointing-Pointer A Bose gas becomes nearly fermionized when its chemical potential approaches a maximum near resonance. Black-Right-Pointing-Pointer At the maximum, an onset instability sets in at a positive scattering length. Black-Right-Pointing-Pointer Condensates strongly influence the renormalization flow of few-body running coupling constants. Black-Right-Pointing-Pointer The effective two-body interaction constant changes its sign at a positive scattering length.

  3. A high order cell-centered semi-Lagrangian scheme for multi-dimensional kinetic simulations of neutral gas flows

    NASA Astrophysics Data System (ADS)

    Güçlü, Y.; Hitchon, W. N. G.

    2012-04-01

    The term 'Convected Scheme' (CS) refers to a family of algorithms, most usually applied to the solution of Boltzmann's equation, which uses a method of characteristics in an integral form to project an initial cell forward to a group of final cells. As such the CS is a 'forward-trajectory' semi-Lagrangian scheme. For multi-dimensional simulations of neutral gas flows, the cell-centered version of this semi-Lagrangian (CCSL) scheme has advantages over other options due to its implementation simplicity, low memory requirements, and easier treatment of boundary conditions. The main drawback of the CCSL-CS to date has been its high numerical diffusion in physical space, because of the 2nd order remapping that takes place at the end of each time step. By means of a modified equation analysis, it is shown that a high order estimate of the remapping error can be obtained a priori, and a small correction to the final position of the cells can be applied upon remapping, in order to achieve full compensation of this error. The resulting scheme is 4th order accurate in space while retaining the desirable properties of the CS: it is conservative and positivity-preserving, and the overall algorithm complexity is not appreciably increased. Two monotone (i.e. non-oscillating) versions of the fourth order CCSL-CS are also presented: one uses a common flux-limiter approach; the other uses a non-polynomial reconstruction to evaluate the derivatives of the density function. The method is illustrated in simple one- and two-dimensional examples, and a fully 3D solution of the Boltzmann equation describing expansion of a gas into vacuum through a cylindrical tube.

  4. Bose-Einstein condensation in binary mixture of Bose gases

    SciTech Connect

    Tran Huu Phat; Le Viet Hoa; Nguyen Tuan Anh Nguyen Van Long

    2009-10-15

    The Bose-Einstein condensation (BEC) in a binary mixture of Bose gases is studied by means of the Cornwall-Jackiw-Tomboulis (CJT) effective action approach. The equations of state (EoS) and various scenarios of phase transitions of the system are considered in detail, in particular, the numerical computations are carried out for symmetry restoration (SR), symmetry nonrestoration (SNR) and inverse symmetry breaking (ISB) for getting an insight into their physical nature. It is shown that due to the cross interaction between distinct components of mixture there occur two interesting phenomena: the high temperature BEC and the inverse BEC, which could be tested in experiments.

  5. He Bulge Detection by MAVEN Neutral Gas and Ion Mass Spectrometer (NGIMS) in the Upper Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Elrod, Meredith; Bougher, Stephen; Benna, Mehdi; Yelle, Roger; Jakosky, Bruce; Bell, Jared; Mahaffy, Paul; Stone, Shane

    2016-07-01

    Studies of the Venusian atmospheres have demonstrated enhanced He densities at high latitudes and on the night-side detections. To determine if Mars has a similar enhanced He 'bulge' in the same region, we compared several periapsis passes from night to dayside. The first six weeks of the MAVEN prime mission had periapsis at high latitudes on the night-side, followed by the next three months at mid latitudes on the dayside moving to low latitudes on the night-side. In addition to its normal orbit, which has a periapsis of approximately 150 km, MAVEN conducts a few deep dip orbits where the spacecraft has a periapsis closer to 125km. The first deep dip was at dusk at mid latitudes, the second at noon at the equator, with the third going from dawn to night in the southern hemisphere. Initial analysis of the Neutral Gas and Ion Mass Spectrometer (NGIMS) closed source data from all orbits with good pointing revealed an enhanced He density on the night-side orbits and a decreased He density on the dayside. This enhancement of He demonstrates a bulge at Mars that will continue to be explored over the course of the mission.

  6. He Bulge Detection by MAVEN Neutral Gas and Ion Mass Spectrometer (NGIMS) in the Upper Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Stone, S. W.; Elrod, M. K.; Mahaffy, P. R.; Benna, M.; Bell, J. M.; Bougher, S. W.; Yelle, R. V.; Jakosky, B. M.

    2015-12-01

    Studies of the Venusian atmospheres have demonstrated enhanced He densities at high latitudes and on the night-side detections. To determine if Mars has a similar enhanced He 'bulge' in the same region, we compared several periapsis passes from night to dayside. The first six weeks of the MAVEN prime mission had periapsis at high latitudes on the night-side, followed by the next three months at mid latitudes on the dayside moving to low latitudes on the night-side. In addition to its normal orbit, which has a periapsis of approximately 150 km, MAVEN conducts a few deep dip orbits where the spacecraft has a periapsis closer to 125km. The first deep dip was at dusk at mid latitudes, the second at noon at the equator, with the third going from dawn to night in the southern hemisphere. Initial analysis of the Neutral Gas and Ion Mass Spectrometer (NGIMS) closed source data from all orbits with good pointing revealed an enhanced He density on the night-side orbits and a decreased He density on the dayside. This enhancement of He demonstrates a bulge at Mars that will continue to be explored over the course of the mission.

  7. He Bulge Detection by MAVEN Neutral Gas and Ion Mass Spectrometer (NGIMS) in the Upper Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Elrod, Meredith K.; Mahaffy, Paul R.; Yelle, Roger; Stone, Shane; Benna, Mehdi; Jakowski, Bruce

    2015-11-01

    Studies of the Venusian atmospheres have demonstrated enhanced He densities at high latitudes and on the night-side detections. To determine if Mars has a similar enhanced He ‘bulge’ in the same region, we compared several periapsis passes from night to dayside. The first six weeks of the MAVEN prime mission had periapsis at high latitudes on the night-side, followed by the next three months at mid latitudes on the dayside moving to low latitudes on the night-side. In addition to its normal orbit, which has a periapsis of approximately 150 km, MAVEN conducts a few deep dip orbits where the spacecraft has a periapsis closer to 125km. The first deep dip was at dusk at mid latitudes, the second at noon at the equator, with the third going from dawn to night in the southern hemisphere. Initial analysis of the Neutral Gas and Ion Mass Spectrometer (NGIMS) closed source data from all orbits with good pointing revealed an enhanced He density on the night-side orbits and a decreased He density on the dayside. This enhancement of He demonstrates a bulge at Mars that will continue to be explored over the course of the mission.

  8. Rotating trapped Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Fetter, A. L.

    2008-01-01

    Trapped Bose-Einstein condensates (BECs) differ considerably from the standard textbook example of a uniform Bose gas. In an isotropic harmonic potential V( r) = ½ Mω2 r 2, the single-particle ground state introduces a new intrinsic scale of length [the ground-state size d = √ ℏ/( Mω)] and energy [the ground-state energy E 0 = frac{3} {2} ℏω]. When the trap rotates at a low angular velocity, the behavior of a single vortex illustrates the crucial role of discrete quantized vorticity. For more rapid rotation, the condensate contains a vortex array. The resulting centrifugal forces expand the condensate radially and shrink it axially; thus, the condensate becomes effectively two dimensional. If the external rotation speed approaches the frequency of the radial harmonic confining potential, the condensate enters the "lowest-Landau-level" regime, and a simple description again becomes possible. Eventually, the system is predicted to make a quantum phase transition to a highly correlated state analogous to the fractional quantum Hall states of electrons in a strong magnetic field.

  9. Diffusion dynamics in the disordered Bose Hubbard model

    NASA Astrophysics Data System (ADS)

    Wadleigh, Laura; Russ, Philip; Demarco, Brian

    2016-05-01

    We explore the dynamics of diffusion for out-of-equilibrium superfluid, Mott insulator, and Bose glass states using an atomic realization of the disordered Bose Hubbard (DBH) model. Dynamics in strongly correlated systems, especially far from equilibrium, are not well understood. The introduction of disorder further complicates these systems. We realize the DBH model--which has been central to our understanding of quantum phase transitions in disordered systems--using ultracold Rubidium-87 atoms trapped in a cubic disordered optical lattice. By tightly focusing a beam into the center of the gas, we create a hole in the atomic density profile. We achieve Mott insulator, superfluid, or Bose glass states by varying the interaction and disorder strength, and measure the time evolution of the density profile after removing the central barrier. This allows us to infer diffusion rates from the velocities at the edge of the hole and to look for signatures of superfluid puddles in the Bose glass state. We acknowledge funding from NSF Grant PHY 15-05468, NSF Grant DGE-1144245, and ARO Grant W911NF-12-1-0462.

  10. I.I. Rabi Prize Lecture: Bose-Einstein condensates - matter with laser-like properties

    NASA Astrophysics Data System (ADS)

    Ketterle, Wolfgang

    1997-04-01

    Several studies of Bose-Einstein condensation in a dilute gas of sodium atoms have been performed. Bose-condensates were produced by evaporative cooling in a tightly-confining magnetic "cloverleaf" trap and observed either by absorption imaging or non-destructive phase contrast imaging. We have observed the formation of a Bose condensate and low-lying collective excitations. An rf output coupler allowed the controlled extraction of multiple pulses of atoms from a trapped Bose condensate. Two condensates were produced by evaporative cooling in a double-well potential. When the condensates were released and overlapped, high contrast interference was observed proving the coherence of the condensates. The controlled extraction of coherent atoms is a rudimentary realization of an atom laser.

  11. Squeezing in the weakly interacting uniform Bose-Einstein condensate

    SciTech Connect

    Haque, Masudul; Ruckenstein, Andrei E.

    2006-10-15

    We investigate the presence of squeezing in the weakly repulsive uniform Bose gas, in both the condensate mode and in the nonzero opposite-momenta mode pairs, using two different variational formulations. We explore the U(1) symmetry breaking and Goldstone's theorem in the context of a squeezed coherent variational wave function and present the associated Ward identity. We show that squeezing of the condensate mode is absent at the mean field Hartree-Fock-Bogoliubov level and emerges as a result of fluctuations about mean field as a finite volume effect, which vanishes in the thermodynamic limit. On the other hand, the squeezing of the excitations about the condensate survives the thermodynamic limit and is interpreted in terms of density-phase variables using a number-conserving formulation of the interacting Bose gas.

  12. Magnetic solitons in a binary Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Qu, Chunlei; Pitaevskii, Lev; Stringari, Sandro

    2016-05-01

    Solitons, the fascinating topological excitations of nonlinear systems, have drawn a considerable research interest in many physical branches. Here I will talk about a magnetic soliton solution to a two-component repulsive Bose gas. The properties of the soliton, including the wave function, the energy and the effective mass, will be presented. I will also discuss the oscillation behaviour of the magnetic solitons in a harmonic trap.

  13. Four-fluid MHD Simulations of the Plasma and Neutral Gas Environment of Comet 67P/Churyumov-Gerasimenko Near Perihelion

    NASA Astrophysics Data System (ADS)

    Huang, Zhenguang; Toth, Gabor; Gombosi, Tamas; Jia, Xianzhe; Rubin, Martin; Fougere, Nicolas; Tenishev, Valeriy; Combi, Michael; Bieler, Andre; Hansen, Kenneth; Shou, Yinsi; Altwegg, Kathrin

    2016-04-01

    The neutral and plasma environment is critical in understanding the interaction of the solar wind and comet 67P/Churyumov-Gerasimenko (CG), the target of the European Space Agency's Rosetta mission. In this study, we have developed a 3-D four-fluid model, which is based on BATS-R-US (Block-Adaptive Tree Solarwind Roe-type Upwind Scheme) within SWMF (Space Weather Modeling Framework) that solves the governing multi-fluid MHD equations and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. We simulated the plasma and neutral gas environment of comet CG with SHAP5 model near perihelion and we showed that the plasma environment in the inner coma region have some new features: magnetic reconnection in the tail region, a magnetic pile-up region on the nightside, and nucleus directed plasma flow inside the nightside reconnection region.

  14. Analytical method of free and conjugated neutral aroma components in tobacco by solvent extraction coupled with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry.

    PubMed

    Ding, Yu; Zhu, Lijun; Liu, Shaomin; Yu, Hanqing; Dai, Ya

    2013-03-01

    A reliable and simple method for quantitative analysis of free and conjugated neutral aroma components (including aldehydes, ketones, alcohols, esters and alkenes) in tobacco using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS) is described. Simple solvent extraction using methyl tert-butyl ether (MTBE) ensured extraction of the neutral aroma components in their free form. The components present as conjugates were isolated using MTBE extraction following acid-catalysed hydrolysis. The GC × GC-TOFMS analysis was performed to comprehensively identify different forms of neutral aroma components in tobacco. Compared with the conventional methods, our method not only simplified the process but also saved time and solvent. It also exhibited higher selectivity and sensitivity and demonstrated the following results: the limit of detection of the neutral aroma components varied from 0.006 μg/g for 2-acetylfuran to 0.133 μg/g for 5-(hydroxymethyl)-2-furfural, the relative standard deviations were from 0.5% to 6.8% and the recovery ranged from 82.4% to 118.2%. The optimized method was successfully employed to analyse real tobacco samples. Eighty-three neutral aroma components of interest were identified. PMID:23357748

  15. Analytical method of free and conjugated neutral aroma components in tobacco by solvent extraction coupled with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry.

    PubMed

    Ding, Yu; Zhu, Lijun; Liu, Shaomin; Yu, Hanqing; Dai, Ya

    2013-03-01

    A reliable and simple method for quantitative analysis of free and conjugated neutral aroma components (including aldehydes, ketones, alcohols, esters and alkenes) in tobacco using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS) is described. Simple solvent extraction using methyl tert-butyl ether (MTBE) ensured extraction of the neutral aroma components in their free form. The components present as conjugates were isolated using MTBE extraction following acid-catalysed hydrolysis. The GC × GC-TOFMS analysis was performed to comprehensively identify different forms of neutral aroma components in tobacco. Compared with the conventional methods, our method not only simplified the process but also saved time and solvent. It also exhibited higher selectivity and sensitivity and demonstrated the following results: the limit of detection of the neutral aroma components varied from 0.006 μg/g for 2-acetylfuran to 0.133 μg/g for 5-(hydroxymethyl)-2-furfural, the relative standard deviations were from 0.5% to 6.8% and the recovery ranged from 82.4% to 118.2%. The optimized method was successfully employed to analyse real tobacco samples. Eighty-three neutral aroma components of interest were identified.

  16. Gas-Phase Oxidation of Cm+ and Cm2+ -- Thermodynamics of neutral and ionized CmO

    SciTech Connect

    Gibson, John K; Haire, Richard G.; Santos, Marta; Pires de Matos, Antonio; Marcalo, Joaquim

    2008-12-08

    Fourier transform ion cyclotron resonance mass spectrometry was employed to study the products and kinetics of gas-phase reactions of Cm+ and Cm2+; parallel studies were carried out with La+/2+, Gd+/2+ and Lu+/2+. Reactions with oxygen-donor molecules provided estimates for the bond dissociation energies, D[M+-O](M = Cm, Gd, Lu). The first ionization energy, IE[CmO], was obtained from the reactivity of CmO+ with dienes, and the second ionization energies, IE[MO+](M = Cm, La, Gd, Lu), from the rates of electron-transfer reactions from neutrals to the MO2+ ions. The following thermodynamic quantities for curium oxide molecules were obtained: IE[CmO]= 6.4+-0.2 eV; IE[CmO+]= 15.8+-0.4 eV; D[Cm-O]= 710+-45 kJ mol-1; D[Cm+-O]= 670+-40 kJ mol-1; and D[Cm2+-O]= 342+-55 kJ mol-1. Estimates for the M2+-O bond energies for M = Cm, La, Gd and Lu are all intermediate between D[N2-O]and D[OC-O]--i.e., 167 kJ mol-1< D[M2+-O]< 532 kJ mol-1 -- such that the four MO2+ ions fulfill the thermodynamic requirement for catalytic O-atom transport from N2O to CO. It was demonstrated that the kinetics are also favorable and that the CmO2+, LaO2+, GdO2+ and LuO2+ dipositive ions each catalyze the gas-phase oxidation of CO to CO2 by N2O. The CmO2+ ion appeared during the reaction of Cm+ with O2 when the intermediate, CmO+, was not collisionally cooled -- although its formation is kinetically and/or thermodynamically unfavorable, CmO2+ is a stable species.

  17. Approaching Bose-Einstein Condensation

    ERIC Educational Resources Information Center

    Ferrari, Loris

    2011-01-01

    Bose-Einstein condensation (BEC) is discussed at the level of an advanced course of statistical thermodynamics, clarifying some formal and physical aspects that are usually not covered by the standard pedagogical literature. The non-conventional approach adopted starts by showing that the continuum limit, in certain cases, cancels out the crucial…

  18. Study of superfluid Bose-Fermi mixture

    NASA Astrophysics Data System (ADS)

    Laurent, Sebastien; Delehaye, Marion; Jin, Shuwei; Pierce, Matthieu; Yefsah, Tarik; Chevy, Frederic; Salomon, Christophe

    2016-05-01

    Using fermionic and bosonic isotopes of lithium we produce and study ultracold Bose-Fermi mixtures. First in a low temperature counterflow experiment, we measure the critical velocity of the system in the BEC-BCS crossover. Around unitarity, we observe a remarkably high superfluid critical velocity which reaches the sound velocity of the strongly interacting Fermi gas. Second, when we increase the temperature of the system slightly above the superfluid transitions we observe an unexpected phase locking of the oscillations of the clouds induced by dissipation. Finally, as suggested in, we explore the nature of the superfluid phase when we impose a spin polarization in the situation where the mean field potential created by the bosons on the fermions tends to cancel out the trapping potential of the latter.

  19. Hard-core Bose-Fermi mixture in one-dimensional split traps

    SciTech Connect

    Lue Xiaolong; Zhang Yunbo; Yin Xiangguo

    2010-04-15

    We consider a strongly interacting one-dimensional (1D) Bose-Fermi mixture confined in a hard-wall trap or a harmonic oscillator trap with a tunable {delta}-function barrier at the trap center. The mixture consists of a 1D Bose gas with repulsive interactions and of a 1D noninteracting spin-aligned Fermi gas, with both species interacting through hard-core interactions. Using a generalized Bose-Fermi mapping, we calculate the reduced single-particle density matrix and the momentum distribution of the gas as a function of barrier strength and the parity of particle number. The secondary peaks in the momentum distribution show remarkable correlation between particles on the two sides of the split.

  20. Nonlinear Dynamics of Bose-Einstein Condensates with Long-Range Interactions

    SciTech Connect

    Wunner, G.; Cartarius, H.; Fabcic, T.; Koeberle, P.; Main, J.; Schwidder, T.

    2008-11-13

    The motto of this paper is: Let's face Bose-Einstein condensation through nonlinear dynamics. We do this by choosing variational forms of the condensate wave functions (of given symmetry classes), which convert the Bose-Einstein condensates via the time-dependent Gross-Pitaevskii equation into Hamiltonian systems that can be studied using the methods of nonlinear dynamics. We consider in particular cold quantum gases where long-range interactions between the neutral atoms are present, in addition to the conventional short-range contact interaction, viz. gravity-like interactions, and dipole-dipole interactions. The results obtained serve as a useful guide in the search for nonlinear dynamics effects in numerically exact quantum calculations for Bose-Einstein condensates. A main result is the prediction of the existence of stable islands as well as chaotic regions for excited states of dipolar condensates, which could be checked experimentally.

  1. Bose glass and Mott glass of quasiparticles in a doped quantum magnet.

    PubMed

    Yu, Rong; Yin, Liang; Sullivan, Neil S; Xia, J S; Huan, Chao; Paduan-Filho, Armando; Oliveira, Nei F; Haas, Stephan; Steppke, Alexander; Miclea, Corneliu F; Weickert, Franziska; Movshovich, Roman; Mun, Eun-Deok; Scott, Brian L; Zapf, Vivien S; Roscilde, Tommaso

    2012-09-20

    The low-temperature states of bosonic fluids exhibit fundamental quantum effects at the macroscopic scale: the best-known examples are Bose-Einstein condensation and superfluidity, which have been tested experimentally in a variety of different systems. When bosons interact, disorder can destroy condensation, leading to a 'Bose glass'. This phase has been very elusive in experiments owing to the absence of any broken symmetry and to the simultaneous absence of a finite energy gap in the spectrum. Here we report the observation of a Bose glass of field-induced magnetic quasiparticles in a doped quantum magnet (bromine-doped dichloro-tetrakis-thiourea-nickel, DTN). The physics of DTN in a magnetic field is equivalent to that of a lattice gas of bosons in the grand canonical ensemble; bromine doping introduces disorder into the hopping and interaction strength of the bosons, leading to their localization into a Bose glass down to zero field, where it becomes an incompressible Mott glass. The transition from the Bose glass (corresponding to a gapless spin liquid) to the Bose-Einstein condensate (corresponding to a magnetically ordered phase) is marked by a universal exponent that governs the scaling of the critical temperature with the applied field, in excellent agreement with theoretical predictions. Our study represents a quantitative experimental account of the universal features of disordered bosons in the grand canonical ensemble.

  2. Bose Condensates in Interaction with Excitations: A Two-Component Space-Dependent Model Close to Equilibrium

    NASA Astrophysics Data System (ADS)

    Arkeryd, Leif; Nouri, Anne

    2015-07-01

    The paper considers a model for Bose gases in the so-called `high-temperature range' below the temperature where Bose-Einstein condensation sets in. The model is of non-linear two-component type, consisting of a kinetic equation with periodic boundary conditions for the distribution function of a gas of excitations interacting with a Bose condensate, which is described by a Gross-Pitaevskii equation. Results on well-posedness and long time behaviour are proved in a Sobolev space setting close to equilibrium.

  3. Landau-Ginzburg perspective of finite-temperature phase diagrams of a two-component Fermi-Bose mixture

    SciTech Connect

    Fodor, Michael; Ling, Hong Y.

    2010-10-15

    We consider a mixture of two-component Fermi and (one-component) Bose gases under the repulsive Bose-Fermi and attractive Fermi-Fermi interactions. We perform a systematic study of the finite-temperature phase diagrams in the chemical potential space, identifying, using the Landau-Ginzburg theory, the features generic to the phase diagrams within the validity of our model. We apply the theory to explore the physics of correlated BCS pairing among fermions in a tightly confined trap surrounded by a large Bose-Einstein condensate gas.

  4. Vortex pairing in two-dimensional Bose gases

    SciTech Connect

    Foster, Christopher J.; Davis, Matthew J.; Blakie, P. Blair

    2010-02-15

    Recent experiments on ultracold Bose gases in two dimensions have provided evidence for the existence of the Berezinskii-Kosterlitz-Thouless (BKT) phase via analysis of the interference between two independent systems. In this work we study the two-dimensional quantum degenerate Bose gas at finite temperature using the projected Gross-Pitaevskii equation classical field method. Although this describes the highly occupied modes of the gas below a momentum cutoff, we have developed a method to incorporate the higher momentum states in our model. We concentrate on finite-sized homogeneous systems in order to simplify the analysis of the vortex pairing. We determine the dependence of the condensate fraction on temperature and compare this to the calculated superfluid fraction. By measuring the first order correlation function we determine the boundary of the Bose-Einstein condensate and BKT phases, and find it is consistent with the superfluid fraction decreasing to zero. We reveal the characteristic unbinding of vortex pairs above the BKT transition via a coarse-graining procedure. Finally, we model the procedure used in experiments to infer system correlations [Hadzibabic et al., Nature 441, 1118 (2006)], and quantify its level of agreement with directly calculated in situ correlation functions.

  5. Comparison between microscopic methods for finite-temperature Bose gases

    SciTech Connect

    Cockburn, S. P.; Proukakis, N. P.; Negretti, A.; Henkel, C.

    2011-04-15

    We analyze the equilibrium properties of a weakly interacting, trapped quasi-one-dimensional Bose gas at finite temperatures and compare different theoretical approaches. We focus in particular on two stochastic theories: a number-conserving Bogoliubov (NCB) approach and a stochastic Gross-Pitaevskii equation (SGPE) that have been extensively used in numerical simulations. Equilibrium properties like density profiles, correlation functions, and the condensate statistics are compared to predictions based upon a number of alternative theories. We find that due to thermal phase fluctuations, and the corresponding condensate depletion, the NCB approach loses its validity at relatively low temperatures. This can be attributed to the change in the Bogoliubov spectrum, as the condensate gets thermally depleted, and to large fluctuations beyond perturbation theory. Although the two stochastic theories are built on different thermodynamic ensembles (NCB, canonical; SGPE, grand-canonical), they yield the correct condensate statistics in a large Bose-Einstein condensate (BEC) (strong enough particle interactions). For smaller systems, the SGPE results are prone to anomalously large number fluctuations, well known for the grand-canonical, ideal Bose gas. Based on the comparison of the above theories to the modified Popov approach, we propose a simple procedure for approximately extracting the Penrose-Onsager condensate from first- and second-order correlation functions that is both computationally convenient and of potential use to experimentalists. This also clarifies the link between condensate and quasicondensate in the Popov theory of low-dimensional systems.

  6. A primary noise thermometer for ultracold Bose gases

    NASA Astrophysics Data System (ADS)

    Gati, R.; Esteve, J.; Hemmerling, B.; Ottenstein, T. B.; Appmeier, J.; Weller, A.; Oberthaler, M. K.

    2006-09-01

    We discuss in detail the experimental investigation of thermally induced fluctuations of the relative phase between two weakly coupled Bose Einstein condensates (BECs). In analogy to superconducting Josephson junctions, the weak coupling originates from a tunnelling process through a potential barrier which is obtained by trapping the condensates in an optical double-well potential. The observed fluctuations of the relative phase are in quantitative agreement with a many body two mode model at finite temperature. The agreement demonstrates the possibility of using the phase fluctuation measurements in a bosonic Josephson junction (BJJ) as a primary thermometer. This new method allows for measuring temperatures far below the critical temperature where standard methods based on time of flight measurements fail. We employ this new thermometer to probe the heat capacity of a degenerate Bose gas as a function of temperature.

  7. Magnetic Solitons in a Binary Bose-Einstein Condensate.

    PubMed

    Qu, Chunlei; Pitaevskii, Lev P; Stringari, Sandro

    2016-04-22

    We study solitary waves of polarization (magnetic solitons) in a two-component Bose gas with slightly unequal repulsive intra- and interspin interactions. In experimentally relevant conditions we obtain an analytical solution which reveals that the width and the velocity of magnetic solitons are explicitly related to the spin healing length and the spin sound velocity of the Bose mixture, respectively. We calculate the profiles, the energy, and the effective mass of the solitons in the absence of external fields and investigate their oscillation in a harmonic trap where the oscillation period is calculated as a function of the oscillation amplitude. The stability of magnetic solitons in two dimensions and the conditions for their experimental observation are also briefly discussed.

  8. Magnetic Solitons in a Binary Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Qu, Chunlei; Pitaevskii, Lev P.; Stringari, Sandro

    2016-04-01

    We study solitary waves of polarization (magnetic solitons) in a two-component Bose gas with slightly unequal repulsive intra- and interspin interactions. In experimentally relevant conditions we obtain an analytical solution which reveals that the width and the velocity of magnetic solitons are explicitly related to the spin healing length and the spin sound velocity of the Bose mixture, respectively. We calculate the profiles, the energy, and the effective mass of the solitons in the absence of external fields and investigate their oscillation in a harmonic trap where the oscillation period is calculated as a function of the oscillation amplitude. The stability of magnetic solitons in two dimensions and the conditions for their experimental observation are also briefly discussed.

  9. Bose and Mott glass phases in dimerized quantum antiferromagnets

    NASA Astrophysics Data System (ADS)

    Thomson, S. J.; Krüger, F.

    2015-11-01

    We examine the effects of disorder on dimerized quantum antiferromagnets in a magnetic field, using the mapping to a lattice gas of hard-core bosons with finite-range interactions. Combining a strong-coupling expansion, the replica method, and a one-loop renormalization-group analysis, we investigate the nature of the glass phases formed. We find that away from the tips of the Mott lobes, the transition is from a Mott insulator to a compressible Bose glass, however the compressibility at the tips is strongly suppressed. We identify this finding with the presence of a rare Mott glass phase and demonstrate that the inclusion of replica symmetry breaking is vital to correctly describe the glassy phases. This result suggests that the formation of Bose and Mott glass phases is not simply a weak localization phenomenon but is indicative of much richer physics. We discuss our results in the context of both ultracold atomic gases and spin-dimer materials.

  10. Magnetic Solitons in a Binary Bose-Einstein Condensate.

    PubMed

    Qu, Chunlei; Pitaevskii, Lev P; Stringari, Sandro

    2016-04-22

    We study solitary waves of polarization (magnetic solitons) in a two-component Bose gas with slightly unequal repulsive intra- and interspin interactions. In experimentally relevant conditions we obtain an analytical solution which reveals that the width and the velocity of magnetic solitons are explicitly related to the spin healing length and the spin sound velocity of the Bose mixture, respectively. We calculate the profiles, the energy, and the effective mass of the solitons in the absence of external fields and investigate their oscillation in a harmonic trap where the oscillation period is calculated as a function of the oscillation amplitude. The stability of magnetic solitons in two dimensions and the conditions for their experimental observation are also briefly discussed. PMID:27152776

  11. Internal Josephson effects in spinor dipolar Bose-Einstein condensates

    SciTech Connect

    Yasunaga, Masashi; Tsubota, Makoto

    2010-02-15

    We theoretically study the internal Josephson effect, which is driven by spin-exchange interactions and magnetic dipole-dipole interactions, in a three-level system for spin-1 Bose-Einstein condensates, obtaining novel spin dynamics. We introduce single spatial mode approximations into the Gross-Pitaevskii equations and derive the Josephson-type equations, which are analogous to tunneling currents through three junctions between three superconductors. From an analogy with two interacting nonrigid pendulums, we identify unique varied oscillational modes, called the 0-{pi}, 0-running, running-running, 2n{pi} and running-2{pi}, single nonrigid pendulum, and two rigid pendulums phase modes. These Josephson modes in the three states are expected to be found in real atomic Bose gas systems.

  12. Bose polarons in the strongly interacting regime

    NASA Astrophysics Data System (ADS)

    Kedar, Dhruv; Hu, Ming-Guang; van de Graaff, Michael; Corson, John; Cornell, Eric; Jin, Deborah

    2016-05-01

    Impurities immersed in and interacting with a Bose-Einstein condensate (BEC) are predicted to form quasiparticle excitations called Bose polarons. I will present experimental evidence of Bose polarons in cold atoms obtained using radio-frequency spectroscopy to measure the excitation spectrum of fermionic K-40 impurities interacting with a BEC of Rb-87 atoms. We use an interspecies Feshbach resonance to tune the interactions between the impurities and the bosons, and we take data in the strongly interacting regime.

  13. Large N model of bose gases

    NASA Astrophysics Data System (ADS)

    Ke, Ke; Radzihovsky, Leo

    2009-10-01

    We construct the large N model of bose gases. Using an artificial parameter 1/N to do the perturbative analysis to study two models: U(N) bose gases and U(1) xO(N) bose gases. We find that for the U(N) model we get the same Bogoliubov spectrum and LHY thermal dynamical relations with ordinary bose gases. For the U(1) xO(N) model, however, we calculate dispersion relation, chemical potential and free energy when N goes to infinity and find that every quantities depends on the ration of two scattering length and √(na^3).

  14. Collision induced dissociation of doubly-charged ions: Coulomb explosion vs. neutral loss in [Ca(urea)]{sup 2+} gas phase unimolecular reactivity via chemical dynamics simulations

    SciTech Connect

    Spezia, Riccardo; Salpin, Jean-Yves; Cimas, Alvaro; Gaigeot, Marie-Pierre; Song, Kihyung; Hase, William L.

    2012-07-01

    In this paper we report different theoretical approaches to study the gas-phase unimolecular dissociation of the doubly-charged cation [Ca(urea)]{sup 2+}, in order to rationalize recent experimental findings. Quantum mechanical plus molecular mechanical (QM/MM) direct chemical dynamics simulations were used to investigate collision induced dissociation (CID) and rotational-vibrational energy transfer for Ar{sup +} [Ca(urea)]{sup 2+} collisions. For the picosecond time-domain of the simulations, both neutral loss and Coulomb explosion reactions were found and the differences in their mechanisms elucidated. The loss of neutral urea subsequent to collision with Ar occurs via a shattering mechanism, while the formation of two singly-charged cations follows statistical (or almost statistical) dynamics. Vibrational-rotational energy transfer efficiencies obtained for trajectories that do not dissociate during the trajectory integration were used in conjunction with RRKM rate constants to approximate dissociation pathways assuming complete intramolecular vibrational energy redistribution (IVR) and statistical dynamics. This statistical limit predicts, as expected, that at long time the most stable species on the potential energy surface (PES) dominate. These results, coupled with experimental CID from which both neutral loss and Coulomb explosion products were obtained, show that the gas phase dissociation of this ion occurs by multiple mechanisms leading to different products and that reactivity on the complicated PES is dynamically complex. (authors)

  15. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, William K.

    1986-01-01

    A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

  16. Neutralizer optimization

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Mohajeri, Kayhan

    1991-01-01

    The preliminary results of a test program to optimize a neutralizer design for 30 cm xenon ion thrusters are discussed. The impact of neutralizer geometry, neutralizer axial location, and local magnetic fields on neutralizer performance is discussed. The effect of neutralizer performance on overall thruster performance is quantified, for thruster operation in the 0.5-3.2 kW power range. Additionally, these data are compared to data published for other north-south stationkeeping (NSSK) and primary propulsion xenon ion thruster neutralizers.

  17. Free-free absorption of infrared radiation in collisions of electrons with neutral rare-gas atoms

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    A relationship between the inverse bremsstrahlung absorption cross section and the electron neutral momentum transfer cross section has been utilized to determine the infrared free-free continuum absorption coefficient for the negative ions of helium, neon, argon, krypton, and xenon. The values of the momentum transfer cross section for this calculation have been obtained from experimental measurements. Analytical expressions for the absorption coefficient have also been developed. From the results of this calculation, it is possible to determine the absorption coefficient per unit electron density per neutral atom for temperatures in the range from 2500 to 25,000 K. The results are compared with those from tabulations of previous calculations and those computed from theoretical values of the phase shifts for the elastic scattering of electrons by neutral atoms.

  18. Soliton resonance in bose-einstein condensate

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Kulikov, I.

    2002-01-01

    A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.

  19. Collision of Bose Condensate Dark Matter structures

    SciTech Connect

    Guzman, F. S.

    2008-12-04

    The status of the scalar field or Bose condensate dark matter model is presented. Results about the solitonic behavior in collision of structures is presented as a possible explanation to the recent-possibly-solitonic behavior in the bullet cluster merger. Some estimates about the possibility to simulate the bullet cluster under the Bose Condensate dark matter model are indicated.

  20. Periodically dressed Bose-Einstein condensate: a superfluid with an anisotropic and variable critical velocity.

    PubMed

    Higbie, J; Stamper-Kurn, D M

    2002-03-01

    We consider a two-component atomic gas illumined by two intersecting laser beams which induce Raman coupling between the components. This spatially periodic coupling modifies the dispersion relation of the gas. Properties of a Bose-Einstein condensate of such a gas are strongly affected by this modification. Using the quasiparticle excitation spectrum derived from a Bogoliubov transformation, the Landau critical velocity is found to be anisotropic and can be widely tuned by varying properties of the dressing laser beams.

  1. Distribution of E/N and N/e/ in a cross-flow electric discharge laser. [electric field to neutral gas density and electron number density

    NASA Technical Reports Server (NTRS)

    Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.

    1976-01-01

    Measurements have been conducted of the effect of the convection of ions and electrons on the discharge characteristics in a large scale laser. The results are presented for one particular distribution of ballast resistance. Values of electric field, current density, input power density, ratio of electric field to neutral gas density (E/N), and electron number density were calculated on the basis of measurements of the discharge properties. In a number of graphs, the E/N ratio, current density, power density, and electron density are plotted as a function of row number (downstream position) with total discharge current and gas velocity as parameters. From the dependence of the current distribution on the total current, it appears that the electron production in the first two rows significantly affects the current flowing in the succeeding rows.

  2. Josephson Effect in Trapped Spin-orbit Coupled Bose-Einstein Condensation

    NASA Astrophysics Data System (ADS)

    Tang, Wai Ho

    Spin-orbit coupling (SOC) has given rise to many novel states of matter including topological insulators and superconductors. Recent experimental realization of SOC in neutral cold atom systems have opened a new avenue to study its effects in Bose-Einstein condensate. In this study, we discuss the Josephson-like mode in the spin-orbit coupled condensate, and study its decoherence due to thermal effect. We discuss experimental implications of our results.

  3. Peeking and poking at a new quantum fluid: Studies of gaseous Bose-Einstein condensates in magnetic and optical traps

    NASA Astrophysics Data System (ADS)

    Stamper-Kurn, Dan M.

    2000-12-01

    Bose-Einstein condensates of a dilute atomic gas were explored as a testbed for theories of the weakly interacting Bose gas, as a source of coherent matter waves, and as a new quantum fluid. A dc magnetic trap, various optical probing and manipulation techniques and an optical trap were developed for this work. The density and momentum distributions and the interaction energies of ultra-cold Bose gases were measured and found to agree with mean-field theory. The reduction of the condensate fraction due to interactions was observed using a trapping potential created by magnetic and optical forces. The formation of a Bose-Einstein condensate in a super- cooled Bose gas was time resolved, and showed evidence for bosonic stimulation. The reversible formation of a Bose-Einstein condensate through an adiabatic change in the trapping potential was predicted and demonstrated. Excitations in a Bose gas were studied in various regimes. The speed of Bogoliubov sound was measured as a function of condensate density. The frequency and damping rates of collective excitations of both the condensate and the non-condensed cloud were measured over a wide temperature range, providing a critical test of mean- field theory and challenging finite-temperature descriptions. The onset of hydrodynamic oscillations was observed. The dynamic structure factor of a Bose-Einstein condensate was measured by stimulated light scattering. Excitations in the free-particle and phonon regime were accessed, allowing for a measurement of the coherence length, a spectroscopic determination of the excitation spectrum, and the observation of suppressed small-angle light scattering. The development of an all-optical trap for Bose-Einstein condensates led to the creation of spinor condensates, which are described by a vectorial order parameter. Ground-state spin structures were studied and a spin- domain diagram for their description was developed. Metastable Bose condensates were observed, caused by energy

  4. Pluto, Near and Far: PEPSSI Measurements of Energetic Particles During the New Horizons Flyby and Investigating a Pluto Torus of Circumsolar Neutral Gas

    NASA Astrophysics Data System (ADS)

    Hill, Matthew Eric; Kollmann, Peter; McNutt, Ralph L.; Smith, H. Todd; Bagenal, Fran; Brown, Lawrence E.; Elliott, Heather A.; Haggerty, Dennis K.; Horanyi, Mihaly; Krimigis, Stamatios M.; Kusterer, Martha; Lisse, Carey M.; McComas, David J.; Piquette, Marcus; Strobel, Darrell; Szalay, Jamey; Vandegriff, Jon; Zirnstein, Eric; Ennico, Kimberly; Olkin, Cathy B.; Weaver, Harold A.; Young, Leslie A.; Stern, S. A.

    2015-11-01

    The energetic particle environment at Pluto has been unknown, and little modeled, until this year’s historic encounter by the New Horizon (NH) spacecraft on 14 July 2015. The first energetic particle observations, made with the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument, were downlinked in August 2015. There are variations in the intensities of suprathermal (~3-30 keV/nucleon) ions that are associated with a combination of the position of the spacecraft relative to Pluto, the look direction of PEPSSI, and (potentially) temporal evolution in the system. We present the results of the near encounter with Pluto, to as close as ~11.6 Rp (1 Rp = 1187 km), which, early analysis shows, include large intensity variations associated with Pluto. We also present the concept of a neutral gas torus surrounding the Sun, aligned with Pluto’s orbit, and place observational constraints on it based primarily on comparison of NH measurements with a 3-D Monte Carlo model adapted from analogous satellite tori surrounding Saturn and Jupiter. Such a torus, or perhaps partial torus, could result from neutral N2 escaping from Pluto’s exosphere. Unlike other more massive planets, gaseous neutrals escape Pluto readily via Jeans escape (i.e., owing to the high thermal speed relative to the escape velocity). These neutrals are not directly observable by NH but, once ionized to N2+ or N+ via photolysis or charge exchange, are picked up by the solar wind, ultimately reaching ~50 keV or more, making these pickup ions detectable by PEPSSI. This work was supported by NASA's New Horizons project.

  5. Properties of the single-site reduced density matrix in the Bose-Bose resonance model in the ground state and in quantum quenches

    NASA Astrophysics Data System (ADS)

    Dorfner, F.; Heidrich-Meisner, F.

    2016-06-01

    We study properties of the single-site reduced density matrix in the Bose-Bose resonance model as a function of system parameters. This model describes a single-component Bose gas with a resonant coupling to a diatomic molecular state, here defined on a lattice. A main goal is to demonstrate that the eigenstates of the single-site reduced density matrix have structures that are characteristic for the various quantum phases of this system. Since the Hamiltonian conserves only the global particle number but not the number of bosons and molecules individually, these eigenstates, referred to as optimal modes, can be nontrivial linear combinations of bare eigenstates of the molecular and boson particle number. We numerically analyze the optimal modes and their weights, the latter giving the importance of the corresponding state, in the ground state of the Bose-Bose resonance model. We find that the single-site von Neumann entropy is sensitive to the location of the phase boundaries. We explain the structure of the optimal modes and their weight spectra using perturbation theory and via a comparison to results for the single-component Bose-Hubbard model. We further study the dynamical evolution of the optimal modes and of the single-site entanglement entropy in two quantum quenches that cross phase boundaries of the model and show that these quantities are thermal in the steady state. For our numerical calculations, we use the density-matrix renormalization group method for ground-state calculations and time evolution in a Krylov subspace for the quench dynamics as well as exact diagonalization.

  6. Response functions and two-photon scattering in trapped atomic Bose gases

    NASA Astrophysics Data System (ADS)

    Luxat, David L.

    In the first half of the thesis, we study the linear response of a trapped 3D Bose-condensed gas to a two-photon Raman scattering probe, in a manner analogous to the tunneling of electrons in metals. The tunneling current is given in terms of the normal and anomalous Green's functions describing atoms. We calculate these normal and anomalous Green's functions within the Bogoliubov-Popov approximation. Our analysis generalizes the work of Burnett and coworkers. We emphasize that "outcoupled" atoms from a Bose-condensed gas can be associated with the excitation (as well as the destruction) of a Bogoliubov excitation. We present a detailed numerical calculation of the different components of the tunneling current as a function of the photon energy, for various temperatures. We use the local density approximation (LDA) to treat the trapped gas. In the second half of the thesis, we extend the discussion of response functions to other trapped boson systems. We first study a 1D trapped Bose gas with quasi-long-range order, associated with a quasicondensate. With a Raman outcoupling experiment, we propose that the frequency dependence of the single-particle Green's function can be studied experimentally. This frequency dependent correlation function for the 1D quasicondensate exhibits the expected power law decay at long wavelengths and low energies, modified by the presence of the harmonic trapping potential. In all previous work on 1D trapped Bose gases, only the static (or zero frequency) correlation functions were studied. We next study single-particle and two-particle response functions of a Bose gas with two atomic hyperfine states in an optical lattice and show that these response functions are accessible using a Raman probe. Such a two species interacting Bose gas trapped in a periodic potential has been studied extensively in recent years, but only the thermodynamic properties were considered. Our work is done within a mean-field approximation but this is expected

  7. Probing the Bose glass-superfluid transition using quantum quenches of disorder

    NASA Astrophysics Data System (ADS)

    Meldgin, Carolyn; Ray, Ushnish; Russ, Philip; Chen, David; Ceperley, David M.; Demarco, Brian

    2016-07-01

    The disordered Bose-Hubbard model--a paradigm for strongly correlated and disordered bosonic systems--is central to our understanding of quantum phase transitions. Despite extensive theoretical work on the disordered Bose-Hubbard model, little is known about the impact of temperature, the dynamical behaviour of quantum phases, and how equilibrium is affected during quantum phase transitions. These issues are critically important to applications such as quantum annealing and electronics based on quantum phase transitions. Here, we use a quantum quench of disorder in an ultracold lattice gas to dynamically probe the superfluid-Bose glass quantum phase transition at non-zero temperature ( Fig. 1). By measuring excitations generated during the quench, we provide evidence for superfluid puddles in the Bose glass phase and produce a superfluid-Bose glass phase diagram consistent with completely constrained, finite temperature, and equilibrium quantum Monte Carlo simulations. The residual energy from the quench, which is an efficacy measure for optimization through quantum annealing, is unchanged for quench times spanning nearly a hundred tunnelling times.

  8. Density-functional theory of two-component Bose gases in one-dimensional harmonic traps

    SciTech Connect

    Hao Yajiang; Chen Shu

    2009-10-15

    We investigate the ground-state properties of two-component Bose gases confined in one-dimensional harmonic traps in the scheme of density-functional theory. The density-functional calculations employ a Bethe-ansatz-based local-density approximation for the correlation energy, which accounts for the correlation effect properly from the weakly interacting regime to the strongly interacting regime. For the binary Bose mixture with spin-independent interaction, the homogeneous reference system is exactly solvable by the Bethe-ansatz method. Within the local-density approximation, we determine the density distribution of each component and study its evolution from Bose distributions to Fermi-like distribution with the increase in interaction. For the binary mixture of Tonks-Girardeau gases with a tunable interspecies repulsion, with a generalized Bose-Fermi transformation we show that the Bose mixture can be mapped into a two-component Fermi gas, which corresponds to exact soluble Yang-Gaudin model for the homogeneous system. Based on the ground-state energy function of the Yang-Gaudin model, the ground-state density distributions are calculated for various interspecies interactions. It is shown that with the increase in interspecies interaction, the system exhibits composite-fermionization crossover.

  9. Superfluidity of a nonequilibrium Bose-Einstein condensate of polaritons

    SciTech Connect

    Wouters, Michiel; Savona, Vincenzo

    2010-02-01

    We study theoretically superfluidity in a driven-dissipative Bose gas out of thermal equilibrium, and discuss the relation with conventional superfluids. We show how the superfluid behavior is characterized by a dramatic increase in the lifetime of a quantized vortex and point out the influence of the spatial geometry of the condensate. We apply our study to a condensate of polaritons in a semiconductor microcavity, whose properties can be directly inferred from optical spectroscopy. We propose three different experimental schemes to measure the vorticity of the polariton condensate.

  10. Pairing and condensation in a resonant Bose-Fermi mixture

    SciTech Connect

    Fratini, Elisa; Pieri, Pierbiagio

    2010-05-15

    We study by diagrammatic means a Bose-Fermi mixture, with boson-fermion coupling tuned by a Fano-Feshbach resonance. For increasing coupling, the growing boson-fermion pairing correlations progressively reduce the boson condensation temperature and make it eventually vanish at a critical coupling. Such quantum critical point depends very weakly on the population imbalance and, for vanishing boson densities, coincides with that found for the polaron-molecule transition in a strongly imbalanced Fermi gas, thus bridging two quite distinct physical systems.

  11. Bose-Einstein Condensates with Spin-Orbit Interaction

    SciTech Connect

    Ho Tinlun; Zhang Shizhong

    2011-10-07

    Motivated by recent experiments carried out by Spielman's group at NIST, we study a general scheme for generating families of gauge fields, spanning the scalar, spin-orbit, and non-Abelian regimes. The NIST experiments, which impart momentum to bosons while changing their spin state, can in principle realize all these. In the spin-orbit regime, we show that a Bose gas is a spinor condensate made up of two non-orthogonal dressed spin states carrying different momenta. As a result, its density shows a stripe structure with a contrast proportional to the overlap of the dressed states, which can be made very pronounced by adjusting the experimental parameters.

  12. Isothermal compressibility determination across Bose-Einstein condensation

    NASA Astrophysics Data System (ADS)

    Poveda-Cuevas, F. J.; Castilho, P. C. M.; Mercado-Gutierrez, E. D.; Fritsch, A. R.; Muniz, S. R.; Lucioni, E.; Roati, G.; Bagnato, V. S.

    2015-07-01

    We apply the global thermodynamic variables approach to experimentally determine the isothermal compressibility parameter κT of a trapped Bose gas across the phase transition. We demonstrate the behavior of κT around the critical pressure, revealing the second-order nature of the phase transition. Compressibility is the most important susceptibility to characterize the system. The use of global variables shows advantages with respect to the usual local density approximation method and can be applied to a broad range of situations.

  13. Observation of Dynamical Fermionization in 1D Bose Gases

    NASA Astrophysics Data System (ADS)

    Malvania, Neel; Xia, Lin; Xu, Wei; Wilson, Joshua M.; Zundel, Laura A.; Rigol, Marcos; Weiss, David S.

    2016-05-01

    The momentum distribution of a harmonically trapped 1D Bose gases in the Tonks-Girardeau limit is expected to undergo dynamical fermionization. That is, after the harmonic trap is suddenly turned off, the momentum distribution steadily transforms into that of an ideal Fermi gas in the same initial trap. We measure 1D momentum distributions at variable times after such a quench, and observe the predicted dynamical fermionization. In addition to working in the strong coupling limit, we also perform the experiment with intermediate coupling, where theoretical calculations are more challenging.

  14. First results from the Goddard High-Resolution Spectrograph - Element abundances as a function of velocity in the neutral gas toward Xi Persei

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Cardelli, Jason A.; Bruhweiler, Frederick C.; Smith, Andrew M.; Ebbets, Dennis C.

    1991-01-01

    Observations of ultraviolet interstellar absorption lines toward Xi Persei obtained with the echelle mode of the Goddard High-Resolution Spectrograph (GHRS) aboard the HST at a resolution of 3.5 km/s are presented. The data for O I, C II, Mg II, S II, Fe II, Si II, Mn II, and Zn II are converted into representations of apparent column density per unit velocity, Na(v), over the velocity range from -30 to +40 km/s. The profiles for ions that are the dominant state of ionization in neutral clouds permit a study of the variation of element abundance with velocity caused by changes in the gas phase depletion in the different absorbing regions situated toward Xi Per. In the denser portions of the diffuse clouds, heavy element depletions are very large. However, in absorbing components near -5 and +25 km/s, the depletions are less severe, with a nearly solar gas phase abundance ratio being found for the gas in the +25 km/s component. The measurements confirm that the GHRS is well suited for diagnostic spectroscopy of interstellar gas.

  15. Recent developments in Bose-Einstein condensation

    SciTech Connect

    Kalman, G.

    1997-09-22

    This paper contains viewgraphs on developments on Bose-Einstein condensation. Some topics covered are: strongly coupled coulomb systems; standard response functions of the first and second kind; dynamical mean field theory; quasi localized charge approximation; and the main equations.

  16. A Massively Parallel Particle Code for Rarefied Ionized and Neutral Gas Flows in Earth and Planetary Atmospheres, Ionospheres and Magnetospheres

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    2004-01-01

    In order to understand the global structure, dynamics, and physical and chemical processes occurring in the upper atmospheres, exospheres, and ionospheres of the Earth, the other planets, comets and planetary satellites and their interactions with their outer particles and fields environs, it is often necessary to address the fundamentally non-equilibrium aspects of the physical environment. These are regions where complex chemistry, energetics, and electromagnetic field influences are important. Traditional approaches are based largely on hydrodynamic or magnetohydrodynamic MHD) formulations and are very important and highly useful. However, these methods often have limitations in rarefied physical regimes where the molecular collision rates and ion gyrofrequencies are small and where interactions with ionospheres and upper neutral atmospheres are important.

  17. The Star Formation Rate Efficiency of Neutral Atomic-dominated Hydrogen Gas in the Outskirts of Star-forming Galaxies from z ~ 1 to z ~3

    NASA Astrophysics Data System (ADS)

    Rafelski, Marc; Gardner, Jonathan P.; Fumagalli, Michele; Neeleman, Marcel; Teplitz, Harry I.; Grogin, Norman; Koekemoer, Anton M.; Scarlata, Claudia

    2016-07-01

    Current observational evidence suggests that the star formation rate (SFR) efficiency of neutral atomic hydrogen gas measured in damped Lyα systems (DLAs) at z˜ 3 is more than 10 times lower than predicted by the Kennicutt-Schmidt (KS) relation. To understand the origin of this deficit, and to investigate possible evolution with redshift and galaxy properties, we measure the SFR efficiency of atomic gas at z ˜ 1, z ˜ 2, and z˜ 3 around star-forming galaxies. We use new robust photometric redshifts in the Hubble Ultra Deep Field to create galaxy stacks in these three redshift bins, and measure the SFR efficiency by combining DLA absorber statistics with the observed rest-frame UV emission in the galaxies’ outskirts. We find that the SFR efficiency of H i gas at z\\gt 1 is ˜1%-3% of that predicted by the KS relation. Contrary to simulations and models that predict a reduced SFR efficiency with decreasing metallicity and thus with increasing redshift, we find no significant evolution in the SFR efficiency with redshift. Our analysis instead suggests that the reduced SFR efficiency is driven by the low molecular content of this atomic-dominated phase, with metallicity playing a secondary effect in regulating the conversion between atomic and molecular gas. This interpretation is supported by the similarity between the observed SFR efficiency and that observed in local atomic-dominated gas, such as in the outskirts of local spiral galaxies and local dwarf galaxies.

  18. Induced interactions in a superfluid Bose-Fermi mixture

    NASA Astrophysics Data System (ADS)

    Kinnunen, J. J.; Bruun, G. M.

    2015-04-01

    We analyze a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC crossover. Using a quasiparticle random-phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC, respectively, we show that the single-particle and collective excitations of the Fermi gas give rise to an induced interaction between the bosons, which varies strongly with momentum and frequency. It diverges at the sound mode of the Fermi superfluid, resulting in a sharp avoided crossing feature and a corresponding sign change of the interaction energy shift in the excitation spectrum of the BEC. In addition, the excitation of quasiparticles in the Fermi superfluid leads to damping of the excitations in the BEC. Besides studying induced interactions themselves, we can use these prominent effects to systematically probe the strongly interacting Fermi gas.

  19. Improvement of activated carbons as oxygen reduction catalysts in neutral solutions by ammonia gas treatment and their performance in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Watson, Valerie J.; Nieto Delgado, Cesar; Logan, Bruce E.

    2013-11-01

    Commercially available activated carbon (AC) powders from different precursor materials (peat, coconut shell, coal, and hardwood) were treated with ammonia gas at 700 °C to improve their performance as oxygen reduction catalysts in neutral pH solutions used in microbial fuel cells (MFCs). The ammonia treated ACs exhibited better catalytic performance in rotating ring-disk electrode tests than their untreated precursors, with the bituminous based AC most improved, with an onset potential of Eonset = 0.12 V (untreated, Eonset = 0.08 V) and n = 3.9 electrons transferred in oxygen reduction (untreated, n = 3.6), and the hardwood based AC (treated, Eonset = 0.03 V, n = 3.3; untreated, Eonset = -0.04 V, n = 3.0). Ammonia treatment decreased oxygen content by 29-58%, increased nitrogen content to 1.8 atomic %, and increased the basicity of the bituminous, peat, and hardwood ACs. The treated coal based AC cathodes had higher maximum power densities in MFCs (2450 ± 40 mW m-2) than the other AC cathodes or a Pt/C cathode (2100 ± 1 mW m-2). These results show that reduced oxygen abundance and increased nitrogen functionalities on the AC surface can increase catalytic performance for oxygen reduction in neutral media.

  20. Determination of Neutral Monosaccharides as Per-O-methylated Derivatives Directly from a Drop of Whole Blood by Gas Chromatography-Mass Spectrometry.

    PubMed

    Ciucanu, Ionel; Pilat, Luminiţa; Ciucanu, Cristian Ionuţ; Şişu, Eugen

    2015-11-01

    A new analytical procedure was developed for the simultaneous quantification of neutral monosaccharides from a drop of whole blood using gas chromatography-mass spectrometry analysis (GC-MS) of their per-O-methylated derivatives. The per-O-methylation reaction with methyl iodide and solid sodium hydroxide in methyl sulfoxide was used for the first time for analysis of blood monosaccharides. A blood drop volume of 0.6 μL was used without special purification. The elimination of the undesirable components was carried out during methylation in the presence of a strong base and by liquid extraction of the per-O-methylated monosaccharides. The neutral monosaccharides with an anomeric center gave four per-O-methylated isomers, which were well-separated using a capillary column. Identification was done by electron impact mass spectrometry fragmentation, retention times, and library searching. The limits of detection were determined for standards and varied from 2.0 to 2.3 ng mL(-1). Recoveries for human blood samples varied from 99.22% to 99.65%. The RSD values ranged from 1.92 to 2.37. The method is fast, sensitive, reproducible, and an alternative to current methods for quantitative analysis of blood monosaccharides. PMID:26444378

  1. Coupling of the Photosphere to the Solar Corona: A laboratory and observational study of Alfvén wave interaction with a neutral gas

    SciTech Connect

    watts, Christopher

    2010-01-31

    The grant funded a three year project to investigate the role of Alfvén waves as a possible mechanism heating plasmas, with relevance to solar coronal heating. Evidence suggests that there is strong coupling between the solar photosphere, corona and solar wind through Alfvén wave interaction with the neutral gas particles. A laboratory experimental and solar observational plan was designed to investigate in detail this interaction. Although many of the original research goals were met, difficulties in detecting the Alfvén wave signature meant that much of the research was stymied. This report summaries the work during the grant period, the challenges encountered and overcome, and the future research directions.

  2. Structure of the martian ionosphere as revealed by the Neutral Gas and Ion Mass Spectrometer during the first two years of the MAVEN mission

    NASA Astrophysics Data System (ADS)

    Benna, Mehdi; Yelle, Roger; Grebowsky, Joseph; Fox, Jane L.; Mahaffy, Paul

    2016-07-01

    We report the results of the observations of the ionosphere of Mars by the Neutral Gas and Ion Mass Spectrometer (NGIMS). These observations were conducted during the first two years of the Mars Atmosphere and Volatile Evolution mission (MAVEN), which also cover a full Martian year. The NGIMS observations revealed the spatial and temporal structures in the density distributions of major and several minor ion species (H_2^+, H_3^+, He^+, O_2^+, C^+, CH^+, N^+, NH^+, O^+, OH^+, H_2O^+, H_3O^+, N_2^+/CO^+, CO^+/HOC^+/N_2H^+, NO^+, HNO^+, O_2^+, HO_2^+, Ar^+, ArH^+, CO_2^+, and OCOH^+). Dusk/dawn and day/night asymmetries in the density distributions were also observed for nearly all ion species. Additionally, NGIMS revealed the presence of a persistent metal layer below 140 km. This layer was accessible for measurement during the MAVEN's "deep-dip" campaigns.

  3. Behaviour and stability of Trivelpiece-Gould modes in non-neutral plasma containing small density fraction of background gas ions

    NASA Astrophysics Data System (ADS)

    Yeliseyev, Y. N.

    2013-03-01

    It is shown that the frequencies of Trivelpiece-Gould (TG) modes in non-neutral plasma can get into the low-frequency range due to the Doppler shift caused by plasma rotation in crossed fields. TG modes interact with the ion modes that leads to plasma instability. In paper the frequency spectrum of "cold" electron plasma completely filling a waveguide and containing small density fraction of ions of background gas is determined numerically. For ions the kinetic description is used. Oscillations having azimuthal number m = 2 are considered. In this case both low- and upper-hybrid TG modes get into the low-frequency range. The spectrum consists of families of "modified" ion cyclotron (MIC) modes and electron TG modes with the frequencies equal to hybrid frequencies with the Doppler shift. The growth rates of upper-hybrid modes are much faster than the growth rates of low-hybrid and MIC modes.

  4. Behaviour and stability of Trivelpiece-Gould modes in non-neutral plasma containing small density fraction of background gas ions

    SciTech Connect

    Yeliseyev, Y. N.

    2013-03-19

    It is shown that the frequencies of Trivelpiece-Gould (TG) modes in non-neutral plasma can get into the low-frequency range due to the Doppler shift caused by plasma rotation in crossed fields. TG modes interact with the ion modes that leads to plasma instability. In paper the frequency spectrum of 'cold' electron plasma completely filling a waveguide and containing small density fraction of ions of background gas is determined numerically. For ions the kinetic description is used. Oscillations having azimuthal number m= 2 are considered. In this case both low- and upper-hybrid TG modes get into the low-frequency range. The spectrum consists of families of 'modified' ion cyclotron (MIC) modes and electron TG modes with the frequencies equal to hybrid frequencies with the Doppler shift. The growth rates of upper-hybrid modes are much faster than the growth rates of low-hybrid and MIC modes.

  5. Skyrmions in a ferromagnetic Bose-Einstein condensate.

    PubMed

    Al Khawaja, U; Stoof, H

    2001-06-21

    Multi-component Bose-Einstein condensates provide opportunities to explore experimentally the wealth of physics associated with the spin degrees of freedom. The ground-state properties and line-like vortex excitations of these quantum systems have been studied theoretically. In principle, nontrivial spin textures consisting of point-like topological excitations, or skyrmions, could exist in a multi-component Bose-Einstein condensate, owing to the superfluid nature of the gas. Although skyrmion excitations are already known in the context of nuclear physics and the quantum-Hall effect, creating these excitations in an atomic condensate would offer an opportunity to study their physical behaviour in much greater detail, while also enabling an ab initio comparison between theory and experiment. Here we investigate theoretically the stability of skyrmions in a fictitious spin-1/2 condensate of 87Rb atoms. We find that skyrmions can exist in such a gas only as a metastable state, but with a lifetime comparable to (or even longer than) the typical lifetime of the condensate itself.

  6. Simulations of thermal Bose fields in the classical limit

    SciTech Connect

    Davis, M.J.; Morgan, S.A.; Burnett, K.

    2002-11-01

    We demonstrate that the time-dependent projected Gross-Pitaevskii equation (GPE) derived earlier [M. J. Davis, R. J. Ballagh, and K. Burnett, J. Phys. B 34, 4487 (2001)] can represent the highly occupied modes of a homogeneous, partially-condensed Bose gas. Contrary to the often held belief that the GPE is valid only at zero temperature, we find that this equation will evolve randomized initial wave functions to a state describing thermal equilibrium. In the case of small interaction strengths or low temperatures, our numerical results can be compared to the predictions of Bogoliubov theory and its perturbative extensions. This demonstrates the validity of the GPE in these limits and allows us to assign a temperature to the simulations unambiguously. However, the GPE method is nonperturbative, and we believe it can be used to describe the thermal properties of a Bose gas even when Bogoliubov theory fails. We suggest a different technique to measure the temperature of our simulations in these circumstances. Using this approach we determine the dependence of the condensate fraction and specific heat on temperature for several interaction strengths, and observe the appearance of vortex networks. Interesting behavior near the critical point is observed and discussed.

  7. Neutral hydrogen gas, past and future star formation in galaxies in and around the `Sausage' merging galaxy cluster

    NASA Astrophysics Data System (ADS)

    Stroe, Andra; Oosterloo, Tom; Röttgering, Huub J. A.; Sobral, David; van Weeren, Reinout; Dawson, William

    2015-09-01

    CIZA J2242.8+5301 (z = 0.188, nicknamed `Sausage') is an extremely massive (M200 ˜ 2.0 × 1015 M⊙), merging cluster with shock waves towards its outskirts, which was found to host numerous emission line galaxies. We performed extremely deep Westerbork Synthesis Radio Telescope H I observations of the `Sausage' cluster to investigate the effect of the merger and the shocks on the gas reservoirs fuelling present and future star formation (SF) in cluster members. By using spectral stacking, we find that the emission line galaxies in the `Sausage' cluster have, on average, as much H I gas as field galaxies (when accounting for the fact cluster galaxies are more massive than the field galaxies), contrary to previous studies. Since the cluster galaxies are more massive than the field spirals, they may have been able to retain their gas during the cluster merger. The large H I reservoirs are expected to be consumed within ˜0.75-1.0 Gyr by the vigorous SF and active galactic nuclei activity and/or driven out by the outflows we observe. We find that the star formation rate (SFR) in a large fraction of H α emission line cluster galaxies correlates well with the radio broad-band emission, tracing supernova remnant emission. This suggests that the cluster galaxies, all located in post-shock regions, may have been undergoing sustained SFR for at least 100 Myr. This fully supports the interpretation proposed by Stroe et al. and Sobral et al. that gas-rich cluster galaxies have been triggered to form stars by the passage of the shock.

  8. Warp or lag? The ionized and neutral hydrogen gas in the edge-on dwarf galaxy UGC 1281

    NASA Astrophysics Data System (ADS)

    Kamphuis, P.; Peletier, R. F.; van der Kruit, P. C.; Heald, G. H.

    2011-07-01

    The properties of gas in the haloes of galaxies constrain global models of the interstellar medium. Kinematical information is of particular interest since it is a clue to the origin of the gas. Until now mostly massive galaxies have been investigated for their halo properties. Here we report on deep H I and Hα observations of the edge-on dwarf galaxy UGC 1281 in order to determine the existence of extraplanar gas and the kinematics of this galaxy. This is the first time a dwarf galaxy is investigated for its gaseous halo characteristics. We have obtained Hα integral field spectroscopy using PPAK at Calar Alto and deep H I observations with the Westerbork Synthesis Radio Telescope (WSRT) of this edge-on dwarf galaxy. These observations are compared to 3D models in order to determine the distribution of H I in the galaxy. We find that UGC 1281 has Hα emission up to 25 arcsec (655 pc) in projection above the plane and in general a low Hα flux. Compared to other dwarf galaxies UGC 1281 is a normal dwarf galaxy with a slowly rising rotation curve that flattens off at 60 km s-1 and a central depression in its H I distribution. Its H I extends 70 arcsec (1.8 kpc) in projection from the plane. This gas can be explained by either a warp partially in the line-of-sight or a purely edge-on warp with rotational velocities that decline with a vertical gradient of 10.6 ± 3.7 km s-1 kpc-1. The line-of-sight warp model is the preferred model as it is conceptually simpler. In either model the warp starts well within the optical radius.

  9. A simulation study of interactions of Space-Shuttle generated electron beams with ambient plasma and neutral gas

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The object was to conduct large scale simulations of electron beams injected into space. The study of active injection of electron beams from spacecraft is important since it provides valuable insight into beam-plasma interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw return current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional particle simulations with collisional processes included are used to show how these different and often coupled processes can be utilized to enhance beam propagation from the spacecraft. To understand the radical expansion of mechanism of an electron beam from a highly charged spacecraft, two dimensional particle in cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge buildup at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.

  10. A simulation study of interactions of space-shuttle generated electron beams with ambient plasma and neutral gas

    NASA Technical Reports Server (NTRS)

    Winglee, Robert M.

    1991-01-01

    The objective was to conduct large scale simulations of electron beams injected into space. The study of the active injection of electron beams from spacecraft is important, as it provides valuable insight into the plasma beam interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional (three velocity) particle simulations with collisional processes included are used to show how these different and often coupled processes can be used to enhance beam propagation from the spacecraft. To understand the radial expansion mechanism of an electron beam injected from a highly charged spacecraft, two dimensional particle-in-cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge build-up at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.

  11. Experiments on hydrodynamic transport in ultra-cold bose gasses

    NASA Astrophysics Data System (ADS)

    Koller, S. B.

    2012-09-01

    At temperatures near the absolut zero, a gas, here atomic sodium vapour, with high enough density cannot be described as tiny balls moving around as in classical physics. Since the temperature is low, the atoms are so slow that the matterwave of each atom starts to extend over the size of the atom and even over the interatomic distance. Therefore, they start to interfere like waves. Quantum mechanics start to dominate the physics in this regime. Further, depending on the sort of atoms (bosons or fermions) the atoms prefer to be in the same state or avoid to be in the same state. In the case of bosons as in the thesis, if the temperature is lowered to sub micro Kelvin temperature, a new state of matter appears after a phase transition - a macroscopic, standing wave, the Bose-Einstein condensate. This leads to a new phenomena: superfluidity - frictionless flow, second sound, vorticity and coherent scattering effects to name a few. The atoms are trapped in a elongated trap as in most of the experiments in ultra cold gasses. Usually experiments are done in a regime where the atoms seldomly collide with each other while travelling from one end to the other end of the cloud. In this experiment, however, the atoms collide many times with each other when they oscillate in the trap. This means that the cloud is hydrodynamic and leads to a very different behaviour. Two different sound waves (first and second sound), heat conduction, and collisional dominated transport can be observed in this case. The fact that the gas is weakly interacting allows comparison with current theory. At very low temperatures as in the experiments described in the thesis, the Bose character strongly alters the collisions of the atoms. The outcome of the collision does not only depend on the colliding atoms, but also on the atoms near by in phase space. The experiments outlined in this thesis cover some aspects of physics involved. Vortices have been created and observed in the Bose

  12. Spin-incoherent one-dimensional spin-1 Bose Luttinger liquid

    NASA Astrophysics Data System (ADS)

    Jen, H. H.; Yip, S.-K.

    2016-09-01

    We investigate spin-incoherent Luttinger liquid of a one-dimensional spin-1 Bose gas in a harmonic trap. In this regime highly degenerate spin configurations emerge since the energy splitting between different spin states is much less than the thermal energy of the system, while the temperature is low enough that the lowest energetic orbitals are occupied. As an example we numerically study the momentum distribution of a one-dimensional spin-1 Bose gas in Tonks-Girardeau gas limit and in the sector of zero magnetization. We find that the momentum distributions broaden as the number of atoms increase due to the averaging of spin function overlaps. Large momentum (p ) asymptotic is analytically derived, showing the universal 1 /p4 dependence. We demonstrate that the spin-incoherent Luttinger liquid has a momentum distribution also distinct from spinless bosons at finite temperature.

  13. BNg3F3: the first three noble gas atoms inserted into mono-centric neutral compounds - a theoretical study.

    PubMed

    Chen, Wei; Chen, Guang-Hui; Wu, Di; Wang, Qiang

    2016-06-29

    Following the study of HXeOXeH and HXeCCXeH, in which two Xe atoms were inserted into H2O and C2H2 theoretically and experimentally, the structures and stability of BNg3F3 (Ng = Ar, Kr and Xe), in which three Ng atoms are inserted into BF3, have been explored theoretically using DFT and ab initio calculations. It is shown that BNg3F3 (Ng = Ar, Kr and Xe) with D3h symmetry are local minima with short B-Ng bond lengths of 1.966, 2.027 and 2.214 Å at the CCSD(T)/aug-cc-pVTZ/LJ18 level, which are close to their covalent limits. Note that although BNg3F3 (Ng = Kr and Xe) are energetically higher than the dissociation products 3Ng + BF3, they are still kinetically stable as metastable species with protecting barriers of 13.38 and 17.99 kcal mol(-1) for BKr3F3 and BXe3F3. Moreover, BKr3F3, the tri-Kr-inserted compound, even has comparable kinetic stability to HXeOXeH and HXeOXeF. In addition, upon the formation of BNg3F3, there is a large amount of charge transferred from B to Ng of at least 0.619 e. The calculated Wiberg Bond Indices (WBI) suggest that B-Ng bonds are naturally singly bonded; the large vibrational frequencies of B-Ng and Ng-F stretching modes and the negative Laplacian electron density of B-Ng bonds confirm further that BNg3F3 are stiff molecules with covalent B-Ng bonds. It should be noted that three Ng atoms inserted into mono-centric neutral molecules have not been reported previously. We hope that the present theoretical study may provide important evidence for the experimental synthesis of BNg3F3.

  14. Tautomerism in neutral histidine.

    PubMed

    Bermúdez, Celina; Mata, Santiago; Cabezas, Carlos; Alonso, José L

    2014-10-01

    Histidine is an important natural amino acid, involved in many relevant biological processes, which, because of its physical properties, proved difficult to characterize experimentally in its neutral form. In this work, neutral histidine has been generated in the gas phase by laser ablation of solid samples and its N(ε)H tautomeric form unraveled through its rotational spectrum. The quadrupole hyperfine structure, arising from the existing three (14)N nuclei, constituted a site-specifically probe for revealing the tautomeric form as well as the side chain configuration of this proteogenic amino acid.

  15. Microcanonical fluctuations of the condensate in weakly interacting Bose gases

    SciTech Connect

    Idziaszek, Zbigniew

    2005-05-15

    We study fluctuations of the number of Bose condensed atoms in a weakly interacting homogeneous and trapped gases. For a homogeneous system we apply the particle-number-conserving formulation of the Bogoliubov theory and calculate the condensate fluctuations within the canonical and the microcanonical ensembles. We demonstrate that, at least in the low-temperature regime, predictions of the particle-number-conserving and traditional, nonconserving theory are identical, and lead to the anomalous scaling of fluctuations. Furthermore, the microcanonical fluctuations differ from the canonical ones by a quantity which scales normally in the number of particles, thus predictions of both ensembles are equivalent in the thermodynamic limit. We observe a similar behavior for a weakly interacting gas in a harmonic trap. This is in contrast to the trapped, ideal gas, where microcanonical and canonical fluctuations are different in the thermodynamic limit.

  16. Neutral and ionised gas around the post-red supergiant IRC +10 420 at AU size scales

    NASA Astrophysics Data System (ADS)

    Oudmaijer, R. D.; de Wit, W. J.

    2013-03-01

    Context. IRC +10 420 is one of the few known massive stars in rapid transition from the red supergiant phase to the Wolf-Rayet or luminous blue variable phase. Aims: The star has an ionised wind and using the Brγ line we assess the mass-loss on spatial scales of ~1 AU. Methods: We present new VLT Interferometer AMBER data which are combined with all other AMBER data present in the literature. The final dataset covers a position angle range of ~180° and baselines up to 110 m. The spectrally dispersed visibilities, differential phases and line flux are conjointly analysed and modelled. We also present the first AMBER/FINITO observations which cover a larger wavelength range and allow us to observe the Na i doublet at 2.2 μm. The data are complemented by X-Shooter data, which provide a higher spectral resolution view. Results: The Brγ emission line and the Na i doublet are both spatially resolved. After correcting the AMBER data for the fact that the lines are not spectrally resolved, we find that Brγ traces a ring with a diameter of 4.18 mas, in agreement with higher spectral resolution data. We consider a geometric model in which the Brγ emission emerges from the top and bottom rings of an hour-glass shaped structure, viewed almost pole-on. It provides satisfactory fits to most visibilities and differential phases. The fact that we detect line emission from a neutral metal like Na i within the ionised region, a very unusual occurrence, suggests the presence of a dense pseudo-photosphere. Conclusions: The ionised wind can be reproduced with a polar wind, which could well have the shape of an hour-glass. Closer in, the resolved Na i emission is found to occur on scales barely larger than the continuum. This fact and that many yellow hypergiants exhibit this comparatively rare emission hints at the presence of a "Yellow" or even "White Wall" in the Hertzsprung-Russell diagram, preventing them from visibly evolving to the blue. Based on observations at ESO, and in

  17. Origin of saline, neutral-pH, reduced epithermal waters by reaction of acidic magmatic gas condensates with wall rock

    SciTech Connect

    Reed, M.H. . Dept. of Geological Sciences)

    1993-04-01

    Fluid inclusions in quartz and sphalerite of epithermal veins containing galena, sphalerite and chalcopyrite with silver sulfides and electrum commonly have salinities of 2 to 10 weight percent NaCl equivalent. Examples include Bohemia, OR, Comstock, NV, and Creede, CO. Salinities in such base metal-rich systems are apparently greater than those in gold-adularia, base metal-poor systems such as Sleeper, NV, Republic, WA, and Hishikare, Kyushu. Saline epithermal fluids are commonly assumed to have been derived from saline magmatic brines, from local host formations, as has been suggested for Creede, or from evaporative concentration (boiling) of more dilute meteoric ground water. Another possibility, which may be the most common origin, is reaction of wall rocks with magmatic gas condensates rich in HCl and sulfuric acid. A mixture of one part Augustine Volcanic gas condensate in 10 parts cold ground water has a pH of 0.7 and the dominant cation is H[sup +] by a factor of 10[sup 4]. Calculated reaction of this condensate mixture with andesite at 300 C to a water/rock ratio (w/r) of 4.6 yields an NaCl-dominated fluid with a total salinity of 2.1 wt %. and pH 3.7. Further reaction, to w/r 0.14 yields a fluid salinity of 2.6 wt % and pH of 5.7; this fluid is in equilibrium with a propylitic alteration assemblage. Aqueous sulfide accumulates during the rock reaction as sulfate is reduced to sulfide when ferrous iron is oxidized to ferric iron. Sulfide concentration in the latter fluid is 32 ppm, far exceeding sulfate concentration. In the overall reaction, hydrogen ion is exchanged for base cations (including base metals) and sulfate is reduced to sulfide.

  18. THE M81 GROUP DWARF IRREGULAR GALAXY DDO 165. I. HIGH-VELOCITY NEUTRAL GAS IN A POST-STARBURST SYSTEM

    SciTech Connect

    Cannon, John M.; Most, Hans P.; Skillman, Evan D.; Weisz, Daniel R.; Warren, Steven R.; Cook, David; Dolphin, Andrew E.; Kennicutt, Robert C.; Lee, Janice; Seth, Anil; Walter, Fabian E-mail: skillman@astro.umn.edu E-mail: warren@astro.umn.edu E-mail: adolphin@raytheon.com E-mail: jlee@obs.carnegiescience.edu E-mail: walter@mpia.de

    2011-07-01

    We present new multi-configuration Very Large Array H I spectral line observations of the M81 group dwarf irregular post-starburst galaxy DDO 165. The H I morphology is complex, with multiple column density peaks surrounding a large region of very low H I surface density that is offset from the center of the stellar distribution. The bulk of the neutral gas is associated with the southern section of the galaxy; a secondary peak in the north contains {approx}15% of the total H I mass. These components appear to be kinematically distinct, suggesting that either tidal processes or large-scale blowout have recently shaped the interstellar medium (ISM) of DDO 165. Using spatially resolved position-velocity maps, we find multiple localized high-velocity gas features. Cross-correlating with radius-velocity analyses, we identify eight shell/hole structures in the ISM with a range of sizes ({approx}400-900 pc) and expansion velocities ({approx}7-11 km s{sup -1}). These structures are compared with narrow- and broadband imaging from the Kitt Peak National Observatory and the Hubble Space Telescope (HST). Using the latter data, recent works have shown that DDO 165's previous 'burst' phase was extended temporally ({approx}>1 Gyr). We thus interpret the high-velocity gas features, H I holes, and kinematically distinct components of the galaxy in the context of the immediate effects of 'feedback' from recent star formation (SF). In addition to creating H I holes and shells, extended SF events are capable of creating localized high-velocity motion of the surrounding interstellar material. A companion paper connects the energetics from the H I and HST data.

  19. Prediction of neutral noble gas insertion compounds with heavier pnictides: FNgY (Ng = Kr and Xe; Y = As, Sb and Bi).

    PubMed

    Ghosh, Ayan; Manna, Debashree; Ghanty, Tapan K

    2016-04-28

    A novel class of interesting insertion compounds obtained through the insertion of a noble gas atom into the heavier pnictides have been explored by various ab initio quantum chemical techniques. Recently, the first neutral noble gas insertion compounds, FXeY (Y = P, N), were theoretically predicted to be stable; the triplet state was found to be the most stable state, with a high triplet-singlet energy gap, by our group. In this study, we investigated another noble gas inserted compound, FNgY (Ng = Kr and Xe; Y = As, Sb and Bi), with a triplet ground state. Density functional theory (DFT), second order Møller-Plesset perturbation theory (MP2), coupled-cluster theory (CCSD(T)) and multi-reference configuration interaction (MRCI) based techniques have been utilized to investigate the structures, stabilities, harmonic vibrational frequencies, charge distributions and topological properties of these compounds. These predicted species, FNgY (Ng = Kr and Xe; Y = As, Sb and Bi) are found to be energetically stable with respect to all the probable 2-body and 3-body dissociation pathways, except for the 2-body channel leading to the global minimum products (FY + Ng). Nevertheless, the finite barrier height corresponding to the saddle points of the compounds connected to their respective global minima products indicates that these compounds are kinetically stable. The structural parameters, energetics, and charge distribution results as well as atoms-in-molecules (AIM) analysis suggest that these predicted molecules can be best represented as F(-)[(3)NgY](+). Thus, all the aforementioned computed results clearly indicate that it may be possible to experimentally prepare the most stable triplet state of FNgY molecules under cryogenic conditions through a matrix isolation technique. PMID:27079448

  20. Prediction of neutral noble gas insertion compounds with heavier pnictides: FNgY (Ng = Kr and Xe; Y = As, Sb and Bi).

    PubMed

    Ghosh, Ayan; Manna, Debashree; Ghanty, Tapan K

    2016-04-28

    A novel class of interesting insertion compounds obtained through the insertion of a noble gas atom into the heavier pnictides have been explored by various ab initio quantum chemical techniques. Recently, the first neutral noble gas insertion compounds, FXeY (Y = P, N), were theoretically predicted to be stable; the triplet state was found to be the most stable state, with a high triplet-singlet energy gap, by our group. In this study, we investigated another noble gas inserted compound, FNgY (Ng = Kr and Xe; Y = As, Sb and Bi), with a triplet ground state. Density functional theory (DFT), second order Møller-Plesset perturbation theory (MP2), coupled-cluster theory (CCSD(T)) and multi-reference configuration interaction (MRCI) based techniques have been utilized to investigate the structures, stabilities, harmonic vibrational frequencies, charge distributions and topological properties of these compounds. These predicted species, FNgY (Ng = Kr and Xe; Y = As, Sb and Bi) are found to be energetically stable with respect to all the probable 2-body and 3-body dissociation pathways, except for the 2-body channel leading to the global minimum products (FY + Ng). Nevertheless, the finite barrier height corresponding to the saddle points of the compounds connected to their respective global minima products indicates that these compounds are kinetically stable. The structural parameters, energetics, and charge distribution results as well as atoms-in-molecules (AIM) analysis suggest that these predicted molecules can be best represented as F(-)[(3)NgY](+). Thus, all the aforementioned computed results clearly indicate that it may be possible to experimentally prepare the most stable triplet state of FNgY molecules under cryogenic conditions through a matrix isolation technique.

  1. A METHOD FOR AUTOMATED ANALYSIS OF 10 ML WATER SAMPLES CONTAINING ACIDIC, BASIC, AND NEUTRAL SEMIVOLATILE COMPOUNDS LISTED IN USEPA METHOD 8270 BY SOLID PHASE EXTRACTION COUPLED IN-LINE TO LARGE VOLUME INJECTION GAS CHROMATOGRAPHY/MASS SPECTROMETRY

    EPA Science Inventory

    Data is presented showing the progress made towards the development of a new automated system combining solid phase extraction (SPE) with gas chromatography/mass spectrometry for the single run analysis of water samples containing a broad range of acid, base and neutral compounds...

  2. Formaldehyde and methanol formation from reaction of carbon monoxide and hydrogen on neutral Fe2S2 clusters in the gas phase.

    PubMed

    Yin, Shi; Wang, Zhechen; Bernstein, Elliot R

    2013-04-01

    Reaction of CO with H2 on neutral FemSn clusters in a fast flow reactor is investigated both experimentally and theoretically. Single photon ionization at 118 nm is used to detect neutral cluster distributions through time of flight mass spectrometry. FemSn clusters are generated through laser ablation of a mixed iron-sulfur target in the presence of a pure helium carrier gas. A strong size dependent reactivity of (FeS)m clusters toward CO is characterized. The reaction FeS + CO → Fe + OCS is found for the FeS cluster, and the association product Fe2S2CO is observed for the Fe2S2 cluster. Products Fe2S2(13)COH2 and Fe2S2(13)COH4 are identified for reactions of (13)CO and H2 on Fe2S2 clusters: this suggests that the Fe2S2 cluster has a high catalytic activity for hydrogenation reactions of CO to form formaldehyde and methanol. Density functional theory (DFT) calculations are performed to explore the potential energy surfaces for the two reactions: Fe2S2 + CO + 2H2 → Fe2S2 + CH3OH; and Fe2S2 + CO + H2 → Fe2S2 + CH2O. A barrierless, thermodynamically favorable pathway is obtained for both catalytic processes. Catalytic cycles for formaldehyde and methanol formation from CO and H2 on a Fe2S2 cluster are proposed based on our experimental and theoretical investigations. The various reaction mechanisms explored by DFT are in good agreement with the experimental results. Condensed phase iron sulfide, which contains exposed Fe2S2 units on its surface, is suggested to be a good catalyst for low temperature formaldehyde/methanol synthesis.

  3. Neutral carbon and CO in 76 (U)LIRGs and starburst galaxy centers. A method to determine molecular gas properties in luminous galaxies

    NASA Astrophysics Data System (ADS)

    Israel, F. P.; Rosenberg, M. J. F.; van der Werf, P.

    2015-06-01

    In this paper we present fluxes in the [ CI ] lines of neutral carbon at the centers of some 76 galaxies with far-infrared luminosities ranging from 109 to 1012L⊙, as obtained with the Herschel Space Observatory and ground-based facilities, along with the line fluxes of the J = 7-6, J = 4-3, J = 2-112CO, and J = 2-113CO transitions. With this dataset, we determine the behavior of the observed lines with respect to each other and then investigate whether they can be used to characterize the molecular interstellar medium (ISM) of the parent galaxies in simple ways and how the molecular gas properties define the model results. In most starburst galaxies, the [ CI ] to 13CO line flux ratio is much higher than in Galactic star-forming regions, and it is correlated to the total far-infrared luminosity. The [ CI ] (1-0)/12CO (4-3), the [ CI ] (2-1)/12CO (7-6), and the [ CI ] (2-1)/(1-0) flux ratios are correlated, and they trace the excitation of the molecular gas. In the most luminous infrared galaxies (LIRGs), the ISM is fully dominated by dense (n( H2) = 104-105 cm-3) and moderately warm (Tkin ≈ 30 K) gas clouds that appear to have low [C°]/[CO] and [13CO]/[12CO] abundances. In less luminous galaxies, emission from gas clouds at lower densities becomes progressively more important, and a multiple-phase analysis is required to determine consistent physical characteristics. Neither the 12CO nor the [ CI ] velocity-integrated line fluxes are good predictors of molecular hydrogen column densities in individual galaxies. In particular, so-called X( [ CI ]) conversion factors are not superior to X( 12CO) factors. The methods and diagnostic diagrams outlined in this paper also provide a new and relatively straightforward means of deriving the physical characteristics of molecular gas in high-redshift galaxies up to z = 5, which are otherwise hard to determine.

  4. THE GEOMETRY EFFECTS OF AN EXPANDING UNIVERSE ON THE DETECTION OF COOL NEUTRAL GAS AT HIGH REDSHIFT

    SciTech Connect

    Curran, S. J.

    2012-03-20

    Recent high-redshift surveys for 21 cm absorption in damped Ly{alpha} absorption systems (DLAs) take the number of published searches at z{sub abs} > 2 to 25, the same number as at z{sub abs} < 2, although the detection rate at high redshift remains significantly lower (20% compared to 60%). Using the known properties of the DLAs to estimate the unknown profile widths of the 21 cm non-detections and including the limits via a survival analysis, we show that the mean spin temperature/covering factor degeneracy at high redshift is, on average, double that of the low-redshift sample. This value is significantly lower than the previous factor of eight for the spin temperatures and is about the same factor as in the angular diameter distance ratios between the low- and high-redshift samples. That is, without the need for the several pivotal assumptions, which lead to an evolution in the spin temperature, we show that the observed distribution of 21 cm detections in DLAs can be accounted for by the geometry effects of an expanding universe. That is, as yet there is no evidence of the spin temperature of gas-rich galaxies evolving with redshift.

  5. Diquark Bose-Einstein condensation

    SciTech Connect

    Nawa, K.; Nakano, E.; Yabu, H.

    2006-08-01

    Bose-Einstein condensation of composite diquarks in quark matter (the color superconductor phase) is discussed using the quasichemical equilibrium theory at a relatively low-density region near the deconfinement phase transition, where dynamical quark-pair fluctuations are assumed to be described as bosonic degrees of freedom (diquarks). A general formulation is given for the diquark formation and particle-antiparticle pair-creation processes in the relativistic framework, and some interesting properties are shown, which are characteristic for the relativistic many-body system. Behaviors of transition temperature and phase diagram of the quark-diquark matter are generally presented in model parameter space, and their asymptotic behaviors are also discussed. As an application to the color superconductivity, the transition temperatures and the quark and diquark density profiles are calculated in case with constituent/current quarks, where the diquark is in the bound/resonant state. We obtained T{sub C}{approx}60-80 MeV for constituent quarks and T{sub C}{approx}130 MeV for current quarks at a moderate density ({rho}{sub b}{approx}3{rho}{sub 0}). The method is also developed to include interdiquark interactions into the quasichemical equilibrium theory within a mean-field approximation, and it is found that a possible repulsive diquark-diquark interaction lowers the transition temperature by {approx}50%.

  6. The Herschel Comprehensive (U)LIRG Emission Survey (HERCULES): CO Ladders, Fine Structure Lines, and Neutral Gas Cooling

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J. F.; van der Werf, P. P.; Aalto, S.; Armus, L.; Charmandaris, V.; Díaz-Santos, T.; Evans, A. S.; Fischer, J.; Gao, Y.; González-Alfonso, E.; Greve, T. R.; Harris, A. I.; Henkel, C.; Israel, F. P.; Isaak, K. G.; Kramer, C.; Meijerink, R.; Naylor, D. A.; Sanders, D. B.; Smith, H. A.; Spaans, M.; Spinoglio, L.; Stacey, G. J.; Veenendaal, I.; Veilleux, S.; Walter, F.; Weiß, A.; Wiedner, M. C.; van der Wiel, M. H. D.; Xilouris, E. M.

    2015-03-01

    (Ultra) luminous infrared galaxies ((U)LIRGs) are objects characterized by their extreme infrared (8-1000 μm) luminosities (L LIRG > 1011 L ⊙ and L ULIRG > 1012 L ⊙). The Herschel Comprehensive ULIRG Emission Survey (PI: van der Werf) presents a representative flux-limited sample of 29 (U)LIRGs that spans the full luminosity range of these objects (1011 L ⊙ <= L IR <= 1013 L ⊙). With the Herschel Space Observatory, we observe [C II] 157 μm, [O I] 63 μm, and [O I] 145 μm line emission with Photodetector Array Camera and Spectrometer, CO J = 4-3 through J = 13-12, [C I] 370 μm, and [C I] 609 μm with SPIRE, and low-J CO transitions with ground-based telescopes. The CO ladders of the sample are separated into three classes based on their excitation level. In 13 of the galaxies, the [O I] 63 μm emission line is self absorbed. Comparing the CO excitation to the InfraRed Astronomical Satellite 60/100 μm ratio and to far infrared luminosity, we find that the CO excitation is more correlated to the far infrared colors. We present cooling budgets for the galaxies and find fine-structure line flux deficits in the [C II], [Si II], [O I], and [C I] lines in the objects with the highest far IR fluxes, but do not observe this for CO 4 <= J upp <= 13. In order to study the heating of the molecular gas, we present a combination of three diagnostic quantities to help determine the dominant heating source. Using the CO excitation, the CO J = 1-0 linewidth, and the active galactic nucleus (AGN) contribution, we conclude that galaxies with large CO linewidths always have high-excitation CO ladders, and often low AGN contributions, suggesting that mechanical heating is important. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  7. Giant Metrewave Radio Telescope observations of neutral atomic hydrogen gas in the COSMOS field at z ˜ 0.37

    NASA Astrophysics Data System (ADS)

    Rhee, Jonghwan; Lah, Philip; Chengalur, Jayaram N.; Briggs, Frank H.; Colless, Matthew

    2016-08-01

    We present the results of H I spectral stacking analysis of Giant Metrewave Radio Telescope (GMRT) observations targeting the Cosmological Evolution Survey (COSMOS) field. The GMRT data cube contains 474 field galaxies with redshifts known from the zCOSMOS-bright 10 k catalogue. Spectra for the galaxies are co-added and the stacked spectrum allows us to make a ˜3σ measurement of the average H I mass. Using this average H I mass, along with the integral optical B-band luminosity of the galaxies and the luminosity density of the COSMOS field, a volume normalization is applied to obtain the cosmic H I mass density (ΩH I). We find a cosmic H I mass density of ΩH I = (0.42 ± 0.16) × 10-3 at z ˜ 0.37, which is the highest redshift measurement of ΩH I ever made using H I spectral stacking. The value we obtained for ΩH I at z ˜ 0.37 is consistent with that measured from large blind 21-cm surveys at z = 0, as well as measurements from other H I stacking experiments at lower redshifts. Our measurement, in conjunction with earlier measurements, indicates that there has been no significant evolution of H I gas abundance over the last 4 Gyr. A weighted mean of ΩH I from all 21-cm measurements at redshifts z ≲ 0.4 gives ΩH I = (0.35 ± 0.01) × 10-3. The ΩH I measured (from H I 21-cm emission measurements) at z ≲ 0.4 is, however, approximately half that measured from damped Lyman-α absorption (DLA) systems at z ≳ 2. Deeper surveys with existing and upcoming instruments will be critical to understand the evolution of ΩH I in the redshift range intermediate between z ˜ 0.4 and the range probed by DLA observations.

  8. THE HERSCHEL COMPREHENSIVE (U)LIRG EMISSION SURVEY (HERCULES): CO LADDERS, FINE STRUCTURE LINES, AND NEUTRAL GAS COOLING

    SciTech Connect

    Rosenberg, M. J. F.; Van der Werf, P. P.; Israel, F. P.; Meijerink, R.; Aalto, S.; Armus, L.; Díaz-Santos, T.; Charmandaris, V.; Evans, A. S.; Fischer, J.; Gao, Y.; González-Alfonso, E.; Greve, T. R.; Harris, A. I.; Henkel, C.; Isaak, K. G.; and others

    2015-03-10

    (Ultra) luminous infrared galaxies ((U)LIRGs) are objects characterized by their extreme infrared (8-1000 μm) luminosities (L {sub LIRG} > 10{sup 11} L {sub ☉} and L {sub ULIRG} > 10{sup 12} L {sub ☉}). The Herschel Comprehensive ULIRG Emission Survey (PI: van der Werf) presents a representative flux-limited sample of 29 (U)LIRGs that spans the full luminosity range of these objects (10{sup 11} L {sub ☉} ≤ L {sub IR} ≤ 10{sup 13} L {sub ☉}). With the Herschel Space Observatory, we observe [C II] 157 μm, [O I] 63 μm, and [O I] 145 μm line emission with Photodetector Array Camera and Spectrometer, CO J = 4-3 through J = 13-12, [C I] 370 μm, and [C I] 609 μm with SPIRE, and low-J CO transitions with ground-based telescopes. The CO ladders of the sample are separated into three classes based on their excitation level. In 13 of the galaxies, the [O I] 63 μm emission line is self absorbed. Comparing the CO excitation to the InfraRed Astronomical Satellite 60/100 μm ratio and to far infrared luminosity, we find that the CO excitation is more correlated to the far infrared colors. We present cooling budgets for the galaxies and find fine-structure line flux deficits in the [C II], [Si II], [O I], and [C I] lines in the objects with the highest far IR fluxes, but do not observe this for CO 4 ≤ J {sub upp} ≤ 13. In order to study the heating of the molecular gas, we present a combination of three diagnostic quantities to help determine the dominant heating source. Using the CO excitation, the CO J = 1-0 linewidth, and the active galactic nucleus (AGN) contribution, we conclude that galaxies with large CO linewidths always have high-excitation CO ladders, and often low AGN contributions, suggesting that mechanical heating is important.

  9. Conditions for Bose-Einstein condensation in magnetically trapped atomic cesium

    NASA Astrophysics Data System (ADS)

    Tiesinga, E.; Moerdijk, A. J.; Verhaar, B. J.; Stoof, H. T. C.

    1992-08-01

    We study conditions necessary for the observation of Bose-Einstein condensation in a magnetically trapped sample of atomic Cs gas. These conditions are associated with the value of the elastic scattering length, the rate of elastic scattering events, and the lifetime for decay of the density due to both magnetic dipole relaxation in two-body collisions, as well as recombination to Cs2 in three-body collisions. We find that, on the basis of these conditions, the prospects for observing Bose-Einstein condensation are favorable for a gas of ground-state Cs atoms in the highest state of the lowest hyperfine manifold. In all calculated elastic and inelastic two-body rates we find a pronounced resonance structure, which can be understood in terms of the interplay between the singlet-triplet interaction and the hyperfine, Zeeman, and magnetic dipole interactions. The experimental observation of these resonances may help to eliminate present uncertainties about interaction potentials.

  10. Bose-Einstein condensation of erbium.

    PubMed

    Aikawa, K; Frisch, A; Mark, M; Baier, S; Rietzler, A; Grimm, R; Ferlaino, F

    2012-05-25

    We report on the achievement of Bose-Einstein condensation of erbium atoms and on the observation of magnetic Feshbach resonances at low magnetic fields. By means of evaporative cooling in an optical dipole trap, we produce pure condensates of 168Er, containing up to 7×10(4) atoms. Feshbach spectroscopy reveals an extraordinary rich loss spectrum with six loss resonances already in a narrow magnetic-field range up to 3 G. Finally, we demonstrate the application of a low-field Feshbach resonance to produce a tunable dipolar Bose-Einstein condensate and we observe its characteristic d-wave collapse. PMID:23003221

  11. Bose-Hubbard Hamiltonian: Quantum chaos approach

    NASA Astrophysics Data System (ADS)

    Kolovsky, Andrey R.

    2016-03-01

    We discuss applications of the theory of quantum chaos to one of the paradigm models of many-body quantum physics — the Bose-Hubbard (BH) model, which describes, in particular, interacting ultracold Bose atoms in an optical lattice. After preliminary, pure quantum analysis of the system we introduce the classical counterpart of the BH model and the governing semiclassical equations of motion. We analyze these equations for the problem of Bloch oscillations (BOs) of cold atoms where a number of experimental results are available. The paper is written for nonexperts and can be viewed as an introduction to the field.

  12. Bose-Einstein condensation. Twenty years after

    DOE PAGES

    Bagnato, V. S.; Frantzeskakis, D. J.; Kevrekidis, P. G.; Malomed, B. A.; Mihalache, D.

    2015-02-23

    The aim of this introductory article is two-fold. First, we aim to offer a general introduction to the theme of Bose-Einstein condensates, and briefly discuss the evolution of a number of relevant research directions during the last two decades. Second, we introduce and present the articles that appear in this Special Volume of Romanian Reports in Physics celebrating the conclusion of the second decade since the experimental creation of Bose-Einstein condensation in ultracold gases of alkali-metal atoms.

  13. Bose-Einstein condensation in complex networks.

    PubMed

    Bianconi, G; Barabási, A L

    2001-06-11

    The evolution of many complex systems, including the World Wide Web, business, and citation networks, is encoded in the dynamic web describing the interactions between the system's constituents. Despite their irreversible and nonequilibrium nature these networks follow Bose statistics and can undergo Bose-Einstein condensation. Addressing the dynamical properties of these nonequilibrium systems within the framework of equilibrium quantum gases predicts that the "first-mover-advantage," "fit-get-rich," and "winner-takes-all" phenomena observed in competitive systems are thermodynamically distinct phases of the underlying evolving networks.

  14. Neutral depletion versus repletion due to ionization

    SciTech Connect

    Fruchtman, A.; Makrinich, G.; Raimbault, J.-L.; Liard, L.; Rax, J.-M.; Chabert, P.

    2008-05-15

    Recent theoretical analyses which predicted unexpected effects of neutral depletion in both collisional and collisionless plasmas are reviewed. We focus on the depletion of collisionless neutrals induced by strong ionization of a collisionless plasma and contrast this depletion with the effect of strong ionization on thermalized neutrals. The collisionless plasma is analyzed employing a kinetic description. The collisionless neutrals and the plasma are coupled through volume ionization and wall recombination only. The profiles of density and pressure both of the plasma and of the neutral-gas and the profile of the ionization rate are calculated. It is shown that for collisionless neutrals the ionization results in neutral depletion, while when neutrals are thermalized the ionization induces a maximal neutral-density at the discharge center, which we call neutral repletion. The difference between the two cases stems from the relation between the neutral density and pressure. The pressure of the collisionless neutral-gas turns out to be maximal where its density is minimal, in contrast to the case of a thermalized neutral gas.

  15. Spin-orbit-coupled Bose-Einstein condensates.

    PubMed

    Lin, Y-J; Jiménez-García, K; Spielman, I B

    2011-03-01

    Spin-orbit (SO) coupling--the interaction between a quantum particle's spin and its momentum--is ubiquitous in physical systems. In condensed matter systems, SO coupling is crucial for the spin-Hall effect and topological insulators; it contributes to the electronic properties of materials such as GaAs, and is important for spintronic devices. Quantum many-body systems of ultracold atoms can be precisely controlled experimentally, and would therefore seem to provide an ideal platform on which to study SO coupling. Although an atom's intrinsic SO coupling affects its electronic structure, it does not lead to coupling between the spin and the centre-of-mass motion of the atom. Here, we engineer SO coupling (with equal Rashba and Dresselhaus strengths) in a neutral atomic Bose-Einstein condensate by dressing two atomic spin states with a pair of lasers. Such coupling has not been realized previously for ultracold atomic gases, or indeed any bosonic system. Furthermore, in the presence of the laser coupling, the interactions between the two dressed atomic spin states are modified, driving a quantum phase transition from a spatially spin-mixed state (lasers off) to a phase-separated state (above a critical laser intensity). We develop a many-body theory that provides quantitative agreement with the observed location of the transition. The engineered SO coupling--equally applicable for bosons and fermions--sets the stage for the realization of topological insulators in fermionic neutral atom systems.

  16. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons.

    PubMed

    Olah, George A; Goeppert, Alain; Prakash, G K Surya

    2009-01-16

    Nature's photosynthesis uses the sun's energy with chlorophyll in plants as a catalyst to recycle carbon dioxide and water into new plant life. Only given sufficient geological time can new fossil fuels be formed naturally. In contrast, chemical recycling of carbon dioxide from natural and industrial sources as well as varied human activities or even from the air itself to methanol or dimethyl ether (DME) and their varied products can be achieved via its capture and subsequent reductive hydrogenative conversion. The present Perspective reviews this new approach and our research in the field over the last 15 years. Carbon recycling represents a significant aspect of our proposed Methanol Economy. Any available energy source (alternative energies such as solar, wind, geothermal, and atomic energy) can be used for the production of needed hydrogen and chemical conversion of CO(2). Improved new methods for the efficient reductive conversion of CO(2) to methanol and/or DME that we have developed include bireforming with methane and ways of catalytic or electrochemical conversions. Liquid methanol is preferable to highly volatile and potentially explosive hydrogen for energy storage and transportation. Together with the derived DME, they are excellent transportation fuels for internal combustion engines (ICE) and fuel cells as well as convenient starting materials for synthetic hydrocarbons and their varied products. Carbon dioxide thus can be chemically transformed from a detrimental greenhouse gas causing global warming into a valuable, renewable and inexhaustible carbon source of the future allowing environmentally neutral use of carbon fuels and derived hydrocarbon products. PMID:19063591

  17. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons.

    PubMed

    Olah, George A; Goeppert, Alain; Prakash, G K Surya

    2009-01-16

    Nature's photosynthesis uses the sun's energy with chlorophyll in plants as a catalyst to recycle carbon dioxide and water into new plant life. Only given sufficient geological time can new fossil fuels be formed naturally. In contrast, chemical recycling of carbon dioxide from natural and industrial sources as well as varied human activities or even from the air itself to methanol or dimethyl ether (DME) and their varied products can be achieved via its capture and subsequent reductive hydrogenative conversion. The present Perspective reviews this new approach and our research in the field over the last 15 years. Carbon recycling represents a significant aspect of our proposed Methanol Economy. Any available energy source (alternative energies such as solar, wind, geothermal, and atomic energy) can be used for the production of needed hydrogen and chemical conversion of CO(2). Improved new methods for the efficient reductive conversion of CO(2) to methanol and/or DME that we have developed include bireforming with methane and ways of catalytic or electrochemical conversions. Liquid methanol is preferable to highly volatile and potentially explosive hydrogen for energy storage and transportation. Together with the derived DME, they are excellent transportation fuels for internal combustion engines (ICE) and fuel cells as well as convenient starting materials for synthetic hydrocarbons and their varied products. Carbon dioxide thus can be chemically transformed from a detrimental greenhouse gas causing global warming into a valuable, renewable and inexhaustible carbon source of the future allowing environmentally neutral use of carbon fuels and derived hydrocarbon products.

  18. Theoretical Study of the Damping of Collective Excitations in a Bose-Einstein Condensate

    SciTech Connect

    Vincent Liu, W.

    1997-11-01

    We study the damping of low-lying collective excitations of condensates in a weakly interacting Bose gas model within the framework of an imaginary time path integral. A general expression of the damping rate has been obtained for both the very low temperature regime and the higher temperature regime. For the latter, the result is new and applicable to recent experiments. Theoretical predictions for the damping rate are compared with the experimental values. {copyright} {ital 1997} {ital The American Physical Society}

  19. Neutral Atmospheres

    NASA Astrophysics Data System (ADS)

    Mueller-Wodarg, I. C. F.; Strobel, D. F.; Moses, J. I.; Waite, J. H.; Crovisier, J.; Yelle, R. V.; Bougher, S. W.; Roble, R. G.

    This paper summarizes the understanding of aeronomy of neutral atmospheres in the solar system, discussing most planets as well as Saturn's moon Titan and comets. The thermal structure and energy balance is compared, highlighting the principal reasons for discrepancies amongst the atmospheres, a combination of atmospheric composition, heliocentric distance and other external energy sources not common to all. The composition of atmospheres is discussed in terms of vertical structure, chemistry and evolution. The final section compares dynamics in the upper atmospheres of most planets and highlights the importance of vertical dynamical coupling as well as magnetospheric forcing in auroral regions, where present. It is shown that a first order understanding of neutral atmospheres has emerged over the past decades, thanks to the combined effects of spacecraft and Earth-based observations as well as advances in theoretical modeling capabilities. Key gaps in our understanding are highlighted which ultimately call for a more comprehensive programme of observation and laboratory measurements.

  20. Neutral Atmospheres

    NASA Astrophysics Data System (ADS)

    Mueller-Wodarg, I. C. F.; Strobel, D. F.; Moses, J. I.; Waite, J. H.; Crovisier, J.; Yelle, R. V.; Bougher, S. W.; Roble, R. G.

    2008-08-01

    This paper summarizes the understanding of aeronomy of neutral atmospheres in the solar system, discussing most planets as well as Saturn’s moon Titan and comets. The thermal structure and energy balance is compared, highlighting the principal reasons for discrepancies amongst the atmospheres, a combination of atmospheric composition, heliocentric distance and other external energy sources not common to all. The composition of atmospheres is discussed in terms of vertical structure, chemistry and evolution. The final section compares dynamics in the upper atmospheres of most planets and highlights the importance of vertical dynamical coupling as well as magnetospheric forcing in auroral regions, where present. It is shown that a first order understanding of neutral atmospheres has emerged over the past decades, thanks to the combined effects of spacecraft and Earth-based observations as well as advances in theoretical modeling capabilities. Key gaps in our understanding are highlighted which ultimately call for a more comprehensive programme of observation and laboratory measurements.

  1. Stability and anomalous compressibility of Bose gases near resonance: The scale-dependent interactions and thermal effects

    NASA Astrophysics Data System (ADS)

    Jiang, Shao-Jian; Zhou, Fei

    2015-07-01

    The stability of Bose gases near resonance has been a puzzling problem in recent years. In this article, we demonstrate that in addition to generating thermal pressure, thermal atoms enhance the repulsiveness of the scale-dependent interactions between condensed atoms due to a renormalization effect and further stabilize the Bose gases. Consequently, we find that, as a precursor of instability, the compressibility develops an anomalous structure as a function of scattering length and is drastically reduced compared with the mean-field value. Furthermore, the density profile of a Bose gas in a harmonic trap is found to develop a flat top near the center. This is due to the anomalous behavior of compressibility and can be a potential smoking gun for probing such an effect.

  2. Kibble-Zurek scaling and its breakdown for spontaneous generation of Josephson vortices in Bose-Einstein condensates.

    PubMed

    Su, Shih-Wei; Gou, Shih-Chuan; Bradley, Ashton; Fialko, Oleksandr; Brand, Joachim

    2013-05-24

    Atomic Bose-Einstein condensates confined to a dual-ring trap support Josephson vortices as topologically stable defects in the relative phase. We propose a test of the scaling laws for defect formation by quenching a Bose gas to degeneracy in this geometry. Stochastic Gross-Pitaevskii simulations reveal a -1/4 power-law scaling of defect number with quench time for fast quenches, consistent with the Kibble-Zurek mechanism. Slow quenches show stronger quench-time dependence that is explained by the stability properties of Josephson vortices, revealing the boundary of the Kibble-Zurek regime. Interference of the two atomic fields enables clear long-time measurement of stable defects and a direct test of the Kibble-Zurek mechanism in Bose-Einstein condensation. PMID:23745894

  3. Spin-orbit coupled weakly interacting Bose-Einstein condensates in harmonic traps.

    PubMed

    Hu, Hui; Ramachandhran, B; Pu, Han; Liu, Xia-Ji

    2012-01-01

    We investigate theoretically the phase diagram of a spin-orbit coupled Bose gas in two-dimensional harmonic traps. We show that at strong spin-orbit coupling the single-particle spectrum decomposes into different manifolds separated by ℏω{⊥}, where ω{⊥} is the trapping frequency. For a weakly interacting gas, quantum states with Skyrmion lattice patterns emerge spontaneously and preserve either parity symmetry or combined parity-time-reversal symmetry. These phases can be readily observed in a spin-orbit coupled gas of ^{87}Rb atoms in a highly oblate trap. PMID:22304247

  4. Nonlinear vortex-phonon interactions in a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.; Haas, F.; Gammal, A.

    2016-07-01

    We consider the nonlinear coupling between an exact vortex solution in a Bose-Einstein condensate and a spectrum of elementary excitations in the medium. These excitations, or Bogoliubov-de Gennes modes, are indeed a special kind of phonons. We treat the spectrum of elementary excitations in the medium as a gas of quantum particles, sometimes also called bogolons. An exact kinetic equation for the bogolon gas is derived, and an approximate form of this equation, valid in the quasi-classical limit, is also obtained. We study the energy transfer between the vortex and the bogolon gas, and establish conditions for vortex instability and damping.

  5. Cuprate superconductors. Universal properties and trends; evidence for Bose-Einstein condensation

    SciTech Connect

    Schneider, T.; Pedersen, M.H. )

    1994-06-01

    We explore the compatibility of empirical trends in various thermodynamic properties of cuprate superconductors with the Bose-Einstein condensation scenario. These trends include the relations between transition temperature, hole concentration and condensate density, the rise and the upper limit of the transition temperature, the dependence of pressure and isotope coefficients on transition temperature, as well as the observed critical behavior, which is reminiscent of three-dimensional systems with a scalar complex order parameter and short-range interactions. For this purpose we consider an interacting charged Bose gas. Due to the high polarizability of the cuprates, the Coulomb interaction is strongly screened. For this reason, the problem of calculating thermodynamic properties becomes essentially equivalent to that of the uncharged gas with short-range interactions. This problem, however, has not been solved either. Nevertheless, in the dilute limit the problem reduces to the ideal Bose gas treated by Schafroth, while in the dense regime condensation and superfluidity are suppressed because bosons of finite extension fill the available volume. This limiting behavior provides an interpolation scheme for the dependence of both transition temperature and zero temperature superfluid density on boson density. 23 refs., 5 figs.

  6. Plasma/Neutral-Beam Etching Apparatus

    NASA Technical Reports Server (NTRS)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  7. The Relationship between the Dense Neutral and Diffuse Ionized Gas in the Thick Disks of Two Edge-on Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Rueff, Katherine M.; Howk, J. Christopher; Pitterle, Marissa; Hirschauer, Alec S.; Fox, Andrew J.; Savage, Blair D.

    2013-03-01

    We present high-resolution, optical images (BVI + Hα) of the multiphase interstellar medium (ISM) in the thick disks of the edge-on spiral galaxies NGC 4013 and NGC 4302. Our images from the Hubble Space Telescope (HST), Large Binocular Telescope, and WIYN 3.5 m telescope reveal an extensive population of filamentary dust absorption seen to z ~2-2.5 kpc. Many of these dusty thick disk structures have characteristics reminiscent of molecular clouds found in the Milky Way disk. Our Hα images show that the extraplanar diffuse ionized gas (DIG) in these galaxies is dominated by a smooth, diffuse component. The strongly filamentary morphologies of the dust absorption have no counterpart in the smoothly distributed Hα emission. We argue that the thick disk DIG and dust-bearing filaments trace physically distinct phases of the thick disk ISM, the latter tracing a dense, warm or cold neutral medium. The dense, dusty matter in the thick disks of spiral galaxies is largely tracing matter ejected from the thin disk via energetic feedback from massive stars. The high densities of the gas may be a result of converging gas flows. This dense material fuels some thick disk star formation, as evidenced by the presence of thick disk H II regions. Based on observations obtained with the NASA/ESA Hubble Space Telescope operated at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Also, based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the US, Italy, and Germany. LBT Corporation partners are the University of Arizona, on behalf of the Arizona University System; Instituto Nazionale do Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max Planck Society, the Astrophysical Institute of Potsdam, and Heidelberg University; Ohio State University, and the Research Corporation, on

  8. Quantum metrology with Bose-Einstein condensates

    SciTech Connect

    Boixo, Sergio; Datta, Animesh; Davis, Matthew J.; Flammia, Steven T.; Shaji, Anil; Tacla, Alexandre B.; Caves, Carlton M.

    2009-04-13

    We show how a generalized quantum metrology protocol can be implemented in a two-mode Bose-Einstein condensate of n atoms, achieving a sensitivity that scales better than 1/n and approaches 1/n{sup 3/2} for appropriate design of the condensate.

  9. Universality of nonthermal behavior in spinor Bose condensates

    NASA Astrophysics Data System (ADS)

    Patil, Yogesh Sharad; Cheung, Hil F. H.; Shaffer, Airlia; Chen, Huiyao Y.; Vengalattore, Mukund

    2016-05-01

    Spinor Bose condensates exhibit a rich phase diagram with varied magnetic ordering and topological defects because of the close competition between their spin and charge dependent interactions. Quenching such a spinor condensate into a ferromagnetic state realizes robust non-equilibrium and prethermalized states whose macroscopic behavior differs from thermodynamic predictions. In previous work, we have identified the microscopic origin of prethermalization in Rubidium spinor gases as being the disparate energy scales of the phonon and magnon excitations in this gas. This identification of the microscopic origin enables us to broaden the scope of our studies to address fundamental questions regarding the equilibration of isolated quantum systems. We will discuss our recent results that suggest the universality of this coarsening behavior and evidence that this system can be mapped on to a non-thermal fixed point studied in high energy field theories. This work is supported by the ARO MURI on non-equilibrium dynamics.

  10. Loschmidt echo in one-dimensional interacting Bose gases

    SciTech Connect

    Lelas, K.; Seva, T.; Buljan, H.

    2011-12-15

    We explore Loschmidt echo in two regimes of one-dimensional interacting Bose gases: the strongly interacting Tonks-Girardeau (TG) regime, and the weakly interacting mean-field regime. We find that the Loschmidt echo of a TG gas decays as a Gaussian when small (random and time independent) perturbations are added to the Hamiltonian. The exponent is proportional to the number of particles and the magnitude of a small perturbation squared. In the mean-field regime the Loschmidt echo shows richer behavior: it decays faster for larger nonlinearity, and the decay becomes more abrupt as the nonlinearity increases; it can be very sensitive to the particular realization of the noise potential, especially for relatively small nonlinearities.

  11. Magnetization relaxation and geometric forces in a Bose ferromagnet.

    PubMed

    Armaitis, J; Stoof, H T C; Duine, R A

    2013-06-28

    We construct the hydrodynamic theory for spin-1/2 Bose gases at arbitrary temperatures. This theory describes the coupling between the magnetization and the normal and superfluid components of the gas. In particular, our theory contains the geometric forces on the particles that arise from their spin's adiabatic following of the magnetization texture. The phenomenological parameters of the hydrodynamic theory are calculated in the Bogoliubov approximation and using the Boltzmann equation in the relaxation-time approximation. We consider the topological Hall effect due to the presence of a Skyrmion, and show that this effect manifests itself in the collective modes of the system. The dissipative coupling between the magnetization and the normal component is shown to give rise to magnetization relaxation that is fourth order in spatial gradients of the magnetization direction.

  12. Extended Bose-Hubbard models with ultracold magnetic atoms.

    PubMed

    Baier, S; Mark, M J; Petter, D; Aikawa, K; Chomaz, L; Cai, Z; Baranov, M; Zoller, P; Ferlaino, F

    2016-04-01

    The Hubbard model underlies our understanding of strongly correlated materials. Whereas its standard form only comprises interactions between particles at the same lattice site, extending it to encompass long-range interactions is predicted to profoundly alter the quantum behavior of the system. We realize the extended Bose-Hubbard model for an ultracold gas of strongly magnetic erbium atoms in a three-dimensional optical lattice. Controlling the orientation of the atomic dipoles, we reveal the anisotropic character of the onsite interaction and hopping dynamics and their influence on the superfluid-to-Mott insulator quantum phase transition. Moreover, we observe nearest-neighbor interactions, a genuine consequence of the long-range nature of dipolar interactions. Our results lay the groundwork for future studies of exotic many-body quantum phases. PMID:27124454

  13. Beliaev theory of spinor Bose-Einstein condensates

    SciTech Connect

    Phuc, Nguyen Thanh; Kawaguchi, Yuki; Ueda, Masahito

    2013-01-15

    By generalizing the Green's function approach developed by Beliaev [S.T. Beliaev, Sov. Phys. JETP 7 (1958) 299; S.T. Beliaev, Sov. Phys. JETP 7 (1958) 289], we study effects of quantum fluctuations on the energy spectra of spin-1 spinor Bose-Einstein condensates, in particular, of a {sup 87}Rb condensate in the presence of an external magnetic field. We find that due to quantum fluctuations, the effective mass of magnons, which characterizes the quadratic dispersion relation of spin-wave excitations, increases compared with its mean-field value. The enhancement factor turns out to be the same for two distinct quantum phases: the ferromagnetic and polar phases, and it is a function of only the gas parameter. The lifetime of magnons in a spin-1 {sup 87}Rb spinor condensate is shown to be much longer than that of phonons due to the difference in their dispersion relations. We propose a scheme to measure the effective mass of magnons in a spinor Bose gas by utilizing the effect of magnons' nonlinear dispersion relation on the time evolution of the distribution of transverse magnetization. This type of measurement can be applied, for example, to precision magnetometry. - Highlights: Black-Right-Pointing-Pointer Second-order energy spectra for a spin-1 {sup 87}Rb spinor BEC under a quadratic Zeeman effect are found. Black-Right-Pointing-Pointer Effective mass of magnons increases due to quantum fluctuations. Black-Right-Pointing-Pointer Enhancement factor is the same for two quantum phases and also independent of external parameters. Black-Right-Pointing-Pointer Lifetime of magnons in a spin-1 {sup 87}Rb spinor BEC is much longer than that of phonons. Black-Right-Pointing-Pointer Experimental scheme to measure the effective mass of magnons is proposed.

  14. Environmental neutralization of polonium-218

    SciTech Connect

    Goldstein, S.D.; Hopke, P.K.

    1985-01-01

    Previous work has indicated that two mechanisms of neutralization of the singly charged polonium ion exist. Charged Polonium-218 can be neutralized by reacting with oxygen to form a polonium oxide ion with a higher ionization potential than that of the polonium metal and then accepting an electron transferred from a lower ionization potential gas. In this present work, this mechanism has been verified by determining that the polonium oxide has an ionization potential in the range 10.35-10.53 eV. It was also previously reported that /sup 218/Po can be neutralized, in the absence of oxygen, by the scavenging of electrons by a trace gas such as water or nitrogen dioxide and their diffusion to the polonium ion. To verify this second neutralization mechanism, concentrations of nitrogen dioxide in nitrogen in the range of 50 ppb-1 ppm were examined for their ability to neutralize the polonium ion. Complete neutralization of /sup 218/Po was observed at nitrogen dioxide concentrations greater than 700 ppb. For concentrations below 700 ppb, the degree of neutralization was found to increase smoothly with the nitrogen dioxide concentration.

  15. Position swapping and pinching in Bose-Fermi mixtures with two-color optical Feshbach resonances

    SciTech Connect

    Gautam, S.; Angom, D.; Muruganandam, P.

    2011-02-15

    We examine the density profiles of the quantum degenerate Bose-Fermi mixture of {sup 174}Yb-{sup 173}Yb, experimentally observed recently, in the mean-field regime. In this mixture there is a possibility of tuning the Bose-Bose and Bose-Fermi interactions simultaneously using two well-separated optical Feshbach resonances, and it is a good candidate to explore phase separation in Bose-Fermi mixtures. Depending on the Bose-Bose scattering length a{sub BB}, as the Bose-Fermi interaction is tuned the density of the fermions is pinched or swapping with bosons occurs.

  16. Bose-Einstein condensation of photons in a 'white-wall' photon box

    NASA Astrophysics Data System (ADS)

    Klärs, Jan; Schmitt, Julian; Vewinger, Frank; Weitz, Martin

    2011-01-01

    Bose-Einstein condensation, the macroscopic ground state occupation of a system of bosonic particles below a critical temperature, has been observed in cold atomic gases and solid-state physics quasiparticles. In contrast, photons do not show this phase transition usually, because in Planck's blackbody radiation the particle number is not conserved and at low temperature the photons disappear in the walls of the system. Here we report on the realization of a photon Bose-Einstein condensate in a dye-filled optical microcavity, which acts as a "white-wall" photon box. The cavity mirrors provide a trapping potential and a non-vanishing effective photon mass, making the system formally equivalent to a two-dimensional gas of trapped massive bosons. Thermalization of the photon gas is reached in a number conserving way by multiple scattering off the dye molecules. Signatures for a BEC upon increased photon density are: a spectral distribution that shows Bose-Einstein distributed photon energies with a macroscopically populated peak on top of a broad thermal wing, the observed threshold of the phase transition showing the predicted absolute value and scaling with resonator geometry, and condensation appearing at the trap centre even for a spatially displaced pump spot.

  17. The weakening of fermionization of one dimensional spinor Bose gases induced by spin-exchange interaction

    NASA Astrophysics Data System (ADS)

    Hao, Yajiang

    2016-05-01

    We investigate the ground state density distributions of anti-ferromagnetic spin-1 Bose gases in a one dimensional harmonic potential in the full interacting regimes. The ground state is obtained by diagonalizing the Hamiltonian in the Hilbert space composed of the lowest eigenstates of noninteracting Bose gas and spin components. The study reveals that in the situation of a weak spin-dependent interaction the total density profiles evolve from a Gaussian-like distribution to a Fermi-like shell structure of N peaks with the increasing of spin-independent interaction. The increasing spin-exchange interaction always weakens the fermionization of the density distribution such that the total density profiles show the shell structure of less peaks and even show single peak structure in the limit of the strong spin-exchange interaction. The weakening of fermionization results from the formation of composite atoms induced by the spin-exchange interaction. It is also shown that phase separation occurs for the spinor Bose gas with a weak spin-exchange interaction, meanwhile the spin-independent interaction is strong.

  18. Spin-momentum coupled Bose-Einstein condensates with lattice band pseudospins

    PubMed Central

    Khamehchi, M. A.; Qu, Chunlei; Mossman, M. E.; Zhang, Chuanwei; Engels, P.

    2016-01-01

    The quantum emulation of spin-momentum coupling, a crucial ingredient for the emergence of topological phases, is currently drawing considerable interest. In previous quantum gas experiments, typically two atomic hyperfine states were chosen as pseudospins. Here, we report the observation of a spin-momentum coupling achieved by loading a Bose-Einstein condensate into periodically driven optical lattices. The s and p bands of a static lattice, which act as pseudospins, are coupled through an additional moving lattice that induces a momentum-dependent coupling between the two pseudospins, resulting in s–p hybrid Floquet-Bloch bands. We investigate the band structures by measuring the quasimomentum of the Bose-Einstein condensate for different velocities and strengths of the moving lattice, and compare our measurements to theoretical predictions. The realization of spin-momentum coupling with lattice bands as pseudospins paves the way for engineering novel quantum matter using hybrid orbital bands. PMID:26924575

  19. Inflationary Quasiparticle Creation and Thermalization Dynamics in Coupled Bose-Einstein Condensates.

    PubMed

    Posazhennikova, Anna; Trujillo-Martinez, Mauricio; Kroha, Johann

    2016-06-01

    A Bose gas in a double-well potential, exhibiting a true Bose-Einstein condensate (BEC) amplitude and initially performing Josephson oscillations, is a prototype of an isolated, nonequilibrium many-body system. We investigate the quasiparticle (QP) creation and thermalization dynamics of this system by solving the time-dependent Keldysh-Bogoliubov equations. We find avalanchelike QP creation due to a parametric resonance between BEC and QP oscillations, followed by slow, exponential relaxation to a thermal state at an elevated temperature, controlled by the initial excitation energy of the oscillating BEC above its ground state. The crossover between the two regimes occurs because of an effective decoupling of the QP and BEC oscillations. This dynamics is analogous to elementary particle creation in models of the early universe. The thermalization in our setup occurs because the BEC acts as a grand canonical reservoir for the quasiparticle system. PMID:27314725

  20. Developing density functional theory for Bose-Einstein condensates. The case of chemical bonding

    SciTech Connect

    Putz, Mihai V.

    2015-01-22

    Since the nowadays growing interest in Bose-Einstein condensates due to the expanded experimental evidence on various atomic systems within optical lattices in weak and strong coupling regimes, the connection with Density Functional Theory is firstly advanced within the mean field framework at three levels of comprehension: the many-body normalization condition, Thomas-Fermi limit, and the chemical hardness closure with the inter-bosonic strength and universal Hohenberg-Kohn functional. As an application the traditional Heitler-London quantum mechanical description of the chemical bonding for homopolar atomic systems is reloaded within the non-linear Schrödinger (Gross-Pitaevsky) Hamiltonian; the results show that a two-fold energetic solution is registered either for bonding and antibonding states, with the bosonic contribution being driven by the square of the order parameter for the Bose-Einstein condensate density in free (gas) motion, while the associate wave functions remain as in classical molecular orbital model.

  1. Superstripes and the excitation spectrum of a spin-orbit-coupled Bose-Einstein condensate.

    PubMed

    Li, Yun; Martone, Giovanni I; Pitaevskii, Lev P; Stringari, Sandro

    2013-06-01

    Using Bogoliubov theory we calculate the excitation spectrum of a spinor Bose-Einstein condensed gas with an equal Rashba and Dresselhaus spin-orbit coupling in the stripe phase. The emergence of a double gapless band structure is pointed out as a key signature of Bose-Einstein condensation and of the spontaneous breaking of translational invariance symmetry. In the long wavelength limit the lower and upper branches exhibit, respectively, a clear spin and density nature. For wave vectors close to the first Brillouin zone, the lower branch acquires an important density character responsible for the divergent behavior of the structure factor and of the static response function, reflecting the occurrence of crystalline order. The sound velocities are calculated as functions of the Raman coupling for excitations propagating orthogonal and parallel to the stripes. Our predictions provide new perspectives for the identification of supersolid phenomena in ultracold atomic gases.

  2. Inflationary Quasiparticle Creation and Thermalization Dynamics in Coupled Bose-Einstein Condensates.

    PubMed

    Posazhennikova, Anna; Trujillo-Martinez, Mauricio; Kroha, Johann

    2016-06-01

    A Bose gas in a double-well potential, exhibiting a true Bose-Einstein condensate (BEC) amplitude and initially performing Josephson oscillations, is a prototype of an isolated, nonequilibrium many-body system. We investigate the quasiparticle (QP) creation and thermalization dynamics of this system by solving the time-dependent Keldysh-Bogoliubov equations. We find avalanchelike QP creation due to a parametric resonance between BEC and QP oscillations, followed by slow, exponential relaxation to a thermal state at an elevated temperature, controlled by the initial excitation energy of the oscillating BEC above its ground state. The crossover between the two regimes occurs because of an effective decoupling of the QP and BEC oscillations. This dynamics is analogous to elementary particle creation in models of the early universe. The thermalization in our setup occurs because the BEC acts as a grand canonical reservoir for the quasiparticle system.

  3. Reversal of the circulation of a vortex by quantum tunneling in trapped Bose systems

    SciTech Connect

    Watanabe, Gentaro; Pethick, C. J.

    2007-08-15

    We study the quantum dynamics of a model for a vortex in a Bose gas with repulsive interactions in an anisotropic, harmonic trap. By solving the Schroedinger equation numerically, we show that the circulation of the vortex can undergo periodic reversals by quantum-mechanical tunneling. With increasing interaction strength or particle number, vortices become increasingly stable, and the period for reversals increases. Tunneling between vortex and antivortex states is shown to be described to a good approximation by a superposition of vortex and antivortex states (Schroedinger cat state), rather than the mean-field state, and we derive an analytical expression for the oscillation period. The problem is shown to be equivalent to that of the two-site Bose-Hubbard model with attractive interactions.

  4. Collisions of Solitons and Vortex Rings in Cylindrical Bose-Einstein Condensates

    SciTech Connect

    Komineas, Stavros; Brand, Joachim

    2005-09-09

    Interactions of solitary waves in a cylindrically confined Bose-Einstein condensate are investigated by simulating their head-on collisions. Slow vortex rings and fast solitons are found to collide elastically contrary to the situation in the three-dimensional homogeneous Bose gas. Strongly inelastic collisions are absent for low density condensates but occur at higher densities for intermediate velocities. The scattering behavior is rationalized by use of dispersion diagrams. During inelastic collisions, spherical shell-like structures of low density are formed and they eventually decay into depletion droplets with solitary-wave features. The relation to similar shells observed in a recent experiment by Ginsberg et al. [Phys. Rev. Lett. 94, 040403 (2005)] is discussed.

  5. Spin-momentum coupled Bose-Einstein condensates with lattice band pseudospins.

    PubMed

    Khamehchi, M A; Qu, Chunlei; Mossman, M E; Zhang, Chuanwei; Engels, P

    2016-02-29

    The quantum emulation of spin-momentum coupling, a crucial ingredient for the emergence of topological phases, is currently drawing considerable interest. In previous quantum gas experiments, typically two atomic hyperfine states were chosen as pseudospins. Here, we report the observation of a spin-momentum coupling achieved by loading a Bose-Einstein condensate into periodically driven optical lattices. The s and p bands of a static lattice, which act as pseudospins, are coupled through an additional moving lattice that induces a momentum-dependent coupling between the two pseudospins, resulting in s-p hybrid Floquet-Bloch bands. We investigate the band structures by measuring the quasimomentum of the Bose-Einstein condensate for different velocities and strengths of the moving lattice, and compare our measurements to theoretical predictions. The realization of spin-momentum coupling with lattice bands as pseudospins paves the way for engineering novel quantum matter using hybrid orbital bands.

  6. Quench-Induced Breathing Mode of One-Dimensional Bose Gases

    NASA Astrophysics Data System (ADS)

    Fang, Bess; Carleo, Giuseppe; Johnson, Aisling; Bouchoule, Isabelle

    2014-07-01

    We measure the position- and momentum-space breathing dynamics of trapped one-dimensional Bose gases at finite temperature. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking temperature into account is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism due to the repulsive interactions. Such a mechanism is predicted for a fermionized system, and has not been observed to date. The disappearance of the frequency doubling through the crossover is mapped out experimentally, giving insights into the dynamics of the breathing evolution.

  7. Inflationary Quasiparticle Creation and Thermalization Dynamics in Coupled Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Posazhennikova, Anna; Trujillo-Martinez, Mauricio; Kroha, Johann

    2016-06-01

    A Bose gas in a double-well potential, exhibiting a true Bose-Einstein condensate (BEC) amplitude and initially performing Josephson oscillations, is a prototype of an isolated, nonequilibrium many-body system. We investigate the quasiparticle (QP) creation and thermalization dynamics of this system by solving the time-dependent Keldysh-Bogoliubov equations. We find avalanchelike QP creation due to a parametric resonance between BEC and QP oscillations, followed by slow, exponential relaxation to a thermal state at an elevated temperature, controlled by the initial excitation energy of the oscillating BEC above its ground state. The crossover between the two regimes occurs because of an effective decoupling of the QP and BEC oscillations. This dynamics is analogous to elementary particle creation in models of the early universe. The thermalization in our setup occurs because the BEC acts as a grand canonical reservoir for the quasiparticle system.

  8. Mechanocaloric and thermomechanical effects in Bose-Einstein-condensed systems

    SciTech Connect

    Marques, G.C.; Bagnato, V.S.; Muniz, S.R.; Spehler, D.

    2004-05-01

    In this paper we extend previous hydrodynamic equations, governing the motion of Bose-Einstein-condensed fluids, to include temperature effects. This allows us to analyze some differences between a normal fluid and a Bose-Einstein-condensed one. We show that, in close analogy with superfluid {sup 4}He, a Bose-Einstein-condensed fluid exhibits the mechanocaloric and thermomechanical effects. In our approach we can explain both effects without using the hypothesis that the Bose-Einstein-condensed fluid has zero entropy. Such ideas could be investigated in existing experiments.

  9. ION SOURCE WITH SPACE CHARGE NEUTRALIZATION

    DOEpatents

    Flowers, J.W.; Luce, J.S.; Stirling, W.L.

    1963-01-22

    This patent relates to a space charge neutralized ion source in which a refluxing gas-fed arc discharge is provided between a cathode and a gas-fed anode to provide ions. An electron gun directs a controlled, monoenergetic electron beam through the discharge. A space charge neutralization is effected in the ion source and accelerating gap by oscillating low energy electrons, and a space charge neutralization of the source exit beam is effected by the monoenergetic electron beam beyond the source exit end. The neutralized beam may be accelerated to any desired energy at densities well above the limitation imposed by Langmuir-Child' s law. (AEC)

  10. Scattering processes in Bose-Einstein condensed systems

    NASA Astrophysics Data System (ADS)

    Wynveen, Aaron Sundby

    Unambiguous proof of the existence of Bose condensation in superfluid helium has long eluded researchers ever since condensation was hypothesized to be responsible for superfluidity sixty years ago. Both experimentalists and theorists have been stymied in this effort due to the complexity of this system. Our group has predicted, though, a means by which Bose condensation may be directly probed via a condensate mediated transmission process. Experiments in which helium beams are transmitted through a superfluid to provide information concerning the condensate nature of helium have been undertaken by our group. In the context of these experiments, we have carried out theoretical and computational studies of this process in weakly interacting systems in which calculations may be readily performed. These studies have demonstrated that there exists effective transparency of the condensate to the scattering atoms in these weakly interacting systems similar to that predicted for helium. Dissipation, which may screen the condensate mediated process, has also been shown to be negligible in the weakly interacting systems. Simulations of the helium beams used in the transmission experiments have also been developed. By combining gas dynamics with a hydrodynamic simulation, we have been able to explore a broader range of experimental regimes and thus were able to simulate the anomalous signals observed in the beam experiments. A full characterization of these beams is necessary for correct interpretation of the transmitted signals, and the results of the simulations have led to beneficial modifications to the transmission experiment. And finally, we have presented another means by which condensation may be studied in helium by analyzing the motion of small helium drops through a background helium vapor.

  11. Bose-Fermi mixtures of ultracold gases of dysprosium

    NASA Astrophysics Data System (ADS)

    Youn, Seo Ho

    Laser cooling and trapping of the most magnetic fermionic atom, dysprosium (Dy), may provide a framework to explore quantum liquid crystal (QLC) theory (Chapter 1). This thesis presents details of the Dy laser cooling and trapping apparatus including the laser systems at 421, 741, and 1064 nm, the ultra-high vacuum (UHV) chamber, and the computer control that has produced a magneto-optically (MOT) and magnetostatically (MT) trapped Dy gas (Chapters 3, 4, 5). Despite the fact that Dy has a complex energy level structure with nearly 140 metastable states (Chapter 2), Dy MOT at 421-nm transition with 32-MHz linewidth was realized without any rempumper, exploiting its large magnetic moment, which brought a strong magnetic confinement of metastable states of Dy. This unique MOT/MT dynamics is discussed and its quantitative measurements are shown in Chapter 6. When the Dy atoms dropped from the MOT were adsorptively imaged, it was observed that Dy MOT had a bimodal temperature distribution in contrast to the usual MOT described by a single temperature (Chapter 7). Such novel anisotropic sub-Doppler laser cooling of Dy, which breaks the symmetry in cooling, is due to Dy's large magnetic spin aligned along a strong axis of the quadrupole field of the MOT, and we further support this plausible conjecture with the velocity selective resonance (VSR) theory. The MOT at ˜1 mK was cooled to ˜ 10 muK by narrow-line cooling at 741 nm with a linewidth of 2 kHz, and we were able to load the optical dipole trap (ODT) at 1064 nm. By loading two isotopes of 164Dy and 163Dy in sequence to the MOT and narrow-line cooling them simultaneously, ultracold Bose-Fermi mixtures of Dy in the ODT were realized (Chapter 8). This thesis is concluded with a discussion of prospect on the Bose-Fermi mixtures of Dy.

  12. Atomic Bose-Hubbard Systems with Single-Particle Control

    NASA Astrophysics Data System (ADS)

    Preiss, Philipp Moritz

    Experiments with ultracold atoms in optical lattices provide outstanding opportunities to realize exotic quantum states due to a high degree of tunability and control. In this thesis, I present experiments that extend this control from global parameters to the level of individual particles. Using a quantum gas microscope for 87Rb, we have developed a single-site addressing scheme based on digital amplitude holograms. The system self-corrects for aberrations in the imaging setup and creates arbitrary beam profiles. We are thus able to shape optical potentials on the scale of single lattice sites and control the dynamics of individual atoms. We study the role of quantum statistics and interactions in the Bose-Hubbard model on the fundamental level of two particles. Bosonic quantum statistics are apparent in the Hong-Ou-Mandel interference of massive particles, which we observe in tailored double-well potentials. These underlying statistics, in combination with tunable repulsive interactions, dominate the dynamics in single- and two-particle quantum walks. We observe highly coherent position-space Bloch oscillations, bosonic bunching in Hanbury Brown-Twiss interference and the fermionization of strongly interacting bosons. Many-body states of indistinguishable quantum particles are characterized by large-scale spatial entanglement, which is difficult to detect in itinerant systems. Here, we extend the concept of Hong-Ou-Mandel interference from individual particles to many-body states to directly quantify entanglement entropy. We perform collective measurements on two copies of a quantum state and detect entanglement entropy through many-body interference. We measure the second order Renyi entropy in small Bose-Hubbard systems and detect the buildup of spatial entanglement across the superfluid-insulator transition. Our experiments open new opportunities for the single-particle-resolved preparation and characterization of many-body quantum states.

  13. Bose-Einstein condensation in microgravity.

    PubMed

    van Zoest, T; Gaaloul, N; Singh, Y; Ahlers, H; Herr, W; Seidel, S T; Ertmer, W; Rasel, E; Eckart, M; Kajari, E; Arnold, S; Nandi, G; Schleich, W P; Walser, R; Vogel, A; Sengstock, K; Bongs, K; Lewoczko-Adamczyk, W; Schiemangk, M; Schuldt, T; Peters, A; Könemann, T; Müntinga, H; Lämmerzahl, C; Dittus, H; Steinmetz, T; Hänsch, T W; Reichel, J

    2010-06-18

    Albert Einstein's insight that it is impossible to distinguish a local experiment in a "freely falling elevator" from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter.

  14. Quantum fluctuations in dipolar Bose gases

    SciTech Connect

    Lima, Aristeu R. P.; Pelster, Axel

    2011-10-15

    We investigate the influence of quantum fluctuations upon dipolar Bose gases by means of the Bogoliubov-de Gennes theory. Thereby, we make use of the local density approximation to evaluate the dipolar exchange interaction between the condensate and the excited particles. This allows to obtain the Bogoliubov spectrum analytically in the limit of large particle numbers. After discussing the condensate depletion and the ground-state energy correction, we derive quantum-corrected equations of motion for harmonically trapped dipolar Bose gases by using superfluid hydrodynamics. These equations are subsequently applied to analyze the equilibrium configuration, the low-lying oscillation frequencies, and the time-of-flight dynamics. We find that both atomic magnetic and molecular electric dipolar systems offer promising scenarios for detecting beyond mean-field effects.

  15. Axions: Bose Einstein condensate or classical field?

    NASA Astrophysics Data System (ADS)

    Davidson, Sacha

    2015-05-01

    The axion is a motivated dark matter candidate, so it would be interesting to find features in Large Scale Structures specific to axion dark matter. Such features were proposed for a Bose Einstein condensate of axions, leading to confusion in the literature (to which I contributed) about whether axions condense due to their gravitational interactions. This note argues that the Bose Einstein condensation of axions is a red herring: the axion dark matter produced by the misalignment mechanism is already a classical field, which has the distinctive features attributed to the axion condensate (BE condensates are described as classical fields). This note also estimates that the rate at which axion particles condense to the field, or the field evaporates to particles, is negligible.

  16. Astrophysical Bose-Einstein condensates and superradiance

    NASA Astrophysics Data System (ADS)

    Kühnel, Florian; Rampf, Cornelius

    2014-11-01

    We investigate gravitational analogue models to describe slowly rotating objects (e.g., dark-matter halos, or boson stars) in terms of Bose-Einstein condensates, trapped in their own gravitational potentials. We begin with a modified Gross-Pitaevskii equation, and show that the resulting background equations of motion are stable, as long as the rotational component is treated as a small perturbation. The dynamics of the fluctuations of the velocity potential are effectively governed by the Klein-Gordon equation of an "Eulerian metric," where we derive the latter by the use of a relativistic Lagrangian extrapolation. Superradiant scattering on such objects is studied. We derive conditions for its occurrence and estimate its strength. Our investigations might give an observational handle to phenomenologically constrain Bose-Einstein condensates.

  17. Bose condensates and the atom laser

    NASA Astrophysics Data System (ADS)

    Andrews, Michael R.

    In this thesis, I describe four classes of studies of cold, dilute vapors of atomic sodium. The in-situ nondestructive observation of a Bose condensate is presented in the broader context of imaging a cold polarized cloud. Two condensates were made to interfere, and a rudimentary ``atom laser'' was demonstrated. Excitations of a condensate were imaged in- situ and nondestructively, opening up the field of real- time dynamical studies. A related study attempting (unsuccessfully) to create and detect superfluid currents and vortices is discussed. Lastly, Feshbach resonances were used to modify the interactions in a Bose condensate, and the scattering length was observed to vary by over a factor of ten. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  18. Bose-Einstein Condensation in Microgravity

    NASA Astrophysics Data System (ADS)

    van Zoest, T.; Gaaloul, N.; Singh, Y.; Ahlers, H.; Herr, W.; Seidel, S. T.; Ertmer, W.; Rasel, E.; Eckart, M.; Kajari, E.; Arnold, S.; Nandi, G.; Schleich, W. P.; Walser, R.; Vogel, A.; Sengstock, K.; Bongs, K.; Lewoczko-Adamczyk, W.; Schiemangk, M.; Schuldt, T.; Peters, A.; Könemann, T.; Müntinga, H.; Lämmerzahl, C.; Dittus, H.; Steinmetz, T.; Hänsch, T. W.; Reichel, J.

    2010-06-01

    Albert Einstein’s insight that it is impossible to distinguish a local experiment in a “freely falling elevator” from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter.

  19. Bose-Einstein condensation in microgravity.

    PubMed

    van Zoest, T; Gaaloul, N; Singh, Y; Ahlers, H; Herr, W; Seidel, S T; Ertmer, W; Rasel, E; Eckart, M; Kajari, E; Arnold, S; Nandi, G; Schleich, W P; Walser, R; Vogel, A; Sengstock, K; Bongs, K; Lewoczko-Adamczyk, W; Schiemangk, M; Schuldt, T; Peters, A; Könemann, T; Müntinga, H; Lämmerzahl, C; Dittus, H; Steinmetz, T; Hänsch, T W; Reichel, J

    2010-06-18

    Albert Einstein's insight that it is impossible to distinguish a local experiment in a "freely falling elevator" from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter. PMID:20558713

  20. Schrodinger Leopards in Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.; Dounas-Frazer, Dimitri R.

    2008-03-01

    We present the complex quantum dynamics of vortices in Bose-Einstein condensates in a double well via exact diagonalization of a discretized Hamiltonian. When the barrier is high, vortices evolve into macroscopic superposition (NOON) states of a vortex in either well -- a Schrodinger cat with spots. Such Schrodinger leopard states are more robust than previously proposed NOON states, which only use two single particle modes of the double well potential.

  1. Bose-Einstein condensation of cesium.

    PubMed

    Weber, Tino; Herbig, Jens; Mark, Michael; Nägerl, Hanns-Christoph; Grimm, Rudolf

    2003-01-10

    Bose-Einstein condensation of cesium atoms is achieved by evaporative cooling using optical trapping techniques. The ability to tune the interactions between the ultracold atoms by an external magnetic field is crucial to obtain the condensate and offers intriguing features for potential applications. We explore various regimes of condensate self-interaction (attractive, repulsive, and null interaction strength) and demonstrate properties of imploding, exploding, and non-interacting quantum matter. PMID:12471267

  2. Bose-Einstein correlations from 'within'

    SciTech Connect

    Utyuzh, O. V.; Wilk, G.; Wlodarczyk, Z.

    2006-04-11

    We describe an attempt to model numerically Bose-Einstein correlations (BEC) from 'within', i.e., by using them as the most fundamental ingredient of some Monte Carlo event generator (MC) rather than considering them as a kind of (more or less important, depending on the actual situation) 'afterburner', which inevitably changes original physical content of the MC code used to model multiparticle production process.

  3. Quantum phases of Bose-Bose mixtures on a triangular lattice

    NASA Astrophysics Data System (ADS)

    He, Liang; Li, Yongqiang; Altman, Ehud; Hofstetter, Walter

    2012-10-01

    We investigate the zero-temperature quantum phases of a Bose-Bose mixture on a triangular lattice using the bosonic dynamical mean-field theory (BDMFT). We consider the case of total filling where geometric frustration arises for asymmetric hopping. We map out a rich ground-state phase diagram including xy-ferromagnetic, spin-density wave, superfluid, and supersolid phases. In particular, we identify a stripe spin-density wave phase for highly asymmetric hopping. On top of the spin-density wave, we find that the system generically shows weak charge (particle) density wave order.

  4. Bose-Einstein condensation in dark power-law laser traps

    NASA Astrophysics Data System (ADS)

    Jaouadi, A.; Gaaloul, N.; Viaris de Lesegno, B.; Telmini, M.; Pruvost, L.; Charron, E.

    2010-08-01

    We investigate theoretically an original route to achieve Bose-Einstein condensation using dark power-law laser traps. We propose to create such traps with two crossing blue-detuned Laguerre-Gaussian optical beams. Controlling their azimuthal order ℓ allows for the exploration of a multitude of power-law trapping situations in one, two, and three dimensions, ranging from the usual harmonic trap to an almost square-well potential, in which a quasihomogeneous Bose gas can be formed. The usual cigar-shaped and disk-shaped Bose-Einstein condensates obtained in a 1D or 2D harmonic trap take the generic form of a “finger” or of a “hockey puck” in such Laguerre-Gaussian traps. In addition, for a fixed atom number, higher transition temperatures are obtained in such configurations when compared with a harmonic trap of the same volume. This effect, which results in a substantial acceleration of the condensation dynamics, requires a better but still reasonable focusing of the Laguerre-Gaussian beams.

  5. Quench dynamics of a Bose-Einstein condensate under synthetic spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Deng, Tian-Shu; Zhang, Wei; Yi, Wei; Guo, Guang-Can

    2016-05-01

    We study the quench dynamics of a Bose-Einstein condensate under a Raman-assisted synthetic spin-orbit coupling. To model the dynamical process, we adopt a self-consistent Bogoliubov approach, which is equivalent to applying the time-dependent Bogoliubov-de Gennes equations. We investigate the dynamics of the condensate fraction as well as the momentum distribution of the Bose gas following a sudden change of system parameters. Typically, the system evolves into a steady state in the long-time limit, which features an oscillating momentum distribution and a stationary condensate fraction. We investigate how different quench parameters such as the inter- and intraspecies interactions and the spin-orbit-coupling parameters affect the condensate fraction in the steady state. Furthermore, we find that the time average of the oscillatory momentum distribution in the long-time limit can be described by a generalized Gibbs ensemble with two branches of momentum-dependent Gibbs temperatures. Our study is relevant to the experimental investigation of dynamical processes in a spin-orbit-coupled Bose-Einstein condensate.

  6. Finite-temperature excitations of a trapped Bose-Fermi mixture

    SciTech Connect

    Liu, Xia-Ji; Hu, Hui

    2003-09-01

    We present a detailed study of the low-lying collective excitations of a spherically trapped Bose-Fermi mixture at finite temperature in the collisionless regime. The excitation frequencies of the condensate are calculated self-consistently using the static Hartree-Fock-Bogoliubov theory within the Popov approximation. The frequency shifts and damping rates due to the coupled dynamics of the condensate, noncondensate, and degenerate Fermi gas are also taken into account by means of the random-phase approximation and linear-response theory. In our treatment, the dipole excitation remains close to the bare trapping frequency for all temperatures considered, and thus is consistent with the generalized Kohn theorem. We discuss in some detail the behavior of monopole and quadrupole excitations as a function of the Bose-Fermi coupling. At nonzero temperatures we find that, as the mixture moves towards spatial separation with increasing Bose-Fermi coupling, the damping rate of the monopole (quadrupole) excitation increases (decreases). This provides us a useful signature to identify the phase transition of spatial separation.

  7. International Thermonuclear Experimental Reactor (ITER) neutral beam design

    SciTech Connect

    Myers, T.J.; Brook, J.W.; Spampinato, P.T.; Mueller, J.P.; Luzzi, T.E.; Sedgley, D.W. . Space Systems Div.)

    1990-10-01

    This report discusses the following topics on ITER neutral beam design: ion dump; neutralizer and module gas flow analysis; vacuum system; cryogenic system; maintainability; power distribution; and system cost.

  8. The formation of RCCCO and CCC(O)R (R = Me, Ph) neutral radicals from ionic precursors in the gas phase: the rearrangement of CCC(O)Ph.

    PubMed

    Peppe, Salvatore; McAnoy, Andrew M; Dua, Suresh; Bowie, John H

    2004-01-01

    Neutrals MeCCCO, CCC(O)Me, PhCCCO and CCC(O)Ph have been made by neutralisation of [MeCCCO](+), [CCC(O)Me](-), [PhCCCO](+) and [CC(CO)Ph](-). Neutrals MeCCCO, CCC(O)Me and PhCCCO are stable for the microsecond duration of the neutralisation experiment. A joint experimental and theoretical study (energies calculated at the B3LYP/aug-cc-pVDZ//B3LYP/6-31G(d) level of theory) suggests that the neutral radical CCC(O)Ph rearranges via a four-centred ipso radical cyclisation/ring opening to form the isomer PhCCCO in an exothermic reaction. (13)C labelling confirms that the rearrangement does not involve O migration. Some of the PhCCCO radicals formed in this reaction are sufficiently energised to effect decomposition to give PhCC and CO. PMID:15150822

  9. Photon condensation: A new paradigm for Bose-Einstein condensation

    NASA Astrophysics Data System (ADS)

    Rajan, Renju; Ramesh Babu, P.; Senthilnathan, K.

    2016-10-01

    Bose-Einstein condensation is a state of matter known to be responsible for peculiar properties exhibited by superfluid Helium-4 and superconductors. Bose-Einstein condensate (BEC) in its pure form is realizable with alkali atoms under ultra-cold temperatures. In this paper, we review the experimental scheme that demonstrates the atomic Bose-Einstein condensate. We also elaborate on the theoretical framework for atomic Bose-Einstein condensation, which includes statistical mechanics and the Gross-Pitaevskii equation. As an extension, we discuss Bose-Einstein condensation of photons realized in a fluorescent dye filled optical microcavity. We analyze this phenomenon based on the generalized Planck's law in statistical mechanics. Further, a comparison is made between photon condensate and laser. We describe how photon condensate may be a possible alternative for lasers since it does not require an energy consuming population inversion process.

  10. Topological objects in two-component Bose-Einstein condensates

    SciTech Connect

    Cho, Y. M.; Khim, Hyojoong; Zhang, Pengming

    2005-12-15

    We study the topological objects in two-component Bose-Einstein condensates. We compare two competing theories of two-component Bose-Einstein condensates, the popular Gross-Pitaevskii theory, and the recently proposed gauge theory of two-component Bose-Einstein condensate which has an induced vorticity interaction. We show that two theories produce very similar topological objects, in spite of the obvious differences in dynamics. Furthermore we show that the gauge theory of two-component Bose-Einstein condensates, with the U(1) gauge symmetry, is remarkably similar to the Skyrme theory. Just like the Skyrme theory this theory admits the non-Abelian vortex, the helical vortex, and the vorticity knot. We construct the lightest knot solution in two-component Bose-Einstein condensates numerically, and discuss how the knot can be constructed in the spin-(1/2) condensate of {sup 87}Rb atoms.

  11. Observation of increased space-charge limited thermionic electron emission current by neutral gas ionization in a weakly-ionized deuterium plasma

    SciTech Connect

    Hollmann, E. M.; Yu, J. H.; Doerner, R. P.; Nishijima, D.; Seraydarian, R. P.

    2015-09-14

    The thermionic electron emission current emitted from a laser-produced hot spot on a tungsten target in weakly-ionized deuterium plasma is measured. It is found to be one to two orders of magnitude larger than expected for bipolar space charge limited thermionic emission current assuming an unperturbed background plasma. This difference is attributed to the plasma being modified by ionization of background neutrals by the emitted electrons. This result indicates that the allowable level of emitted thermionic electron current can be significantly enhanced in weakly-ionized plasmas due to the presence of large neutral densities.

  12. Bose-Einstein condensation in low dimensional layered structures

    NASA Astrophysics Data System (ADS)

    Salas, Patricia; Solis, M. A.

    2008-03-01

    Bose-Einstein condensation critical temperature, among other thermodynamic properties are reported for an ideal boson gas inside layered structures created by trapping potential of the Kronig-Penney type. We start with a big box where we introduce the Kronig-Penney potential in three directions to get a honey comb of cubes of side a size and walls of variable penetrability (P=mV0ab/^2), with bosons instead of bees. We are able to reduce the dimensions of the cubes to simulate bosons inside quantum dots. The critical temperature, starting from that of an ideal boson gas inside the big box, decreases as the small cube wall impenetrability increases arriving to a tiny but different from zero when the penetrability is zero (P-->∞). We also calculate the internal energy and the specific heat, and compare them to the ones obtained for the case of the same Kronig-Penney potential in one direction (simulating layers), and two directions (nanotubes).

  13. CO2-neutral fuels

    NASA Astrophysics Data System (ADS)

    Goede, A. P. H.

    2015-08-01

    The need for storage of renewable energy (RE) generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G) scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel cycle is

  14. Calorimetry of a Bose–Einstein-condensed photon gas

    PubMed Central

    Damm, Tobias; Schmitt, Julian; Liang, Qi; Dung, David; Vewinger, Frank; Weitz, Martin; Klaers, Jan

    2016-01-01

    Phase transitions, as the condensation of a gas to a liquid, are often revealed by a discontinuous behaviour of thermodynamic quantities. For liquid helium, for example, a divergence of the specific heat signals the transition from the normal fluid to the superfluid state. Apart from liquid helium, determining the specific heat of a Bose gas has proven to be a challenging task, for example, for ultracold atomic Bose gases. Here we examine the thermodynamic behaviour of a trapped two-dimensional photon gas, a system that allows us to spectroscopically determine the specific heat and the entropy of a nearly ideal Bose gas from the classical high temperature to the Bose-condensed quantum regime. The critical behaviour at the phase transition is clearly revealed by a cusp singularity of the specific heat. Regarded as a test of quantum statistical mechanics, our results demonstrate a quantitative agreement with its predictions at the microscopic level. PMID:27090978

  15. Bose-Einstein Condensation in Extended Microgravity

    NASA Astrophysics Data System (ADS)

    Scharringhausen, Marco; Quantus Team; Rasel, Ernst Maria

    2012-07-01

    The setup and the envisaged experiment timeline of the QUANTUS-III experiment onboard a sounding rocket to be started in the near future are presented. The major intention of QUANTUS-III is the stable generation of a number of Bose-Einstein condensates as a source for atom interferometry during several minutes of microgravity onboard the sounding rocket. Later missions aim at the realization of atom interferoemeters as precursor satellite missions. These condesates will be generated serially, allowing a large number of repeatable tests. Within such Bose-Einstein condensates, millions of atoms lose their identity and can be described by a single macroscopic wave function. During the expansion over several seconds, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter. Cold quantum gases and, in particular, Bose-Einstein condensates represent a new state of matter which is nowadays established in many laboratories. They offer unique insights into a broad range of fundamental physics as well as prospects for novel quantum sensors. Microgravity will substantially extend the science of quantum gases towards nowadays inaccessible regimes at lowest temperatures, to macroscopic dimensions, and to unequalled durations of unperturbed evolution of these distinguished quantum objects. Right now, the QUANTUS-III experiment is in the development phase, taking heritage from QUANTUS-I and QUANTUS-II. Major components of the engineering model are available. Boundary conditions of the rocket, requirements of the experiment and interface considerations are presented. This include laser stabilization, vacuum technology and magnetic shielding. The planned trajectory of the rocket will have an apogee of 200 - 300 km and a total microgravity time of 4 - 7 minutes, both depending on the total experiment mass.

  16. Impurity transport through a strongly interacting bosonic quantum gas

    SciTech Connect

    Johnson, T. H.; Clark, S. R.; Bruderer, M.; Jaksch, D.

    2011-08-15

    Using near-exact numerical simulations, we study the propagation of an impurity through a one-dimensional Bose lattice gas for varying bosonic interaction strengths and filling factors at zero temperature. The impurity is coupled to the Bose gas and confined to a separate tilted lattice. The precise nature of the transport of the impurity is specific to the excitation spectrum of the Bose gas, which allows one to measure properties of the Bose gas nondestructively, in principle, by observing the impurity; here we focus on the spatial and momentum distributions of the impurity as well as its reduced density matrix. For instance, we show it is possible to determine whether the Bose gas is commensurately filled as well as the bandwidth and gap in its excitation spectrum. Moreover, we show that the impurity acts as a witness to the crossover of its environment from the weakly to the strongly interacting regime, i.e., from a superfluid to a Mott insulator or Tonks-Girardeau lattice gas, and the effects on the impurity in both of these strongly interacting regimes are clearly distinguishable. Finally, we find that the spatial coherence of the impurity is related to its propagation through the Bose gas.

  17. Quantum dynamics of a Bose superfluid vortex.

    PubMed

    Thompson, L; Stamp, P C E

    2012-05-01

    We derive a fully quantum-mechanical equation of motion for a vortex in a 2-dimensional Bose superfluid in the temperature regime where the normal fluid density ρ(n)(T) is small. The coupling between the vortex "zero mode" and the quasiparticles has no term linear in the quasiparticle variables--the lowest-order coupling is quadratic. We find that as a function of the dimensionless frequency Ω=ℏΩ/k(B)T, the standard Hall-Vinen-Iordanskii equations are valid when Ω≪1 (the "classical regime"), but elsewhere, the equations of motion become highly retarded, with significant experimental implications when Ω≳1.

  18. A prototype storage ring for neutral molecules.

    PubMed

    Crompvoets, F M; Bethlem, H L; Jongma, R T; Meijer, G

    2001-05-10

    The ability to cool and manipulate atoms with light has yielded atom interferometry, precision spectroscopy, Bose-Einstein condensates and atom lasers. The extension of controlled manipulation to molecules is expected to be similarly rewarding, but molecules are not as amenable to manipulation by light owing to a far more complex energy-level spectrum. However, time-varying electric and magnetic fields have been successfully used to control the position and velocity of ions, suggesting that these schemes can also be used to manipulate neutral particles having an electric or magnetic dipole moment. Although the forces exerted on neutral species are many orders of magnitude smaller than those exerted on ions, beams of neutral dipolar molecules have been successfully slowed down in a series of pulsed electric fields and subsequently loaded into an electrostatic trap. Here we extend the scheme to include a prototype electrostatic storage ring made of a hexapole torus with a circumference of 80 cm. After injection, decelerated bunches of deuterated ammonia molecules, each containing about 106 molecules in a single quantum state and with a translational temperature of 10 mK, travel up to six times around the ring. Stochastic cooling might provide a means to increase the phase-space density of the stored molecules in the storage ring, and we expect this to open up new opportunities for molecular spectroscopy and studies of cold molecular collisions.

  19. PDX neutral beam reionization losses

    SciTech Connect

    Kugel, H.W.; Dylla, H.F.; Eubank, H.P.; Kozub, T.A.; Moore, R.; Schilling, G.; Stuart, L.D.; Von Halle, A.; Williams, M.D.

    1982-04-01

    Reionization losses for 1.5 MW H /sup 0/ and 2 MW D /sup 0/ neutral beams injected into the PDX tokamak were studied using pressure gauges, phototransistors, thermocouples, surface shielding, and surface sample analysis. Considerable outgassing of conventionally prepared 304 SS ducts occurred during initial injections and gradually decreased with the cumulative absorption of beam power. Reionization power losses are presently about 5% in the ducts and about 12% total for a beamline including the duct. Present duct pressures are attributed primarily to gas from the ion source and neutralizer with much smaller contributions from residual wall desorption. Physical mechanisms for the observed duct outgassing are discussed.

  20. Reactive formulations for a neutralization of toxic industrial chemicals

    SciTech Connect

    Tucker, Mark D.; Betty, Rita G.

    2006-10-24

    Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

  1. Vortices and hysteresis in a rotating Bose-Einstein condensate with anharmonic confinement

    SciTech Connect

    Jackson, A.D.; Kavoulakis, G.M.

    2004-08-01

    We examine an effectively repulsive Bose-Einstein condensate of atoms that rotates in a quadratic-plus-quartic trapping potential. We investigate the phase diagram of the system as a function of the angular frequency of rotation and of the coupling constant, demonstrating that there are phase transitions between multiply and singly quantized vortex states. We also show that states of different circulation can be metastable and, as a result, the gas can exhibit hysteresis as the angular frequency of rotation of the trap is varied. The simplicity of the picture that emerges for small coupling strengths suggests that this system may be attractive for studies of phase transitions.

  2. Dark-dark solitons and modulational instability in miscible two-component Bose-Einstein condensates

    SciTech Connect

    Hoefer, M. A.; Chang, J. J.; Hamner, C.; Engels, P.

    2011-10-15

    We investigate the dynamics of two miscible superfluids experiencing fast counterflow in a narrow channel. The superfluids are formed by two distinguishable components of a trapped dilute-gas Bose-Einstein condensate (BEC). The onset of counterflow-induced modulational instability throughout the cloud is observed and shown to lead to the proliferation of dark-dark vector solitons. These solitons do not exist in single-component systems, exhibit intriguing beating dynamics, and can experience a transverse instability leading to vortex line structures. Experimental results and multidimensional numerical simulations are presented.

  3. Two-component Bose-Einstein condensates with a large number of vortices.

    PubMed

    Mueller, Erich J; Ho, Tin-Lun

    2002-05-01

    We consider the condensate wave function of a rapidly rotating two-component Bose gas with an equal number of particles in each component. If the interactions between like and unlike species are very similar (as occurs for two hyperfine states of (87)Rb or (23)Na) we find that the two components contain identical rectangular vortex lattices, where the unit cell has an aspect ratio of sqrt[3], and one lattice is displaced to the center of the unit cell of the other. Our results are based on an exact evaluation of the vortex lattice energy in the large angular momentum (or quantum Hall) regime.

  4. Interaction of a probe pulse with a 'dressed' Bose-Einstein condensate of rarefied atomic gases

    SciTech Connect

    Shamrov, N I

    2008-01-31

    Semiclassical equations describing the interaction of a probe pulse with a 'dressed' Bose-Einstein condensate of a rarefied atomic gas are proposed. The analytic solution of these equations is obtained for low-intensity pulses. The conditions of the appearance of a diffraction grating from recoil atoms are found. The existence of induced superradiance at the probe-beam frequency is predicted. The pulse propagation velocity in the condensate is determined as a function of its energy. The limits of the applicability of the two-level model of a 'dressed' atom are estimated. (nonlinear optical phenomena)

  5. Zero-temperature damping of Bose-Einstein condensate oscillations by vortex-antivortex pair creation

    SciTech Connect

    Fedichev, Petr O.; Fischer, Uwe R.; Recati, Alessio

    2003-07-01

    We investigate vortex-antivortex pair creation in a supersonically expanding and contracting quasi-two-dimensional Bose-Einstein condensate at zero temperature. For sufficiently large-amplitude condensate oscillations, pair production provides the leading dissipation mechanism. The condensate oscillations decay in a nonexponential manner, and the dissipation rate depends strongly on the oscillation amplitude. These features allow one to distinguish the decay due to pair creation from other possible damping mechanisms. An experimental observation of the predicted oscillation behavior of the superfluid gas provides a direct confirmation of the hydrodynamical analogy of quantum electrodynamics and quantum vortex dynamics in two spatial dimensions.

  6. Creation and counting of defects in a temperature-quenched Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Donadello, S.; Serafini, S.; Bienaimé, T.; Dalfovo, F.; Lamporesi, G.; Ferrari, G.

    2016-08-01

    We study the spontaneous formation of defects in the order parameter of a trapped ultracold bosonic gas while crossing the critical temperature for Bose-Einstein condensation at different rates. The system has the shape of an elongated ellipsoid, whose transverse width can be varied. For slow enough temperature quenches we find a power-law scaling of the average defect number with the quench rate, as predicted by the Kibble-Zurek mechanism. A breakdown of such a scaling is found for fast quenches, leading to a saturation of the average defect number. We suggest an explanation for this saturation in terms of the mutual interactions among defects.

  7. Observation of Spontaneous Coherence in Bose-Einstein Condensate of Magnons

    SciTech Connect

    Demidov, V. E.; Dzyapko, O.; Demokritov, S. O.; Melkov, G. A.; Slavin, A. N.

    2008-02-01

    The room-temperature dynamics of a magnon gas driven by short microwave pumping pulses is studied. An overpopulation of the lowest energy level of the system following the pumping is observed. Using the sensitivity of the Brillouin light scattering technique to the coherence degree of the scattering magnons we demonstrate the spontaneous emergence of coherence of the magnons at the lowest level, if their density exceeds a critical value. This finding is clear proof of the quantum nature of the observed phenomenon and direct evidence of Bose-Einstein condensation of magnons at room temperature.

  8. Bose-Einstein condensation in a vapor of sodium atoms in an electric field

    NASA Astrophysics Data System (ADS)

    You, Pei-Lin

    2016-06-01

    Bose-Einstein condensation (BEC) at normal temperature (T=343K) has been observed because an electric field was first applied. There are two ways to achieve phase transition: lower the temperature of Bose gas or increase its density. This article provides more appropriate method: increase the voltage. In theory, 3s and 3p states of sodium are not degenerate, but Na may be polar atom doesnot conflict with quantum mechanics because it is hydrogen-like atom. Our innovation lies in we applied an electric field used for the orientation polarization. Na vapor was filled in a cylindrical capacitor. In order to determine the polarity of sodium, we measured the capacitance at different temperatures. If Na is non-polar atom, its capacitance should be independent of temperature because the nucleus of atom is located at the center of the electron cloud. But our experiment shows that its capacitance is related to temperature, so Na is polar atom. In order to achieve Na vapor phase transition, we measured the capacitance at different voltages. From the entropy of Na vapor S=0, the critical voltage Vc=68volts. When V0; when V>Vc, the atoms become aligned with the field S<0, phase transition occurred. When V=390 volts »Vc, the capacitance decreased from C=1.9C0 to C≈C0 (C0 is the vacuum capacitance), this result implies that almost all the Na atoms (more than 98%) are aligned with the field, Na vapor entered quasi-vacuum state. We create a BEC with 2.506×1017 atoms, condensate fraction reached 98.9%. This is BEC in momentum space. Our experiment shows that if a Bose gas enters quasi-vacuum state, this also means that it underwent phase transition and generates BEC. Therefore, quasi-vacuum state of alkali gas is essentially large-scale BEC. This is an unexpected discovery. BEC and vacuum theory are two unrelated research areas, but now they are closely linked together. The maximum induced dipole moment dind≤7.8×10-15 e cm can be

  9. Maxwell's Demon at work: Two types of Bose condensate fluctuations in power-law traps.

    PubMed

    Grossmann, S; Holthaus, M

    1997-11-10

    After discussing the idea underlying the Maxwell's Demon ensemble, we employ this ensemble for calculating fluctuations of ideal Bose gas condensates in traps with power-law single-particle energy spectra. Two essentially different cases have to be distinguished. If the heat capacity is continuous at the condensation point, the fluctuations of the number of condensate particles vanish linearly with temperature, independent of the trap characteristics. In this case, microcanonical and canonical fluctuations are practically indistinguishable. If the heat capacity is discontinuous, the fluctuations vanish algebraically with temperature, with an exponent determined by the trap, and the micro-canonical fluctuations are lower than their canonical counterparts. PMID:19373412

  10. Probing a scattering resonance with Rydberg molecules inside a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Perez-Rios, J.; Schlagmüller, M.; Liebisch, T. C.; Nguyen, H.; Lochead, G.; Engel, F.; Böottcher, F.; Westphal, K. M.; Kleinbach, K. S.; Löw, R.; Hofferberth, S.; Pfau, T.; Greene, C. H.

    2016-05-01

    The spectroscopy of a single Rydberg atom within a Bose-Einstein condensate is studied, and as a result a line shape dependence on the principal Rydberg quantum number n is observed, apart from the expected density shift due to the large number of neutrals inside the Rydberg orbit. The observed line broadening depends on the Rydberg electron-neutral interaction, in particular, it manifests the influence of the e-Rb(5S) p-wave scattering shape resonance, which dramatically affects the potential energy landscape for the neutrals embedded within the Rydberg orbit. The observed spectroscopic line shapes are reproduced with an overall good agreement by means of a microscopic model, in which the atoms overlapped with the Rydberg orbit are treated as zero-velocity point-like particles, with binding energies associated with the ion-neutral distance. We acknowledge support from Deutsche Forschungsge5 meinschaft (DFG) within the SFB/TRR21 and the project PF 381/13-1. This work has been supported by NSF under Grand Number PHY-130690.

  11. Vector azimuthons in two-component Bose-Einstein condensates

    SciTech Connect

    Lashkin, Volodymyr M.; Ostrovskaya, Elena A.; Desyatnikov, Anton S.; Kivshar, Yuri S.

    2009-07-15

    We introduce matter-wave vector azimuthons, i.e., spatially localized vortex states with azimuthal modulations of density, in multicomponent Bose-Einstein condensates. These localized states generalize spatially modulated vortex solitons introduced earlier in nonlinear optics [A. S. Desyatnikov, A. A. Sukhorukov, and Yu. S. Kivshar, Phys. Rev. Lett. 95, 203904 (2005)] and Bose-Einstein condensates [V. M. Lashkin, Phys. Rev. A 77, 025602 (2008)]. We find, numerically, nonrotating and rotating two-component azimuthons in a Bose-Einstein condensate with a negative scattering length confined by a quasi-two-dimensional parabolic trap.

  12. Spin-Drag Hall Effect in a Rotating Bose Mixture

    SciTech Connect

    Driel, H. J. van; Duine, R. A.; Stoof, H. T. C.

    2010-10-08

    We show that in a rotating two-component Bose mixture, the spin drag between the two different spin species shows a Hall effect. This spin-drag Hall effect can be observed experimentally by studying the out-of-phase dipole mode of the mixture. We determine the damping of this mode due to spin drag as a function of temperature. We find that due to Bose stimulation there is a strong enhancement of the damping for temperatures close to the critical temperature for Bose-Einstein condensation.

  13. Interference of Bose-Einstein condensates.

    PubMed

    Band, Y B

    2008-12-18

    A formalism for describing the coherence and interference properties of two atomic clouds of Bose-Einstein condensates (BEC) is presented, which is applicable even in the opposite limits when the BEC clouds are initially coherent and when they are initially independent. First, we develop a mean-field theory wherein one mean-field mode is used, and then, for fragmented (i.e., independent) condensates, we use a mean-field theory with two modes. We then develop a full two-mode field theory, with a field operator composed of a sum of two terms containing matter wave mode functions phi1 and phi2, that multiply the destruction operators of the modes, a1 and a2. When atom-atom interactions are present and when the mode functions overlap, the matter wave mode functions phi1 and phi2 develop components moving to the right and left, and this results in interference fringes in the density. At the many-body level, another source of interference arises from expectation values of the form (a(i)+a(j)) with i double dagger j, which become nonzero due to tunneling and interactions. We detail how these two sources of interference affect the density profile and the density-density correlation functions of Bose-Einstein condensates in the coherent and in the fragmented regimes.

  14. Bose-Einstein condensation of spin wave quanta at room temperature.

    PubMed

    Dzyapko, O; Demidov, V E; Melkov, G A; Demokritov, S O

    2011-09-28

    Spin waves are delocalized excitations of magnetic media that mainly determine their magnetic dynamics and thermodynamics at temperatures far below the critical one. The quantum-mechanical counterparts of spin waves are magnons, which can be considered as a gas of weakly interacting bosonic quasi-particles. Here, we discuss the room-temperature kinetics and thermodynamics of the magnon gas in yttrium iron garnet films driven by parametric microwave pumping. We show that for high enough pumping powers, the thermalization of the driven gas results in a quasi-equilibrium state described by Bose-Einstein statistics with a non-zero chemical potential. Further increases of the pumping power cause a Bose-Einstein condensation documented by an observation of the magnon accumulation at the lowest energy level. Using the sensitivity of the Brillouin light scattering spectroscopy to the degree of coherence of the scattering magnons, we confirm the spontaneous emergence of coherence of the magnons accumulated at the bottom of the spectrum, occurring if their density exceeds a critical value.

  15. Spin and field squeezing in a spin-orbit coupled Bose-Einstein condensate.

    PubMed

    Huang, Yixiao; Hu, Zheng-Da

    2015-01-26

    Recently, strong spin-orbit coupling with equal Rashba and Dresselhaus strength has been realized in neutral atomic Bose-Einstein condensates via a pair of Raman lasers. In this report, we investigate spin and field squeezing of the ground state in spin-orbit coupled Bose-Einstein condensate. By mapping the spin-orbit coupled BEC to the well-known quantum Dicke model, the Dicke type quantum phase transition is presented with the order parameters quantified by the spin polarization and occupation number of harmonic trap mode. This Dicke type quantum phase transition may be captured by the spin and field squeezing arising from the spin-orbit coupling. We further consider the effect of a finite detuning on the ground state and show the spin polarization and the quasi-momentum exhibit a step jump at zero detuning. Meanwhile, we also find that the presence of the detuning enhances the occupation number of harmonic trap mode, while it suppresses the spin and the field squeezing.

  16. Spin and field squeezing in a spin-orbit coupled Bose-Einstein condensate

    PubMed Central

    Huang, Yixiao; Hu, Zheng-Da

    2015-01-01

    Recently, strong spin-orbit coupling with equal Rashba and Dresselhaus strength has been realized in neutral atomic Bose-Einstein condensates via a pair of Raman lasers. In this report, we investigate spin and field squeezing of the ground state in spin-orbit coupled Bose-Einstein condensate. By mapping the spin-orbit coupled BEC to the well-known quantum Dicke model, the Dicke type quantum phase transition is presented with the order parameters quantified by the spin polarization and occupation number of harmonic trap mode. This Dicke type quantum phase transition may be captured by the spin and field squeezing arising from the spin-orbit coupling. We further consider the effect of a finite detuning on the ground state and show the spin polarization and the quasi-momentum exhibit a step jump at zero detuning. Meanwhile, we also find that the presence of the detuning enhances the occupation number of harmonic trap mode, while it suppresses the spin and the field squeezing. PMID:25620051

  17. Extended Bose Hubbard model of interacting bosonic atoms in optical lattices: From superfluidity to density waves

    SciTech Connect

    Mazzarella, G.; Giampaolo, S. M.; Illuminati, F.

    2006-01-15

    For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zero and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters.

  18. Spin and field squeezing in a spin-orbit coupled Bose-Einstein condensate.

    PubMed

    Huang, Yixiao; Hu, Zheng-Da

    2015-01-01

    Recently, strong spin-orbit coupling with equal Rashba and Dresselhaus strength has been realized in neutral atomic Bose-Einstein condensates via a pair of Raman lasers. In this report, we investigate spin and field squeezing of the ground state in spin-orbit coupled Bose-Einstein condensate. By mapping the spin-orbit coupled BEC to the well-known quantum Dicke model, the Dicke type quantum phase transition is presented with the order parameters quantified by the spin polarization and occupation number of harmonic trap mode. This Dicke type quantum phase transition may be captured by the spin and field squeezing arising from the spin-orbit coupling. We further consider the effect of a finite detuning on the ground state and show the spin polarization and the quasi-momentum exhibit a step jump at zero detuning. Meanwhile, we also find that the presence of the detuning enhances the occupation number of harmonic trap mode, while it suppresses the spin and the field squeezing. PMID:25620051

  19. Bose-Bose mixtures with synthetic spin-orbit coupling in optical lattices

    NASA Astrophysics Data System (ADS)

    He, Liang; Ji, Anchun; Hofstetter, Walter

    2015-08-01

    We investigate the ground-state properties of Bose-Bose mixtures with Rashba-type spin-orbit (SO) coupling in a square lattice. The system displays rich physics from the deep Mott insulator (MI) all the way to the superfluid (SF) regime. In the deep MI regime, exotic spin-ordered phases arise due to the effective Dzyaloshinskii-Moriya type of superexchange interactions. By employing the nonperturbative bosonic dynamical mean-field theory (BDMFT), we numerically study and establish the stability of these magnetic phases against increasing hopping amplitude. We show that as hopping is increased across the MI to SF transition, exotic superfluid phases with magnetic textures emerge. In particular, we identify an exotic spin-spiral magnetic texture with spatial period 3 in the superfluid close to the MI-SF transition.

  20. Inter-species entanglement of Bose-Bose mixtures trapped in optical lattices

    NASA Astrophysics Data System (ADS)

    (王 巍, Wei Wang; Penna, Vittorio; Capogrosso-Sansone, Barbara

    2016-06-01

    In the present work we discuss inter-species entanglement in Bose-Bose mixtures trapped in optical lattices. This work is motivated by the observation that, in the presence of a second component, the MI lobe shifts differently on the hole- and particle-side with respect to the Mott lobe of the single species system (Guglielmino et al 2010 Phys. Rev. A 82 021601; Capogrosso-Sansone et al 2011 Laser Phys. 21 1443). We use perturbation theory, formulated in a Hilbert space decomposed by means of lattice symmetries, in order to show that the nonuniform shift of the Mott lobe is a manifestation of inter-species entanglement which differs in the lowest excited states to remove and add a particle. Our results indicate that inter-species entanglement in mixtures can provide a new perspective in understanding quantum phase transitions. To validate our approach, we compare our results from perturbation theory with quantum Monte Carlo simulations.

  1. Topological interface physics in spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Borgh, Magnus; Ruostekoski, Janne

    2013-05-01

    We present an experimentally viable scheme whereby the physics of coherent interfaces between topologically distinct regions can be studied in an atomic quantum gas. The interface engineering is achieved using the internal spin structures of atoms together with local control over interaction strengths. We consider a coherent interface between polar and ferromagnetic regions of a spin-1 Bose-Einstein condensate and show that defects representing different topologies can connect continuously across the boundary. We show that energy minimization leads to nontrivial interface-crossing defect structures, demonstrating how the method can be used to study stability properties of field-theoretical solitons. We demonstrate, e.g., the formation of a half-quantum vortex arch, an Alice arch, on the interface, exhibiting the topological charge of a point defect. We also demonstrate an energetically stable connection of a coreless vortex to two half-quantum vortices. Our method can be extended to study interface physics in spin-2 and spin-3 BECs with richer phenomenology, or in strongly correlated optical-lattice systems. We acknowledge financial support from the Leverhulme Trust.

  2. Stagflation: Bose-Einstein condensation in the early universe

    NASA Astrophysics Data System (ADS)

    Fukuyama, Takeshi; Morikawa, Masahiro

    2009-09-01

    Our universe experienced the accelerated expansion at least twice; an extreme inflationary acceleration in the early universe and the recent mild acceleration. By introducing the Bose-Einstein condensation (BEC) phase of a boson field, we have been developing a unified model of dark energy (DE) and dark matter (DM) for the later mild acceleration. In this scenario, two phases of BEC (=DE) and normal gas (=DM) transform with each other through BEC phase transition. This unified model has successfully explained the mild acceleration as an attractor. We extend this BEC cosmology to the early universe without introducing new ingredients. In this scenario, the inflation is naturally initiated by the condensation of the bosons in the huge vacuum energy. This inflation and even the cosmic expansion eventually terminates exactly at zero energy density. We call this stage as stagflation. At this stagflation era, particle production and the decay of BEC take place. The former makes the universe turn into the standard hot big bang stage and the latter makes the cosmological constant vanishingly small after the inflation. Furthermore, we calculate the density fluctuations produced in this model, which turns out to be in the range allowed by the present observational data. We also show that the stagflation is quite robust and easily appears when one allows negative region of the potential. Further, we comment on the possibility that BEC generation/decay series might have continued all the time in the cosmic history from the inflation to present.

  3. Rapidly rotating Bose-Einstein condensates in strongly anharmonic traps

    SciTech Connect

    Correggi, M.; Rindler-Daller, T.; Yngvason, J.

    2007-04-15

    We study a rotating Bose-Einstein condensate in a strongly anharmonic trap (flat trap with a finite radius) in the framework of two-dimensional Gross-Pitaevskii theory. We write the coupling constant for the interactions between the gas atoms as 1/{epsilon}{sup 2} and we are interested in the limit {epsilon}{yields}0 (Thomas-Fermi limit) with the angular velocity {omega} depending on {epsilon}. We derive rigorously the leading asymptotics of the ground state energy and the density profile when {omega} tends to infinity as a power of 1/{epsilon}. If {omega}({epsilon})={omega}{sub 0}/{epsilon} a ''hole'' (i.e., a region where the density becomes exponentially small as 1/{epsilon}{yields}{infinity}) develops for {omega}{sub 0} above a certain critical value. If {omega}({epsilon})>>1/{epsilon} the hole essentially exhausts the container and a ''giant vortex'' develops with the density concentrated in a thin layer at the boundary. While we do not analyze the detailed vortex structure we prove that rotational symmetry is broken in the ground state for const vertical bar log {epsilon} vertical bar <{omega}({epsilon}) < or approx. const/{epsilon}.

  4. Fluctuations and correlations in rotating Bose-Einstein condensates

    SciTech Connect

    Baharian, Soheil; Baym, Gordon

    2010-12-15

    We investigate the effects of correlations on the properties of the ground state of the rotating harmonically trapped Bose gas by adding Bogoliubov fluctuations to the mean-field ground state of an N-particle single-vortex system. We demonstrate that the fluctuation-induced correlations lower the energy compared to that of the mean-field ground state, that the vortex core is pushed slightly away from the center of the trap, and that an unstable mode with negative energy (for rotations slower than a critical frequency) emerges in the energy spectrum, thus pointing to a better state for slow rotation. We construct mean-field ground states of zero-, one-, and two-vortex states as a function of rotation rate and determine the critical frequencies for transitions between these states, as well as the critical frequency for appearance of a metastable state with an off-center vortex and its image vortex in the evanescent tail of the cloud.

  5. Feshbach resonances in ultracold Bose-Fermi mixtures

    NASA Astrophysics Data System (ADS)

    Bortolotti, Daniele Carlo Enrico

    In the wake of successful experiments in Fermi condensates, experimental attention is broadening to include resonant interactions in degenerate Bose-Fermi mixtures. In this thesis we wish to study the equilibrium properties of the fermionic molecules that can be created in such a mixture. To this end, we first discuss the two body properties of the system, and introduce the model Hamiltonian we use to describe the resonant physics, highlighting its virtues, as well as its limitations. We then proceed by analyzing the mean field solution of this model, by studying both the equilibrium problem, and the non-equilibrium equations of motion, thus developing a powerful language to discuss the system. We then highlight the limitations of the mean-field approach, and develop a numerically tractable generalized version of this theory, which is able to correctly describe the two-body properties of the system in the low-density limit. Finally, we study the properties of the system using this generalized mean-field theory, by first analyzing the two-body scattering matrix in the many-body environment, assessing its complex poles in order to understand the stability properties of the Feshbach molecules in the gas. Secondly we solve the equilibrium equations self-consistently, to study the molecular populations and density distributions at equilibrium, as a function of external bias magnetic field.

  6. Bose-Einstein Condensation and Bose Glasses in an S = 1 Organo-metallic quantum magnet

    SciTech Connect

    Zapf, Vivien

    2012-06-01

    I will speak about Bose-Einstein condensation (BEC) in quantum magnets, in particular the compound NiCl2-4SC(NH2)2. Here a magnetic field-induced quantum phase transition to XY antiferromagnetism can be mapped onto BEC of the spins. The tuning parameter for BEC transition is the magnetic field rather than the temperature. Some interesting phenomena arise, for example the fact that the mass of the bosons that condense can be strongly renormalized by quantum fluctuations. I will discuss the utility of this mapping for both understanding the nature of the quantum magnetism and testing the thermodynamic limit of Bose-Einstein Condensation. Furthermore we can dope the system in a clean and controlled way to create the long sought-after Bose Glass transition, which is the bosonic analogy of Anderson localization. I will present experiments and simulations showing evidence for a new scaling exponent, which finally makes contact between theory and experiments. Thus we take a small step towards the difficult problem of understanding the effect of disorder on bosonic wave functions.

  7. Non-equilibrium disordered Bose gases: condensation, superfluidity and dynamical Bose glass

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Liang, Zhaoxin; Hu, Ying; Zhang, Zhidong

    2016-01-01

    In an equilibrium three-dimensional (3D) disordered condensate, it is well established that disorder can generate an amount of normal fluid ρ n equaling to 4/3 of ρ ex , where ρ ex is a sum of interaction-induced quantum depletion and disorder-induced condensate deformation. The concept that the superfluid is more volatile to the existence of disorder than the condensate is crucial to the understanding of the Bose glass phase. In this work, we show that, by bringing a weakly disordered 3D condensate to non-equilibrium regime via a quantum quench in the interaction, disorder can destroy superfluid significantly more, leading to a steady state of Hamiltonian H f in which the ρ n far exceeds 4/3 of the ρ ex . This suggests the possibility of engineering Bose glass in the dynamic regime. Here, we refer to the dynamical Bose glass as the case where in the steady state of quenched condensate, the superfluid density goes to zero while the condensate density remains finite. As both the ρ n and ρ ex are measurable quantities, our results allow an experimental demonstration of the dramatized interplay between the disorder and interaction in the non-equilibrium scenario.

  8. Bose-Einstein condensation of dilute atomic gases

    NASA Astrophysics Data System (ADS)

    Wu, Biao

    The Bose-Einstein condensation of dilute atomic gases is studied. The focus is on the interesting properties and the dynamical behavior of Bose-Einstein condensates (BECs1) under various external manipulations. We investigate how the interaction affects the interference pattern between two BEC clouds, and show how the interference pattern can be calculated. We then present a theory on the generation of dark solitons in BECs with a new experimental technique called phase imprint. By mapping this problem into a classic pendulum problem, we show how to design the phase step imprinted on a BEC cloud to generate desired dark solitons. We finally study the system of a BEC in an optical lattice, a nonlinear periodic system, which exhibits interesting new effects on the tunneling and superfluidity in terms of its Bloch bands and Bloch waves. 1In the dissertation, BEC stands for Bose-Einstein condensate, not Bose-Einstein condensation.

  9. Formation of Bose-Einstein magnon condensate via dipolar and exchange thermalization channels

    NASA Astrophysics Data System (ADS)

    Bozhko, D. A.; Clausen, P.; Chumak, A. V.; Kobljanskyj, Yu. V.; Hillebrands, B.; Serga, A. A.

    2015-10-01

    Thermalization of a parametrically driven magnon gas leading to the formation of a Bose-Einstein condensate at the bottom of a spin-wave spectrum was studied by time- and wavevector-resolved Brillouin light scattering spectroscopy. Two distinct channels of the thermalization process related on dipolar and exchange parts of a magnon gas spectrum are clearly determined. It has been found that the magnon population in these thermalization channels strongly depends on applied microwave pumping power. The observed magnon redistribution between the channels is caused by the downward frequency shift of the magnon gas spectrum due to the decrease of the saturation magnetization in the course of injection of parametrically pumped magnons.

  10. Nonequilibrium Bose-Einstein condensation of hot magnons

    SciTech Connect

    Vannucchi, Fabio Stucchi; Vasconcellos, Aurea Rosas; Luzzi, Roberto

    2010-10-01

    We present an analysis of the emergence of a nonequilibrium Bose-Einstein-type condensation of magnons in radio-frequency pumped magnetic thin films, which has recently been experimentally observed. A complete description of all the nonequilibrium processes involved is given. It is demonstrated that the phenomenon is another example of the emergence of Bose-Einstein-type condensation in nonequilibrium many-boson systems embedded in a thermal bath, a phenomenon evidenced decades ago by the renowned late Herbert Froehlich.

  11. Soliton Creation During a Bose-Einstein Condensation

    SciTech Connect

    Damski, Bogdan; Zurek, Wojciech H.

    2010-04-23

    We use the stochastic Gross-Pitaevskii equation to study dynamics of Bose-Einstein condensation. We show that cooling into a Bose-Einstein condensate (BEC) can create solitons with density given by the cooling rate and by the critical exponents of the transition. Thus, counting solitons left in its wake should allow one to determine the critical exponents z and {nu} for a BEC phase transition. The same information can be extracted from two-point correlation functions.

  12. Phase separation of two-component Bose-Einstein condensates

    SciTech Connect

    Liu, Zuhan

    2009-10-15

    Recently, coupled systems of nonlinear Schroedinger equations have been used extensively to describe mixtures Bose-Einstein condensates. In this paper, we study the distribution of two different hyperfine spin states of a binary mixture of three dimensional Bose-Einstein condensates. In a double condensate, an interface may occur due to large intraspecies and interspecies scattering lengths. We prove that there is an asymptotic separation of different phases in the strong coupling (Thomas-Fermi) limit.

  13. Mutual neutralization of atomic rare-gas cations (Ne{sup +}, Ar{sup +}, Kr{sup +}, Xe{sup +}) with atomic halide anions (Cl{sup −}, Br{sup −}, I{sup −})

    SciTech Connect

    Shuman, Nicholas S.; Miller, Thomas M.; Viggiano, Albert A.; Johnsen, Rainer

    2014-01-28

    We report thermal rate coefficients for 12 reactions of rare gas cations (Ne{sup +}, Ar{sup +}, Kr{sup +}, Xe{sup +}) with halide anions (Cl{sup −}, Br{sup −}, I{sup −}), comprising both mutual neutralization (MN) and transfer ionization. No rate coefficients have been previously reported for these reactions; however, the development of the Variable Electron and Neutral Density Attachment Mass Spectrometry technique makes it possible to measure the difference of the rate coefficients for pairs of parallel reactions in a Flowing Afterglow-Langmuir Probe apparatus. Measurements of 18 such combinations of competing reaction pairs yield an over-determined data set from which a consistent set of rate coefficients of the 12 MN reactions can be deduced. Unlike rate coefficients of MN reactions involving at least one polyatomic ion, which vary by at most a factor of ∼3, those of the atom-atom reactions vary by at least a factor 60 depending on the species. It is found that the rate coefficients involving light rare-gas ions are larger than those for the heavier rare-gas ions, but the opposite trend is observed in the progression from Cl{sup −} to I{sup −}. The largest rate coefficient is 6.5 × 10{sup −8} cm{sup 3} s{sup −1} for Ne{sup +} with I{sup −}. Rate coefficients for Ar{sup +}, Kr{sup +}, and Xe{sup +} reacting with Br{sub 2}{sup −} are also reported.

  14. Particles Generation and Bose Instability in Primordial Rotating Black Holes

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    The author makes a connection between the Kepler's laws of motion for planets in the gravitational field of the Sun with the motion of test particles in classical mechanics. Subsequently He discusses the quantum problem, or the motion of scalar particles described by Klein-Gordon equation in the gravitational field of a black hole, when the Particle's Energy is less than the Rest Energy of the Particle: E< mc^2. It is mentioned that the spectrum of energies will be discrete one as in the case of the Hydrogen atom. But, due to very fast decreasing of the Potential energy of the particle near the horizon of the Black Hole, or the Black Hole itself, the spectrum will be a quasidiscrete one. The imaginary part of the Energy describes the fall of the particle into Black Hole. There are two features, which could complicate the problem: 1) The rotation of the Black Hole 2) The spin of the Particles. The first circumstance will lead, as is shown by author, to superradiation (the Imaginary part of the Energy will change the sign) as in the case of Particles scattering (E>mc^2). As in that case detailed calculations show that the black Hole will drop the angular momentum very fast if the black Hole is highly rotating. Electrically charged particles cannot develop such a process due to very fast ionization of bosonic levels by electromagnetic radiation. Meanwhile, neutral particles produces Gamma-bursts of energies 67.5, 274.5, 932 Mev correspondingly. The duration of bursts is 1.26* 10^-17 s (for neutral pion), 2.99*10^-18 s (for Eta meson), 8.55*10^-19 s (for D^0 meson). The radiated energies are 1.2 * 10^35 erg, 8.67*10^34 erg, 8.55*10^33 erg, corresponding to very great powers of the order of magnitude 10^52 erg/s. The second circumstance does stops the superradiative decay due to Pauli exclussion principle. The imaginary part of the Energy will not change the sign, and the particles levels are decaying only. For this reason the superradiative bound levels decay of the

  15. Mean-field dynamics of spin-orbit coupled Bose-Einstein condensates.

    PubMed

    Zhang, Yongping; Mao, Li; Zhang, Chuanwei

    2012-01-20

    Spin-orbit coupling (SOC), the interaction between the spin and momentum of a quantum particle, is crucial for many important condensed matter phenomena. The recent experimental realization of SOC in neutral bosonic cold atoms provides a new and ideal platform for investigating spin-orbit coupled quantum many-body physics. In this Letter, we derive a generic Gross-Pitaevskii equation as the starting point for the study of many-body dynamics in spin-orbit coupled Bose-Einstein condensates. We show that different laser setups for realizing the same SOC may lead to different mean-field dynamics. Various ground state phases (stripe, phase separation, etc.) of the condensate are found in different parameter regions. A new oscillation period induced by the SOC, similar to the Zitterbewegung oscillation, is found in the center-of-mass motion of the condensate.

  16. Observation of Bose-Einstein condensation in a strong synthetic magnetic field

    NASA Astrophysics Data System (ADS)

    Kennedy, Colin J.; Burton, William Cody; Chung, Woo Chang; Ketterle, Wolfgang

    2015-10-01

    Extensions of Berry’s phase and the quantum Hall effect have led to the discovery of new states of matter with topological properties. Traditionally, this has been achieved using magnetic fields or spin-orbit interactions, which couple only to charged particles. For neutral ultracold atoms, synthetic magnetic fields have been created that are strong enough to realize the Harper-Hofstadter model. We report the first observation of Bose-Einstein condensation in this system and study the Harper-Hofstadter Hamiltonian with one-half flux quantum per lattice unit cell. The diffraction pattern of the superfluid state directly shows the momentum distribution of the wavefunction, which is gauge-dependent. It reveals both the reduced symmetry of the vector potential and the twofold degeneracy of the ground state. We explore an adiabatic many-body state preparation protocol via the Mott insulating phase and observe the superfluid ground state in a three-dimensional lattice with strong interactions.

  17. Dimensional phase transition from an array of 1D Luttinger liquids to a 3D Bose-Einstein condensate.

    PubMed

    Vogler, Andreas; Labouvie, Ralf; Barontini, Giovanni; Eggert, Sebastian; Guarrera, Vera; Ott, Herwig

    2014-11-21

    We study the thermodynamic properties of a 2D array of coupled one-dimensional Bose gases. The system is realized with ultracold bosonic atoms loaded in the potential tubes of a two-dimensional optical lattice. For negligible coupling strength, each tube is an independent weakly interacting 1D Bose gas featuring Tomonaga Luttinger liquid behavior. By decreasing the lattice depth, we increase the coupling strength between the 1D gases and allow for the phase transition into a 3D condensate. We extract the phase diagram for such a system and compare our results with theoretical predictions. Because of the high effective mass across the periodic potential and the increased 1D interaction strength, the phase transition is shifted to large positive values of the chemical potential. Our results are prototypical to a variety of low-dimensional systems, where the coupling between the subsystems is realized in a higher spatial dimension such as coupled spin chains in magnetic insulators.

  18. Phase transitions and elementary excitations in spin-1 Bose gases with Raman-induced spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Yu, Zeng-Qiang

    2016-03-01

    We study the ground-state phase diagram and the quantum phase transitions in spin-1 Bose gases with Raman-induced spin-orbit coupling. In addition to the Bose-Einstein condensates with uniform density, three types of stripe condensation phases that simultaneously break the U(1) symmetry and the translation symmetry are identified. The transitions between these phases are investigated, and the occurrences of the various tricritical points are predicted. The excitation spectra in the plane-wave phase and the zero-momentum phase show rich roton-maxon structures, and their instabilities indicate the tendency to develop the crystalline order. We propose the atomic gas of 23Na could be a candidate for observing the stripe condensate with high contrast fringes.

  19. Theory of Bose-Einstein condensation and superfluidity of two-dimensional polaritons in an in-plane harmonic potential

    SciTech Connect

    Berman, Oleg L.; Lozovik, Yurii E.; Snoke, David W.

    2008-04-15

    Recent experiments have shown that it is possible to create an in-plane harmonic potential trap for a two-dimensional (2D) gas of exciton polaritons in a microcavity structure, and evidence has been reported of Bose-Einstein condensation of polaritons accumulated in this type of trap. We present here the theory of Bose-Einstein condensation (BEC) and superfluidity of the exciton polaritons in a harmonic potential trap. Along the way, we determine a general method for defining the superfluid fraction in a 2D trap, in terms of angular momentum representation. We show that in the continuum limit, as the trap becomes shallower, the superfluid fraction approaches the 2D Kosterlitz-Thouless limit, while the condensate fraction approaches zero, as expected.

  20. Reservoir interactions during Bose-Einstein condensation: Modified critical scaling in the Kibble-Zurek mechanism of defect formation

    NASA Astrophysics Data System (ADS)

    McDonald, R. G.; Bradley, A. S.

    2015-09-01

    As a test of the Kibble-Zurek mechanism (KZM) of defect formation, we simulate the Bose-Einstein condensation transition in a toroidally confined Bose gas by using the stochastic projected Gross-Pitaevskii equation, with and without the energy-damping reservoir interaction. Energy-damping alters the scaling of the winding-number distribution with the quench time—a departure from the universal KZM theory that relies on equilibrium critical exponents. Numerical values are obtained for the correlation-length critical exponent ν and the dynamical critical exponent z for each variant of reservoir interaction theory. The energy-damping reservoir interactions cause significant modification of the dynamical critical exponent of the phase transition, while preserving the essential KZM critical scaling behavior. Comparison of numerical and analytical two-point correlation functions further illustrates the effect of energy damping on the correlation length during freeze-out.

  1. Comment on "Bose-Einstein condensation with a finite number of particles in a power-law trap"

    NASA Astrophysics Data System (ADS)

    Noronha, José M. B.

    2015-07-01

    In Jaouadi et al. [Phys. Rev. A 83, 023616 (2011), 10.1103/PhysRevA.83.023616] the authors derive an analytical finite-size expansion for the Bose-Einstein condensation critical temperature of an ideal Bose gas in a generic power-law trap. In the case of a harmonic trap, this expansion adds higher-order terms to the well-known first-order correction. We point out a delicate point in connection to these results, showing that the claims of Jaouadi et al. should be treated with caution. In particular, for a harmonic trap, the given expansion yields results that, depending on what is considered to be the critical temperature of the finite system, do not generally improve on the established first-order correction. For some nonharmonic traps, the results differ at first order from other results in the literature.

  2. Quantum Dynamics of Ultracold Bose Polarons.

    PubMed

    Shchadilova, Yulia E; Schmidt, Richard; Grusdt, Fabian; Demler, Eugene

    2016-09-01

    We analyze the dynamics of Bose polarons in the vicinity of a Feshbach resonance between the impurity and host atoms. We compute the radio-frequency absorption spectra for the case when the initial state of the impurity is noninteracting and the final state is strongly interacting with the host atoms. We compare results of different theoretical approaches including a single excitation expansion, a self-consistent T-matrix method, and a time-dependent coherent state approach. Our analysis reveals sharp spectral features arising from metastable states with several Bogoliubov excitations bound to the impurity atom. This surprising result of the interplay of many-body and few-body Efimov type bound state physics can only be obtained by going beyond the commonly used Fröhlich model and including quasiparticle scattering processes. Close to the resonance we find that strong fluctuations lead to a broad, incoherent absorption spectrum where no quasiparticle peak can be assigned. PMID:27661684

  3. Bose Condensation at He-4 Interfaces

    NASA Technical Reports Server (NTRS)

    Draeger, E. W.; Ceperley, D. M.

    2003-01-01

    Path Integral Monte Carlo was used to calculate the Bose-Einstein condensate fraction at the surface of a helium film at T = 0:77 K, as a function of density. Moving from the center of the slab to the surface, the condensate fraction was found to initially increase with decreasing density to a maximum value of 0.9, before decreasing. Long wavelength density correlations were observed in the static structure factor at the surface of the slab. A surface dispersion relation was calculated from imaginary-time density-density correlations. Similar calculations of the superfluid density throughout He-4 droplets doped with linear impurities (HCN)(sub n) are presented. After deriving a local estimator for the superfluid density distribution, we find a decreased superfluid response in the first solvation layer. This effective normal fluid exhibits temperature dependence similar to that of a two-dimensional helium system.

  4. Coupling a Bose condensate to micromechanical oscillators

    NASA Astrophysics Data System (ADS)

    Kemp, Chandler; Fox, Eli; Flanz, Scott; Vengalattore, Mukund

    2011-05-01

    We describe the construction of a compact apparatus to investigate the interaction of a spinor Bose-Einstein condensate and a micromechanical oscillator. The apparatus uses a double magneto-optical trap, Raman sideband cooling, and evaporative cooling to rapidly produce a 87Rb BEC in close proximity to a high Q membrane. The micromotion of the membrane results in small Zeeman shifts at the location of the BEC due to a magnetic domain attached to the oscillator. Detection of this micromotion by the condensate results in a backaction on the membrane. We investigate prospects of using this backaction to generate nonclassical states of the mechanical oscillator. This work was funded by the DARPA ORCHID program.

  5. Quantum Dynamics of Ultracold Bose Polarons

    NASA Astrophysics Data System (ADS)

    Shchadilova, Yulia E.; Schmidt, Richard; Grusdt, Fabian; Demler, Eugene

    2016-09-01

    We analyze the dynamics of Bose polarons in the vicinity of a Feshbach resonance between the impurity and host atoms. We compute the radio-frequency absorption spectra for the case when the initial state of the impurity is noninteracting and the final state is strongly interacting with the host atoms. We compare results of different theoretical approaches including a single excitation expansion, a self-consistent T -matrix method, and a time-dependent coherent state approach. Our analysis reveals sharp spectral features arising from metastable states with several Bogoliubov excitations bound to the impurity atom. This surprising result of the interplay of many-body and few-body Efimov type bound state physics can only be obtained by going beyond the commonly used Fröhlich model and including quasiparticle scattering processes. Close to the resonance we find that strong fluctuations lead to a broad, incoherent absorption spectrum where no quasiparticle peak can be assigned.

  6. Klein factors and Fermi-Bose equivalence

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2016-06-01

    Generalizing the kink operator of the Heisenberg spin 1/2 model, we construct a set of Klein factors explicitly such that (1+1)-dimensional fermion theories with an arbitrary number of species are mapped onto the corresponding boson theories with the same number of species and vice versa. The actions for the resultant theories do not possess a nontrivial Klein factor. With this set of Klein factors, we are also able to map the simple boundary states, such as the Neumann and the Dirichlet boundary states, of the fermion (boson) theory onto those of the boson (fermion) theory. Applications of the Fermi-Bose equivalence with the constructed Klein factors to well-known (1+1)-dimensional theories have been discussed.

  7. Nonlinear interferometry with Bose-Einstein condensates

    SciTech Connect

    Tacla, Alexandre B.; Boixo, Sergio; Datta, Animesh; Shaji, Anil; Caves, Carlton M.

    2010-11-15

    We analyze a proposed experiment [Boixo et al., Phys. Rev. Lett. 101, 040403 (2008)] for achieving sensitivity scaling better than 1/N in a nonlinear Ramsey interferometer that uses a two-mode Bose-Einstein condensate (BEC) of N atoms. We present numerical simulations that confirm the analytical predictions for the effect of the spreading of the BEC ground-state wave function on the ideal 1/N{sup 3/2} scaling. Numerical integration of the coupled, time-dependent, two-mode Gross-Pitaevskii equations allows us to study the several simplifying assumptions made in the initial analytic study of the proposal and to explore when they can be justified. In particular, we find that the two modes share the same spatial wave function for a length of time that is sufficient to run the metrology scheme.

  8. Reservoir interactions of a vortex in a trapped three-dimensional Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Rooney, S. J.; Allen, A. J.; Zülicke, U.; Proukakis, N. P.; Bradley, A. S.

    2016-06-01

    We simulate the dissipative evolution of a vortex in a trapped finite-temperature dilute-gas Bose-Einstein condensate using first-principles open-systems theory. Simulations of the complete stochastic projected Gross-Pitaevskii equation for a partially condensed Bose gas containing a single quantum vortex show that the transfer of condensate energy to the incoherent thermal component without population transfer provides an important channel for vortex decay. For the lower temperatures considered, this effect is significantly larger that the population transfer process underpinning the standard theory of vortex decay, and is the dominant determinant of the vortex lifetime. A comparison with the Zaremba-Nikuni-Griffin kinetic (two-fluid) theory further elucidates the role of the particle transfer interaction, and suggests the need for experimental testing of reservoir interaction theory. The dominance of this particular energetic decay mechanism for this open quantum system should be testable with current experimental setups, and its observation would have broad implications for the dynamics of atomic matter waves and experimental studies of dissipative phenomena.

  9. Laser Cooling and Trapping of Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Phillips, William D.

    1998-05-01

    Laser cooling was proposed in 1975 and first demonstrated for trapped ions in 1978, but the effective laser cooling of neutral atoms took longer, in part because neutrals are so hard to trap. Laser deceleration and cooling of an atomic beam came in the early 1980s, followed by magnetic trapping of atoms in 1985. In 1988 we discovered that laser cooling results in temperatures far lower than expected from the then-accepted theory. The new understanding, developed in the groups of Claude Cohen-Tannoudji and Steve Chu, of the physical process of laser cooling has allowed us to achieve temperatures below a microkelvin. Today, laser cooling and trapping is being used for applications ranging from atomic clocks to Bose-Einstein condensation. This talk is an adaptation of the Nobel Lecture given in Stockholm, December 1997. Special thanks go to my colleagues at NIST and to the entire laser cooling community. This work was supported by NIST and by the ONR.

  10. Quantum fluctuations and Collective Oscillations of a Bose-Einstein Condensate in a 2D Optical Lattice

    SciTech Connect

    Orso, G.; Stringari, S.; Menotti, C.

    2006-11-10

    We use Bogoliubov theory to calculate the beyond mean field correction to the equation of state of a weakly interacting Bose gas in the presence of a tight 2D optical lattice. We show that the lattice induces a characteristic 3D to 1D crossover in the behavior of quantum fluctuations. Using the hydrodynamic theory of superfluids, we calculate the corresponding shift of the collective frequencies of a harmonically trapped gas. We find that this correction can be of the order of a few percent and hence easily measurable in current experiments. The behavior of the quantum depletion of the condensate is also discussed.

  11. Kinetic simulation of neutral/ionized gas and electrically charged dust in the coma of comet 67P/Churyumov-Gerasimenko

    SciTech Connect

    Tenishev, Valeriy; Rubin, Martin; Combi, Michael R.

    2011-05-20

    The cometary coma is a unique phenomenon in the solar system being a planetary atmosphere influenced by little or no gravity. As a comet approaches the sun, the water vapor with some fraction of other gases sublimate, generating a cloud of gas, ice and other refractory materials (rocky and organic dust) ejected from the surface of the nucleus. Sublimating gas molecules undergo frequent collisions and photochemical processes in the near-nucleus region. Owing to its negligible gravity, comets produce a large and highly variable extensive dusty coma with a size much larger than the characteristic size of the cometary nucleus.The Rosetta spacecraft is en route to comet 67P/Churyumov-Gerasimenko for a rendezvous, landing, and extensive orbital phase beginning in 2014. Both, interpretation of measurements and safety consideration of the spacecraft require modeling of the comet's dusty gas environment.In this work we present results of a numerical study of multispecies gaseous and electrically charged dust environment of comet Chyuryumov-Gerasimenko. Both, gas and dust phases of the coma are simulated kinetically. Photolytic reactions are taken into account. Parameters of the ambient plasma as well as the distribution of electric/magnetic fields are obtained from an MHD simulation of the coma connected to the solar wind. Trajectories of ions and electrically charged dust grains are simulated by accounting for the Lorentz force and the nucleus gravity.

  12. Neutral interstellar helium parameters based on Ulysses/GAS and IBEX-LO observations: What are the reasons for the differences?

    SciTech Connect

    Katushkina, O. A.; Izmodenov, V. V.; Wood, B. E.; McMullin, D. R.

    2014-07-01

    Recent analysis of the interstellar helium fluxes measured in 2009-2010 at Earth's orbit by the Interstellar Boundary Explorer (IBEX) has suggested that the interstellar velocity (both direction and magnitude) is inconsistent with that derived previously from Ulysses/GAS observations made in the period from 1990 to 2002 at 1.5-5.5 AU from the Sun. Both results are model dependent, and models that were used in the analyses are different. In this paper, we perform an analysis of the Ulysses/GAS and IBEX-Lo data using our state-of-the-art three-dimensional time-dependent kinetic model of interstellar atoms in the heliosphere. For the first time, we analyze Ulysses/GAS data from year 2007, the closest available Ulysses/GAS observations in time to the IBEX observations. We show that the interstellar velocity derived from the Ulysses 2007 data is consistent with previous Ulysses results and does not agree with the velocity derived from IBEX. This conclusion is very robust since, as is shown in the paper, it does not depend on the ionization rates adopted in theoretical models. We conclude that Ulysses data are not consistent with the new local interstellar medium (LISM) velocity vector from IBEX. In contrast, IBEX data, in principle, could be explained with the LISM velocity vector derived from the Ulysses data. This is possible for the models where the interstellar temperature increased from 6300 K to 9000 K. There is a need to perform further studies of possible reasons for the broadening of the helium signal core measured by IBEX, which could be an instrumental effect or could be due to unconsidered physical processes.

  13. THE NEUTRAL INTERSTELLAR GAS TOWARD SNR W44: CANDIDATES FOR TARGET PROTONS IN HADRONIC {gamma}-RAY PRODUCTION IN A MIDDLE-AGED SUPERNOVA REMNANT

    SciTech Connect

    Yoshiike, S.; Fukuda, T.; Sano, H.; Ohama, A.; Moribe, N.; Torii, K.; Hayakawa, T.; Okuda, T.; Yamamoto, H.; Mizuno, N.; Onishi, T.; Fukui, Y.; Tajima, H.; Maezawa, H.; Mizuno, A.; Nishimura, A.; Kimura, K.; Ogawa, H.; Giuliani, A.; Koo, B.-C.

    2013-05-10

    We present an analysis of the interstellar medium (ISM) toward the {gamma}-ray supernova remnant (SNR) W44. We used NANTEN2 {sup 12}CO(J = 2-1) and {sup 12}CO(J = 1-0) data and Arecibo H I data in order to identify the molecular and atomic gas in the SNR. We confirmed that the molecular gas is located in the SNR shell with a primary peak toward the eastern edge of the shell. We newly identified high-excitation molecular gas along the eastern shell of the SNR in addition to the high-excitation broad gas previously observed inside the shell; the line intensity ratio between the {sup 12}CO(J = 2-1) and {sup 12}CO(J = 1-0) transitions in these regions is greater than {approx}1.0, suggesting a kinetic temperature of 30 K or higher, which is most likely due to heating by shock interaction. By comparing the ISM with {gamma}-rays, we find that target protons of hadronic origin are dominated by molecular protons of average density around 200 cm{sup -3}, where the possible contribution of atomic protons is 10% or less. This average density is consistent with the recent discovery of the low-energy {gamma}-rays suppressed in 50 MeV-10 GeV as observed with AGILE and Fermi. The {gamma}-ray spectrum differs from place to place in the SNR, suggesting that the cosmic-ray (CR) proton spectrum significantly changes within the middle-aged SNR perhaps due to the energy-dependent escape of CR protons from the acceleration site. We finally derive a total CR proton energy of {approx}10{sup 49} erg, consistent with the SN origin of the majority of the CRs in the Galaxy.

  14. Rayleigh surface wave interaction with the 2D exciton Bose-Einstein condensate

    SciTech Connect

    Boev, M. V.; Kovalev, V. M.

    2015-06-15

    We describe the interaction of a Rayleigh surface acoustic wave (SAW) traveling on the semiconductor substrate with the excitonic gas in a double quantum well located on the substrate surface. We study the SAW attenuation and its velocity renormalization due to the coupling to excitons. Both the deformation potential and piezoelectric mechanisms of the SAW-exciton interaction are considered. We focus on the frequency and excitonic density dependences of the SAW absorption coefficient and velocity renormalization at temperatures both above and well below the critical temperature of Bose-Einstein condensation of the excitonic gas. We demonstrate that the SAW attenuation and velocity renormalization are strongly different below and above the critical temperature.

  15. Universal phase structure of dilute Bose gases with Rashba spin-orbit coupling

    SciTech Connect

    Gopalakrishnan, Sarang; Lamacraft, Austen; Goldbart, Paul M.

    2011-12-15

    A Bose gas subject to a light-induced Rashba spin-orbit coupling possesses a dispersion minimum on a circle in momentum space; we show that kinematic constraints due to this dispersion cause interactions to renormalize to universal, angle-dependent values that govern the phase structure in the dilute-gas limit. We find that, regardless of microscopic interactions, (a) the ground state involves condensation at two opposite momenta and is, in finite systems, a fragmented condensate and and (b) there is a nonzero-temperature instability toward the condensation of pairs of bosons. We discuss how our results can be reconciled with the qualitatively different mean-field phase diagram, which is appropriate for dense gases.

  16. Interacting Bose gas, the logistic law, and complex networks

    NASA Astrophysics Data System (ADS)

    Sowa, A.

    2015-01-01

    We discuss a mathematical link between the Quantum Statistical Mechanics and the logistic growth and decay processes. It is based on an observation that a certain nonlinear operator evolution equation, which we refer to as the Logistic Operator Equation (LOE), provides an extension of the standard model of noninteracting bosons. We discuss formal solutions (asymptotic formulas) for a special calibration of the LOE, which sets it in the number-theoretic framework. This trick, in the tradition of Julia and Bost-Connes, makes it possible for us to tap into the vast resources of classical mathematics and, in particular, to construct explicit solutions of the LOE via the Dirichlet series. The LOE is applicable to a range of modeling and simulation tasks, from characterization of interacting boson systems to simulation of some complex man-made networks. The theoretical results enable numerical simulations, which, in turn, shed light at the unique complexities of the rich and multifaceted models resulting from the LOE.

  17. Characterization of elusive neutrals and ions by neutralization-reionization mass spectrometry

    SciTech Connect

    Fura, A.

    1992-01-01

    Neutralization-reionization mass spectrometry (NRMS) provides a dilute gas phase environment where a variety of neutral species can be produced and characterized. In NRMS fast neutrals are produced from mass-selected precursor ions. The neutrals can undergo isomerization or dissociation by using a low ionization-energy target for neutralization or by angular resolution. The neutrals are reionized to positive or negative ions that are mass analyzed and detected. Angular resolution is used here to obtain NR spectra of isomeric butenes and N-hexenes. A study of oxirane produced an energy surface of five isomers, showing C-C favored over C-O bond rupture. [center dot]CH[sub 2]CH[sub 2]O[center dot], [sup +]CH[sub 2]CH[sub 2]O[center dot], and the oxirane cation represent bound structures, as do [center dot]CH[sub 2]CH[sub 2]O[sup [minus

  18. Particle Correlations in Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Jiang, Zhang

    The impact of interparticle correlations on the behavior of Bose-Einstein Condensates (BECs) is discussed using two approaches. In the first approach, the wavefunction of a BEC is encoded in the N-particle sector of an extended "catalytic state". Going to a time-dependent interaction picture, we can organize the effective Hamiltonian by powers of N -1/2 . Requiring the terms of order N 1/2 to vanish, we get the Gross-Pitaevskii Equation. Going to the next order, N0, we obtain the number-conserving Bogoliubov approximation. Our approach allows one to stay in the Schrodinger picture and to apply many techniques from quantum optics. Moreover, it is easier to track different orders in the Hamiltonian and to generalize to the multi-component case. In the second approach, I consider a state of N = l x n bosons that is derived by symmetrizing the n-fold tensor product of an arbitrary l-boson state. Particularly, we are interested in the pure state case for l = 2, which we call the Pair-Correlated State (PCS). I show that PCS reproduces the number-conserving Bogoliubov approximation; moreover, it also works in the strong interaction regime where the Bogoliubov approximation fails. For the two-site Bose-Hubbard model, I find numerically that the error (measured by trace distance of the two-particle RDMs) of PCS is less than two percent over the entire parameter space, thus making PCS a bridge between the super uid and Mott insulating phases. Amazingly, the error of PCS does not increase, in the time-dependent case, as the system evolves for longer times. I derive both time-dependent and -independent equations for the ground state and the time evolution of the PCS ansatz. The time complexity of simulating PCS does not depend on N and is linear in the number of orbitals in use. Compared to other methods, e.g, the Jastrow wavefunction, the Gutzwiller wavefunction, and the multi-configurational time-dependent Hartree method, our approach does not require quantum Monte Carlo nor

  19. An Experimental Field Dataset with Buoyant, Neutral, and Dense Gas Atmospheric Releases and Model Comparisons in Low-Wind Speed (Diffusion) Conditions

    SciTech Connect

    Veronica E. Wannberg, Gustavious Williams, Patrick Sawyer, and Richard Venedam

    2010-09-01

    Aunique field dataset from a series of low–wind speed experiments, modeling efforts using three commonly used models to replicate these releases, and statistical analysis of how well these models were able to predict the plume concentrations is presented. The experiment was designed to generate a dataset to describe the behavior of gaseous plumes under low-wind conditions and the ability of current, commonly used models to predict these movements. The dataset documents the release and transport of three gases: ammonia (buoyant), ethylene (neutral), and propylene (dense) in low–wind speed (diffusion) conditions. Release rates ranged from 1 to 20 kg h21. Ammonia and ethylene had five 5-min releases each to represent puff releases and five 20-min releases each to represent plume releases. Propylene had five 5-min puffs, six 20-min plumes, and a single 30-min plume. Thirty-two separate releases ranging from 6 to 47 min were conducted, of which only 30 releases generated useful data. The data collected included release rates, atmospheric concentrations to 100 m from the release point, and local meteorological conditions. The diagnostics included nine meteorological stations on 100-m centers and 36 photoionization detectors in a radial pattern. Three current stateof- the-practice models, Aerial locations of Hazardous Atmospheres (ALOHA), Emergency Prediction Information code (EPIcode), and Second-Order Closure Integrated Puff (SCIPUFF), were used to try to duplicate the measured field results. Low wind speeds are difficult to model, and all of the models had difficulty replicating the field measurements. However, the work does show that these models, if used correctly, are conservative (overpredict concentrations) and can be used for safety and emergency planning.

  20. Ion-Neutral Coupling in Solar Prominences

    NASA Technical Reports Server (NTRS)

    Gilbert, Holly

    2011-01-01

    Interactions between ions and neutrals in a partially ionized plasma are important throughout heliophysics, including near the solar surface in prominences. Understanding how ion-neutral coupling affects formation, support, structure, and dynamics of prominences will advance our physical understanding of magnetized systems involving a transition from a weakly ionized dense gas to a fully ionized tenuous plasma. We address the fundamental physics of prominence support, which is normally described in terms of a magnetic force on the prominence plasma that balances the solar gravitational force, and the implications for observations. Because the prominence plasma is only partially ionized, it is necessary to consider the support of the both the ionized and neutral components. Support of the neutrals is accomplished through a frictional interaction between the neutral and ionized components of the plasma, and its efficacy depends strongly on the degree of ionization of the plasma. More specifically, the frictional force is proportional to the relative flow of neutral and ion species, and for a sufficiently weakly ionized plasma, this flow must be relatively large to produce a frictional force that balances gravity. A large relative flow, of course, implies significant draining of neutral particles from the prominence. We evaluate the importance of this draining effect for a hydrogen-helium plasma, and consider the observational evidence for cross-field diffusion of neutral prominence material.