Science.gov

Sample records for neutral hydrogen fraction

  1. A large neutral fraction of cosmic hydrogen a billion years after the Big Bang.

    PubMed

    Wyithe, J Stuart B; Loeb, Abraham

    2004-02-26

    The fraction of ionized hydrogen left over from the Big Bang provides evidence for the time of formation of the first stars and quasar black holes in the early Universe; such objects provide the high-energy photons necessary to ionize hydrogen. Spectra of the two most distant known quasars show nearly complete absorption of photons with wavelengths shorter than the Lyman alpha transition of neutral hydrogen, indicating that hydrogen in the intergalactic medium (IGM) had not been completely ionized at a redshift of z approximately 6.3, about one billion years after the Big Bang. Here we show that the IGM surrounding these quasars had a neutral hydrogen fraction of tens of per cent before the quasar activity started, much higher than the previous lower limits of approximately 0.1 per cent. Our results, when combined with the recent inference of a large cumulative optical depth to electron scattering after cosmological recombination therefore suggest the presence of a second peak in the mean ionization history of the Universe.

  2. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    SciTech Connect

    Flesch, K.; Kremeyer, T.; Schmitz, O.; Soukhanovskii, V.; Wenzel, U.

    2016-08-18

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D-2 molecules and the He ash which will be produced by deuterium-tritium fusion. In order to study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. There are three different anode geometries that we have studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least one order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.

  3. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    SciTech Connect

    Flesch, K. Kremeyer, T.; Schmitz, O.; Soukhanovskii, V.; Wenzel, U.

    2016-11-15

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D{sub 2} molecules and the He ash which will be produced by deuterium-tritium fusion. To study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. Three different anode geometries have been studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least one order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.

  4. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    DOE PAGES

    Flesch, K.; Kremeyer, T.; Schmitz, O.; ...

    2016-08-18

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D-2 molecules and the He ash which will be produced by deuterium-tritium fusion. In order to study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. There are three different anode geometries that we have studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least onemore » order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.« less

  5. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    NASA Astrophysics Data System (ADS)

    Flesch, K.; Kremeyer, T.; Schmitz, O.; Soukhanovskii, V.; Wenzel, U.

    2016-11-01

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D2 molecules and the He ash which will be produced by deuterium-tritium fusion. To study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. Three different anode geometries have been studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least one order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.

  6. Near-term measurements with 21 cm intensity mapping: Neutral hydrogen fraction and BAO at z<2

    SciTech Connect

    Masui, Kiyoshi Wesley; McDonald, Patrick; Pen, Ue-Li

    2010-05-15

    It is shown that 21 cm intensity mapping could be used in the near term to make cosmologically useful measurements. Large scale structure could be detected using existing radio telescopes, or using prototypes for dedicated redshift survey telescopes. This would provide a measure of the mean neutral hydrogen density, using redshift space distortions to break the degeneracy with the linear bias. We find that with only 200 hours of observing time on the Green Bank Telescope, the neutral hydrogen density could be measured to 25% precision at redshift 0.54hydrogen surveys.

  7. Neutral Hydrogen in the Universe

    NASA Astrophysics Data System (ADS)

    Briggs, F. H.

    2005-06-01

    Neutral atomic hydrogen is an endangered species at the present age of the Universe. When hydrogen is dispersed at low density in the intergalactic medium, the gas is vulnerable to photoionization, and once ionized, the time for recombination exceeds the Hubble time. If hydrogen clouds are confined to sufficient density that they are self-shielding to the ionizing background, they are vulnerable to instability, collapse and star formation, which over time, locks the hydrogen into long lived stars. When neutral clouds do exist after the Epoch of Reionization, they associate closely with galaxies; in these locations, they provide valuable kinematical tracers of the gravitational potentials that bind galaxies and groups.

  8. The ratio of neutral hydrogen to neutral helium in the local interstellar medium

    SciTech Connect

    Green, J.C.

    1989-01-01

    The results are described from a sounding rocket borne EUV spectrometer that was designed and built. This instrument operated from 400 to 1150A with a spectral resolution of approx. 15A. The instrument effective area was about 1 sq cm. The instrument was successfully launched, and observed the nearby DA white dwarf G191-B2B. From this observation, it was determined that the stellar effective temperature is 61,000 + or -4000 to 6000K, and the ratio of helium to hydrogen in the stellar photosphere is 1.0 + or -0.68 to 2.2 x 10(exp -4). Additionally, the neutral column densities of helium and hydrogen were measured to the star. The neutral helium column density was determined from the first observation of the interstellar absorption edge at 504A. The ratio of neutral helium to neutral hydrogen constrains the mean ionization of the warm gas along the line of sight to G191-B2B. The fractional ionization of hydrogen (H II/H) is approx. less than 20 percent, unless significant helium ionization is present as well. The scenario where the fractional ionization of hydrogen is high (H II/H) approx. less than 40 percent and the helium is neutral is ruled out with 99 percent certainty. This result is consistent with some recent theoretical calculations. Using these results, a self-consistent model of the local interstellar medium along the line of sight to G191-B2B is developed. In addition, an unexpected emission feature at 584A was detected in this observation with a high level of significance. Possible sources of this emission are examined, including the companion K dwarf G191-B2A, and an emission nebula near or around G191-B2B.

  9. Phenolic compounds containing/neutral fractions extract and products derived therefrom from fractionated fast-pyrolysis oils

    DOEpatents

    Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.

    1993-06-29

    A process is described for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm[sup 3

  10. VLA neutral hydrogen imaging of compact groups

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Mcmahon, P. M.; Vangorkom, J. H.

    1990-01-01

    Images of the neutral hydrogen (H I) in the direction of the compact groups of galaxies, HCG 31, HCG 44, and HCG 79 are presented. The authors find in HCG 31 and HCG 79, emission contained within a cloud much larger than the galaxies as well as the entire group. The H I emission associated with HCG 44 is located within the individual galaxies but shows definite signs of tidal interactions. The authors imaged the distribution and kinematics of neutral hydrogen at the two extremes of group sizes represented in Hickson's sample. HCG 44 is at the upper limit while HCG 18, HCG 31, and HCG 79 are at the lower end. Although the number of groups that have been imaged is still very small, there may be a pattern emerging which describes the H I morphology of compact groups. The true nature of compact groups has been the subject of considerable debate and controversy. The most recent observational and theoretical evidence strongly suggests that compact groups are physically dense, dynamical systems that are in the process of merging into a single object (Williams and Rood 1987, Hickson and Rood 1988, Barnes 1989). The neutral hydrogen deficiency observed by Williams and Rood (1987) is consistent with a model in which frequent galactic collisions and interactions have heated some of the gas during the short lifetime of the group. The H I disks which are normally more extended than the luminous ones are expected to be more sensitive to collisions and to trace the galaxy's response to recent interactions. Very Large Array observations can provide in most cases the spatial resolution needed to confirm the dynamical interactions in these systems.

  11. Neutral Hydrogen in Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana

    The gas content of the faintest and lowest mass dwarf galaxies provide means to study the evolution of these unique objects. The evolutionary histories of low mass dwarf galaxies are interesting in their own right, but may also provide insight into fundamental cosmological problems. These include the nature of dark matter, the disagreement between the number of observed Local Group dwarf galaxies and that predicted by lambda cold dark matter models, and the discrepancy between the observed census of baryonic matter in the Milky Way's environment and theoretical predictions. This thesis explores these questions by studying the neutral hydrogen (HI) component of dwarf galaxies. First, limits on the HI mass of the ultra-faint dwarfs are presented, and the HI content of all Local Group dwarf galaxies is examined from an environmental standpoint. We find that those Local Group dwarfs within 270 kpc of a massive host galaxy are deficient in HI as compared to those at larger galactocentric distances. Ram-pressure arguments are invoked, which suggest halo densities greater than 2-3 x 10-4 cm-3 out to distances of at least 70 kpc, values which are consistent with theoretical models and suggest the halo may harbor a large fraction of the host galaxy's baryons. We also find that accounting for the incompleteness of the dwarf galaxy count, known dwarf galaxies whose gas has been removed could have provided at most 2.1 x 108 M⊙ of HI gas to the Milky Way. Second, we examine the possibility of discovering unknown gas-rich ultra-faint galaxies in the Local Group using HI. The GALFA-HI Survey catalog is searched for compact, isolated HI clouds which are most similar to the expected HI characteristics of low mass dwarf galaxies. Fifty-one Local Group dwarf galaxy candidates are identified through column density, brightness temperature, and kinematic selection criteria, and their properties are explored. Third, we present hydrodynamic simulations of dwarf galaxies experiencing a

  12. Phenolic compounds containing/neutral fractions extract and products derived therefrom from fractionated fast-pyrolysis oils

    DOEpatents

    Chum, Helena L.; Black, Stuart K.; Diebold, James P.; Kreibich, Roland E.

    1993-01-01

    A process for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm.sup.3 ].sup.1/2 with polar components in the 1.8-3.0 range and hydrogen bonding components in the 2-4.8 range and the recovery of the product extract from the solvent with no further purification being needed for use in adhesives and molding compounds. The product extract is characterized as being a mixture of very different compounds having a wide variety of chemical functionalities, including phenolic, carbonyl, aldehyde, methoxyl, vinyl and hydroxyl. The use of the product extract on phenol-formaldehyde thermosetting resins is shown to have advantages over the conventional phenol-formaldehyde resins.

  13. Weighing Neutrinos with Cosmic Neutral Hydrogen

    NASA Astrophysics Data System (ADS)

    Villaescusa-Navarro, Francisco; Bull, Philip; Viel, Matteo

    2015-12-01

    We investigate the signatures left by massive neutrinos on the spatial distribution of neutral hydrogen (H i) in the post-reionization era by running hydrodynamic simulations that include massive neutrinos as additional collisionless particles. We find that halos in massive/massless neutrino cosmologies host a similar amount of neutral hydrogen, although for a fixed halo mass, on average, the H i mass increases with the sum of the neutrino masses. Our results show that H i is more strongly clustered in cosmologies with massive neutrinos, while its abundance, ΩH i(z), is lower. These effects arise mainly from the impact of massive neutrinos on cosmology: they suppress both the amplitude of the matter power spectrum on small scales and the abundance of dark matter halos. Modeling the H i distribution with hydrodynamic simulations at z > 3 and a simple analytic model at z < 3, we use the Fisher matrix formalism to conservatively forecast the constraints that Phase 1 of the Square Kilometre Array will place on the sum of neutrino masses, Mν ≡ Σ mν. We find that with 10,000 hr of interferometric observations at 3 ≲ z ≲ 6 from a deep and narrow survey with SKA1-LOW, the sum of the neutrino masses can be measured with an error σ(Mν) ≲ 0.3 eV (95% CL). Similar constraints can be obtained with a wide and deep SKA1-MID survey at z ≲ 3, using the single-dish mode. By combining data from MID, LOW, and Planck, plus priors on cosmological parameters from a Stage IV spectroscopic galaxy survey, the sum of the neutrino masses can be determined with an error σ(Mν) ≃ 0.06 eV (95% CL).

  14. WEIGHING NEUTRINOS WITH COSMIC NEUTRAL HYDROGEN

    SciTech Connect

    Villaescusa-Navarro, Francisco; Viel, Matteo; Bull, Philip E-mail: viel@oats.inaf.it

    2015-12-01

    We investigate the signatures left by massive neutrinos on the spatial distribution of neutral hydrogen (H i) in the post-reionization era by running hydrodynamic simulations that include massive neutrinos as additional collisionless particles. We find that halos in massive/massless neutrino cosmologies host a similar amount of neutral hydrogen, although for a fixed halo mass, on average, the H i mass increases with the sum of the neutrino masses. Our results show that H i is more strongly clustered in cosmologies with massive neutrinos, while its abundance, Ω{sub H} {sub i}(z), is lower. These effects arise mainly from the impact of massive neutrinos on cosmology: they suppress both the amplitude of the matter power spectrum on small scales and the abundance of dark matter halos. Modeling the H i distribution with hydrodynamic simulations at z > 3 and a simple analytic model at z < 3, we use the Fisher matrix formalism to conservatively forecast the constraints that Phase 1 of the Square Kilometre Array will place on the sum of neutrino masses, M{sub ν} ≡ Σ m{sub ν}. We find that with 10,000 hr of interferometric observations at 3 ≲ z ≲ 6 from a deep and narrow survey with SKA1-LOW, the sum of the neutrino masses can be measured with an error σ(M{sub ν}) ≲ 0.3 eV (95% CL). Similar constraints can be obtained with a wide and deep SKA1-MID survey at z ≲ 3, using the single-dish mode. By combining data from MID, LOW, and Planck, plus priors on cosmological parameters from a Stage IV spectroscopic galaxy survey, the sum of the neutrino masses can be determined with an error σ(M{sub ν}) ≃ 0.06 eV (95% CL)

  15. A Blind Search for Neutral Hydrogen

    NASA Astrophysics Data System (ADS)

    Gross, Julia; Momjian, Emmanuel; Van Gorkom, Jacqueline H.

    2015-01-01

    Measurements of neutral hydrogen (HI) are important in our understanding of the universe. Hydrogen within galaxies passes through a neutral phase as it cools and collapses into stars. The reservoir and distribution of HI associated with galaxies is therefore closely tied to how galaxies grow and evolve. Unfortunately, most of our observational information on HI is limited to the local universe, impeding our ability to see how the HI properties of galaxies change over time. Using the newly upgraded Very Large Array (VLA) radio telescope, located in Socorro, New Mexico, we are working on a far-reaching survey of HI gas around galaxies: The COSMOS HI Large Extragalactic Survey (CHILES). For the first time, we can search for HI over one-third of the age of the universe in a single observation. This survey will provide HI mass, morphology, and kinematics over a substantial, continuous distance range, and in a wide range of cosmic environments. Detection of HI sources is typically done by eye and sometimes with the help of optical catalogs of galaxies with known locations. Given that this is a blind search over a very large volume and that these HI sources can be very faint, this standard approach is unlikely to allow us to fully exploit these rich data. In light of this, we are looking into the use of algorithms to aid in the detection of HI sources. We present a source-finding application and discuss its strengths and limitations for these kinds of data. This is a step in advancing data-analysis tools to keep up with the technological advancements of radio telescopes. Once fully tested and applied, our application will help provide the most reliable, complete data set for us to gain insight into the evolution of galaxies as traced by HI and as function of location in the underlying large-scale structure of the universe.

  16. LOCAL INTERSTELLAR NEUTRAL HYDROGEN SAMPLED IN SITU BY IBEX

    SciTech Connect

    Saul, Lukas; Wurz, Peter; Rodriguez, Diego; Scheer, Juergen; Moebius, Eberhard; Schwadron, Nathan; Kucharek, Harald; Leonard, Trevor; Bzowski, Maciej; Fuselier, Stephen; Crew, Geoff; McComas, Dave

    2012-02-01

    Hydrogen gas is the dominant component of the local interstellar medium. However, owing to ionization and interaction with the heliosphere, direct sampling of neutral hydrogen in the inner heliosphere is more difficult than sampling the local interstellar neutral helium, which penetrates deep into the heliosphere. In this paper, we report on the first detailed analysis of the direct sampling of neutral hydrogen from the local interstellar medium. We confirm that the arrival direction of hydrogen is offset from that of the local helium component. We further report the discovery of a variation of the penetrating hydrogen over the first two years of Interstellar Boundary Explorer observations. Observations are consistent with hydrogen experiencing an effective ratio of outward solar radiation pressure to inward gravitational force greater than unity ({mu} > 1); the temporal change observed in the local interstellar hydrogen flux can be explained with solar variability.

  17. Predictions for ASKAP neutral hydrogen surveys

    NASA Astrophysics Data System (ADS)

    Duffy, Alan R.; Meyer, Martin J.; Staveley-Smith, Lister; Bernyk, Maksym; Croton, Darren J.; Koribalski, Bärbel S.; Gerstmann, Derek; Westerlund, Stefan

    2012-11-01

    The Australian Square Kilometre Array Pathfinder (ASKAP) will revolutionize our knowledge of gas-rich galaxies in the universe. Here we present predictions for two proposed extragalactic ASKAP neutral hydrogen (H I) emission-line surveys, based on semi-analytic models applied to cosmological N-body simulations. The ASKAP H I All-Sky Survey, known as Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY), is a shallow 3 π survey (z = 0-0.26) which will probe the mass and dynamics of over 6 × 105 galaxies. A much deeper small-area H I survey, called Deep Investigation of Neutral Gas Origins (DINGO), aims to trace the evolution of H I from z = 0 to 0.43, a cosmological volume of 4 × 107 Mpc3, detecting potentially 105 galaxies. The high-sensitivity 30 antenna ASKAP core (diameter ˜2 km) will provide an angular resolution of 30 arcsec (at z = 0). Our simulations show that the majority of galaxies detected in WALLABY (87.5 per cent) will be resolved. About 5000 galaxies will be well resolved, i.e. more than five beams (2.5 arcmin) across the major axis, enabling kinematic studies of their gaseous discs. This number would rise to 1.6 × 105 galaxies if all 36 ASKAP antennas could be used; the additional six antennas provide baselines up to 6 km, resulting in an angular resolution of 10 arcsec. For DINGO this increased resolution is highly desirable to minimize source confusion, reducing confusion rates from a maximum of 10 per cent of sources at the survey edge to 3 per cent. We estimate that the sources detected by WALLABY and DINGO will span four orders of magnitude in total halo mass (from 1011 to 1015 M⊙) and nearly seven orders of magnitude in stellar mass (from 105 to 1012 M⊙), allowing us to investigate the process of galaxy formation across the last four billion years.

  18. Xenon Fractionation, Hydrogen Escape, and the Oxidation of the Earth

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.; Catling, D. C.

    2014-12-01

    Xenon in Earth's atmosphere is severely mass fractionated and depleted compared to any plausible solar system source material, yet Kr is unfractionated. These observations seem to imply that Xe has escaped from Earth. Vigorous hydrodynamic hydrogen escape can produce mass fractionation in heavy gases. The required hydrogen flux is very high but within the range permitted by solar EUV heating when Earth was 100 Myrs old or younger. However this model cannot explain why Xe escapes but Kr does not. Recently, what appears to be ancient atmospheric xenon has been recovered from several very ancient (3-3.5 Ga) terrestrial hydrothermal barites and cherts (Pujol 2011, 2013). What is eye-catching about this ancient Xe is that it is less fractionated that Xe in modern air. In other words, it appears that a process was active on Earth some 3 to 3.5 billion years ago that caused xenon to fractionate. By this time the Sun was no longer the EUV source that it used to be. If xenon was being fractionated by escape — currently the only viable hypothesis — it had to be in Earth's Archean atmosphere and under rather modest levels of EUV forcing. It should be possible for Xe, but not Kr, to escape from Earth as an ion. In a hydrodynamically escaping hydrogen wind the hydrogen is partially ionized. The key concepts are that ions are much more strongly coupled to the escaping flow than are neutrals (so that a relatively modest flow of H and H+ to space could carry Xe+ along with it, the flux can be small enough to be consistent with diffusion-limited flux), and that Xe alone among the noble gases is more easily ionized than hydrogen. This sort of escape is possible along the polar field lines, although a weak or absent magnetic field would likely work as well. The extended history of hydrogen escape implicit in Xe escape in the Archean is consistent with other suggestions that hydrogen escape in the Archean was considerable. Hydrogen escape plausibly played the key role in creating

  19. Approximate Controllability of Fractional Neutral Stochastic System with Infinite Delay

    NASA Astrophysics Data System (ADS)

    Sakthivel, R.; Ganesh, R.; Suganya, S.

    2012-12-01

    The concept of controllability plays an important role in analysis and design of linear and nonlinear control systems. Further, fractional differential equations have wide applications in engineering and science. In this paper, the approximate controllability of neutral stochastic fractional integro-differential equation with infinite delay in a Hilbert space is studied. By using Krasnoselskii's fixed point theorem with stochastic analysis theory, we derive a new set of sufficient conditions for the approximate controllability of nonlinear fractional stochastic system under the assumption that the corresponding linear system is approximately controllable. Finally, an example is provided to illustrate the obtained theory.

  20. Hybrid simulations of the hydrogen energetic neutral atoms at Mars

    NASA Astrophysics Data System (ADS)

    Liu, K.; Jarvinen, R.; Kallio, E.; Janhunen, P.; Galli, A.; Wurz, P.; Barabash, S.

    2008-09-01

    Abstract An energetic neutral atom (ENA) is produced when a charge exchange reaction happens between an energetic ion and a neutral atom. At Mars, the energetic ions are typically solar wind protons and the neutrals are hydrogen atoms of the planetary exosphere. The ASPERA-3 experiment on Mars Express has provided the first measurements of ENAs at Mars. These measurements give a unique global view of the solar wind interaction with Mars. In the present study, the properties of hydrogen ENAs at Mars are investigated using a 3-D quasi-neutral hybrid model, which has been successfully applied to the study of solar wind-planet interactions at different planets, such as Mercury, Venus, and Mars. Our preliminary simulation results give ENA intensity images similar to the ones obtained from ASPERA- 3/NPD observations, although there are still discrepancies due to uncertainties in the current exospheric models.

  1. Analysis of neutral hydrogenic emission spectra in a tokamak

    NASA Astrophysics Data System (ADS)

    Ko, J.; Chung, J.; Jaspers, R. J. E.

    2015-10-01

    Balmer-α radiation by the excitation of thermal and fast neutral hydrogenic particles has been investigated in a magnetically confined fusion device, or tokamak, from the Korea Superconducting Tokamak Advanced Research (KSTAR). From the diagnostic point of view, the emission from thermal neutrals is associated with passive spectroscopy and that from energetic neutrals that are usually injected from the outside of the tokamak to the active spectroscopy. The passive spectroscopic measurement for the thermal Balmer-α emission from deuterium and hydrogen estimates the relative concentration of hydrogen in a deuterium-fueled plasma and therefore, makes a useful tool to monitor the vacuum wall condition. The ratio of hydrogen to deuterium obtained from this measurement qualitatively correlates with the energy confinement of the plasma. The Doppler-shifted Balmer-α components from the fast neutrals features the spectrum of the motional Stark effect (MSE) which is an essential principle for the measurement of the magnetic pitch angle profile. Characterization of this active MSE spectra, especially with multiple neutral beam lines crossing along the observation line of sight, has been done for the guideline of the multi-ion-source heating beam operation and for the optimization of the narrow bandpass filters that are required for the polarimeter-based MSE diagnostic system under construction at KSTAR.

  2. Dust clouds in Orion and the interstellar neutral hydrogen distribution

    NASA Technical Reports Server (NTRS)

    Bystrova, N. V.

    1989-01-01

    According to published examples of the far IR observations in the Orion and its surroundings, several well defined dust clouds of different sizes and structure are present. For comparison of these clouds with the neutral hydrogen distribution on the area of approx. 1000 sq degs, the data from Pulkovo Sky Survey in the interstellar neutral Hydrogen Radio Line as well as special observations with the RATAN-600 telescope in 21 cm line were used. From the materials of Pulkovo HI Survey, the data were taken near the line emission at ten velocities between -21.8 and +25.6 km/s LSR for the structural component of the interstellar hydrogen emission. The results given concern mainly the Orion's Great Dust Cloud and the Lambda Orionis region where the information about the situation with the dust and interstellar hydrogen is very essential for interpretation.

  3. A halo model for cosmological neutral hydrogen : abundances and clustering

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Hamsa; Refregier, Alexandre; Amara, Adam

    2017-08-01

    We extend the results of previous analyses towards constraining the abundance and clustering of post-reionization (z ∼ 0-5) neutral hydrogen (H i) systems using a halo model framework. We work with a comprehensive H I data set including the small-scale clustering, column density and mass function of H I galaxies at low redshifts, intensity mapping measurements at intermediate redshifts and the ultraviolet/optical observations of Damped Lyman Alpha (DLA) systems at higher redshifts. We use a Markov Chain Monte Carlo (MCMC) approach to constrain the parameters of the best-fitting models, both for the H i-halo mass (HIHM) relation and the H I radial density profile. We find that a radial exponential profile results in a good fit to the low-redshift H I observations, including the clustering and the column density distribution. The form of the profile is also found to match the high-redshift DLA observations, when used in combination with a three-parameter HIHM relation and a redshift evolution in the H I concentration. The halo model predictions are in good agreement with the observed H I surface density profiles of low-redshift galaxies, and the general trends in the impact parameter and covering fraction observations of high-redshift DLAs. We provide convenient tables summarizing the best-fitting halo model predictions.

  4. Identifying OH Imposters in the ALFALFA Neutral Hydrogen Survey

    NASA Astrophysics Data System (ADS)

    Suess, Katherine A.; Darling, Jeremy; Haynes, Martha P.; Giovanelli, Riccardo

    2016-06-01

    OH megamasers (OHMs) are rare, luminous molecular masers that are typically observed in (ultra) luminous infrared galaxies and serve as markers of major galaxy mergers. In blind emission line surveys such as the Arecibo Legacy Fast Arecibo L-Band Feed Array (ALFALFA) survey for neutral hydrogen (H I), OHMs at z ˜ 0.2 can mimic z ˜ 0.05 H I lines. We present the results of optical spectroscopy of ambiguous H I detections in the ALFALFA 40 per cent data release detected by the Wide Field Infrared Survey Explorer (WISE) but with uncertain optical counterparts. The optical redshifts, obtained from observations at the Apache Point Observatory, revealed five new OHMs and identified 129 H I optical counterparts. 60 candidates remain ambiguous. The new OHMs are the first detected in a blind spectral line survey. The number of OHMs in ALFALFA is consistent with predictions from the OH luminosity function. Additionally, the mid-infrared magnitudes and colours of the OHM host galaxies found in a blind survey do not seem to differ from those found in previous targeted surveys. This validates the methods used in previous IR-selected OHM surveys and indicates there is no previously unknown OHM-producing population at z ˜ 0.2. We also provide a method for future surveys to separate OH megamasers from 99 per cent of H I line emitters without optical spectroscopy by using WISE infrared colours and magnitudes. Since the fraction of OHMs found in flux-limited H I surveys is expected to increase with the survey's redshift, this selection method can be applied to future flux-limited high-redshift hydrogen surveys.

  5. Hydrogen generation by reaction of Si nanopowder with neutral water

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuki; Matsuda, Shinsuke; Imamura, Kentaro; Kobayashi, Hikaru

    2017-05-01

    Si and its oxide are nonpoisonous materials, and thus, it can be taken for medical effects. We have developed a method of generation of hydrogen by use of reactions of Si nanopowder with water in the neutral pH region. Si nanopowder is fabricated by the simple bead milling method. Si nanopowder reacts with water to generate hydrogen even in cases where pH is set at the neutral region between 7.0 and 8.6. The hydrogen generation rate strongly depends on pH and in the case of pH 8.0, ˜55 ml/g hydrogen which corresponds to that contained in approximately 3 L saturated hydrogen-rich water is generated in 1 h. The reaction rate for hydrogen generation greatly increases with pH, indicating that the reacting species is hydroxide ions. The change of pH after the hydrogen generation reaction is negligibly low compared with that estimated assuming that hydroxide ions are consumed by the reaction. From these results, we conclude the following reaction mechanism: Si nanopowder reacts with hydroxide ions in the rate-determining reaction to form hydrogen molecules, SiO2, and electrons in the conduction band. Then, generated electrons are accepted by water molecules, resulting in production of hydrogen molecules and hydroxide ions. The hydrogen generation rate strongly depends on the crystallite size of Si nanopowder, but not on the size of aggregates of Si nanopowder. The present study shows a possibility to use Si nanopowder for hydrogen generation in the body in order to eliminate hydroxyl radicals which cause various diseases.

  6. Hydrogen generation by reaction of Si nanopowder with neutral water.

    PubMed

    Kobayashi, Yuki; Matsuda, Shinsuke; Imamura, Kentaro; Kobayashi, Hikaru

    2017-01-01

    Si and its oxide are nonpoisonous materials, and thus, it can be taken for medical effects. We have developed a method of generation of hydrogen by use of reactions of Si nanopowder with water in the neutral pH region. Si nanopowder is fabricated by the simple bead milling method. Si nanopowder reacts with water to generate hydrogen even in cases where pH is set at the neutral region between 7.0 and 8.6. The hydrogen generation rate strongly depends on pH and in the case of pH 8.0, ∼55 ml/g hydrogen which corresponds to that contained in approximately 3 L saturated hydrogen-rich water is generated in 1 h. The reaction rate for hydrogen generation greatly increases with pH, indicating that the reacting species is hydroxide ions. The change of pH after the hydrogen generation reaction is negligibly low compared with that estimated assuming that hydroxide ions are consumed by the reaction. From these results, we conclude the following reaction mechanism: Si nanopowder reacts with hydroxide ions in the rate-determining reaction to form hydrogen molecules, SiO2, and electrons in the conduction band. Then, generated electrons are accepted by water molecules, resulting in production of hydrogen molecules and hydroxide ions. The hydrogen generation rate strongly depends on the crystallite size of Si nanopowder, but not on the size of aggregates of Si nanopowder. The present study shows a possibility to use Si nanopowder for hydrogen generation in the body in order to eliminate hydroxyl radicals which cause various diseases.

  7. Thermal cracking of heavy fraction of hydrocarbon hydrogenate

    SciTech Connect

    Kreuter, W.; Schliebener, C.; Wernicke, H.J.

    1981-04-07

    To obtain olefins by the thermal cracking of hydrocarbons, E.G., vacuum gas oil, by hydrogenation and subsequent steam cracking, an intermediate fractionation of the hydrogenate is provided so that the light fraction enriched in branched isomers can be used as fuel and the heavy fraction only is subjected to the steam cracking.

  8. Colliding planetary and stellar winds: charge exchange and transit spectroscopy in neutral hydrogen

    NASA Astrophysics Data System (ADS)

    Tremblin, Pascal; Chiang, Eugene

    2013-01-01

    When transiting their host stars, hot Jupiters absorb about 10 per cent of the light in the wings of the stellar Lyman α emission line. The absorption occurs at wavelengths Doppler-shifted from line centre by ±100 km s-1 - larger than the thermal speeds with which partially neutral, ˜104 K hydrogen escapes from hot Jupiter atmospheres. It has been proposed that the absorption arises from ˜106 K hydrogen from the host stellar wind, made momentarily neutral by charge exchange with planetary H i. The ±100 km s-1 velocities would then be attributed to the typical velocity dispersions of protons in the stellar wind - as inferred from spacecraft measurements of the solar wind. To test this proposal, we perform 2D hydrodynamic simulations of colliding hot Jupiter and stellar winds, augmented by a chemistry module to compute the amount of hot neutral hydrogen produced by charge exchange. We observe the contact discontinuity where the two winds meet to be Kelvin-Helmholtz unstable. The Kelvin-Helmholtz instability mixes the two winds; in the mixing layer, charge exchange reactions establish, within tens of seconds, a chemical equilibrium in which the neutral fraction of hot stellar hydrogen equals the neutral fraction of cold planetary hydrogen (about 20 per cent). In our simulations, enough hot neutral hydrogen is generated to reproduce the transit observations, and the amount of absorption converges with both spatial resolution and time. Our calculations support the idea that charge transfer between colliding winds correctly explains the Lyman α transit observations - modulo the effects of magnetic fields, which we do not model but which may suppress mixing. Other neglected effects include, in order of decreasing importance, rotational forces related to orbital motion, gravity and stellar radiation pressure; we discuss quantitatively the errors introduced by our approximations. How hot stellar hydrogen cools when it collides with cold planetary hydrogen is also

  9. Spectroscopic determination of the composition of a 50 kV hydrogen diagnostic neutral beam

    SciTech Connect

    Feng, X.; Nornberg, M. D. Den Hartog, D. J.; Oliva, S. P.; Craig, D.

    2016-11-15

    A grating spectrometer with an electron multiplying charge-coupled device camera is used to diagnose a 50 kV, 5 A, 20 ms hydrogen diagnostic neutral beam. The ion source density is determined from Stark broadened H{sub β} emission and the spectrum of Doppler-shifted H{sub α} emission is used to quantify the fraction of ions at full, half, and one-third beam energy under a variety of operating conditions including fueling gas pressure and arc discharge current. Beam current is optimized at low-density conditions in the ion source while the energy fractions are found to be steady over most operating conditions.

  10. Spectroscopic determination of the composition of a 50 kV hydrogen diagnostic neutral beam

    NASA Astrophysics Data System (ADS)

    Feng, X.; Nornberg, M. D.; Craig, D.; Den Hartog, D. J.; Oliva, S. P.

    2016-11-01

    A grating spectrometer with an electron multiplying charge-coupled device camera is used to diagnose a 50 kV, 5 A, 20 ms hydrogen diagnostic neutral beam. The ion source density is determined from Stark broadened Hβ emission and the spectrum of Doppler-shifted Hα emission is used to quantify the fraction of ions at full, half, and one-third beam energy under a variety of operating conditions including fueling gas pressure and arc discharge current. Beam current is optimized at low-density conditions in the ion source while the energy fractions are found to be steady over most operating conditions.

  11. The cool phase of neutral hydrogen in the galaxy

    NASA Astrophysics Data System (ADS)

    Strasser, Simon T.

    We analyze 815 emission and absorption spectra toward continuum background point sources in the Canadian, Southern, and VLA Galactic Plane Surveys (CGPS, SGPS, and VGPS. The neutral hydrogen (H I) data covers the plane between Galactic longitude 18°, and 174°, and between longitude 253° to 355°, at approximately 1 arcminute resolution. We are thus able to study the global variation in fundamental ISM parameters. We find spin temperatures ( T s ) between 20 K and 300 K, with a distribution peak around 100 K. We do not observe a strong dependence on Galactocentric radius, R , in the northern Galaxy (covered by the VGPS and CGPS) but in the SGPS T s clearly drops outside the solar circle. The opacity generally decreases with R , peaking inside the solar circle in all three surveys. The ratio of the opacity to the column density rises with R in the CGPS and VGPS, but stays constant in the SGPS. We are not able to fit Gaussian components to a majority of the emission spectra because they are highly blended. By approximating the unabsorbed warm- phase emission with a second order polynomial, we are able to derive a cool- phase temperature, T c . T c ranges between 20 K and 200 K, and its distribution peaks at 50 K to 60 K. Values in the SGPS are somewhat higher than in the CGPS. The fraction of cool-phase gas drops slowly with R , from 0.4 to approximately 0.25. To investigate the presence of absorption lines narrower than 1 km s -1 , we obtained high spectral resolution (0.16 km s -1 ) VLA spectra toward five background sources. Toward each of the targets at least one absorption line in the CGPS is only partially resolved. We find one absorption line with a width of only 19 ± 9 K, significantly narrower than indicated by the lower resolution data. We trace the Outer and Distant spiral arms in H I absorption throughout the surveys. We find several distinct clouds within these arms, and are able to calculate arm pitch angles. This is the first detection of a

  12. Depolarizing collisions with hydrogen: Neutral and singly ionized alkaline earths

    SciTech Connect

    Manso Sainz, Rafael; Ramos, Andrés Asensio; Bueno, Javier Trujillo; Aguado, Alfredo

    2014-06-20

    Depolarizing collisions are elastic or quasielastic collisions that equalize the populations and destroy the coherence between the magnetic sublevels of atomic levels. In astrophysical plasmas, the main depolarizing collider is neutral hydrogen. We consider depolarizing rates on the lowest levels of neutral and singly ionized alkali earths Mg I, Sr I, Ba I, Mg II, Ca II, and Ba II, due to collisions with H°. We compute ab initio potential curves of the atom-H° system and solve the quantum mechanical dynamics. From the scattering amplitudes, we calculate the depolarizing rates for Maxwellian distributions of colliders at temperatures T ≤ 10,000 K. A comparative analysis of our results and previous calculations in the literature is completed. We discuss the effect of these rates on the formation of scattering polarization patterns of resonant lines of alkali earths in the solar atmosphere, and their effect on Hanle effect diagnostics of solar magnetic fields.

  13. Neutral hydrogen in the starburst galaxy NGC3690/IC694

    NASA Technical Reports Server (NTRS)

    Tolstoy, E.; Dickey, John M.; Israel, F. P.

    1990-01-01

    Researchers made observations of the neutral hydrogen (HI) emission structure surrounding the very deep absorption peak (observed earlier by Dickey (1986)) in the galaxy pair NGC3690/IC694. This galaxy pair is highly luminous in the far infrared, and known to exhibit extensive star formation as well as nuclear activity. Knowledge of the spatial distribution and velocity structure of the HI emission is of great importance to the understanding of the dynamics of the interaction and the resulting environmental effects on the galaxies.

  14. Constraining a halo model for cosmological neutral hydrogen

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Hamsa; Refregier, Alexandre

    2017-02-01

    We describe a combined halo model to constrain the distribution of neutral hydrogen (H I) in the post-reionization universe. We combine constraints from the various probes of H I at different redshifts: the low-redshift 21-cm emission line surveys, intensity mapping experiments at intermediate redshifts, and the Damped Lyman-Alpha (DLA) observations at higher redshifts. We use a Markov Chain Monte Carlo approach to combine the observations and place constraints on the free parameters in the model. Our best-fitting model involves a relation between neutral hydrogen mass M_{H I} and halo mass M with a non-unit slope, and an upper and a lower cutoff. We find that the model fits all the observables but leads to an underprediction of the bias parameter of DLAs at z ˜ 2.3. We also find indications of a possible tension between the H I column density distribution and the mass function of H I-selected galaxies at z ˜ 0. We provide the central values of the parameters of the best-fitting model so derived. We also provide a fitting form for the derived evolution of the concentration parameter of H I in dark matter haloes, and discuss the implications for the redshift evolution of the H I-halo mass relation.

  15. Two Photon Absorption Laser Induced Fluorescence for Neutral Hydrogen Profile Measurements

    SciTech Connect

    Scime, Earl E.

    2016-09-23

    The magnitude and spatial dependence of neutral density in magnetic confinement fusion experiments is a key physical parameter, particularly in the plasma edge. Modeling codes require precise measurements of the neutral density to calculate charge-exchange power losses and drag forces on rotating plasmas. However, direct measurements of the neutral density are problematic. In this work, we proposed to construct a laser-based diagnostic capable of providing spatially resolved measurements of the neutral density in the edge of plasma in the DIII-D tokamak. The diagnostic concept is based on two-photon absorption laser induced fluorescence (TALIF). By injecting two beams of 205 nm light (co or counter propagating), ground state hydrogen (or deuterium or tritium) can be excited from the n = 1 level to the n = 3 level at the location where the two beams intersect. Individually, the beams experience no absorption, and therefore have no difficulty penetrating even dense plasmas. After excitation, a fraction of the hydrogen atoms decay from the n = 3 level to the n = 2 level and emit photons at 656 nm (the Hα line). Calculations based on the results of previous TALIF experiments in magnetic fusion devices indicated that a laser pulse energy of approximately 3 mJ delivered in 5 ns would provide sufficient signal-to-noise for detection of the fluorescence. In collaboration with the DIII-D engineering staff and experts in plasma edge diagnostics for DIII-D from Oak Ridge National Laboratory (ORNL), WVU researchers designed a TALIF system capable of providing spatially resolved measurements of neutral deuterium densities in the DIII-D edge plasma. The laser systems were specified, purchased, and assembled at WVU. The TALIF system was tested on a low-power hydrogen discharge at WVU and the plan was to move the instrument to DIII-D for installation in collaboration with ORNL researchers. After budget cuts at DIII-D, the DIII-D facility declined to support

  16. Xenon Fractionation and Archean Hydrogen Escape

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.

    2015-01-01

    Xenon is the heaviest gas found in significant quantities in natural planetary atmospheres. It would seem the least likely to escape. Yet there is more evidence for xenon escape from Earth than for any element other than helium and perhaps neon. The most straightforward evidence is that most of the radiogenic Xe from the decay of (129)I (half-life 15.7 Myr) and (244)Pu (half-life 81 Myr) that is Earth's birthright is missing. The missing xenon is often attributed to the impact erosion of early atmospheres of Earth and its ancestors. It is obvious that if most of the radiogenic xenon were driven off by impacts, most of the rest of the atmophiles fared the same fate. The other line of evidence is in the nonradiogenic isotopes of xenon and its silent partner, krypton. Atmospheric xenon is strongly mass fractionated (at about 4% per amu) compared to any known solar system source (Figure 1). This is in stark contrast to krypton, which may not be fractionated at all: atmospheric Kr is slightly heavier than solar Kr (at about 0.5% per amu), but it is the same as in carbonaceous chondrites. Nonradiogenic xenon is also under abundant relative to krypton (the so-called "missing xenon" problem). Together these observations imply that xenon has been subject to fractionating escape and krypton not.

  17. Hydrogen isotope fractionation in methane plasma

    NASA Astrophysics Data System (ADS)

    Robert, François; Derenne, Sylvie; Lombardi, Guillaume; Hassouni, Khaled; Michau, Armelle; Reinhardt, Peter; Duhamel, Rémi; Gonzalez, Adriana; Biron, Kasia

    2017-01-01

    The hydrogen isotope ratio (D/H) is commonly used to reconstruct the chemical processes at the origin of water and organic compounds in the early solar system. On the one hand, the large enrichments in deuterium of the insoluble organic matter (IOM) isolated from the carbonaceous meteorites are interpreted as a heritage of the interstellar medium or resulting from ion-molecule reactions taking place in the diffuse part of the protosolar nebula. On the other hand, the molecular structure of this IOM suggests that organic radicals have played a central role in a gas-phase organosynthesis. So as to reproduce this type of chemistry between organic radicals, experiments based on a microwave plasma of CH4 have been performed. They yielded a black organic residue in which ion microprobe analyses revealed hydrogen isotopic anomalies at a submicrometric spatial resolution. They likely reflect differences in the D/H ratios between the various CHx radicals whose polymerization is at the origin of the IOM. These isotopic heterogeneities, usually referred to as hot and cold spots, are commensurable with those observed in meteorite IOM. As a consequence, the appearance of organic radicals in the ionized regions of the disk surrounding the Sun during its formation may have triggered the formation of organic compounds.

  18. Hydrogen isotope fractionation in methane plasma

    PubMed Central

    Robert, François; Derenne, Sylvie; Lombardi, Guillaume; Hassouni, Khaled; Michau, Armelle; Reinhardt, Peter; Duhamel, Rémi; Gonzalez, Adriana; Biron, Kasia

    2017-01-01

    The hydrogen isotope ratio (D/H) is commonly used to reconstruct the chemical processes at the origin of water and organic compounds in the early solar system. On the one hand, the large enrichments in deuterium of the insoluble organic matter (IOM) isolated from the carbonaceous meteorites are interpreted as a heritage of the interstellar medium or resulting from ion−molecule reactions taking place in the diffuse part of the protosolar nebula. On the other hand, the molecular structure of this IOM suggests that organic radicals have played a central role in a gas-phase organosynthesis. So as to reproduce this type of chemistry between organic radicals, experiments based on a microwave plasma of CH4 have been performed. They yielded a black organic residue in which ion microprobe analyses revealed hydrogen isotopic anomalies at a submicrometric spatial resolution. They likely reflect differences in the D/H ratios between the various CHx radicals whose polymerization is at the origin of the IOM. These isotopic heterogeneities, usually referred to as hot and cold spots, are commensurable with those observed in meteorite IOM. As a consequence, the appearance of organic radicals in the ionized regions of the disk surrounding the Sun during its formation may have triggered the formation of organic compounds. PMID:28096422

  19. Hydrogen isotope fractionation in methane plasma.

    PubMed

    Robert, François; Derenne, Sylvie; Lombardi, Guillaume; Hassouni, Khaled; Michau, Armelle; Reinhardt, Peter; Duhamel, Rémi; Gonzalez, Adriana; Biron, Kasia

    2017-01-31

    The hydrogen isotope ratio (D/H) is commonly used to reconstruct the chemical processes at the origin of water and organic compounds in the early solar system. On the one hand, the large enrichments in deuterium of the insoluble organic matter (IOM) isolated from the carbonaceous meteorites are interpreted as a heritage of the interstellar medium or resulting from ion-molecule reactions taking place in the diffuse part of the protosolar nebula. On the other hand, the molecular structure of this IOM suggests that organic radicals have played a central role in a gas-phase organosynthesis. So as to reproduce this type of chemistry between organic radicals, experiments based on a microwave plasma of CH4 have been performed. They yielded a black organic residue in which ion microprobe analyses revealed hydrogen isotopic anomalies at a submicrometric spatial resolution. They likely reflect differences in the D/H ratios between the various CHx radicals whose polymerization is at the origin of the IOM. These isotopic heterogeneities, usually referred to as hot and cold spots, are commensurable with those observed in meteorite IOM. As a consequence, the appearance of organic radicals in the ionized regions of the disk surrounding the Sun during its formation may have triggered the formation of organic compounds.

  20. Regulation of Virus Neutralization and the Persistent Fraction by TRIM21

    PubMed Central

    McEwan, W. A.; Hauler, F.; Williams, C. R.; Bidgood, S. R.; Mallery, D. L.; Crowther, R. A.

    2012-01-01

    Despite a central role in immunity, antibody neutralization of virus infection is poorly understood. Here we show how the neutralization and persistence of adenovirus type 5, a prevalent nonenveloped human virus, are dependent upon the intracellular antibody receptor TRIM21. Cells with insufficient amounts of TRIM21 are readily infected, even at saturating concentrations of neutralizing antibody. Conversely, high TRIM21 expression levels decrease the persistent fraction of the infecting virus and allows neutralization by as few as 1.6 antibody molecules per virus. The direct interaction between TRIM21 and neutralizing antibody is essential, as single-point mutations within the TRIM21-binding site in the Fc region of a potently neutralizing antibody impair neutralization. However, infection at high multiplicity can saturate TRIM21 and overcome neutralization. These results provide insight into the mechanism and importance of a newly discovered, effector-driven process of antibody neutralization of nonenveloped viruses. PMID:22647693

  1. A neutral hydrogen survey of the Hydra 1 cluster

    NASA Technical Reports Server (NTRS)

    Mcmahon, Pauline; Vangorkom, Jacqueline; Richter, Otto; Ferguson, Henry

    1993-01-01

    We are undertaking a project to image the entire volume of the Hydra 1 cluster of galaxies in neutral hydrogen using the VLA. This involves making a series of pointings spaced 30 min. (the half power beam width) apart, each observed at three velocity settings in order to span the whole velocity range of the cluster. The purpose of this survey is to determine the true distribution, both in space and velocity, of gas-rich systems and hence, to deduce what effects a dense environment may have on the evolution of these systems. Most surveys of clusters to date have been performed on optically selected samples. However, optically selected samples may provide misleading views of the distribution of gas-rich systems, since many low surface brightness galaxies have an abundance of neutral gas (Bothun et al. 1987, Giovanelli & Haynes 1989). The Hydra project is providing the first unbiased view of the HI distribution in a cluster of galaxies. Our 5 sigma sensitivity is 4.1 x 10(exp 7) solar M/beam, (assuming H(sub 0) = 75 km s(exp -1) Mpc(exp -1)) and our velocity resolution is 42 km s(exp -1). We have a spatial resolution of 45 sec., which means that only the largest galaxies are spatially resolved enough to determine HI disk size. Our coverage is about 50 percent of the central region plus eight other fields centered on bright spirals within about 2 deg. of the center.

  2. Interstellar Hydrogen in Galaxies: Radio observations of neutral hydrogen yield valuable information on the properties of galaxies.

    PubMed

    Roberts, M S

    1974-02-01

    Measurement of the 21-cm line radiation originating from the interstellar neutral hydrogen in a galaxy yields information on the total mass and total hydrogen content of the galaxy. The ratio of these two quantities is correlated with structural type in the sense that the later type galaxies contain a higher fraction of their total mass in the form of interstellar hydrogen This ratio is one of the few physical parameters known to correlate with structural type. It need not, however, reflect an evolutionary sequence, such as more hydrogen implying a younger galaxy. Efficiency of conversion of hydrogen to stars can just as easily explain the correlation. Except for the very latest systems, the total mass of a spiral does not appear to be correlated with type. Red shifts of galaxies measured at optical wavelengths and at 21 cm are in excellent agreement. The form of the Doppler expression has been shown to hold over a wavelength range of 5 x 105. All spirals earlier than type Ir which have been studied with adequate resolution show a central minimum in their hydrogen distribution. The region of maximum projected HI surface density occurs at some distance from the center. In the earlier type spirals the optical arms are located in the region of this maximum surface density. In the later type spirals the maximum HI density and prominent optical arms are less well correlated and, at times, are anticorrelated. Detailed studies of the HI distribution and motions within a galaxy require the high relative resolution of beam synthesis arrays. We may expect significant new information from such studies, which are now in progress. Filled-aperture telescopes will supply the necessary observations at zero spacing and vital statistical information on large numbers of galaxies, peculiar systems and groups and clusters of galaxies. The two types of telescope systems will complement one another. In the near future we should have a much better description of spiral galaxies and, we

  3. Studying neutral hydrogen structures during the epoch of reionization using fractal dimensions

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Bidisha; Choudhury, T. Roy; Seshadri, T. R.

    2017-04-01

    Fractal dimensions can be used to characterize the clustering and lacunarities in density distributions. We use generalized fractal dimensions to study the neutral hydrogen distribution (H I) during the epoch of reionization. Using a semi-numeric model of ionized bubbles to generate the H I field, we calculate the fractal dimensions for length-scales ∼10 h-1cMpc. We find that the H I field displays significant multifractal behaviour and is not consistent with homogeneity at these scales when the mass-averaged neutral fraction bar{x}_{H I}^M ≳ 0.5. This multifractal nature is driven entirely by the shapes and distribution of the ionized regions. The sensitivity of the fractal dimension to the neutral fraction implies that it can be used for constraining reionization history. We find that the fractal dimension is relatively less sensitive to the value of the minimum mass of ionizing haloes when it is in the range ∼109-1010h-1M⊙. Interestingly, the fractal dimension is very different when the reionization proceeds inside-out compared to when it is outside-in. Thus, the multifractal nature of H I density field at high redshifts can be used to study the nature of reionization.

  4. An energetic scale for equilibrium H/D fractionation factors illuminates hydrogen bond free energies in proteins

    PubMed Central

    Cao, Zheng; Bowie, James U

    2014-01-01

    Equilibrium H/D fractionation factors have been extensively employed to qualitatively assess hydrogen bond strengths in protein structure, enzyme active sites, and DNA. It remains unclear how fractionation factors correlate with hydrogen bond free energies, however. Here we develop an empirical relationship between fractionation factors and free energy, allowing for the simple and quantitative measurement of hydrogen bond free energies. Applying our empirical relationship to prior fractionation factor studies in proteins, we find: [1] Within the folded state, backbone hydrogen bonds are only marginally stronger on average in α-helices compared to β-sheets by ∼0.2 kcal/mol. [2] Charge-stabilized hydrogen bonds are stronger than neutral hydrogen bonds by ∼2 kcal/mol on average, and can be as strong as –7 kcal/mol. [3] Changes in a few hydrogen bonds during an enzyme catalytic cycle can stabilize an intermediate state by –4.2 kcal/mol. [4] Backbone hydrogen bonds can make a large overall contribution to the energetics of conformational changes, possibly playing an important role in directing conformational changes. [5] Backbone hydrogen bonding becomes more uniform overall upon ligand binding, which may facilitate participation of the entire protein structure in events at the active site. Our energetic scale provides a simple method for further exploration of hydrogen bond free energies. PMID:24501090

  5. Carbon and Hydrogen Isotopic Fractionation during Anaerobic Biodegradation of Benzene

    PubMed Central

    Mancini, Silvia A.; Ulrich, Ania C.; Lacrampe-Couloume, Georges; Sleep, Brent; Edwards, Elizabeth A.; Sherwood Lollar, Barbara

    2003-01-01

    Compound-specific isotope analysis has the potential to distinguish physical from biological attenuation processes in the subsurface. In this study, carbon and hydrogen isotopic fractionation effects during biodegradation of benzene under anaerobic conditions with different terminal-electron-accepting processes are reported for the first time. Different enrichment factors (ɛ) for carbon (range of −1.9 to −3.6‰) and hydrogen (range of −29 to −79‰) fractionation were observed during biodegradation of benzene under nitrate-reducing, sulfate-reducing, and methanogenic conditions. These differences are not related to differences in initial biomass or in rates of biodegradation. Carbon isotopic enrichment factors for anaerobic benzene biodegradation in this study are comparable to those previously published for aerobic benzene biodegradation. In contrast, hydrogen enrichment factors determined for anaerobic benzene biodegradation are significantly larger than those previously published for benzene biodegradation under aerobic conditions. A fundamental difference in the previously proposed initial step of aerobic versus proposed anaerobic biodegradation pathways may account for these differences in hydrogen isotopic fractionation. Potentially, C-H bond breakage in the initial step of the anaerobic benzene biodegradation pathway may account for the large fractionation observed compared to that in aerobic benzene biodegradation. Despite some differences in reported enrichment factors between cultures with different terminal-electron-accepting processes, carbon and hydrogen isotope analysis has the potential to provide direct evidence of anaerobic biodegradation of benzene in the field. PMID:12513995

  6. The neutral hydrogen cosmological mass density at z = 5

    NASA Astrophysics Data System (ADS)

    Crighton, Neil H. M.; Murphy, Michael T.; Prochaska, J. Xavier; Worseck, Gábor; Rafelski, Marc; Becker, George D.; Ellison, Sara L.; Fumagalli, Michele; Lopez, Sebastian; Meiksin, Avery; O'Meara, John M.

    2015-09-01

    We present the largest homogeneous survey of z > 4.4 damped Lyα systems (DLAs) using the spectra of 163 QSOs that comprise the Giant Gemini GMOS (GGG) survey. With this survey we make the most precise high-redshift measurement of the cosmological mass density of neutral hydrogen, Ω_{H I}. At such high redshift, important systematic uncertainties in the identification of DLAs are produced by strong intergalactic medium absorption and QSO continuum placement. These can cause spurious DLA detections, result in real DLAs being missed or bias the inferred DLA column density distribution. We correct for these effects using a combination of mock and higher resolution spectra, and show that for the GGG DLA sample the uncertainties introduced are smaller than the statistical errors on Ω_{H I}. We find Ω _{H I}=0.98^{+0.20}_{-0.18}× 10^{-3} at = 4.9, assuming a 20 per cent contribution from lower column density systems below the DLA threshold. By comparing to literature measurements at lower redshifts, we show that Ω_{H I} can be described by the functional form Ω _{H I}(z)∝ (1+z)^{0.4}. This gradual decrease from z = 5 to 0 is consistent with the bulk of H I gas being a transitory phase fuelling star formation, which is continually replenished by more highly ionized gas from the intergalactic medium and from recycled galactic winds.

  7. Measuring the neutral hydrogen mass of galaxy cluster A262

    NASA Astrophysics Data System (ADS)

    Hassan, Mohd Shaiful Rizal; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin; Ibrahim, Ungku Ferwani Salwa Ungku; Hashim, Norsiah

    2013-05-01

    The total neutral hydrogen mass of galaxy cluster, MHI is measured using spectra taken by a 7 meter single dish radio telescope at Jodrell Bank Observatory. This have been done by using a concept introduced by R. A. Bettye which is make use of small single radio telescope for findings MHI as a whole. MHI is calculated by using simple relationship involving parameter distance of the object from the observer, D and radiated flux of continuum radio source, Sν. A262 is chosen as our test subject since it is compatible with the capability of our instrument. It is a spiral rich galaxy cluster and a fragment of Pisces in the Perseus supercluster, located approximately at 62 - 77 Mpc. It is a part of Local Group Supercluster that is centered at giant elliptical galaxy, NGC 708, and it is also called `cluster dominant' because of its strongly X-ray source concentrated. A262 is chosen as our candidate in this study because of its relatively low redshift, z = 0.0156, observed in 21 cm emission as their tracer. We calculate MHI of A262 according to some analysis from previous studies. Preliminary detection of A262 showed some degree of success.

  8. The Neutral Hydrogen Cosmological Mass Density at z = 5

    NASA Astrophysics Data System (ADS)

    Crighton, Neil H. M.; Murphy, Michael T.; Prochaska, J. Xavier; Worseck, Gábor; Rafelski, Marc; Becker, George D.; Ellison, Sara L.; Fumagalli, Michele; Lopez, Sebastian; Meiksin, Avery; O'Meara, John M.

    2017-03-01

    We present the largest homogeneous survey of redshift > 4.4 damped Lyα systems (DLAs) using the spectra of 163 quasars that comprise the Giant Gemini GMOS (GGG) survey. With this survey we make the most precise high-redshift measurement of the cosmological mass density of neutral hydrogen, ΩHI. After correcting for systematic effects using a combination of mock and higher-resolution spectra, we find ΩHI= 0.98+0.20 -0.18 × 10-3 at = 4.9, assuming a 20% contribution from lower column density systems below the DLA threshold. By comparing to literature measurements at lower redshifts, we show that ΩHI can be described by the functional form ΩHI(z) ~ (1 + z)0.4. This gradual decrease from z = 5 to 0 suggests that in the galaxies which dominate the cosmic star formation rate, Hi is a transitory gas phase fuelling star formation which must be continually replenished by more highly-ionized gas from the intergalactic medium, and from recycled galactic winds.

  9. Modelling the post-reionization neutral hydrogen (H I ) bias

    NASA Astrophysics Data System (ADS)

    Sarkar, Debanjan; Bharadwaj, Somnath; Anathpindika, S.

    2016-08-01

    Observations of the neutral hydrogen (H I) 21-cm signal hold the potential of allowing us to map out the cosmological large-scale structures (LSS) across the entire post-reionization era (z ≤ 6). Several experiments are planned to map the LSS over a large range of redshifts and angular scales, many of these targeting the Baryon Acoustic Oscillations. It is important to model the H I distribution in order to correctly predict the expected signal, and more so to correctly interpret the results after the signal is detected. In this paper we have carried out semi-numerical simulations to model the H I distribution and study the H I power spectrum P_{H I}(k,z) across the redshift range 1 ≤ z ≤ 6. We have modelled the H I bias as a complex quantity tilde{b}(k,z) whose modulus squared b2(k, z) relates P_{H I}(k,z) to the matter power spectrum P(k, z), and whose real part br(k, z) quantifies the cross-correlation between the H I and the matter distribution. We study the z and k dependence of the bias, and present polynomial fits which can be used to predict the bias across 0 ≤ z ≤ 6 and 0.01 ≤ k ≤ 10 Mpc-1. We also present results for the stochasticity r = br/b which is important for cross-correlation studies.

  10. Spectra of accelerated particles at supernova shocks in the presence of neutral hydrogen: the case of Tycho

    NASA Astrophysics Data System (ADS)

    Morlino, G.; Blasi, P.

    2016-05-01

    Context. The presence of neutral hydrogen in the shock proximity changes the structure of the shock and affects the spectra of particles accelerated through the first-order Fermi mechanism. This phenomenon has profound implications for the interpretation of the multifrequency spectra of radiation from supernova remnants. Aims: Neutrals that undergo charge exchange with hot ions downstream of the shock may result in fast neutrals moving towards the upstream gas, where they can suffer additional charge exchange or ionisation reactions, thereby depositing energy and momentum upstream. Here we discuss the implications of this neutral return flux, which was already predicted in our previous work on neutral mediated supernova shocks, and show how the spectra of accelerated particles turn out to be appreciably steeper than p-4, thereby affecting the gamma ray spectra from supernova remnants in general and from Tycho specifically. Methods: The theory that describes non-linear diffusive shock acceleration in the presence of neutral hydrogen has been developed in recent years. Here we use a semi-analytical theory developed in previous work and specialise our predictions to the case of the Tycho supernova shock, where there is evidence from gamma ray observations that the spectrum of the parent cosmic rays is steeper than expected from the traditional theory of diffusive shock acceleration. Results: We show that, if the fraction of neutral hydrogen in the vicinity of the Tycho supernova shock is, as suggested by observations, ~70-90%, then spectra of accelerated protons steeper than p-4 may be a natural consequence of charge exchange reactions and the associated neutral return flux. The spectral shape is affected by this phenomenon for particles with energies below ~100-1000 GeV, for which the diffusion length is less than or at most comparable to the path length of charge exchange and ionisation upstream of the shock.

  11. Neutral hydrogen self-absorption in the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Kavars, Dain William

    2006-06-01

    To develop a better understanding of the cold neutral medium phase of the interstellar medium, we present a detailed analysis of neutral hydrogen self- absorption (HISA) clouds in the Milky Way Galaxy. These HISA clouds are in the Southern Galactic Plane Survey (SGPS), spanning the region l = 253°--358° and | b | <= 1.3°, and in the VLA Galactic Plane Survey (VGPS), spanning the region l = 18°--67° and | b | <= 1.3°--2.3°. The SGPS and VGPS have an angular resolution of ~1 arcminute and a velocity channel spacing of 0.82 km s -1 . With the recent completion of these surveys, we can study HISA features across the Galaxy at a much better resolution and sensitivity than any previous work. To analyze HISA in detail, catalogs of clouds of all sizes, including those undetectable by eye alone, are required. We present an automated search routine to detect all HISA clouds in the SGPS. We compare HISA to CO data and find some HISA clouds associated with CO, but others have no associated CO. This suggests that HISA clouds are in a transition between molecular and atomic gas, bridging the gap between dense molecular clouds and warmer, diffuse atomic clouds. HISA thus plays an important role in the overall evolution of the Galaxy. To study this transition further, we present observations of the OH molecule toward a select sample of HISA clouds in the VGPS, using the Green Bank Telescope (GBT). We present an analysis of the molecular properties of this sample, including a derivation of an OH to H 2 conversion factor and H 2 to H I abundance ratios. We discuss the complex relationship between H I, OH, 12 CO, and 13 CO emission. Finally we present a statistical analysis comparing HISA with infrared data from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) project. The GLIMPSE data reveal a large number of compact, dark infrared clouds believed to be in the early stages of star formation. If GLIMPSE clouds are associated with HISA, they provide

  12. Equilibrium carbon and hydrogen isotope fractionation in iron

    NASA Astrophysics Data System (ADS)

    Schauble, E. A.

    2009-12-01

    Recent theoretical and experimental studies (e.g., [1-3]) have suggested that Si- and Fe-isotopic signatures can be used to characterize the compositions and conditions of segregation of metallic cores in planetary interiors. This study expands the theoretical framework to include carbon and hydrogen, which may also be alloying elements. Hydrogen (D/H) and carbon (13C/12C) fractionations in iron-rich metallic melts are estimated by modeling analogous iron-rich crystals, i.e., dhcp-FeH and η-Fe2C. C- and H-atoms in these crystals are completely coordinated by iron. The driving energy for equilibrium fractionation is assumed to come from the reduction of vibrational frequencies when heavy isotopes are substituted for light ones; vibrations are assumed to be harmonic. This treatment is crude at high temperature, and for the relatively anharmonic vibrations typical of hydrogen-bearing substances, but may provide a reasonably accurate, semi-quantitative approximation of real fractionation behavior. Vibrational frequencies of all crystals are modeled with density functional theory, using gradient-corrected functionals and ultrasoft pseudopotentials. For both carbon and hydrogen, the models suggest that the metal phase will be strongly depleted in heavy isotopes. At 2000 K, 1 atm, η-Fe2C will have 3‰ lower 13C/12C than coexisting diamond. Combining this result with previous high-temperature theoretical and experimental studies (e.g., [4]), metal-graphite fractionation is expected to be very similar, while metal-CO2 fractionation will be almost twice as large, ca. -5‰. Deuterium/hydrogen fractionations are expected to be an order of magnitude larger, with 50-70‰ lower D/H in dhcp-FeH than in coexisting H2 gas at 2000 K, and approximately 100‰ lower D/H than water vapor. These fractionations are much larger than those inferred for silicon and iron, as expected given the differences in atomic mass. References: 1. Georg et al. (2007) Nature 447:1102; 2. Rustad & Yin

  13. THE DEARTH OF NEUTRAL HYDROGEN IN GALACTIC DWARF SPHEROIDAL GALAXIES

    SciTech Connect

    Spekkens, Kristine; Urbancic, Natasha; Mason, Brian S.; Willman, Beth; Aguirre, James E.

    2014-11-01

    We present new upper limits on the neutral hydrogen (H I) content within the stellar half-light ellipses of 15 Galactic dwarf spheroidal galaxies (dSphs), derived from pointed observations with the Green Bank Telescope (GBT) as well as Arecibo L-band Fast ALFA survey and Galactic All-Sky Survey data. All of the limits M{sub H} {sub I}{sup lim} are more stringent than previously reported values, and those from the GBT improve upon constraints in the literature by a median factor of 23. Normalizing by V-band luminosity L{sub V} and dynamical mass M {sub dyn}, we find M{sub H} {sub I}{sup lim}/L{sub V}∼10{sup −3} M{sub ⊙}/L{sub ⊙} and M{sub H} {sub I}{sup lim}/M{sub dyn}∼5×10{sup −5}, irrespective of location in the Galactic halo. Comparing these relative H I contents to those of the Local Group and nearby neighbor dwarfs compiled by McConnachie, we find that the Galactic dSphs are extremely gas-poor. Our H I upper limits therefore provide the clearest picture yet of the environmental dependence of the H I content in Local Volume dwarfs. If ram pressure stripping explains the dearth of H I in these systems, then orbits in a relatively massive Milky Way are favored for the outer halo dSph Leo I, while Leo II and Canes Venatici I have had a pericentric passage in the past. For Draco and Ursa Minor, the interstellar medium mass that should accumulate through stellar mass loss in between pericentric passages exceeds M{sub H} {sub I}{sup lim} by a factor of ∼30. In Ursa Minor, this implies that either this material is not in the atomic phase, or that another mechanism clears the recycled gas on shorter timescales.

  14. GLOBAL PROPERTIES OF NEUTRAL HYDROGEN IN COMPACT GROUPS

    SciTech Connect

    Walker, Lisa May; Johnson, Kelsey E.; Gallagher, Sarah C.; Privon, George C.; Kepley, Amanda A.; Whelan, David G.; Desjardins, Tyler D.; Zabludoff, Ann I.

    2016-02-15

    Compact groups of galaxies provide a unique environment to study the evolution of galaxies amid frequent gravitational encounters. These nearby groups have conditions similar to those in the earlier universe when galaxies were assembled and give us the opportunity to witness hierarchical formation in progress. To understand how the compact group environment affects galaxy evolution, we examine the gas and dust in these groups. We present new single-dish GBT neutral hydrogen (H i) observations of 30 compact groups and define a new way to quantify the group H i content as the H i-to-stellar mass ratio of the group as a whole. We compare the H i content with mid-IR indicators of star formation and optical [g − r] color to search for correlations between group gas content and star formation activity of individual group members. Quiescent galaxies tend to live in H i-poor groups, and galaxies with active star formation are more commonly found in H i-rich groups. Intriguingly, we also find “rogue” galaxies whose star formation does not correlate with group H i content. In particular, we identify three galaxies (NGC 2968 in RSCG 34, KUG 1131+202A in RSCG 42, and NGC 4613 in RSCG 64) whose mid-IR activity is discrepant with the H i. We speculate that this mismatch between mid-IR activity and H i content is a consequence of strong interactions in this environment that can strip H i from galaxies and abruptly affect star formation. Ultimately, characterizing how and on what timescales the gas is processed in compact groups will help us understand the interstellar medium in complex, dense environments similar to the earlier universe.

  15. Global Properties of Neutral Hydrogen in Compact Groups

    NASA Astrophysics Data System (ADS)

    Walker, Lisa May; Johnson, Kelsey E.; Gallagher, Sarah C.; Privon, George C.; Kepley, Amanda A.; Whelan, David G.; Desjardins, Tyler D.; Zabludoff, Ann I.

    2016-02-01

    Compact groups of galaxies provide a unique environment to study the evolution of galaxies amid frequent gravitational encounters. These nearby groups have conditions similar to those in the earlier universe when galaxies were assembled and give us the opportunity to witness hierarchical formation in progress. To understand how the compact group environment affects galaxy evolution, we examine the gas and dust in these groups. We present new single-dish GBT neutral hydrogen (H i) observations of 30 compact groups and define a new way to quantify the group H i content as the H i-to-stellar mass ratio of the group as a whole. We compare the H i content with mid-IR indicators of star formation and optical [g - r] color to search for correlations between group gas content and star formation activity of individual group members. Quiescent galaxies tend to live in H i-poor groups, and galaxies with active star formation are more commonly found in H i-rich groups. Intriguingly, we also find “rogue” galaxies whose star formation does not correlate with group H i content. In particular, we identify three galaxies (NGC 2968 in RSCG 34, KUG 1131+202A in RSCG 42, and NGC 4613 in RSCG 64) whose mid-IR activity is discrepant with the H i. We speculate that this mismatch between mid-IR activity and H i content is a consequence of strong interactions in this environment that can strip H i from galaxies and abruptly affect star formation. Ultimately, characterizing how and on what timescales the gas is processed in compact groups will help us understand the interstellar medium in complex, dense environments similar to the earlier universe.

  16. The Dearth of Neutral Hydrogen in Galactic Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Spekkens, Kristine; Urbancic, Natasha; Mason, Brian S.; Willman, Beth; Aguirre, James E.

    2014-11-01

    We present new upper limits on the neutral hydrogen (H I) content within the stellar half-light ellipses of 15 Galactic dwarf spheroidal galaxies (dSphs), derived from pointed observations with the Green Bank Telescope (GBT) as well as Arecibo L-band Fast ALFA survey and Galactic All-Sky Survey data. All of the limits MH \\scriptsize{I}^lim are more stringent than previously reported values, and those from the GBT improve upon constraints in the literature by a median factor of 23. Normalizing by V-band luminosity LV and dynamical mass M dyn, we find MH \\scriptsize{I}^lim/L_V˜ 10-3 {M⊙ / L⊙ } and MH \\scriptsize{I}^lim/M_dyn˜ 5× 10-5, irrespective of location in the Galactic halo. Comparing these relative H I contents to those of the Local Group and nearby neighbor dwarfs compiled by McConnachie, we find that the Galactic dSphs are extremely gas-poor. Our H I upper limits therefore provide the clearest picture yet of the environmental dependence of the H I content in Local Volume dwarfs. If ram pressure stripping explains the dearth of H I in these systems, then orbits in a relatively massive Milky Way are favored for the outer halo dSph Leo I, while Leo II and Canes Venatici I have had a pericentric passage in the past. For Draco and Ursa Minor, the interstellar medium mass that should accumulate through stellar mass loss in between pericentric passages exceeds MH \\scriptsize{I}^lim by a factor of ~30. In Ursa Minor, this implies that either this material is not in the atomic phase, or that another mechanism clears the recycled gas on shorter timescales.

  17. [Fractionation of hydrogen stable isotopes in the human body].

    PubMed

    Siniak, Iu E; Grigor'ev, A I; Skuratov, V M; Ivanova, S M; Pokrovskiĭ, B G

    2006-01-01

    Fractionation of hydrogen stable isotopes was studied in 9 human subjects in a chamber with normal air pressure imitating a space cabin. Mass-spectrometry of isotopes in blood, urine, saliva, and potable water evidenced increases in the contents of heavy H isotope (deuterium) in the body liquids as compared with water. These results support one of the theories according to which the human organism eliminates heavy stable isotopes of biogenous chemical elements.

  18. Hydrogen isotopic fractionation during crystallization of the terrestrial magma ocean

    NASA Astrophysics Data System (ADS)

    Pahlevan, K.; Karato, S. I.

    2016-12-01

    Models of the Moon-forming giant impact extensively melt and partially vaporize the silicate Earth and deliver a substantial mass of metal to the Earth's core. The subsequent evolution of the terrestrial magma ocean and overlying vapor atmosphere over the ensuing 105-6 years has been largely constrained by theoretical models with remnant signatures from this epoch proving somewhat elusive. We have calculated equilibrium hydrogen isotopic fractionation between the magma ocean and overlying steam atmosphere to determine the extent to which H isotopes trace the evolution during this epoch. By analogy with the modern silicate Earth, the magma ocean-steam atmosphere system is often assumed to be chemically oxidized (log fO2 QFM) with the dominant atmospheric vapor species taken to be water vapor. However, the terrestrial magma ocean - having held metallic droplets in suspension - may also exhibit a much more reducing character (log fO2 IW) such that equilibration with the overlying atmosphere renders molecular hydrogen the dominant H-bearing vapor species. This variable - the redox state of the magma ocean - has not been explicitly included in prior models of the coupled evolution of the magma ocean-steam atmosphere system. We find that the redox state of the magma ocean influences not only the vapor speciation and liquid-vapor partitioning of hydrogen but also the equilibrium isotopic fractionation during the crystallization epoch. The liquid-vapor isotopic fractionation of H is substantial under reducing conditions and can generate measurable D/H signatures in the crystallization products but is largely muted in an oxidizing magma ocean and steam atmosphere. We couple equilibrium isotopic fractionation with magma ocean crystallization calculations to forward model the behavior of hydrogen isotopes during this epoch and find that the distribution of H isotopes in the silicate Earth immediately following crystallization represents an oxybarometer for the terrestrial

  19. Water hydrogen bonding in proton exchange and neutral polymer membranes

    NASA Astrophysics Data System (ADS)

    Smedley, Sarah Black

    to the increased conductivity. The polyamide active layer of commercially available reverse osmosis membranes was studied at various relative humilities to better understand how the structure of the active layer changes when hydrated. In summary, by studying the water hydrogen bonding network in various proton exchange membranes and neutral polyamide membranes, a new understanding of structure-property relationships has been developed. This will lead to a greater understanding of transport properties and conductivity in various polymer membranes. Expanding this fundamental knowledge will lead to the development of smarter materials for energy and reverse osmosis applications, and the ideas developed here can be extended to new types of materials used for various needs. (Abstract shortened by ProQuest.).

  20. Studies of Diffuse Interstellar Bands V. Pairwise Correlations of Eight Strong DIBs and Neutral Hydrogen, Molecular Hydrogen, and Color Excess

    NASA Astrophysics Data System (ADS)

    Friedman, Scott D.; York, Donald G.; McCall, Benjamin J.; Dahlstrom, Julie; Sonnentrucker, Paule; Welty, Daniel E.; Drosback, Meredith M.; Hobbs, L. M.; Rachford, Brian L.; Snow, Theodore P.

    2011-01-01

    We establish correlations between equivalent widths of eight diffuse interstellar bands (DIBs), and examine their correlations with atomic hydrogen, molecular hydrogen, and E B-V . The DIBs are centered at λλ 5780.5, 6204.5, 6283.8, 6196.0, 6613.6, 5705.1, 5797.1, and 5487.7, in decreasing order of Pearson's correlation coefficient with N(H) (here defined as the column density of neutral hydrogen), ranging from 0.96 to 0.82. We find the equivalent width (EW) of λ5780.5 is better correlated with column densities of H than with E B-V or H2, confirming earlier results based on smaller data sets. We show that the same is true for six of the seven other DIBs presented here. Despite this similarity, the eight strong DIBs chosen are not correlated well enough with each other to suggest they come from the same carrier. We further conclude that these eight DIBs are more likely to be associated with H than with H2, and hence are not preferentially located in the densest, most UV shielded parts of interstellar clouds. We suggest that they arise from different molecules found in diffuse H regions with very little H2 (molecular fraction f < 0.01). Of the 133 stars with available data in our study, there are three with significantly weaker λ5780.5 than our mean H-λ5780.5 relationship, all of which are in regions of high radiation fields, as previously noted by Herbig. The correlations will be useful in deriving interstellar parameters when direct methods are not available. For instance, with care, the value of N(H) can be derived from W λ(5780.5).

  1. Fractionation of inorganic arsenic by adjusting hydrogen ion concentration.

    PubMed

    Oliveira, Andrea; Gonzalez, Mario Henrique; Queiroz, Helena Müller; Cadore, Solange

    2016-12-15

    The inorganic fraction of arsenic species, iAs=∑[As(III)+As(V)] present in fish samples can be quantified in the presence of other arsenic species also found in fishes, such as: monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and arsenobetaine (AsB). The toxic arsenic fraction was selected taking into account the dissociation constants of these arsenic species in different hydrogen ions concentration leading to the arsine formation from iAs compounds detected as As(III) by HG AAS. For thus, a microwave assisted extraction was carried out using HCl 1molL(-1) in order to maintain the integrity of the arsenic species in this mild extraction media. Recovery experiments were done for iAs fraction, in the presence of other arsenic species. The recovery values obtained for iAs fraction added were quantitative about 87-107% (for N=3, RSD⩽3%). The limit of detection (LOD), and the limit of quantification (LOQ), were 5μgkg(-1) and 16μgkg(-1) respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Neutral sugar composition and gravimetric yield of plant and bacterial fractions of feces.

    PubMed Central

    Cabotaje, L M; López-Guisa, J M; Shinnick, F L; Marlett, J A

    1990-01-01

    Separating dietary fiber from other polysaccharides in digesta and feces is necessary to understand its mechanisms of action. A gravimetric method that separates fecal plant and bacterial matter based on size and density was evaluated and modified to determine the plant and bacterial mass of lyophilized whole and blended rat and human feces. Three screen mech combinations (150 and 75 microns, 150 and 35 microns, 35 microns) were used with rat feces. Filtration of a homogenized rat fecal slurry sequentially through 150- and 35-microns-mesh screens versus 150- and 75-microns-mesh screens decreased the gravimetric recovery of bacteria from congruent to 35 to congruent to 25% of fecal dry weight and increased the plant fraction weight. Neutral sugar composition, determined by gas chromatography of alditol acetates, and bacterial counts of the fractions suggested that the decreased yield of bacterial fraction represented removal of plant material and not a loss of bacteria. Rat excreta contained 29.5% (dry weight) total neutral sugar, 88% of which was recovered in the plant material. Human feces containing wheat bran, fractionated with the 150- and 35-microns-mesh screens, was 21% neutral sugar, congruent to 65% of which was in the plant fraction. The plant fractions had more xylose and arabinose and less glucose than the bacterial fractions. Processing samples in a Waring blender had no adverse effect on the rat or human fecal bacterial counts. The use of this gravimetric method in combination with the sugar analysis of the fractions provided a better measure of plant and bacteria than only gravimetric yield. PMID:2200340

  3. Effects of Flux and Energy of Neutral Beam on Hydrogenation of Graphene

    NASA Astrophysics Data System (ADS)

    Okada, Takeru; Samukawa, Seiji

    2015-09-01

    Hydrogen modification, hydrogenation, of graphene, has attracted due to the possibility of hydrogen storage. Chemisorbed hydrogen has strong interaction with graphene surface and sp3 bond forms. Surprisingly, ideal structure of graphene shows reversible absorption of hydrogen and it leads to effective designing of hydrogen storage material. In this paper, we have demonstrated neutral beam (NB) technique for hydrogenation of graphene instead of conventional plasma method. NB system consists of a plasma generation chamber and a process chamber, which are separated by a carbon plate with many apertures. The charged particles can be effectively neutralized by collision with the sidewall of the apertures when passing through them to the process chamber. Development of the D-band and blue shift of G-band were observed after hydrogen NB irradiation by Raman spectroscopy. FTIR analysis reveals CH bending mode was appeared and it depends on beam energy, thus CH formation has reaction threshold and potential to control it. In addition, it is shown that beam flux affects hydrogenation and additional effect is also included in reaction process. We believe our investigation will provide development of hydrogenated graphene applications.

  4. Contact allergy to acid and neutral fractions of rosins. Sensitization experiments in guinea pigs and patch testing in patients.

    PubMed

    Karlberg, A T; Boman, A; Holmbom, B; Lidén, C

    1986-01-01

    The allergenicity of two different types of rosins (gum rosin and tall oil rosin) was compared. The rosins were divided into their neutral and acid fractions. The neutral fraction of tall oil rosin failed to induce contact sensitivity in animals tested according to the Guinea pig maximization test method (GPMT). The neutral fraction of gum rosin as well as the two acid fractions gave significant responses. Relatively fewer dermatitis patients reacted to the neutral fraction compared with reactions to the unfractionated gum rosin when patch tested. Fewer reactions to tall oil rosin than to gum rosin (p less than 0.05) were observed. It is concluded that tall oil rosin is less allergenic than gum rosin, which may be due to the absence of allergens in its neutral fraction.

  5. Ion Pairs or Neutral Molecule Adducts? Cooperativity in Hydrogen Bonding

    ERIC Educational Resources Information Center

    DeKock, Roger L.; Schipper, Laura A.; Dykhouse, Stephanie C.; Heeringa, Lee P.; Brandsen, Benjamin M.

    2009-01-01

    We performed theoretical studies on the systems NH[subscript 3] times HF times mH[subscript 2]O, NH[subscript 3] times HCl times mH[subscript 2]O, with m = 0, 1, 2, and 6. The molecules with m = 0 form hydrogen-bonded adducts with little tendency to form an ion-pair structure. The molecule NH[subscript 3] times HCl times H[subscript 2]O cannot be…

  6. Ion Pairs or Neutral Molecule Adducts? Cooperativity in Hydrogen Bonding

    ERIC Educational Resources Information Center

    DeKock, Roger L.; Schipper, Laura A.; Dykhouse, Stephanie C.; Heeringa, Lee P.; Brandsen, Benjamin M.

    2009-01-01

    We performed theoretical studies on the systems NH[subscript 3] times HF times mH[subscript 2]O, NH[subscript 3] times HCl times mH[subscript 2]O, with m = 0, 1, 2, and 6. The molecules with m = 0 form hydrogen-bonded adducts with little tendency to form an ion-pair structure. The molecule NH[subscript 3] times HCl times H[subscript 2]O cannot be…

  7. Low energy, high power hydrogen neutral beam for plasma heating

    NASA Astrophysics Data System (ADS)

    Deichuli, P.; Davydenko, V.; Ivanov, A.; Korepanov, S.; Mishagin, V.; Smirnov, A.; Sorokin, A.; Stupishin, N.

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  8. Low energy, high power hydrogen neutral beam for plasma heating

    SciTech Connect

    Deichuli, P.; Davydenko, V.; Ivanov, A. Mishagin, V.; Sorokin, A.; Stupishin, N.; Korepanov, S.; Smirnov, A.

    2015-11-15

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  9. Low energy, high power hydrogen neutral beam for plasma heating.

    PubMed

    Deichuli, P; Davydenko, V; Ivanov, A; Korepanov, S; Mishagin, V; Smirnov, A; Sorokin, A; Stupishin, N

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  10. Proliferation of upstream neutral modes in the fractional quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Inoue, Hiroyuki; Grivnin, Anna; Ronen, Yuval; Heiblum, Moty; Umansky, Vladimir; Mahalu, Diana

    2014-03-01

    The fractional quantum Hall effects (FQHE) are canonical examples of topological phases, resulting from correlations among planar electrons under strong perpendicular magnetic field. Chargeless energy transport, in the form of upstream (anti-chiral) neutral edge modes, were recently observed in the hole-conjugate FQHEs (filling ν of the nth Landau level in the range n + 1/2> ν>n +1, with n = 0, 1, 2) as well as ν = 5/2. These modes had been predicted to appear due to edge reconstructions by Coulomb interaction and random tunneling among multiple channels. Here we report highly sensitive shot noise measurements that reveal, unexpected theoretically, the presence of such upstream neutral modes in electron-like FQHEs such as ν = 1/3, 2/5, etc . Furthermore, we also found neutral bulk modes that propagate through the incompressible bulk; though weaker than the edge modes. The proliferation of such neutral modes detected only in FQHEs drastically changes the accepted picture of the transport therein. Moreover, our observation may shed new light on a source of decoherence, which prevented thus far a definite observation of quantum interference of fractional quasiparticles.

  11. BRANCHING FRACTION AND TIME-DEPENDENT CP ASYMMETRY IN NEUTRAL B DECAYS TO PSI AND A NEUTRAL PION

    SciTech Connect

    Soha, Aron L

    2003-05-23

    The invariance of physical laws under the combination of exchange of particles with antiparticles (charge conjugation, C) and reversal of coordinates (parity, P) is called CP symmetry. The violation of CP symmetry was first discovered in 1964 in the neutral kaon system, and is in general one of the great puzzles of particle physics. The recent observation of CP violation in the B meson system has been a simultaneous success for model predictions and experiment. The opportunity now exists to probe details of the underlying mechanisms. This thesis presents measurements of the branching fraction and time-dependent CP-violating asymmetry in neutral B decays to J/{psi}{pi}{sup 0}. The decay amplitude for this channel features both tree and penguin diagram contributions, the interference of which can yield a result for the asymmetry differing from that found in the ''golden mode'' B{sup 0} {yields} J/{psi} K{sub s}{sup 0}. Using the measured branching fraction and CP asymmetry, constraints are placed on the ratio of penguin to tree amplitudes in B{sup 0} {yields} J/{psi}{pi}{sup 0}. In addition, the impact on the CP asymmetry measurement in B{sup 0} {yields} J/{psi} K{sub s}{sup 0} is discussed. The results are presented for e{sup +}e{sup -} annihilation data collected with the BABAR detector on the {Upsilon}(4S) resonance at the PEP-II asymmetric-energy B Factory at SLAC. The measurement of the branching fraction, based on about 23 million B{bar B} pairs collected between October 1999 and October 2000, yields BF(B{sup 0} {yields} J/{psi}{pi}{sup 0}) = (2.0 {+-} 0.6 (stat) {+-} 0.2(syst)) x 10{sup -5}. With about 88 million B{bar B} pairs collected during the years 1999-2002, our results for the coefficients of the cosine and sine terms of the CP asymmetry are C{sub J/{psi}{pi}{sup 0}} = 0.38 {+-} 0.41 (stat) {+-} 0.09 (syst) and S{sub J/{psi}{pi}{sup 0}} = 0.05 {+-} 0.49 (stat) {+-} 0.16 (syst).

  12. Isotope Effect in Tunneling Ionization of Neutral Hydrogen Molecules

    NASA Astrophysics Data System (ADS)

    Wang, X.; Xu, H.; Atia-Tul-Noor, A.; Hu, B. T.; Kielpinski, D.; Sang, R. T.; Litvinyuk, I. V.

    2016-08-01

    It has been recently predicted theoretically that due to nuclear motion light and heavy hydrogen molecules exposed to strong electric field should exhibit substantially different tunneling ionization rates [O. I. Tolstikhin, H. J. Worner, and T. Morishita, Phys. Rev. A 87, 041401(R) (2013)]. We studied that isotope effect experimentally by measuring relative ionization yields for each species in a mixed H2/D2 gas jet interacting with intense femtosecond laser pulses. In a reaction microscope apparatus, we detected ionic fragments from all contributing channels (single ionization, dissociation, and sequential double ionization) and determined the ratio of total single ionization yields for H2 and D2 . The measured ratio agrees quantitatively with the prediction of the generalized weak-field asymptotic theory in an apparent failure of the frozen-nuclei approximation.

  13. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of cold negative ions

    DOEpatents

    Hershcovitch, A.

    1984-02-13

    A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are

  14. Neutral iridium catalysts with chiral phosphine-carboxy ligands for asymmetric hydrogenation of unsaturated carboxylic acids.

    PubMed

    Yang, Shuang; Che, Wen; Wu, Hui-Ling; Zhu, Shou-Fei; Zhou, Qi-Lin

    2017-03-01

    We developed neutral iridium catalysts with chiral spiro phosphine-carboxy ligands (SpiroCAP) for asymmetric hydrogenation of unsaturated carboxylic acids. Different from the cationic Crabtree-type catalysts, the iridium catalysts with chiral spiro phosphine-carboxy ligands are neutral and do not require the use of a tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BArF(-)) counterion, which is necessary for stabilizing cationic Crabtree-type catalysts. Another advantage of the neutral iridium catalysts is that they have high stability and have a long lifetime in air. The new iridium catalysts with chiral spiro phosphine-carboxy ligands exhibit unprecedented high enantioselectivity (up to 99.4% ee) in the asymmetric hydrogenations of various unsaturated carboxylic acids, particularly for 3-alkyl-3-methylenepropionic acids, which are challenging substrates for other chiral catalysts.

  15. Fatty Amide Determination in Neutral Molecular Fractions of Green Crude Hydrothermal Liquefaction Oils From Algal Biomass

    DOE PAGES

    Palardy, Oliver; Behnke, Craig; Laurens, Lieve M. L.

    2017-07-05

    Even though hydrothermal liquefaction (HTL) is a promising route to produce crude oils (referred to as 'green crude'), the molecular composition of the nitrogen fraction of such green crude oils is not fully understood. The goal of this work was to identify and quantify the fraction of fatty amides in green crude oils obtained from five different samples derived from Desmodesmus armatus, Tetraselmis sp., and Chlorella sp. biomass treated under different HTL conditions (260 or 340 degrees C as batch or continuous processes). The goal of this work was to elucidate the nature of the high nitrogen content of themore » green crude oils. We identified at least 19 distinct fatty amides present in green crude oils and quantified them based on relevant standards in purified fractions after functional group-based separation and enrichment. It was not known how much these compounds contributed to the oils or which molecular fraction they are associated with. We found that fatty amides exclusively partitioned with the neutral fraction of the oils and belonged mainly to one of five categories, based on their functional group substitution, i.e., fatty amides, monomethyl, dimethyl, monoethanolamide, and diethanolamide. The quantification of fatty amides in the neutral oil fraction was based on respective fatty amide standards, after verification of consistency in response factors between molecules with different substitutions of the amide group. Here, we found that the amount of fatty amides found in each of the five samples varied considerably and ranged between 1.4 and 3.0% of the green crude oils, with the highest levels detected in the sample with the highest oil content, after HTL of biomass derived from a nutrient deprived Chlorella sp. culture.« less

  16. Neutral Hydrogen and Its Emission Lines in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Vial, Jean-Claude; Chane-Yook, Martine

    2016-12-01

    Since the Lyman-α rocket observations of Gabriel ( Solar Phys. 21, 392, 1971), it has been realized that the hydrogen (H) lines could be observed in the corona and that they offer an interesting diagnostic for the temperature, density, and radial velocity of the coronal plasma. Moreover, various space missions have been proposed to measure the coronal magnetic and velocity fields through polarimetry in H lines. A necessary condition for such measurements is to benefit from a sufficient signal-to-noise ratio. The aim of this article is to evaluate the emission in three representative lines of H for three different coronal structures. The computations have been performed with a full non-local thermodynamic-equilibrium (non-LTE) code and its simplified version without radiative transfer. Since all collisional and radiative quantities (including incident ionizing and exciting radiation) are taken into account, the ionization is treated exactly. Profiles are presented at two heights (1.05 and 1.9 solar radii, from Sun center) in the corona, and the integrated intensities are computed at heights up to five solar radii. We compare our results with previous computations and observations ( e.g. Lα from Ultraviolet Coronal Spectrometer) and find a rough (model-dependent) agreement. Since the Hα line is a possible candidate for ground-based polarimetry, we show that in order to detect its emission in various coronal structures, it is necessary to use a very narrow (less than 2 Å wide) bandpass filter.

  17. THE NEUTRAL HYDROGEN BRIDGE BETWEEN M31 AND M33

    SciTech Connect

    Lockman, Felix J.; Free, Nicole L.; Shields, Joseph C.

    2012-08-15

    The Green Bank Telescope has been used to search for 21 cm H I emission over a large area between the galaxies M31 and M33 in an attempt to confirm at 9.'1 angular resolution the detection by Braun and Thilker of a very extensive neutral gas 'bridge' between the two systems at the level N{sub HI} Almost-Equal-To 10{sup 17} cm{sup -2}. We detect H I emission at several locations up to 120 kpc in projected distance from M31, at least half the distance to M33, with velocities similar to that of the galaxies, confirming the essence of the Braun and Thilker discovery. The H I does not appear to be associated with the extraplanar high-velocity clouds of either galaxy. In two places we measure N{sub HI} > 3 Multiplication-Sign 10{sup 18} cm{sup -2}, indicative of concentrations of H I with {approx}10{sup 5} M{sub Sun} on scales {approx}< 2 kpc, but over most of the field we have only 5{sigma} upper limits of N{sub HI} {<=} 1.4 Multiplication-Sign 10{sup 18} cm{sup -2}. In very deep measurements in two directions H I lines were detected at a few 10{sup 17} cm{sup -2}. The absence of emission at another location to a 5{sigma} limit N{sub HI} {<=} 1.5 Multiplication-Sign 10{sup 17} cm{sup -2} suggests that the H I bridge is either patchy or confined to within {approx}125 kpc of M31. The measurements also cover two of M31's dwarf galaxies, And II and And XV, but in neither case is there evidence for associated H I at the 5{sigma} level of 1.4 Multiplication-Sign 10{sup 4} M{sub Sun} for And II and 9.3 Multiplication-Sign 10{sup 3} M{sub Sun} for And XV.

  18. Evidence for Neutral-Current Diffractive π0 Production from Hydrogen in Neutrino Interactions on Hydrocarbon

    DOE PAGES

    Wolcott, J.; Aliaga, L.; Altinok, O.; ...

    2016-09-01

    Here, the MINERvA experiment observes an excess of events containing electromagnetic showers relative to the expectation from Monte Carlo simulations in neutral-current neutrino interactions with mean beam energy of 4.5 GeV on a hydrocarbon target. The excess is characterized and found to be consistent with neutral-current π0 production with a broad energy distribution peaking at 7 GeV and a total cross section of 0.26more » $$\\pm$$ 0.02 (stat) $$\\pm$$ 0.08 (sys) x $$10^{-39} cm^{2}$$. The angular distribution, electromagnetic shower energy, and spatial distribution of the energy depositions of the excess are consistent with expectations from neutrino neutral-current diffractive neutral pion production from hydrogen in the hydrocarbon target. These data comprise the first direct experimental observation and constraint for a reaction that poses an important background process in neutrino oscillation experiments searching for $$\

  19. The effects of the small-scale DM power on the cosmological neutral hydrogen (HI) distribution at high redshifts

    NASA Astrophysics Data System (ADS)

    Sarkar, Abir; Mondal, Rajesh; Das, Subinoy; Sethi, Shiv. K.; Bharadwaj, Somnath; Marsh, David J. E.

    2016-04-01

    The particle nature of dark matter remains a mystery. In this paper, we consider two dark matter models—Late Forming Dark Matter (LFDM) and Ultra-Light Axion (ULA) models—where the matter power spectra show novel effects on small scales. The high redshift universe offers a powerful probe of their parameters. In particular, we study two cosmological observables: the neutral hydrogen (HI) redshifted 21-cm signal from the epoch of reionization, and the evolution of the collapsed fraction of HI in the redshift range 2 < z < 5. We model the theoretical predictions of the models using CDM-like N-body simulations with modified initial conditions, and generate reionization fields using an excursion set model. The N-body approximation is valid on the length and halo mass scales studied. We show that LFDM and ULA models predict an increase in the HI power spectrum from the epoch of reionization by a factor between 2-10 for a range of scales 0.1 < k < 4 Mpc-1. Assuming a fiducial model where a neutral hydrogen fraction bar xHI = 0.5 must be achieved by z = 8, the reionization process allows us to put approximate bounds on the redshift of dark matter formation zf > 4 × 105 (for LFDM) and the axion mass ma > 2.6 × 10-23 eV (for ULA). The comparison of the collapsed mass fraction inferred from damped Lyman-α observations to the theoretical predictions of our models lead to the weaker bounds: zf > 2 × 105 and ma > 10-23 eV. These bounds are consistent with other constraints in the literature using different observables; we briefly discuss how these bounds compare with possible constraints from the observation of luminosity function of galaxies at high redshifts. In the case of ULAs, these constraints are also consistent with a solution to the cusp-core problem of CDM.

  20. Star formation associated with neutral hydrogen in the outskirts of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Yıldız, Mustafa K.; Serra, Paolo; Peletier, Reynier F.; Oosterloo, Tom A.; Duc, Pierre-Alain

    2017-01-01

    About 20 per cent of all nearby early-type galaxies (M⋆ ≳ 6 × 109 M⊙) outside the Virgo cluster are surrounded by a disc or ring of low-column-density neutral hydrogen (H I) gas with typical radii of tens of kpc, much larger than the stellar body. In order to understand the impact of these gas reservoirs on the host galaxies, we analyse the distribution of star formation out to large radii as a function of H I properties using GALEX UV and SDSS optical images. Our sample consists of 18 H I-rich galaxies as well as 55 control galaxies where no H I has been detected. In half of the H I-rich galaxies, the radial UV profile changes slope at the position of the H I radial profile peak. To study the stellar populations, we calculate the FUV-NUV and UV-optical colours in two apertures, 1-3 and 3-10 Reff. We find that H I-rich galaxies are on average 0.5 and 0.8 mag bluer than the H I-poor ones, respectively. This indicates that a significant fraction of the UV emission traces recent star formation and is associated with the H I gas. Using FUV emission as a proxy for star formation, we estimate the integrated star formation rate in the outer regions (R > 1Reff) to be on average ˜6 × 10-3 M⊙ yr-1 for the H I-rich galaxies. This rate is too low to build a substantial stellar disc and, therefore, change the morphology of the host. We find that the star formation efficiency and the gas depletion time are similar to those at the outskirts of spirals.

  1. Biochemical Hydrogen Isotope Fractionation during Lipid Biosynthesis in Higher Plants

    NASA Astrophysics Data System (ADS)

    Kahmen, A.; Gamarra, B.; Cormier, M. A.

    2014-12-01

    Although hydrogen isotopes (δ2H) of leaf wax lipids are increasingly being applied as (paleo-) hydrological proxies, we still do not understand some of the basic processes that shape the δ2H values of these compounds. In general, it is believed that three variables shape the δ2H values of leaf wax lipids: source water δ2H values, evaporative deuterium (2H) enrichment of leaf water and the biosynthetic fractionation (ɛbio) during the synthesis of organic compounds. While the influences of source water δ2H values and leaf water evaporative 2H enrichment have been well documented, very little is known how ɛbio shapes the δ2H values of plant-derived lipids. I will present the results from recent experiments, where we show that the magnitude of ɛbio, and thus the δ2H value of plant-derived lipids, strongly depends on the carbon (C) metabolism of a plant. Specifically, I will show that plants that rely for their tissue formation on recently assimilated C have δ2H values in their n-alkanes that are up to 60‰ more negative than plants that depend for their tissue formation on stored carbohydrates. Our findings can be explained by the fact that NADPH is the primary source of hydrogen in plant lipids and that the δ2H value of NADPH differs whether NADPH was generated directly in the light reaction of photosynthesis or whether it was generated by processing stored carbohydrates. As such, the δ2H values of plant-derived lipids will directly depend on whether the tissue containing these lipids was synthesized using recent assimilates, e.g. in a C autonomous state or, if it was synthesized from stored or otherwise aquired C sources, e.g. in a not C autonomous state. Given the magnidude of this effect, our results have important implications for interpretation of plant-derived lipid δ2H values when used as (paleo-) hydrological proxies. In addition, our results suggest, that δ2H values of plant-derived lipids could be employed as a new tools to assess the C

  2. Renewable Hydrogen Carrier Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy

    SciTech Connect

    Zhang, Y.-H. Percival; Mielenz, Jonathan R

    2011-01-01

    Abstract The hydrogen economy presents an appealing energy future but its implementation must solve numerous problems ranging from low-cost sustainable production, high-density storage, costly infrastructure, to eliminating safety concern. The use of renewable carbohydrate as a high-density hydrogen carrier and energy source for hydrogen production is possible due to emerging cell-free synthetic biology technology called cell-free synthetic pathway biotransformation (SyPaB). Assembly of numerous enzymes and co-enzymes in vitro can create complicated set of biological reactions or pathways that microorganisms cannot complete, for example, C6H10O5 (aq) + 7 H2O (l) 12 H2 (g) + 6 CO2 (g) (PLoS One 2007, 2:e456). Thanks to 100% selectivity of enzymes, modest reaction conditions, and high-purity of generated hydrogen, carbohydrate is a promising hydrogen carrier for end users. Gravimetric density of carbohydrate is 14.8 H2 mass% if water can be recycled from PEM fuel cells or 8.33% H2 mass% without water recycling. Renewable carbohydrate can be isolated from plant biomass or would be produced from a combination of solar electricity/hydrogen and carbon dioxide fixation mediated by high-efficiency artificial photosynthesis mediated by SyPaB. The construction of this carbon-neutral carbohydrate economy would address numerous sustainability challenges, such as electricity and hydrogen storage, CO2 fixation and long-term storage, water conservation, transportation fuel production, plus feed and food production.

  3. First-principles simulations of hydrogen peroxide formation catalyzed by small neutral gold clusters.

    PubMed

    Kacprzak, Katarzyna A; Akola, Jaakko; Häkkinen, Hannu

    2009-08-14

    Energetics and dynamical pathways for hydrogen peroxide formation from H(2) and O(2) bound to neutral gold dimers and tetramers have been investigated by applying several strategies: T = 0 K geometry optimizations, constrained Car-Parrinello molecular dynamics simulations at T = 300 K and metadynamics at T = 300 K. The competing reaction channels for water and hydrogen peroxide formation have been found and characterized. In each case, the reaction barriers for Au cluster catalyzed proton transfer are less than 1 eV. Water formation is a competitive reaction channel, and the relative weight of H(2)O and H(2)O(2) products may depend on the chosen Au cluster size. Dynamic simulations demonstrate the significance of the geometric fluxionality of small catalytic Au clusters. These results indicate that neutral Au clusters could work as catalysts in aerobic H(2)O(2) formation in ambient conditions.

  4. Neutral hydrogen flux measured at 100- to 200-km altitude in an electron aurora

    NASA Technical Reports Server (NTRS)

    Iglesias, G. E.; Anderson, H. R.

    1975-01-01

    Neutral hydrogen fluxes were measured at altitudes of 120-200 km by a rocket payload that also measured electron and proton fluxes and vector magnetic fields. An intense electron arc was crossed, while an upper limit to the flux of 0.5- to 20-keV protons was 1,000,000 per sq cm s sr keV. A neutral flux of 50,000,000 per sq cm s sr was observed, assuming hydrogen with greater than 1-keV energy, with greater north-south extent than the electron flux. Its pitch angle distribution was peaked toward 90 deg, tending toward isotropy in the center. This is fitted to a model describing spreading of an initial proton arc above 500 km.

  5. Emission of hydrogen energetic neutral atoms from the Martian subsolar magnetosheath

    NASA Astrophysics Data System (ADS)

    Wang, X.-D.; Alho, M.; Jarvinen, R.; Kallio, E.; Barabash, S.; Futaana, Y.

    2016-01-01

    We have simulated the hydrogen energetic neutral atom (ENA) emissions from the subsolar magnetosheath of Mars using a hybrid model of the proton plasma charge exchanging with the Martian exosphere to study statistical features revealed from the observations of the Neutral Particle Detectors on Mars Express. The simulations reproduce well the observed enhancement of the hydrogen ENA emissions from the dayside magnetosheath in directions perpendicular to the Sun-Mars line. Our results show that the neutralized protons from the shocked solar wind are the dominant ENA population rather than those originating from the pickup planetary ions. The simulation also suggests that the observed stronger ENA emissions in the direction opposite to the solar wind convective electric field result from a stronger proton flux in the same direction at the lower magnetosheath; i.e., the proton fluxes in the magnetosheath are not cylindrically symmetric. We also confirm the observed increasing of the ENA fluxes with the solar wind dynamical pressure in the simulations. This feature is associated with a low altitude of the induced magnetic boundary when the dynamic pressure is high and the magnetosheath protons can reach to a denser exosphere, and thus, the charge exchange rate becomes higher. Overall, the analysis suggests that kinetic effects play an important and pronounced role in the morphology of the hydrogen ENA distribution and the plasma environment at Mars, in general.

  6. Thermal cracking with post hydrogenation and recycle of heavy fractions

    SciTech Connect

    Schliebener, C.; Wernicke, H.J.

    1981-10-27

    In a process for the thermal cracking of hydrocarbons to produce olefins. Improvements include recovering of hydrocarbons boiling above 200/sup 0/ C from the thermal cracking stage, removal of polymeric components therefrom, catalytically hydrogenating resultant hydrocarbons boiling above 200/sup 0/ C, and recycling resultant hydrogenated hydrocarbons to the thermal cracking stage.

  7. Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape.

    PubMed

    Zahnle, K; Kasting, J F; Pollack, J B

    1990-01-01

    Mass fractionation by hydrodynamic hydrogen escape is a promising mechanism for explaining the observed elemental and isotopic abundance patterns in terrestrial planet atmospheres. Previous work has considered only pure hydrogen winds. Here, the theory of mass fractionation by hydrogen escape is extended to atmospheres in which hydrogen is not the only major constituent. Analytical solutions are derived for cases in which all relevant atmospheric constituents escape; both analytical and numerical solutions are obtained for cases in which important heavy constituents are retained. In either case the fractionation patterns that result can differ significantly from those produced by pure hydrogen winds. Three applications of the theory are discussed: (1) The observed fractionation of terrestrial atmospheric neon with respect to mantle neon can be explained as a by-product of diffusion-limited hydrogen escape from a steam atmosphere toward the end of accretion. (2) The anomalously high Martian (SNC) 38Ar/36Ar ratio is attributed to hydrodynamic fractionation by a vigorously escaping, nearly pure hydrogen wind. (3) It is possible that the present high Martian D/H ratio was established during the same hydrodynamic escape phase that fractionated argon, but the predicted degree of D/H enrichment is sensitive to other, less well constrained parameters.

  8. Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin; Pollack, James B.; Kasting, James F.

    1990-01-01

    The theory of mass fractionation by hydrogen is presently extended to atmospheres in which hydrogen is not the major constituent. This theoretical framework is applied to three different cases. In the first, it is shown that the fractionation of terrestrial atmospheric neon with respect to mantle neon is explainable as a consequence of diffusion-limited hydrogen escape from a steam atmosphere toward the end of the accretion process. In the second, the anomalously high Ar-38/Ar-36 ratio of Mars is shown to be due to hydrodynamic fractionation by a vigorously escaping and very pure hydrogen wind. In the last case, it is speculated that the currently high Martian D/H ratio emerged during the hydrodynamic escape phase which fractionated Ar.

  9. Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin; Pollack, James B.; Kasting, James F.

    1990-01-01

    The theory of mass fractionation by hydrogen is presently extended to atmospheres in which hydrogen is not the major constituent. This theoretical framework is applied to three different cases. In the first, it is shown that the fractionation of terrestrial atmospheric neon with respect to mantle neon is explainable as a consequence of diffusion-limited hydrogen escape from a steam atmosphere toward the end of the accretion process. In the second, the anomalously high Ar-38/Ar-36 ratio of Mars is shown to be due to hydrodynamic fractionation by a vigorously escaping and very pure hydrogen wind. In the last case, it is speculated that the currently high Martian D/H ratio emerged during the hydrodynamic escape phase which fractionated Ar.

  10. Nonideality in diffusion of ionic and neutral solutes and hydrogen bond dynamics in dimethyl sulfoxide-chloroform mixtures of varying composition.

    PubMed

    Gupta, Rini; Chandra, Amalendu

    2011-09-01

    Molecular dynamics simulations of charged and neutral solutes in dimethyl sulfoxide (DMSO)-chloroform mixtures reveal pronounced nonideality in the solute diffusion with changes of composition of the mixtures. The diffusion coefficient of the anionic solute first decreases, passes through a minimum at DMSO mole fraction of about 0.50, and then increases to reach its value for pure DMSO. The diffusion coefficients of the cationic and neutral solutes are found to decrease with increase in DMSO content of the solvent mixture. The extent of nonideality in the diffusion and orientational relaxation of solvent molecules is found to be somewhat stronger than that in diffusion of the anionic solute in these mixtures. We have also calculated the relaxation of hydrogen bonds formed between DMSO and chloroform molecules. The lifetimes of DMSO-chloroform hydrogen bonds are found to increase monotonically with increase in DMSO concentration. The average number of hydrogen bonds and their average energies are also computed. It is found that an increase in DMSO concentration causes a decrease in the number of DMSO-chloroform hydrogen bonds per DMSO or chloroform molecules but increases the strength of these hydrogen bonds. Copyright © 2011 Wiley Periodicals, Inc.

  11. The Direction of the Neutral Hydrogen Velocity in the Inner Heliosphere as a Possible Interstellar Magnetic Field Compass

    NASA Astrophysics Data System (ADS)

    Pogorelov, Nikolai V.; Zank, Gary P.

    2006-01-01

    We discuss the physical reasons that lead to the deflection of the interstellar neutral hydrogen flow from the direction of propagation of neutral helium in the inner heliosheath. On the basis of numerical simulations, the possibilities are investigated for deriving the orientation of the interstellar magnetic field as a function of the deflection angle.

  12. Determination of neutral beam energy fractions from collisional radiative measurements on DIII-D

    SciTech Connect

    Thomas, D. M.; Van Zeeland, M. A.; Grierson, B. A.; Munoz Burgos, J. M.

    2012-10-15

    Neutral beams based on positive ion source technology are a key component of contemporary fusion research. An accurate assessment of the injected beam species mix is important for determining the actual plasma heating and momentum input as well as proper interpretation of beam-based diagnostics. On DIII-D, the main ion charge-exchange spectroscopy system is used to extract well-resolved intensity ratios of the Doppler-shifted D{sub {alpha}} emission from the full, half, and third energy beam components for a variety of beam operational parameters. In conjunction with accurate collisional-radiative modeling, these measurements indicate the assumed species mix and power fractions can vary significantly and should be regularly monitored and updated for the most accurate interpretation of plasma performance. In addition, if stable active control of the power fractions can be achieved through appropriate source tuning, the resulting control over the deposition profile can serve as an additional experimental knob for advanced tokamak studies, e.g., varying the off axis beam current drive without altering the beam trajectory.

  13. Determination of neutral beam energy fractions from collisional radiative measurements on DIII-D.

    PubMed

    Thomas, D M; Grierson, B A; Muñoz Burgos, J M; Van Zeeland, M A

    2012-10-01

    Neutral beams based on positive ion source technology are a key component of contemporary fusion research. An accurate assessment of the injected beam species mix is important for determining the actual plasma heating and momentum input as well as proper interpretation of beam-based diagnostics. On DIII-D, the main ion charge-exchange spectroscopy system is used to extract well-resolved intensity ratios of the Doppler-shifted D(α) emission from the full, half, and third energy beam components for a variety of beam operational parameters. In conjunction with accurate collisional-radiative modeling, these measurements indicate the assumed species mix and power fractions can vary significantly and should be regularly monitored and updated for the most accurate interpretation of plasma performance. In addition, if stable active control of the power fractions can be achieved through appropriate source tuning, the resulting control over the deposition profile can serve as an additional experimental knob for advanced tokamak studies, e.g., varying the off axis beam current drive without altering the beam trajectory.

  14. The reanalysis of spectra of GRB 080913 to estimate the neutral fraction of the IGM at a redshift of 6.7

    NASA Astrophysics Data System (ADS)

    Patel, M.; Warren, S. J.; Mortlock, D. J.; Fynbo, J. P. U.

    2010-03-01

    Aims: We reanalyse optical spectra of the z=6.7 gamma-ray burst GRB 080913, adding hitherto unpublished spectra, to reassess the measurement of the neutral fraction of the IGM at high redshifts. Methods: In the data reduction, we take particular care to minimise systematic errors in the sky subtraction, which are evident in the published spectrum, and compromise our analysis. The final combined spectrum has a higher signal-to-noise ration (S/N) than the previously published spectrum by a factor of 1.3. Results: We find a single significant absorption line redward of the Lyα continuum break, which we identify with the ii + Siii λ 0.126 μm blend, at z=6.733. The sharp spectral break at Lyα implies a comparatively low total column density of neutral hydrogen along the line of sight, log({N_HI}/cm-2)<20. We model the absorption with a host-galaxy DLA, surrounded by an ionised region of unknown size r, within the IGM of neutral fraction, xHI. Despite knowing the source redshift, and the improved S/N of the spectrum, when fitting only over wavelengths redward of Lyα, no useful constraints on xHI can be obtained. We consider the possibility of including the ionised region, blueward of Lyα, when constraining the fit. For the optimistic assumption that the ionised region is transparent, τ_GP≪1, we find that the region is of small size r<2 proper Mpc, and we obtain an upper limit to the neutral fraction of the IGM at z=6.7 of x_HI<0.73 at a probability of 90%.

  15. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of negative ions

    DOEpatents

    Hershcovitch, Ady

    1987-01-01

    A process for selectively neutralizing H.sup.- ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H.sup.- ions that are intersected by a beam of laser light. Photodetachment is effected in a uniform magnetic field that is provided around the beam of H.sup.- ions to spin polarize the H.sup.- ions and produce first and second populations or groups of ions, having their respective proton spin aligned either with the magnetic field or opposite to it. The intersecting beam of laser light is directed to selectively neutralize a majority of the ions in only one population, or given spin polarized group of H.sup.- ions, without neutralizing the ions in the other group thereby forming a population of H.sup.- ions each of which has its proton spin down, and a second group or population of H.sup.o atoms having proton spin up. Finally, the two groups of ions are separated from each other by magnetically bending the group of H.sup.- ions away from the group of neutralized ions, thereby to form an intense H.sup.- ion beam that is directed toward a predetermined objective.

  16. The effects of the small-scale DM power on the cosmological neutral hydrogen (HI) distribution at high redshifts

    SciTech Connect

    Sarkar, Abir; Sethi, Shiv K.; Mondal, Rajesh; Bharadwaj, Somnath; Das, Subinoy; Marsh, David J.E. E-mail: rm@phy.iitkgp.ernet.in E-mail: sethi@rri.res.in E-mail: david.marsh@kcl.ac.uk

    2016-04-01

    The particle nature of dark matter remains a mystery. In this paper, we consider two dark matter models—Late Forming Dark Matter (LFDM) and Ultra-Light Axion (ULA) models—where the matter power spectra show novel effects on small scales. The high redshift universe offers a powerful probe of their parameters. In particular, we study two cosmological observables: the neutral hydrogen (HI) redshifted 21-cm signal from the epoch of reionization, and the evolution of the collapsed fraction of HI in the redshift range 2 < z < 5. We model the theoretical predictions of the models using CDM-like N-body simulations with modified initial conditions, and generate reionization fields using an excursion set model. The N-body approximation is valid on the length and halo mass scales studied. We show that LFDM and ULA models predict an increase in the HI power spectrum from the epoch of reionization by a factor between 2–10 for a range of scales 0.1 < k < 4 Mpc{sup −1}. Assuming a fiducial model where a neutral hydrogen fraction x-bar {sub HI} = 0.5 must be achieved by z = 8, the reionization process allows us to put approximate bounds on the redshift of dark matter formation z{sub f} > 4 × 10{sup 5} (for LFDM) and the axion mass m{sub a} > 2.6 × 10{sup −23} eV (for ULA). The comparison of the collapsed mass fraction inferred from damped Lyman-α observations to the theoretical predictions of our models lead to the weaker bounds: z{sub f} > 2 × 10{sup 5} and m{sub a} > 10{sup −23} eV. These bounds are consistent with other constraints in the literature using different observables; we briefly discuss how these bounds compare with possible constraints from the observation of luminosity function of galaxies at high redshifts. In the case of ULAs, these constraints are also consistent with a solution to the cusp-core problem of CDM.

  17. Hemispheric Imaging of Galactic Neutral Hydrogen with a Phased Array Antenna System

    NASA Astrophysics Data System (ADS)

    Wijnholds, Stefan J.; De Bruyn, A. Ger; Bregman, Jaap D.; Bij De Vaate, Jan Geralt

    2004-06-01

    The thousand element array (THEA) system is a phased array system consisting of 1 m2 tiles having 64 Vivaldi elements each, arranged on a regular 8-by-8 grid, which has been developed as a demonstrator of technology and applicability for SKA. In this paper we present imaging results of Galactic neutral hydrogen with THEA. Measurements have been taken using a dense 2-by-2 array of four tiles as a four tile adder. The results are compared with results from the Leiden-Dwingeloo Survey, showing qualitative agreement, but also indicating that further studies are needed on the instrumental characteristics.

  18. Northern dwarf and low surface brightness galaxies. I - The Arecibo neutral hydrogen survey

    NASA Technical Reports Server (NTRS)

    Schneider, Stephen E.; Thuan, Trinh X.; Magri, Christopher; Wadiak, James E.

    1990-01-01

    Neutral hydrogen observations of a large sample of dwarf and other low surface brightness galaxies are presented. Nearly all galaxies classified in the Uppsala General Catalogue as dwarf, irregular, Sd-m, or later and in the declination range of the Arecibo telescope have now been observed; here observations for 762 galaxies are reported. About 40 percent of these galaxies have no previously published detections. In total, counting previous detections, over 90 percent of these late-type systems are detected at Arecibo. The galaxies are examined for potential confusion with nearby galaxies, and substantially better SNR are derived for many previously detected galaxies.

  19. The Radial Flow Speed of the Neutral Hydrogen in the Oval Distortion of NGC 4736

    NASA Astrophysics Data System (ADS)

    Speights, Jason; Benton, Allen; Reimer, Rebecca; Lemaire, Robert; Godwin, Caleb

    2017-01-01

    Radial flows are difficult to measure in the presence of elliptical flows. This is because the model describing the observed velocity field when both kinds of flows are present is degenerate in the unknown parameters. In this poster we show that the degeneracy can be overcome if the pattern speed and position angle of the elliptical flows are known. The method is demonstrated for NGC 4736 using 3.6 micrometer and neutral hydrogen data. We find a mean inward radial flow speed of 5.6 +/- 1.7 km/s in the region of the oval distortion.

  20. Surprising stability of neutral interstitial hydrogen in diamond and cubic BN

    SciTech Connect

    Lyons, J. L.; Van de Walle, C. G.

    2016-01-21

    We report that in virtually all semiconductors and insulators, hydrogen interstitials (Hi) act as negative-U centers, implying that hydrogen is never stable in the neutral charge state. Using hybrid density functional calculations, we find a different behavior for Hi in diamond and cubic BN. In diamond, Hi is a very strong positive-U center, and the H0icharge state is stable over a Fermi-level range of more than 2 eV. In cubic BN, a III-V compound similar to diamond, we also find positive-U behavior, though over a much smaller Fermi-level range. Finally, these results highlight the unique behavior of Hi in these covalent wide-band-gap semiconductors.

  1. Surprising stability of neutral interstitial hydrogen in diamond and cubic BN

    DOE PAGES

    Lyons, J. L.; Van de Walle, C. G.

    2016-01-21

    We report that in virtually all semiconductors and insulators, hydrogen interstitials (Hi) act as negative-U centers, implying that hydrogen is never stable in the neutral charge state. Using hybrid density functional calculations, we find a different behavior for Hi in diamond and cubic BN. In diamond, Hi is a very strong positive-U center, and the H0icharge state is stable over a Fermi-level range of more than 2 eV. In cubic BN, a III-V compound similar to diamond, we also find positive-U behavior, though over a much smaller Fermi-level range. Finally, these results highlight the unique behavior of Hi in thesemore » covalent wide-band-gap semiconductors.« less

  2. The distribution of neutral hydrogen in the interstellar medium. 1: The data

    NASA Technical Reports Server (NTRS)

    Fruscione, Antonella; Hawkins, Isabel; Jelinsky, Patrick; Wiercigroch, Alexandria

    1994-01-01

    We compile, from the existing literature, the largest sample to date (842 data points) of hydrogen column density measurements, N(H I), of the gas in the interstellar medium. We include only results obtained from absorption measurements toward individual stars (594 in our sample) in an effort to construct a three-dimensional picture of the interstellar gas. We derive hydrogen column densities toward a fraction of the stars in the sample from published column density measurements of metal ions. A three-dimensional physical model derived from this data set will be presented in a companion paper. The observed stars span distances from a few parsecs to a few thousand parsecs, and more than half of the sample serves to describe the local interstellar medium within a few hundred parsecs of the Sun. Hydrogen column densities range from 10(exp 17) to 10(exp 22)/sq cm. We describe here the various observational methods used to estimate the hydrogen column densities and present the table with the stellar and hydrogen column density data. The provided table is intended as a global reference work, not to introduce new results.

  3. Existence and exponential stability for neutral stochastic integrodifferential equations with impulses driven by a fractional Brownian motion

    NASA Astrophysics Data System (ADS)

    Arthi, G.; Park, Ju H.; Jung, H. Y.

    2016-03-01

    In this paper, we establish the results on existence and uniqueness of mild solution of impulsive neutral stochastic integrodifferential equations driven by a fractional Brownian motion. Further, by using an impulsive integral inequality, some novel sufficient conditions are derived to ensure the exponential stability of mild solution in the mean square moment. The results are obtained by utilizing the fractional power of operators and the semigroup theory. Finally, an example is presented to demonstrate the effectiveness of the proposed result.

  4. Observation and Interpretation of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Flare

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Cohen, C. M. S.; Cummings, A. C.; Labrador, A. W.; vonRosenvinge, T. T.; Wiedenbeck, M. E.

    2009-01-01

    We discuss observations of energetic neutral hydrogen atoms (ENAs) from a solar flare/coronal mass ejection event reported by Mewaldt et al. (2009). The observations were made during the 5 December 2006 X9 solar flare, located at E79, by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar energetic particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV particles arriving from the Sun. The derived solar emission profile, arrival directions, and energy spectrum all show that the <5 MeV particles were due to energetic neutral hydrogen atoms produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. CME-driven shock acceleration is also considered. Taking into account ENA losses, we conclude that the observed ENAs must have been produced in the high corona at heliocentric distances .2 solar radii.

  5. Observations and Interpretations of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Event

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Barghouty, A. f.; Cohen, C. M. S.; Cummings, A. c.; Labrador, A. W.; vonRosenvinge, T. T.

    2009-01-01

    We discuss recently reported observations of energetic neutral hydrogen atoms (ENAs) from an X9 solar flare/coronal mass ejection event on 5 December 2006, located at E79. The observations were made by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar energetic particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV energetic neutral hydrogen atoms produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. Taking into account ENA losses, we find that the observed ENAs must have been produced in the high corona at heliocentric distances > or equal to 2 solar radii. Although there are no CME images from this event, it is shown that CME-shock-accelerated protons can, in principle, produce a time-history consistent with the observations.

  6. STEREO Observations of Energetic Neutral Hydrogen Atoms during the 5 December 2006 Solar Flare

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Leske, R. A.; Stone, E. C.; Barghouty, A. F.; Labrador, A. W.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; vonRosenvinge, T. T.; Wiedenbeck, M. E.

    2009-01-01

    We report the discovery of energetic neutral hydrogen atoms emitted during the X9 solar event of December 5, 2006. Beginning 1 hour following the onset of this E79 flare, the Low Energy Telescopes (LETs) on both the STEREO A and B spacecraft observed a sudden burst of 1.6 to 15 MeV protons beginning hours before the onset of the main solar energetic particle (SEP) event at Earth. More than 70% of these particles arrived from a longitude within 10 of the Sun, consistent with the measurement resolution. The derived emission profile at the Sun had onset and peak times remarkably similar to the GOES soft X-ray profile and continued for more than an hour. The observed arrival directions and energy spectrum argue strongly that the particle events less than 5 MeV were due to energetic neutral hydrogen atoms (ENAs). To our knowledge, this is the first reported observation of ENA emission from a solar flare/coronal mass ejection. Possible origins for the production of ENAs in a large solar event are considered. We conclude that the observed ENAs were most likely produced in the high corona and that charge-transfer reactions between accelerated protons and partially-stripped coronal ions are an important source of ENAs in solar events.

  7. Compact Galactic Neutral Hydrogen Clouds in the GALFA-HI Survey

    NASA Astrophysics Data System (ADS)

    Saul, Destry Rose

    The more sensitive the observations, the more complex the gas in our Galaxy appears. Since the detection of neutral hydrogen in 1951, each new survey has revealed new structure. Using the GALFA-HI survey, we have discovered five populations of compact neutral hydrogen clouds. We began by developing a machine-vision algorithm to identify compact clouds in the GALFA-HI Data Release 1. Based on position, velocity, and linewidth we separated the 1964 identified clouds into five populations: galaxy candidates, high-velocity clouds, cold low-velocity clouds, warm low-velocity clouds, and warm positive low-velocity clouds in the third Galactic quadrant. We found that the dust properties of the compact clouds support our population definitions. Using both IRAS and the newly released Planck data, we found no dust detections in the high-velocity clouds, or the warm positive low-velocity clouds in the third Galactic quadrant. We claim that the third quadrant clouds are low-velocity halo clouds. The warm low-velocity clouds have a significantly greater dust-to-gas ratio than the cold low-velocity clouds. We interpret this as evidence that the warm clouds have an ionized component not present with the cold clouds, possibly because they are part of the Galactic fountain.

  8. Adsorption of hydrogen on neutral and charged fullerene: experiment and theory.

    PubMed

    Kaiser, A; Leidlmair, C; Bartl, P; Zöttl, S; Denifl, S; Mauracher, A; Probst, M; Scheier, P; Echt, O

    2013-02-21

    Helium droplets are doped with fullerenes (either C60 or C70) and hydrogen (H2 or D2) and investigated by high-resolution mass spectrometry. In addition to pure helium and hydrogen cluster ions, hydrogen-fullerene complexes are observed upon electron ionization. The composition of the main ion series is (H2)(n)HC(m)(+) where m = 60 or 70. Another series of even-numbered ions, (H2)(n)C(m)(+), is slightly weaker in stark contrast to pure hydrogen cluster ions for which the even-numbered series (H2)(n)(+) is barely detectable. The ion series (H2)(n)HC(m)(+) and (H2)(n)C(m)(+) exhibit abrupt drops in ion abundance at n = 32 for C60 and 37 for C70, indicating formation of an energetically favorable commensurate phase, with each face of the fullerene ion being covered by one adsorbate molecule. However, the first solvation layer is not complete until a total of 49 H2 are adsorbed on C60(+); the corresponding value for C70(+) is 51. Surprisingly, these values do not exhibit a hydrogen-deuterium isotope effect even though the isotope effect for H2/D2 adsorbates on graphite exceeds 6%. We also observe doubly charged fullerene-deuterium clusters; they, too, exhibit abrupt drops in ion abundance at n = 32 and 37 for C60 and C70, respectively. The findings imply that the charge is localized on the fullerene, stabilizing the system against charge separation. Density functional calculations for C60-hydrogen complexes with up to five hydrogen atoms provide insight into the experimental findings and the structure of the ions. The binding energy of physisorbed H2 is 57 meV for H2C60(+) and (H2)2C60(+), and slightly above 70 meV for H2HC60(+) and (H2)2HC60(+). The lone hydrogen in the odd-numbered complexes is covalently bound atop a carbon atom but a large barrier of 1.69 eV impedes chemisorption of the H2 molecules. Calculations for neutral and doubly charged complexes are presented as well.

  9. Adsorption of hydrogen on neutral and charged fullerene: Experiment and theory

    SciTech Connect

    Kaiser, A.; Leidlmair, C.; Bartl, P.; Zoettl, S.; Denifl, S.; Mauracher, A.; Probst, M.; Scheier, P.; Echt, O.

    2013-02-21

    Helium droplets are doped with fullerenes (either C{sub 60} or C{sub 70}) and hydrogen (H{sub 2} or D{sub 2}) and investigated by high-resolution mass spectrometry. In addition to pure helium and hydrogen cluster ions, hydrogen-fullerene complexes are observed upon electron ionization. The composition of the main ion series is (H{sub 2}){sub n}HC{sub m}{sup +} where m= 60 or 70. Another series of even-numbered ions, (H{sub 2}){sub n}C{sub m}{sup +}, is slightly weaker in stark contrast to pure hydrogen cluster ions for which the even-numbered series (H{sub 2}){sub n}{sup +} is barely detectable. The ion series (H{sub 2}){sub n}HC{sub m}{sup +} and (H{sub 2}){sub n}C{sub m}{sup +} exhibit abrupt drops in ion abundance at n= 32 for C{sub 60} and 37 for C{sub 70}, indicating formation of an energetically favorable commensurate phase, with each face of the fullerene ion being covered by one adsorbate molecule. However, the first solvation layer is not complete until a total of 49 H{sub 2} are adsorbed on C{sub 60}{sup +}; the corresponding value for C{sub 70}{sup +} is 51. Surprisingly, these values do not exhibit a hydrogen-deuterium isotope effect even though the isotope effect for H{sub 2}/D{sub 2} adsorbates on graphite exceeds 6%. We also observe doubly charged fullerene-deuterium clusters; they, too, exhibit abrupt drops in ion abundance at n= 32 and 37 for C{sub 60} and C{sub 70}, respectively. The findings imply that the charge is localized on the fullerene, stabilizing the system against charge separation. Density functional calculations for C{sub 60}-hydrogen complexes with up to five hydrogen atoms provide insight into the experimental findings and the structure of the ions. The binding energy of physisorbed H{sub 2} is 57 meV for H{sub 2}C{sub 60}{sup +} and (H{sub 2}){sub 2}C{sub 60}{sup +}, and slightly above 70 meV for H{sub 2}HC{sub 60}{sup +} and (H{sub 2}){sub 2}HC{sub 60}{sup +}. The lone hydrogen in the odd-numbered complexes is covalently bound

  10. Evidence for Neutral-Current Diffractive π0 Production from Hydrogen in Neutrino Interactions on Hydrocarbon

    NASA Astrophysics Data System (ADS)

    Wolcott, J.; Aliaga, L.; Altinok, O.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Chvojka, J.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Endress, E.; Felix, J.; Fields, L.; Fine, R.; Galindo, R.; Gallagher, H.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Solano Salinas, C. J.; Sánchez Falero, S.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wospakrik, M.; Zhang, D.; Minerva Collaboration

    2016-09-01

    The MINERvA experiment observes an excess of events containing electromagnetic showers relative to the expectation from Monte Carlo simulations in neutral-current neutrino interactions with mean beam energy of 4.5 GeV on a hydrocarbon target. The excess is characterized and found to be consistent with neutral-current π0 production with a broad energy distribution peaking at 7 GeV and a total cross section of 0.26 ±0.02 (stat. )±0.08 (sys.)×10-39 cm2 . The angular distribution, electromagnetic shower energy, and spatial distribution of the energy depositions of the excess are consistent with expectations from neutrino neutral-current diffractive π0 production from hydrogen in the hydrocarbon target. These data comprise the first direct experimental observation and constraint for a reaction that poses an important background process in neutrino-oscillation experiments searching for νμ to νe oscillations.

  11. Evidence for Neutral-Current Diffractive π^{0} Production from Hydrogen in Neutrino Interactions on Hydrocarbon.

    PubMed

    Wolcott, J; Aliaga, L; Altinok, O; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Budd, H; Cai, T; Carneiro, M F; Chvojka, J; da Motta, H; Devan, J; Dytman, S A; Díaz, G A; Eberly, B; Endress, E; Felix, J; Fields, L; Fine, R; Galindo, R; Gallagher, H; Golan, T; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kiveni, M; Kleykamp, J; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Marshall, C M; Martinez Caicedo, D A; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfín, J G; Mousseau, J; Naples, D; Nelson, J K; Norrick, A; Nuruzzaman; Osta, J; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Rakotondravohitra, L; Ramirez, M A; Ray, H; Ren, L; Rimal, D; Rodrigues, P A; Ruterbories, D; Schellman, H; Schmitz, D W; Solano Salinas, C J; Sánchez Falero, S; Tagg, N; Tice, B G; Valencia, E; Walton, T; Wospakrik, M; Zhang, D

    2016-09-09

    The MINERvA experiment observes an excess of events containing electromagnetic showers relative to the expectation from Monte Carlo simulations in neutral-current neutrino interactions with mean beam energy of 4.5 GeV on a hydrocarbon target. The excess is characterized and found to be consistent with neutral-current π^{0} production with a broad energy distribution peaking at 7 GeV and a total cross section of 0.26±0.02(stat.)±0.08(sys.)×10^{-39}  cm^{2}. The angular distribution, electromagnetic shower energy, and spatial distribution of the energy depositions of the excess are consistent with expectations from neutrino neutral-current diffractive π^{0} production from hydrogen in the hydrocarbon target. These data comprise the first direct experimental observation and constraint for a reaction that poses an important background process in neutrino-oscillation experiments searching for ν_{μ} to ν_{e} oscillations.

  12. Carbon and hydrogen isotope fractionation of benzene and toluene during hydrophobic sorption in multistep batch experiments.

    PubMed

    Imfeld, G; Kopinke, F-D; Fischer, A; Richnow, H-H

    2014-07-01

    The application of compound-specific stable isotope analysis (CSIA) for evaluating degradation of organic pollutants in the field implies that other processes affecting pollutant concentration are minor with respect to isotope fractionation. Sorption is associated with minor isotope fractionation and pollutants may undergo successive sorption-desorption steps during their migration in aquifers. However, little is known about isotope fractionation of BTEX compounds after consecutive sorption steps. Here, we show that partitioning of benzene and toluene between water and organic sorbents (i.e. 1-octanol, dichloromethane, cyclohexane, hexanoic acid and Amberlite XAD-2) generally exhibits very small carbon and hydrogen isotope effects in multistep batch experiments. However, carbon and hydrogen isotope fractionation was observed for the benzene-octanol pair after several sorption steps (Δδ(13)C=1.6 ± 0.3‰ and Δδ(2)H=88 ± 3‰), yielding isotope fractionation factors of αC=1.0030 ± 0.0005 and αH=1.195 ± 0.026. Our results indicate that the cumulative effect of successive hydrophobic partitioning steps in an aquifer generally results in insignificant isotope fractionation for benzene and toluene. However, significant carbon and hydrogen isotope fractionation cannot be excluded for specific sorbate-sorbent pairs, such as sorbates with π-electrons and sorbents with OH-groups. Consequently, functional groups of sedimentary organic matter (SOM) may specifically interact with BTEX compounds migrating in an aquifer, thereby resulting in potentially relevant isotope fractionation.

  13. HOW TO SEARCH FOR ISLANDS OF NEUTRAL HYDROGEN IN THE z ∼ 5.5 IGM

    SciTech Connect

    Malloy, Matthew; Lidz, Adam

    2015-02-01

    Observations of the Lyman-alpha (Lyα) forest may allow reionization to complete as late as z ∼ 5.5, provided the ionization state of the intergalactic medium (IGM) is sufficiently inhomogeneous at these redshifts. In this case, significantly neutral islands may remain among highly ionized gas with the ionized regions allowing some transmission through the Lyα forest. This possibility has the important virtue that it is eminently testable with existing Lyα forest data. In particular, we describe three observable signatures of significantly neutral gas in the z ∼ 5.5 IGM. We use mock quasar spectra produced from numerical simulations of reionization to develop these tests. First, we quantify how the abundance and length of absorbed regions in the forest increase with the volume-averaged neutral fraction in our reionization model. Second, we consider stacking the transmission profile around highly absorbed regions in the forest. If and only if there is significantly neutral gas in the IGM, absorption in the damping wing of the Lyα line will cause the transmission to recover slowly as one moves from absorbed to transmitted portions of the spectrum. Third, the deuterium Lyβ line should imprint a small but distinctive absorption feature slightly blueward of absorbed neutral regions in the Lyβ forest. We show that these tests can be carried out with existing Keck HIRES spectra at z ∼ 5.5, with the damping wing being observable for 〈x{sub H} {sub I}〉≳0.05 and the deuterium feature observable with additional high-resolution spectra for 〈x{sub H} {sub I}〉≳0.2.

  14. How to Search for Islands of Neutral Hydrogen in the z ~ 5.5 IGM

    NASA Astrophysics Data System (ADS)

    Malloy, Matthew; Lidz, Adam

    2015-02-01

    Observations of the Lyman-alpha (Lyα) forest may allow reionization to complete as late as z ~ 5.5, provided the ionization state of the intergalactic medium (IGM) is sufficiently inhomogeneous at these redshifts. In this case, significantly neutral islands may remain among highly ionized gas with the ionized regions allowing some transmission through the Lyα forest. This possibility has the important virtue that it is eminently testable with existing Lyα forest data. In particular, we describe three observable signatures of significantly neutral gas in the z ~ 5.5 IGM. We use mock quasar spectra produced from numerical simulations of reionization to develop these tests. First, we quantify how the abundance and length of absorbed regions in the forest increase with the volume-averaged neutral fraction in our reionization model. Second, we consider stacking the transmission profile around highly absorbed regions in the forest. If and only if there is significantly neutral gas in the IGM, absorption in the damping wing of the Lyα line will cause the transmission to recover slowly as one moves from absorbed to transmitted portions of the spectrum. Third, the deuterium Lyβ line should imprint a small but distinctive absorption feature slightly blueward of absorbed neutral regions in the Lyβ forest. We show that these tests can be carried out with existing Keck HIRES spectra at z ~ 5.5, with the damping wing being observable for < xH \\scriptsize{I}> ≳ 0.05 and the deuterium feature observable with additional high-resolution spectra for < xH \\scriptsize{I}> ≳ 0.2.

  15. Hydrogen Isotope Fractionation As a Tool to Identify Aerobic and Anaerobic PAH Biodegradation.

    PubMed

    Kümmel, Steffen; Starke, Robert; Chen, Gao; Musat, Florin; Richnow, Hans H; Vogt, Carsten

    2016-03-15

    Aerobic and anaerobic polycyclic aromatic hydrocarbon (PAH) biodegradation was characterized by compound specific stable isotope analysis (CSIA) of the carbon and hydrogen isotope effects of the enzymatic reactions initiating specific degradation pathways, using naphthalene and 2-methylnaphtalene as model compounds. Aerobic activation of naphthalene and 2-methylnaphthalene by Pseudomonas putida NCIB 9816 and Pseudomonas fluorescens ATCC 17483 containing naphthalene dioxygenases was associated with moderate carbon isotope fractionation (εC = -0.8 ± 0.1‰ to -1.6 ± 0.2‰). In contrast, anaerobic activation of naphthalene by a carboxylation-like mechanism by strain NaphS6 was linked to negligible carbon isotope fractionation (εC = -0.2 ± 0.2‰ to -0.4 ± 0.3‰). Notably, anaerobic activation of naphthalene by strain NaphS6 exhibited a normal hydrogen isotope fractionation (εH = -11 ± 2‰ to -47 ± 4‰), whereas an inverse hydrogen isotope fractionation was observed for the aerobic strains (εH = +15 ± 2‰ to +71 ± 6‰). Additionally, isotope fractionation of NaphS6 was determined in an overlaying hydrophobic carrier phase, resulting in more reliable enrichment factors compared to immobilizing the PAHs on the bottle walls without carrier phase. The observed differences especially in hydrogen fractionation might be used to differentiate between aerobic and anaerobic naphthalene and 2-methylnaphthalene biodegradation pathways at PAH-contaminated field sites.

  16. Wheels of Fire. II. Neutral Hydrogen in the Cartwheel Ring Galaxy

    NASA Astrophysics Data System (ADS)

    Higdon, James L.

    1996-08-01

    The VLA was used to investigate the distribution and kinematics of neutral hydrogen, and the relation between massive star formation (MSF) and gas surface density, in the Cartwheel ring galaxy. Over 85% of the Cartwheel's H I resides in the outer ring, with a low surface density component filling much of the interior. Analysis of the H I velocity field indicates that the outer ring is expanding at V_exp_ = 53 +/- 9 km s^-1^, and that ~300 Myr have elapsed since the intruder's passage. Changes in V_exp_ with radius show that gas is beginning to leave the outer ring and is infalling for R <~ 8 kpc. H I is accumulating just beyond the inner ring, though optical (V - R) maps show gas and dust crossing the ring and flowing into the nucleus along two streams. No H I analogs of the optical "spokes" are found. The ring's surface brightness in Hα ({SIGMA}_Hα_) and 20 cm continuum ({SIGMA}_20 cm_) are identical, showing that peculiar extinction is not responsible for the observed crescent of MSF. Only the two most luminous H II complexes are detected at 6 cm and are characterized by nonthermal spectra (α^bar^ = - 0.65) and low 6 cm- Hα extinction (A^bar^_V_ = 1.7 mag). The 20 cm continuum-derived Type II SN rate (0.1 +/- 0.02 yr^-1^) is consistent with the lower bound of optical estimates. H I and Hα are both concentrated and anticorrelated in the outer ring. MSF appears to take place on the H I ring's leading edge throughout the starburst quadrant, where a disturbed H I component is found. The Cartwheel's gas consumption time-scale is 290 Myr. If the inner ring triggers a second sustained starburst, a significant fraction of the remaining gas supply may be converted into stars. The global distribution of MSF can be understood in terms of a critical surface density ({SIGMA}_crit_; reported by Kennicutt in 1989): Only in the outer ring does the atomic gas surface density ({SIGMA}_ag_) exceed {SIGMA}_crit_ when averaged over a full range in azimuth. At smaller radii

  17. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOEpatents

    MacArthur, James B.; Comolli, Alfred G.; McLean, Joseph B.

    1989-01-01

    A process for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600.degree.-750.degree. F. to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650.degree. F. and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-90 lb/hr per ft.sup.3 catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760.degree.-860.degree. F. temperature for further hydrogenation and hydroconversion reactions. A 600.degree.-750.degree. F..sup.+ fraction containing 0-20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials.

  18. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOEpatents

    MacArthur, J.B.; Comolli, A.G.; McLean, J.B.

    1989-10-17

    A process is described for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600--750 F to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650 F and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710--800 F temperature, 1,000--4,000 psig hydrogen partial pressure, and 10-90 lb/hr per ft[sup 3] catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760--860 F temperature for further hydrogenation and hydroconversion reactions. A 600--750 F[sup +] fraction containing 0--20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials. 2 figs.

  19. Fractionation of Hydrogen Isotopes by Sulfate- and Nitrate-Reducing Bacteria

    PubMed Central

    Osburn, Magdalena R.; Dawson, Katherine S.; Fogel, Marilyn L.; Sessions, Alex L.

    2016-01-01

    Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen—protium and deuterium—that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ2H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ2H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ2H suggest much potential as an environmental recorder of metabolism. PMID:27531993

  20. Vanadium and nickel complexes in petroleum resid acid, base, and neutral fractions

    SciTech Connect

    Pearson, C.D.; Green, J.D.

    1993-01-01

    Acid and base fractions from petroleum vacuum resids with no detectable (by visible spectrophotometry) quantities of porphyrinic Ni or V complexes were hydrotreated under various conditions to determine if significant amounts of porphyrinic metals were released, via disassociation or other means, upon hydrotreating. No significant quantities were observed, thereby indicating that nonporphyrinic metals were not simply associated, complexed or otherwise masked (in terms of visible spectrophotometric response) porphyrinic metal complexes. However, it is possible that hydrotreating was simply not effective in breaking up these associates and/or that some porphyrinic forms of metal were in fact released but were rapidly destroyed by hydrotreating. In addition, three liquid chromatographic (LC) separation methods were sequentially applied to Cerro Negro (Orinoco belt Venezuelan heavy crude) >700{degree}C resid in an effort to separate and concentrate the metal complexes present. Nonaqueous ion exchange chromatography was used initially to separate the resid into acid, base and neutral types. Two concentrates containing 19,500 and 13,500 ppm total V, or an estimated 19 and 13 wt % V-containing compounds respectively, were obtained. The degree of enrichment of Ni compounds obtained was significantly lower. By visible spectrophotometry, using vanadyl etioporphyrin as a standard, each of the concentrates contained near a 1:1 ratio of porphyrinic:nonporphyrinic V complexes. Analogous separation behavior for porphyrinic versus nonporphyrinic metal forms was observed throughout much of the work, thereby suggesting that a comparable diversity of structures existed within each general class of metal compounds. The generally wide dispersion of both Ni and V over the LC separation scheme suggests a structural variety of metal complexes that is comparable to that observed for other heteroatoms (N, S, O) in petroleum.

  1. Vanadium and nickel complexes in petroleum resid acid, base, and neutral fractions

    SciTech Connect

    Pearson, C.D.; Green, J.D.

    1993-01-01

    Acid and base fractions from petroleum vacuum resids with no detectable (by visible spectrophotometry) quantities of porphyrinic Ni or V complexes were hydrotreated under various conditions to determine if significant amounts of porphyrinic metals were released, via disassociation or other means, upon hydrotreating. No significant quantities were observed, thereby indicating that nonporphyrinic metals were not simply associated, complexed or otherwise masked (in terms of visible spectrophotometric response) porphyrinic metal complexes. However, it is possible that hydrotreating was simply not effective in breaking up these associates and/or that some porphyrinic forms of metal were in fact released but were rapidly destroyed by hydrotreating. In addition, three liquid chromatographic (LC) separation methods were sequentially applied to Cerro Negro (Orinoco belt Venezuelan heavy crude) >700[degree]C resid in an effort to separate and concentrate the metal complexes present. Nonaqueous ion exchange chromatography was used initially to separate the resid into acid, base and neutral types. Two concentrates containing 19,500 and 13,500 ppm total V, or an estimated 19 and 13 wt % V-containing compounds respectively, were obtained. The degree of enrichment of Ni compounds obtained was significantly lower. By visible spectrophotometry, using vanadyl etioporphyrin as a standard, each of the concentrates contained near a 1:1 ratio of porphyrinic:nonporphyrinic V complexes. Analogous separation behavior for porphyrinic versus nonporphyrinic metal forms was observed throughout much of the work, thereby suggesting that a comparable diversity of structures existed within each general class of metal compounds. The generally wide dispersion of both Ni and V over the LC separation scheme suggests a structural variety of metal complexes that is comparable to that observed for other heteroatoms (N, S, O) in petroleum.

  2. Model Insensitive and Calibration Independent Method for Determination of the Downstream Neutral Hydrogen Density Through Ly-alpha Glow Observations

    NASA Technical Reports Server (NTRS)

    Gangopadhyay, P.; Judge, D. L.

    1996-01-01

    Our knowledge of the various heliospheric phenomena (location of the solar wind termination shock, heliopause configuration and very local interstellar medium parameters) is limited by uncertainties in the available heliospheric plasma models and by calibration uncertainties in the observing instruments. There is, thus, a strong motivation to develop model insensitive and calibration independent methods to reduce the uncertainties in the relevant heliospheric parameters. We have developed such a method to constrain the downstream neutral hydrogen density inside the heliospheric tail. In our approach we have taken advantage of the relative insensitivity of the downstream neutral hydrogen density profile to the specific plasma model adopted. We have also used the fact that the presence of an asymmetric neutral hydrogen cavity surrounding the sun, characteristic of all neutral densities models, results in a higher multiple scattering contribution to the observed glow in the downstream region than in the upstream region. This allows us to approximate the actual density profile with one which is spatially uniform for the purpose of calculating the downstream backscattered glow. Using different spatially constant density profiles, radiative transfer calculations are performed, and the radial dependence of the predicted glow is compared with the observed I/R dependence of Pioneer 10 UV data. Such a comparison bounds the large distance heliospheric neutral hydrogen density in the downstream direction to a value between 0.05 and 0.1/cc.

  3. Muonium in Stishovite: Implications for the Possible Existence of Neutral Atomic Hydrogen in the Earth's Deep Mantle

    PubMed Central

    Funamori, Nobumasa; Kojima, Kenji M.; Wakabayashi, Daisuke; Sato, Tomoko; Taniguchi, Takashi; Nishiyama, Norimasa; Irifune, Tetsuo; Tomono, Dai; Matsuzaki, Teiichiro; Miyazaki, Masanori; Hiraishi, Masatoshi; Koda, Akihiro; Kadono, Ryosuke

    2015-01-01

    Hydrogen in the Earth's deep interior has been thought to exist as a hydroxyl group in high-pressure minerals. We present Muon Spin Rotation experiments on SiO2 stishovite, which is an archetypal high-pressure mineral. Positive muon (which can be considered as a light isotope of proton) implanted in stishovite was found to capture electron to form muonium (corresponding to neutral hydrogen). The hyperfine-coupling parameter and the relaxation rate of spin polarization of muonium in stishovite were measured to be very large, suggesting that muonium is squeezed in small and anisotropic interstitial voids without binding to silicon or oxygen. These results imply that hydrogen may also exist in the form of neutral atomic hydrogen in the deep mantle. PMID:25675890

  4. Muonium in Stishovite: Implications for the Possible Existence of Neutral Atomic Hydrogen in the Earth's Deep Mantle

    NASA Astrophysics Data System (ADS)

    Funamori, Nobumasa; Kojima, Kenji M.; Wakabayashi, Daisuke; Sato, Tomoko; Taniguchi, Takashi; Nishiyama, Norimasa; Irifune, Tetsuo; Tomono, Dai; Matsuzaki, Teiichiro; Miyazaki, Masanori; Hiraishi, Masatoshi; Koda, Akihiro; Kadono, Ryosuke

    2015-02-01

    Hydrogen in the Earth's deep interior has been thought to exist as a hydroxyl group in high-pressure minerals. We present Muon Spin Rotation experiments on SiO2 stishovite, which is an archetypal high-pressure mineral. Positive muon (which can be considered as a light isotope of proton) implanted in stishovite was found to capture electron to form muonium (corresponding to neutral hydrogen). The hyperfine-coupling parameter and the relaxation rate of spin polarization of muonium in stishovite were measured to be very large, suggesting that muonium is squeezed in small and anisotropic interstitial voids without binding to silicon or oxygen. These results imply that hydrogen may also exist in the form of neutral atomic hydrogen in the deep mantle.

  5. Muonium in stishovite: implications for the possible existence of neutral atomic hydrogen in the earth's deep mantle.

    PubMed

    Funamori, Nobumasa; Kojima, Kenji M; Wakabayashi, Daisuke; Sato, Tomoko; Taniguchi, Takashi; Nishiyama, Norimasa; Irifune, Tetsuo; Tomono, Dai; Matsuzaki, Teiichiro; Miyazaki, Masanori; Hiraishi, Masatoshi; Koda, Akihiro; Kadono, Ryosuke

    2015-02-13

    Hydrogen in the Earth's deep interior has been thought to exist as a hydroxyl group in high-pressure minerals. We present Muon Spin Rotation experiments on SiO2 stishovite, which is an archetypal high-pressure mineral. Positive muon (which can be considered as a light isotope of proton) implanted in stishovite was found to capture electron to form muonium (corresponding to neutral hydrogen). The hyperfine-coupling parameter and the relaxation rate of spin polarization of muonium in stishovite were measured to be very large, suggesting that muonium is squeezed in small and anisotropic interstitial voids without binding to silicon or oxygen. These results imply that hydrogen may also exist in the form of neutral atomic hydrogen in the deep mantle.

  6. De-coding the Neutral Hydrogen (21cm) Line Profiles of Disk galaxies

    NASA Astrophysics Data System (ADS)

    Moak, Sandy; Madore, Barry; Khatami, David

    2017-01-01

    Neutral hydrogen is the most abundant element in the interstellar medium, and it has long lent astronomers insight into galaxy structure, galactic interactions, and even dark matter prevalence. It is necessary to implement a detailed coding scheme that characterizes the 21-cm HI line profiles which exist in abundance throughout literature. We have utilized a new computer simulation program that exposes the internal architecture of a galaxy by way of mapping the one-dimensional line profile on to the three-dimensional parameters of a given galaxy. We have created a naming system to classify HI line profiles, which represents a kinematic description of the galaxy simply by considering its classification within the coding scheme.

  7. Northern dwarf and low surface brightness galaxies. II - The Green Bank neutral hydrogen survey

    NASA Technical Reports Server (NTRS)

    Schneider, Stephen E.; Thuan, Trinh X.; Mangum, Jeffrey G.; Miller, John

    1992-01-01

    The paper reports neutral hydrogen observations of a large sample of dwarf and other low surface brightness galaxies. A detailed discussion and error analysis of the observations are presented, and spectra are displayed for 329 galaxies detected for the first time, or detected with substantially better signal-to-noise ratios than achieved previously. The positions on the sky of 667 galaxies meeting the present selection criteria north of delta = 38 deg are shown. The distribution of the redshifts of galaxies detected at Green Bank is illustrated. The Green Bank detections tapered off strongly below the median H I flux of 3.7 Jy km/s detected at Arecibo: only 12 percent of the Green Bank sample was detected with smaller fluxes.

  8. ϕ-meson photoproduction on hydrogen in the neutral decay mode

    NASA Astrophysics Data System (ADS)

    Seraydaryan, H.; Amaryan, M. J.; Gavalian, G.; Baghdasaryan, H.; Weinstein, L.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Anderson, M. D.; Pereira, S. Anefalos; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bennett, R. P.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Gevorgyan, N.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lewis, S.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Camacho, C. Munoz; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Tang, W.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Ungaro, M.; Vineyard, M. F.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; CLAS Collaboration

    2014-05-01

    We report the first measurement of the photoproduction cross section of the ϕ meson in its neutral decay mode in the reaction γp →pϕ(KSKL). The experiment was performed with a tagged photon beam of energy 1.6≤Eγ≤3.6 GeV incident on a liquid hydrogen target of the CLAS spectrometer at the Thomas Jefferson National Accelerator Facility. The pϕ final state is identified via reconstruction of KS in the invariant mass of two oppositely charged pions and by requiring the missing particle in the reaction γp →pKSX to be KL. The presented results significantly enlarge the existing data on ϕ photoproduction. These data, combined with the data from the charged decay mode, will help to constrain different mechanisms of ϕ photoproduction.

  9. Sharp edges to neutral hydrogen disks in galaxies and the extragalactic radiation field

    NASA Astrophysics Data System (ADS)

    Maloney, Philip

    1993-09-01

    It is shown that the very sharp truncation of the neutral hydrogen distribution seen in NGC 3198 (and probably M33) is well modeled as the result of ionization of the atomic gas by the extragalactic radiation field. Below a critical column density of about a few times 10 exp 19/sq cm the gas is dominantly ionized and undetectable in the 21-cm line. It is inferred from the photoionization models that the total disk gas distribution in NGC 3198 is actually fairly axisymmetric. The critical column density for ionization is not a strong function of galaxy mass or mass distribution; thus, all galaxies should show a cutoff at approximately the same column density. Specific models of 3198 suggest that the extragalactic ionizing photon flux is 5000-10,000 photons/sq cm s.

  10. Sharp edges to neutral hydrogen disks in galaxies and the extragalactic radiation field

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1993-01-01

    It is shown that the very sharp truncation of the neutral hydrogen distribution seen in NGC 3198 (and probably M33) is well modeled as the result of ionization of the atomic gas by the extragalactic radiation field. Below a critical column density of about a few times 10 exp 19/sq cm the gas is dominantly ionized and undetectable in the 21-cm line. It is inferred from the photoionization models that the total disk gas distribution in NGC 3198 is actually fairly axisymmetric. The critical column density for ionization is not a strong function of galaxy mass or mass distribution; thus, all galaxies should show a cutoff at approximately the same column density. Specific models of 3198 suggest that the extragalactic ionizing photon flux is 5000-10,000 photons/sq cm s.

  11. phi-meson photoproduction on Hydrogen in the neutral decay mode

    SciTech Connect

    Seraydaryan, Helena; Amaryan, Moscov J.; Gavalian, Gagik; Baghdasaryan, Hovhannes A.; Weinstein, Larry

    2014-05-01

    We report the first measurement of the photoproduction cross section of the $\\phi$ meson in its neutral decay mode in the reaction $\\gamma p \\to p\\phi(K_SK_L)$. The experiment was performed with a tagged photon beam of energy $1.6 \\le E_\\gamma \\le 3.6$ GeV incident on a liquid hydrogen target of the CLAS spectrometer at the Thomas Jefferson National Accelerator Facility. The $p \\phi$ final state is identified via reconstruction of $K_S$ in the invariant mass of two oppositely charged pions and by requiring the missing particle in the reaction $\\gamma p \\to p K_S X$ to be $K_L$. The presented results significantly enlarge the existing data on $\\phi$-photoproduction. These data, combined with the data from the charged decay mode, will help to constrain different mechanisms of $\\phi$ photoproduction.

  12. Specific features of measuring the isotopic composition of hydrogen ions in ITER plasma by using neutral particle diagnostics under neutral beam injection conditions

    SciTech Connect

    Afanasyev, V. I.; Goncharov, P. R.; Mironov, M. I.; Nesenevich, V. G. Petrov, M. P.; Petrov, S. Ya.; Sergeev, V. Yu.

    2015-12-15

    Results of numerical simulation of signals from neutral particle analyzers under injection of the heating and diagnostic neutral beams in different operating modes of the ITER tokamak are presented. The distribution functions of fast ions in plasma are simulated, and the corresponding neutral particle fluxes escaping from the plasma along the line of sight of the analyzers are calculated. It is shown that the injection of heating deuterium (D{sup 0}) beams results in the appearance of an intense background signal hampering measurements of the ratio between the densities of deuterium and tritium fuel ions in plasma in the thermal energy range. The injection of a diagnostic hydrogen (H{sup 0}) beam does not affect measurements owing to the high mass resolution of the analyzers.

  13. Neutral hydrogen associated with shells and other fine structure in NGC 2865: A dynamically young elliptical?

    NASA Technical Reports Server (NTRS)

    Schiminovich, D.; Van Gorkom, J. H.; Van Der Hulst, J. M.; Malin, D. F.

    1995-01-01

    We report the discovery of neutral hydrogen in a second elliptical galaxy with shells, NGC 2865. Very Large Array (VLA) images reveal an association between the neutral hydrogen (H I) and the fine structure (shells, tails, and loops) in the galaxy. Similar to what we previously observed in NGC 5128 (Centaurus A), most of the 6 x 10(exp 8)/h(exp 2) solar mass of cold gas is found in a broken ring in the outer regions of NGC 2865 (beyond 0.5D(sub 25)) and is displaced to the outside of the shells and loops. The measured velocities cover a range of 500 km/s around the systematic velocity. The velocity field of the outer H I has the same sense and magnitude (and line of nodes) as that of the stars in the elliptical body. Although NGC 2865 appears to be a relaxed elliptical galaxy, deep images, photometry, and spectroscopy suggest that the galaxy might be the recent (less than 7 Gyr) product of a major disk-disk merger -- a 'dynamically young elliptical.' Our H I data support this hypothesis. Nevertheless, the association between gas and stellar fine structure, with gas displaced outward from the stars in projected position, implies gas motions not predicted by any of the current merger scenarios. Using the H I ring and assuming nearly circular motion, we measure M/L(sub B) at large radii (4 x 0.5D(sub 25)). We find M/L(sub B) = 33 +/- 4 h, a factor of 5 greater than the value of M/L(sub B) found for the central regions, indicating the presence of a dark halo.

  14. The spatial distribution of neutral hydrogen as traced by low H I mass galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Han-Seek; Wyithe, J. Stuart. B.; Baugh, C. M.; Lagos, C. d. P.; Power, C.; Park, Jaehong

    2017-02-01

    The formation and evolution of galaxies with low neutral atomic hydrogen (H I) masses, M_{H I} < 108 h-2 M⊙, are affected by host dark matter halo mass and photoionization feedback from the UV background after the end of reionization. We study how the physical processes governing the formation of galaxies with low H I mass are imprinted on the distribution of neutral hydrogen in the Universe using the hierarchical galaxy formation model, GALFORM. We calculate the effect on the correlation function of changing the H I mass detection threshold at redshifts 0 ≤ z ≤ 0.5. We parametrize the clustering as ξ(r) = (r/r0)-γ and we find that including galaxies with M_{H I} < 108 h-2 M⊙ increases the clustering amplitude r0 and slope γ compared to samples of higher H I masses. This is due to these galaxies with low H I masses typically being hosted by haloes with masses greater than 1012 h-1 M⊙, and is in contrast to optically selected surveys for which the inclusion of faint, blue galaxies lowers the clustering amplitude. We show the H I mass function for different host dark matter halo masses and galaxy types (central or satellite) to interpret the values of r0 and γ of the clustering of H I-selected galaxies. We also predict the contribution of low H I mass galaxies to the 21 cm intensity mapping signal. We calculate that a dark matter halo mass resolution better than ˜1010 h-1 M⊙ at redshifts higher than 0.5 is required in order to predict converged 21 cm brightness temperature fluctuations.

  15. Impact-induced devolatilization and hydrogen isotopic fractionation of serpentine: implications for planetary accretion.

    PubMed

    Tyburczy, J A; Krishnamurthy, R V; Epstein, S; Ahrens, T J

    1990-05-01

    The degree of impact-induced devolatilization of nonporous serpentine, porous serpentine, and deuterium-enriched serpentine was investigated using two independent experimental methods, the gas recovery method and the solid recovery method, yielding consistent results. The gas recovery method enables determination of the chemical and hydrogen isotopic composition of the recovered gases. Experiments on deuterium-enriched serpentine unambiguously identify the samples as the source of the recovered gases, as opposed to other possible contaminants. For shock pressures near incipient devolatilization (Pinitial = 5.0 GPa), the hydrogen isotopic composition of the evolved gas is similar to that of the starting material. For higher shock pressures the bulk evolved gas is significantly lower in deuterium than the starting material. There is also significant reduction of H2O to H2 in gases recovered at higher shock pressures, probably caused by reaction of evolved H2O with the metal gas recovery fixture. The hydrogen isotopic fractionation between the evolved gas and the residual solid indicates nonequilibrium, kinetic control of gas-solid isotopic ratios. In contrast, gaseous H2O-H2 isotopic fractionation suggests high temperature (800-1300 K) isotopic equilibrium between the gaseous species, indicating initiation of devolatilization at sites of greater than average energy deposition (i.e., shear bands). Impact-induced hydrogen isotopic fractionation of hydrous silicates during accretion can affect the distribution of hydrogen isotopes of planetary bodies during accretion, leaving the interiors enriched in deuterium. The significance of this process for planetary development depends on the models used for extrapolation of the observed isotopic fractionation to devolatilizations greater than those investigated experimentally and assumptions about timing and rates of protoatmosphere loss, frequency of multiple impacts, and rates of gas-solid or gas-melt isotopic re

  16. Single discharge of the matrix source of negative hydrogen ions: Influence of the neutral particle dynamics

    SciTech Connect

    Paunska, Ts.; Todorov, D. Shivarova, A.; Tarnev, Kh.

    2015-04-08

    The study presents two-dimensional (2D) fluid-plasma-model description of a planar-coil inductively-driven discharge, considered as a single element of a matrix source of volume-produced negative hydrogen ions. Whereas the models developed up to now have been directed towards description of the charged particle behavior in the discharge, including that of the negative ions, this model stresses on the role of the neutral particle dynamics and of the surface processes in the formation of the discharge structure. The latter is discussed based on comparison of results obtained for discharges in a flowing gas and at a constant gas pressure as well as for different values of the coefficient of atom recombination on the walls. The conclusions are that the main plasma parameters – electron density and temperature and plasma potential – determining the gas discharge regime stay stable, regardless of changes in the redistribution of the densities of the neutral particles and of the positive ions. With regards to the volume production of the ions, which requires high density of (vibrationally excited) molecules, the impact on the degree of dissociation of the coefficient of atom recombination on the wall is discussed.

  17. Neutral hydrogen and magnetic fields in M83 observed with the SKA Pathfinder KAT-7

    NASA Astrophysics Data System (ADS)

    Heald, G.; de Blok, W. J. G.; Lucero, D.; Carignan, C.; Jarrett, T.; Elson, E.; Oozeer, N.; Randriamampandry, T. H.; van Zee, L.

    2016-10-01

    We present new KAT-7 observations of the neutral hydrogen (H I) spectral line, and polarized radio continuum emission, in the grand-design spiral M83. These observations provide a sensitive probe of the outer-disc structure and kinematics, revealing a vast and massive neutral gas distribution that appears to be tightly coupled to the interaction of the galaxy with the environment. We present a new rotation curve extending out to a radius of 50 kpc. Based on our new H I data set and comparison with multiwavelength data from the literature, we consider the impact of mergers on the outer disc and discuss the evolution of M83. We also study the periphery of the H I distribution and reveal a sharp edge to the gaseous disc that is consistent with photoionization or ram pressure from the intergalactic medium. The radio continuum emission is not nearly as extended as the H I and is restricted to the main optical disc. Despite the relatively low angular resolution, we are able to draw broad conclusions about the large-scale magnetic field topology. We show that the magnetic field of M83 is similar in form to other nearby star-forming galaxies, and suggest that the disc-halo interface may host a large-scale regular magnetic field.

  18. Poly(neutral red) based hydrogen peroxide biosensor for chromium determination by inhibition measurements.

    PubMed

    Attar, Aisha; Emilia Ghica, M; Amine, Aziz; Brett, Christopher M A

    2014-08-30

    Amperometric hydrogen peroxide enzyme inhibition biosensors based on horseradish peroxidase (HRP) immobilised on electropolymerised neutral red (NR) or directly on the surface of carbon film electrodes (CFE) have been successfully applied to the determination of toxic Cr(III) and Cr(VI). Parameters influencing the performance of the biosensor including the enzyme immobilisation method, the amount of hydrogen peroxide, applied potential and electrolyte pH were optimised. The inhibition of horseradish peroxidase by the chromium species was studied under the optimised conditions. Results from the quantitative analysis of chromium ions are discussed in terms of detection limit, linear range and sensitivity. The HRP kinetic interactions reveal mixed binding of Cr(III) with I50=3.8μM and inhibition binding constant Ki=11.3μM at HRP/PNR/CFE biosensors and uncompetitive binding of Cr(VI) with I50=3.9μM and Ki=0.78μM at HRP/CFE biosensors in the presence of H2O2 substrate. Interferences from other heavy metal ions were studied and the inhibition show very good selectivity towards Cr(III) and Cr(VI).

  19. Highest redshift neutral hydrogen image in emission: A CHILES detection of a starbursting spiral

    NASA Astrophysics Data System (ADS)

    Fernandez, Ximena; Van Gorkom, Jacqueline H.; Gim, Hansung; Yun, Min Su; Momjian, Emmanuel; CHILES Team

    2016-01-01

    Our current understanding of galaxy evolution still has many uncertainties associated with the details of gas accretion, processing, and removal across cosmic time. The next generation of radio telescopes will image the neutral hydrogen in galaxies over large volumes at high redshifts, which will provide key insights into these processes. We are conducting the COSMOS HI Large Extragalactic Survey (CHILES) with the VLA, which is the first survey to simultaneously observe HI from z=0 to z=0.5. The full survey consists of 1002 hours of observing time, giving us the sensitivity to image HI in 300 galaxies in the COSMOS field. Here, we report the highest redshift HI detection to date, the LIRG COSMOS J100054.83+023126.2 at z=0.376 with the first 178 hours of CHILES data. While the optical image shows it to be a large undisturbed spiral, the HI distribution is very extended and offset from the optical center. This could be evidence for interactions with companions or accretion fueling the starburst. In addition, we present follow-up LMT CO observations that reveal it to be gas-rich in molecular hydrogen. This is the first study of the HI and CO for a galaxy beyond the local Universe, which will enable us to start exploring the ISM of LIRGs at higher redshift.

  20. Major evolutionary trends in hydrogen isotope fractionation of vascular plant leaf waxes.

    PubMed

    Gao, Li; Edwards, Erika J; Zeng, Yongbo; Huang, Yongsong

    2014-01-01

    Hydrogen isotopic ratios of terrestrial plant leaf waxes (δD) have been widely used for paleoclimate reconstructions. However, underlying controls for the observed large variations in leaf wax δD values in different terrestrial vascular plants are still poorly understood, hampering quantitative paleoclimate interpretation. Here we report plant leaf wax and source water δD values from 102 plant species grown in a common environment (New York Botanic Garden), chosen to represent all the major lineages of terrestrial vascular plants and multiple origins of common plant growth forms. We found that leaf wax hydrogen isotope fractionation relative to plant source water is best explained by membership in particular lineages, rather than by growth forms as previously suggested. Monocots, and in particular one clade of grasses, display consistently greater hydrogen isotopic fractionation than all other vascular plants, whereas lycopods, representing the earlier-diverging vascular plant lineage, display the smallest fractionation. Data from greenhouse experiments and field samples suggest that the changing leaf wax hydrogen isotopic fractionation in different terrestrial vascular plants may be related to different strategies in allocating photosynthetic substrates for metabolic and biosynthetic functions, and potential leaf water isotopic differences.

  1. Major Evolutionary Trends in Hydrogen Isotope Fractionation of Vascular Plant Leaf Waxes

    PubMed Central

    Gao, Li; Edwards, Erika J.; Zeng, Yongbo; Huang, Yongsong

    2014-01-01

    Hydrogen isotopic ratios of terrestrial plant leaf waxes (δD) have been widely used for paleoclimate reconstructions. However, underlying controls for the observed large variations in leaf wax δD values in different terrestrial vascular plants are still poorly understood, hampering quantitative paleoclimate interpretation. Here we report plant leaf wax and source water δD values from 102 plant species grown in a common environment (New York Botanic Garden), chosen to represent all the major lineages of terrestrial vascular plants and multiple origins of common plant growth forms. We found that leaf wax hydrogen isotope fractionation relative to plant source water is best explained by membership in particular lineages, rather than by growth forms as previously suggested. Monocots, and in particular one clade of grasses, display consistently greater hydrogen isotopic fractionation than all other vascular plants, whereas lycopods, representing the earlier-diverging vascular plant lineage, display the smallest fractionation. Data from greenhouse experiments and field samples suggest that the changing leaf wax hydrogen isotopic fractionation in different terrestrial vascular plants may be related to different strategies in allocating photosynthetic substrates for metabolic and biosynthetic functions, and potential leaf water isotopic differences. PMID:25402476

  2. Doubly labeled water method: in vivo oxygen and hydrogen isotope fractionation

    SciTech Connect

    Schoeller, D.A.; Leitch, C.A.; Brown, C.

    1986-12-01

    The accuracy and precision of the doubly labeled water method for measuring energy expenditure are influenced by isotope fractionation during evaporative water loss and CO/sub 2/ excretion. To characterize in vivo isotope fractionation, we collected and isotopically analyzed physiological fluids and gases. Breath and transcutaneous water vapor were isotopically fractionated. The degree of fractionation indicated that the former was fractionated under equilibrium control at 37/sup 0/C, and the latter was kinetically fractionated. Sweat and urine were unfractionated. By use of isotopic balance models, the fraction of water lost via fractionating routes was estimated from the isotopic abundances of body water, local drinking water, and dietary solids. Fractionated water loss averaged 23% (SD = 10%) of water turnover, which agreed with our previous estimates based on metabolic rate, but there was a systematic difference between the results based on O/sub 2/ and hydrogen. Corrections for isotopic fractionation of water lost in breath and (nonsweat) transcutaneous loss should be made when using labeled water to measure water turnover or CO/sub 2/ production.

  3. Origin of Terrestrial Water: Hydrogen/Deuterium Fractionation into Earth's Core

    NASA Astrophysics Data System (ADS)

    Wu, J.; Buseck, P. R.

    2014-12-01

    Hydrogen isotopic compositions are among the most important constraints on the origin of Earth's water. Earth's bulk water content, which is small but not negligible, is significantly greater than what the thermal gradient of the solar nebula disk would suggest for planetesimal materials condensed at one astronomical unit. The proto-solar nebula is a likely source of early Earth's water, with probable contributions from one or more of the following: water-rich planetesimals, ordinary and carbonaceous meteorites, comets, asteroids, and interplanetary dust particles. However, all of these sources have been questioned, and the proposed proto-solar nebular origin has been disputed in light of the large difference in hydrogen isotopic composition between it and terrestrial water. Current opposition to the solar nebular hypothesis is based on the critical assumption that no processes in the interior of the early Earth changed the isotopic composition of hydrogen. Nevertheless, a hypothesized hydrogenation reaction of liquid iron (2Fe + xH2 ↔ 2FeHx) during core formation likely provided a fractionation mechanism between hydrogen and deuterium (D). We propose that modern D/H ratios at Earth's surface resulted from this isotopic fractionation and that terrestrial water originated from oxidation of proto-solar hydrogen dissolved in the magma ocean in the early Earth by coexisting oxides (such as FeO). Thus, the isotopic composition of water on Earth can be mainly explained by internal terrestrial processes.

  4. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.

    PubMed

    Wang, Fanan; Xu, Jinming; Shao, Xianzhao; Su, Xiong; Huang, Yanqiang; Zhang, Tao

    2016-02-08

    The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles.

  5. The Broadening of Spectral Lines by Collisions with Neutral Hydrogen Atoms

    NASA Astrophysics Data System (ADS)

    Barklem, P. S.

    1998-10-01

    In this thesis the theory of collisional broadening by neutral hydrogen of Anstee and O'Mara (1991,1992,1995) for s-p and p-s transitions of neutrals is extended and applied to both p-d, d-p, d-f and f-d transitions of neutral atoms, and the broadening of transitions of ions. The interaction between a ground state hydrogen atom with a generic neutral atom, is considered using Rayleigh-Schrödinger perturbation theory. The usual second order expression for the interaction energy between the two atoms involves an infinite sum over virtual states of the two-atom system, and an energy denominator which is the energy debt incurred when the two atom system makes a transition from the state of interest to a virtual state. Unsöld (1927,1955) showed that the expression for the in teraction energy can be greatly simplified if the variable energy debt incurred in making a transition from the state of interest to a virtual state is replaced by a fixed debt Ep. Closure can then be used to complete the sum over the virtual states leading to an expression for the interaction energy in terms of diagonal matrix elements of V2 (where V is the electrostatic interaction between the two atoms), and Ep. This is commonly referred to as the Unsöld approximation. It is the most important approximation in the development of the treatment of spectral line broadening presented in this thesis. Expressions for the interaction energy between a ground state hydrogen atom and a generic neutral atom in both d- and f-states are presented. Adiabatic potential curves calculated from code written to compute these expressions are presented. For interactions of neutral atoms, the Unsöld value of Ep=-4/9 atomic units is used throughout. Code was written to compute line broadening cross-sections for p-d, d-p, d-f and f-d transitions of neutral atoms, using the semi-classical procedure of Roueff (1974) adapted for these transitions. Firstly, the dependence of cross-sections on regions of the potential

  6. Release time of residual oxygen after dental bleaching with 35% hydrogen peroxide: effect of a catalase-based neutralizing agent.

    PubMed

    Guasso, Bárbara; Salomone, Paloma; Nascimento, Paulo Cícero; Pozzobon, Roselaine Terezinha

    2016-01-01

    This article assessed the effect of a catalase-based agent on residual oxygen (O2) release from teeth exposed to 35% hydrogen peroxide (H2O2). The use of the catalase-based neutralizer agent for 2-3 minutes was able to release residual O2 5 days after exposure to a 35% H2O2-based bleaching gel.

  7. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    USGS Publications Warehouse

    Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.

    2011-01-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.

  8. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    NASA Astrophysics Data System (ADS)

    Ni, Yunyan; Ma, Qisheng; Ellis, Geoffrey S.; Dai, Jinxing; Katz, Barry; Zhang, Shuichang; Tang, Yongchun

    2011-05-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2 cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using δD values in ethane from several basins in the world are in close agreement with similar predictions based on the δ 13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that δD values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that δD values in ethane might be more suitable for modeling than comparable values in methane and propane.

  9. Hydrogen isotope fractionation by Methanothermobacter thermoautotrophicus in coculture and pure culture conditions

    NASA Astrophysics Data System (ADS)

    Yoshioka, Hideyoshi; Sakata, Susumu; Kamagata, Yoichi

    2008-06-01

    We grew a hydrogen-utilizing methanogen, Methanothermobacter thermoautotrophicus strain ΔH, in coculture and pure culture conditions to evaluate the hydrogen isotope fractionation associated with carbonate reduction under low (< several tens of μM; coculture) and high (>6 mM; pure culture) concentrations of H 2 in the headspace. In the cocultures, which were grown at 55 °C with a thermophilic butyrate-oxidizing syntroph, the hydrogen isotopic relationship between methane and water was well represented by the following equation: δD=0.725(±0.003)·δDO-275(±3), in which the hydrogen isotope fractionation factor ( αH) was 0.725 ± 0.003. The relationship was consistent with the isotopic data on methane and water from terrestrial fields (a peat bog in Washington State, USA, and a sandy aquifer in Denmark), where carbonate reduction was reported to be the dominant pathway of methanogenesis. In the pure cultures, grown at 55 and 65 °C, the αH values were 0.755 ± 0.014 and 0.749 ± 0.014, respectively. Dependence of αH on growth temperature was not observed. The αH value at 55 °C in the pure culture was slightly higher than that in the coculture, a finding that disagrees with a hypothesis proposed by Burke [Burke, Jr. R. A. (1993) Possible influence of hydrogen concentration on microbial methane stable hydrogen isotopic composition. Chemosphere26, 55-67] that hydrogen isotope fractionation between methane and water increases (and αH decreases) with increasing H 2 concentration.

  10. Fractional Consumption of Liquid Hydrogen and Liquid Oxygen During the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Partridge, Jonathan K.

    2011-01-01

    The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 25 million kilograms of liquid hydrogen and over 250 million kilograms of liquid oxygen during the 3D-year Space Shuttle Program. Because of the cryogenic nature of the propellants, approximately 55% of the total purchased liquid hydrogen and 30% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liqUid hydrogen and liqUid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.

  11. Catalytic hydrogenation of multiring aromatic hydrocarbons in a coal tar fraction

    SciTech Connect

    Rosal, R.; Diez, F.V.; Sastre, H. )

    1992-04-01

    In this paper the kinetics of the hydrogenation reaction of the main aromatic hydrocarbons found in a light fraction of an anthracene oil are studied employing two different commercial catalysts: reduced nickel and sulfided nickel-molybdenum. Kinetic expression considering the effect of temperature and hydrogen pressure are obtained. The effect of sulfur concentration in the feed is also evaluated. Specific reaction rates and activation energies are calculated assuming first order with respect to all reagents including hydrogen in hydrogenation reactions. The concentrations of naphthalene, acenaphthene, phenanthrene, fluoranthene, and pyrene are fitted to a first-order decay. The reaction path for anthracene involves a reversible reaction between 9,10-dihydroanthracene and 1,2,3,4-tetrahydro-anthracene.

  12. Fractionation Of Hydrogen Isotopes During Lipid-Biosynthesis By Tetrahymena thermophila, Dunaliella bardawil and Haloarcula marismortui

    NASA Astrophysics Data System (ADS)

    Dirghangi, S. S.; Pagani, M.

    2008-12-01

    Paleoclimatological research is mainly based on proxies that reflect different climatic variations. Organic compounds preserved in sediments form a very important group of proxies, of which lipids are an important class. Recently, attention has been directed toward understanding the magnitude of hydrogen isotope fractionation that occurs during lipid biosynthesis given its potential as a proxy for understanding changes in the hydrological system. Hydrogen isotope ratios of lipids depend on hydrogen isotopic composition of the ambient water, which in turn is dependent on hydrological conditions. Hydrogen isotope ratios of lipids also depend on the biosynthetic pathway, which causes differences between hydrogen isotope ratios of lipids synthesized by different organisms. The application of lipids derived from multiple source organisms (e.g. fatty acids) are less useful for reconstructing hydrogen isotopic compositions of ambient water, because of the lack of specificity regarding its source. On the other hand, lipids that are synthesized by specific kinds of organisms or lipids that in a specific environment are synthesized by specific kinds of organisms are more useful for reconstructing hydrogen isotopic compositions of the ambient water. For this study, we are investigating the hydrogen isotope fractionation between ambient water and lipids that are derived from specific organisms from hypersaline environments. Specifically, we have grown three organisms that are abundant in saline to hypersaline environments, including Tetrahymena thermophila (Protozoa), Dunaliella bardawil (Alga), and Haloarcula marismortui (Archaea) in pure cultures and are in the process of evaluating isotopic variability of specific lipids (i.e. Tetrahymanol in Tetrahymena, beta-carotene and Stigmasterol in Dunaliella, and archaeol in Haloarcula) and other non-specific fatty acids associated with the D/H composition of ambient water, growth temperature and salinity.

  13. Observation and Interpretation of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Event

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Leske, R. A.; Stone, E. C.; Barghouty, A. F.; Shih, A. Y.; von Rosenvinge, T. T.; Labrador, A. W.; Cohen, C. M. S.; Cummings, A. C.; Cummings, A. C.

    2009-01-01

    We report the first observations of energetic neutral atoms (ENAs) from a solar flare/coronal mass ejection event. The observations were made during the December 5, 2006 X9 solar flare, located at E79, by the Low Energy Telescopes (LETs) on the STEREO A and B spacecraft. Within 1-2 hours of the flare onset, both LETs observed a sudden burst of 1.6 to 15 MeV protons arriving hours before the onset of the main solar energetic particle (SEP) event at Earth. More than 70% of these particles arrived from a longitude within +-10 degrees of the Sun. The derived emission profile at the Sun lasted for more than an hour and had a profile remarkably similar to the GOES soft X-ray profile. The observed arrival directions and energy spectrum argue strongly that the particle events <5 MeV were due to energetic neutral hydrogen atoms that were stripped of their electrons upon entering the LET sensor. To our knowledge, this is the first reported observation of ENA emission from a solar flare/coronal mass ejection. We discuss possible origins for the production of ENAs in solar events, including charge-transfer reactions involving both flare and shock-accelerated protons. Assuming isotropic emission, we find that 2 x 10E28 ENAs escaped from the Sun in the upper hemisphere. Based on the 2.2 MeV gamma-ray emission observed by RHESSI in this event, and using measured and theoretical cross sections, we estimate that 3 x 10E31 ENAs with 1.8 - 5 MeV could be produced by protons accelerated in the flare. CME-driven shock acceleration is also a possible ENA source, but unfortunately there were no CME observations available from this event. Taking into account ENA losses, we conclude that the observed ENAs were most likely produced in the high corona at heliocentric distances 1.6 solar radii.

  14. Radiation-damped profiles of extremely high column density neutral hydrogen: implications of cosmic reionization

    NASA Astrophysics Data System (ADS)

    Bach, Kiehunn

    2017-01-01

    Incorporating the time-dependent second-order perturbation theory for the Lyman scattering cross-section, we investigate the intergalactic absorption profiles of extremely high column density systems near the end of cosmic reionization. Assuming a representative set of the redshift distribution of neutral hydrogen, we quantitatively examined the impact of inhomogeneous density on the intrinsic absorption profiles. The cumulative absorption by neutral patches in the line of sight mainly affects the far off-centre region of the red damping wing, but the effect is not significant. The shape of the line centre can be modified by the near-zone distribution due to high opacities of the near-resonance scattering. On the other hand, the HWHM (half width at half-maximum) as an effective line width is relatively less sensitive to the local inhomogeneity. Specifically, when the two local damping wings of Lyα and Lyβ are close in spectra of the strongly damped systems, accurate profiles of both lines are required. In the case of N_{H I}≲ 10^{21} { cm^{-2}}, the two-level approximation is marginally applicable for the damping wing fit within 5 - 7 per cent errors. However, as the local column density reaches N_{H I}˜ 10^{22.3} { cm^{-2}}, this classical approximation yields a relative error of a 10 per cent overestimation in the red wing and a 20 per cent underestimation in the blue wing of Lyα. If severe extinction by the Lyα forests is carefully subtracted, the intrinsic absorption profile will provide a better constraint on the local ionized states. For practical applications, an analytic fitting function for the Lyβ scattering is derived.

  15. Observation and Interpretation of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Event

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Leske, R. A.; Stone, E. C.; Barghouty, A. F.; Shih, A. Y.; von Rosenvinge, T. T.; Labrador, A. W.; Cohen, C. M. S.; Cummings, A. C.; Cummings, A. C.

    2009-01-01

    We report the first observations of energetic neutral atoms (ENAs) from a solar flare/coronal mass ejection event. The observations were made during the December 5, 2006 X9 solar flare, located at E79, by the Low Energy Telescopes (LETs) on the STEREO A and B spacecraft. Within 1-2 hours of the flare onset, both LETs observed a sudden burst of 1.6 to 15 MeV protons arriving hours before the onset of the main solar energetic particle (SEP) event at Earth. More than 70% of these particles arrived from a longitude within +-10 degrees of the Sun. The derived emission profile at the Sun lasted for more than an hour and had a profile remarkably similar to the GOES soft X-ray profile. The observed arrival directions and energy spectrum argue strongly that the particle events <5 MeV were due to energetic neutral hydrogen atoms that were stripped of their electrons upon entering the LET sensor. To our knowledge, this is the first reported observation of ENA emission from a solar flare/coronal mass ejection. We discuss possible origins for the production of ENAs in solar events, including charge-transfer reactions involving both flare and shock-accelerated protons. Assuming isotropic emission, we find that 2 x 10E28 ENAs escaped from the Sun in the upper hemisphere. Based on the 2.2 MeV gamma-ray emission observed by RHESSI in this event, and using measured and theoretical cross sections, we estimate that 3 x 10E31 ENAs with 1.8 - 5 MeV could be produced by protons accelerated in the flare. CME-driven shock acceleration is also a possible ENA source, but unfortunately there were no CME observations available from this event. Taking into account ENA losses, we conclude that the observed ENAs were most likely produced in the high corona at heliocentric distances 1.6 solar radii.

  16. HIgh-Latitude Neutral Hydrogen Shells identified in GALFA-HI

    NASA Astrophysics Data System (ADS)

    Sallmen, Shauna; Taylor, Rebecca; Korpela, Eric J.; Goldston Peek, Joshua Eli; Babler, Brian

    2017-08-01

    Supernovae and stellar winds are important processes in the development and evolution of galaxies. Due to these effects in generations of stars, the interstellar medium (ISM) is turbulent, multiphase, and filled with complex interacting structures. HI (neutral hydrogen) shells are formed when hot, expanding bubbles sweep up shells of neutral material. These shells gradually cool, slow down, and mix with the surrounding interstellar material, but we still lack a complete, detailed picture of the physical state and evolution of gas in our Galaxy's ISM. Studies of numerous shells at different stages of evolution are needed, but biases in search techniques and limitations of data quality and coverage have hindered our efforts. The Galactic Arecibo L-band Feed Array (GALFA) 21-cm survey of the Arecibo sky provides have uniquely high angular resolution except within a few degrees of the Galactic plane. A visual search of these data can therefore identify new structures with small angular diameter at high Galactic latitudes, at all stages of evolution. We present the results of a partial search of these data, focusing on high Galactic latitudes. For each potential shell, the location, velocity, angular size, and velocity range were determined, as well as estimates of the shell wall completeness and persistence of shell completeness, shape, and location across its velocity range. To date, we have identified over 100 potential new shells, ranging in size from 0.1 to 4.5 degrees. Approximately 2/3 of these are smaller than 2 degrees in diameter, a size range that was significantly underrepresented in previous searches. The statistical properties of these newly found shells will be presented, along with details on selected examples.

  17. Large effect of irradiance on hydrogen isotope fractionation of alkenones in Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    van der Meer, Marcel T. J.; Benthien, Albert; French, Katherine L.; Epping, Eric; Zondervan, Ingrid; Reichart, Gert-Jan; Bijma, Jelle; Sinninghe Damsté, Jaap S.; Schouten, Stefan

    2015-07-01

    The hydrogen isotopic (δD) composition of long-chain alkenones produced by certain haptophyte algae has been suggested as a potential proxy for reconstructing paleo sea surface salinity. However, environmental parameters other than salinity may also affect the δD of alkenones. We investigated the impact of the level of irradiance on hydrogen isotopic fractionation of alkenones versus growth water by cultivating two strains of the cosmopolitan haptophyte Emiliania huxleyi at different light intensities. The hydrogen isotope fractionation decreased by approximately 40‰ when irradiance was increased from 15 to 200 μmol photons m-2 s-1 above which it was relatively constant. The response is likely a direct effect of photosystem I and II activity as the relationship of the fractionation factor α versus light intensity can be described by an Eilers-Peeters photosynthesis model. This irradiance effect is in agreement with published δD data of alkenones derived from suspended particulate matter collected from different depths in the photic zone of the Gulf of California and the eastern tropical North Pacific. However, haptophyte algae tend to bloom at relatively high light intensities (>500 μmol photons m-2 s-1) occurring at the sea surface, at which hydrogen isotope fractionation is relatively constant and not affected by changes in light intensity. Alkenones accumulating in the sediment are likely mostly derived from these surface water haptophyte blooms, when the largest amount of biomass is produced. Therefore, the observed irradiance effect is unlikely to affect the applicability of the hydrogen isotopic composition of sedimentary long chain alkenones as a proxy for paleosalinity.

  18. A measurement of the branching fractions of the b-quark into charged and neutral b-hadrons

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crawley, B.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Hultqvist, K.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Johansson, P. D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; Kiiskinen, A.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Meyer, W. T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Lysebetten, A.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; Delphi Collaboration

    2003-12-01

    The production fractions of charged and neutral b-hadrons in b-quark events from Z0 decays have been measured with the DELPHI detector at LEP. An algorithm has been developed, based on a neural network, to estimate the charge of the weakly-decaying b-hadron by distinguishing its decay products from particles produced at the primary vertex. From the data taken in the years 1994 and 1995, the fraction of b¯-quarks fragmenting into positively charged weakly-decaying b-hadrons has been measured to be: f+=42.09±0.82(stat)±0.89(syst)%. Subtracting the rates for charged Ξ¯b+ and Ω¯b+ baryons gives the production fraction of B+ mesons: fBu=40.99±0.82(stat)±1.11(syst)%.

  19. Neutral hydrogen in nearby elliptical and lenticular galaxies: the continuing formation of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Morganti, R.; de Zeeuw, P. T.; Oosterloo, T. A.; McDermid, R. M.; Krajnović, D.; Cappellari, M.; Kenn, F.; Weijmans, A.; Sarzi, M.

    2006-09-01

    We present the results of deep Westerbork Synthesis Radio Telescope observations of neutral hydrogen in 12 nearby elliptical and lenticular galaxies. The selected objects come from a representative sample of nearby galaxies earlier studied at optical wavelengths with the integral-field spectrograph SAURON (Spectrographic Areal Unit for Research on Optical Nebulae). They are field galaxies, or (in two cases) located in poor group environments. We detect HI - both in regular discs as well as in clouds and tails offset from the host galaxy - in 70 per cent of the galaxies. This detection rate is much higher than in previous, shallower single-dish surveys, and is similar to that for the ionized gas. The results suggest that at faint detection levels the presence of HI is a relatively common characteristic of field early-type galaxies, confirming what was suggested twenty years ago by Jura based on IRAS observations. The observed total HI masses range between a few times 106 to just over 109Msolar. The presence of regular disc-like structures is a situation as common as HI in offset clouds and tails around early-type galaxies. All galaxies where HI is detected also contain ionized gas, whereas no HI is found around galaxies without ionized gas. Galaxies with regular HI discs tend to have strong emission from ionized gas. In these cases, the similar kinematics of the neutral hydrogen and ionized gas suggest that they form one structure. The kinematical axis of the stellar component is nearly always misaligned with respect to that of the gas. We do not find a clear trend between the presence of HI and the global age of the stellar population or the global dynamical characteristics of the galaxies. More specifically, HI detections are uniformly spread through the (V/σ, ɛ) diagram. If fast and slow rotators - galaxies with high and low specific angular momentum - represent the relics of different formation paths, this does not appear in the presence and characteristics of

  20. Hydrogen absorption of titanium and nickel-titanium alloys during long-term immersion in neutral fluoride solution.

    PubMed

    Yokoyama, Ken'ichi; Ogawa, Toshio; Asaoka, Kenzo; Sakai, Jun'ichi

    2006-07-01

    Hydrogen absorption of biomedical titanium and Ni-Ti alloys in a neutral fluoride (2.0% NaF) solution for up to 10,000 h at 37 degrees C has been evaluated by means of hydrogen thermal desorption analysis. For alpha titanium (commercial pure titanium), the amount of absorbed hydrogen was, at most, 10-30 mass ppm, and the corrosion product and hydride formation were revealed on the surface of the specimen by X-ray diffraction analysis. Ni-Ti superelastic alloy absorbed approximately 150 mass ppm of hydrogen, which was probably sufficient to result in the pronounced degradation of the mechanical properties, although corrosion was hardly observed. In contrast, hydrogen absorption of alpha-beta titanium (Ti-6Al-4V) and beta titanium (Ti-11.3Mo-6.6Zr-4.3Sn) alloys was negligible, although general corrosion was observed. The results of the present study indicate that the susceptibility of titanium and Ni-Ti alloys to hydrogen absorption in the neutral fluoride solution is different from that in the acidic fluoride solution reported previously.

  1. Fractionation of hydrogen and deuterium on Venus due to collisional ejection

    NASA Technical Reports Server (NTRS)

    Gurwell, Mark A.; Yung, Yuk L.

    1993-01-01

    The collisional ejection process for hydrogen on Venus is reanalyzed. Improved values for the efficiency of H and D escape as a function of the ionospheric temperature are reported. It is proposed that the reduction of the hydrogen flux for collisional ejection be reduced from 8 to 3.5 x 10 exp 6/sq cm/s, and a revised D/H fractional factor of 0.47 due to collisional ejection is suggested. The resulting deuterium flux is 3.1 x 10 exp 4/sq cm/s, roughly six times the flux due to charge exchange, making collisional ejection the dominant escape mechanism for deuterium on Venus.

  2. Fractionation of hydrogen and deuterium on Venus due to collisional ejection

    NASA Astrophysics Data System (ADS)

    Gurwell, M. A.; Yung, Y. L.

    1993-02-01

    The collisional ejection process for hydrogen on Venus is reanalyzed. Improved values for the efficiency of H and D escape as a function of the ionospheric temperature are reported. It is proposed that the reduction of the hydrogen flux for collisional ejection be reduced from 8 to 3.5 x 10 exp 6/sq cm/s, and a revised D/H fractional factor of 0.47 due to collisional ejection is suggested. The resulting deuterium flux is 3.1 x 10 exp 4/sq cm/s, roughly six times the flux due to charge exchange, making collisional ejection the dominant escape mechanism for deuterium on Venus.

  3. New power source from fractional quantum energy levels of atomic hydrogen that surpasses internal combustion

    NASA Astrophysics Data System (ADS)

    Mills, R. L.; Ray, P.; Dhandapani, B.; Nansteel, M.; Chen, X.; He, J.

    2002-12-01

    Extreme ultraviolet (EUV) spectroscopy was recorded on microwave discharges of helium with 2% hydrogen. Novel emission lines were observed with energies of q·13.6 eV where q=1,2,3,4,6,7,8,9, or 11 or these lines inelastically scattered by helium atoms wherein 21.2 eV was absorbed in the excitation of He (1s 2) to He (1s 12p 1). These lines were identified as hydrogen transitions to electronic energy levels below the 'ground' state corresponding to fractional quantum numbers. Significant line broadening corresponding to an average hydrogen atom temperature of 33-38 eV was observed for helium-hydrogen discharge plasmas; whereas pure hydrogen showed no excessive broadening corresponding to an average hydrogen atom temperature of ≈3 eV. Since a significant increase in H temperature was observed with helium-hydrogen discharge plasmas, and energetic hydrino lines were observed at short wavelengths in the corresponding microwave plasmas that required a very significant reaction rate due to low photon detection efficiency in this region, the power balance was measured on the helium-hydrogen microwave plasmas. With a microwave input power of 30 W, the thermal output power was measured to be at least 300 W corresponding to a reactor temperature rise from room temperature to 900 °C within 90 s, a power density of 30 MW/m 3, and an energy balance of about -4×10 5 kJ/mol H 2 compared to the enthalpy of combustion of hydrogen of -241.8 kJ/mol H 2.

  4. Ultrafiltration by a compacted clay membrane-I. Oxygen and hydrogen isotopic fractionation

    USGS Publications Warehouse

    Coplen, T.B.; Hanshaw, B.B.

    1973-01-01

    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01 N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disc compacted to a porosity of 35 per cent by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5%. and in O18 by 0.8%. relative to the residual solution. No additional isotopic fractionation due to a salt filtering mechanism was observed at NaCl concentrations up to 0.01 N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. ?? 1973.

  5. Neutral escape at Mars induced by the precipitation of high-energy protons and hydrogen atoms of the solar wind origin

    NASA Astrophysics Data System (ADS)

    Shematovich, Valery I.

    2017-04-01

    One of the first surprises of the NASA MAVEN mission was the observation by the SWIA instrument of a tenuous population of protons with solar wind energies travelling anti-sunward near periapsis, at altitudes of 150-250 km (Halekas et al., 2015). While the penetration of solar wind protons to low altitude is not completely unexpected given previous Mars Express results, this population maintains exactly the same velocity as the solar wind observed. From previous studies it was known that some fraction of the solar wind can interact with the extended corona of Mars. By charge exchange with the neutral particles in this corona, some fraction of the incoming solar wind protons can gain an electron and become an energetic neutral hydrogen atom. Once neutral, these particles penetrate through the Martian induced magnetosphere with ease, with free access to the collisional atmosphere/ionosphere. The origin, kinetics and transport of the suprathermal O atoms in the transition region (from thermosphere to exosphere) of the Martian upper atmosphere due to the precipitation of the high-energy protons and hydrogen atoms are discussed. Kinetic energy distribution functions of suprathermal and superthermal (ENA) oxygen atoms formed in the Martian upper atmosphere were calculated using the kinetic Monte Carlo model (Shematovich et al., 2011, Shematovich, 2013) of the high-energy proton and hydrogen atom precipitation into the atmosphere. These functions allowed us: (a) to estimate the non-thermal escape rates of neutral oxygen from the Martian upper atmosphere, and (b) to compare with available MAVEN measurements of oxygen corona. Induced by precipitation the escape of hot oxygen atoms may become dominant under conditions of extreme solar events - solar flares and coronal mass ejections, - as it was shown by recent observations of the NASA MAVEN spacecraft (Jakosky et al., 2015). This work is supported by the RFBR project and by the Basic Research Program of the Praesidium of

  6. A study of the red-shift of a neutral donor bound exciton in GaN nanorods by hydrogenation

    NASA Astrophysics Data System (ADS)

    Park, Byung-Guon; Lee, Sang-Tae; Reddeppa, Maddaka; Kim, Moon-Deock; Oh, Jae-Eung; Lee, Sang-Kwon

    2017-09-01

    In this paper we account for the physics behind the exciton peak shift in GaN nanorods (NRs) due to hydrogenation. GaN NRs were selectively grown on a patterned Ti/Si(111) substrate using plasma-assisted molecular beam epitaxy, and the effect of hydrogenation on their optical properties was investigated in detail using low-temperature photoluminescence measurements. Due to hydrogenation, the emissions corresponding to the donor-acceptor pair and yellow luminescence in GaN NRs were strongly suppressed, while the emission corresponding to the neutral to donor bound exciton (D0X) exhibited red-shift. Thermal annealing of hydrogenated GaN NRs demonstrated the recovery of the D0X and deep level emission. To determine the nature of the D0X peak shift due to hydrogenation, comparative studies were carried out on various diameters of GaN NRs, which can be controlled by different growth conditions and wet-etching times. Our experimental results reveal that the D0X shift depends on the diameter of the GaN NRs after hydrogenation. The results clearly demonstrate that the hydrogenation leads to band bending of GaN NRs as compensated by hydrogen ions, which causes a red-shift in the D0X emission.

  7. A study of the red-shift of a neutral donor bound exciton in GaN nanorods by hydrogenation.

    PubMed

    Park, Byung-Guon; Lee, Sang-Tae; Reddeppa, Maddaka; Kim, Moon-Deock; Oh, Jae-Eung; Lee, Sang-Kwon

    2017-09-08

    In this paper we account for the physics behind the exciton peak shift in GaN nanorods (NRs) due to hydrogenation. GaN NRs were selectively grown on a patterned Ti/Si(111) substrate using plasma-assisted molecular beam epitaxy, and the effect of hydrogenation on their optical properties was investigated in detail using low-temperature photoluminescence measurements. Due to hydrogenation, the emissions corresponding to the donor-acceptor pair and yellow luminescence in GaN NRs were strongly suppressed, while the emission corresponding to the neutral to donor bound exciton (D(0)X) exhibited red-shift. Thermal annealing of hydrogenated GaN NRs demonstrated the recovery of the D(0)X and deep level emission. To determine the nature of the D(0)X peak shift due to hydrogenation, comparative studies were carried out on various diameters of GaN NRs, which can be controlled by different growth conditions and wet-etching times. Our experimental results reveal that the D(0)X shift depends on the diameter of the GaN NRs after hydrogenation. The results clearly demonstrate that the hydrogenation leads to band bending of GaN NRs as compensated by hydrogen ions, which causes a red-shift in the D(0)X emission.

  8. Hydrogen Isotope Fractionation in Aquatic Primary Producers: Implications for Food Web Studies

    NASA Astrophysics Data System (ADS)

    Hondula, K. L.; Pace, M. L.; Cole, J. J.; Batt, R. D.

    2011-12-01

    Hydrogen in the organic matter of aquatic plants has a lower relative abundance of the deuterium isotope in comparison to hydrogen in the surrounding water due to a series of fractionation processes including photosynthesis and the biosynthesis of lipids. Expected differences between the deuterium values of different types of plant tissue have been used to observe terrestrial contributions to aquatic food webs and to discriminate organic matter sources in 3-isotope studies with more precision than in 2-isotope studies, however some values used in these studies are derived from an estimated fractionation value (ɛ) between water and plant tissue. We found significant differences in fractionation values between different groups of aquatic plants sampled from three system types: lakes, river, and coastal lagoon. Fractionation values between water and plant tissue of macrophytes and marine macroalgae were more similar to those of terrestrial plants and distinctly different than those of benthic microalgae and phytoplankton. Incorporating the variability in fractionation values between plant types will improve models and experimental designs used in isotopic food web studies for aquatic systems.

  9. Impact-induced devolatilization and hydrogen isotopic fractionation of serpentine: Implications for planetary accretion

    NASA Technical Reports Server (NTRS)

    Tyburczy, James A.; Krishnamurthy, R. V.; Epstein, Samuel; Ahrens, Thomas J.

    1988-01-01

    Impact-induced devolatilization of porous serpentine was investigated using two independent experimental methods, the gas recovery and the solid recovery method, each yielding nearly identical results. For shock pressures near incipient devolatilization, the hydrogen isotopic composition of the evolved H2O is very close to that of the starting material. For shock pressures at which up to 12 percent impact-induced devolatilization occurs, the bulk evolved gas is significantly lower in deuterium than the starting material. There is also significant reduction of H2O to H2 in gases recovered at these higher shock pressures, probably caused by reaction of evolved H2O with the metal gas recovery fixture. Gaseous H2O-H2 isotopic fractionation suggests high temperature isotopic equilibrium between the gaseous species, indicating initiation of devolatilization at sites of greater than average energy deposition. Bulk gas-residual solid isotopic fractionations indicate nonequilibrium, kinetic control of gas-solid isotopic ratios. Impact-induced hydrogen isotopic fractionation of hydrous silicates during accretion can strongly affect the long-term planetary isotopic ratios of planetary bodies, leaving the interiors enriched in deuterium. Depending on the model used for extrapolation of the isotopic fractionation to devolatilization fractions greater than those investigated experimentally can result from this process.

  10. Clustering of neutral hydrogen with intensity mapping - 2dFGRS cross-correlation

    NASA Astrophysics Data System (ADS)

    Li, Yi-Chao; Staveley-Smith, Lister; Pen, Ue-Li; Chang, Tzu-Ching; Peterson, Jeff; Bandura, Kevin; Chen, Xuelei; Wang, Xin; Price, Danny; Anderson, Christopher; Voytek, Tabitha; Masui, Kiyoshi; Switzer, Eric; Wu, Feng-Quan; Timbie, Peter; Liao, Yu-Wei Victor; Li, zhigang; Oppermann, Niels; Kuo, Chen-Yu; Yadav, Jaswant K.

    2014-04-01

    We propose a large scale structure survey of the 2 Degree Field (2dF) using 21cm intensity mapping and the Parkes multibeam array. The survey would cover the redshift to 0.154 and use 200 hours of telescope time. This will cover a volume of about 10^7 h^-3Mpc^3, allowing the distribution of neutral hydrogen to be cross-correlated with 2dF galaxies. It enables a measure of the large scale power of 21cm structure and the redshift space distortion (RSD). RSD allows an independent measure of bias and total HI content. Our team has significant experience using the intensity mapping technique at the Green Bank Telescope (GBT). Cross-correlation power is purely thermal noise limited. Foregrounds are much weaker in our redshift range. This proposal complements our previous project P641 and extends the stacking analysis of Delhaize et al. (P669) by measuring cosmological large scale structure instead of neighborhoods of galaxies. It is also related to the intensity mapping proposal of Staveley-Smith et al. (P819) and our GBT observations, which pursue similar observations at z ~ 1. Together, these experiments are providing important science demonstration for future instrumentation such as Phased Array Feeds for Parkes, GBT, Effelsberg and WSRT, which can map the whole sky and improve dark energy constraints through BAO measurements.

  11. VizieR Online Data Catalog: Green Bank neutral hydrogen survey (Schneider+, 1992)

    NASA Astrophysics Data System (ADS)

    Schneider, S. E.; Thuan, T. X.; Mangum, J. G.; Miller, J.

    1999-09-01

    Neutral hydrogen observations at 21cm, made at the Green Bank 91m telescope in 1984, 1985 and 1986, of a large sample of dwarf and other low surface brightness galaxies are presented. The majority of galaxies classified in the Uppsala General Catalogue as dwarf, irregular, Sdm, or later and with declinations north of the range of the Arecibo telescope (δ>38°) have been observed, along with a number of galaxies farther south for flux comparisons with Arecibo observations (Schneider et al., 1990ApJS...72..245S, Paper I), totaling over 600 galaxies. About half of these galaxies have no previously published detections. In total, counting previous detections, over 80% of these late-type systems are detected at Green Bank. We have examined the galaxies for potential confusion with nearby galaxies, and we also present substantially better signal-to-noise measurements for many previously detected galaxies. Some general results of the Green Bank survey are discussed here, but the total data base of northern dwarf and low surface brightness galaxies, including new measurements of the galaxies' photographic magnitudes, will be examined in subsequent papers. (4 data files).

  12. Cool neutral hydrogen in the direction of an anonymous OB association

    SciTech Connect

    Bania, T.M.

    1983-08-01

    H I self-absorption is seen in the direction l = 55./sup 0/6 probably physically associated with an anonymous OB association which has the Cepheid GY Sagittae as a member. The cool H I is in two clouds at least 15 pc in diameter located 3.25 kpc from the Sun. If their temperature is approx. =50 K, the cloud masses are approx. =10/sup 3/ M/sub sun/. The neutral atomic hydrogen clouds are probably warm envelopes surrounding cold molecular cloud cores because CO observations in this region show two molecular clouds nearly coincident with the absorbing H i gas. Since the OB association is only approx. =10/sup 7/ years old, these clouds are likely to be part of the original cloud complex from which the stellar cluster formed. The H i clouds are part of the larger Arecibo survey of self-absorption which suggests that many of the Arecibo clouds are associated with heretofore unidentified star clusters. Even if this is generally not the case, the Arecibo objects have accurate kinematic distances and thus provide a new sample of cool H I clouds whose thermodynamic properties can be studied.

  13. Combined nitrogen limitation and hydrogen peroxide treatment enhances neutral lipid accumulation in the marine diatom Phaeodactylum tricornutum.

    PubMed

    Burch, Andrew R; Franz, Annaliese K

    2016-11-01

    Exogenous application of dilute hydrogen peroxide (H2O2) increases neutral lipid production in Phaeodactylum tricornutum. Exposing early stationary phase cultures of P. tricornutum to 0.25-2mM H2O2 increases the amount of neutral lipids per biomass (mg/mg) by >100% at 24h post H2O2 treatment as determined upon lipid extraction and analysis using a neutral lipid assay. H2O2 treatment increased the total levels of neutral lipids harvested up to 50%, from 64mg/L to 96mg/L, demonstrating its possible effectiveness as a pre-harvest strategy to enhance the biofuel feedstock potential of P. tricornutum. The effects of H2O2 on biomass are concentration dependent; increasing concentrations of H2O2 reduce the levels of isolated biomass. Analysis of combined stressors demonstrates that H2O2 treatment exhibits synergistic effects to enhance neutral lipid production under nitrogen-depleted, but not phosphorus-depleted conditions, suggesting that the effects of hydrogen peroxide on lipid production are influenced by environmental nitrogen levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Use of predissociation to enhance the atomic hydrogen ion fraction in ion sources

    DOEpatents

    Kim, Jinchoon

    1979-01-01

    A duopigatron ion source is modified by replacing the normal oxide-coated wire filament cathode of the ion source with a hot tungsten oven through which hydrogen gas is fed into the arc chamber. The hydrogen gas is predissociated in the hot oven prior to the arc discharge, and the recombination rate is minimized by hot walls inside of the arc chamber. With the use of the above modifications, the atomic H.sub.1.sup.+ ion fraction output can be increased from the normal 50% to greater than 70% with a corresponding decrease in the H.sub.2.sup.+ and H.sub.3.sup.+ molecular ion fraction outputs from the ion source.

  15. HST Detection of Extended Neutral Hydrogen in a Massive Elliptical at z = 0.4

    NASA Astrophysics Data System (ADS)

    Zahedy, Fakhri S.; Chen, Hsiao-Wen; Rauch, Michael; Zabludoff, Ann

    2017-09-01

    We report the first detection of extended neutral hydrogen (H i) gas in the interstellar medium (ISM) of a massive elliptical galaxy beyond z∼ 0. The observations utilize the doubly lensed images of QSO HE 0047‑1756 at {z}{QSO}=1.676 as absorption-line probes of the ISM in the massive ({M}{star}≈ {10}11 {M}ȯ ) elliptical lens at z = 0.408, detecting gas at projected distances of d = 3.3 and 4.6 kpc on opposite sides of the lens. Using the Space Telescope Imaging Spectrograph, we obtain UV absorption spectra of the lensed QSO and identify a prominent flux discontinuity and associated absorption features matching the Lyman series transitions at z = 0.408 in both sightlines. The H i column density is log N({{H}} {{I}})=19.6{--}19.7 at both locations across the lens, comparable to what is seen in 21 cm images of nearby ellipticals. The H i gas kinematics are well-matched with the kinematics of the Fe ii absorption complex revealed in ground-based echelle data, displaying a large velocity shear of ≈360 {\\text{km s}}-1 across the galaxy. We estimate an ISM Fe abundance of 0.3–0.4 solar at both locations. Including likely dust depletions increases the estimated Fe abundances to solar or supersolar, similar to those of the hot ISM and stars of nearby ellipticals. Assuming 100% covering fraction of this Fe-enriched gas, we infer a total Fe mass of {M}{cool}({Fe})∼ (5{--}8)× {10}4 {M}ȯ in the cool ISM of the massive elliptical lens, which is no more than 5% of the total Fe mass observed in the hot ISM.

  16. Cysteamine-induced inhibition of acid neutralization and the increase in hydrogen ion back-diffusion in duodenal mucosa

    SciTech Connect

    Ohe, K.; Okada, Y.; Fujiwara, T.; Inoue, M.; Miyoshi, A.

    1982-03-01

    To investigate the possible impairment of defensive mechanisms in cysteamine-induced duodenal ulceration, the effect of cysteamine on the neutralization of acid by the duodenum and the back-diffusion of hydrogen ions into the duodenal mucosa has been studied. The results obtained were as follows. (1) The intraduodenal pH started to decrease between 3 and 4 hr after cysteamine injection. (2) By perfusion of the duodenal loop excluding the opening of bile and pancreatic ducts, the amount of hydrogen ions (H+) neutralized was found to be significantly lower in cysteamine-treated animals than in the controls. (3) the back-diffusion of luminal H+ into the duodenal mucosa, estimated by measuring the H+ disappearance from the test solution including 100 mM HCl, was significantly increased by cysteamine. From these findings, it has been concluded that cysteamine reduces the resistance of duodenal mucosa to acid coming from the stomach.

  17. Chemical characterization of the inorganic fraction of aerosols and mechanisms of the neutralization of atmospheric acidity in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Karageorgos, E. T.; Rapsomanikis, S.

    2007-06-01

    with inter-ionic correlations suggested that atmospheric ammonia is the major neutralizing agent of sulfate, while being insufficient to neutralize it to full extend. The formation of NH4NO3 is therefore not favored and additional contribution to the neutralization of acidity has been shown to be provided by Ca2+ and Mg2+. In the coarse particle fraction, the predominantly abundant Ca2+ has been found to correlate well with NO3- and SO42-, indicating its role as important neutralizing agent in this particle size range. The proximity of the location under study to the sea explains the important concentrations of salts with marine origin like NaCl and MgCl2 that were found in the coarse fraction, while chloride depletion in the gaseous phase was found to be limited to the fine particulate fraction. Total analyzed inorganic mass (elemental+ionic) was found to be ranging between approximately 25-33% of the total coarse particle mass and 35-42% of the total fine particle mass.

  18. Isotopic fractionation in proteins as a measure of hydrogen bond length

    SciTech Connect

    McKenzie, Ross H.; Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2015-07-28

    If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent, it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor Φ is correlated with the strength of the intramolecular hydrogen bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor separation) in a diverse range of enzymes and has been argued to support the existence of short low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state model for H-bonds, we calculate Φ as a function of the proton donor-acceptor distance R. For numerical results, we use a parameterization of the model for symmetric O–H⋯O bonds [R. H. McKenzie, Chem. Phys. Lett. 535, 196 (2012)]. We consider the relative contributions of the O–H stretch vibration, O–H bend vibrations (both in plane and out of plane), tunneling splitting effects at finite temperature, and the secondary geometric isotope effect. We compare our total Φ as a function of R with NMR experimental results for enzymes, and in particular with an earlier model parametrization Φ(R), used previously to determine bond lengths.

  19. Isotopic fractionation in proteins as a measure of hydrogen bond length

    NASA Astrophysics Data System (ADS)

    McKenzie, Ross H.; Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2015-07-01

    If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent, it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor Φ is correlated with the strength of the intramolecular hydrogen bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor separation) in a diverse range of enzymes and has been argued to support the existence of short low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state model for H-bonds, we calculate Φ as a function of the proton donor-acceptor distance R. For numerical results, we use a parameterization of the model for symmetric O-H⋯O bonds [R. H. McKenzie, Chem. Phys. Lett. 535, 196 (2012)]. We consider the relative contributions of the O-H stretch vibration, O-H bend vibrations (both in plane and out of plane), tunneling splitting effects at finite temperature, and the secondary geometric isotope effect. We compare our total Φ as a function of R with NMR experimental results for enzymes, and in particular with an earlier model parametrization Φ(R), used previously to determine bond lengths.

  20. A Search for Diffuse Neutral Hydrogen and H I Clouds in the NGC 2403 Group

    NASA Astrophysics Data System (ADS)

    Chynoweth, Katie M.; Langston, Glen I.; Holley-Bockelmann, Kelly; Lockman, Felix J.

    2009-07-01

    We have observed the NGC 2403 group of galaxies using the Robert C. Byrd Green Bank Telescope in a search for faint, extended neutral hydrogen clouds similar to the clouds found around the M81/M82 group, which is located approximately 250 kpc from the NGC 2403 group along the same filament of galaxies. For an H I cloud with a size <=10 kpc within 50 kpc of a group galaxy, our 7σ mass detection limit is 2.2 × 106 M sun for a cloud with a line width of 20 km s-1, over the velocity range from -890 to 1750 km s-1. At this sensitivity level, we detect three new H I clouds in the direction of the group, as well as the known galaxies. The mean velocity of the new clouds differs from that of the group galaxies by more than 250 km s-1, but are in the range of Milky Way high-velocity clouds (HVCs) in that direction. It is most likely that the clouds are part of the Milky Way HVC population. If H I clouds exist in the NGC 2403 group, their masses are less than 2.2 × 106 M sun. We also compared our results to structures that are expected based on recent cosmological models, and found none of the predicted clouds. If NGC 2403 is surrounded by a population of dark matter halos similar to those proposed for the Milky Way in recent models, our observations imply that their H I content is less than 1% of their total mass.

  1. Clouds of neutral hydrogen between M31 and M33 and around the Milky Way

    NASA Astrophysics Data System (ADS)

    Wolfe, Spencer A.; Pisano, D. J.; Lockman, F. J.; McGaugh, S. S.; Shaya, E. J.

    2014-01-01

    Large spiral galaxies like our own Milky Way must acquire fresh gas to continue forming new stars. The gas that resides between galaxies may be a source of this material, but we know little about the gas’ structure or extent. I will present my thesis research, which attempts to answer these questions, based on our Green Bank Telescope (GBT) observations of the very faint M31-M33 neutral hydrogen (HI) stream that was first discovered a decade ago using the Westerbork Synthesis Radio Telescope. Our spectral line observations have over five times higher spatial resolution and roughly three times higher velocity resolution than the Westerbork data. These are the most sensitive observations of the 21 cm line conducted with the GBT. I will discuss our observing and reduction techniques used to reach the sensitivities needed to study the HI stream in detail. We find that the gas is actually composed of small clouds only a few kiloparsecs in diameter. The kinematics of the clouds also suggests that they are associated with M31 and M33 and not each galaxy’s respective High Velocity Cloud (HVC) population. Most, if not all, of the clouds do not appear to have stars associated with them. Thus, we believe that these clouds are part of a condensing intergalactic filament and may be a source of future star formation for M31 and M33. In addition, I will briefly present my research on the High Velocity and Intermediate Velocity Clouds around our Milky Way using the Galactic All-Sky Survey (GASS) at 21 cm that was conducted with the Parkes 64m radio telescope. I will discuss the basic properties of this gas and some interesting features seen in the survey.

  2. High brightness neutral hydrogen in M31: A new probe of interstellar pressure

    NASA Technical Reports Server (NTRS)

    Braun, Robert; Walterbos, Rene

    1990-01-01

    An observational parameter of our own Galaxy, the peak brightness temperature of neutral hydrogen in emission, was determined almost twenty years ago (Burton 1970). This quantity, although possessing a degree of local variations, has a remarkably consistent peak value of 125 K towards spiral arm segments with a few isolated peaks extending to 135 K, once sufficient spatial and velocity resolution are used (less than or equal to 70 pc, less than or equal to 5 km/s) to resolve the emission peaks. The higher spatial and velocity resolution of more recent surveys has not led to the detection of higher brightnesses. For many years this remarkable observational result has received little attention, primarily because similar data for other galaxies, which would allow a meaningful comparison and analysis, did not exist. Recently this situation has changed. A Westerbork survey of M33 (Deul and Van der Hulst 1987, and private comm.) with 40 pc x 8 km/s resolution has revealed consistent peak values of only 95 plus or minus 5 K (although there is still some question of whether the velocity resolution was sufficient in this case), while a Very Large Array (VLA) survey of M31 (Braun 1989a) with 35 pc x 5 km/s resolution has shown consistent peak values but at a temperature of 155 to 165 K. It has become clear that although peak HI brightness seems to be a well-defined quantity within individual galaxies (with a degree of local variation) there are very significant differences in this quantity amongst different galaxies. Researchers embarked on an observational program directed at a sample of 11 nearby galaxies: NGC 55, 247, 7793, 3031, 2366, 2403, 4236, 4826, 4736, 4244, and 5457. They hope to determine the gas properties and phases as a function of both galaxy type and position within the galaxies utilizing high resolution HI observations and optical narrow band imagery and spectroscopy which are now underway.

  3. ON THE APPARENT ASSOCIATIONS BETWEEN INTERSTELLAR NEUTRAL HYDROGEN STRUCTURE AND (WMAP) HIGH-FREQUENCY CONTINUUM EMISSION

    SciTech Connect

    Verschuur, Gerrit L.

    2010-03-10

    Galactic neutral hydrogen (H I) within a few hundred parsecs of the Sun contains structure with an angular distribution that is similar to small-scale structure observed by the Wilkinson Microwave Anisotropy Probe (WMAP). A total of 108 associated pairs of associated H I and WMAP features have now been cataloged using H I data mapped in 2 km s{sup -1} intervals and these pairs show a typical offset of 0.{sup 0}8. A large-scale statistical test for a direct association is carried out that casts little additional light on whether the these small offsets are merely coincidental or carry information. To pursue the issue further, the nature of several of the features within the foreground H I most closely associated with WMAP structure is examined in detail and it is shown that the cross-correlation coefficient for well-matched pairs of structures is of order unity. It is shown that free-free emission from electrons in unresolved density enhancements in interstellar space could theoretically produce high-frequency radio continuum radiation at the levels observed by WMAP and that such emission will appear nearly flat across the WMAP frequency range. Evidence for such structure in the interstellar medium already exists in the literature. Until higher angular resolution observations of the high-frequency continuum emission structure as well as the apparently associated H I structure become available, it may be difficult to rule out the possibility that some if not all the small-scale structure usually attributed to the cosmic microwave background may have a galactic origin.

  4. A neutral hydrogen study of the barred spiral galaxy NGC 3319

    NASA Astrophysics Data System (ADS)

    Moore, E. M.; Gottesman, S. T.

    1998-03-01

    Neutral hydrogen line observations of the late-type barred spiral galaxy NGC 3319 are presented. The distribution and kinematics of the galaxy are studied using the Very Large Array, with spatial resolutions between 11 and 50 arcsec and a channel separation of 10.33 km/s. As is typical for late-type galaxies, NGC 3319 is rich in H I, with a gaseous bar and spiral features. Several large, low-density regions are present, and the H I spiral structure is distorted, especially in the south. The gas distribution is asymmetric and extends significantly further to the southeast due to a long, off-center tail. Noncircular motions caused by the bar, spiral structure, and low-density regions are present in the radial velocity field, complicating the rotation curve analysis. These nonaxisymmetric structures cause the values of the position angle and inclination derived from the velocity field to vary across the disk. In addition, beyond a radius of 180 arcsec, the velocity field is severely perturbed on the approaching (southern) side of the galaxy, and the disk becomes nonplanar. However, the galaxy does not show the typical 'integral sign' shape of a warped system. We detect a small system approximately 11 arcmin south of the center of NGC 3319. It is seen in eight velocity channels and is coincident with a small, resolved object in the Palomar Sky Survey. A tidal interaction between this object and NGC 3319 is the most likely cause of the distorted spiral structure, the H I tail, and the velocity perturbations found in the southern half of the galaxy. Infalling tidal debris from such an event may account for the large, low-density regions found in the disk, several of which show kinematic evidence that suggest they are expanding superstructures.

  5. A Study of the Neutral Hydrogen Content of Blue Compact Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    MacHattie, Jeremy A.

    The results of a study of the neutral hydrogen (HI) content and distribution within a sample of 18 blue compact dwarf galaxies (BCDs) are presented. An investigation of the behaviour of the gas-to-dust ratio (GDR) as a function of metallicity (Z) is also presented. Observations of these BCDs was performed using the Very Large Array (VLA) in 2009, a year in which the array was undergoing a technological upgrade to the the Karl G. Jansky VLA (JVLA). The observations were reduced and images processed using the Astronomical Image Processing Software (AIPS), and data cubes for each galaxy were produced. The results include detections of eleven HI lines (two new detections) and ten background continuum sources (two new discoveries). All detections are at a higher resolution and/or sensitivity than previous measurements. These detections spanned a large range of line widths and H I masses; some masses comparable to those in normal galaxies. Of particular interest was the discovery of a compact absorption feature in the dwarf galaxy Haro 11. A paper submitted to the Monthly Notices of the Royal Astronomical Society (MNRAS) Letters on this discovery is presented. Another significant result was the discovery of a highly extended and massive HI region in the dwarf galaxy CGCG 297-017. For those galaxies with no detected HI line or radio continuum, an upper limit to the flux density was computed, which was used to derive upper limits to the HI mass or star-formation rate (SFR) respectively. Three HI flux density upper limits are new results, and seven continuum flux density upper limits are also new. The GDR-Z relation at low metallicities shows a potential power law or broken power law relation with a turning point at Z=7.96 or Z=8.05. To within error, these turning points and power law indices of the broken power law fits are consistent with other work.

  6. Experimental Investigation of Irradiation-driven Hydrogen Isotope Fractionation in Analogs of Protoplanetary Hydrous Silicate Dust

    NASA Astrophysics Data System (ADS)

    Roskosz, Mathieu; Laurent, Boris; Leroux, Hugues; Remusat, Laurent

    2016-11-01

    The origin of hydrogen in chondritic components is poorly understood. Their isotopic composition is heavier than the solar nebula gas. In addition, in most meteorites, hydrous silicates are found to be lighter than the coexisting organic matter. Ionizing irradiation recently emerged as an efficient hydrogen fractionating process in organics, but its effect on H-bearing silicates remains essentially unknown. We report the evolution of the D/H of hydrous silicates experimentally irradiated by electrons. Thin films of amorphous silica, amorphous “serpentine,” and pellets of crystalline muscovite were irradiated at 4 and 30 keV. For all samples, irradiation leads to a large hydrogen loss correlated with a moderate deuterium enrichment of the solid residue. The entire data set can be described by a Rayleigh distillation. The calculated fractionation factor is consistent with a kinetically controlled fractionation during the loss of hydrogen. Furthermore, for a given ionizing condition, the deuteration of the silicate residues is much lower than the deuteration measured on irradiated organic macromolecules. These results provide firm evidence of the limitations of ionizing irradiation as a driving mechanism for D-enrichment of silicate materials. The isotopic composition of the silicate dust cannot rise from a protosolar to a chondritic signature during solar irradiations. More importantly, these results imply that irradiation of the disk naturally induces a strong decoupling of the isotopic signatures of coexisting organics and silicates. This decoupling is consistent with the systematic difference observed between the heavy organic matter and the lighter water typically associated with minerals in the matrix of most carbonaceous chondrites.

  7. Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials.

    PubMed

    Alibardi, Luca; Cossu, Raffaello

    2015-02-01

    The composition of the Organic Fraction of Municipal Solid Waste (OFMSW) strongly depends on the place and time of collection for a specific municipality or area. Moreover synthetic food waste or organic waste from cafeterias and restaurants may not be representative of the overall OFMSW received at treatment facilities for source-separated waste. This work is aimed at evaluating the composition variability of OFMSW, the potential productions of hydrogen and methane from specific organic waste fractions typically present in MSW and the effects of waste composition on overall hydrogen and methane yields. The organic waste fractions considered in the study were: bread-pasta, vegetables, fruits, meat-fish-cheese and undersieve 20mm. Composition analyses were conducted on samples of OFMSW that were source segregated at household level. Batch tests for hydrogen and methane productions were carried out under mesophilic conditions on selected fractions and OFMSW samples. Results indicated that the highest production of hydrogen was achieved by the bread-pasta fraction while the lowest productions were measured for the meat-fish-cheese fraction. The results indicated that the content of these two fractions in organic waste had a direct influence on the hydrogen production potentials of OFMSW. The higher the content of bread-pasta fraction, the higher the hydrogen yields were while the contrary was observed for the meat-fish-cheese fraction. The definition of waste composition therefore represents fundamental information to be reported in scientific literature to allow data comparison. The variability of OFMSW and its effects on hydrogen potentials might also represents a problematic issue in the management of pilot or full-scale plants for the production of hydrogen by dark fermentation.

  8. Neutralization of pharmacological and toxic activities of bothrops snake venoms by Schizolobium parahyba (Fabaceae) aqueous extract and its fractions.

    PubMed

    Vale, Luis Henrique F; Mendes, Mirian M; Hamaguchi, Amélia; Soares, Andreimar M; Rodrigues, Veridiana M; Homsi-Brandeburgo, Maria Inês

    2008-07-01

    The aqueous extract prepared from Schizolobium parahyba (Sp) leaves, a native plant from Atlantic Forest (Brazil), was tested to analyse its ability to inhibit some biological and enzymatic activities induced by Bothrops alternatus (BaltCV) and Bothrops moojeni (BmooCV) snake venoms. Sp inhibited 100% of lethality, blood incoagulability, haemorrhagic and indirect haemolytic activities at a 1:10 ratio (venom/extract, w/w), as well as coagulant activity at a 1:5 ratio (venom/extract, w/w) induced by both venoms. BaltCV fibrinogenolytic activity was also neutralized by Sp at a 1:10 ratio, resulting in total protection of fibrinogen Bbeta chain and partial protection of Aalpha chain. Interaction tests have demonstrated that, at certain extract/proteins ratios, Sp precipitates proteins non-specifically suggesting the presence of tannins, which are very likely responsible for the excellent inhibiting effects of the analysed ophidian activities. Sp aqueous extract chromatography on Sephadex LH-20 was carried out aiming at the separation of these compounds that mask the obtained results. Thus, the fractionation of Sp resulted in three fractions: F1 (methanolic fraction); F2 (methanol:water fraction, 1:1 v/v); and F3 (aqueous fraction). These fractions were analysed for their ability to inhibit the BaltCV fibrinogenolytic activity. F1 inhibited 100% the venom fibrinogenolytic activity without presenting protein precipitation effect; F2 showed only partial inhibition of this venom activity. Finally, F3 did not inhibit fibrinogen proteolysis, but presented strong protein precipitating action. We conclude that Sp aqueous extract, together with tannins, also contains other compounds that can display specific inhibitory activity against snake venom toxins.

  9. Photon-induced Formation of Molecular Hydrogen from a Neutral Polycyclic Aromatic Hydrocarbon: 9,10-dihydroanthracene

    NASA Astrophysics Data System (ADS)

    Fu, Yi; Szczepanski, Jan; Polfer, Nick C.

    2012-01-01

    Experimental results from infrared spectroscopy and mass spectrometry provide compelling evidence that UV irradiation of the neutral polycyclic aromatic hydrocarbon (PAH) 9,10-dihydroanthracene (DHA), trapped in solid argon (12 K), results in efficient (i.e., 90% yield) conversion to anthracene and molecular hydrogen. A number of dissociation pathways involving single or double hydrogen loss are investigated computationally. Among these, two mechanisms are most credible for a one-photon dissociation process involving UV photons <5.5 eV. For the lowest-energy pathway (2.3 eV), a simultaneous lengthening of the C-H bonds of H9 and H10 gives rise to an anthracene-H2 complex. A higher-energy mechanism (3.4 eV) involves an initial lengthening of the H9 C-H bond, followed by this hydrogen "grabbing" H10, and forming H2. The high yield of this photolysis reaction suggests that similar reactions may take place for other neutral PAHs, with implications for the formation of molecular hydrogen in regions of low UV exposure, such as in dark clouds.

  10. PHOTON-INDUCED FORMATION OF MOLECULAR HYDROGEN FROM A NEUTRAL POLYCYCLIC AROMATIC HYDROCARBON: 9,10-DIHYDROANTHRACENE

    SciTech Connect

    Fu Yi; Szczepanski, Jan; Polfer, Nick C.

    2012-01-01

    Experimental results from infrared spectroscopy and mass spectrometry provide compelling evidence that UV irradiation of the neutral polycyclic aromatic hydrocarbon (PAH) 9,10-dihydroanthracene (DHA), trapped in solid argon (12 K), results in efficient (i.e., 90% yield) conversion to anthracene and molecular hydrogen. A number of dissociation pathways involving single or double hydrogen loss are investigated computationally. Among these, two mechanisms are most credible for a one-photon dissociation process involving UV photons <5.5 eV. For the lowest-energy pathway (2.3 eV), a simultaneous lengthening of the C-H bonds of H9 and H10 gives rise to an anthracene-H{sub 2} complex. A higher-energy mechanism (3.4 eV) involves an initial lengthening of the H9 C-H bond, followed by this hydrogen 'grabbing' H10, and forming H{sub 2}. The high yield of this photolysis reaction suggests that similar reactions may take place for other neutral PAHs, with implications for the formation of molecular hydrogen in regions of low UV exposure, such as in dark clouds.

  11. Carbon and Hydrogen Stable Isotope Fractionation Associated with the Aerobic and Anaerobic Degradation of Saturated and Alkylated Aromatic Hydrocarbons.

    PubMed

    Musat, Florin; Vogt, Carsten; Richnow, Hans H

    2016-01-01

    Saturated hydrocarbons (alkanes) and alkylated aromatic hydrocarbons are abundant environmental compounds. Hydrocarbons are primarily removed from the environment by biodegradation, a process usually associated with moderate carbon and significant hydrogen isotope fractionation allowing monitoring of biodegradation processes in the environment. Here, we review the carbon and hydrogen stable isotope fractionation associated with the cleavage of C-H bonds at alkyl chains of hydrocarbons. Propane, n-butane and ethylbenzene were used as model components for alkyl moieties of aliphatic and aromatic hydrocarbons with emphasis on the cleavage of the C-H bond without the involvement of molecular oxygen. The carbon and hydrogen isotope fractionation factors were further used to explore the diagnostic potential for characterizing the mode of bond cleavage under oxic and anoxic conditions. x039B; factors, calculated to correlate carbon and hydrogen fractionation, allowed to distinguish between aerobic and anaerobic biodegradation processes in the environment.

  12. Hydrogen and carbon isotope fractionation during degradation of chloromethane by methylotrophic bacteria

    PubMed Central

    Nadalig, Thierry; Greule, Markus; Bringel, Françoise; Vuilleumier, Stéphane; Keppler, Frank

    2013-01-01

    Chloromethane (CH3Cl) is a widely studied volatile halocarbon involved in the destruction of ozone in the stratosphere. Nevertheless, its global budget still remains debated. Stable isotope analysis is a powerful tool to constrain fluxes of chloromethane between various environmental compartments which involve a multiplicity of sources and sinks, and both biotic and abiotic processes. In this study, we measured hydrogen and carbon isotope fractionation of the remaining untransformed chloromethane following its degradation by methylotrophic bacterial strains Methylobacterium extorquens CM4 and Hyphomicrobium sp. MC1, which belong to different genera but both use the cmu pathway, the only pathway for bacterial degradation of chloromethane characterized so far. Hydrogen isotope fractionation for degradation of chloromethane was determined for the first time, and yielded enrichment factors (ε) of −29‰ and −27‰ for strains CM4 and MC1, respectively. In agreement with previous studies, enrichment in 13C of untransformed CH3Cl was also observed, and similar isotope enrichment factors (ε) of −41‰ and −38‰ were obtained for degradation of chloromethane by strains CM4 and MC1, respectively. These combined hydrogen and carbon isotopic data for bacterial degradation of chloromethane will contribute to refine models of the global atmospheric budget of chloromethane. PMID:24019296

  13. Carbon and hydrogen isotope fractionation by microbial methane oxidation: Improved determination

    SciTech Connect

    Mahieu, Koenraad . E-mail: Koenraad.Mahieu@Ugent.be; Visscher, Alex De; Vanrolleghem, Peter A.; Cleemput, Oswald Van

    2006-07-01

    Isotope fractionation is a promising tool for quantifying methane oxidation in landfill cover soils. For good quantification an accurate determination of the isotope fractionation factor ({alpha}) of methane oxidation based on independent batch experiments with soil samples from the landfill cover is required. Most studies so far used data analysis methods based on approximations of the Rayleigh model to determine {alpha}. In this study, the two most common approximations were tested, the simplified Rayleigh approach and the Coleman method. To do this, the original model of Rayleigh was described in measurable variables, methane concentration and isotopic abundances, and fitted to batch oxidation data by means of a weighted non-linear errors-in-variables regression technique. The results of this technique were used as a benchmark to which the results of the two conventional approximations were compared. Three types of batch data were used: simulated data, data obtained from the literature, and data obtained from new batch experiments conducted in our laboratory. The Coleman approximation was shown to be acceptable but not recommended for carbon fractionation (error on {alpha} - 1 up to 5%) and unacceptable for hydrogen fractionation (error up to 20%). The difference between the simplified Rayleigh approach and the exact Rayleigh model is much smaller for both carbon and hydrogen fractionation (error on {alpha} - 1 < 0.05%). There is also a small difference when errors in both variables (methane concentration and isotope abundance) are accounted for instead of assuming an error-free independent variable. By means of theoretical calculations general criteria, not limited to methane, {sup 13}C, or D, were developed for the validity of the simplified Rayleigh approach when using labelled compounds.

  14. Observation of fractional Stokes-Einstein behavior in the simplest hydrogen-bonded liquid.

    PubMed

    Fernandez-Alonso, F; Bermejo, F J; McLain, S E; Turner, J F C; Molaison, J J; Herwig, K W

    2007-02-16

    Quasielastic neutron scattering has been used to investigate the single-particle dynamics of hydrogen fluoride across its entire liquid range at ambient pressure. For T>230 K, translational diffusion obeys the celebrated Stokes-Einstein relation, in agreement with nuclear magnetic resonance studies. At lower temperatures, we find significant deviations from the above behavior in the form of a power law with exponent xi=-0.71+/-0.05. More striking than the above is a complete breakdown of the Debye-Stokes-Einstein relation for rotational diffusion. Our findings provide the first experimental verification of fractional Stokes-Einstein behavior in a hydrogen-bonded liquid, in agreement with recent computer simulations [S. R. Becker, Phys. Rev. Lett. 97, 055901 (2006)10.1103/PhysRevLett.97.055901].

  15. Observation of Fractional Stokes-Einstein Behavior in the Simplest Hydrogen-bonded Liquid

    SciTech Connect

    Herwig, Kenneth W; Molaison, Jamie J; Fernandez-Alonso, F.; Bermejo, F. J.; Turner, John F. C.; McLain, Sylvia E.

    2007-01-01

    Quasielastic neutron scattering has been used to investigate the single-particle dynamics of hydrogen fluoride across its entire liquid range at ambient pressure. For T > 230 K, translational diffusion obeys the celebrated Stokes-Einstein relation, in agreement with nuclear magnetic resonance studies. At lower temperatures, we find significant deviations from the above behavior in the form of a power law with exponent xi = -0.71+/-0.05. More striking than the above is a complete breakdown of the Debye-Stokes-Einstein relation for rotational diffusion. Our findings provide the first experimental verification of fractional Stokes-Einstein behavior in a hydrogen-bonded liquid, in agreement with recent computer simulations.

  16. Neutral hydrolysable sugars, OC and N content across soil aggregate size fractions, as an effect of two different crop rotations

    NASA Astrophysics Data System (ADS)

    Angeletti, Carlo; Giannetta, Beatrice; Kölbl, Angelika; Monaci, Elga; Kögel-Knabner, Ingrid; Vischetti, Costantino

    2016-04-01

    This paper presents the results regarding the effects of two 13 years long crop rotations, on the composition of mineral associated neutral sugars, organic carbon (OC) and N concentration, across different aggregate size fractions. The two cropping sequences were characterized by different levels of N input from plant residues and tillage frequency. We also analysed the changes that occurred in soil organic matter (SOM) chemical composition following the cultivation in the two soils of winter wheat and chickpea on the same soils. The analysis of OC and N content across soil aggregate fractions allowed getting an insight into the role played by SOM chemical composition in the formation of organo-mineral associations, while neutral sugars composition provided information on mineral associated SOM origin and decomposition processes, as pentoses derive mostly from plant tissues and hexoses are prevalently of microbial origin. Soil samples were collected from two adjacent fields, from the 0-10 cm layer, in November 2011 (T0). For 13 years before the beginning of the experiment, one soil was cultivated mostly with alfalfa (ALF), while a conventional cereal-sunflower-legume rotation (CON) was carried out on the other. Winter wheat and chickpea were sown on the two soils during the following 2 growing seasons and the sampling was repeated after 18 months (T1). A combination of aggregates size and density fractionation was used to isolate OM associated with mineral particles in: macro-aggregates (>212 μm), micro-aggregates (<200 μm, > 63 μm) and silt and clay size particles (<63 μm). For every fraction, OC and N contents were measured by means of elemental analysis, while the content of the following neutral hydrolysable sugar monomers was measured via GC-FID: rhamnose, fucose, ribose, arabinose, xylose, mannose, galactose, glucose. OC and N contents were higher in ALF as compared to CON for every aggregate fraction, both at T0 and T1. During the 18-months cultivation

  17. Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant

    SciTech Connect

    Michael W. Patterson

    2008-05-01

    . For integration purposes, an analysis comparing the design, cost and schedule impact of maintaining a technology neutral approach through conceptual design or making an early hydrogen process technology selection was performed. Early selection does not specifically eliminate a technology, but rather selects the first hydrogen technology for demonstration. A systems-engineering approach was taken to define decision-making criteria for selecting a hydrogen technology. The relative technical, cost and schedule risks of each approach were analyzed and risk mitigation strategies were recommended, including provisions to maintain close collaboration with the NHI. The results of these analyses are presented here.

  18. Effects of USDA beef quality grade and cooking on fatty acid composition of neutral and polar lipid fractions.

    PubMed

    Legako, J F; Dinh, T T N; Miller, M F; Brooks, J C

    2015-02-01

    The effects of USDA beef quality grade (QG; Prime, Low Choice, and Standard; n=8) and cooking (RC) on fatty acid (FA) concentrations (mg/g dry matter) and percentages of neutral and polar lipid fractions (NL and PL, respectively)from strip steaks were explored. An increase in QG led to an accumulation of most FA, especially in the NL fraction (P < 0.001). Common effects on FA percentages were two-way interactions of either QG or RC with LF (P ≤ 0.019). Fatty acids were affected differently by QG and RC depending on their originating LF. Monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) percentages of the PL were dependent on QG (P ≤ 0.014). Cooking and QG had minimal impact on FA percentages of the NL, however, greatly influenced PL MUFA and PUFA percentages (P b 0.001). There was evidence indicating that dry heat cookery affected not only PUFA, as generally thought, but also the MUFA of PL fraction.

  19. Modeling the neutral hydrogen distribution in the post-reionization Universe: intensity mapping

    SciTech Connect

    Villaescusa-Navarro, Francisco; Viel, Matteo; Datta, Kanan K.; Choudhury, T. Roy E-mail: viel@oats.inaf.it E-mail: tirth@ncra.tifr.res.in

    2014-09-01

    We model the distribution of neutral hydrogen (HI) in the post-reionization era and investigate its detectability in 21 cm intensity mapping with future radio telescopes like the Square Kilometer array (SKA). We rely on high resolution hydrodynamical N-body simulations that have a state-of-the-art treatment of the low density photoionized gas in the inter-galactic medium (IGM). The HI is assigned a-posteriori to the gas particles following two different approaches: a halo-based method in which HI is assigned only to gas particles residing within dark matter halos; a particle-based method that assigns HI to all gas particles using a prescription based on the physical properties of the particles. The HI statistical properties are then compared to the observational properties of Damped Lyman-α Absorbers (DLAs) and of lower column density systems and reasonable good agreement is found for all the cases. Among the halo-based method, we further consider two different schemes that aim at reproducing the observed properties of DLAs by distributing HI inside halos: one of this results in a much higher bias for DLAs, in agreement with recent observations, which boosts the 21 cm power spectrum by a factor ∼ 4 with respect to the other recipe. Furthermore, we quantify the contribution of HI in the diffuse IGM to both Ω{sub HI} and the HI power spectrum finding to be subdominant in both cases. We compute the 21 cm power spectrum from the simulated HI distribution and calculate the expected signal for both SKA1-mid and SKA1-low configurations at 2.4 ≤ z ≤ 4. We find that SKA will be able to detect the 21 cm power spectrum, in the non-linear regime, up to k ∼ 1 h/Mpc for SKA1-mid and k ∼ 5 h/Mpc for SKA1-low with 100 hours of observations. We also investigate the perspective of imaging the HI distribution. Our findings indicate that SKA1-low could detect the most massive HI peaks with a signal to noise ratio (SNR) higher than 5 for an observation time of about 1000

  20. Neutral Hydrogen in the Local Group and around the Milky Way

    NASA Astrophysics Data System (ADS)

    Wolfe, Spencer A.

    Galaxies in our universe must acquire fresh gas to continue forming new stars. A likely source of this material may be the gas that resides between galaxies. We do not, however, have a clear understanding of the specifics, such as its distribution. The first claimed detection of this "cosmic web" of material directly in emission was published a decade ago using the Westerbork Synthesis Radio Telescope in the Netherlands while surveying neutral hydrogen in the Local Group of galaxies. Later evidence, in the form of stellar surveys and test particle simulations, showed that a tidal origin of the gas was another possibility. More recent survey work of the Local Group, specifically between the galaxies M31 and M33, motivated us to map a section of the Westerbork emission using the Robert C . Byrd Green Bank Telescope (GBT). Our survey covers a 12 square degree area between M31 and M33, in which we reach 21 cm column density sensitivities of 1017.2 cm-2 after 400 hours of observations. These observations provide more than a factor of five better spatial resolution, and better than a factor of three in velocity resolution. Not only do we confirm the emission seen in the Westerbork data, we find that the hydrogen gas is composed of clouds a few kiloparsecs across, with properties suggesting they are a unique population to the Local Group. We conclude that the clouds are likely transient condensations from an intergalactic filament of gas, although a tidal feature cannot currently be ruled out. We also conducted GBT pointings to the northwest of M31 to search for the extended emission seen in the Westerbork data as well. What detections we find appear to be more related to the high velocity cloud population of M31. We are continuing to map other regions around M31 to search for more diffuse emission. We also present southern sky maps of the high velocity and intermediate velocity clouds around our own Milky Way, using 21 cm survey data from the Parkes telescope in

  1. Large seasonal changes in hydrogen isotope fractionation between algal biomarkers and lake surface water

    NASA Astrophysics Data System (ADS)

    Ladd, N.; Dubois, N.; Schubert, C. J.

    2016-12-01

    The hydrogen isotope composition (2H/1H) of biomarkers produced by algae is strongly influenced by the 2H/1H ratio of the water in which the organism grew. 2H/1H ratios of algal biomarkers preserved in lake sediments are thus a useful tool for reconstructing past changes in lake water isotope values, which can be used to infer hydroclimate changes. However, a number of variables can influence the magnitude of hydrogen isotope fractionation between algal lipids and their source water in laboratory cultures, particularly factors relating to growth rates. Quantifying the natural extent of these changes in field settings and identifying their causes is essential for robust application of 2H/1H ratios of algal lipids as paleohydroclimate proxies, yet these remain poorly constrained. This work targets the effect of nutrient availability and variable growth rates on 2H/1H fractionation in algal biomarkers through a comparative study between two central Swiss lakes: eutrophic Lake Greifen and oligotrophic Lake Lucerne. Suspended particles from surface water were collected at six time points throughout the spring and summer of 2015, and hydrogen isotope values of short chain saturated and unsaturated fatty acids were measured. We paired these measurements with in situ incubations conducted with NaH13CO3, which were used to calculate the production rate of short chain fatty acids in lake surface water. We demonstrate that as algal productivity increased from April to June, the magnitude of 2H/1H fractionation in Lake Greifen increased by as much as 140 ‰ for individual fatty acids. Fractionation also increased with increasing productivity for fatty acids in Lake Lucerne, but the magnitude of the effect was smaller than in Lake Greifen. We attribute these changes to relatively greater contributions of highly depleted H from NADPH in photosystem I as temperature and light availability increased. Larger changes in 2H/1H fractionation in Lake Greifen than in Lake Lucerne may

  2. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles.

    PubMed

    Callejas, Juan F; McEnaney, Joshua M; Read, Carlos G; Crompton, J Chance; Biacchi, Adam J; Popczun, Eric J; Gordon, Thomas R; Lewis, Nathan S; Schaak, Raymond E

    2014-11-25

    Nanostructured transition-metal phosphides have recently emerged as Earth-abundant alternatives to platinum for catalyzing the hydrogen-evolution reaction (HER), which is central to several clean energy technologies because it produces molecular hydrogen through the electrochemical reduction of water. Iron-based catalysts are very attractive targets because iron is the most abundant and least expensive transition metal. We report herein that iron phosphide (FeP), synthesized as nanoparticles having a uniform, hollow morphology, exhibits among the highest HER activities reported to date in both acidic and neutral-pH aqueous solutions. As an electrocatalyst operating at a current density of -10 mA cm(-2), FeP nanoparticles deposited at a mass loading of ∼1 mg cm(-2) on Ti substrates exhibited overpotentials of -50 mV in 0.50 M H2SO4 and -102 mV in 1.0 M phosphate buffered saline. The FeP nanoparticles supported sustained hydrogen production with essentially quantitative faradaic yields for extended time periods under galvanostatic control. Under UV illumination in both acidic and neutral-pH solutions, FeP nanoparticles deposited on TiO2 produced H2 at rates and amounts that begin to approach those of Pt/TiO2. FeP therefore is a highly Earth-abundant material for efficiently facilitating the HER both electrocatalytically and photocatalytically.

  3. Deflection of the Interstellar Neutral Hydrogen Flow Across the Heliospheric Interface: an Interstellar Magnetic Compass

    NASA Astrophysics Data System (ADS)

    Lallement, R.; Eric, Q.; Jean-Loup, B.; Dimitra, K.; Risto, P.

    2005-05-01

    Analyses of SOHO-SWAN observations show that the interstellar neutral H flow direction differs by about 4 degrees from the neutral He flow direction recently derived with an unprecedented accuracy using combined data sets (Mobius et al, 2004). The most likely explanation is a distortion of the heliospheric interface under the action of an inclined interstellar magnetic field, with imprints of the distorsion on the neutral H flow due to charge-transfer reactions between H atoms and ions. The direction of the ambient interstellar magnetic field and the heliospheric shape can be derived from the observed deviation. Implications for Voyager trajectories are discussed.

  4. D/H fractionation in the system methane-hydrogen-water

    NASA Astrophysics Data System (ADS)

    Horibe, Y.; Craig, H.

    1995-12-01

    We report measurements of the equilibrium D/H fractionation factor (a) between methane and hydrogen in the temperature range 200-500°C. Isotopic equilibrium was achieved by recycling the gases over a Ni-Thoria catalyst, using an in-line sampling volume for sequestering aliquots of the gas mixture without contributions from adsorbed gases on the catalyst. Equilibrium values of a were approached from both sides by use of (1) enriched CH 3D in the initial mixture and (2) pre-equilibration of the gases at temperatures below that of the final equilibrium mixture. The measured values of a are linear vs. 1/T 2 and fit the equation a = 0.8994 + 183,540/T2, with a standard deviation σ = ±2.5‰. The D/H fractionation factors for water vapor-hydrogen exchange measured by Suess (1949) and by Cerrai et al. (1954) are also linear in α vs. 1/T 2 over the temperature range of the data: comparison with published D/H ratios in high-temperature (1127°C) volcanic gases at Surtsey volcano shows that the Suess (1949) data are much closer to the observed ratios in H2 and H2O. The Suess (1949) measurements (80- 200°C) are also much closer to the theoretical values calculated by Bardo and Wolfsberg (1976), which fit the observed Surtsey fractionations slightly better than the extrapolated Suess (1949) results. We conclude that (1) the Suess (1949) measurements are the better set of experimental data, (2) the Surtsey gases are close to isotopic equilibrium at the vent temperatures, and (3) the Bardo and Wolfsberg (1976) theoretical equation gives the best representation of the H 2OH 2 fractionation factors. This equation is combined with the Horita and Wesolowski (1994) equation for H 2O liquid-vapor fractionation factors and can be used with the CH 4HZ a values to determine whether concordant temperatures are observed in the system CH 4H 2H 20. Application to the D/H ratios in the East Pacific Rise hydrothermal vents measured by Welhan and Craig (1979) shows that

  5. Aluminium recovery vs. hydrogen production as resource recovery options for fine MSWI bottom ash fraction.

    PubMed

    Biganzoli, Laura; Ilyas, Aamir; Praagh, Martijn van; Persson, Kenneth M; Grosso, Mario

    2013-05-01

    Waste incineration bottom ash fine fraction contains a significant amount of aluminium, but previous works have shown that current recovery options based on standard on-step Eddy Current Separation (ECS) have limited efficiency. In this paper, we evaluated the improvement in the efficiency of ECS by using an additional step of crushing and sieving. The efficiency of metallic Al recovery was quantified by measuring hydrogen gas production. The ash samples were also tested for total aluminium content with X-ray fluorescence spectroscopy (XRF). As an alternative to material recovery, we also investigated the possibility to convert residual metallic Al into useful energy, promoting H2 gas production by reacting metallic Al with water at high pH. The results show that the total aluminium concentration in the <4 mm bottom ash fraction is on average 8% of the weight of the dry ash, with less than 15% of it being present in the metallic form. Of this latter, only 21% can be potentially recovered with ECS combined with crushing and sieving stages and subsequently recycled. For hydrogen production, using 10MNaOH at 1L/S ratio results in the release of 6-11l of H2 gas for each kilogram of fine dry ash, equivalent to an energy potential of 118 kJ.

  6. Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria

    USGS Publications Warehouse

    Coleman, D.D.; Risatti, J.B.; Schoell, M.

    1981-01-01

    Carbon isotopic analysis of methane has become a popular technique in the exploration for oil and gas because it can be used to differentiate between thermogenic and microbial gas and can sometimes be used for gas-source rock correlations. Methane-oxidizing bacteria, however, can significantly change the carbon isotopic composition of methane; the origin of gas that has been partially oxidized by these bacteria could therefore be misinterpreted. We cultured methane-oxidizing bacteria at two different temperatures and monitored the carbon and hydrogen isotopic compositions of the residual methane. The residual methane was enriched in both 13C and D. For both isotopic species, the enrichment at equivalent levels of conversion was greater at 26??C than at 11.5??C. The change in ??D relative to the change in ??13C was independent of temperature within the range studied. One culture exhibited a change in the fractionation pattern for carbon (but not for hydrogen) midway through the experiment, suggesting that bacterial oxidation of methane may occur via more than one pathway. The change in the ??D value for the residual methane was from 8 to 14 times greater than the change in the ??13C value, indicating that combined carbon and hydrogen isotopic analysis may be an effective way of identifying methane which has been subjected to partial oxidation by bacteria. ?? 1981.

  7. Neutral-beam system based on BNL negative-hydrogen-ion sources

    SciTech Connect

    Prelec, K.

    1982-01-01

    Parameters of the conceptual design of the BNL neutral beam system were determined as follows: beam energy, 200 keV; negative ion current, 10A; neutral beam power, 1 MW; pulse length, multisecond to steady state. The completed system study, supported by successful ion source operation at the required level, will serve to evaluate and compare different approaches in the design of a negative ion based system and, eventually, lead to the design and construction of an operational system.

  8. Neutral redox-active hydrogen- and halogen-bonding [2]rotaxanes for the electrochemical sensing of chloride.

    PubMed

    Lim, Jason Y C; Cunningham, Matthew J; Davis, Jason J; Beer, Paul D

    2014-12-14

    The first examples of redox-active ferrocene-functionalised neutral [2]rotaxanes have been synthesised via chloride anion templation. (1)H NMR spectroscopic titrations reveal that these [2]rotaxane host systems recognize chloride selectively over other halides and oxoanions in highly-competitive aqueous media. By replacing the hydrogen bonding prototriazole units of the rotaxane axle component with iodotriazole halogen bond-donor groups, the degree of chloride selectivity of the [2]rotaxanes is modulated. Electrochemical voltammetric experiments demonstrate that the rotaxanes can sense chloride via cathodic perturbations of the respective rotaxanes' ferrocene-ferrocenium redox-couple upon anion addition.

  9. Hydrogen isotope fractionation and redox-controlled solution mechanisms in silicate-COH melt + fluid systems

    NASA Astrophysics Data System (ADS)

    Mysen, Bjorn

    2015-11-01

    The behavior of volatiles in silicate-COH melts and fluids and hydrogen isotope fractionation between melt and fluid were determined experimentally to advance our understanding of the role of volatiles in magmatic processes. Experiments were conducted in situ while the samples were at the desired temperature and pressure to 825°C and ~1.6 GPa and with variable redox conditions. Under oxidizing conditions, melt and fluid comprised CO2, CO3, HCO3, OH, H2O, and silicate components, whereas under reducing conditions, the species were CH4, H2, H2O, and silicate components. Temperature-dependent hydrogen isotope exchange among structural entities within coexisting fluids and melts yields ΔH values near 14 and 24 kJ/mol and -5 and -1 kJ/mol under oxidizing and reducing conditions, respectively. This temperature (and probably pressure)-dependent D/H fractionation is because of interaction between D and H and silicate and C-bearing species in silicate-saturated fluids and in COH fluid-saturated melts. The temperature- and pressure-dependent D/H fractionation factors suggest that partial melts in the presence of COH volatiles in the upper mantle can have δD values 100% or more lighter relative to coexisting silicate-saturated fluid. This effect is greater under oxidizing than under reducing conditions. It is suggested that δD variations of upper mantle mid-ocean ridge basalt (MORB) sources, inferred from the δD of MORB magmatic rocks, can be explained by variations in redox conditions during melting. Lower δD values of the MORB magma reflect more reducing conditions in the mantle source.

  10. Assessing carbon and hydrogen isotopic fractionation of diesel fuel n-alkanes during progressive evaporation.

    PubMed

    Muhammad, Syahidah A; Hayman, Alan R; Van Hale, Robert; Frew, Russell D

    2015-01-01

    Compound-specific isotope analysis offers potential for fingerprinting of diesel fuels, however, possible confounding effects of isotopic fractionation due to evaporation need to be assessed. This study measured the fractionation of the stable carbon and hydrogen isotopes in n-alkane compounds in neat diesel fuel during evaporation. Isotope ratios were measured using a continuous flow gas chromatograph/isotope ratio mass spectrometer. Diesel samples were progressively evaporated at 24 ± 2°C for 21 days. Increasing depletion of deuterium in nC12-nC17 alkanes in the remaining liquid with increasing carbon chain length was observed. Negligible carbon isotope fractionation was observed. Preferential vaporization was measured for the shorter chain n-alkanes and the trend decreased with increasing chain length. The decrease in δ(2) H values indicates the preferential vaporization of the isotopically heavier species consistent with available quantitative data for hydrocarbons. These results are most important in the application of stable isotope technology to forensic analysis of diesel.

  11. Fractionation of terrestrial neon by hydrodynamic hydrogen escape from ancient steam atmospheres

    NASA Technical Reports Server (NTRS)

    Zahnle, K.

    1991-01-01

    Atmospheric neon is isotopically heavier than mantle neon. By contrast, nonradiogenic mantle Ar, Kr, and Xe are not known to differ from the atmosphere. These observations are most easily explained by selective neon loss to space; however, neon is much too massive to escape from the modern atmosphere. Steam atmospheres are a likely, if intermittent, feature of the accreting Earth. They occur because, on average, the energy liberated during accretion places Earth above the runaway greenhouse threshold, so that liquid water is not stable at the surface. It is found that steam atmospheres should have lasted some ten to fifty million years. Hydrogen escape would have been vigorous, but abundant heavy constituents would have been retained. There is no lack of plausible candidates; CO2, N2, or CO could all suffice. Neon can escape because it is less massive than any of the likely pollutants. Neon fractionation would have been a natural byproduct. Assuming that the initial Ne-20/Ne-22 ratio was solar, it was found that it would have taken some ten million years to effect the observed neon fractionation in a 30 bar steam atmosphere fouled with 10 bars of CO. Thicker atmospheres would have taken longer; less CO, shorter. This mechanism for fractionating neon has about the right level of efficiency. Because the lighter isotope escapes much more readily, total neon loss is pretty minimal; less than half of the initial neon endowment escapes.

  12. Fatty Acid Profile of Neutral and Polar Lipid Fraction of Wild Eggs and Hatchlings from Wild and Captive Reared Broodstock of Octopus vulgaris.

    PubMed

    Estefanell, Juan; Mesa-Rodríguez, Antonio; Ramírez, Besay; La Barbera, Antonio; Socorro, Juan; Hernandez-Cruz, Carmen María; Izquierdo, María Soledad

    2017-01-01

    The culture of Octopus vulgaris is constrained by unsolved problems in paralarvae rearing, mainly associated to the unknown nutritional requirements of this species in early stages. In this article we studied the fatty acid profile (total, neutral, and polar lipid fractions) in wild eggs and wild hatchlings, collected in Gran Canaria (SW) (Spain) with artificial dens, in comparison to hatchlings obtained in captivity from broodstock fed on trash fish species. Total lipids were 11.5-13.5% dw, with the polar fraction representing a 70.6-75.5% of total lipid, with lower values in wild hatchling in comparison with captive ones. Docosahexaenoic acid (DHA) was the main component in neutral and polar fatty acid profile in all samples, underlying its importance in this species. Decreasing levels of saturates and arachidonic acid (ARA) from wild eggs to hatchlings, mainly associated to the polar fraction, suggest their use during embryonic development. In hatchlings, increasing levels of oleic acid in the neutral fraction and eicosapentaenoic acid (EPA) in the polar fraction, suggests their importance in hatchlings quality. Wild hatchlings showed in the polar fraction higher oleic acid and ARA, and lower DHA/ARA and EPA/ARA ratios in comparison with captive hatchlings, suggesting a difference in paralarvae nutritional status. These results suggest the importance of n-3 highly unsaturated fatty acids (HUFA), oleic acid, and ARA, presented in the adequate lipid fraction, in the diet of broodstock and paralarvae of O. vulgaris.

  13. Fatty Acid Profile of Neutral and Polar Lipid Fraction of Wild Eggs and Hatchlings from Wild and Captive Reared Broodstock of Octopus vulgaris

    PubMed Central

    Estefanell, Juan; Mesa-Rodríguez, Antonio; Ramírez, Besay; La Barbera, Antonio; Socorro, Juan; Hernandez-Cruz, Carmen María; Izquierdo, María Soledad

    2017-01-01

    The culture of Octopus vulgaris is constrained by unsolved problems in paralarvae rearing, mainly associated to the unknown nutritional requirements of this species in early stages. In this article we studied the fatty acid profile (total, neutral, and polar lipid fractions) in wild eggs and wild hatchlings, collected in Gran Canaria (SW) (Spain) with artificial dens, in comparison to hatchlings obtained in captivity from broodstock fed on trash fish species. Total lipids were 11.5–13.5% dw, with the polar fraction representing a 70.6–75.5% of total lipid, with lower values in wild hatchling in comparison with captive ones. Docosahexaenoic acid (DHA) was the main component in neutral and polar fatty acid profile in all samples, underlying its importance in this species. Decreasing levels of saturates and arachidonic acid (ARA) from wild eggs to hatchlings, mainly associated to the polar fraction, suggest their use during embryonic development. In hatchlings, increasing levels of oleic acid in the neutral fraction and eicosapentaenoic acid (EPA) in the polar fraction, suggests their importance in hatchlings quality. Wild hatchlings showed in the polar fraction higher oleic acid and ARA, and lower DHA/ARA and EPA/ARA ratios in comparison with captive hatchlings, suggesting a difference in paralarvae nutritional status. These results suggest the importance of n-3 highly unsaturated fatty acids (HUFA), oleic acid, and ARA, presented in the adequate lipid fraction, in the diet of broodstock and paralarvae of O. vulgaris. PMID:28790921

  14. Neutral dissociation of hydrogen following photoexcitation of HCl at the chlorine K edge

    SciTech Connect

    Hansen, D.L.; Arrasate, M.E.; Martin, R.; Vanderford, B.; Lindle, D.W.; Cotter, J.; Neill, P.; Fisher, G.R.; Perera, R.C.; Leung, K.T.; Levin, J.C.; Sellin, I.A.; Simon, M.; Simon, M.; Uehara, Y.; Whitfield, S.B.

    1998-04-01

    Time-of-flight mass spectroscopy was used to study the relaxation dynamics of HCl following photoexcitation in the vicinity of the Cl K edge ({approximately}2.8keV) using monochromatic synchrotron radiation. At the lowest resonant excitation to the 6{sigma}{sup {asterisk}} antibonding orbital, almost half of the excited molecules decay by emission of a neutral H atom, mostly in coincidence with a highly charged Cl{sup n+} ion. The present work demonstrates that neutral-atom emission can be a significant decay channel for excited states with very short lifetimes (1 fs). {copyright} {ital 1998} {ital The American Physical Society}

  15. Influence of salinity on hydrogen isotope fractionation in Rhizophora mangroves from Micronesia

    NASA Astrophysics Data System (ADS)

    Ladd, S. Nemiah; Sachs, Julian P.

    2015-11-01

    Hydrogen isotope ratios (2H/1H or δ2H) of plant leaf waxes typically covary with those of precipitation, and are therefore used as a proxy for past hydrologic variability. Mangroves present an important exception to this relationship, as salinity can strongly influence 2H fractionation in leaf lipids. To better understand and calibrate this effect, δ2H values of taraxerol and n-alkanes were measured in the leaves of Rhizophora spp. (red mangroves) from three estuaries and four brackish lakes on the Micronesian islands of Pohnpei and Palau, and compared to the δ2H and δ18O values of leaf water, xylem water and surface water. Net 2H discrimination between surface water and taraxerol increased by 0.9 ± 0.2‰ per part per thousand (ppt-1) over a salinity range of 1-34 ppt. Xylem water was always depleted in 2H relative to surface water, and the magnitude of this depletion increased with salinity, which is most likely due to a combination of greater 2H discrimination by roots during water uptake and opportunistic use of freshwater. Changes in the 2H content of xylem water can account for up to 43% of the change in net taraxerol fractionation with salinity. Leaf water isotopes were minimally enriched relative to xylem water and there was not significant variability in leaf water enrichment with salinity, which is consistent with a Péclet-modified Craig-Gordon model of leaf water enrichment. As leaf water enrichment is therefore unlikely to be responsible for increased 2H/1H fractionation in mangrove leaf lipids at elevated salinities, the majority of this signal is most likely explained either by changes in biosynthetic fractionation in response to salt stress or by salinity influenced changes in the timing of water uptake and lipid synthesis.

  16. Photochemical production of hydrogen peroxide in size-fractionated Southern California coastal waters.

    PubMed

    Clark, Catherine D; De Bruyn, Warren J; Jones, Joshua G

    2009-06-01

    Hydrogen peroxide (H(2)O(2)) photochemical production was measured in bulk and size-fractionated surf zone and source waters (Orange County, California, USA). Post-irradiation (60 min; 300 W ozone-free xenon lamp), maximum H(2)O(2) concentrations were approximately 10000 nM (source) and approximately 1500 nM (surf zone). Average initial hydrogen peroxide production rates (HPPR) were higher in bulk source waters (11+/-7.0 nM s(-1)) than the surf zone (2.5+/-1 nM s(-1)). A linear relationship was observed between non-purgeable dissolved organic carbon and absorbance coefficient (m(-1) (300 nm)). HPPR increased with increasing absorbance coefficient for bulk and size-fractionated source waters, consistent with photochemical production from CDOM. However, HPPR varied significantly (5x) for surf zone samples with the same absorbance coefficients, even though optical properties suggested CDOM from salt marsh source waters dominates the surf zone. To compare samples with varying CDOM levels, apparent quantum yields (Phi) for H(2)O(2) photochemical production were calculated. Source waters showed no significant difference in Phi between bulk, large (>1000 Da (>1 kDa)) and small (<1 kDa) size fractions, suggesting H(2)O(2) production efficiency is homogeneously distributed across CDOM size. However, surf zone waters had significantly higher Phi than source (bulk 0.086+/-0.04 vs. 0.034+/-0.013; <1 kDa 0.183+/-0.012 vs. 0.027+/-0.018; >1 kDa 0.151+/-0.090 vs. 0.016+/-0.009), suggesting additional production from non-CDOM sources. H(2)O(2) photochemical production was significant for intertidal beach sand and senescent kelp (sunlight; approximately 42 nM h(-1) vs. approximately 5 nM h(-1)), on the order of CDOM production rates previously measured in coastal and oceanic waters. This is the first study of H(2)O(2) photochemical production in size-fractionated coastal waters showing significant production from non-CDOM sources in the surf zone.

  17. Jarosite-water oxygen and hydrogen isotope fractionations: preliminary experimental data

    USGS Publications Warehouse

    Rye, R.O.; Stoffregen, R.E.

    1995-01-01

    Stable isotope studies of alunite have added a powerful tool for understanding geochemical processes in the surficial environment. Jarosite [KFe3(SO4)2(OH)6], like alunite, is a common mineral in the weathered portions of many sulfide-bearing ore deposits and mine drainages where its formation reflects acidic conditions produced by the oxidation of sulfides. This paper describes oxygen and hydrogen isotope fractionations in jarosite-water experiments over a temperature range of 100?? to 250??C and the extrapolation of the results to surface conditions. It also includes some general observations on the exchange reaction mechanism that are important for evaluating how well natural samples of jarosite retain primary isotopic compositions. -from Authors

  18. Adsorption of charged and neutral polymer chains on silica surfaces: The role of electrostatics, volume exclusion, and hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Spruijt, Evan; Biesheuvel, P. M.; de Vos, Wiebe M.

    2015-01-01

    We develop an off-lattice (continuum) model to describe the adsorption of neutral polymer chains and polyelectrolytes to surfaces. Our continuum description allows taking excluded volume interactions between polymer chains and ions directly into account. To implement those interactions, we use a modified hard-sphere equation of state, adapted for mixtures of connected beads. Our model is applicable to neutral, charged, and ionizable surfaces and polymer chains alike and accounts for polarizability effects of the adsorbed layer and chemical interactions between polymer chains and the surface. We compare our model predictions to data of a classical system for polymer adsorption: neutral poly(N -vinylpyrrolidone) (PVP) on silica surfaces. The model shows that PVP adsorption on silica is driven by surface hydrogen bonding with an effective maximum binding energy of about 1.3 kBT per PVP segment at low p H . As the p H increases, the Si-OH groups become increasingly dissociated, leading to a lower capacity for H bonding and simultaneous counterion accumulation and volume exclusion close to the surface. Together these effects result in a characteristic adsorption isotherm, with the adsorbed amount dropping sharply at a critical p H . Using this model for adsorption data on silica surfaces cleaned by either a piranha solution or an O2 plasma, we find that the former have a significantly higher density of silanol groups.

  19. Neutralization and Acid Dissociation of Hydrogen Carbonate Ion: A Thermochemical Approach

    ERIC Educational Resources Information Center

    Koga, Nobuyoshi; Shigedomi, Kana; Kimura, Tomoyasu; Tatsuoka, Tomoyuki; Mishima, Saki

    2013-01-01

    A laboratory inquiry into the thermochemical relationships in the reaction between aqueous solutions of NaHCO[subscript 3] and NaOH is described. The enthalpy change for this reaction, delta[subscript r]H, and that for neutralization of strong acid and NaOH(aq), delta[subscript n]H, are determined calorimetrically; the explanation for the…

  20. Precipitation of energetic neutral hydrogen atoms at Arecibo during a magnetic storm

    SciTech Connect

    Tinsely, B.A.; Burnside, R.G.

    1981-01-01

    The production of ionization at upper E region levels at Arecibo and other low latitude sites during magnetic storms had been previously found to be associated with a few rayleighs of N/sub 2/ /sup +/4278A emission, but it had not been possible to decide between energetic electrons, ions or neutrals as the primary particles involved.

  1. Neutralization and Acid Dissociation of Hydrogen Carbonate Ion: A Thermochemical Approach

    ERIC Educational Resources Information Center

    Koga, Nobuyoshi; Shigedomi, Kana; Kimura, Tomoyasu; Tatsuoka, Tomoyuki; Mishima, Saki

    2013-01-01

    A laboratory inquiry into the thermochemical relationships in the reaction between aqueous solutions of NaHCO[subscript 3] and NaOH is described. The enthalpy change for this reaction, delta[subscript r]H, and that for neutralization of strong acid and NaOH(aq), delta[subscript n]H, are determined calorimetrically; the explanation for the…

  2. Global directional distribution of the hydrogen energetic neutral atom emission from Mars as measured by Mars Express ASPERA-3

    NASA Astrophysics Data System (ADS)

    Wang, X.-D.; Barabash, S.; Futaana, Y.; Grigoriev, A.; Wurz, P.

    2012-04-01

    We used the data obtained by the Neutral Particle Detector(NPD) of Analyzer of Space Plasma and Energetic Atoms(ASPERA-3) on Mars Express(MEX) to derive the global directional distribution of hydrogen energetic neutral atoms (ENAs) around Mars. The NPD instrument package consists of two identical neutral particle energy spectrometers with direction resolving capability. Either instrument has an energy range of 100 eV~10 keV, and a factual angular resolution(full-width-half-maximum) of 5°-40° covering the total filed of view 9°-180° in six pixels in the fan-geometry. The data used in this study cover 5 months, from March 14, 2004 to August 17, 2004. The directional flux distribution of hydrogen ENAs was first converted to the MSE (Mars centered solar electric field) frame constructed by the direction of the Sun, the magnetic field component perpendicular to the Sun-Mars line and the convection electric field. MGS proxies for the interplanetary filed were used. The directional flux distributions along each orbit were then projected on a sphere centered at Mars with a radius of 100 Mars radii in order to isolate the direction distribution of ENA from the position variation of the spacecraft. From the projection, we obtained a sky map of ENA flux pointing away from Mars. The sky map shows large ENA flux in the direction of positive convection electric field and moderate flux in a cone facing the Sun. These two populations correspond to so-called ENA jets originated in the magnetosheath, which turned out to be strongly asymmetric regarding to the electric field direction, and ENAs backscattered from the upper atmosphere. We also investegated the correlations of ENA signatures to the solar wind pressure, F10.7 irradiance and the local time of the Martian magnetic anomalies.

  3. Carbon and hydrogen isotope fractionation during nitrite-dependent anaerobic methane oxidation by Methylomirabilis oxyfera

    NASA Astrophysics Data System (ADS)

    Rasigraf, Olivia; Vogt, Carsten; Richnow, Hans-Hermann; Jetten, Mike S. M.; Ettwig, Katharina F.

    2012-07-01

    Anaerobic oxidation of methane coupled to nitrite reduction is a recently discovered methane sink of as yet unknown global significance. The bacteria that have been identified to carry out this process, Candidatus Methylomirabilis oxyfera, oxidize methane via the known aerobic pathway involving the monooxygenase reaction. In contrast to aerobic methanotrophs, oxygen is produced intracellularly and used for the activation of methane by a phylogenetically distinct particulate methane monooxygenase (pMMO). Here we report the fractionation factors for carbon and hydrogen during methane oxidation by an enrichment culture of M. oxyfera bacteria. In two separate batch incubation experiments with different absolute biomass and methane contents, the specific methanotrophic activity was similar and the progressive isotope enrichment identical. Headspace methane was consumed up to 98% with rates showing typical first order reaction kinetics. The enrichment factors determined by Rayleigh equations were -29.2 ± 2.6‰ for δ13C (εC) and -227.6 ± 13.5‰ for δ2H (εH), respectively. These enrichment factors were in the upper range of values reported so far for aerobic methanotrophs. In addition, two-dimensional specific isotope analysis (Λ = ( α H - 1 - 1)/( α C - 1 - 1)) was performed and also the determined Λ value of 9.8 was within the range determined for other aerobic and anaerobic methanotrophs. The results showed that in contrast to abiotic processes biological methane oxidation exhibits a narrow range of fractionation factors for carbon and hydrogen irrespective of the underlying biochemical mechanisms. This work will therefore facilitate the correct interpretation of isotopic composition of atmospheric methane with implications for modeling of global carbon fluxes.

  4. VizieR Online Data Catalog: Atlas of Galactic Neutral Hydrogen (Hartmann+, 1997)

    NASA Astrophysics Data System (ADS)

    Hartmann, D.; Burton, W. B.

    1999-04-01

    " subdirectory. In addition to the 721 (b,v) FITS files, there is an (l,b) FITS image named TOTAL_HI.FIT, which contains the integrated intensity map over the velocity range -450 km/s <= V_lsr <= +400 km/s. The map units are in [K.km/s] and the FITS header contains comments regarding the conversion to column densities. Included as a visual aid is the GIF image file total_hi.gif, which depicts the velocity-integrated map. The data were originally distributed on a CD-ROM enclosed with the Atlas of Galactic Neutral Hydrogen (reference given above). The CD also contains animations of velocity slices through the data cube. (1 data file).

  5. Analysis of heavy oils: Method development and application to Cerro Negro heavy petroleum: Preliminary separation and analysis of acid, base, saturate, and neutral-aromatic fractions

    SciTech Connect

    Green, J.B.; Sturm, G.P. Jr.; Reynolds, J.W.; Thomson, J.S.; Yu, S.K-T.; Grigsby, R.D.; Tang, S.Y.; Shay, J.Y.; Hirsch, D.E.; Sanchez, V.

    1988-10-01

    Cerro Negro 200-425/degree/, 425-550/degree/, and 550-700/degree/C distillates and >700/degree/C residue were separated into acid, base, and neutral concentrates using an improved nonaqueous ion exchange liquid chromatographic procedure. Neutral concentrates were further separated into neutral aromatic and saturated hydrocarbon fractions. A dual column, normal phase high performance liquid chromatographic method was developed for the saturate-aromatic separation. Mass and elemental balances are given for separations of all distillates and the residue. In addition, fractions from the 200-425/degree/C and 425-550/degree/C distillates were analyzed by high resolution mass spectrometry. The applicability of published separation approaches and methods to heavy oil analysis is critically reviewed; the bulk of the available methodology developed for conventional petroleum and synfuels was found to be unproven or unsuitable for heavy oil analysis. Cerro Negro was found to contain 18.2 weight percent acids, 17.6 weight percent bases, 46.9 weight percent neutral aromatics, and 14.7 weight percent saturated hydrocarbons. Saturate fractions contained predominantly cycloparaffins, neutral-aromatics were largely comprised of aromatic hydrocarbons and sulfur compounds, bases were largely nitrogen-containing compounds, and acids were mostly oxygen-containing compounds and nitrogen compounds of pyrrolic type. 145 refs., 24 figs., 21 tabs.

  6. Exploring adsorption and desorption characteristics of molecular hydrogen on neutral and charged Mg nanoclusters: A first principles study

    NASA Astrophysics Data System (ADS)

    Banerjee, Paramita; Chandrakumar, K. R. S.; Das, G. P.

    2016-05-01

    To surmount the limitations of bulk MgH2 for the purpose of hydrogen storage, we report here, a detailed first principles density functional theory (DFT) based study on the structure and stability of neutral (Mgm) and positively charged (Mgm+) Mg nanoclusters of different sizes (m = 2, 4, 8 and 12) and their interaction with molecular hydrogen (H2). Our results demonstrate that H2 is weakly bound to the Mg nanoclusters through van der Waals interactions. Incorporation of Grimme's dispersion correction (D3) in the DFT based exchange-correlation functionals leads to improved accuracy of H2 interaction energy (IE) values that fall within an energy window (between physisorption and chemisorption) desirable for hydrogen storage. Energy decomposition analysis reveals the significance of polarization energy for these Mg-H2 binding. Ab-initio molecular dynamics simulation shows that complete dehydrogenation from these Mg nanoclusters occur at ∼100 °C which is a significant improvement over bulk MgH2 (∼300 °C).

  7. Investigation of the hydrogen neutrals in a discharge source used for production of metal hydrides

    NASA Astrophysics Data System (ADS)

    Bozhinova, I.; Iordanova, S.; Pashov, A.

    2016-03-01

    The paper discusses the possible mechanisms for production of metal hydrides (MH) in a DC discharge source. The results of different experiments suggest that the molecules are sputtered directly from the surface of the cathode, where they are formed after adsorption of atomic hydrogen. This hypothesis allows one to understand the operation of the source studied and to optimize its working conditions.

  8. Renewable Hydrogen Carrier - Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy

    DTIC Science & Technology

    2011-01-31

    The production of hydrogen by purple bacteria or microalgae are difficult to scale up due to low energy concentration insolation (e.g., ~200 W/m2...Cycle Assessment Of Biodiesel Production From Microalgae . Environ. Sci. Technol. 2009, 43, 6475–6481. 28. Logan, B.E.; Regan, J.M. Microbial fuel

  9. IUE observations of neutral hydrogen and deuterium in the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Landsman, W. B.; Murthy, J.; Henry, R. C.; Moos, H. W.; Linsky, J. L.

    1986-01-01

    Small-aperture, high-dispersion IUE spectra have been obtained of seven late-type stars that, in general, confirm previous Copernicus results concerning the distribution of hydrogen and deuterium in the local interstellar medium. In addition, the IUE Ly Alpha spectra of Altair, and of the Alpha Cen components, suggest that multiple velocity components exist in these two directions.

  10. Thermodynamically neutral Kubas-type hydrogen storage using amorphous Cr(III) alkyl hydride gels.

    PubMed

    Morris, Leah; Trudeau, Michel L; Reed, Daniel; Book, David; Antonelli, David M

    2015-04-14

    In this paper we present amorphous chromium(III) hydride gels that show promise as reversible room temperature hydrogen storage materials with potential for exploitation in mobile applications. The material uses hydride ligands as a light weight structural feature to link chromium(III) metal centres together which act as binding sites for further dihydrogen molecules via the Kubas interaction, the mode of hydrogen binding confirmed by high pressure Raman spectroscopy. The best material possesses a reversible gravimetric storage of 5.08 wt% at 160 bar and 25 °C while the volumetric density of 78 kgH2 m(-3) compares favourably to the DOE ultimate system goal of 70 kg m(-3). The enthalpy of hydrogen adsorption is +0.37 kJ mol(-1) H2 as measured directly at 40 °C using an isothermal calorimeter coupled directly to a Sieverts gas sorption apparatus. These data support a mechanism confirmed by computations in which the deformation enthalpy required to open up binding sites is almost exactly equal and opposite to the enthalpy of hydrogen binding to the Kubas sites, and suggests that this material can be used in on-board applications without a heat management system.

  11. Seasonal Variations in the Biochemical Fractionation of Hydrogen Isotopes by Spartina alterniflora.

    NASA Astrophysics Data System (ADS)

    Sessions, A. L.

    2005-12-01

    Hydrogen isotope ratios (D/H) of lipids are being intensively explored as a paleoenvironmental proxy, particularly for continental regimes where organic preservation in lakes is generally high. Several studies have already shown good correlations between δD values of lake water and sedimentary (core-top) lipids, but the fractionations indicated by those correlations do not agree well between studies. Moreover, the data cannot be adequately described by a single biochemical fractionation. These difficulties suggest that the relationship between environmental water and plant lipid δD is controlled by multiple environmental and biochemical factors. Understanding these factors will lead to a more robust interpretation of D/H as a paleoclimate proxy. Here we examine seasonal changes in biochemical H-isotopic fractionation by the salt marsh grass Spartina alterniflora. Because S. alterniflora grows partially submerged in a tidal estuary, it has an unlimited and isotopically unvarying source of water for growth. Thus environmental influences on fractionation should be negligible, allowing us to examine seasonal changes in biochemical fractionations. C27 and C29 n-alkanes, β-sitosterol, phytol, and C16 and C18 fatty acids were extracted and analyzed from 35 samples of S. alterniflora harvested from the same location over a period of 18 months. All lipids except β-sitosterol exhibit statistically significant depletions of D during summer months relative to the rest of the year. The magnitude of the isotopic shift is up to 36‰ in the fatty acids (δD values from -130 to -166‰), 31‰ in n-alkanes (-161 to -192‰), and 24‰ in phytol (-252 to -276‰). The shift in D/H ratio is in the opposite direction from that expected due to increased evapotranspiration during the summer months. The largest D-depletions coincide with periods of maximal growth. The observed pattern is interpreted as resulting from increased use of stored carbohydrates as substrates for lipid

  12. Neutralizer options for high energy H/sup -/ beams

    SciTech Connect

    Fink, J.H.

    1986-10-01

    A neutralizer converts a negative ion beam into a neutral beam, but it also increases the beamline cost, weight and size while reducing its output power, efficiency and possibly the reliability of the entire system. In addition it scatters the newly formed neutrals, altering the beam current density distribution, causing the beam divergence to get larger and the brightness to go down. In the following, the role of neutralizers for hydrogen ion beams is reviewed, and the problems encountered over a range of beam energies are discussed. Consideration is given to enhancing the goals of the neutral beam application, be they the highest neutral fraction, optimum overall efficiency or maximum beam brightness, etc.

  13. Low-Energy Mutual Neutralization Studies for Early Universe Hydrogen Chemistry

    NASA Astrophysics Data System (ADS)

    Urbain, Xavier

    2010-03-01

    Low-energy interactions between light ions, as they occur in low density plasmas, are ideally studied under merged-beam conditions. This was the motivation for building the dual-source setup in operation at UCL, Louvain-la-Neuve, since the early eighties. Although initially developed for the study of charge exchange [1], mutual neutralization and transfer ionization, this machine has produced a host of total cross section measurements for a wide variety of associative ionization and other reactive processes involving charged reactants, from H^+ to CO^+, in collision with H^-, D^-, C^- and O^- [2]. A recent paper by Glover et al. [3] has revived the interest for mutual neutralization studies, by stressing the need of the astrophysical community for a precise determination of the low-energy cross section of the H^+/H^- reaction. The mutual neutralization acts as a sink for negative ions which otherwise dominate the primordial formation of H2 by associative detachment with ground state H. Absolute measurements in the range 5 meV to 5 eV are needed to rule out earlier experimental work [4] contradicting the most recent theoretical predictions [5]. Our setup is currently modified to incorporate coincident imaging techniques, giving access to differential cross sections besides the branching among accessible neutral channels. Mutual neutralization reactions of H^- with H2^+ and H3^+ will also be investigated, for the role they play in laboratory plasmas [6].[4pt] [1] S. Sz"ucs, M. Karemera, M. Terao, and F. Brouillard, J. Phys. B 17, 1613 (1983).[0pt] [2] E. A. Naji et al., J. Phys. B 31, 4887 (1998), A. Le Padellec et al., J. Chem. Phys., 124, 154304 (2006) and references therein.[0pt] [3] S. C. Glover, D. W. Savin, and A.-K. Jappsen , Astrophys. J. 640, 553 (2006). [0pt] [4] J. Moseley, W. Aberth, and J. R. Peterson, Phys. Rev. Lett. 24, 435 (1970).[0pt] [5] M. Stenrup, å. Larson, and N. Elander, Phys. Rev. A 79, 012713 (2009).[0pt] [6] M. J. J. Eerden et al., Phys

  14. On the spectroscopic detection of neutral species in a low-pressure plasma containing boron and hydrogen

    NASA Astrophysics Data System (ADS)

    Lavrov, B. P.; Osiac, M.; Pipa, A. V.; Röpcke, J.

    2003-11-01

    Spectroscopic studies of microwave discharges in H2-Ar-B2H6 gas mixtures (f = 2.45 GHz, P = 1.2-3.5 kW, p = 1-8 mbar) have been performed to improve the possibilities of diagnostics of non-equilibrium, low-pressure plasmas containing boron and hydrogen. For this purpose, UV-VIS optical emission spectroscopy and infrared absorption spectroscopy with tunable diode lasers (TDLAS) have been applied. It is shown that information about neutral species and the gas temperature may be obtained by means of new and modified spectroscopic methods. A method for the determination of the absolute number density of boron atoms from measured relative intensities of the components of the boron resonance doublet (distorted by reabsorption) is proposed and tested for validity. The maximum of the density was found to be 3.8×1011 atoms cm-3 at an admixture of diborane of about 2%. The gas temperature was determined from the intensity distributions in the rotational structure of the emission bands of BH and H2 and from Doppler broadening of the absorption line profiles of the BH molecule. It was observed that values of the gas temperature obtained from the rotational intensity distributions are in good agreement with those obtained from Doppler widths (Tg = 700-1070 K). Based on measurements of the relative line intensities of atomic and molecular hydrogen and the gas temperature, and using a simple excitation-deactivation model, the density of molecular hydrogen was found to be about 40 times higher than the density of atomic hydrogen. It is shown that some absorption lines of boron hydrides (B2H6, BH3 and BH) detected by TDLAS may be used for plasma diagnostics.

  15. Cosmology on ultralarge scales with intensity mapping of the neutral hydrogen 21 cm emission: limits on primordial non-Gaussianity.

    PubMed

    Camera, Stefano; Santos, Mário G; Ferreira, Pedro G; Ferramacho, Luís

    2013-10-25

    The large-scale structure of the Universe supplies crucial information about the physical processes at play at early times. Unresolved maps of the intensity of 21 cm emission from neutral hydrogen HI at redshifts z=/~1-5 are the best hope of accessing the ultralarge-scale information, directly related to the early Universe. A purpose-built HI intensity experiment may be used to detect the large scale effects of primordial non-Gaussianity, placing stringent bounds on different models of inflation. We argue that it may be possible to place tight constraints on the non-Gaussianity parameter f(NL), with an error close to σ(f(NL))~1.

  16. Compact Neutral Hydrogen Clouds: Searching for Undiscovered Dwarf Galaxies and Gas Associated with an Algol-type Variable Star

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana; Berger, Sabrina; Putman, Mary E.; Eli Goldston Peek, Joshua

    2016-01-01

    Several interesting compact neutral hydrogen clouds were found in the GALFA-HI (Galactic Arecibo L-Band Feed Array HI) survey which may represent undiscovered dwarf galaxy candidates. The continuation of this search is motivated by successful discoveries of Local Volume dwarfs in the GALFA-HI DR1. We identify additional potential dwarf galaxies from the GALFA-HI DR1 Compact Cloud Catalog which are indentified as having unexpected velocities given their other characteristics via the bayesian analysis software BayesDB. We also present preliminary results of a by-eye search for dwarf galaxies in the GALFA-HI DR2, which provides additional sky coverage. Interestingly, one particularly compact cloud discovered during our dwarf galaxy search is spatially coincident with an Algol-type variable star. Although the association is tentative, Algol-type variables are thought to have undergone significant gas loss and it is possible this gas may be observable in HI.

  17. Biochemical hydrogen isotope fractionation during biosynthesis in higher plants reflects carbon metabolism of the plant

    NASA Astrophysics Data System (ADS)

    Cormier, Marc-André; Kahmen, Ansgar

    2015-04-01

    Compound-specific isotope analyses of plant material are frequently applied to understand the response of plants to the environmental changes. As it is generally assume that the main factors controlling δ2H values in plants are the plant's source water and evaporative deuterium enrichment of leaf water, hydrogen isotope analyses of plant material are mainly applied regarding hydrological conditions at different time scales. However, only few studies have directly addressed the variability of the biochemical hydrogen isotope fractionation occurring during biosynthesis of organic compounds (ɛbio), accounting also for a large part in the δ2H values of plants but generally assumed to be constant. Here we present the results from a climate-controlled growth chambers experiment where tested the sensitivity of ɛbio to different light treatments. The different light treatments were applied to induce different metabolic status (autotrophic vs. heterotrophic) in 9 different plant species that we grew from large storage organs (e.g. tubers or roots). The results show a systematic ɛbio shift (up to 80 ) between the different light treatments for different compounds (i.e. long chain n-alkanes and cellulose). We suggest that this shift is due to the different NADPH pools used by the plants to build up the compounds from stored carbohydrates in heterotrophic or autotrophic conditions. Our results have important implications for the calibration and interpretation of sedimentary and tree rings records in geological studies. In addition, as the δ2H values reflect also strongly the carbon metabolism of the plant, our findings support the idea of δ2H values as an interesting proxy for plant physiological studies.

  18. Hydrogen apparent fractionation between source water and epicuticular waxes of Pinus sylvestris in North East Finland

    NASA Astrophysics Data System (ADS)

    Newberry, S. L.; Grace, J.; Pedentchouk, N.

    2010-12-01

    Hydrogen isotopic composition of plant biomass provides crucial information about plant ecophysiology and local hydrology. Little is known about the apparent fractionation between hydrogen in source water and epicuticular leaf waxes of coniferous tree species that dominate the boreal forest ecosystem exposed to prolonged periods of sunlight during the growing season. In this study, single rope canopy access techniques were used to harvest needle and twig material from the upper, middle and lower crown of north and south facing branches of Pinus sylvestris within the subarctic forest of North East Finland. Samples were collected towards the beginning of the growing season in July and repeated in late September 2010. Leaf and twig waters were extracted cryogenically and analysed for D-enrichment. Individual n-alkanes are currently being quantified and analyzed for 13C/12C and D/H compositions. The molecular and isotopic data are supplemented by long-term in-situ cuvette photosynthetic assimilation measurements as well as relative humidity (RH), air temperature, precipitation and wind speed data collected by Helsinki University (SMEAR I). In addition RH, air temperature, wind speed and incoming solar radiation measurements were made at each individual sample point at the time of harvesting to quantify meteorological and microclimatological variation within individual trees. The outcome of this investigation will provide important insights into plant biochemistry and physiology of a crucial climate sensitive higher plant species subjected to continuous low light throughout the season. Furthermore, this work will expand our understanding of modern and palaeo-hydrology not only in northern Finland but also in other boreal forests around the world.

  19. Heliospheric Energetic Neutral Hydrogen Measured with ASPERA-3 and ASPERA-4

    NASA Astrophysics Data System (ADS)

    Galli, A.; Wurz, P.; Kollmann, P.; Brandt, P. C.; Bzowski, M.; Sokół, J. M.; Kubiak, M. A.; Grigoriev, A.; Barabash, S.

    2013-09-01

    We re-analyze the signal of non-planetary energetic neutral atoms (ENAs) in the 0.4-5.0 keV range measured with the Neutral Particle Detector (NPD) of the ASPERA-3 and ASPERA-4 experiments on board the Mars and Venus Express satellites. Due to improved knowledge of sensor characteristics and exclusion of data sets affected by instrument effects, the typical intensity of the ENA signal obtained by ASPERA-3 is an order of magnitude lower than in earlier reports. The ENA intensities measured with ASPERA-3 and ASPERA-4 now agree with each other. In the present analysis, we also correct the ENA signal for Compton-Getting and for ionization loss processes under the assumption of a heliospheric origin. We find spectral shapes and intensities consistent with those measured by the Interstellar Boundary Explorer (IBEX). The principal advantage of ASPERA with respect to the IBEX sensors is the two times better spectral resolution. In this study, we discuss the physical significance of the spectral shapes and their potential variation across the sky. At present, these observations are the only independent test of the heliospheric ENA signal measured with IBEX in this energy range. The ASPERA measurements also allow us to check for a temporal variation of the heliospheric signal as they were obtained between 2003 and 2007, whereas IBEX has been operational since the end of 2008.

  20. Energetic Neutral Hydrogen Atoms from the Heliosphere Measured with ASPERA-3 and ASPERA-4

    NASA Astrophysics Data System (ADS)

    Galli, André; Wurz, Peter; Kollmann, Peter; Brandt, Pontus C.; Bzowski, Maciej; Sokół, Justyna M.; Kubiak, Marzena A.; Grigoriev, Alexander; Barabash, Stas

    2013-04-01

    We re-analyze a residual signal of Energetic Neutral Atoms (ENAs) in the 0.4-5.0 keV range across the sky obtained from the Neutral Particle Detector of the ASPERA-3&4 experiments on board the Mars and Venus Express satellites. Due to improved knowledge of sensor characteristics and exclusion of datasets affected by instrument effects, the typical intensity of the ENA signal obtained by ASPERA-3 is an order of magnitude lower than in earlier reports. The discrepancy between ASPERA-3 and ASPERA-4 no longer exists. We now also correct the non-planetary signal for Compton-Getting and for ionization loss processes under the assumption of a heliospheric origin of the ENAs. We find spectral shapes and intensities (1×103 cm-2 sr-1 s-1) consistent with those measured by the Interstellar Boundary Explorer (IBEX). The principal advantage of ASPERA-3&4 with respect to the IBEX sensors is the higher spectral resolution. In this presentation we discuss the physical significance of the spectral shapes and their potential variation across the sky. At present, these observations are the only independent confirmation of the heliospheric ENAs measured with IBEX in this energy range. The ASPERA-3&4 measurements also allow to check for a temporal variation of the heliospheric signal as they were obtained between 2003 and 2007, whereas IBEX is operational since the end of 2008.

  1. HELIOSPHERIC ENERGETIC NEUTRAL HYDROGEN MEASURED WITH ASPERA-3 AND ASPERA-4

    SciTech Connect

    Galli, A.; Wurz, P.; Kollmann, P.; Brandt, P. C.; Bzowski, M.; Sokół, J. M.; Kubiak, M. A.; Grigoriev, A.; Barabash, S.

    2013-09-20

    We re-analyze the signal of non-planetary energetic neutral atoms (ENAs) in the 0.4-5.0 keV range measured with the Neutral Particle Detector (NPD) of the ASPERA-3 and ASPERA-4 experiments on board the Mars and Venus Express satellites. Due to improved knowledge of sensor characteristics and exclusion of data sets affected by instrument effects, the typical intensity of the ENA signal obtained by ASPERA-3 is an order of magnitude lower than in earlier reports. The ENA intensities measured with ASPERA-3 and ASPERA-4 now agree with each other. In the present analysis, we also correct the ENA signal for Compton-Getting and for ionization loss processes under the assumption of a heliospheric origin. We find spectral shapes and intensities consistent with those measured by the Interstellar Boundary Explorer (IBEX). The principal advantage of ASPERA with respect to the IBEX sensors is the two times better spectral resolution. In this study, we discuss the physical significance of the spectral shapes and their potential variation across the sky. At present, these observations are the only independent test of the heliospheric ENA signal measured with IBEX in this energy range. The ASPERA measurements also allow us to check for a temporal variation of the heliospheric signal as they were obtained between 2003 and 2007, whereas IBEX has been operational since the end of 2008.

  2. Electrocatalytic reaction of hydrogen peroxide and NADH based on poly(neutral red) and FAD hybrid film.

    PubMed

    Lin, Kuo Chiang; Lin, Yu Ching; Chen, Shen Ming

    2012-01-07

    A simple method to immobilize poly(neutral red) (PNR) and flavin adenine dinucleotide (FAD) hybrid film (PNR/FAD) by cyclic voltammetry is proposed. The PNR/FAD hybrid film can be easily prepared on an electrode surface involving electropolymerization of neutral red (NR) monomers and the electrostatic interaction between the positively charged PNR and the negatively charged FAD. It exhibits electroactive, stable, surface-confined, pH-dependent, nano-sized, and compatible properties. It provides good electrocatalytic properties to various species. It shows a sensitivity of 5.4 μA mM(-1) cm(-2) and 21.5 μA mM(-1) cm(-2) for hydrogen peroxide (H(2)O(2)) and nicotinamide adenine dinucleotide (NADH) with the linear range of 0.1 μM-39 mM and 5 × 10(-5) to 2.5 × 10(-4) M, respectively. It shows another linear range of 48.8-355.5 mM with the sensitivity of 12.3 μA mM(-1) cm(-2) for H(2)O(2). In particular, the PNR/FAD hybrid film has potential to replace some hemoproteins to be a cathode of biofuel cells and provide the biosensing system for glucose and ethanol.

  3. A Highly Active and Robust Copper-Based Electrocatalyst toward Hydrogen Evolution Reaction with Low Overpotential in Neutral Solution.

    PubMed

    Du, Jialei; Wang, Jianying; Ji, Lvlv; Xu, Xiaoxiang; Chen, Zuofeng

    2016-11-09

    Although significant progress has been made recently, copper-based materials have long been considered to be ineffective catalysts toward the hydrogen evolution reaction (HER), in most cases, requiring high overpotentials more than 300 mV. We report here that a Cu(0)-based nanoparticle film electrodeposited in situ from a Cu(II) oxime complex can act as a highly active and robust HER electrocatalyst in neutral phosphate buffer solution. The as-prepared nanoparticle film is of poor crystallization, which incorporates significant amounts of oxime ligand residues and buffer anions PO4(3-). The proposed mechanism suggests that the Cu(0)-based nanoparticle film is activated with incorporated or adsorbed PO4(3-) anions and the PO4(3-) anions-anchored sites might serve as the actual catalytic active sites with efficient proton transport mediators. Catalysis occurs with a low onset overpotential (η) of 65 mV, and a current density of 1 mA/cm(2) can be achieved with η = 120 mV. The nanoparticle film shows an excellent catalytic durability with slightly rising current density during electrolysis, presumably due to further incorporation or adsorption of PO4(3-) anions in the process. This electrocatalyst not only forms in situ from earth-abundant materials but also operates in neutral water with low overpotential and high stability.

  4. Comparable hydrogen isotopic fractionation of plant leaf wax n-alkanoic acids in arid and humid subtropical ecosystems

    NASA Astrophysics Data System (ADS)

    Gao, Li; Zheng, Mei; Fraser, Matthew; Huang, Yongsong

    2014-02-01

    Leaf wax hydrogen isotope proxies have been widely used to reconstruct past hydrological changes. However, published reconstructions have given little consideration for the potentially variable hydrogen isotopic fractionation relative to precipitation (ɛwax-p) under different climate and environmental settings. Chief among various potential factors controlling fractionation is relative humidity, which is known to strongly affect oxygen isotopic ratios of plant cellulose, but its effect on hydrogen isotopic fractionation of leaf waxes is still ambiguous. Analyses of lake surface sediments and individual modern plants have provided valuable information on the variability of ɛwax-p, but both approaches have significant limitations. Here, we present an alternative method to obtain the integrated, time-resolved ecosystem-level ɛwax-p values, by analyzing modern aerosol samples collected weekly from arid (Arizona lowlands) and humid subtropical (Atlanta, Georgia) environments during the main growth season. Because aerosol samples mainly reflect regional leaf wax resources, the extreme contrast in the hydroclimate and associated vegetation assemblages between our study sites allows us to rigorously assess the impact of relative humidity and associated vegetation assemblages on leaf wax hydrogen isotopic fractionation. We show there is only minor difference (mostly <10‰) in the mean ɛwax-p values in the two end-member environments. One possible explanation is that the positive isotopic effects of low relative humidity are offset by progressive replacement of trees with grasses that have a more negative apparent fractionation. Our results represent an important step toward quantitative interpretation of leaf wax hydrogen isotopic records.

  5. Absorption of infrared radiation by electrons in the field of a neutral hydrogen atom

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    An analytical expression for the absorption coefficient is developed from a relationship between the cross-section for inverse bremsstrahlung absorption and the cross-section for electron-atom momentum transfer; it is accurate for those photon frequencies v and temperatures such that hv/kT is small. The determination of the absorption of infrared radiation by free-free transitions of the negative hydrogen ion has been extended to higher temperatures. A simple analytical expression for the absorption coefficient has been derived.

  6. Absorption of infrared radiation by electrons in the field of a neutral hydrogen atom

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    An analytical expression for the absorption coefficient is developed from a relationship between the cross-section for inverse bremsstrahlung absorption and the cross-section for electron-atom momentum transfer; it is accurate for those photon frequencies v and temperatures such that hv/kT is small. The determination of the absorption of infrared radiation by free-free transitions of the negative hydrogen ion has been extended to higher temperatures. A simple analytical expression for the absorption coefficient has been derived.

  7. Supramolecular structure of enterobacterial wild-type lipopolysaccharides (LPS), fractions thereof, and their neutralization by Pep19-2.5.

    PubMed

    Brandenburg, Klaus; Heinbockel, Lena; Correa, Wilmar; Fukuoka, Satoshi; Gutsmann, Thomas; Zähringer, Ulrich; Koch, Michel H J

    2016-04-01

    Lipopolysaccharides (LPS) belong to the strongest immune-modulating compounds known in nature, and are often described as pathogen-associated molecular patterns (PAMPs). In particular, at higher concentrations they are responsible for sepsis and the septic shock syndrome associated with high lethality. Since most data are indicative that LPS aggregates are the bioactive units, their supramolecular structures are considered to be of outmost relevance for deciphering the molecular mechanisms of its bioactivity. So far, however, most of the data available addressing this issue, were published only for the lipid part (lipid A) and the core-oligosaccharide containing rough LPS, representing the bioactive unit. By contrast, it is well known that most of the LPS specimen identified in natural habitats contain the smooth-form (S-form) LPS, which carry additionally a high-molecular polysaccharide (O-chain). To fill this lacuna and going into a more natural system, here various wild-type (smooth form) LPS including also some LPS fractions were investigated by small-angle X-ray scattering with synchrotron radiation to analyze their aggregate structure. Furthermore, the influence of a recently designed synthetic anti-LPS peptide (SALP) Pep19-2.5 on the aggregate structure, on the binding thermodynamics, and on the cytokine-inducing activity of LPS were characterized, showing defined aggregate changes, high affinity binding and inhibition of cytokine secretion. The data obtained are suitable to refine our view on the preferences of LPS for non-lamellar structures, representing the highest bioactive forms which can be significantly influenced by the binding with neutralizing peptides such as Pep19-2.5.

  8. Carbon and hydrogen isotope fractionation under continuous light: implications for paleoenvironmental interpretations of the High Arctic during Paleogene warming.

    PubMed

    Yang, Hong; Pagani, Mark; Briggs, Derek E G; Equiza, M A; Jagels, Richard; Leng, Qin; Lepage, Ben A

    2009-06-01

    The effect of low intensity continuous light, e.g., in the High Arctic summer, on plant carbon and hydrogen isotope fractionations is unknown. We conducted greenhouse experiments to test the impact of light quantity and duration on both carbon and hydrogen isotope compositions of three deciduous conifers whose fossil counterparts were components of Paleogene Arctic floras: Metasequoia glyptostroboides, Taxodium distichum, and Larix laricina. We found that plant leaf bulk carbon isotopic values of the examined species were 1.75-4.63 per thousand more negative under continuous light (CL) than under diurnal light (DL). Hydrogen isotope values of leaf n-alkanes under continuous light conditions revealed a D-enriched hydrogen isotope composition of up to 40 per thousand higher than in diurnal light conditions. The isotope offsets between the two light regimes is explained by a higher ratio of intercellular to atmospheric CO(2) concentration (C (i)/C (a)) and more water loss for plants under continuous light conditions during a 24-h transpiration cycle. Apparent hydrogen isotope fractionations between source water and individual lipids (epsilon(lipid-water)) range from -62 per thousand (Metasequoia C(27) and C(29)) to -87 per thousand (Larix C(29)) in leaves under continuous light. We applied these hydrogen fractionation factors to hydrogen isotope compositions of in situ n-alkanes from well-preserved Paleogene deciduous conifer fossils from the Arctic region to estimate the deltaD value in ancient precipitation. Precipitation in the summer growing season yielded a deltaD of -186 per thousand for late Paleocene, -157 per thousand for early middle Eocene, and -182 per thousand for late middle Eocene. We propose that high-latitude summer precipitation in this region was supplemented by moisture derived from regionally recycled transpiration of the polar forests that grew during the Paleogene warming.

  9. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte

    PubMed Central

    Miao, Jianwei; Xiao, Fang-Xing; Yang, Hong Bin; Khoo, Si Yun; Chen, Jiazang; Fan, Zhanxi; Hsu, Ying-Ya; Chen, Hao Ming; Zhang, Hua; Liu, Bin

    2015-01-01

    A unique functional electrode made of hierarchal Ni-Mo-S nanosheets with abundant exposed edges anchored on conductive and flexible carbon fiber cloth, referred to as Ni-Mo-S/C, has been developed through a facile biomolecule-assisted hydrothermal method. The incorporation of Ni atoms in Mo-S plays a crucial role in tuning its intrinsic catalytic property by creating substantial defect sites as well as modifying the morphology of Ni-Mo-S network at atomic scale, resulting in an impressive enhancement in the catalytic activity. The Ni-Mo-S/C electrode exhibits a large cathodic current and a low onset potential for hydrogen evolution reaction in neutral electrolyte (pH ~7), for example, current density of 10 mA/cm2 at a very small overpotential of 200 mV. Furthermore, the Ni-Mo-S/C electrode has excellent electrocatalytic stability over an extended period, much better than those of MoS2/C and Pt plate electrodes. Scanning and transmission electron microscopy, Raman spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and x-ray absorption spectroscopy were used to understand the formation process and electrocatalytic properties of Ni-Mo-S/C. The intuitive comparison test was designed to reveal the superior gas-evolving profile of Ni-Mo-S/C over that of MoS2/C, and a laboratory-scale hydrogen generator was further assembled to demonstrate its potential application in practical appliances. PMID:26601227

  10. Highest Redshift Image of Neutral Hydrogen in Emission: A CHILES Detection of a Starbursting Galaxy at z = 0.376

    NASA Astrophysics Data System (ADS)

    Fernández, Ximena; Gim, Hansung B.; van Gorkom, J. H.; Yun, Min S.; Momjian, Emmanuel; Popping, Attila; Chomiuk, Laura; Hess, Kelley M.; Hunt, Lucas; Kreckel, Kathryn; Lucero, Danielle; Maddox, Natasha; Oosterloo, Tom; Pisano, D. J.; Verheijen, M. A. W.; Hales, Christopher A.; Chung, Aeree; Dodson, Richard; Golap, Kumar; Gross, Julia; Henning, Patricia; Hibbard, John; Jaffé, Yara L.; Donovan Meyer, Jennifer; Meyer, Martin; Sanchez-Barrantes, Monica; Schiminovich, David; Wicenec, Andreas; Wilcots, Eric; Bershady, Matthew; Scoville, Nick; Strader, Jay; Tremou, Evangelia; Salinas, Ricardo; Chávez, Ricardo

    2016-06-01

    Our current understanding of galaxy evolution still has many uncertainties associated with the details of the accretion, processing, and removal of gas across cosmic time. The next generation of radio telescopes will image the neutral hydrogen (H i) in galaxies over large volumes at high redshifts, which will provide key insights into these processes. We are conducting the COSMOS H i Large Extragalactic Survey (CHILES) with the Karl G. Jansky Very Large Array, which is the first survey to simultaneously observe H i from z = 0 to z ˜ 0.5. Here, we report the highest redshift H i 21 cm detection in emission to date of the luminous infrared galaxy COSMOS J100054.83+023126.2 at z = 0.376 with the first 178 hr of CHILES data. The total H i mass is (2.9 ± 1.0) × 1010 M ⊙ and the spatial distribution is asymmetric and extends beyond the galaxy. While optically the galaxy looks undisturbed, the H i distribution suggests an interaction with a candidate companion. In addition, we present follow-up Large Millimeter Telescope CO observations that show it is rich in molecular hydrogen, with a range of possible masses of (1.8-9.9) × 1010 M ⊙. This is the first study of the H i and CO in emission for a single galaxy beyond z ˜ 0.2.

  11. Detection of neutral hydrogen emission and optical nebulosity in the low redshift QSO 0351+026

    NASA Technical Reports Server (NTRS)

    Bothun, G. D.; Chanan, G. A.; Romanishin, W.; Margon, B.; Schommer, R. A.

    1982-01-01

    Spectroscopy, photometry, and imaging of the X-ray source 0351+026 are consistent with an active nucleus with the spectrum of a QSO or type I Seyfert, embedded in a low luminosity host galaxy of colors similar to M31. The H I observations reveal a tremendous amount of neutral gas associated with the system, M(H I)/L(B) = 15 in solar units, and the velocity width of the feature is 1500 km/s. Both parameters substantially exceed those seen in other galaxies and interacting pairs. The unique H I properties of the system combined with the presence of an active nucleus with QSO-like features is a tantalizing, but poorly understood, combination. At slightly larger redshift and thus inferior angular scale, this object would be indistinguishable from a QSO in its optical and X-ray characteristics.

  12. Copernicus observations of neutral hydrogen and deuterium in the direction of HR 1099

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Weiler, E. J.

    1979-01-01

    High-resolution Copernicus U1 scans were obtained of the bright RS CVn binary HR 1099 (d = 33 pc, galactic longitude = 185 deg, galactic latitude = -41 deg) in October 1977. Strong emission at L-alpha was detected. The interstellar L-alpha absorption features of H I and D I were also observed. Analyses of these interstellar lines are reported in this paper. The average density of neutral H in the direction of this system is found to be 0.006-0.012 per cu cm, which, because the local density is higher, requires a marked inhomogeneity along this line of sight. This result, when combined with other recent studies of the local interstellar medium, suggests the sun is located within a moderate-density H I region.

  13. Polarization of Lyman α Emergent from a Thick Slab of Neutral Hydrogen

    NASA Astrophysics Data System (ADS)

    Ahn, Sang-Hyeon; Lee, Hee-Won

    2015-06-01

    Star forming galaxies found in the early universe exhibit asymmetric Lyα emission line that results from multiple scattering in a neutral thick medium surrounding the Lyα emission source. It is expected that emergent Lyα will be significantly polarized through a large number of resonance scattering events followed by a number of successive wing scatterings. In this study we adopt a Monte Carlo method to calculate the polarization of Lyα transferred in a very thick static slab of HI. Resonantly scattered radiation associated with transitions between 1S 1/2 - 2P 1/2, 3/2 is only weakly polarized and therefore linear polarization of the emergent Lyα is mainly dependent on the number of off-resonant wing scattering events. The number of wing scattering events just before escape from the slab is determined by the product of the Doppler parameter a and the line center optical depth τ0, which, in turn, determines the behavior of the linear polarization of Lyα. This result is analogous to the study of polarized radiative transfer of Thomson scattered photons in an electron slab, where the emergent photons are polarized in the direction perpendicular to the slab when the scattering optical depth is small and polarized in the parallel direction when the slab is optically thick. Our simulated spectropolarimetry of Lyα shows that the line center is negligibly polarized, the near wing parts polarized in the direction parallel to the slab and the far wing parts are polarized in the direction perpendicular to the slab. We emphasize that the flip of polarization direction in the wing parts of Lyα naturally reflects the diffusive nature of the Lyα transfer process in thick neutral media.

  14. The fractionation factors of stable carbon and hydrogen isotope ratios for VOCs

    NASA Astrophysics Data System (ADS)

    Kawashima, H.

    2014-12-01

    Volatile organic compounds (VOCs) are important precursors of ozone and secondary organic aerosols in the atmosphere, some of which are carcinogenic, teratogenic, or mutagenic. VOCs in ambient air originate from many sources, including vehicle exhausts, gasoline evaporation, solvent use, natural gas emissions, and industrial processes, and undergo intricate chemical reactions in the atmosphere. To develop efficient air pollution remediation strategies, it is important to clearly identify the emission sources and elucidate the reaction mechanisms in the atmosphere. Recently, stable carbon isotope ratios (δ13C) of VOCs in some sources and ambient air have been measured by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). In this study, we measured δ13C and stable hydrogen isotope ratios (δD) of atmospheric VOCs by using the gas chromatography/thermal conversion/isotope ratio mass spectrometry coupled with a thermal desorption instrument (TD-GC/TC/IRMS). The wider δD differences between sources were found in comparison with the δ13C studies. Therefore, determining δD values of VOCs in ambient air is potentially useful in identifying VOC sources and their reactive behavior in the atmosphere. However, to elucidate the sources and behavior of atmospheric VOCs more accurately, isotopic fractionation during atmospheric reaction must be considered. In this study, we determined isotopic fractionation of the δ13C and δD values for the atmospheric some VOCs under irradiation conditions. As the results, δ13C for target all VOCs and δD for most VOCs were increasing after irradiation. But, the δD values for both benzene and toluene tended to decrease as irradiation time increased. We also estimated the fractionation factors for benzene and toluene, 1.27 and 1.05, respectively, which differed from values determined in previous studies. In summary, we were able to identify an inverse isotope effect for the δD values of benzene and toluene

  15. Fractionation of sulfur and hydrogen isotopes in Desulfovibrio vulgaris with perturbed DsrC expression.

    PubMed

    Leavitt, William D; Venceslau, Sofia S; Pereira, Inês A C; Johnston, David T; Bradley, Alexander S

    2016-10-01

    Dissimilatory sulfate reduction is the central microbial metabolism in global sulfur cycling. Understanding the importance of sulfate reduction to Earth's biogeochemical S cycle requires aggregating single-cell processes with geochemical signals. For sulfate reduction, these signals include the ratio of stable sulfur isotopes preserved in minerals, as well as the hydrogen isotope ratios and structures of microbial membrane lipids preserved in organic matter. In this study, we cultivated the model sulfate reducer, Desulfovibrio vulgaris DSM 644(T), to investigate how these parameters were perturbed by changes in expression of the protein DsrC. DsrC is critical to the final metabolic step in sulfate reduction to sulfide. S and H isotopic fractionation imposed by the wild type was compared to three mutants. Discrimination against (34)S in sulfate, as calculated from the residual reactant, did not discernibly differ among all strains. However, a closed-system sulfur isotope distillation model, based on accumulated sulfide, produced inconsistent results in one mutant strain IPFG09. Lipids produced by IPFG09 were also slightly enriched in (2)H. These results suggest that DsrC alone does not have a major impact on sulfate-S, though may influence sulfide-S and lipid-H isotopic compositions. While intriguing, a mechanistic explanation requires further study under continuous culture conditions.

  16. Probing the molecular hydrogen fraction in diffuse molecular clouds with observations of HCl+

    NASA Astrophysics Data System (ADS)

    Neufeld, David

    Using the GREAT instrument, we will observe the Doublet Pi 3/2 J = 5/2 - 3/2 transitions of the H-37Cl+ and (where not already observed in Cycle 4) the H-35Cl+ molecular ions at 1.442 and 1.444 THz, in absorption, toward the bright continuum sources Sgr B2 (M), W31C (G10.6-0.4), W49N, and W51. The observations will yield robust estimates of the HCl+ column densities in diffuse clouds lying along the sight-lines to those sources. Because HCl+ reacts rapidly and exothermically with H2 to yield H2Cl+, the abundance ratio HCl+/H2Cl+ is sensitive to the H2 abundance in the interstellar gas; combining the HCl+ measurements with ones already available for H2Cl+ will thus permit independent estimates of the molecular hydrogen fraction along the proposed sight-lines. This proposal follows up on a successful detection of HCl+ obtained in a pilot program performed in Cycle 4.

  17. Hydrogen isotope fractionation in leaf waxes in the Alaskan Arctic tundra

    NASA Astrophysics Data System (ADS)

    Daniels, William C.; Russell, James M.; Giblin, Anne E.; Welker, Jeffrey M.; Klein, Eric S.; Huang, Yongsong

    2017-09-01

    Leaf wax hydrogen isotopes (δDwax) are increasingly utilized in terrestrial paleoclimate research. Applications of this proxy must be grounded by studies of the modern controls on δDwax, including the ecophysiological controls on isotope fractionation at both the plant and landscape scales. Several calibration studies suggest a considerably smaller apparent fractionation between source water and waxes (εapp) at high latitudes relative to temperate or tropical locations, with major implications for paleoclimatic interpretations of sedimentary δDwax. Here we investigate apparent fractionation in the Arctic by tracing the isotopic composition of leaf waxes from production in modern plants to deposition in lake sediments using isotopic observations of precipitation, soil and plant waters, living leaf waxes, and waxes in sediment traps in the Brooks Range foothills of northern Alaska. We also analyze a lake surface sediment transect to compare present-day vegetation assemblages to εapp at the watershed scale. Source water and εapp were determined for live specimens of Eriophorum vaginatum (cottongrass) and Betula nana (dwarf birch), two dominant tundra plants in the Brooks Range foothills. The δD of these plants' xylem water closely tracks that of surface soil water, and reflects a summer-biased precipitation source. Leaf water is enriched by 23 ± 15‰ relative to xylem water for E. vaginatum and by 41 ± 19‰ for B. nana. Evapotranspiration modeling indicates that this leaf water enrichment is consistent with the evaporative enrichment expected under the climate conditions of northern Alaska, and that 24-h photosynthesis does not cause excessive leaf water isotope enrichment. The εapp determined for our study species average -89 ± 14‰ and -106 ± 16‰ for B. nana n-alkanes and n-acids, respectively, and -182 ± 10‰ and -154 ± 26‰ for E. vaginatum n-alkanes and n-acids, which are similar to the εapp of related species in temperate and tropical

  18. Hydrogen isotope fractionation between C-H-O species in magmatic fluids

    NASA Astrophysics Data System (ADS)

    Foustoukos, D. I.; Mysen, B. O.

    2012-12-01

    Constraining the hydrogen isotope fractionation between H-bearing volatiles (e.g. H2, CH4, hydrocarbons, H2O) as function of temperature and pressure helps to promote our understanding of the isotopic composition of evolved magmatic fluids and the overall mantle-cycling of water and reduced C-O-H volatiles. To describe the thermodynamics of the exchange reactions between the different H/D isotopologues of H2 and CH4 under supercritical water conditions, a novel experimental technique has been developed by combining vibrational Raman spectroscopy with hydrothermal diamond anvil cell designs (HDAC), which offers a method to monitor the in-situ evolution of H/D containing species. To this end, the equilibrium relationship between H2-D2-HD in supercritical fluid was investigated at temperatures ranging from 300 - 800 oC and pressures ~ 0.3 - 1.3 GPa [1]. Experimental results obtained in-situ and ex-situ show a significant deviation from the theoretical values of the equilibrium constant predicted for ideal-gas reference state, and with an apparent negative temperature effect triggered by the enthalpy contributions due to mixing in supercritical water. Here, we present a series of HDAC experiments conducted to evaluate the role of supercritical water on the isotopic equilibrium between H/D methane isotopologues at 600 - 800 oC and 409 - 1622 MPa. In detail, tetrakis-silane (Si5C12H36) was reacted with H2O-D2O aqueous solution in the presence of either Ni or Pt metal catalyst, resulting to the formation of deuterated methane species such as CH3D, CHD3, CH2D2 and CD4. Two distinctly different set of experiments ("gas phase"; "liquid phase") were performed by adjusting the silane/water proportions. By measuring the relative intensities of Raman vibrational modes of species, experimental results demonstrate distinctly different thermodynamic properties for the CH4-CH3D-CHD3-CH2D2 equilibrium in gas and liquid-water-bearing systems. In addition, the D/H molar ratio of

  19. On the Neutral Hydrogen Filament Between M31 and M33

    NASA Astrophysics Data System (ADS)

    Lockman, Felix J.; Free, N.; Shields, J. C.

    2012-01-01

    In 2004, Braun & Thilker (B&T) reported the detection of extremely faint 21cm HI emission at the level log10(NH)=17.0 that formed a partial bridge about 200 kpc in extent between M31 and M33. This has been interpreted as the neutral component of a WHIM filament, or the remnant of a past encounter between the two galaxies. B&T used data from the Westerbork Synthesis Radio Telescope, operated as an array of single dishes, to obtain the necessary sensitivity, but at the expense of angular resolution ( 45'). Subsequently, Putman et al (2009) have questioned the existence of this filament, noting its absence from the immediate vicinity of M33 at the level log10(NH) 18 in data from Arecibo. We have reobserved much of the region between M31 and M33 using the Green Bank Telescope (GBT) at 9' resolution, with a 5-sigma sensitivity limit of log10(NHI) 18.0 and a few much deeper pointings. We detect HI lines consistent with the B&T results. In two locations the emission appears at log(NHI)>18.3, suggesting clumping in the otherwise diffuse gas. We estimate the mass of HI in the bridge, and show examples of the GBT's freedom from instrumental effects down to detection levels of log(NHI) 17.0. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under a cooperative agreement by Associated Universities, Inc.

  20. Variation of bulk velocity and temperature anisotropy of neutral heliospheric hydrogen during the solar cycle.

    NASA Astrophysics Data System (ADS)

    Bzowski, M.; Fahr, H. J.; Rucinski, D.; Scherer, H.

    1997-10-01

    Using a time-dependent kinetic approach the density, bulk velocity vector, and temperature tensor of interstellar hydrogen in the inner Solar System in several phases of solar cycle were computed. Model solar cycle time-profiles of hydrogen ionisation rate and Lyman-α radiation pressure were used, solar latitudinal effects and filtration at the heliospheric interface were neglected. It was concluded that due to the joint action of solar ionisation and radiation pressure the bulk velocity of the gas is strongly variable during solar cycle and, within 15-30AU from the Sun, it significantly changes with the heliocentric distance both in magnituide and direction. The changes typically are about 15 km/s and exceed the thermal spread of the gas. The temperature is strongly anisotropic; the anisotropy is strongly variable in time and it fades off with the heliocentric distance. The projections of temperature tensor on various lines can change from 5000 to 11000K upwind and from ~12000 to 45000K downwind at 1AU and from 6000 to 8000K upwind and from 8000 to 15000K downwind at 10AU. For optical observations an important quantity is the radial temperature. For lines of sight directed radially away from the Sun the change of radial temperature along the sightline is strongest during solar minimum and it is equal to about 3000K in the upwind direction and to about 5000K in the downwind direction. The smallest change occurs during solar maximum. The upwind-to-downwind ratio of intensity of backscattered radiation varies during the solar cycle by about 20% around the mean value. A brief discussion of theoretical spectra of interplanetary lines is provided. The main conclusion is that for observations carried out from 1AU the Doppler shift of interplanetary lines corresponds to the bulk speed ``in infinity'' for the lines of sight directed downwind; for the lines of sight directed upwind the Doppler shift corresponds to the bulk speed increased by about 25% in comparison with

  1. The formation of S0 galaxies with counter-rotating neutral and molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Bassett, Robert; Bekki, Kenji; Cortese, Luca; Couch, Warrick

    2017-10-01

    The observation of counter-rotation in galaxies (i.e. gas that rotates in the opposite direction to the stellar component or two cospatial stellar populations with opposite rotation) is becoming more commonplace with modern integral field spectroscopic surveys. In this paper, we explore the emergence of counter-rotation (both stellar and gaseous) in S0 galaxies from smoothed-particle hydrodynamics simulations of 1/10 mass ratio minor mergers between a ∼1010.8 M⊙ disc galaxy with a bulge-to-total ratio of 0.17 and a gas-rich companion (gas-to-stellar mass fraction of 5.0). These simulations include a self-consistent treatment of gas dynamics, star formation, the production/destruction of H2 and dust and the time evolution of the interstellar radiation field. We explore the effect of retrograde versus prograde obits, gas and bulge mass fractions of the primary galaxy, and orbital parameters of the companion. The key requirement for producing counter-rotation in stars or gas in a merger remnant is a retrograde primary, while the relative spin of the companion affects only the radial extent of the accreted gas. We also find that including a significant amount of gas in the primary can prevent the emergence of counter-rotating gas, although accreted stars retain counter-rotation. Bulge mass and orbit have a secondary effect, generally influencing the final distribution of accreted stars and gas within the framework outlined above. In addition to our primary focus of counter-rotating components in galaxies, we also make some predictions regarding the SFRs, H2 distributions, and dust in minor-merger remnants.

  2. Infrared Spectra of Protonated Aromatic Hydrocarbons and Their Neutral Counterparts in Solid {PARA}-HYDROGEN

    NASA Astrophysics Data System (ADS)

    Bahou, Mohammed; Wu, Yu-Jong; Lee, Yuan-Pern

    2014-06-01

    Protonated polycyclic aromatic hydrocarbons (H+PAH) have been reported to have infrared (IR) bands at wavenumbers near those of unidentified infrared (UIR) emission bands from interstellar objects. However, recording IR spectra of H+PAH in laboratories is challenging. Two spectral methods have been employed previously to yield IR spectra of H+PAH. One employs IR multiphoton dissociation (IRMPD) of H+PAH, but the bands are broad and red-shifted. Another measures the single-photon IR photodissociation action spectrum of cold H+PAH tagged with a weakly bound ligand, such as Ar, but application of this method to large PAH is difficult. A new method for investigating IR spectra of H+PAH and their neutral counterparts was developed using electron bombardment during {p}-H2 matrix deposition. With this technique, we have recorded IR absorption spectra of protonated forms of benzene (C6H7+), naphthalene (1- and 2-C10H9+), pyrene (1-C16H11+), coronene (1-C24H13+), and their neutrals. The significant superiority of the spectra thus recorded to those with the Ar-tagging and IRMPD methods is demonstrated. The narrow widths of the lines enabled us to distinguish clearly between isomers 1-C10H9+ and 2-C10H9+; 2-C10H9+ was unstable and converted to 1-C10H9+ in less than 30 min. A survey of these experimental results shows that three major lines in the 7-9 μm region are red-shifted from 7.19, 7.45, and 8.13 μm of 1-C16H11+ to 7.37, 7.53, and 8.21 μm of 1-C24H13+, showing the direction towards the UIR bands near 7.6, 7.8, and 8.6 μm. In contrast, the line at 11.5 μm for 1-C16H11+ is blue-shifted to 11.4 μm for 1-C24H13+, showing the direction toward the UIR band near 11.2 μm. Other examples will be presented if time permits. O. Dopfer, PAHs and the Universe, 46, 103 (2011). A. M. Ricks, G. E. Douberly, M. A. Duncan, Astrophys. J., 702, 301 (2009). M. Bahou, Y.-J. Wu, Y.-P. Lee, J. Chem. Phys., 136, 154304 (2012) M. Bahou, Y.-J. Wu, Y.-P. Lee, Phys. Chem. Chem. Phys., 15, 1907

  3. Tracing Dense and Diffuse Neutral Hydrogen in the Halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    Moss, V. A.; Lockman, F. J.; McClure-Griffiths, N. M.

    2017-01-01

    We have combined observations of Galactic high-velocity H i from two surveys: a very sensitive survey from the Green Bank 140 ft Telescope with limited sky coverage, and the less sensitive but complete Galactic All Sky Survey from the 64 m Parkes Radio Telescope. The two surveys preferentially detect different forms of neutral gas due to their sensitivity. We adopt a machine learning approach to divide our data into two populations that separate across a range in column density: (1) a narrow line-width population typical of the majority of bright high velocity cloud components, and (2) a fainter, broad line-width population that aligns well with that of the population found in the Green Bank survey. We refer to these populations as dense and diffuse gas, respectively, and find that diffuse gas is typically located at the edges and in the tails of high velocity clouds, surrounding dense components in the core. A fit to the average spectrum of each type of gas in the Galactic All Sky Survey data reveals the dense population to have a typical line width of ˜20 km s-1 and brightness temperature of ˜0.3 K, while the diffuse population has a typical line width of ˜30 km s-1 and a brightness temperature of ˜0.2 K. Our results confirm that most surveys of high velocity gas in the Milky Way halo are missing the majority of the ubiquitous diffuse gas, and that this gas is likely to contribute at least as much mass as the dense gas.

  4. INTERACTING GALACTIC NEUTRAL HYDROGEN FILAMENTS AND ASSOCIATED HIGH-FREQUENCY CONTINUUM EMISSION

    SciTech Connect

    Verschuur, Gerrit L.

    2013-05-10

    Galactic H I emission profiles in an area where several large-scale filaments at velocities ranging from -46 km s{sup -1} to 0 km s{sup -1} overlap were decomposed into Gaussian components. Eighteen families of components defined by similarities of center velocity and line width were identified and related to small-scale structure in the high-frequency continuum emission observed by the Wilkinson Microwave Anisotropy Probe spacecraft, as evidenced in the Internal Linear Combination (ILC) map of Hinshaw et al. When the center velocities of the Gaussian families, which summarize the properties of all the H I along the lines of sight in a given area, are used to focus on H I channel maps the phenomenon of close associations between H I and ILC peaks reported in previous papers is dramatically highlighted. Of particular interest, each of two pairs of H I peaks straddles a continuum peak. The previously hypothesized model for producing the continuum radiation involving free-free emission from electrons is re-examined in light of the new data. By choosing reasonable values for the parameters required to evaluate the model, the distance for associated H I-ILC features is of order 30-100 pc. No associated H{alpha} radiation is expected because the electrons involved exist throughout the Milky Way. The mechanism for clumping and separation of neutrals and electrons needs to be explored. It is concluded that the small-scale ILC structure originates in the local interstellar medium and not at cosmological distances.

  5. Photocatalytic hydrogen evolution from carbon-neutral oxalate with 2-phenyl-4-(1-naphthyl)quinolinium ion and metal nanoparticles.

    PubMed

    Yamada, Yusuke; Miyahigashi, Takamitsu; Ohkubo, Kei; Fukuzumi, Shunichi

    2012-08-14

    Photocatalytic hydrogen evolution has been made possible by using oxalate as a carbon-neutral electron source, metal nanoparticles as hydrogen-evolution catalysts and the 2-phenyl-4-(1-naphthyl)quinolinium ion (QuPh(+)-NA), which forms the long-lived electron-transfer state upon photoexcitation, as a photocatalyst. The hydrogen evolution was conducted in a deaerated mixed solution of an aqueous buffer and acetonitrile (MeCN) [1:1 (v/v)] by photoirradiation (λ > 340 nm). The gas evolved during the photocatalytic reaction contained H(2) and CO(2) in a molar ratio of 1:2, indicating that oxalate acts as a two-electron donor. The hydrogen yield based on the amount of oxalate reached more than 80% under pH conditions higher than 6. Ni and Ru nanoparticles as well as Pt nanoparticles act as efficient hydrogen-evolution catalysts in the photocatalytic hydrogen evolution. The photocatalyst for hydrogen evolution can be used several times without significant deactivation of the catalytic activity. Nanosecond laser flash photolysis measurements have revealed that electron transfer from oxalate to the photogenerated QuPh˙-NA˙(+), which forms a π-dimer radical cation with QuPh(+)-NA [(QuPh˙-NA˙(+))(QuPh(+)-NA)], occurs followed by subsequent electron transfer from QuPh˙-NA to the hydrogen-evolution catalyst in the photocatalytic hydrogen evolution. Oxalate acts as an efficient electron source under a wide range of reaction conditions.

  6. The redshift evolution of escape fraction of hydrogen ionizing photons from galaxies

    NASA Astrophysics Data System (ADS)

    Khaire, Vikram; Srianand, Raghunathan; Choudhury, Tirthankar Roy; Gaikwad, Prakash

    2016-04-01

    Using our cosmological radiative transfer code, we study the implications of the updated quasi-stellar object (QSO) emissivity and star formation history for the escape fraction (fesc) of hydrogen ionizing photons from galaxies. We estimate the fesc that is required to reionize the Universe and to maintain the ionization state of the intergalactic medium in the post-reionization era. At z > 5.5, we show that a constant fesc of 0.14-0.22 is sufficient to reionize the Universe. At z < 3.5, consistent with various observations, we find that fesc can have values from 0 to 0.05. However, a steep rise in fesc, of at least a factor of ˜3, is required between z = 3.5 and 5.5. It results from a rapidly decreasing QSO emissivity at z > 3 together with a nearly constant measured H I photoionization rates at 3 < z < 5. We show that this requirement of a steep rise in fesc over a very short time can be relaxed if we consider the contribution from a recently found large number density of faint QSOs at z ≥ 4. In addition, a simple extrapolation of the contribution of such QSOs to high-z suggests that QSOs alone can reionize the Universe. This implies, at z > 3.5, that either the properties of galaxies should evolve rapidly to increase the fesc or most of the low-mass galaxies should host massive black holes and sustain accretion over a prolonged period. These results motivate a careful investigation of theoretical predictions of these alternate scenarios that can be distinguished using future observations. Moreover, it is also very important to revisit the measurements of H I photoionization rates that are crucial to the analysis presented here.

  7. The plasma membrane-enriched fraction proteome response during adaptation to hydrogen peroxide in Saccharomyces cerevisiae.

    PubMed

    Pedroso, Nuno; Gomes-Alves, Patrícia; Marinho, H Susana; Brito, Verônica B; Boada, Cristina; Antunes, Fernando; Herrero, Enrique; Penque, Deborah; Cyrne, Luísa

    2012-10-01

    In Saccharomyces cerevisiae, adaptation to hydrogen peroxide (H₂O₂) decreases plasma membrane permeability to H₂O₂, changes its lipid composition and reorganizes ergosterol-rich microdomains by a still unknown mechanism. Here we show, by a quantitative analysis of the H₂O₂-induced adaptation effect on the S. cerevisiae plasma membrane-enriched fraction proteome, using two-dimensional gel electrophoresis, that 44 proteins are differentially expressed. Most of these proteins were regulated at a post-transcriptional level. Fourteen of these proteins contain redox-sensitive cysteine residues and nine proteins are associated with lipid and vesicle traffic. In particular, three proteins found in eisosomes and in the eisosome-associated membrane compartment occupied by Can1p were up-regulated (Pil1p, Rfs1p and Pst2p) during adaptation to H₂O₂. Survival studies after exposure to lethal H₂O₂ doses using yeast strains bearing a gene deletion corresponding to proteins associated to lipid and vesicle traffic demonstrated for the first time that down-regulation of Kes1p, Vps4p and Ynl010wp and up-regulation of Atp1 and Atp2 increases resistance to H₂O₂. Moreover, for the pil1Δ strain, H₂O₂ at low levels produces a hormetic effect by increasing proliferation. In conclusion, these data further confirms the plasma membrane as an active cellular site during adaptation to H₂O₂ and shows that proteins involved in lipid and vesicle traffic are important mediators of H₂O₂ adaptation.

  8. Growth phase dependent hydrogen isotopic fractionation in alkenone-producing haptophytes

    NASA Astrophysics Data System (ADS)

    Wolhowe, M. D.; Prahl, F. G.; Probert, I.; Maldonado, M.

    2009-08-01

    Recent works have investigated use of the hydrogen isotopic composition of C37 alkenones (δDK37s, lipid biomarkers of certain haptophyte microalgae, as an independent paleosalinity proxy. We discuss herein the factors impeding the success of such an application and identify the potential alternative use of δDK37s measurements as a proxy for non-thermal, physiological stress impacts on the U37K' paleotemperature index. Batch-culture experiments with the haptophyte Emiliania huxleyi (CCMP 1742) were conducted to determine the magnitude and variability of the isotopic contrasts between individual C37 alkenones. Further experiments were conducted with Emiliania huxleyi (CCMP 1742) andGephyrocapsa oceanica (PZ3-1) to determine whether, and to what extent, δDK37s varies between the physiological extremes of nutrient-replete exponential growth and nutrient-depleted senescence. Emiliania huxleyi was observed to exhibit an isotopic contrast between di- and tri-unsaturated C37 alkenones (αK37:3-K37:2≈0.97) that is nearly identical to that reported recently by others for environmental samples. Furthermore, this contrast appears to be constant with growth stage. The consistency of the offset across different growth stages suggests that a single, well-defined value for αK37:3-K37:2 may exist and that its use in an isotope mass-balance will allow accurate determination of δD values for individual alkenones without having to rely on time- and labor-intensive chemical separations. The isotopic fractionation between growth medium and C37 alkenones was observed to increase dramatically upon the onset of nutrient-depletion-induced senescence, suggesting that δDK37s may serve as an objective tool for recognizing and potentially correcting, at least semi-quantitatively, for the effects of nutrient stress on U37K' temperature records.

  9. Distribution of metals in acid-base-neutral fractions of Cerro Negro 550-700 degree C distillate and 700 degree C+ residue

    SciTech Connect

    Pearson, C.D.; Green, J.A.; Green, J.B.; Anderson, R.P. )

    1989-04-01

    Heavy crude oils generally have high metals content and are difficult to upgrade. Vanadium and nickel are among the most common metals and can cause catalyst poisoning and corrosion during processing. The continuing decrease in reserves of conventional crude oil has made it increasingly important that new techniques be developed for demetallization to permit upgrading and use of these difficult resources. Knowledge of the chemical composition of nickel and vanadium complexes in petroleum will assist the process designer to devise better demetallization processes. This paper describes a new approach to the speciation of metals in crude oils and residues. The Cerro Negro 550-700{degree}C distillate and 700{degree}C+ residue are broken down into acid, base, and neutral fractions and the nickel, vanadium, and iron determined in each fraction. An attempt is made to answer the questions: (1) is distribution governed by the chemical structure of the metalloorganic molecules; (2) within a given chemical fraction, are subfractions present which contain a major portion of the total metal content; (3) does the particular metal (i.e., Ni vs V) affect the separation behavior This paper is the sixth and final chapter in a book describing the development of analytical methodology for the analytical characterization of Cerro Negro Orinoco belt crude oil. Chapters already published address the distillation and determination of routine physical and chemical properties, the separation of acid, base, and neutral fractions and saturate/aromatic split of the neutral fractions, and the detailed separation and analysis of sulfur compounds and aromatic hydrocarbons. The chapters on detailed separation and analysis of acidic and basic compounds are currently being written. They are based on previously reported analytical procedures.

  10. Evidence for Neutral-Current Diffractive π0 Production from Hydrogen in Neutrino Interactions on Hydrocarbon

    SciTech Connect

    Wolcott, J.; Aliaga, L.; Altinok, O.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Chvojka, J.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Endress, E.; Felix, J.; Fields, L.; Fine, R.; Galindo, R.; Gallagher, H.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman,; Osta, J.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Solano Salinas, C. J.; Sánchez Falero, S.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wospakrik, M.; Zhang, D.

    2016-09-01

    Here, the MINERvA experiment observes an excess of events containing electromagnetic showers relative to the expectation from Monte Carlo simulations in neutral-current neutrino interactions with mean beam energy of 4.5 GeV on a hydrocarbon target. The excess is characterized and found to be consistent with neutral-current π0 production with a broad energy distribution peaking at 7 GeV and a total cross section of 0.26 $\\pm$ 0.02 (stat) $\\pm$ 0.08 (sys) x $10^{-39} cm^{2}$. The angular distribution, electromagnetic shower energy, and spatial distribution of the energy depositions of the excess are consistent with expectations from neutrino neutral-current diffractive neutral pion production from hydrogen in the hydrocarbon target. These data comprise the first direct experimental observation and constraint for a reaction that poses an important background process in neutrino oscillation experiments searching for $\

  11. Evidence for Neutral-Current Diffractive π0 Production from Hydrogen in Neutrino Interactions on Hydrocarbon

    SciTech Connect

    Wolcott, J.; Aliaga, L.; Altinok, O.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Chvojka, J.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Endress, E.; Felix, J.; Fields, L.; Fine, R.; Galindo, R.; Gallagher, H.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman,; Osta, J.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Solano Salinas, C. J.; Sánchez Falero, S.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wospakrik, M.; Zhang, D.

    2016-09-01

    Here, the MINERvA experiment observes an excess of events containing electromagnetic showers relative to the expectation from Monte Carlo simulations in neutral-current neutrino interactions with mean beam energy of 4.5 GeV on a hydrocarbon target. The excess is characterized and found to be consistent with neutral-current π0 production with a broad energy distribution peaking at 7 GeV and a total cross section of 0.26 $\\pm$ 0.02 (stat) $\\pm$ 0.08 (sys) x $10^{-39} cm^{2}$. The angular distribution, electromagnetic shower energy, and spatial distribution of the energy depositions of the excess are consistent with expectations from neutrino neutral-current diffractive neutral pion production from hydrogen in the hydrocarbon target. These data comprise the first direct experimental observation and constraint for a reaction that poses an important background process in neutrino oscillation experiments searching for $\

  12. Towards a palaeosalinity proxy: hydrogen isotopic fractionation between source water and lipids produced via different biosynthetic pathways in haptophyte algae

    NASA Astrophysics Data System (ADS)

    Chivall, David; M'Boule, Daniela; Heinzelmann, Sandra M.; Kasper, Sebastian; Sinke-Schoen, Daniëlle; Sininnghe-Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2014-05-01

    Palaeosalinity is one of the most important oceanographic parameters that cannot currently be quantified with reasonable accuracy from sedimentary records. Hydrogen isotopic fractionation between water and alkenones is dependent, amongst other factors, upon the salinity in which alkenone-producing haptophyte algae grow and is represented by the fractionation factor, α, increasing with salinity.1 As such, the hydrogen isotopic composition of alkenones is emerging as a palaeosalinity proxy. Understanding the mechanism behind the sensitivity of fractionation to salinity is important for the correct application of the proxy, however this mechanism is currently unknown. Here we present hydrogen isotopic compositions of lipids produced via different biosynthetic pathways from batch cultures of Emiliania huxleyi CCMP 1516 and Isochrysis galbana CCMP 1323 grown over a range of salinities and discuss the possible sources of the sensitivity of hydrogen isotope fractionation to salinity. α for C37 alkenones (produced via an unknown biosynthetic pathway but assumed to be acetogenic; e.g.2) and that for C14:0, C16:0, and C18:1 fatty acids (acetogenic) from exponential growth phase I. galbana show a similar sensitivity to salinity, increasing at 0.0013-0.0019 per salinity unit (S-1). Meanwhile, in exponential growth phase E. huxleyi, α for C37 alkenones and α for brassicasterol (mevalonate pathway) increase at 0.0015-0.0022 S-1, but α for phytol (methylerythritol pathway) shows no significant relationship with salinity. These results suggest that fractionation is sensitive to salinity for lipids formed both in the chloroplast and cytosol. They also suggest that the sensitivity may either originate in glyceralde-3-phosphate or pyruvate but is then lost through hydrogen exchange with cell water during sugar rearrangements in the methylerythritol pathway or sensitivity originates with the production and consumption of acetate. References Schouten, S., Ossebaar, J., Schreiber

  13. Low pressure and high power rf sources for negative hydrogen ions for fusion applications (ITER neutral beam injection).

    PubMed

    Fantz, U; Franzen, P; Kraus, W; Falter, H D; Berger, M; Christ-Koch, S; Fröschle, M; Gutser, R; Heinemann, B; Martens, C; McNeely, P; Riedl, R; Speth, E; Wünderlich, D

    2008-02-01

    The international fusion experiment ITER requires for the plasma heating and current drive a neutral beam injection system based on negative hydrogen ion sources at 0.3 Pa. The ion source must deliver a current of 40 A D(-) for up to 1 h with an accelerated current density of 200 Am/(2) and a ratio of coextracted electrons to ions below 1. The extraction area is 0.2 m(2) from an aperture array with an envelope of 1.5 x 0.6 m(2). A high power rf-driven negative ion source has been successfully developed at the Max-Planck Institute for Plasma Physics (IPP) at three test facilities in parallel. Current densities of 330 and 230 Am/(2) have been achieved for hydrogen and deuterium, respectively, at a pressure of 0.3 Pa and an electron/ion ratio below 1 for a small extraction area (0.007 m(2)) and short pulses (<4 s). In the long pulse experiment, equipped with an extraction area of 0.02 m(2), the pulse length has been extended to 3600 s. A large rf source, with the width and half the height of the ITER source but without extraction system, is intended to demonstrate the size scaling and plasma homogeneity of rf ion sources. The source operates routinely now. First results on plasma homogeneity obtained from optical emission spectroscopy and Langmuir probes are very promising. Based on the success of the IPP development program, the high power rf-driven negative ion source has been chosen recently for the ITER beam systems in the ITER design review process.

  14. Synthesis and characterization of higher amino acid Schiff bases, as monosodium salts and neutral forms. Investigation of the intramolecular hydrogen bonding in all Schiff bases, antibacterial and antifungal activities of neutral forms

    NASA Astrophysics Data System (ADS)

    Güngör, Özlem; Gürkan, Perihan

    2014-09-01

    Schiff bases derived from 5-nitro-salicylaldehyde and 4-aminobutyric acid, 5-aminopentanoic acid and 6-aminohexanoic acid were synthesized both as monosodium salts (1a-3a) and neutral forms (1b-3b). The monosodium-Schiff bases were characterized by elemental analysis, 1H/13C NMR, IR, powder XRD, UV-vis spectra and conductivity measurements. The neutral-Schiff bases were characterized by elemental analysis, 1H/13C NMR, 2D NMR (HMQC), mass, IR, powder XRD, UV-vis spectra and conductivity measurements. The intramolecular hydrogen bonding and related tautomeric equilibria in all the Schiff bases were studied by UV-vis and 1H NMR spectra in solution. Additionally, the neutral-Schiff bases were screened against Staphylococcus aureus-EB18, S. aureus-ATCC 25923, Escherichia coli-ATCC 11230, Candida albicans-M3 and C. albicans-ATCC 16231.

  15. A solid-contact pH-selective electrode based on tridodecylamine as hydrogen neutral ionophore

    NASA Astrophysics Data System (ADS)

    Zhang, Jianxin; Guo, Yixuan; Li, Shangjin; Xu, Hui

    2016-10-01

    The solid-state pH electrode has the potential possibility to be used in many extreme situations with satisfactory accuracy and low cost. But its performance is affected by the solid electrolyte, preparation process, and the structure of the sensitive membrane, etc. In this work, the relationships between these factors and the characteristic of the prepared electrode were verified by controlling the preparation conditions with a variety of electrochemical methods. Firstly, the solid electrolyte poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) was electrochemically deposited on the screen-printed carbon electrode (SPCE) substrate by a potentiostatic method in an aqueous solution containing 0.01 M 3,4-ethylenedioxythiophene (EDOT) and 0.1 M polystyrene sulfonic (PSS) acid as the supporting electrolyte. The PEDOT films were then characterized by cyclic voltammetry (CV) in the 0.1 M NaNO3 aqueous solution in order to obtain the optimized polymerization potential and charges where the PEDOT film would have a higher redox capacitance. Finally, the pH electrode was prepared by coating the SPCE/PEDOT(PSS) with a plasticized polyvinyl chloride (PVC) membrane containing tridodecylamine as hydrogen ionophore manually, and experiments were carried out to study the effect of the usage of PVC per square millimeter on the response time and stability of the electrode to optimize the PVC film thickness. The potentiometric response of the pH electrode was studied in the buffer solutions with pH ranging from 5.00 to 10.81 by the open-circuit potential (OCP) method. Experimental results show that the sensitivity of the electrode is  -55.7  ±  0.5 mV pH-1 (r 2  >  0.9980) at room temperature (24  ±  1 °C) with pH ranging from 2.00-10.50, approximating to the theoretical nernstian slope (-59.16 mV pH-1),and the response time was less than 10 s. Moreover, it has low impedance, high accuracy and potential stability as well as some

  16. THE COS-HALOS SURVEY: RATIONALE, DESIGN, AND A CENSUS OF CIRCUMGALACTIC NEUTRAL HYDROGEN

    SciTech Connect

    Tumlinson, Jason; Thom, Christopher; Sembach, Kenneth R.; Werk, Jessica K.; Prochaska, J. Xavier; Davé, Romeel; Oppenheimer, Benjamin D.; Ford, Amanda Brady; O'Meara, John M.; Peeples, Molly S.; Weinberg, David H.

    2013-11-01

    We present the design and methods of the COS-Halos survey, a systematic investigation of the gaseous halos of 44 z = 0.15-0.35 galaxies using background QSOs observed with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope. This survey has yielded 39 spectra of z{sub em} ≅ 0.5 QSOs with S/N ∼10-15 per resolution element. The QSO sightlines pass within 150 physical kpc of the galaxies, which span early and late types over stellar mass log M{sub *}/M{sub ☉} = 9.5-11.5. We find that the circumgalactic medium exhibits strong H I, averaging ≅ 1 Å in Lyα equivalent width out to 150 kpc, with 100% covering fraction for star-forming galaxies and 75% covering for passive galaxies. We find good agreement in column densities between this survey and previous studies over similar range of impact parameter. There is weak evidence for a difference between early- and late-type galaxies in the strength and distribution of H I. Kinematics indicate that the detected material is bound to the host galaxy, such that ∼> 90% of the detected column density is confined within ±200 km s{sup –1} of the galaxies. This material generally exists well below the halo virial temperatures at T ∼< 10{sup 5} K. We evaluate a number of possible origin scenarios for the detected material, and in the end favor a simple model in which the bulk of the detected H I arises in a bound, cool, low-density photoionized diffuse medium that is generic to all L* galaxies and may harbor a total gaseous mass comparable to galactic stellar masses.

  17. Spatial Variations of Turbulent Properties in Neutral Hydrogen Observations of the Small Magellanic Cloud Using Structure Function Analysis

    NASA Astrophysics Data System (ADS)

    Nestingen-Palm, David; Stanimirovic, Snezana; Babler, Brian L.; Gonzalez Casanova, Diego; Jameson, Katherine; Bolatto, Alberto D.

    2017-01-01

    Turbulence is known to play a key role in shaping the many structures and features which make the Interstellar Medium (ISM) so interesting to study. It is still not understood, however, which processes are responsible for the turbulence in the ISM, and the scales at which these processes dominate. In our study, we use the structure function to analyze neutral hydrogen (HI) observations of the Small Magellanic Cloud (SMC) to search for spacial variations in turbulent properties. Using an estimate of the star formation surface density as a guide, we separate the HI SMC observations into a central region which contains star formation rate (SFR) regions above a certain contour level, and an outer region which has SFR values below the chosen contour level. Our contour level begins at 1e-3 M⊙yr-1kpc-2 and is raised to 5e-3 M⊙yr-1kpc-2 by increments of 1e-4 M⊙yr-1kpc-2. At each contour level, we calculate the HI structure function slope for both the central and outer region by applying the Velocity Channel Analysis (VCA) and progressively averaging HI velocity channels. Our preliminary results suggest a difference in the slopes of both velocity and density fields between the inner and outer SMC.

  18. Spatial Variations of Turbulent Properties of Neutral Hydrogen Gas in the Small Magellanic Cloud Using Structure-function Analysis

    NASA Astrophysics Data System (ADS)

    Nestingen-Palm, David; Stanimirović, Snežana; González-Casanova, Diego F.; Babler, Brian; Jameson, Katherine; Bolatto, Alberto

    2017-08-01

    We investigate spatial variations of turbulent properties in the Small Magellanic Cloud (SMC) by using neutral hydrogen (H i) observations. With the goal of testing the importance of stellar feedback on H i turbulence, we define central and outer SMC regions based on the star formation rate (SFR) surface density, as well as the H i integrated intensity. We use the structure function and the velocity channel analysis to calculate the power-law index (γ) for both underlying density and velocity fields in these regions. In all cases, our results show essentially no difference in γ between the central and outer regions. This suggests that H i turbulent properties are surprisingly homogeneous across the SMC when probed at a resolution of 30 pc. Contrary to recent suggestions from numerical simulations, we do not find a significant change in γ due to stellar feedback as traced by the SFR surface density. This could be due to the stellar feedback being widespread over the whole of the SMC, but more likely due to a large-scale gravitational driving of turbulence. We show that the lack of difference between central and outer SMC regions cannot be explained by the high optical depth H I.

  19. Growth phase dependent hydrogen isotopic fractionation in alkenone-producing haptophytes

    NASA Astrophysics Data System (ADS)

    Wolhowe, M. D.; Prahl, F. G.; Probert, I.; Maldonado, M.

    2009-04-01

    Several recent works have investigated use of the hydrogen isotopic composition of C37 alkenones (δDK37s), lipid biomarkers of certain haptophyte microalgae, as an independent paleosalinity proxy. We discuss herein the factors impeding the success of such an application and identify the potential alternative use of δDK37s measurements as a proxy for non-thermal, physiological stress impacts on the U37K' paleotemperature index. Batch-culture experiments with the haptophyte Emiliania huxleyi (CCMP 1742) were conducted to determine the magnitude and variability of the isotopic contrasts between individual C37 alkenones, an analytical impediment to the use of δDK37s in any paleoceanographic context. Further experiments were conducted with Emiliania huxleyi (CCMP 1742) and Gephyrocapsa oceanica (PZ3-1) to determine whether, and to what extent, δDK37s varies between the physiological extremes of nutrient-replete exponential growth and nutrient-depleted senescence, the basis for our proposed use of the measurement as an indicator of stress. Emiliania huxleyi exhibited an isotopic contrast between di- and tri-unsaturated C37 alkenones (αK37:3-K37:2≈0.97) that is nearly identical to that reported recently by others for environmental samples. Furthermore, this contrast appears to be constant with growth stage. The consistency of the offset across different growth stages suggests that a single, well-defined value for αK37:3-K37:2 exists and that its use in an isotope mass-balance will allow accurate determination of δD values for individual alkenones without having to rely on time- and labor-intensive chemical separations. The isotopic fractionation between growth medium and C37 alkenones was observed to increase dramatically upon the onset of nutrient-depletion-induced senescence, suggesting that δDK37s may serve as an objective tool for recognizing and potentially correcting, at least semi-quantitatively, for the effects of nutrient stress on U37K' temperature

  20. Intermolecular hydrogen bonding between neutral transition metal hydrides (eta(5)-C5H5)M(CO)3H (M = Mo, W) and bases.

    PubMed

    Belkova, Natalia V; Gutsul, Evgenii I; Filippov, Oleg A; Levina, Vladislava A; Valyaev, Dmitriy A; Epstein, Lina M; Lledos, Agusti; Shubina, Elena S

    2006-03-22

    The interaction of CpM(CO)3H (M = Mo, W) hydrides as proton donors with different bases (B = pyridine, (n-Oc)3PO, ((CH3)2N)3PO, H3BNEt3) was studied by variable temperature IR spectroscopy and theoretically by DFT/B3LYP calculations. The data obtained show for the first time the formation of intermolecular hydrogen bonds between the neutral transition metal hydrides and bases in solutions of low polarity. These M-H...B hydrogen bonds are shown to precede the hydrides' deprotonation.

  1. FeP nanoparticles film grown on carbon cloth: an ultrahighly active 3D hydrogen evolution cathode in both acidic and neutral solutions.

    PubMed

    Tian, Jingqi; Liu, Qian; Liang, Yanhui; Xing, Zhicai; Asiri, Abdullah M; Sun, Xuping

    2014-12-10

    In this Letter, we demonstrate the direct growth of FeP nanoparticles film on carbon cloth (FeP/CC) through low-temperature phosphidation of its Fe3O4/CC precursor. Remarkably, when used as an integrated 3D hydrogen evolution cathode, this FeP/CC electrode exhibits ultrahigh catalytic activity comparable to commercial Pt/C and good stability in acidic media. This electrode also performs well in neutral solutions. This work offers us the most cost-effective and active 3D cathode toward electrochemical water splitting for large-scale hydrogen fuel production.

  2. NEUTRAL HYDROGEN OPTICAL DEPTH NEAR STAR-FORMING GALAXIES AT z Almost-Equal-To 2.4 IN THE KECK BARYONIC STRUCTURE SURVEY

    SciTech Connect

    Rakic, Olivera; Schaye, Joop; Steidel, Charles C.; Rudie, Gwen C.

    2012-06-01

    We study the interface between galaxies and the intergalactic medium by measuring the absorption by neutral hydrogen in the vicinity of star-forming galaxies at z Almost-Equal-To 2.4. Our sample consists of 679 rest-frame UV-selected galaxies with spectroscopic redshifts that have impact parameters <2 (proper) Mpc to the line of sight of one of the 15 bright, background QSOs and that fall within the redshift range of its Ly{alpha} forest. We present the first two-dimensional maps of the absorption around galaxies, plotting the median Ly{alpha} pixel optical depth as a function of transverse and line-of-sight separation from galaxies. The Ly{alpha} optical depths are measured using an automatic algorithm that takes advantage of all available Lyman series lines. The median optical depth, and hence the median density of atomic hydrogen, drops by more than an order of magnitude around 100 kpc, which is similar to the virial radius of the halos thought to host the galaxies. The median remains enhanced, at the >3{sigma} level, out to at least 2.8 Mpc (i.e., >9 comoving Mpc), but the scatter at a given distance is large compared with the median excess optical depth, suggesting that the gas is clumpy. Within 100 (200) kpc, and over {+-}165 km s{sup -1}, the covering fraction of gas with Ly{alpha} optical depth greater than unity is 100{sup +0}{sub -32}% (66% {+-} 16%). Absorbers with {tau}{sub Ly{alpha}} > 0.1 are typically closer to galaxies than random. The mean galaxy overdensity around absorbers increases with the optical depth and also as the length scale over which the galaxy overdensity is evaluated is decreased. Absorbers with {tau}{sub Ly{alpha}} {approx} 1 reside in regions where the galaxy number density is close to the cosmic mean on scales {>=}0.25 Mpc. We clearly detect two types of redshift space anisotropies. On scales <200 km s{sup -1}, or <1 Mpc, the absorption is stronger along the line of sight than in the transverse direction. This 'finger of God

  3. Changes in the Total Lipid, Neutral Lipid, Phospholipid and Fatty Acid Composition of Phospholipid Fractions during Pastırma Processing, a Dry-Cured Meat Product

    PubMed Central

    Aksu, Muhammet Irfan; Dogan, Mehmet

    2017-01-01

    Pastırma is a dry-cured meat product, produced from whole beef or water buffalo muscles. This study was carried out to investigate the effect of production stages (raw meat, after curing, after 2nd drying and pastırma) on the total lipid, neutral lipid, phospholipid and fatty acid composition of phospholipid fraction of pastırma produced from beef M. Longissimus dorsi muscles. The pH and colour (L*, a* and b*) analyses were also performed in raw meat and pastırma. It was found that pastırma production stages had significant effects (p<0.01) on the total amounts of lipid, neutral lipid and phospholipid, and the highest amounts of lipid, neutral lipid and phospholipid were detected in pastırma. In pastırma, neutral lipid ratio was determined as 79.33±2.06% and phospholipid ratio as 20.67±2.06%. Phospholipids was proportionately lower in pastırma than raw meat. Pastırma production stages affected pentadecanoic acid (15:1) (p<0.01), linoleic acid (18:2n-6) (p<0.05), γ-linoleic acid (18:3n-6) (p<0.05), erucic acid (22:1n-9) (p<0.05), docosapentaenoic acid (22:5n-6) (p<0.05), total unsaturated fatty acid (ΣUSFA) (p<0.05) and total saturated fatty acid (ΣSFA) (p<0.05) ratios of phospholipid fraction and also the moisture content (p<0.01). Pastırma process also affected pH and colour (L*, a* and b*) values (p<0.01), and these values were higher in pastırma than raw meat. PMID:28316467

  4. The effects of neutralized particles on the sampling efficiency of polyurethane foam used to estimate the extrathoracic deposition fraction.

    PubMed

    Tomyn, Ronald L; Sleeth, Darrah K; Thiese, Matthew S; Larson, Rodney R

    2016-01-01

    In addition to chemical composition, the site of deposition of inhaled particles is important for determining the potential health effects from an exposure. As a result, the International Organization for Standardization adopted a particle deposition sampling convention. This includes extrathoracic particle deposition sampling conventions for the anterior nasal passages (ET1) and the posterior nasal and oral passages (ET2). This study assessed how well a polyurethane foam insert placed in an Institute of Occupational Medicine (IOM) sampler can match an extrathoracic deposition sampling convention, while accounting for possible static buildup in the test particles. In this way, the study aimed to assess whether neutralized particles affected the performance of this sampler for estimating extrathoracic particle deposition. A total of three different particle sizes (4.9, 9.5, and 12.8 µm) were used. For each trial, one particle size was introduced into a low-speed wind tunnel with a wind speed set a 0.2 m/s (∼40 ft/min). This wind speed was chosen to closely match the conditions of most indoor working environments. Each particle size was tested twice either neutralized, using a high voltage neutralizer, or left in its normal (non neutralized) state as standard particles. IOM samplers were fitted with a polyurethane foam insert and placed on a rotating mannequin inside the wind tunnel. Foam sampling efficiencies were calculated for all trials to compare against the normalized ET1 sampling deposition convention. The foam sampling efficiencies matched well to the ET1 deposition convention for the larger particle sizes, but had a general trend of underestimating for all three particle sizes. The results of a Wilcoxon Rank Sum Test also showed that only at 4.9 µm was there a statistically significant difference (p-value = 0.03) between the foam sampling efficiency using the standard particles and the neutralized particles. This is interpreted to mean that static

  5. Observations and kinematic modeling of neutral hydrogen in spiral galaxies: Implications for disk-halo flows and accretion

    NASA Astrophysics Data System (ADS)

    Zschaechner, Laura Kristina

    Recent realizations concerning kinematic measurements of extra-planar layers in nearby galaxies may provide important clues to the origin of such layers and thereby the growth and evolution of galaxy disks. In particular, observations have shown a decrease in rotation speed with height (lags) in the extra-planar layers of multiple galaxies, leading to various models which attempt to understand this gradient in terms of disk-halo flows and accretion of primordial gas. In this thesis we present deep observations and detailed kinematic models of neutral hydrogen (HI) in five nearby, edge-on spiral galaxies (NGC 4244, NGC 4565, NGC 4302, NGC 3044 and NGC 4013) observed with the Very Large Array and the Westerbork Synthesis Radio Telescope. These models provide insight concerning both the morphology and kinematics of HI above and within the disk, especially in terms of their lags. Characterization of the magnitude and radial variation of lags aids in determining whether extra-planar HI originates in the plane of the disk (as described in galactic fountain-type models) or is accreted. In these galaxies we find substantial extra- planar Hi is not ubiquitous, while lags appear to be so. Furthermore, the lags we measure are steeper than those produced by purely ballistic effects, indicating that additional physical effects must be at work. In every (with the exception of NGC 4013) galaxy we model, a radial shallowing of the lag is observed, starting at approximately half of R25, and reaching its lowest magnitude near R25. Combining our sample with results from the literature, we see no clear connection between the presence of extra-planar Hi and star formation, nor do we see any connection between lag magnitude and star formation. Our findings provide constraints for theoretical scenarios which we will describe.

  6. Investigating the behaviour of neutral hydrogen Lyα spectral line width in polar coronal holes at solar minimum

    NASA Astrophysics Data System (ADS)

    Spadaro, D.; Susino, R.; Dolei, S.; Ventura, R.; Antonucci, E.

    2017-07-01

    We investigate the behaviour of the H I Lyα spectral line widths measured by UVCS/SOHO in polar coronal holes at minimum of solar magnetic activity. The line widths are reported to significantly increase up to 3 R⊙, while above 3 R⊙ there is observational evidence of either nearly constant or slightly decreasing values. We adopt empirical models of polar coronal holes at solar activity minimum reported in the literature and calculate the characteristic timescales relevant to different processes coupling neutral hydrogen atoms and protons, which are heated and accelerated in the outflowing plasma. This analysis leads us to believe that the progressive decoupling of the two sets of particles below 10 R⊙, caused by the decrease of the plasma density due to the rapid expansion of the wind, cannot explain the behaviour of the Lyα line profile observed in polar coronal holes. We also synthesise the intensity and profile of the Lyα line as a function of heliocentric distance from the coronal hole models, adopting H I densities computed in non-equilibrium ionisation with the aim of satisfactorily reproducing the UVCS Lyα observations reported in the literature. Our analysis shows that the coronal Lyα emission decreases with heliocentric distance, down to values below the interplanetary Lyα emission, owing to the decrease of the plasma density and to non-equilibrium ionisation effects in the expanding plasma. This can lead to the predominance of the interplanetary emission, which is characterised by H I velocity distributions corresponding to temperatures about one order of magnitude lower than the coronal temperatures, and to the narrowing of the resulting coronal profile at higher heliocentric distances. This scenario can be a plausible explanation for the behaviour of the Lyα line profile with height observed in polar coronal holes at solar activity minimum.

  7. Associations between Small-scale Structure in Local Galactic Neutral Hydrogen and in the Cosmic Microwave Background Observed by PLANCK

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit L.

    2015-11-01

    High-resolution galactic neutral hydrogen (HI) data obtained with the Green Bank Telescope (GBT) over 56 square degrees of sky around l = 132°, b = 25° are compared with small-scale structure in the Cosmic Microwave Background observed by PLANCK, specifically at 143 and 857 GHz, as well as with 100 μm observations from the IRIS survey. The analysis uses data in 13 2° × 2° sub-areas found in the IRSA database at IPAC. The results confirm what has been reported previously; nearby galactic HI features and high-frequency continuum sources believed to be cosmological are in fact clearly associated. While several attempts strongly suggest that the associations are statistically significant, the key to understanding the phenomenon lies in the fact that in any given area HI is associated with cirrus dust at certain HI velocities and with 143 GHz features at different velocities. At the same time, for the 13 sub-areas studied, there is very little overlap between the dust and 143 GHz features. The data do not imply that the HI itself gives rise to the high-frequency continuum emission. Rather, they appear to indicate undiagnosed brightness enhancements indirectly associated with the HI. If low density interstellar electrons concentrated into clumps, or observed in directions where their integrated line-of-sight column densities are greater than the background in a manner similar to the phenomena that give rise to structure in diffuse HI structure, they will profoundly affect attempts to create a foreground electron mask used for processing PLANCK as well as WMAP data.

  8. ASSOCIATIONS BETWEEN SMALL-SCALE STRUCTURE IN LOCAL GALACTIC NEUTRAL HYDROGEN AND IN THE COSMIC MICROWAVE BACKGROUND OBSERVED BY PLANCK

    SciTech Connect

    Verschuur, Gerrit L.

    2015-11-01

    High-resolution galactic neutral hydrogen (HI) data obtained with the Green Bank Telescope (GBT) over 56 square degrees of sky around l = 132°, b = 25° are compared with small-scale structure in the Cosmic Microwave Background observed by PLANCK, specifically at 143 and 857 GHz, as well as with 100 μm observations from the IRIS survey. The analysis uses data in 13 2° × 2° sub-areas found in the IRSA database at IPAC. The results confirm what has been reported previously; nearby galactic HI features and high-frequency continuum sources believed to be cosmological are in fact clearly associated. While several attempts strongly suggest that the associations are statistically significant, the key to understanding the phenomenon lies in the fact that in any given area HI is associated with cirrus dust at certain HI velocities and with 143 GHz features at different velocities. At the same time, for the 13 sub-areas studied, there is very little overlap between the dust and 143 GHz features. The data do not imply that the HI itself gives rise to the high-frequency continuum emission. Rather, they appear to indicate undiagnosed brightness enhancements indirectly associated with the HI. If low density interstellar electrons concentrated into clumps, or observed in directions where their integrated line-of-sight column densities are greater than the background in a manner similar to the phenomena that give rise to structure in diffuse HI structure, they will profoundly affect attempts to create a foreground electron mask used for processing PLANCK as well as WMAP data.

  9. The effect of hydrogen peroxide concentration and solid loading on the fractionation of biomass in formic acid.

    PubMed

    Dussan, K; Girisuta, B; Haverty, D; Leahy, J J; Hayes, M H B

    2014-10-13

    This study investigated the fractionation of biomass using a decomposing mixture of hydrogen peroxide-formic acid as a pretreatment for the biorefining of Miscanthus × giganteus and of sugarcane bagasse. The main parameters investigated were the hydrogen peroxide concentration (2.5, 5.0 and 7.5 wt%) and biomass loading (5.0 and 10.0 wt%). At the highest hydrogen peroxide concentration used (7.5 wt%), the energy released by the decomposition of the H2O2 could heat the reaction mixture up to 180 °C in a short time (6-16 min). As a result, highly delignified pulps, with lignin removal as high as 92 wt%, were obtained. This delignification process also solubilised a significant amount of pentosan (82-98 wt%) from the initial biomass feedstock, and the resulting pulp had a high cellulosic content (92 wt%). The biomass loading only affected the reaction rate of hydrogen peroxide decomposition. Various analytical methods, including Fourier transform infrared spectroscopy, and thermogravimetric and elemental analyses, characterized the lignin obtained.

  10. Peripherally hydrogenated neutral polycyclic aromatic hydrocarbons as carriers of the 3 micron interstellar infrared emission complex: results from single-photon infrared emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Wagner, D. R.; Kim, H. S.; Saykally, R. J.

    2000-01-01

    Infrared emission spectra of five gas-phase UV laser-excited polycyclic aromatic hydrocarbons (PAHs) containing aliphatic hydrogens are compared with the main 3.3 microns and associated interstellar unidentified infrared emission bands (UIRs). We show that neutral PAHs can account for the majority of the 3 microns emission complex while making little contribution to the other UIR bands; peripherally hydrogenated PAHs produce a better match to astrophysical data than do those containing methyl side groups; 3.4 microns plateau emission is shown to be a general spectral feature of vibrationally excited PAHs containing aliphatic hydrogens, especially those containing methyl groups; and finally, hot-band and overtone emissions arising from aromatic C-H vibrations are not observed in laboratory emission spectra, and therefore, in contrast to current assignments, are not expected to be observed in the UIRs.

  11. Peripherally hydrogenated neutral polycyclic aromatic hydrocarbons as carriers of the 3 micron interstellar infrared emission complex: results from single-photon infrared emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Wagner, D. R.; Kim, H. S.; Saykally, R. J.

    2000-01-01

    Infrared emission spectra of five gas-phase UV laser-excited polycyclic aromatic hydrocarbons (PAHs) containing aliphatic hydrogens are compared with the main 3.3 microns and associated interstellar unidentified infrared emission bands (UIRs). We show that neutral PAHs can account for the majority of the 3 microns emission complex while making little contribution to the other UIR bands; peripherally hydrogenated PAHs produce a better match to astrophysical data than do those containing methyl side groups; 3.4 microns plateau emission is shown to be a general spectral feature of vibrationally excited PAHs containing aliphatic hydrogens, especially those containing methyl groups; and finally, hot-band and overtone emissions arising from aromatic C-H vibrations are not observed in laboratory emission spectra, and therefore, in contrast to current assignments, are not expected to be observed in the UIRs.

  12. Peripherally hydrogenated neutral polycyclic aromatic hydrocarbons as carriers of the 3 micron interstellar infrared emission complex: results from single-photon infrared emission spectroscopy.

    PubMed

    Wagner, D R; Kim, H S; Saykally, R J

    2000-12-20

    Infrared emission spectra of five gas-phase UV laser-excited polycyclic aromatic hydrocarbons (PAHs) containing aliphatic hydrogens are compared with the main 3.3 microns and associated interstellar unidentified infrared emission bands (UIRs). We show that neutral PAHs can account for the majority of the 3 microns emission complex while making little contribution to the other UIR bands; peripherally hydrogenated PAHs produce a better match to astrophysical data than do those containing methyl side groups; 3.4 microns plateau emission is shown to be a general spectral feature of vibrationally excited PAHs containing aliphatic hydrogens, especially those containing methyl groups; and finally, hot-band and overtone emissions arising from aromatic C-H vibrations are not observed in laboratory emission spectra, and therefore, in contrast to current assignments, are not expected to be observed in the UIRs.

  13. A kinetic model for thermally induced hydrogen and carbon isotope fractionation of individual n-alkanes in crude oil

    NASA Astrophysics Data System (ADS)

    Tang, Yongchun; Huang, Yongsong; Ellis, Geoffrey S.; Wang, Yi; Kralert, Paul G.; Gillaizeau, Bruno; Ma, Qisheng; Hwang, Rong

    2005-09-01

    A quantitative kinetic model has been proposed to simulate the large D and 13C isotope enrichments observed in individual n-alkanes (C 13-C 21) during artificial thermal maturation of a North Sea crude oil under anhydrous, closed-system conditions. Under our experimental conditions, average n-alkane δ 13C values increase by ˜4‰ and δD values increase by ˜50‰ at an equivalent vitrinite reflectance value of 1.5%. While the observed 13C-enrichment shows no significant dependence on hydrocarbon chain length, thermally induced D-enrichment increases with increasing n-alkane carbon number. This differential fractionation effect is speculated to be due to the combined effect of the greater extent of thermal cracking of higher molecular weight, n-alkanes compared to lower molecular weight homologues, and the generation of isotopically lighter, lower molecular weight compounds. This carbon-number-linked hydrogen isotopic fractionation behavior could form the basis of a new maturity indicator to quantitatively assess the extent of oil cracking in petroleum reservoirs. Quantum mechanical calculations of the average change in enthalpy (ΔΔH ‡) and entropy (ΔΔS ‡) as a result of isotopic substitution in n-alkanes undergoing homolytic cleavage of C-C bonds lead to predictions of isotopic fractionation that agree quite well with our experimental results. For n-C 20 ( n-icosane), the changes in enthalpy are calculated to be ˜1340 J mol -1 (320 cal mol -1) and 230 J mol -1 (55 cal mol -1) for D-H and 13C- 12C, respectively. Because the enthalpy term associated with hydrogen isotope fractionation is approximately six times greater than that for carbon, variations in δD values for individual long-chain hydrocarbons provide a highly sensitive measure of the extent of thermal alteration experienced by the oil. Extrapolation of the kinetic model to typical geological heating conditions predicts significant enrichment in 13C and D for n-icosane at equivalent vitrinite

  14. COMPLETE IONIZATION OF THE NEUTRAL GAS: WHY THERE ARE SO FEW DETECTIONS OF 21 cm HYDROGEN IN HIGH-REDSHIFT RADIO GALAXIES AND QUASARS

    SciTech Connect

    Curran, S. J.; Whiting, M. T.

    2012-11-10

    From the first published z {approx}> 3 survey of 21 cm absorption within the hosts of radio galaxies and quasars, Curran et al. found an apparent dearth of cool neutral gas at high redshift. From a detailed analysis of the photometry, each object is found to have a {lambda} = 1216 A continuum luminosity in excess of L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}, a critical value above which 21 cm has never been detected at any redshift. At these wavelengths, and below, hydrogen is excited above the ground state so that it cannot absorb in 21 cm. In order to apply the equation of photoionization equilibrium, we demonstrate that this critical value also applies to the ionizing ({lambda} {<=} 912 A) radiation. We use this to show, for a variety of gas density distributions, that upon placing a quasar within a galaxy of gas, there is always an ultraviolet luminosity above which all of the large-scale atomic gas is ionized. While in this state, the hydrogen cannot be detected or engage in star formation. Applying the mean ionizing photon rate of all of the sources searched, we find, using canonical values for the gas density and recombination rate coefficient, that the observed critical luminosity gives a scale length (3 kpc) similar that of the neutral hydrogen (H I) in the Milky Way, a large spiral galaxy. Thus, this simple yet physically motivated model can explain the critical luminosity (L {sub 912} {approx} L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}), above which neutral gas is not detected. This indicates that the non-detection of 21 cm absorption is not due to the sensitivity limits of current radio telescopes, but rather that the lines of sight to the quasars, and probably the bulk of the host galaxies, are devoid of neutral gas.

  15. Ultrafiltration by a compacted clay membrane. I - Oxygen and hydrogen isotopic fractionation. II - Sodium ion exclusion at various ionic strengths.

    NASA Technical Reports Server (NTRS)

    Coplen, T. B.; Hanshaw, B. B.

    1973-01-01

    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disk compacted to a porosity of 35% by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5% and in O-18 by 0.8% relative to the residual solution. No additional isotopic fractionation due to a salt-filtering mechanism was observed at NaCl concentrations up to 0.01N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. It is shown how it is possible to proceed from the ion exchange capacity of clay minerals and, by means of the Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane.

  16. Ultrafiltration by a compacted clay membrane. I - Oxygen and hydrogen isotopic fractionation. II - Sodium ion exclusion at various ionic strengths.

    NASA Technical Reports Server (NTRS)

    Coplen, T. B.; Hanshaw, B. B.

    1973-01-01

    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disk compacted to a porosity of 35% by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5% and in O-18 by 0.8% relative to the residual solution. No additional isotopic fractionation due to a salt-filtering mechanism was observed at NaCl concentrations up to 0.01N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. It is shown how it is possible to proceed from the ion exchange capacity of clay minerals and, by means of the Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane.

  17. On the meniscus formation and the negative hydrogen ion extraction from ITER neutral beam injection relevant ion source

    NASA Astrophysics Data System (ADS)

    Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Fantz, U.; Franzen, P.; Minea, T.

    2014-10-01

    The development of a large area (Asource,ITER = 0.9 × 2 m2) hydrogen negative ion (NI) source constitutes a crucial step in construction of the neutral beam injectors of the international fusion reactor ITER. To understand the plasma behaviour in the boundary layer close to the extraction system the 3D PIC MCC code ONIX is exploited. Direct cross checked analysis of the simulation and experimental results from the ITER-relevant BATMAN source testbed with a smaller area (Asource,BATMAN ≈ 0.32 × 0.59 m2) has been conducted for a low perveance beam, but for a full set of plasma parameters available. ONIX has been partially benchmarked by comparison to the results obtained using the commercial particle tracing code for positive ion extraction KOBRA3D. Very good agreement has been found in terms of meniscus position and its shape for simulations of different plasma densities. The influence of the initial plasma composition on the final meniscus structure was then investigated for NIs. As expected from the Child-Langmuir law, the results show that not only does the extraction potential play a crucial role on the meniscus formation, but also the initial plasma density and its electronegativity. For the given parameters, the calculated meniscus locates a few mm downstream of the plasma grid aperture provoking a direct NI extraction. Most of the surface produced NIs do not reach the plasma bulk, but move directly towards the extraction grid guided by the extraction field. Even for artificially increased electronegativity of the bulk plasma the extracted NI current from this region is low. This observation indicates a high relevance of the direct NI extraction. These calculations show that the extracted NI current from the bulk region is low even if a complete ion-ion plasma is assumed, meaning that direct extraction from surface produced ions should be present in order to obtain sufficiently high extracted NI current density. The calculated extracted currents, both ions

  18. Different hydrogen isotope fractionations during lipid formation in higher plants: Implications for paleohydrology reconstruction at a global scale

    PubMed Central

    Liu, Jinzhao; Liu, Weiguo; An, Zhisheng; Yang, Hong

    2016-01-01

    Leaf wax δDn-alkane values have shown to differ significantly among plant life forms (e.g., among grasses, shrubs, and trees) in higher plants. However, the underlying causes for the differences in leaf wax δDn-alkane values among different plant life forms remain poorly understood. In this study, we observed that leaf wax δDn-alkane values between major high plant lineages (eudicots versus monocots) differed significantly under the same environmental conditions. Such a difference primarily inherited from different hydrogen biosynthetic fractionations (εwax-lw). Based upon a reanalysis of the available leaf wax δDn-alkane dataset from modern plants in the Northern Hemisphere, we discovered that the apparent hydrogen fractionation factor (εwax-p) between leaf wax δDn-alkane values of major angiosperm lineages and precipitation δD values exhibited distinguishable distribution patterns at a global scale, with an average of −140‰ for monocotyledonous species, −107‰ for dicotyledonous species. Additionally, variations of leaf wax δDn-alkane values and the εwax-p values in gymnosperms are similar to those of dicotyledonous species. Therefore, the data let us believe that biological factors inherited from plant taxonomies have a significant effect on controlling leaf wax δDn-alkane values in higher plants. PMID:26806719

  19. Different hydrogen isotope fractionations during lipid formation in higher plants: Implications for paleohydrology reconstruction at a global scale.

    PubMed

    Liu, Jinzhao; Liu, Weiguo; An, Zhisheng; Yang, Hong

    2016-01-25

    Leaf wax δDn-alkane values have shown to differ significantly among plant life forms (e.g., among grasses, shrubs, and trees) in higher plants. However, the underlying causes for the differences in leaf wax δDn-alkane values among different plant life forms remain poorly understood. In this study, we observed that leaf wax δDn-alkane values between major high plant lineages (eudicots versus monocots) differed significantly under the same environmental conditions. Such a difference primarily inherited from different hydrogen biosynthetic fractionations (εwax-lw). Based upon a reanalysis of the available leaf wax δDn-alkane dataset from modern plants in the Northern Hemisphere, we discovered that the apparent hydrogen fractionation factor (εwax-p) between leaf wax δDn-alkane values of major angiosperm lineages and precipitation δD values exhibited distinguishable distribution patterns at a global scale, with an average of -140‰ for monocotyledonous species, -107‰ for dicotyledonous species. Additionally, variations of leaf wax δDn-alkane values and the εwax-p values in gymnosperms are similar to those of dicotyledonous species. Therefore, the data let us believe that biological factors inherited from plant taxonomies have a significant effect on controlling leaf wax δDn-alkane values in higher plants.

  20. Different hydrogen isotope fractionations during lipid formation in higher plants: Implications for paleohydrology reconstruction at a global scale

    NASA Astrophysics Data System (ADS)

    Liu, Jinzhao; Liu, Weiguo; An, Zhisheng; Yang, Hong

    2016-01-01

    Leaf wax δDn-alkane values have shown to differ significantly among plant life forms (e.g., among grasses, shrubs, and trees) in higher plants. However, the underlying causes for the differences in leaf wax δDn-alkane values among different plant life forms remain poorly understood. In this study, we observed that leaf wax δDn-alkane values between major high plant lineages (eudicots versus monocots) differed significantly under the same environmental conditions. Such a difference primarily inherited from different hydrogen biosynthetic fractionations (εwax-lw). Based upon a reanalysis of the available leaf wax δDn-alkane dataset from modern plants in the Northern Hemisphere, we discovered that the apparent hydrogen fractionation factor (εwax-p) between leaf wax δDn-alkane values of major angiosperm lineages and precipitation δD values exhibited distinguishable distribution patterns at a global scale, with an average of ‑140‰ for monocotyledonous species, ‑107‰ for dicotyledonous species. Additionally, variations of leaf wax δDn-alkane values and the εwax-p values in gymnosperms are similar to those of dicotyledonous species. Therefore, the data let us believe that biological factors inherited from plant taxonomies have a significant effect on controlling leaf wax δDn-alkane values in higher plants.

  1. Studies of quaternary saline lakes-I. Hydrogen isotope fractionation in saline minerals

    USGS Publications Warehouse

    Matsuo, S.; Friedman, I.; Smith, G.I.

    1972-01-01

    Borax, gaylussite, nahcolite and trona were synthesized in aqueous solution at temperatures ranging from 8?? to 35??C. Except for borax, deuterium was always depleted in these hydrated minerals relative to the solutions from which they were crystallized. In borax, no significant fractionation was found. The fractionation factor of D H for the trona-water system exhibited a marked temperature dependence. By combining the deuterium contents of trona and the solution from which trona was crystallized, the following thermometer scale was obtained: In ( D H) trona ( D H)water = 1.420 ?? 104 T2 + 23.56 T (1). An attempt to establish a geothermometer based on C13 C12 fractionation between carbonate minerals and carbonate ions in aqueous solution was not successful. ?? 1972.

  2. Dietary effects on stable carbon isotope composition of fatty acids in polar and neutral fraction of intramuscular fat of lambs.

    PubMed

    van Leeuwen, Katryna A; Camin, Federica; Jerónimo, Eliana; Vasta, Valentina; Prenzler, Paul D; Ryan, Danielle; Bessa, Rui J B

    2017-10-03

    In this study we measured 13C values of the main fatty acids (FA) present in neutral and polar intramuscular lipids of meat samples from 24 lambs, fed with four different diets supplemented with sunflower and linseed oil and the tanniferous shrub Cistus ladanifer L. The objective was to understand if the increase in intramuscular fat observed in lambs fed simultaneously C. ladanifer and oil was explained mostly by incorporation of diet derived FA or by increased de novo FA synthesis. De novo FA synthesis was evaluated by 13C enrichment (‰) of 16:0 in intramuscular lipids compared to bulk diet or compared to dietary 16:0. Oil reduced 13C enrichment of 16:0 in muscle lipid, but had no effect when the diet included C. ladanifer (P value < 0.01). Thus dietary C. ladanifer blocked the inhibitory effects of lipid supplementation on de novo FA synthesis.

  3. Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology

    SciTech Connect

    Loeffler, F.E.; Tiedje, J.M.; Sanford, R.A.

    1999-09-01

    Measurements of the hydrogen consumption threshold and the tracking of electrons transferred to the chlorinated electron acceptor (f{sub e}) reliably detected chlororespiratory physiology in both mixed cultures and pure cultures capable of using tetrachloroethene, cis-1,2-dichloroethene, vinyl chloride, 2-chlorophenol, 3-chlorobenzoate, 3-chloro-4-hydroxybenzoate, or 1,2-dichloropropane as an electron acceptor. Hydrogen was consumed to significantly lower threshold concentrations of less than 0.4 ppmv compared with the values obtained for the same cultures without a chlorinated compound as an electron acceptor. The f{sub e} values ranged from 0.63 to 0.7, values which are in good agreement with theoretical calculations based on the thermodynamics of reductive dechlorination as the terminal electron-accepting process. In contrast, a mixed methanogenic culture that cometabolized 3-chlorophenol exhibited a significantly lower f{sub e} value, 0.012.

  4. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions

    SciTech Connect

    De Gioannis, G.; Muntoni, A.; Polettini, A.; Pomi, R.

    2013-06-15

    Highlights: ► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature sources are needed. ► More than 80 publications on H{sub 2} production from food waste and OFMSW have been examined. ► Experimental data from the reviewed literature were analyzed using statistical tools. ► For a reliable assessment of the process performance, the use of multiple parameters appears to be recommended. - Abstract: Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H{sub 2} production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is

  5. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions.

    PubMed

    De Gioannis, G; Muntoni, A; Polettini, A; Pomi, R

    2013-06-01

    Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject.

  6. Prediction of the Statistical Robustness of the Measurement of Neutral Hydrogen Mass Functions in the COSMOS H i Large Extragalactic Survey (CHILES)

    NASA Astrophysics Data System (ADS)

    Sanchez-Barrantes, Monica; Henning, Patricia A.; Van Gorkom, Jacqueline H.; Maddox, Natasha; Hess, Kelley M.; CHILES Team

    2017-01-01

    Hydrogen is the fuel for star formation, but relatively little is known about the role of cold gas in galaxy evolution. The COSMOS H I Large Extragalactic Survey (CHILES) is an on-going deep H I survey being conducted with the Karl G. Jansky Very Large Array, probing a 0.5 degree region within the COSMOS field in the 21cm line of neutral hydrogen. CHILES is the first survey to observe H I in emission from z=0 to z~0.5, which corresponds to a look-back time of ~ 5 Gyr. This allows us to observe the content, morphology and kinematics of H I in relation to stellar disks, and how it may have evolved over this period. Here, we present a simulation of the galaxy detections that could be made by the survey, based on multi-wavelength data from the COSMOS dataset in the VLA field of view.We use the simulated data to calculate the Neutral Hydrogen Mass Function (HIMF), which describes the space density of galaxies as a function of their H I mass. The HIMF has been studied in the local universe, but seeing how it changes in redshift and environment can constrain current models of galaxy formation. We show the robustness of the HIMF we are capable of deriving for the entire survey and as a function of redshift and environment.

  7. Study on the purification of hydrogen bromide gas by fractional distillation technique and its effect on improvement of copper-hydrogen bromide laser performance

    NASA Astrophysics Data System (ADS)

    Biswal, Ramakanta; Agrawal, Praveen Kumar; Dixit, Sudhir K.; Nakhe, Shankar V.

    2012-11-01

    This paper presents a purification process of hydrogen bromide (HBr) gas by fractional distillation technique and its use for performance enhancement of copper-HBr laser (Cu-HBrL). The residual impurities in HBr were suppressed by a two-step distillation process at temperatures of -196°C and -20°C. The lowering of the impurities was confirmed by comparing the mass spectrograph of the HBr gas before and after distillation, using a quadrupole mass spectrometer. The effect of the purified HBr gas on the performance of Cu-HBrL average output power as well its electrical discharge characteristics were studied. More than 37% improvement in the laser average output power (40 to 55 W) was observed with the use of this distilled HBr gas compared to undistilled gas. The underlying mechanism of the enhancement was analyzed by comparing electrical discharge characteristics in the two cases. The improvement in Cu-HBrL performance with distilled HBr gas was attributed to lowering of bromine and hydrogen concentration, mainly manifested as increased average electrical energy coupling to the discharge. This resulted in increased laser gain as well as gain volume, which were reflected in increases in laser output power and beam diameter.

  8. Hydrogen in diffuse molecular clouds in the Milky Way. Atomic column densities and molecular fraction along prominent lines of sight

    NASA Astrophysics Data System (ADS)

    Winkel, B.; Wiesemeyer, H.; Menten, K. M.; Sato, M.; Brunthaler, A.; Wyrowski, F.; Neufeld, D.; Gerin, M.; Indriolo, N.

    2017-03-01

    Context. Recent submillimeter and far-infrared wavelength observations of absorption in the rotational ground-state lines of various simple molecules against distant Galactic continuum sources have opened the possibility of studying the chemistry of diffuse molecular clouds throughout the Milky Way. In order to calculate abundances, the column densities of molecular and atomic hydrogen, H i, must be known. Aims: We aim at determining the atomic hydrogen column densities for diffuse clouds located on the sight lines toward a sample of prominent high-mass star-forming regions that were intensely studied with the HIFI instrument onboard Herschel. Methods: Based on Jansky Very Large Array data, we employ the 21 cm H i absorption-line technique to construct profiles of the H i opacity versus radial velocity toward our target sources. These profiles are combined with lower resolution archival data of extended H i emission to calculate the H i column densities of the individual clouds along the sight lines. We employ Bayesian inference to estimate the uncertainties of the derived quantities. Results: Our study delivers reliable estimates of the atomic hydrogen column density for a large number of diffuse molecular clouds at various Galactocentric distances. Together with column densities of molecular hydrogen derived from its surrogates observed with HIFI, the measurements can be used to characterize the clouds and investigate the dependence of their chemistry on the molecular fraction, for example. The data sets are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A2

  9. Study of Branching Ratio And Polarization Fraction in Neutral B Meson Decays to Negative Rho Meson Positive Kaon Resonance

    SciTech Connect

    Cheng, Baosen; /Wisconsin U., Madison

    2006-03-07

    We present the preliminary results on the search for B{sup 0} {yields} {rho}{sup -}K*{sup +}. The data sample comprises 122.7 million B{bar B} pairs in the e{sup +}e{sup -} annihilation through the {Upsilon}(4S) resonance collected during 1999-2003 with the BABAR detector at the PEP-II asymmetric-energy collider at Stanford Linear Accelerator Center (SLAC). We obtain an upper limit of the branching ratio at 90% confidence level as {Beta}(B{sup 0} {yields} {rho}{sup -}K*{sup +}) < 17.2 x 10{sup -6}. The fitted result on the polarization fraction shows no evidence that the decay is longitudinally dominated as predicted by various theoretical models.

  10. Isotopic fractionation of dissolved ammonium at the oxygen-hydrogen sulfide interface in anoxic waters

    SciTech Connect

    Velinsky, D.J. ); Fogel, M.L.; Todd, J.F.; Tebo, B.M.

    1991-04-01

    The {delta}{sup 15}N of dissolved ammonium was determined in three anoxic marine basins: Black Sea, Saanich Inlet, B.C., Canada, and Framvaren Fjord, Norway. In each basin, the {delta}{sup 15}N-NH{sub 4{sup +}} was greatest near the O{sub 2}/H{sub 2}S interface, with {delta}{sup 15}N as high as +21{per thousand}. The depth distributions of NH{sub 4{sup +}} and {delta}{sup 15}N-NH{sub 4{sup +}} for Black Sea and Framvaren Fjord were examined with a one-dimensional, steady-state, vertical advection-diffusion model to calculate the isotope fractionation during the consumption of NH{sub 4{sup +}} by bacteria. Isotope enrichments, {var epsilon}, for Black Sea were between 5 and 15{per thousand}, whereas in Framvaren Fjord {var epsilon} ranged from 20 to 30{per thousand}. These differences are related mainly to the ambient concentration of NH{sub 4{sup +}}. Biosynthetic uptake of NH{sub 4{sup +}} rather than nitrification was responsible for the fractionation. The {delta}{sup 15}N-NH{sub 4{sup +}} in Saanich Inlet appears related to in-situ regeneration of NH{sub 4{sup +}} with little isotopic fractionation between dissolved and particulate nitrogen (PN).

  11. Behaviour and stability of Trivelpiece-Gould modes in non-neutral plasma containing small density fraction of background gas ions

    SciTech Connect

    Yeliseyev, Y. N.

    2013-03-19

    It is shown that the frequencies of Trivelpiece-Gould (TG) modes in non-neutral plasma can get into the low-frequency range due to the Doppler shift caused by plasma rotation in crossed fields. TG modes interact with the ion modes that leads to plasma instability. In paper the frequency spectrum of 'cold' electron plasma completely filling a waveguide and containing small density fraction of ions of background gas is determined numerically. For ions the kinetic description is used. Oscillations having azimuthal number m= 2 are considered. In this case both low- and upper-hybrid TG modes get into the low-frequency range. The spectrum consists of families of 'modified' ion cyclotron (MIC) modes and electron TG modes with the frequencies equal to hybrid frequencies with the Doppler shift. The growth rates of upper-hybrid modes are much faster than the growth rates of low-hybrid and MIC modes.

  12. Hydrogen-isotope fractionation in aluminum hydroxides: Synthesis products versus natural samples from bauxites

    NASA Astrophysics Data System (ADS)

    Vitali, Frédéric; Longstaffe, Fred J.; Bird, Michael I.; Gage, Karie Lyne; Caldwell, W. Glen E.

    2001-05-01

    - Hydrogen-isotope data have been gathered for synthetic aluminum hydroxides precipitated over 3 to 121 months at temperatures varying between 8 and 51°C. All three Al(OH) 3 polymorphs, gibbsite, nordstrandite, and bayerite, were generated during the synthesis, but gibbsite was dominant in most samples and commonly the only phase present. At <10°C, hydrogen-isotope equilibrium between the synthetic Al-hydroxides and water was not achieved until more than 2 years had elapsed. Using pure gibbsite samples, an average α gibbsite-waterH value of 0.998 ± 0.006 was obtained between 9 and 51°C after 10 years of synthesis. Based on these results plus data for naturally occurring gibbsite from bauxite deposits, an α gibbsite-waterH value of 0.995 ± 0.003 was obtained for surficial temperatures. Using this value and oxygen-isotope results, the following "gibbsite line" is proposed for its formation from meteoric water at 20°C: δD = 7.84 δ 18O - 114.2. Most naturally occurring gibbsite samples plot about this line, which indicates their direct precipitation from solution. However, a few samples of gibbsite, especially those from Hawaii, plot to the right of the "gibbsite line" and likely inherited part of their isotopic composition from precursor kaolinite.

  13. Copper(ii)-directed synthesis of neutral heteroditopic [2]rotaxane ion-pair host systems incorporating hydrogen and halogen bonding anion binding cavities.

    PubMed

    Brown, Asha; Mennie, Katrina M; Mason, Owen; White, Nicholas G; Beer, Paul D

    2017-09-27

    Neutral heteroditopic [2]rotaxane ion-pair host systems were synthesised via a Cu(ii) directed passive metal template strategy. Each rotaxane contains discrete, axle-separated interlocked binding sites for a guest anion and a transition metal countercation. The anion binding sites are composed of convergent X-H (X = C, N) hydrogen bond donor groups, or mixed X-H and C-I hydrogen and halogen bond donor groups, whereas an equivalent three-dimensional array of amine, pyridine and carbonyl oxygen donor groups comprise the transition metal binding site. (1)H NMR titrations experiments in CDCl3/CD3OD or CDCl3/CD3OD/D2O solvent mixtures reveal that the heteroditopic [2]rotaxane host systems are capable of cooperative anion recognition in the presence of a co-bound Zn(ii) cation.

  14. Development of a highly sensitive chemiluminescent assay for hydrogen peroxide under neutral conditions using acridinium ester and its application to an enzyme immunoassay.

    PubMed

    Arakawa, Hidetoshi; Tsuruoka, Keiko; Ohno, Ken-ichi; Tajima, Noriko; Nagano, Hiromi

    2014-06-01

    We developed a highly sensitive chemiluminescent (CL) assay for hydrogen peroxide using 10-methyl-9-(phenoxycarbonyl) acridinium fluorosulfonate (PMAC) that produced chemiluminescence under neutral conditions and applied it to an enzyme immunoassay (EIA). One picomole of hydrogen peroxide could be detected using the optimized PMAC-CL method and 6.2 × 10(-20) mol β-D-galactosidase (β-gal) could be detected by combining an indoxyl derivative substrate and the proposed PMAC-CL method. This highly sensitive CL β-gal assay was applied to an EIA for thyroid-stimulating hormone (TSH) using β-gal as a label enzyme; 0.02-100.0 μU/mL TSH in human serum could be assayed directly and with high reproducibility.

  15. Neutral Hydrogen Optical Depth near Star-forming Galaxies at z ≈ 2.4 in the Keck Baryonic Structure Survey

    NASA Astrophysics Data System (ADS)

    Rakic, Olivera; Schaye, Joop; Steidel, Charles C.; Rudie, Gwen C.

    2012-06-01

    We study the interface between galaxies and the intergalactic medium by measuring the absorption by neutral hydrogen in the vicinity of star-forming galaxies at z ≈ 2.4. Our sample consists of 679 rest-frame UV-selected galaxies with spectroscopic redshifts that have impact parameters <2 (proper) Mpc to the line of sight of one of the 15 bright, background QSOs and that fall within the redshift range of its Lyα forest. We present the first two-dimensional maps of the absorption around galaxies, plotting the median Lyα pixel optical depth as a function of transverse and line-of-sight separation from galaxies. The Lyα optical depths are measured using an automatic algorithm that takes advantage of all available Lyman series lines. The median optical depth, and hence the median density of atomic hydrogen, drops by more than an order of magnitude around 100 kpc, which is similar to the virial radius of the halos thought to host the galaxies. The median remains enhanced, at the >3σ level, out to at least 2.8 Mpc (i.e., >9 comoving Mpc), but the scatter at a given distance is large compared with the median excess optical depth, suggesting that the gas is clumpy. Within 100 (200) kpc, and over ±165 km s-1, the covering fraction of gas with Lyα optical depth greater than unity is 100+0 - 32% (66% ± 16%). Absorbers with τLyα > 0.1 are typically closer to galaxies than random. The mean galaxy overdensity around absorbers increases with the optical depth and also as the length scale over which the galaxy overdensity is evaluated is decreased. Absorbers with τLyα ~ 1 reside in regions where the galaxy number density is close to the cosmic mean on scales >=0.25 Mpc. We clearly detect two types of redshift space anisotropies. On scales <200 km s-1, or <1 Mpc, the absorption is stronger along the line of sight than in the transverse direction. This "finger of God" effect may be due to redshift errors, but is probably dominated by gas motions within or very close to

  16. Fractional factorial design to investigate the influence of heavy metals and anions on acid neutralization behavior of cement-based products.

    PubMed

    Polettini, A; Pomi, R; Sirini, P

    2002-04-01

    A major concern of cement-based solidification/stabilization of hazardous wastes is the interaction of waste contaminants on cement properties. Literature contains many examples of studies on the interference of individual contaminants on cement properties. Conversely, little information is available on how the interactions between contaminants affectthe properties of cement/waste systems. This paper provides a discussion on the interference mechanisms exerted by seven contaminants, five heavy metals and two anions, on cement hydration. The seven contaminants were selected on the basis of the typical composition of municipal solid waste incineration (MSWI) fly ash. Spiking experiments using pure compounds were performed according to a 2IV(7-3) fractional factorial design to simulate addition of MSWI fly ash to ordinary Portland cement. The acid neutralization behavior of the laboratory cement-contaminant mixtures was studied to detect the presence of solid phases responsible for the buffering capacity of the solid matrix. The results from the experimental work showed that Zn, Cl-, and SO4(2-) were the major factors influencing, occasionally in combination with other contaminants, strength and acid neutralization capacity of the cementitious products. The release of Cd, Cr, Cu, and Pb in the eluates as a function of pH also suggested possible chemical immobilization mechanisms of such metals within the hardened matrix.

  17. Resonance glow of the neutral interplanetary gas

    NASA Astrophysics Data System (ADS)

    Scherer, Horst

    2000-05-01

    The neutral hydrogen, embedded in the partially ionized local interstellar medium, can enter deeply into the heliosphere with the interstellar wind flow. While entering into the heliosphere it suffers from intense charge-exchange interactions with the solar wind protons. This charge-exchange leads to a fractional depletion of the interstellar hydrogen atoms inside the heliosphere and modulates their velocity and temperature distribution. The resulting thermodynamical conditions of the interstellar hydrogen inside the heliosphere are described by two kinetic density models. The first model by Wu & Judge specially takes into account the influence on hydrogen due to solar photo ionization and solar gravitation and leads to appropriate results in the solar vicinity. The second model by Osterbart & Fahr takes into account the plasma interaction effects near the solar wind shock region and near the heliopause. Hence, this model gives more realistic results for the hydrogen properties far away from the Sun. Besides these theoretical modelings of the interplanetary hydrogen, measurements of the interplanetary hydrogen HI-Lyman-Alpha resonance glow were performed and attempts have been made to deduce the relevant thermodynamical parameter of the neutral interstellar hydrogen by analyzing these glow data. Two radiation transport models will be discussed which are used to analyze the interplanetary hydrogen HI-Lyman-Alpha resonance glow data. First, the "optically thin" approximation which is used very often in the literature because of its simple numerical handling. Unfortunately, this model has a very limited region of validity. The second radiation transport model by Scherer & Fahr introduces the exact redistribution function which takes into account the local thermodynamical conditions of the scattering agent, like density, bulk velocity and temperature of the neutral interplanetary hydrogen. Also it takes into account the actually observed solar HI-Lyman-Alpha emission

  18. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide.

    PubMed

    Shahriari, Haleh; Warith, Mostafa; Hamoda, Mohamed; Kennedy, Kevin J

    2012-01-01

    In order to enhance anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW), pretreatment combining two modalities, microwave (MW) heating in presence or absence of hydrogen peroxide (H(2)O(2)) were investigated. The main pretreatment variables affecting the characteristics of the OFMSW were temperature (T) via MW irradiation and supplemental water additions of 20% and 30% (SWA20 and SW30). Subsequently, the focus of this study was to evaluate mesophilic batch AD performance in terms of biogas production, as well as changes in the characteristics of the OFMSW post digestion. A high MW induced temperature range (115-175°C) was applied, using sealed vessels and a bench scale MW unit equipped with temperature and pressure controls. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW as well as the liquid fractions. The whole OFMSW pretreated at 115°C and 145°C showed 4-7% improvement in biogas production over untreated OFMSW (control). When pretreated at 175°C, biogas production decreased due to formation of refractory compounds, inhibiting the digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP) was more pronounced for SWA20 at 145°C, with a 26% increase in biogas production after 8days of digestion, compared to the control. When considering the increased substrate availability in the liquid fraction after MW pretreatment, a 78% improvement in biogas production vs. the control was achieved. Combining MW and H(2)O(2) modalities did not have a positive impact on OFMSW stabilization and enhanced biogas production. In general, all samples pretreated with H(2)O(2) displayed a long lag phase and the CBP was usually lower than MW irradiated only samples. First order rate constant was calculated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Self-Templating Construction of Hollow Amorphous CoMoS4 Nanotube Array towards Efficient Hydrogen Evolution Electrocatalysis at Neutral pH.

    PubMed

    Wang, Weiyi; Ren, Xiang; Hao, Shuai; Liu, Zhiang; Xie, Fengyu; Yao, Yadong; Asiri, Abdullah M; Chen, Liang; Sun, Xuping

    2017-09-18

    Environmentally friendly electrochemical hydrogen production needs the development of earth-abundant catalyst materials for the hydrogen evolution reaction with high activity and durability at neutral pH. In this work, the self-templating construction of a hollow amorphous CoMoS4 nanotube array on carbon cloth (CoMoS4 NTA/CC) is reported, using hydrothermal treatment of a Co(OH)F nanowire array on CC in (NH4 )2 MoS4 solution. When used as a 3D electrode for hydrogen evolution electrocatalysis, the resulting CoMoS4 NTA/CC demonstrates superior catalytic activity and strong long-term electrochemical durability in 1.0 M phosphate buffer solution (pH=7). It shows small onset overpotential of 21 mV and requires low overpotentials of 104 and 179 mV to drive geometrical current densities of 10 and 50 mA cm(-2) , respectively. Density functional theory calculations suggest that CoMoS4 has a more favorable hydrogen adsorption free energy than Co(OH)F. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. 3D-CSIA: carbon, chlorine, and hydrogen isotope fractionation in transformation of TCE to ethene by a Dehalococcoides culture.

    PubMed

    Kuder, Tomasz; van Breukelen, Boris M; Vanderford, Mindy; Philp, Paul

    2013-09-03

    Carbon (C), chlorine (Cl), and hydrogen (H) isotope effects were determined during dechlorination of TCE to ethene by a mixed Dehalococcoides (Dhc) culture. The C isotope effects for the dechlorination steps were consistent with data published in the past for reductive dechlorination (RD) by Dhc. The Cl effects (combined with an inverse H effect in TCE) suggested that dechlorination proceeded through nucleophilic reactions with cobalamin rather than by an electron transfer mechanism. Depletions of (37)Cl in daughter compounds, resulting from fractionation at positions away from the dechlorination center (secondary isotope effects), further support the nucleophilic dechlorination mechanism. Determination of C and Cl isotope ratios of the reactants and products in the reductive dechlorination chain offers a potential tool for differentiation of Dhc activity from alternative transformation mechanisms (e.g., aerobic degradation and reductive dechlorination proceeding via outer sphere mechanisms), in studies of in situ attenuation of chlorinated ethenes. Hydrogenation of the reaction products (DCE, VC, and ethene) showed a major preference for the (1)H isotope. Detection of depleted dechlorination products could provide a line of evidence in discrimination between alternative sources of TCE (e.g., evolution from DNAPL sources or from conversion of PCE).

  1. Global variation of the para hydrogen fraction in Jupiter's atmosphere and implications for dynamics on the outer planets

    NASA Technical Reports Server (NTRS)

    Conrath, B. J.; Gierasch, P. J.

    1984-01-01

    A detailed analysis of the Voyager infrared spectrometer measurements on Jupiter's atmosphere is presented, and possible implications of para hydrogen disequilibrium for the energetics and dynamics of that atmosphere are examined. The method of data analysis is described, and results for the large scale latitude variation of the para hydrogen fraction are presented. The Jovian results show pronounced latitude variation, and are compared with other parameters including wind fields, thermal structure, and various indicators of atmospheric clouds. The problem of equilibration rate is reexamined, and it is concluded that on Jupiter the equilibration time is longer than the radiative time constant at the level of emission to space, but that this inequality reverses at greater depths. A model for the interaction of fluid motions with the ortho-para conversion process is presented, and a consistent mixing length theory for the reacting ortho-para mixture is developed. Several implications of the Jovian data for atmospheric energetics and stability on the outer planets are presented.

  2. Measurement of the Branching Fraction, and Bounds on the CP-Violating Asymmetries, of Neutral B Decays to D*±D∓

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Barate, R.; Boutigny, D.; Gaillard, J.-M.; Hicheur, A.; Karyotakis, Y.; Lees, J. P.; Robbe, P.; Tisserand, V.; Zghiche, A.; Palano, A.; Pompili, A.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Ofte, I.; Stugu, B.; Abrams, G. S.; Borgland, A. W.; Breon, A. B.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Gill, M. S.; Gritsan, A. V.; Groysman, Y.; Jacobsen, R. G.; Kadel, R. W.; Kadyk, J.; Kerth, L. T.; Kolomensky, Yu. G.; Kral, J. F.; Kukartsev, G.; Leclerc, C.; Levi, M. E.; Lynch, G.; Mir, L. M.; Oddone, P. J.; Orimoto, T. J.; Pripstein, M.; Roe, N. A.; Romosan, A.; Ronan, M. T.; Shelkov, V. G.; Telnov, A. V.; Wenzel, W. A.; Harrison, T. J.; Hawkes, C. M.; Knowles, D. J.; Penny, R. C.; Watson, A. T.; Watson, N. K.; Deppermann, T.; Goetzen, K.; Koch, H.; Lewandowski, B.; Pelizaeus, M.; Peters, K.; Schmuecker, H.; Steinke, M.; Barlow, N. R.; Bhimji, W.; Boyd, J. T.; Chevalier, N.; Clark, P. J.; Cottingham, W. N.; Mackay, C.; Wilson, F. F.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Thiessen, D.; Kyberd, P.; McKemey, A. K.; Blinov, V. E.; Bukin, A. D.; Golubev, V. B.; Ivanchenko, V. N.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Yushkov, A. N.; Best, D.; Chao, M.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; McMahon, S.; Mommsen, R. K.; Roethel, W.; Stoker, D. P.; Buchanan, C.; Hadavand, H. K.; Hill, E. J.; Macfarlane, D. B.; Paar, H. P.; Rahatlou, Sh.; Schwanke, U.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Dahmes, B.; Kuznetsova, N.; Levy, S. L.; Long, O.; Lu, A.; Mazur, M. A.; Richman, J. D.; Verkerke, W.; Beringer, J.; Eisner, A. M.; Heusch, C. A.; Lockman, W. S.; Schalk, T.; Schmitz, R. E.; Schumm, B. A.; Seiden, A.; Turri, M.; Walkowiak, W.; Williams, D. C.; Wilson, M. G.; Albert, J.; Chen, E.; Dubois-Felsmann, G. P.; Dvoretskii, A.; Hitlin, D. G.; Narsky, I.; Porter, F. C.; Ryd, A.; Samuel, A.; Yang, S.; Jayatilleke, S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.; Barillari, T.; Blanc, F.; Bloom, P.; Ford, W. T.; Nauenberg, U.; Olivas, A.; Rankin, P.; Roy, J.; Smith, J. G.; van Hoek, W. C.; Zhang, L.; Harton, J. L.; Hu, T.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Zhang, J.; Altenburg, D.; Brandt, T.; Brose, J.; Colberg, T.; Dickopp, M.; Dubitzky, R. S.; Hauke, A.; Lacker, H. M.; Maly, E.; Müller-Pfefferkorn, R.; Nogowski, R.; Otto, S.; Schubert, K. R.; Schwierz, R.; Spaan, B.; Wilden, L.; Bernard, D.; Bonneaud, G. R.; Brochard, F.; Cohen-Tanugi, J.; T'jampens, S.; Thiebaux, Ch.; Vasileiadis, G.; Verderi, M.; Bernet, R.; Khan, A.; Lavin, D.; Muheim, F.; Playfer, S.; Swain, J. E.; Tinslay, J.; Borean, C.; Bozzi, C.; Piemontese, L.; Sarti, A.; Treadwell, E.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Falciai, D.; Finocchiaro, G.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Zallo, A.; Buzzo, A.; Contri, R.; Crosetti, G.; Lo Vetere, M.; Macri, M.; Monge, M. R.; Passaggio, S.; Pastore, F. C.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.; Bailey, S.; Morii, M.; Grenier, G. J.; Lee, S.-J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Lamsa, J.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Yi, J.; Davier, M.; Grosdidier, G.; Höcker, A.; Laplace, S.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Petersen, T. C.; Plaszczynski, S.; Schune, M. H.; Tantot, L.; Wormser, G.; Bionta, R. M.; Brigljević, V.; Cheng, C. H.; Lange, D. J.; Wright, D. M.; Bevan, A. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Kay, M.; Payne, D. J.; Sloane, R. J.; Touramanis, C.; Aspinwall, M. L.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Eschrich, I.; Morton, G. W.; Nash, J. A.; Sanders, P.; Taylor, G. P.; Back, J. J.; Bellodi, G.; Harrison, P. F.; Shorthouse, H. W.; Strother, P.; Vidal, P. B.; Cowan, G.; Flaecher, H. U.; George, S.; Green, M. G.; Kurup, A.; Marker, C. E.; McMahon, T. R.; Ricciardi, S.; Salvatore, F.; Vaitsas, G.; Winter, M. A.; Brown, D.; Davis, C. L.; Allison, J.; Barlow, R. J.; Forti, A. C.; Hart, P. A.; Jackson, F.; Lafferty, G. D.; Lyon, A. J.; Weatherall, J. H.; Williams, J. C.; Farbin, A.; Jawahery, A.; Kovalskyi, D.; Lae, C. K.; Lillard, V.; Roberts, D. A.; Blaylock, G.; Dallapiccola, C.; Flood, K. T.; Hertzbach, S. S.; Kofler, R.; Koptchev, V. B.; Moore, T. B.; Staengle, H.; Willocq, S.; Winterton, J.; Cowan, R.; Sciolla, G.; Taylor, F.; Yamamoto, R. K.; Mangeol, D. J.; Milek, M.; Patel, P. M.; Palombo, F.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Kroeger, R.; Reidy, J.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Hast, C.; Taras, P.; Nicholson, H.; Cartaro, C.; Cavallo, N.; de Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Losecco, J. M.; Gabriel, T. A.; Brau, B.; Pulliam, T.; Brau, J.; Frey, R.; Iwasaki, M.; Potter, C. T.; Sinev, N. B.; Strom, D.; Torrence, E.; Colecchia, F.; Dorigo, A.; Galeazzi, F.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Tiozzo, G.; Voci, C.; Benayoun, M.; Briand, H.; Chauveau, J.; David, P.; de La Vaissière, Ch.; Buono, L. Del; Hamon, O.; Leruste, Ph.; Ocariz, J.; Pivk, M.; Roos, L.; Stark, J.; Manfredi, P. F.; Re, V.; Gladney, L.; Guo, Q. H.; Panetta, J.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bucci, F.; Calderini, G.; Carpinelli, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Martinez-Vidal, F.; Morganti, M.; Neri, N.; Paoloni, E.; Rama, M.; Rizzo, G.; Sandrelli, F.; Triggiani, G.; Walsh, J.; Haire, M.; Judd, D.; Paick, K.; Wagoner, D. E.; Danielson, N.; Elmer, P.; Lu, C.; Miftakov, V.; Olsen, J.; Smith, A. J.; Varnes, E. W.; Bellini, F.; Cavoto, G.; del Re, D.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Leonardi, E.; Mazzoni, M. A.; Morganti, S.; Pierini, M.; Piredda, G.; Tehrani, F. Safai; Serra, M.; Voena, C.; Christ, S.; Wagner, G.; Waldi, R.; Adye, T.; de Groot, N.; Franek, B.; Geddes, N. I.; Gopal, G. P.; Olaiya, E. O.; Xella, S. M.; Aleksan, R.; Emery, S.; Gaidot, A.; Ganzhur, S. F.; Giraud, P.-F.; de Monchenault, G. Hamel; Kozanecki, W.; Langer, M.; London, G. W.; Mayer, B.; Schott, G.; Vasseur, G.; Yeche, Ch.; Zito, M.; Purohit, M. V.; Weidemann, A. W.; Yumiceva, F. X.; Aston, D.; Bartoldus, R.; Berger, N.; Boyarski, A. M.; Buchmueller, O. L.; Convery, M. R.; Coupal, D. P.; Dong, D.; Dorfan, J.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Grauges-Pous, E.; Hadig, T.; Halyo, V.; Hryn'ova, T.; Innes, W. R.; Jessop, C. P.; Kelsey, M. H.; Kim, P.; Kocian, M. L.; Langenegger, U.; Leith, D. W.; Luitz, S.; Luth, V.; Lynch, H. L.; Marsiske, H.; Menke, S.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Petrak, S.; Ratcliff, B. N.; Robertson, S. H.; Roodman, A.; Salnikov, A. A.; Schietinger, T.; Schindler, R. H.; Schwiening, J.; Simi, G.; Snyder, A.; Soha, A.; Stelzer, J.; Su, D.; Sullivan, M. K.; Tanaka, H. A.; Va'Vra, J.; Wagner, S. R.; Weaver, M.; Weinstein, A. J.; Wisniewski, W. J.; Wright, D. H.; Young, C. C.; Burchat, P. R.; Meyer, T. I.; Roat, C.; Ahmed, S.; Bugg, W.; Krishnamurthy, M.; Spanier, S. M.; Eckmann, R.; Kim, H.; Ritchie, J. L.; Schwitters, R. F.; Izen, J. M.; Kitayama, I.; Lou, X. C.; Bianchi, F.; Bona, M.; Gamba, D.; Bosisio, L.; della Ricca, G.; Dittongo, S.; Grancagnolo, S.; Lanceri, L.; Poropat, P.; Vitale, L.; Vuagnin, G.; Panvini, R. S.; Banerjee, Sw.; Brown, C. M.; Fortin, D.; Jackson, P. D.; Kowalewski, R.; Roney, J. M.; Band, H. R.; Dasu, S.; Datta, M.; Eichenbaum, A. M.; Hu, H.; Johnson, J. R.; Liu, R.; Lodovico, F. Di; Mohapatra, A. K.; Pan, Y.; Prepost, R.; Sekula, S. J.; von Wimmersperg-Toeller, J. H.; Wu, J.; Wu, S. L.; Yu, Z.; Neal, H.

    2003-06-01

    We present measurements of the branching fraction and CP-violating asymmetries for neutral B decays to D*±D∓. The measurement uses a data sample of approximately 88×106 ϒ(4S)→BB¯ decays collected with the BABAR detector at the SLAC PEP-II asymmetric-energy e+-e- collider. By fully reconstructing the D*±D∓ decay products, we measure the branching fraction to be (8.8±1.0±1.3)×10-4 and the time-integrated CP-violating asymmetry between the rates to D*-D+ and D*+D- to be A=-0.03±0.11±0.05. We also measure the time-dependent CP-violating asymmetry parameters to be S-+=-0.24±0.69±0.12, C-+=-0.22±0.37±0.10 for B→D*-D+ and S+-=-0.82±0.75±0.14, C+-=-0.47±0.40±0.12 for B→D*+D-. In each case, the first error is statistical and the second error is systematic.

  3. Measurements of neutral hydrogen profiles on the EXTRAP-T2 reversed-field pinch from time-resolved ? line emission

    NASA Astrophysics Data System (ADS)

    Sallander, J.; Hedqvist, A.; Rachlew-Källne, E.

    1998-09-01

    The investigations of the radial distributions of 0953-4075/31/17/015/img2 emission from the EXTRAP-T2 reversed-field pinch (RFP) plasma show that the emission profile varies a lot, even during one plasma discharge. At central electron temperatures of about 150 eV it was expected that the 0953-4075/31/17/015/img2 emission should emerge from the plasma centre. In comparison, 0953-4075/31/17/015/img4 is always observed to radiate from the centre. Our measurements of 0953-4075/31/17/015/img2 emission have, however, shown that this is not always the case, the emission often comes from the plasma edge. The analysis of the measurements has led us to conclude that the edge emission comes from charge-exchange recombination with neutral hydrogen near the carbon first wall. These observations provide a way to estimate the change in neutral hydrogen density during local plasma-wall interaction.

  4. Excitation and charge transfer in low-energy hydrogen-atom collisions with neutral atoms: Theory, comparisons, and application to Ca

    NASA Astrophysics Data System (ADS)

    Barklem, Paul S.

    2016-04-01

    A theoretical method is presented for the estimation of cross sections and rates for excitation and charge-transfer processes in low-energy hydrogen-atom collisions with neutral atoms, based on an asymptotic two-electron model of ionic-covalent interactions in the neutral atom-hydrogen-atom system. The calculation of potentials and nonadiabatic radial couplings using the method is demonstrated. The potentials are used together with the multichannel Landau-Zener model to calculate cross sections and rate coefficients. The main feature of the method is that it employs asymptotically exact atomic wave functions, which can be determined from known atomic parameters. The method is applied to Li+H , Na+H , and Mg+H collisions, and the results compare well with existing detailed full-quantum calculations. The method is applied to the astrophysically important problem of Ca+H collisions, and rate coefficients are calculated for temperatures in the range 1000-20 000 K.

  5. Hydrogen and oxygen isotope fractionation between brucite and aqueous NaCl solutions from 250 to 450°C

    USGS Publications Warehouse

    Saccocia, Peter J.; Seewald, Jeffrey S.; Shanks, Wayne C.

    1998-01-01

    Hydrogen and oxygen isotope fractionation factors between brucite and aqueous NaCl solutions (1000lnαbr-sw) have been calibrated by experiment from 250 to 450°C at 0.5 Kb. For D/H fractionation, 1000lnα br-sw values are as follows: −32 ± 6‰ (250°C, 3.2 wt% NaCl), −21 ± 2‰ (350°C, 10.0 wt% NaCl), and −22 ± 2‰ (450°C, 3.2 wt% NaCl), indicating that brucite is depleted in D relative to coexisting aqueous NaCl solutions. These results are in good agreement with previous D/H fractionation factors determined in the brucite-water system, indicating that any effects of dissolved salt on D/H fractionation are relatively small, particularly in solutions with near seawater salinity. The maximum salt effect (+4‰) was observed in 10.0 wt% NaCl solutions at 350°C, suggesting that the addition of dissolved NaCl increases the amount of deuterium fractionated into mineral structures. For 18O/16O fractionation, 1000lnαbr-sw values in 3.0 wt% NaCl solutions are −6.0 ± 1.3‰, −5.6 ± 0.7‰ and −4.1 ± 0.2‰, at 250, 350, and 450°C, respectively, and −5.8 ± 0.6‰ in 10.0 wt % NaCl at 350°C. These data indicate that brucite is depleted in 18O relative to coexisting aqueous NaCl solutions and that the degree of depletion decreases slightly with increasing temperature and is not strongly dependent on salinity. We calculated 18O/16O brucite-water fractionation factors from available calibrations of the salt-effect on 18O/16O fractionation between coexisting phases. The resulting values were fit to the following equation that is valid from 250 to 450°C 1000ln αbr-w = 9.54 × 106T−2 − 3.53 × 104T−1 + 26.58 where T is temperature in Kelvins. These new data have been used to improve the prediction of 18O/16O fractionation factors in the talc-water and serpentine-water systems by modifying existing empirical bond-water models. The results of this analysis indicate that the δ18O composition of talc-brucite and serpentine

  6. Sulfur isotopic fractionation in vacuum UV photodissociation of hydrogen sulfide and its potential relevance to meteorite analysis.

    PubMed

    Chakraborty, Subrata; Jackson, Teresa L; Ahmed, Musahid; Thiemens, Mark H

    2013-10-29

    Select meteoritic classes possess mass-independent sulfur isotopic compositions in sulfide and organic phases. Photochemistry in the solar nebula has been attributed as a source of these anomalies. Hydrogen sulfide (H2S) is the most abundant gas-phase species in the solar nebula, and hence, photodissociation of H2S by solar vacuum UV (VUV) photons (especially by Lyman-α radiation) is a relevant process. Because of experimental difficulties associated with accessing VUV radiation, there is a paucity of data and a lack of theoretical basis to test the hypothesis of a photochemical origin of mass-independent sulfur. Here, we present multiisotopic measurements of elemental sulfur produced during the VUV photolysis of H2S. Mass-independent sulfur isotopic compositions are observed. The observed isotopic fractionation patterns are wavelength-dependent. VUV photodissociation of H2S takes place through several predissociative channels, and the measured mass-independent fractionation is most likely a manifestation of these processes. Meteorite sulfur data are discussed in light of the present experiments, and suggestions are made to guide future experiments and models.

  7. Sulfur isotopic fractionation in vacuum UV photodissociation of hydrogen sulfide and its potential relevance to meteorite analysis

    PubMed Central

    Chakraborty, Subrata; Jackson, Teresa L.; Ahmed, Musahid; Thiemens, Mark H.

    2013-01-01

    Select meteoritic classes possess mass-independent sulfur isotopic compositions in sulfide and organic phases. Photochemistry in the solar nebula has been attributed as a source of these anomalies. Hydrogen sulfide (H2S) is the most abundant gas-phase species in the solar nebula, and hence, photodissociation of H2S by solar vacuum UV (VUV) photons (especially by Lyman-α radiation) is a relevant process. Because of experimental difficulties associated with accessing VUV radiation, there is a paucity of data and a lack of theoretical basis to test the hypothesis of a photochemical origin of mass-independent sulfur. Here, we present multiisotopic measurements of elemental sulfur produced during the VUV photolysis of H2S. Mass-independent sulfur isotopic compositions are observed. The observed isotopic fractionation patterns are wavelength-dependent. VUV photodissociation of H2S takes place through several predissociative channels, and the measured mass-independent fractionation is most likely a manifestation of these processes. Meteorite sulfur data are discussed in light of the present experiments, and suggestions are made to guide future experiments and models. PMID:23431159

  8. The Roll-over of Heliospheric Neutral Hydrogen at Energies below 100 eV: Observations with IBEX and their Implications for the Pressure Balance of the Heliosheath

    NASA Astrophysics Data System (ADS)

    Galli, A.; Wurz, P.; Schwadron, N.; Kucharek, H.; Moebius, E.; Bzowski, M.; Sokol, J. M.; Kubiak, M. A.; Fuselier, S. A.; McComas, D. J.; Funsten, H. O.

    2016-12-01

    The Interstellar Boundary Explorer (IBEX) has been observing the interaction of the heliosphere with the surrounding interstellar medium since 2009. IBEX observations have led to several discoveries, such as the Ribbon of intense Energetic Neutral Atoms (ENAs) from the heliosphere at energies around 1 keV and the direct detection of interstellar neutral hydrogen, helium, deuterium, oxygen, and neon at low energies (10 - 500 eV). Here, we summarize the observations of ENAs from the heliosheath at the lowest energies accessible by the IBEX-Lo sensor. The IBEX measurements allow us to study the lowest energies between 10 and 100 eV although various background sources are more intense than the targeted signal over broad areas of the sky. The results improve our knowledge of the interaction region between our heliosphere and the interstellar plasma because these neutral atoms are direct messengers from the low-energy plasma in the heliosheath. The parent ions of these low energy ENAs dominate the pressure balance of the plasma in the inner heliosheath. We find a roll-over of the energy spectrum below 100 eV, which has major implications for the pressure balance. These results can also be compared directly with in situ observations of the Voyager 1 and 2 spacecraft.

  9. Neutral nickel(II) phthalocyanine as a stable catalyst for visible-light-driven hydrogen evolution from water.

    PubMed

    Yuan, Yong-Jun; Tu, Ji-Ren; Lu, Hong-Wei; Yu, Zhen-Tao; Fan, Xiao-Xing; Zou, Zhi-Gang

    2016-01-28

    Neutral nickel(ii) phthalocyanine was found to be an efficient and stable catalyst for photocatalytic H2 evolution from water when coupled with an iridium complex as the photosensitizer and triethanolamine as the sacrificial electron donor. The result shows that the Ni-N sigma bond can enhance the stability of the catalyst.

  10. Characteristics of a high-power RF source of negative hydrogen ions for neutral beam injection into controlled fusion devices

    NASA Astrophysics Data System (ADS)

    Abdrashitov, G. F.; Belchenko, Yu. I.; Gusev, I. A.; Ivanov, A. A.; Kondakov, A. A.; Sanin, A. L.; Sotnikov, O. Z.; Shikhovtsev, I. V.

    2017-01-01

    An injector of hydrogen atoms with an energy of 0.5-1 MeV and equivalent current of up to 1.5 A for purposes of controlled fusion research is currently under design at the Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences. Within this project, a multiple-aperture RF surface-plasma source of negative hydrogen ions is designed. The source design and results of experiments on the generation of a negative ion beam with a current of >1 A in the long-pulse mode are presented.

  11. Neutral pH hydrogen-enriched electrolyzed water achieves tumor-preferential clonal growth inhibition over normal cells and tumor invasion inhibition concurrently with intracellular oxidant repression.

    PubMed

    Saitoh, Yasukazu; Okayasu, Hajime; Xiao, Li; Harata, Yoshikazu; Miwa, Nobuhiko

    2008-01-01

    The properties and effects of neutral pH hydrogen-enriched electrolyzed water (NHE water) on tumor cells were examined. NHE water diminished hydroxyl radicals as demonstrated by ESR in a cell-free system. Human tongue carcinoma cells HSC-4 were inhibited for either colony formation efficiencies or colony sizes by NHE water without significant inhibition to normal human tongue epithelial-like cells DOK. Furthermore, NHE water caused growth inhibition, cell degeneration, and inhibition of invasion through the reconstituted basement membrane to human fibrosarcoma cells HT-1080. Intracellular oxidants such as hydroperoxides and hydrogen peroxides were scavenged in HSC-4 or HT-1080 cells by NHE water. In the human oral cavity, a dissolved hydrogen concentrations (DH) of NHE water was drastically declined from 1.1 to 0.5 ppm, but settled to 0.3-0.4 ppm until 180 s, upon static holding without gargling. Thus, NHE water was shown to achieve tumor-preferential growth inhibition and tumor invasion together with scavenging of intracellular oxidants, and is expected as a preventive material against tumor progression and invasion.

  12. Position-Specific Hydrogen and Carbon Isotope Fractionations of Light Hydrocarbons by Quantitative NMR

    NASA Astrophysics Data System (ADS)

    Liu, C.; Mcgovern, G. P.; Horita, J.

    2015-12-01

    Traditional isotope ratio mass spectrometry methods to measure 2H/1H and 13C/12C ratios of organic molecules only provide average isotopic values of whole molecules. During the measurement process, valuable information of position-specific isotope fractionations (PSIF) between non-equivalent H and C positions is lost, which can provide additional very useful information about the origins and history of organic molecules. Quantitative nuclear magnetic resonance (NMR) spectrometry can measure 2H and 13C PSIF of organic molecules without destruction. The 2H and 13C signals from different positions of a given molecule show up as distinctive peaks in an NMR spectrum, and their peak areas are proportional to the 2H and 13C populations at each position. Moreover, quantitative NMR can be applied to a wide variety of organic molecules. We have been developing quantitative NMR methods to determine 2H and 13C PSIF of light hydrocarbons (propane, butane and pentane), using J-Young and custom-made high-pressure NMR cells. With careful conditioning of the NMR spectrometer (e.g. tuning, shimming) and effective 1H -13C decoupling, precision of ± <10‰ (2H) and ± <1‰ (13C) can be readily attainable after several hours of acquisition. Measurement time depends on the relaxation time of interested nucleus and the total number of scans needed for high signal-to-noise ratios. Our data for commercial, pure hydrocarbon samples showed that 2H PSIF in the hydrocarbons can be larger than 60‰ and that 13C PSIF can be as large as 15‰. Comparison with theoretical calculations indicates that the PSIF patterns of some hydrocarbon samples reflect non-equilibrium processes in their productions.

  13. The Morphology And Kinematics Of Neutral Hydrogen In The Vicinity Of Z=0 Galaxies With Milky-Way Masses - A Study With The Illustris Simulation

    NASA Astrophysics Data System (ADS)

    Kauffmann, Guinevere

    2016-09-01

    We analyze the properties of the circumgalactic gas (CGM) around 120 galaxies with stellar and dark matter halo masses similar to that of the Milky Way. We focus on the morphology and kinematics of the neutral hydrogen component of the CGM and how this depends on the ratio of gas-to-stellar mass within the optical radius. In gas-rich galaxies, gas temperatures rise monotonically from center of the halo out to the virial radius. Average neutral gas column densities remain higher than 10**19 atoms cm-2 all the way from the center of the galaxy out to radii of 50-70 kpc. In gas-poor galaxies with fg < 0.1, gas temperatures remain fixed at 10^6 K from the edge of the disk out to radii of 100 kpc. The column density of neutral gas drops below 1019 atoms cm-2 at radii of 10 kpc. The neutral gas distributions are also more asymmetric in gas-poor galaxies. Most of these trends can be explained by the fact that in the Illustris simulation, gas-poor galaxies with Milky Way masses have massive (108Mo) black holes that accrete at few percent of Eddington, and that energy is being dumped into the halo at large (100 kpc) radii in the form of bubbles of hot gas in these systems. We also find that the circumgalactic gas rotates coherently about the center of the galaxy with a maximum rotational velocity of around 200 km/s. In gas-rich galaxies, the average coherence length of the rotating gas is 40 kpc, compared to 10 kpc in gas-poor galaxies. In the most gas-rich systems, the CGM can rotate coherently over scales of 70-100 kpc. We discuss our results in the context of recent observations of the CGM in low mass galaxies via UV absorption-line spectroscopy and deep 21cm observations of edge-on spiral galaxies.

  14. The morphology and kinematics of neutral hydrogen in the vicinity of z = 0 galaxies with Milky Way masses - a study with the Illustris simulation

    NASA Astrophysics Data System (ADS)

    Kauffmann, Guinevere; Borthakur, Sanchayeeta; Nelson, Dylan

    2016-11-01

    We analyse the properties of the circumgalactic gas (circumgalactic medium, CGM) around 120 galaxies with stellar and dark matter halo masses similar to that of the Milky Way. We focus on the morphology and kinematics of the neutral hydrogen and how this depends on fg, the ratio of gas-to-stellar mass within the optical radius. In gas-rich galaxies with fg > 0.1, gas temperatures rise slowly from centre of the halo out to the virial radius and average neutral gas column densities remain above 1019 atoms cm-2 out to radii of 50-70 kpc. In gas-poor galaxies with fg < 0.1, gas temperatures rise quickly outside the edge of the disc to ˜106 K, and then remain fixed out to radii of 100 kpc. The column density of neutral gas quickly drops below 1019 atoms cm-2 at radii of 10 kpc. Neutral gas distributions are also more asymmetric in gas-poor galaxies. Most of the differences between gas-poor and gas-rich galaxies in the Illustris simulation can be attributed to the effects of `radio-mode' AGN feedback. In the Illustris simulation, the circumgalactic gas is found to rotate coherently about the centre of the galaxy with a maximum rotational velocity of around 200 km s-1. In gas-rich galaxies, the average coherence length of the rotating gas is 40 kpc, compared to 10 kpc in gas-poor galaxies. In the very most gas-rich systems, the CGM can rotate coherently over scales of 70-100 kpc. We discuss our results in the context of recent observations of the CGM in low-mass galaxies via UV absorption-line spectroscopy and deep 21 cm observations of edge-on spiral galaxies.

  15. High effective neutralizer for negative hydrogen and deuterium ion beams on base of nonresonance adiabatic trap of photons

    NASA Astrophysics Data System (ADS)

    Popov, S. S.; Atluhanov, M. G.; Burdakov, A. V.; Ivanov, A. A.; Kolmogorov, A. V.; Ushkova, M. Yu.

    2017-08-01

    High efficiency of negative ion beam neutralization by using a photon target is presented in this work. The target was designed and manufactured on principles of nonresonance adiabatic confinement of photons. This photon trap shaped a long arc blended with end spherical mirrors. The arc part consists several cylinder mirrors. Trap sizes was about 30×50×250 mm3. A photon flux from an industrial fiber laser (λ =1070 nm, Δλ=7nm, P=2.1 kW) was injected into trap normally to one cylinder mirror through small entrance hole with angular spread about 3 degree. Test negative ion beams were passed through photon confinement region and suppressing ion current was registered. These experiments has been carried out with H-, D- beams. High neutralization degree more than 95% has been demonstrated.

  16. Electron-bifurcating transhydrogenase is central to hydrogen isotope fractionation during lipid biosynthesis in sulfate reducing bacteria

    NASA Astrophysics Data System (ADS)

    Leavitt, W.; Flynn, T. M.; Suess, M.; Bradley, A. S.

    2015-12-01

    A significant range in microbial lipid 2H/1H ratios is observed in modern marine sediments [Li et al. 2009. GCA]. The magnitude of hydrogen isotope fractionation between microbial lipids and growth water (2ɛlipid-H2O) is hypothesized to relate to the central carbon and energy metabolism [Zhang et al. 2009. PNAS]. These observations have raised the intriguing possibility for culture independent identification of the dominant metabolic pathways operating in environments critical to the geological record. One such metabolism we would like to track for its global significance in sedimentary carbon cycling is bacterial sulfate reduction [Jørgensen. 1982. Nature]. To-date, heterotrophic sulfate reducing bacteria (SRB) have been observed to produce lipids that are depleted in fatty acid H-isotope composition, relative to growth water (2ɛlipid-H2O ~ -125 to -175 ‰), with experiments on different substrates yielding little variability [Campbell et al. 2009. GCA; Osburn. 2013; Dawson et al. 2015. Geobiology]. In stark contrast, aerobic heterotrophs show a wide range in fractionations (2ɛlipid-H2O ~ +300 to -125‰) which seems to scale with the route cellular carbon metabolism [Zhang et al. 2009. PNAS; Heinzelmann et al. 2015. Front Microbio]. Recent work in aerobic methylotrophs [Bradley et al. 2014. AGU] implicates transhydrogenase (TH) activity as a critical control on 2ɛlipid-H2O. This work suggests a specific driving mechanism for this range in fractionation is the ratio of intracellular NADPH/NADH, and more fundamentally, the intracellular redox state. In SRB a key component of energy metabolism is the activity of electron-bifurcating TH [Price et al. 2014. Front Microbio], for which a recent transposon mutant library has generated a number of knockouts in the target gene [Kuehl et al. 2014. mBio] in the model organism Desulfovibrio alaskensis strain G20. In this study we compare growth rates, fatty acid concentrations and 2ɛlipid-H2O from wild type and TH

  17. Isotopic fractionation factor and hydrogenic potential in 2-hydroxy-1,1,1,5,5,5-hexafluoro-2-penten-4-one

    SciTech Connect

    Kreevoy, M.M.; Ridl, B.A.

    1981-04-02

    The title compound (enol-hexafluoroacetylacetone) has an isotopic fractionation factor of 0.6 +- 0.1. This, and much other information about this compound, can be rationalized if the enolic hydrogen bridges between the two oxygens and is governed by a double minimum potential function with a central maximum of approx. 3000 cm/sup -1/ (8 kcal/mol)(eq 10).

  18. Secondary Structures in a Freeze-Dried Lignite Humic Acid Fraction Caused by Hydrogen-Bonding of Acidic Protons with Aromatic Rings.

    PubMed

    Cao, Xiaoyan; Drosos, Marios; Leenheer, Jerry A; Mao, Jingdong

    2016-02-16

    A lignite humic acid (HA) was separated from inorganic and non-HA impurities (i.e., aluminosilicates, metals) and fractionated by a combination of dialysis and XAD-8 resin. Fractionation revealed a more homogeneous structure of lignite HA. New and more specific structural information on the main lignite HA fraction is obtained by solid-state nuclear magnetic resonance (NMR) spectroscopy. Quantitative (13)C multiple cross-polarization (multiCP) NMR indicated oxidized phenyl propane structures derived from lignin. MultiCP experiments, conducted on potassium HA salts titrated to pH 10 and pH 12, revealed shifts consistent with carboxylate and phenolate formation, but structural changes associated with enolate formation from aromatic beta keto acids were not detected. Two-dimensional (1)H-(13)C heteronuclear correlation (2D HETCOR) NMR indicated aryl-aliphatic ketones, aliphatic and aromatic carboxyl groups, phenol, and methoxy phenyl ethers. Acidic protons from carboxyl groups in both the lignite HA fraction and a synthetic HA-like polycondensate were found to be hydrogen-bonded with electron-rich aromatic rings. Our results coupled with published infrared spectra provide evidence for the preferential hydrogen bonding of acidic hydrogens with electron-rich aromatic rings rather than adjacent carbonyl groups. These hydrogen-bonding interactions likely result from stereochemical arrangements in primary structures and folding.

  19. Measurement of CP Asymmetries and Branching Fractions in Neutral B Meson Decays to Charged Pions and Kaons with the BABAR Detector

    SciTech Connect

    Farbin, A.

    2005-02-10

    This dissertation presents a measurement of CP asymmetries and branching fractions for neutral B meson decays to two-body final states of charged pions and kaons. The results are obtained from a data sample of about 88 million {Upsilon}(4S) {yields} B{bar B} decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B factory located at the Stanford Linear Accelerator Center. A fit to kinematic, topological, and particle identification information measures the charge-averaged branching fractions {Beta}(B{sup 0} {yields} {pi}{sup +}{pi}{sup -}) = (4.7 {+-} 0.6 {+-} 0.2) x 10{sup -6} and {Beta}(B{sup 0} {yields} K{sup +}{pi}{sup -}) = (17.9 {+-} 0.9 {+-} 0.7) x 10{sup -6}; the 90% confidence level upper limit {Beta}(B{sup 0} {yields} K{sup +}K{sup -}) < 0.6 x 10{sup -6}; and the direct CP-violating charge asymmetry {Alpha}{sub K{pi}} = -0.102 {+-} 0.050 {+-} 0.016 [-0.188, -0.016], where the first uncertainties are statistical and the second are systematic and the ranges in square brackets indicate the 90% confidence interval. A fit which adds decay time and b-flavor tagging information measures the CP-violating parameters for B{sup 0} {yields} {pi}{sup +}{pi}{sup -} decays S{sub {pi}{pi}} = 0.02 {+-} 0.34 {+-} 0.05 [-0.54, +0.58] and C{sub {pi}{pi}} = -0.30 {+-} 0.25 {+-} 0.04 [-0.72, +0.12].

  20. Growth-dependent hydrogen isotopic fractionation of algal lipid biomarkers in hypersaline Isabel Lake (México)

    NASA Astrophysics Data System (ADS)

    Romero-Viana, Lidia; Kienel, Ulrike; Wilkes, Heinz; Sachse, Dirk

    2013-04-01

    In this study, we evaluated the potential of the hydrogen isotopic composition of algal lipid biomarkers as a proxy for past hydroclimatic variability in hypersaline Isabel Lake, Mexico (Eastern Pacific). We compared rainfall variability recorded in the region over the last 65 years with changes in δD values of the most abundant compounds preserved in the uppermost 16 cm of lake sediment. Changes in δD values of the 1,15-C32 diol (δDdiol), a specific biomarker of algal populations, were related to rainfall variability; specifically, n-alkyl diols were more deuterium-enriched (depleted) during wetter (drier) periods. Strikingly, neither the magnitude of lipid biomarker isotopic changes over interannual timescales (of up to 70-80‰) nor the direction of that variability can be explained by changes in δD values of the water source or salinity fluctuations (approximately 30 on the practical salinity scale) controlled by seasonal rainfall. However, changes in sedimentary biomarker composition, higher total organic carbon content and less negative δ13C values of the 1,15-C32 diol indicate enhanced algal growth during wetter periods. We find that these conditions result in less negative δD values of n-alkyl diols. We hypothesize that due to higher lipid demand during enhanced algal growth, an increasing proportion of hydrogen for lipid synthesis is derived from the cytosol via oxidation of polysaccharides, which may cause a deuterium enrichment of the acetogenic compounds. This study has significant implications for paleohydrological reconstructions using algal lipid δD values, particularly in highly seasonal environments such as Isabel Lake. In such environments, δD values of specific algal lipid biomarkers may not record the full seasonal cycle in source water δD but appear to be mainly controlled by the physiological state of algal populations. Our data provide the first evidence that changes in D/H fractionation due to algal growth conditions can be recorded

  1. Solar Neutral Particles

    NASA Image and Video Library

    This animation shows a neutral solar particle's path leaving the sun, following the magnetic field lines out to the heliosheath. The solar particle hits a hydrogen atom, stealing its electron, and ...

  2. Neutral transition metal hydrides as acids in hydrogen bonding and proton transfer: media polarity and specific solvation effects.

    PubMed

    Levina, Vladislava A; Filippov, Oleg A; Gutsul, Evgenii I; Belkova, Natalia V; Epstein, Lina M; Lledos, Agusti; Shubina, Elena S

    2010-08-18

    Structural, spectroscopic, and electronic features of weak hydrogen-bonded complexes of CpM(CO)(3)H (M = Mo (1a), W (1b)) hydrides with organic bases (phosphine oxides R(3)PO (R = n-C(8)H(17), NMe(2)), amines NMe(3), NEt(3), and pyridine) are determined experimentally (variable temperature IR) and computationally (DFT/M05). The intermediacy of these complexes in reversible proton transfer is shown, and the thermodynamic parameters (DeltaH degrees , DeltaS degrees ) of each reaction step are determined in hexane. Assignment of the product ion pair structure is made with the help of the frequency calculations. The solvent effects were studied experimentally using IR spectroscopy in CH(2)Cl(2), THF, and CH(3)CN and computationally using conductor-like polarizable continuum model (CPCM) calculations. This complementary approach reveals the particular importance of specific solvation for the hydrogen-bond formation step. The strength of the hydrogen bond between hydrides 1 and the model bases is similar to that of the M-H...X hydrogen bond between 1 and THF (X = O) or CH(3)CN (X = N) or between CH(2)Cl(2) and the same bases. The latter competitive weak interactions lower the activities of both the hydrides and the bases in the proton transfer reaction. In this way, these secondary effects shift the proton transfer equilibrium and lead to the counterintuitive hampering of proton transfer upon solvent change from hexane to moderately polar CH(2)Cl(2) or THF.

  3. Neutral Hydrogen Observations of the Extremely Metal-Poor Blue Compact Dwarf Galaxy SBS 0335-052

    NASA Astrophysics Data System (ADS)

    Brinks, E.; Pustilnik, S.; Thuan, T. X.; Izotov, Y. I.

    2002-02-01

    We present VLA H I observations of one of the most metal-deficient blue compact dwarf (BCD) galaxies known, SBS 0335-052, which sports an oxygen abundance of only 1/40 that of the Sun. We study the structure and dynamics of the neutral gas in this chemically young object at a spatial resolution of 20''×15'' ( 5.4×3.9 kpc at a distance of 54 Mpc), and a velocity resolution of 21.2 kms-1.

  4. Association of the supernova remnant G 65.3+5.7 with ambient neutral hydrogen and a possible nature of the remnant

    NASA Astrophysics Data System (ADS)

    Gosachinskii, I. V.

    2010-04-01

    The neutral hydrogen at 21 cm has been investigated with the RATAN-600 radio telescope around the supernova remnant G 65.3+5.7, which has the largest angular sizes in the group of shell remnants. An expanding HI shell left after an old supernova explosion with an energy of ˜1051 erg and an age of 440 000 yr coincident in coordinates with the radio and optical remnant has been discovered. Since an X-ray emission from a much younger (27 000 yr) supernova remnant is observed in the same region and the shells detected by nebular lines have probably intermediate ages, we suggest that several successive supernova explosions have occurred here.

  5. Comparison of high energy gamma rays from absolute value of b greater than 30 deg with the galactic neutral hydrogen distribution

    NASA Technical Reports Server (NTRS)

    Ozel, M. E.; Ogelman, H.; Tumer, T.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, F. J.

    1978-01-01

    High-energy gamma-ray (energy above 35 MeV) data from the SAS 2 satellite have been used to compare the intensity distribution of gamma rays with that of neutral hydrogen (H I) density along the line of sight, at high galactic latitudes (absolute values greater than 30 deg). A model has been constructed for the case where the observed gamma-ray intensity has been assumed to be the sum of a galactic component proportional to the H I distribution plus an isotropic extragalactic emission. A chi-squared test of the model parameters indicates that about 30% of the total high-latitude emission may originate within the Galaxy.

  6. Development of a high dynamic range spectroscopic system for observation of neutral hydrogen atom density distribution in Large Helical Device core plasma

    SciTech Connect

    Fujii, K. Atsumi, S.; Watanabe, S.; Shikama, T.; Hasuo, M.; Goto, M.; Morita, S.

    2014-02-15

    We report development of a high dynamic range spectroscopic system comprising a spectrometer with 30% throughput and a camera with a low-noise fast-readout complementary metal-oxide semiconductor sensor. The system achieves a 10{sup 6} dynamic range (∼20 bit resolution) and an instrumental function approximated by a Voigt profile with Gauss and Lorentz widths of 31 and 0.31 pm, respectively, for 656 nm light. The application of the system for line profile observations of the Balmer-α emissions from high temperature plasmas generated in the Large Helical Device is also presented. In the observed line profiles, emissions are detected in far wings more than 1.0 nm away from the line center, equivalent to neutral hydrogen atom kinetic energies above 1 keV. We evaluate atom density distributions in the core plasma by analyzing the line profiles.

  7. Modeling 3D-CSIA data: Carbon, chlorine, and hydrogen isotope fractionation during reductive dechlorination of TCE to ethene.

    PubMed

    Van Breukelen, Boris M; Thouement, Héloïse A A; Stack, Philip E; Vanderford, Mindy; Philp, Paul; Kuder, Tomasz

    2017-09-01

    Reactive transport modeling of multi-element, compound-specific isotope analysis (CSIA) data has great potential to quantify sequential microbial reductive dechlorination (SRD) and alternative pathways such as oxidation, in support of remediation of chlorinated solvents in groundwater. As a key step towards this goal, a model was developed that simulates simultaneous carbon, chlorine, and hydrogen isotope fractionation during SRD of trichloroethene, via cis-1,2-dichloroethene (and trans-DCE as minor pathway), and vinyl chloride to ethene, following Monod kinetics. A simple correction term for individual isotope/isotopologue rates avoided multi-element isotopologue modeling. The model was successfully validated with data from a mixed culture Dehalococcoides microcosm. Simulation of Cl-CSIA required incorporation of secondary kinetic isotope effects (SKIEs). Assuming a limited degree of intramolecular heterogeneity of δ(37)Cl in TCE decreased the magnitudes of SKIEs required at the non-reacting Cl positions, without compromising the goodness of model fit, whereas a good fit of a model involving intramolecular CCl bond competition required an unlikely degree of intramolecular heterogeneity. Simulation of H-CSIA required SKIEs in H atoms originally present in the reacting compounds, especially for TCE, together with imprints of strongly depleted δ(2)H during protonation in the products. Scenario modeling illustrates the potential of H-CSIA for source apportionment. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Time and concentration dependency in the potentially affected fraction of species: the case of hydrogen peroxide treatment of ballast water.

    PubMed

    Smit, Mathijs G D; Ebbens, Eltjo; Jak, Robbert G; Huijbregtst, Mark A J

    2008-03-01

    Transport of large volumes of ballast water contributes greatly to invasions of species. Hydrogen peroxide (H2O2) can be used as a disinfectant to prevent the spread of exotic species via ballast water. Instead of using environmental risk assessment techniques for protecting a certain fraction of the species from being affected, the present study aimed to apply these techniques to define treatment regimes of H2O2 and effectively eliminate as many species as possible. Based on time-dependent dose-response curves for five marine species (Corophium volutator, Artemia salina, Brachionus plicatilis, Dunaliella teriolecta, and Skeletonema costatum), time-dependent species-sensitivity distributions (SSDs) were derived for different effect sizes. The present study showed that H2O2 can be used effectively to treat ballast water but that relatively high concentrations and long treatment durations are required to eliminate the vast majority of species in ballast water. The described toxicant effectiveness approach using SSDs also has other potential fields of application, including short-term application of biocides.

  9. Substitution of crude cell wall for neutral detergent fibre in the equations of the Cornell Net Carbohydrate and Protein System that predict carbohydrate fractions: application to sunflower ( Helianthus annuus L.).

    PubMed

    Queiroz, M A A; Fukushima, R S; Gomide, C A; Braga, M R

    2008-07-01

    Prediction of carbohydrate fractions using equations from the Cornell Net Carbohydrate and Protein System (CNCPS) is a valuable tool to assess the nutritional value of forages. In this paper, these carbohydrate fractions were predicted using data from three sunflower (Helianthus annuus L.) cultivars, fresh or as silage. The CNCPS equations for fractions B2 and C include measurement of ash and protein-free neutral detergent fibre (NDF) as one of their components. However, NDF lacks pectin and other non-starch polysaccharides that are found in the cell wall (CW) matrix, so this work compared the use of a crude CW preparation instead of NDF in the CNCPS equations. There were no differences in the estimates of fractions B1 and C when CW replaced NDF; however, there were differences in fractions A and B2. Some of the CNCPS equations could be simplified when using CW instead of NDF. Notably, lignin could be expressed as a proportion of DM, rather than on the basis of ash and protein-free NDF, when predicting CNCPS fraction C. The CNCPS fraction B1 (starch + pectin) values were lower than pectin determined through wet chemistry. This finding, along with the results obtained by the substitution of CW for NDF in the CNCPS equations, suggests that pectin was not part of fraction B1 but present in fraction A. We suggest that pectin and other non-starch polysaccharides that are dissolved by the neutral detergent solution be allocated to a specific fraction (B2) and that another fraction (B3) be adopted for the digestible cell wall carbohydrates.

  10. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide

    SciTech Connect

    Shahriari, Haleh; Warith, Mostafa; Hamoda, Mohamed; Kennedy, Kevin J.

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Microwave and H{sub 2}O{sub 2} pretreatment were studied to enhance anaerobic digestion of organic waste. Black-Right-Pointing-Pointer The whole waste pretreated at 115 Degree-Sign C or 145 Degree-Sign C had the highest biogas production. Black-Right-Pointing-Pointer Biogas production of the whole waste decreased at 175 Degree-Sign C due to formation of refractory compounds. Black-Right-Pointing-Pointer Pretreatment to 145 Degree-Sign C and 175 Degree-Sign C were the best when considering only the free liquid fraction. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} pretreatment had a lag phase and the biogas production was not higher than MW pretreated samples. - Abstract: In order to enhance anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW), pretreatment combining two modalities, microwave (MW) heating in presence or absence of hydrogen peroxide (H{sub 2}O{sub 2}) were investigated. The main pretreatment variables affecting the characteristics of the OFMSW were temperature (T) via MW irradiation and supplemental water additions of 20% and 30% (SWA20 and SW30). Subsequently, the focus of this study was to evaluate mesophilic batch AD performance in terms of biogas production, as well as changes in the characteristics of the OFMSW post digestion. A high MW induced temperature range (115-175 Degree-Sign C) was applied, using sealed vessels and a bench scale MW unit equipped with temperature and pressure controls. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW as well as the liquid fractions. The whole OFMSW pretreated at 115 Degree-Sign C and 145 Degree-Sign C showed 4-7% improvement in biogas production over untreated OFMSW (control). When pretreated at 175 Degree-Sign C, biogas production decreased due to formation of refractory compounds, inhibiting the digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP

  11. Fractionation factors and activation energies for exchange of the low barrier hydrogen bonding proton in peptidyl trifluoromethyl ketone complexes of chymotrypsin.

    PubMed

    Lin, J; Westler, W M; Cleland, W W; Markley, J L; Frey, P A

    1998-12-08

    NMR investigations have been carried out of complexes between bovine chymotrypsin Aalpha and a series of four peptidyl trifluoromethyl ketones, listed here in order of increasing affinity for chymotrypsin: N-Acetyl-L-Phe-CF3, N-Acetyl-Gly-L-Phe-CF3, N-Acetyl-L-Val-L-Phe-CF3, and N-Acetyl-L-Leu-L-Phe-CF3. The D/H fractionation factors (phi) for the hydrogen in the H-bond between His 57 and Asp 102 (His 57-Hdelta1) in these four complexes at 5 degreesC were in the range phi = 0.32-0.43, expected for a low-barrier hydrogen bond. For this series of complexes, measurements also were made of the chemical shifts of His 57-Hepsilon1 (delta2,2-dimethylsilapentane-5-sulfonic acid 8.97-9. 18), the exchange rate of the His 57-Hdelta1 proton with bulk water protons (284-12.4 s-1), and the activation enthalpies for this hydrogen exchange (14.7-19.4 kcal.mol-1). It was found that the previously noted correlations between the inhibition constants (Ki 170-1.2 microM) and the chemical shifts of His 57-Hdelta1 (delta2, 2-dimethylsilapentane-5-sulfonic acid 18.61-18.95) for this series of peptidyl trifluoromethyl ketones with chymotrypsin [Lin, J., Cassidy, C. S. & Frey, P. A. (1998) Biochemistry 37, 11940-11948] could be extended to include the fractionation factors, hydrogen exchange rates, and hydrogen exchange activation enthalpies. The results support the proposal of low barrier hydrogen bond-facilitated general base catalysis in the addition of Ser 195 to the peptidyl carbonyl group of substrates in the mechanism of chymotrypsin-catalyzed peptide hydrolysis. Trends in the enthalpies for hydrogen exchange and the fractionation factors are consistent with a strong, double-minimum or single-well potential hydrogen bond in the strongest complexes. The lifetimes of His 57-Hdelta1, which is solvent shielded in these complexes, track the strength of the hydrogen bond. Because these lifetimes are orders of magnitude shorter than those of the complexes themselves, the enzyme must have a

  12. An Efficient CuxO Photocathode for Hydrogen Production at Neutral pH: New Insights from Combined Spectroscopy and Electrochemistry.

    PubMed

    Baran, Tomasz; Wojtyła, Szymon; Lenardi, Cristina; Vertova, Alberto; Ghigna, Paolo; Achilli, Elisabetta; Fracchia, Martina; Rondinini, Sandra; Minguzzi, Alessandro

    2016-08-24

    Light-driven water splitting is one of the most promising approaches for using solar energy in light of more sustainable development. In this paper, a highly efficient p-type copper(II) oxide photocathode is studied. The material, prepared by thermal treatment of CuI nanoparticles, is initially partially reduced upon working conditions and soon reaches a stable form. Upon visible-light illumination, the material yields a photocurrent of 1.3 mA cm(-2) at a potential of 0.2 V vs a reversible hydrogen electrode at mild pH under illumination by AM 1.5 G and retains 30% of its photoactivity after 6 h. This represents an unprecedented result for a nonprotected Cu oxide photocathode at neutral pH. The photocurrent efficiency as a function of the applied potential was determined using scanning electrochemical microscopy. The material was characterized in terms of photoelectrochemical features; X-ray photoelectron spectroscopy, X-ray absorption near-edge structure, fixed-energy X-ray absorption voltammetry, and extended X-ray absorption fine structure analyses were carried out on pristine and used samples, which were used to explain the photoelectrochemical behavior. The optical features of the oxide are evidenced by direct reflectance spectroscopy and fluorescence spectroscopy, and Mott-Schottky analysis at different pH values explains the exceptional activity at neutral pH.

  13. Rayleigh-based concept to tackle strong hydrogen fractionation in dual isotope analysis-the example of ethylbenzene degradation by Aromatoleum aromaticum.

    PubMed

    Dorer, Conrad; Höhener, Patrick; Hedwig, Normen; Richnow, Hans-Hermann; Vogt, Carsten

    2014-05-20

    Compound-specific isotope analysis (CSIA) is a state-of-the-art analytical tool that can be used to establish and quantify biodegradation of pollutants such as BTEX compounds at contaminated field sites. Using isotopes of two elements and characteristic Lambda values (Λ) in dual-isotope-plots can provide insight into reaction mechanisms because kinetic isotope effects (KIEs) of both elements are reflected. However, the concept's validity in the case of reactions that show strong isotope fractionation needs to be examined. The anaerobic ethylbenzene degradation pathway of Aromatoleum aromaticum is initiated by the ethylbenzene dehydrogenase-catalyzed monohydroxylation of the benzylic carbon atom. Measurements of stable isotope ratios revealed highly pronounced hydrogen fractionation, which could not be adequately described by the classical Rayleigh approach. This study demonstrates the nonlinear behavior of hydrogen isotope ratios caused by anaerobic ethylbenzene hydroxylation both mathematically and experimentally, develops alternative dual plots to enable the comparison of reactions by considering the reacting atoms, and illustrates the importance of the stereochemical aspects of substrate and product for the quantification of hydrogen fractionation in an enzymatic reaction. With regard to field application, proposals for an improved CSIA evaluation procedure with respect to pronounced hydrogen enrichment are given.

  14. Application of neutral iridium(I) N-heterocyclic carbene complexes in ortho-directed hydrogen isotope exchange.

    PubMed

    Cochrane, Alison R; Irvine, Stephanie; Kerr, William J; Reid, Marc; Andersson, Shalini; Nilsson, Göran N

    2013-01-01

    Bench-stable complexes of the type [Ir(COD)(NHC)Cl] (NHC = N-heterocyclic carbene) have been investigated within the field of hydrogen isotope exchange. By employing a sterically encumbered NHC within such complexes and catalyst loadings of only 5 mol%, moderate to high deuterium incorporations were achieved across a range of aromatic ketones and nitrogen-based heterocycles. The simple and synthetically accessible catalysts reported herein present alternatives to phosphine-based species and increase the available labelling systems with respect to established iridium-based isotope exchange methodologies. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Discovery of neutral hydrogen 21 centimeter absorption at redshift 0.25 toward PKS 1413+135

    NASA Technical Reports Server (NTRS)

    Carilli, C. L.; Perlman, Eric S.; Stocke, John T.

    1992-01-01

    A strong H I 21-cm absorption line is identified toward PKS 1413+135 at the redshift of the host galaxy and argued to indicate that the IR-optical cutoff of the BL Lac object's spectrum is caused by extinction. The BL Lac object is shown to have strong neutral 21-cm absorption at the redshift range z = 0.24671 +/- 0.00001, and the implied H I column density is derived. The H I covering factor is assumed to be not more than 0.1, suggesting that a high degree of extinction exists in the galaxy. The host galaxy is theorized to be a spiral of type later than S0 based on the redshift of the H I absorption line and the host. The statistical and observational conclusions are found to support the theories of Stock et al. (1992) regarding the red spectrum of the object.

  16. Binding and photocleavage of a neutral nickel(II) bis(hydrogen pyridine-2,6-dicarboxylato) complex to DNA

    NASA Astrophysics Data System (ADS)

    Wang, Qingxiang; Li, Wenqi; Liu, Aifeng; Zhang, Bin; Gao, Feng; Li, Shunxing; Liao, Xiaolei

    2011-01-01

    A neutral nickel(II) bis(pyridine-2,6-dicarboxylato) complex, [Ni(Hdipic -) 2] (Hdipic - = monohydricsalt of pyridine-2,6-dicarboxylic acid) was synthesized and its interaction with DNA were comprehensively investigated by electronic absorption spectroscopy, viscosity, fluorescence, melting temperature and gel electrophoresis measurements in this paper. Spectrophotometric titration suggested that the nickel(II) complex could intercalatively bind to DNA via the planar dipicolinic acid moiety with a moderate binding strength of 1.6 × 10 4 M -1, and these results were further proved by the systematic studies of viscosity, ethidium bromide (EB) displacement and melting temperature experiments. Moreover, agarose gel electrophoresis assays showed that [Ni(Hdipic -) 2] had obvious photocleavage property for the supercoiled plasmid pBR322 DNA under 302 nm irradiation for 30 min, which allow us to postulate the studied complex as a proper candidate for photocleavage reagent.

  17. The Effect of Temperature and Hydrogen Limited Growth on the Fractionation of Sulfur Isotopes by Thermodesulfatator indicus, a Deep-sea Hydrothermal Vent Sulfate-Reducing Bacterium

    NASA Astrophysics Data System (ADS)

    Hoek, J.; Reysenbach, A.; Habicht, K.; Canfield, D. E.

    2004-12-01

    Sulfate-reducing bacteria fractionate sulfur isotopes during dissimilatory sulfate reduction, producing sulfide depleted in 34S. Although isotope fractionation during sulfate reduction of pure cultures has been extensively studied, most of the research to date has focused on mesophilic sulfate reducers, particularly for the species Desulfovibrio desulfuricans. Results from these studies show that: 1) fractionations range from 3-46‰ with an average around 18‰ , 2) when organic electron donors are utilized, the extent of fractionation is dependent on the rate of sulfate reduction, with decreasing fractionations observed with higher specific rates, 3) fractionations are suppressed with low sulfate concentrations, and when hydrogen is used as the electron donor. High specific sulfate-reduction rates are encountered when sulfate-reducing bacteria metabolize at their optimal temperature and under non-limiting substrate conditions. Changes in both temperature and substrate availability could shift fractionations from those expressed under optimal growth conditions. Sulfate reducers may frequently experience substrate limitation and sub-optimal growth temperatures in the environment. Therefore it is important to understand how sulfate-reducing bacteria fractionate sulfur isotopes under conditions that more closely resemble the restrictions imposed by the environment. In this study the fractionation of sulfur isotopes by Thermodesulfatator indicus was explored during sulfate reduction under a wide range of temperatures and with both hydrogen-saturating and hydrogen-limited conditions. T. indicus is a thermophilic (temperature optimum = 70° C) chemolithotrophic sulfate-reducing bacterium, which was recently isolated from a deep-sea hydrothermal vent on the Central Indian Ridge. This bacterium represents the type species of a new genus and to date is the most deeply branching sulfate-reducing bacterium known. T. indicus was grown in carbonate-buffered salt-water medium

  18. Hydrogen

    PubMed Central

    Bockris, John O’M.

    2011-01-01

    The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech. PMID:28824125

  19. Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4 and CAM) and aquatic plants.

    PubMed

    Chikaraishi, Yoshito; Naraoka, Hiroshi; Poulson, Simon R

    2004-05-01

    Compound-specific hydrogen and carbon isotopic compositions in n-alkanoic acids, phytol and sterols were determined for various plant classes (terrestrial C3-angiosperm; C3-gymnosperm; C4; crassulacean acid metabolism (CAM); and aquatic C3 plants) in order to investigate isotopic fractionations among various plant classes. In all plants, lipid biomolecules are depleted in both D (up to 324 per thousand ) and 13C (up to 14.7 per thousand ) relative to ambient water and bulk tissue, respectively. In addition, the magnitude of D- and 13C-depletion of lipid biomolecules is distinctive depending on plant classes. For example, C3 angiosperm n-alkanoic acids are less depleted in D (95+/-23 per thousand ) and 13C (4.3 +/- 2.5 per thousand ) relative to ambient water and bulk tissue, respectively, while C4 plant n-alkanoic acids are more depleted in D (119 +/- 15 per thousand ) and 13C (10.2 +/- 2.0 per thousand ). On the other hand, C3 angiosperm phytol and sterols are much more depleted in D (306 +/-12 per thousand for phytol, 211+/-15 per thousand for sterol) with less depletion in 13C (4.1 +/- 1.1 per thousand for phytol, 1.3 +/- 0.9 per thousand for sterol) relative to ambient water and bulk tissue, respectively, while C4 plant phytol and sterols are less depleted in D (254 +/- 7 per thousand for phytol, 186 +/- 13 per thousand for sterols) with much more depletion in 13C (9.0 +/- 1.2 per thousand for phytol, 5.0 +/- 1.1 per thousand for sterols). Among various plant classes, there is a positive correlation between the D- and 13C-depletion for n-alkanoic acids, while a negative correlation was found for phytol and sterols from the same plants. Copyright 2004 Elsiever Ltd.

  20. He II Raman Scattered Line by Neutral Hydrogen in the Bipolar Platenary Nebula M2-9

    NASA Astrophysics Data System (ADS)

    Lee, Hee-Won; Kang, Young Woon

    2001-06-01

    In the spectrum of the young bipolar planetary nebula M2-9 obtained from the 1.5 m telescope at the Cerro Tololo Inter-American Observatory, we detected the He~II feature at 6545 Å that are proposed to be formed via Raman scattering by atomic hydrogen. However, in the same spectrum, the He~II emission lines at 6527 Å and 6560 Å are absent, which implies that the He~II emission region is hidden from our line of sight and that the H~I scattering region is pretty much extended not to be obscured entirely. We performed photoionization computations to estimate the physical size of the He~II emission line region to be 1016 cm, from which the location and dimension of the obscuring circumstellar region are inferred and the temperature of the central star must exceed 105 K. The angular size of the circumstellar region responsible for the obscuration of the He~II emission region is ~ 1'' with the assumption of the distance 01 kpc to M2-9, which is consistent with the recent image of M2-9 obtained with the Hubble Space Telescope.

  1. A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values.

    PubMed

    Pham, Anh Le-Tuan; Lee, Changha; Doyle, Fiona M; Sedlak, David L

    2009-12-01

    Iron oxides catalyze the conversion of hydrogen peroxide (H(2)O(2)) into oxidants capable of transforming recalcitrant contaminants. Unfortunately, the process is relatively inefficient at circumneutral pH values because of competing reactions that decompose H(2)O(2) without producing oxidants. Silica- and alumina-containing iron oxides prepared by sol-gel processing of aqueous solutions containing Fe(ClO(4))(3), AlCl(3), and tetraethyl orthosilicate efficiently catalyzed the decomposition of H(2)O(2) into oxidants capable of transforming phenol at circumneutral pH values. Relative to hematite, goethite, and amorphous FeOOH, the silica-iron oxide catalyst exhibited a stoichiometric efficiency, defined as the number of moles of phenol transformed per mole of H(2)O(2) consumed, which was 10-40 times higher than that of the iron oxides. The silica-alumina-iron oxide catalyst had a stoichiometric efficiency that was 50-80 times higher than that of the iron oxides. The significant enhancement in oxidant production is attributable to the interaction of Fe with Al and Si in the mixed oxides, which alters the surface redox processes, favoring the production of strong oxidants during H(2)O(2) decomposition.

  2. A Silica-Supported Iron Oxide Catalyst Capable of Activating Hydrogen Peroxide at Neutral pH Values

    PubMed Central

    Pham, Anh Le-Tuan; Lee, Changha; Doyle, Fiona M.; Sedlak, David L.

    2009-01-01

    Iron oxides catalyze the conversion of hydrogen peroxide (H2O2) into oxidants capable of transforming recalcitrant contaminants. Unfortunately, the process is relatively inefficient at circumneutral pH values due to competing reactions that decompose H2O2 without producing oxidants. Silica- and alumina-containing iron oxides prepared by sol-gel processing of aqueous solutions containing Fe(ClO4)3, AlCl3 and tetraethyl orthosilicate efficiently catalyzed the decomposition of H2O2 into oxidants capable of transforming phenol at circumneutral pH values. Relative to hematite, goethite and amorphous FeOOH, the silica-iron oxide catalyst exhibited a stoichiometric efficiency, defined as the number of moles of phenol transformed per mole of H2O2 consumed, that was 10 to 40 times higher than that of the iron oxides. The silica-alumina-iron oxide catalyst had a stoichiometric efficiency that was 50 to 80 times higher than that of the iron oxides. The significant enhancement in oxidant production is attributable to the interaction of Fe with Al and Si in the mixed oxides, which alters the surface redox processes, favoring the production of strong oxidants during H2O2 decomposition. PMID:19943668

  3. Formaldehyde and methanol formation from reaction of carbon monoxide and hydrogen on neutral Fe2S2 clusters in the gas phase.

    PubMed

    Yin, Shi; Wang, Zhechen; Bernstein, Elliot R

    2013-04-07

    Reaction of CO with H2 on neutral FemSn clusters in a fast flow reactor is investigated both experimentally and theoretically. Single photon ionization at 118 nm is used to detect neutral cluster distributions through time of flight mass spectrometry. FemSn clusters are generated through laser ablation of a mixed iron-sulfur target in the presence of a pure helium carrier gas. A strong size dependent reactivity of (FeS)m clusters toward CO is characterized. The reaction FeS + CO → Fe + OCS is found for the FeS cluster, and the association product Fe2S2CO is observed for the Fe2S2 cluster. Products Fe2S2(13)COH2 and Fe2S2(13)COH4 are identified for reactions of (13)CO and H2 on Fe2S2 clusters: this suggests that the Fe2S2 cluster has a high catalytic activity for hydrogenation reactions of CO to form formaldehyde and methanol. Density functional theory (DFT) calculations are performed to explore the potential energy surfaces for the two reactions: Fe2S2 + CO + 2H2 → Fe2S2 + CH3OH; and Fe2S2 + CO + H2 → Fe2S2 + CH2O. A barrierless, thermodynamically favorable pathway is obtained for both catalytic processes. Catalytic cycles for formaldehyde and methanol formation from CO and H2 on a Fe2S2 cluster are proposed based on our experimental and theoretical investigations. The various reaction mechanisms explored by DFT are in good agreement with the experimental results. Condensed phase iron sulfide, which contains exposed Fe2S2 units on its surface, is suggested to be a good catalyst for low temperature formaldehyde/methanol synthesis.

  4. Spin depolarizing effect in collisions with neutral hydrogen. II. Application to simple/complex ions in spherically symmetric states

    NASA Astrophysics Data System (ADS)

    Derouich, M.; Barklem, P. S.

    2007-02-01

    Aims: We develop an accurate and general semi-classical formalism that deals with the definition and the calculation of the collisional depolarizing constants of the levels of simple and complex singly-ionized atoms in arbitrary s-states perturbed by collisions with hydrogen atoms. The case of ions with hyperfine structure is investigated fully. Methods: We obtain potential energy curves based on the MSMA exchange perturbation theory by employing the Unsöld approximation. These potentials enter the Schrödinger equation to determine the collisional T-matrix elements in a semi-classical description. We use the T-matrix elements for the calculation of the collisional depolarization rates of simple atoms. Then, we use these rates to calculate the collisional coefficients in cases of ions with hyperfine structure. Results: We evaluate the collisional depolarization and polarization transfer rates of the ground levels of the ionized alkaline earth metals Be II, Mg II, Ca II, Sr II, and Ba II. We study the variation of the collisional rates with effective principal quantum number n* characterizing an arbitrary s-state of a perturbed simple ion. We find that the collisional rates for simple ions obey simple power laws as a function of n^*. We present direct and indirect formulations of the problem of the calculation of the depolarization and polarization transfer rates of levels of complex atoms and hyperfine levels from those for simple atoms. In particular, the indirect method allows a quick and simple calculation with its simple power-law relations. For the state 4s ^2S{1/2} of Ca II, our computed rate of the destruction of orientation differs from existing quantum chemistry calculations by only 4% at T=5000 K.

  5. Hydrogen Cyanide Production due to Mid-Size Impacts in a Redox-Neutral N2-Rich Atmosphere

    NASA Astrophysics Data System (ADS)

    Kurosawa, Kosuke; Sugita, Seiji; Ishibashi, Ko; Hasegawa, Sunao; Sekine, Yasuhito; Ogawa, Nanako O.; Kadono, Toshihiko; Ohno, Sohsuke; Ohkouchi, Naohiko; Nagaoka, Yoichi; Matsui, Takafumi

    2013-06-01

    Cyanide compounds are amongst the most important molecules of the origin of life. Here, we demonstrate the importance of mid-size (0.1-1 km in diameter) hence frequent meteoritic impacts to the cyanide inventory on the early Earth. Subsequent aerodynamic ablation and chemical reactions with the ambient atmosphere after oblique impacts were investigated by both impact and laser experiments. A polycarbonate projectile and graphite were used as laboratory analogs of meteoritic organic matter. Spectroscopic observations of impact-generated ablation vapors show that laser irradiation to graphite within an N2-rich gas can produce a thermodynamic environment similar to that produced by oblique impacts. Thus, laser ablation was used to investigate the final chemical products after this aerodynamic process. We found that a significant fraction (>0.1 mol%) of the vaporized carbon is converted to HCN and cyanide condensates, even when the ambient gas contains as much as a few hundred mbar of CO2. As such, the column density of cyanides after carbon-rich meteoritic impacts with diameters of 600 m would reach ~10 mol/m2 over ~102 km2 under early Earth conditions. Such a temporally and spatially concentrated supply of cyanides may have played an important role in the origin of life.

  6. Hydrogen cyanide production due to mid-size impacts in a redox-neutral N2-rich atmosphere.

    PubMed

    Kurosawa, Kosuke; Sugita, Seiji; Ishibashi, Ko; Hasegawa, Sunao; Sekine, Yasuhito; Ogawa, Nanako O; Kadono, Toshihiko; Ohno, Sohsuke; Ohkouchi, Naohiko; Nagaoka, Yoichi; Matsui, Takafumi

    2013-06-01

    Cyanide compounds are amongst the most important molecules of the origin of life. Here, we demonstrate the importance of mid-size (0.1-1 km in diameter) hence frequent meteoritic impacts to the cyanide inventory on the early Earth. Subsequent aerodynamic ablation and chemical reactions with the ambient atmosphere after oblique impacts were investigated by both impact and laser experiments. A polycarbonate projectile and graphite were used as laboratory analogs of meteoritic organic matter. Spectroscopic observations of impact-generated ablation vapors show that laser irradiation to graphite within an N2-rich gas can produce a thermodynamic environment similar to that produced by oblique impacts. Thus, laser ablation was used to investigate the final chemical products after this aerodynamic process. We found that a significant fraction (>0.1 mol%) of the vaporized carbon is converted to HCN and cyanide condensates, even when the ambient gas contains as much as a few hundred mbar of CO2. As such, the column density of cyanides after carbon-rich meteoritic impacts with diameters of 600 m would reach ~10 mol/m(2) over ~10(2) km(2) under early Earth conditions. Such a temporally and spatially concentrated supply of cyanides may have played an important role in the origin of life.

  7. Neutral Hydrogen Observations of the Extremely Metal-Poor Blue Compact Dwarf Galaxy SBS 0335-052

    NASA Astrophysics Data System (ADS)

    Brinks, E.; Pustilnik, S.; Thuan, T. X.; Lipovetsky, V.; Izotov, Yu. I.

    2000-11-01

    We present VLA HI observations of one of the most metal-deficient blue compa ct dwarf (BCD) galaxies known, SBS 0335-052, which sports an oxygen abundance of only 1/40th that of the Sun. We study the structure and dynamics of the neutral gas in this chemically young object at a spatial resolution of 20'' x 15'' (5.4 x 3.9 kpc at an assumed distance of 54 Mpc), and a velocity resolution of 21.2 km/s. We detected a large HI complex associated with this object with an overall size of about 64 x 21 kpc and elongated in the East-West direction. There are two prominent, slightly resolved peaks visible which are separated by 22 kpc (84''). The eastern peak is nearly coincident with the position of the optical galaxy SBS 0335-052. The western peak is about a factor of 1.3 brighter in the HI line and is identified with a faint blue compact galaxy, SBS 0335-052W, which has an mV = 19, and a metallicity close to the lowest values known for BCDs, about 1/50th that of the Sun. The radial velocities of both systems are similar, suggesting that the two BCDs form a pair of dwarf galaxies embedded in a common HI envelope. Alternatively, the BCDs could be the nuclei of two distinct interacting primordial HI clouds. The estimated total dynamical mass, assuming the BCDs form a bound system, is larger than 7 x 109 Mo. This is to be compared to a total gaseous mass Mgas = 2.0 x 109 Mo, and a total stellar mass Mstar < 108 Mo. Hence, the mass of the SBS 0335-052 system is dominated by dark matter. Because of the disturbed HI velocity field and the presence of what might be tidal tails at either end of the system, we favor the hypothesis that the star formation trigger in this system was provided by a tidal interaction, either with the nearby giant galaxy NGC 1376 or as a result of the mutual gravitational interaction of the two HI clouds proper.

  8. Neutral hydrogen gas, past and future star formation in galaxies in and around the `Sausage' merging galaxy cluster

    NASA Astrophysics Data System (ADS)

    Stroe, Andra; Oosterloo, Tom; Röttgering, Huub J. A.; Sobral, David; van Weeren, Reinout; Dawson, William

    2015-09-01

    CIZA J2242.8+5301 (z = 0.188, nicknamed `Sausage') is an extremely massive (M200 ˜ 2.0 × 1015 M⊙), merging cluster with shock waves towards its outskirts, which was found to host numerous emission line galaxies. We performed extremely deep Westerbork Synthesis Radio Telescope H I observations of the `Sausage' cluster to investigate the effect of the merger and the shocks on the gas reservoirs fuelling present and future star formation (SF) in cluster members. By using spectral stacking, we find that the emission line galaxies in the `Sausage' cluster have, on average, as much H I gas as field galaxies (when accounting for the fact cluster galaxies are more massive than the field galaxies), contrary to previous studies. Since the cluster galaxies are more massive than the field spirals, they may have been able to retain their gas during the cluster merger. The large H I reservoirs are expected to be consumed within ˜0.75-1.0 Gyr by the vigorous SF and active galactic nuclei activity and/or driven out by the outflows we observe. We find that the star formation rate (SFR) in a large fraction of H α emission line cluster galaxies correlates well with the radio broad-band emission, tracing supernova remnant emission. This suggests that the cluster galaxies, all located in post-shock regions, may have been undergoing sustained SFR for at least 100 Myr. This fully supports the interpretation proposed by Stroe et al. and Sobral et al. that gas-rich cluster galaxies have been triggered to form stars by the passage of the shock.

  9. Can the Discrepancy between Locally and Globally Derived Neutral Hydrogen Mass Functions be Explained by a Varying Value of M ⋆?

    NASA Astrophysics Data System (ADS)

    Minchin, Robert F.

    2017-09-01

    I investigate whether it is possible to reconcile the recent Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) observation that the neutral hydrogen mass function (HIMF) across different galactic densities has the same, non-flat, faint-end slope, with observations of isolated galaxies and many galaxy groups that show their HIMFs to have flat faint-end slopes. I find that a fairly simple model in which the position of the knee in the mass function of each individual group is allowed to vary is able to account for both of these observations. If this model reflects reality, the ALFALFA results point to an interesting “conspiracy” whereby the differing group HIMFs always sum up to form global HIMFs with the same faint-end slope in different environments. More generally, this result implies that global environmental HIMFs do not necessarily reflect the HIMFs in individual groups belonging to that environment and cannot be used to directly measure variations in group-specific HIMFs with environment.

  10. On the spatial distribution of neutral hydrogen in the Universe: bias and shot-noise of the H I power spectrum

    NASA Astrophysics Data System (ADS)

    Castorina, Emanuele; Villaescusa-Navarro, Francisco

    2017-10-01

    The spatial distribution of neutral hydrogen (H i) in the Universe contains a wealth of cosmological information. The 21-cm emission line can be used to map the H I up to very high redshift and therefore reveal us something about the evolution of the large-scale structures in the Universe. However, little is known about the abundance and clustering properties of the H I over cosmic time. Motivated by this, we build an analytic framework where the relevant parameters that govern how the H I is distributed among dark matter haloes can be fixed using observations. At the same time, we provide tools to study the column density distribution function of the H I absorbers together with their clustering properties. Our formalism is the first one able to account for all observations at a single redshift, z = 2.3. The linear bias of the H I and the mean number density of H I sources, two main ingredients in the calculation of the signal-to-noise ratio of a cosmological survey, are then discussed in detail, also extrapolating the results to low and high redshift. We find that H I bias is relatively higher than the value reported in similar studies, but the shot noise level is always sub-dominant, making the H I power spectrum always a high signal-to-noise measurement up to z ≃ 5 in the limit of no instrumental noise and foreground contamination.

  11. The Star Formation Rate Efficiency of Neutral Atomic-Dominated Hydrogen Gas in the Ooutskirts of Star-Forming Galaxies From z approx. 1 to z approx. 3

    NASA Technical Reports Server (NTRS)

    Rafelski, Marc; Gardner, Jonathan P.; Fumagalli, Michele; Neeleman, Marcel; Teplitz, Harry I.; Grogin, Norman; Koekemoer, Anton M.; Scarlata, Claudia

    2016-01-01

    Current observational evidence suggests that the star formation rate (SFR)efficiency of neutral atomic hydrogen gas measured in damped Ly(alpha) systems (DLAs) at z approx. 3 is more than 10 times lower than predicted by the Kennicutt-Schmidt (KS)relation. To understand the origin of this deficit, and to investigate possible evolution with redshift and galaxy properties, we measure the SFR efficiency of atomic gas at z approx. 1, z approx. 2, and z approx. 3 around star-forming galaxies. We use new robust photometric redshifts in the Hubble Ultra Deep Field to create galaxy stacks in these three redshift bins, and measure the SFR efficiency by combining DLA absorber statistics with the observed rest-frame UV emission in the galaxies' outskirts. We find that the SFR efficiency of H I gas at z > 1 is approx. 1%-3% of that predicted by the KS relation. Contrary to simulations and models that predict a reduced SFR efficiency with decreasing metallicity and thus with increasing redshift, we find no significant evolution in the SFR efficiency with redshift. Our analysis instead suggests that the reduced SFR efficiency is driven by the low molecular content of this atomic-dominated phase, with metallicity playing a secondary effect in regulating the conversion between atomic and molecular gas. This interpretation is supported by the similarity between the observed SFR efficiency and that observed in local atomic-dominated gas, such as in the outskirts of local spiral galaxies and local dwarf galaxies.

  12. The Star Formation Rate Efficiency of Neutral Atomic-Dominated Hydrogen Gas in the Ooutskirts of Star-Forming Galaxies From z approx. 1 to z approx. 3

    NASA Technical Reports Server (NTRS)

    Rafelski, Marc; Gardner, Jonathan P.; Fumagalli, Michele; Neeleman, Marcel; Teplitz, Harry I.; Grogin, Norman; Koekemoer, Anton M.; Scarlata, Claudia

    2016-01-01

    Current observational evidence suggests that the star formation rate (SFR)efficiency of neutral atomic hydrogen gas measured in damped Ly(alpha) systems (DLAs) at z approx. 3 is more than 10 times lower than predicted by the Kennicutt-Schmidt (KS)relation. To understand the origin of this deficit, and to investigate possible evolution with redshift and galaxy properties, we measure the SFR efficiency of atomic gas at z approx. 1, z approx. 2, and z approx. 3 around star-forming galaxies. We use new robust photometric redshifts in the Hubble Ultra Deep Field to create galaxy stacks in these three redshift bins, and measure the SFR efficiency by combining DLA absorber statistics with the observed rest-frame UV emission in the galaxies' outskirts. We find that the SFR efficiency of H I gas at z > 1 is approx. 1%-3% of that predicted by the KS relation. Contrary to simulations and models that predict a reduced SFR efficiency with decreasing metallicity and thus with increasing redshift, we find no significant evolution in the SFR efficiency with redshift. Our analysis instead suggests that the reduced SFR efficiency is driven by the low molecular content of this atomic-dominated phase, with metallicity playing a secondary effect in regulating the conversion between atomic and molecular gas. This interpretation is supported by the similarity between the observed SFR efficiency and that observed in local atomic-dominated gas, such as in the outskirts of local spiral galaxies and local dwarf galaxies.

  13. Do Interspecific Differences in the Stable Hydrogen Isotopic Composition of n-Alkanes Reflect Variation in Plant Water Sources or in Biosynthetic Fractionation?

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Tipple, B. J.; Ehleringer, J. R.; Betancourt, J. L.; Leavitt, S. W.; Monson, R. K.

    2015-12-01

    Normal alkanes (n-alkanes) are long-chain fatty acids that are a component of the leaf cuticle of all terrestrial plants. Since the hydrogen in the n-alkanes is derived from the hydrogen in plants' water sources and is non-exchangeable, the stable hydrogen isotopic composition (δD) of the n-alkanes provides information about the δD of environmental water. At present, it is unclear whether a single biosynthetic fractionation factor can be used to reconstruct the δD of environmental water from the δD of n-alkanes derived from different plant species. To address this question, we studied the translation of the δD signal from environmental water into n-alkanes in a diverse plant community at Tumamoc Hill, Arizona, USA. Over the course of one annual cycle, we monitored δD of atmospheric water vapor, precipitation, soil water, xylem water, leaf water, and n-alkanes. We found that n-alkane δD varied substantially between species that were sampled concurrently, but that the observed range of variation was quantitatively consistent with the predictions of a Craig-Gordon-type model parameterized with a single biosynthetic fractionation factor. These findings indicate that the variability of n-alkane δD between co-occurring species could be primarily attributable to interspecific differences in water sources, rather than interspecific differences in the biosynthetic fractionation factor. Controlled experiments are needed to evaluate whether n-alkane biosynthesis is in fact adequately described by a single biosynthetic fractionation factor across species.

  14. Thermophilic anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW) with food waste (FW): Enhancement of bio-hydrogen production.

    PubMed

    Angeriz-Campoy, Rubén; Álvarez-Gallego, Carlos J; Romero-García, Luis I

    2015-10-01

    Bio-hydrogen production from dry thermophilic anaerobic co-digestion (55°C and 20% total solids) of organic fraction of municipal solid waste (OFMSW) and food waste (FW) was studied. OFMSW coming from mechanical-biological treatment plants (MBT plants) presents a low organic matter concentration. However, FW has a high organic matter content but several problems by accumulation of volatile fatty acids (VFAs) and system acidification. Tests were conducted using a mixture ratio of 80:20 (OFSMW:FW), to avoid the aforementioned problems. Different solid retention times (SRTs) - 6.6, 4.4, 2.4 and 1.9 days - were tested. It was noted that addition of food waste enhances the hydrogen production in all the SRTs tested. Best results were obtained at 1.9-day SRT. It was observed an increase from 0.64 to 2.51 L H2/L(reactor) day in hydrogen productivity when SRTs decrease from 6.6 to 1.9 days. However, the hydrogen yield increases slightly from 33.7 to 38 mL H2/gVS(added). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Enhancement in hydrogen production by thermophilic anaerobic co-digestion of organic fraction of municipal solid waste and sewage sludge--optimization of treatment conditions.

    PubMed

    Tyagi, Vinay Kumar; Angériz Campoy, Rubén; Álvarez-Gallego, C J; Romero García, L I

    2014-07-01

    Batch dry-thermophilic anaerobic co-digestion (55°C) of organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS) for hydrogen production was studied under several sludge combinations (primary sludge, PS; waste activated sludge, WAS; and mixed sludge, MS), TS concentrations (10-25%) and mixing ratios of OFMSW and SS (1:1, 2.5:1, 5:1, 10:1). The co-digestion of OFMSW and SS showed a 70% improvement in hydrogen production rate over the OFMSW fermentation only. The co-digestion of OFMSW with MS showed 47% and 115% higher hydrogen production potential as compared with OFMSW+PS and OFMSW+WAS, respectively. The maximum hydrogen yield of 51 mL H2/g VS consumed was observed at TS concentration of 20% and OFMSW to MS mixing ratio of 5:1, respectively. The acetic and butyric acids were the main acids in VFAs evolution; however, the higher butyric acid evolution indicated that the H2 fermentation was butyrate type fermentation.

  16. Progress on a 200kW Diagnostic Neutral Beam

    NASA Astrophysics Data System (ADS)

    Schartman, Ethan; Foley, E. L.; Levinton, F.; Kwan, J. W.; Leung, K. N.; Wu, Y.; Vainionpaa, H.

    2009-11-01

    The interaction of neutral beam atoms with a magnetized plasma provides diagnostic access to the interiors of fusion experiments. Parameters which can be measured using neutral beams include ion temperature and velocity, density fluctuations and also local magnetic field direction. Nova Photonics, Inc and Lawrence Berkeley National Laboratory are developing a diagnostic neutral beam for use in fusion experiments which lack neutral heating beams, or on which the heating beam is not suitable for diagnostics. Our apparatus is designed to produce a 1 s duration, 5 x 8 cm elliptical cross section hydrogen beam at energies up to 40 kV and up to 5 A current. Hydrogen ions are produced in a multicusp 13 kW, 13 MHz RF source. The extracted ions have current densities of 100 - 150 mA/cm^2. The proton fraction of the hydrogen ions is 85%. Beams are extracted from the source with a rectangular, multi-aperature grids. Details of the source performance will be presented as well as initial operation of the extraction optics and neutralizer region. This work is supported by the U.S. DOE under grant DE-FG02-05ER86256.

  17. Carbon and Hydrogen Isotope Fractionation in Lipid Biosynthesis of Piezophilic Bacteria - Implications for Studying Microbial Metabolism and Carbon Cycle in Deep Biosphere

    NASA Astrophysics Data System (ADS)

    Fang, J.; Dasgupta, S.; Zhang, L.; Li, J.; Kato, C.; Bartlett, D.

    2012-12-01

    Piezophiles are pressure-loving microorganisms, which reproduce preferentially or exclusively at pressures greater than atmospheric pressure. In this study, we examined stable carbon and hydrogen isotope fractionation in fatty acid biosynthesis of a piezophilic bacterium Moritella japonica DSK1. The bacterium was grown to stationary phase at hydrstatic pressures of 0.1, 10, 20, and 50 MPa (mega-passcal) in media prepared using sterilized natural seawater supplied with glucose as the sole carbon source. Bacterial cell biomass and individual fatty acids exhibited consistent pressure-dependent carbon and hydrogen isotope fractionations relative to substrates. Average carbon isotope fractionation (delta(FA-glucose)) at high pressures was much higher than that for surface bacteria: -15.7, -15.3, and -18.3‰ at 10, 20, and 50 MPa, respectively. For deltaD, fatty acids are more depleted in D relative to glucose than to water. Monounsaturated fatty acids are more depleted in D than corresponding saturated fatty acids by as much as 36‰. Polyunsaturated fatty acids are most depleted in D. For example, DHA (22:6omega3) has the most negative hydrogen isotope ratio (-170.91‰) (delta(FA-glucose) = -199, delta(FA-water) = -176). The observed isotope effects can be ascribed to the kinetics of enzymatic reactions that are affected by hydrostatic pressure and to operating of two independent lipid biosynthetic pathways of the piezophilic bacteria. Given that most of the biosphere lives under high pressures, our results have important important implications for studying microbial metabolism and carbon cycle in the deep biosphere.

  18. Distribution of forbidden neutral carbon emission in the ring nebula (NGC 6720)

    NASA Technical Reports Server (NTRS)

    Jewitt, D. C.; Danielson, G. E.; Kupferman, P. N.; Maran, S. P.

    1983-01-01

    The spatial distribution of forbidden C I 9823, 9850 A emission in NGC 6720 is reported. Like forbidden O I, the forbidden C I radiation appears enhanced in the region of the bright filaments. A few percent of the carbon atoms in the filaments are neutral. The neutral fraction is consistent with ionization equilibrium calculations made under the assumption of complete shielding of direct stellar radiation by hydrogen. The observed carbon lines are excited by photoelectrons produced from hydrogen by the nebular diffuse radiation field. The forbidden C I observations confirm that the filaments in NGC 6720 are regions of locally enhanced shielding.

  19. SEARCHING FOR NEUTRAL HYDROGEN HALOS AROUND z ∼ 2.1 AND z ∼ 3.1 Lyα EMITTING GALAXIES

    SciTech Connect

    Feldmeier, John J.; Hagen, Alex; Ciardullo, Robin; Gronwall, Caryl; Hagen, Lea M. Z.; Gawiser, Eric; Kurczynski, Peter; Guaita, Lucia; Bond, Nicholas A.; Acquaviva, Viviana; Blanc, Guillermo A.; Orsi, Alvaro

    2013-10-20

    We search for evidence of diffuse Lyα emission from extended neutral hydrogen surrounding Lyα emitting galaxies (LAEs) using deep narrow-band images of the Extended Chandra Deep Field South. By stacking the profiles of 187 LAEs at z = 2.06, 241 LAEs at z = 3.10, and 179 LAEs at z = 3.12, and carefully performing low-surface brightness photometry, we obtain mean surface brightness maps that reach 9.9, 8.7, and 6.2 × 10{sup –19} erg cm{sup –2} s{sup –1} arcsec{sup –2} in the emission line. We undertake a thorough investigation of systematic uncertainties in our surface brightness measurements and find that our limits are 5-10 times larger than would be expected from Poisson background fluctuations; these uncertainties are often underestimated in the literature. At z ∼ 3.1, we find evidence for extended halos with small-scale lengths of 5-8 kpc in some but not all of our sub-samples. We demonstrate that sub-samples of LAEs with low equivalent widths and brighter continuum magnitudes are more likely to possess such halos. At z ∼ 2.1, we find no evidence of extended Lyα emission down to our detection limits. Through Monte-Carlo simulations, we also show that we would have detected large diffuse LAE halos if they were present in our data sets. We compare these findings to other measurements in the literature and discuss possible instrumental and astrophysical reasons for the discrepancies.

  20. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  1. Ion-Atom/Argon—Calculation of ionization cross sections by fast ion impact for neutral target atoms ranging from hydrogen to argon

    NASA Astrophysics Data System (ADS)

    McSherry, D. M.; O'Rourke, S. F. C.; Crothers, D. S. F.

    2003-10-01

    A FORTRAN 90 program is presented which calculates the total cross sections, and the electron energy spectra of the singly and doubly differential cross sections for the single target ionization of neutral atoms ranging from hydrogen up to and including argon. The code is applicable for the case of both high and low Z projectile impact in fast ion-atom collisions. The theoretical models provided for the program user are based on two quantum mechanical approximations which have proved to be very successful in the study of ionization in ion-atom collisions. These are the continuum-distorted-wave (CDW) and continuum-distorted-wave eikonal-initial-state (CDW-EIS) approximations. The codes presented here extend previously published codes for single ionization of target hydrogen [Crothers and McCartney, Comput. Phys. Commun. 72 (1992) 288], target helium [Nesbitt, O'Rourke and Crothers, Comput. Phys. Commun. 114 (1998) 385] and target atoms ranging from lithium to neon [O'Rourke, McSherry and Crothers, Comput. Phys. Commun. 131 (2000) 129]. Cross sections for all of these target atoms may be obtained as limiting cases from the present code. Program summaryTitle of program: ARGON Catalogue identifier: ADSE Program summary URL:http://cpc.cs.qub.ac.uk/cpc/summaries/ADSE Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computer for which the program is designed and others on which it is operable: Computers: Four by 200 MHz Pro Pentium Linux server, DEC Alpha 21164; Four by 400 MHz Pentium 2 Xeon 450 Linux server, IBM SP2 and SUN Enterprise 3500 Installations: Queen's University, Belfast Operating systems under which the program has been tested: Red-hat Linux 5.2, Digital UNIX Version 4.0d, AIX, Solaris SunOS 5.7 Compilers: PGI workstations, DEC CAMPUS Programming language used: FORTRAN 90 with MPI directives No. of bits in a word: 64, except on Linux servers 32 Number of processors used: any number Has the

  2. Negative hydrogen ion yields at plasma grid surface in a negative hydrogen ion source

    SciTech Connect

    Wada, M.; Kenmotsu, T.; Sasao, M.

    2015-04-08

    Negative hydrogen (H{sup −}) ion yield from the plasma grid due to incident hydrogen ions and neutrals has been evaluated with the surface collision cascade model, ACAT (Atomic Collision in Amorphous Target) coupled to a negative surface ionization models. Dependence of negative ion fractions upon the velocity component normal to the surface largely affect the calculation results of the final energy and angular distributions of the H{sup −} ions. The influence is particularly large for H{sup −} ions desorbed from the surface due to less than several eV hydrogen particle implact. The present calculation predicts that H{sup −} ion yield can be maximized by setting the incident angle of hydrogen ions and neutrals to be 65 degree. The Cs thickness on the plasma grid should also affect the yields and mean energies of surface produced H{sup −} ions by back scattering and ion induced desorption processes.

  3. Negative hydrogen ion yields at plasma grid surface in a negative hydrogen ion source

    NASA Astrophysics Data System (ADS)

    Wada, M.; Kenmotsu, T.; Sasao, M.

    2015-04-01

    Negative hydrogen (H-) ion yield from the plasma grid due to incident hydrogen ions and neutrals has been evaluated with the surface collision cascade model, ACAT (Atomic Collision in Amorphous Target) coupled to a negative surface ionization models. Dependence of negative ion fractions upon the velocity component normal to the surface largely affect the calculation results of the final energy and angular distributions of the H- ions. The influence is particularly large for H- ions desorbed from the surface due to less than several eV hydrogen particle implact. The present calculation predicts that H- ion yield can be maximized by setting the incident angle of hydrogen ions and neutrals to be 65 degree. The Cs thickness on the plasma grid should also affect the yields and mean energies of surface produced H- ions by back scattering and ion induced desorption processes.

  4. Hydrogen Isotope Fractionation during the Biodegradation of 1,2-Dichloroethane: Potential for Pathway Identification Using a Multi-element (C, Cl, and H) Isotope Approach.

    PubMed

    Palau, Jordi; Shouakar-Stash, Orfan; Hatijah Mortan, Siti; Yu, Rong; Rosell, Monica; Marco-Urrea, Ernest; Freedman, David L; Aravena, Ramon; Soler, Albert; Hunkeler, Daniel

    2017-09-19

    Even though multi-element isotope fractionation patterns provide crucial information with which to identify contaminant degradation pathways in the field, those involving hydrogen are still lacking for many halogenated groundwater contaminants and degradation pathways. This study investigates for the first time hydrogen isotope fractionation during both aerobic and anaerobic biodegradation of 1,2-dichloroethane (1,2-DCA) using five microbial cultures. Transformation-associated isotope fractionation values (εbulk(H)) were -115 ± 18‰ (aerobic C-H bond oxidation), -34 ± 4‰ and -38 ± 4‰ (aerobic C-Cl bond cleavage via hydrolytic dehalogenation), and -57 ± 3‰ and -77 ± 9‰ (anaerobic C-Cl bond cleavage via reductive dihaloelimination). The dual-element C-H isotope approach (ΛC-H = Δδ(2)H/Δδ(13)C ≈ εbulk(H)/εbulk(C), where Δδ(2)H and Δδ(13)C are changes in isotope ratios during degradation) resulted in clearly different ΛC-H values: 28 ± 4 (oxidation), 0.7 ± 0.1 and 0.9 ± 0.1 (hydrolytic dehalogenation), and 1.76 ± 0.05 and 3.5 ± 0.1 (dihaloelimination). This result highlights the potential of this approach to identify 1,2-DCA degradation pathways in the field. In addition, distinct trends were also observed in a multi- (i.e., Δδ(2)H versus Δδ(37)Cl versus Δδ(13)C) isotope plot, which opens further possibilities for pathway identification in future field studies. This is crucial information to understand the mechanisms controlling natural attenuation of 1,2-DCA and to design appropriate strategies to enhance biodegradation.

  5. Measurement of the inclusive branching fraction tau/sup -/. -->. nu/sub tau/. pi. /sup -/. pi. /sup 0/ + neutral meson(s)

    SciTech Connect

    Moses, W.W.

    1986-12-01

    This dissertation measures an inclusive branching fraction of (13.9 +- 2.0/sub -2.4//sup +2.1/)% for the decay tau/sup -/ ..-->.. nu/sub tau/..pi../sup -/..pi../sup 0/ + nh/sup 0/ where h/sup 0/ is a ..pi../sup 0/ or an eta and n greater than or equal to 1. The data sample, obtained with the TPC detector facility at PEP, corresponds to an integrated luminosity of 72 pb/sup -1/ at 29 GeV center of mass energy. The measured value for this branching fraction is somewhat greater than the theoretical prediction and, taking errors into account, resolves the present difference between the inclusive and the sum of the exclusive tau/sup -/ branching fractions into one charged prong. In addition, a lower limit of 8.3% (95% CL) is placed on the branching fraction B(tau/sup -/ ..-->.. nu/sub tau/..pi../sup -/..pi../sup 0/..pi../sup 0/).

  6. Determining the Effect of Growth Rate on Hydrogen Isotope Fractionation of Algal Lipids in Two North Pacific Sites

    NASA Astrophysics Data System (ADS)

    Wolfshorndl, M.; Sachs, J. P.

    2016-02-01

    Tropical hydrologic changes have a large effect on global climate, but there does not yet exist a good indicator of rainfall variation in the tropics. Understanding past natural variability of such features as the Intertropical Convergence Zone and El Niño Southern Oscillation provides information about the extent of anthropogenic climate change today. The hydrogen isotopic composition (D/H ratio) of algal lipids has been shown to track the isotopic composition of source water in which the organism grew, providing information about precipitation variability over time. However, culture work has revealed that environmental factors such as salinity, temperature, growth rate, and irradiance also influence algal lipid D/H ratios. Here I present work determining the effect of growth rate and irradiance on the hydrogen isotope composition of alkenone-producing algae in the water column in two North Pacific locations, off the coast of Oregon and near the Hawaii Ocean Time Series site. This work corroborates empirical relationships observed in culture studies and indicates that the effects of growth rate and irradiance should be taken into account when applying the D/H isotope ratio rainfall proxy to reconstruct past climates.

  7. Determining the Effect of Growth Rate on Hydrogen Isotope Fractionation of Algal Lipids in Two North Pacific Sites

    NASA Astrophysics Data System (ADS)

    Wolfshorndl, M.; Sachs, J. P.

    2015-12-01

    Tropical hydrologic changes have a large effect on global climate, but there does not yet exist a good indicator of rainfall variation in the tropics. Understanding past natural variability of such features as the Intertropical Convergence Zone and El Niño Southern Oscillation provides information about the extent of anthropogenic climate change today. The hydrogen isotopic composition (D/H ratio) of algal lipids has been shown to track the isotopic composition of source water in which the organism grew, providing information about precipitation variability over time. However, culture work has revealed that environmental factors such as salinity, temperature, growth rate, and irradiance also influence algal lipid D/H ratios. Here I present work determining the effect of growth rate and irradiance on the hydrogen isotope composition of alkenone-producing algae in the water column in two North Pacific locations, off the coast of Oregon and near the Hawaii Ocean Time Series site. This work corroborates empirical relationships observed in culture studies and indicates that the effects of growth rate and irradiance should be taken into account when applying the D/H isotope ratio rainfall proxy to reconstruct past climates.

  8. Spectroscopic and NMR identification of novel hydride ions in fractional quantum energy states formed by an exothermic reaction of atomic hydrogen with certain catalysts

    NASA Astrophysics Data System (ADS)

    Mills, R.; Ray, P.; Dhandapani, B.; Good, W.; Jansson, P.; Nansteel, M.; He, J.; Voigt, A.

    2004-10-01

    2K+ to K + K2+ and K to K3+ provide a reaction with a net enthalpy equal to one and three times the potential energy of atomic hydrogen, respectively. The presence of these gaseous ions or atoms with thermally dissociated hydrogen formed a so-called resonance transfer (rt)-plasma having strong VUV emission with a stationary inverted Lyman population. Significant line broadening of the Balmer α , β , and γ lines of 18 eV was observed, compared to 3 4 eV from a hydrogen microwave plasma. Emission from rt-plasmas occurred even when the electric field applied to the plasma was zero. The reaction was exothermic since excess power of 20 mW cm-3 was measured by Calvet calorimetry. An energetic catalytic reaction was proposed involving a resonant energy transfer between hydrogen atoms and 2K+ or K to form very stable novel hydride ions H-(1/p) called hydrino hydrides having a fractional principal quantum numbers p = 2 and p = 4, respectively. Characteristic emission was observed from K2+ and K3+ that confirmed the resonant nonradiative energy transfer of 27.2 eV and 3 × 27.2 eV from atomic hydrogen to 2K+ and K, respectively. The product hydride ion H-(1/4) was observed spectroscopically at 110 nm corresponding to its predicted binding energy of 11.2 eV. The 1H MAS NMR spectrum of novel compound KH*Cl relative to external tetramethylsilane (TMS) showed a large distinct upfield resonance at 4.4 corresponding to an absolute resonance shift of 35.9 ppm that matched the theoretical prediction of p = 4. A novel peak of KH*I at 1.5 ppm relative to TMS corresponding to an absolute resonance shift of 33.0 ppm matched the theoretical prediction of p = 2. The predicted catalyst reactions, position of the upfield-shifted NMR peaks for H-(1/4) and H-(1/2), and spectroscopic data for H-(1/4) were found to be in agreement with the experimental observations as well as previously reported spectroscopic data for H-(1/2) and analysis of KH*Cl and KH*I containing these hydride ions.

  9. n-Alkane biosynthetic hydrogen isotope fractionation is not constant throughout the growing season in the riparian tree Salix viminalis

    NASA Astrophysics Data System (ADS)

    Newberry, Sarah L.; Kahmen, Ansgar; Dennis, Paul; Grant, Alastair

    2015-09-01

    Compound-specific δ2H values of leaf wax n-alkanes have emerged as a potentially powerful paleohydrological proxy. Research suggests terrestrial plant n-alkane δ2H values are strongly correlated with meteoric water δ2H values, and may provide information on temperature, relative humidity, evaporation, and precipitation. This is based upon several assumptions, including that biosynthetic fractionation of n-alkanes during synthesis is constant within a single species. Here we present a multi-isotope study of the n-alkanes of riparian Salix viminalis growing in Norwich, UK. We measured n-alkane δ2H, leaf water δ2H, xylem water δ2H, and bulk foliar δ13C and evaluated the variability of n-alkane δ2H values and net biosynthetic fractionation (εlw-wax) over a whole growing season. S. viminalis n-alkane δ2H values decreased by 40‰ between the start of the growing season in April and the time when they stabilized in July. Variation in leaf and xylem water δ2H did not explain this variability. εlw-wax varied from -116‰ during leaf expansion in April to -156‰ during the stable phase. This suggests that differential biosynthetic fractionation was responsible for the strong seasonal trends in S. viminalis n-alkane δ2H values. We suggest that variability in εlw-wax is driven by seasonal differences in the carbohydrate source and thus the NADPH used in n-alkane biosynthesis, with stored carbohydrates utilized during spring and recent occurring growing season assimilates used later in the season. This is further supported by bulk foliar δ13C values, which are 13C-enriched during the period of leaf flush, relative to the end of the growing season. Our results challenge the assumption that biosynthetic fractionation is constant for a given species, and suggest that 2H-enriched stored assimilates are an important source for n-alkane biosynthesis early in the growing season. These findings have implications for the interpretation of sedimentary n-alkanes and call

  10. Oxygen and hydrogen isotope fractionation in serpentine-water and talc-water systems from 250 to 450 °C, 50 MPa

    USGS Publications Warehouse

    Saccocia, Peter J.; Seewald, Jeffrey S.; Shanks, Wayne C.

    2009-01-01

    Oxygen and hydrogen isotope fractionation factors in the talc–water and serpentine–water systems have been determined by laboratory experiment from 250 to 450 °C at 50 MPa using the partial exchange technique. Talc was synthesized from brucite + quartz, resulting in nearly 100% exchange during reaction at 350 and 450 °C. For serpentine, D–H exchange was much more rapid than 18O–16O exchange when natural chrysotile fibers were employed in the initial charge. In experiments with lizardite as the starting charge, recrystallization to chrysotile enhanced the rate of 18O–16O exchange with the coexisting aqueous phase. Oxygen isotope fractionation factors in both the talc–water and serpentine–water systems decrease with increasing temperature and can be described from 250 to 450 °C by the relationships: 1000 ln  = 11.70 × 106/T2 − 25.49 × 103/T + 12.48 and 1000 ln  = 3.49 × 106/T2 − 9.48 where T is temperature in Kelvin. Over the same temperature interval at 50 MPa, talc–water D–H fractionation is only weakly dependent on temperature, similar to brucite and chlorite, and can be described by the equation: 1000 ln  = 10.88 × 106/T2 − 41.52 × 103/T + 5.61 where T is temperature in Kelvin. Our D–H serpentine–water fractionation factors calibrated by experiment decrease with temperature and form a consistent trend with fractionation factors derived from lower temperature field calibrations. By regression of these data, we have refined and extended the D–H fractionation curve from 25 to 450 °C, 50 MPa as follows: 1000 ln  = 3.436 × 106/T2 − 34.736 × 103/T + 21.67 where T is temperature in Kelvin. These new data should improve the application of D–H and 18O–16O isotopes to constrain the temperature and origin of hydrothermal fluids responsible for serpentine formation in a variety of geologic settings.

  11. Hydrogen Apparent Fractionation between Precipitation and Leaf Wax n-Alkanes from Conifers and Deciduous Angiosperms along a Longitudinal Transect in Eurasia

    NASA Astrophysics Data System (ADS)

    Pedentchouk, Nikolai; Fisher, Katherine; Wagner, Thomas

    2010-05-01

    D/H composition of individual organic compounds derived from leaf wax may provide a wealth of information regarding plant-water relations in studies of plant ecology and climate change. Extracting that information from the organic D/H signal requires a thorough understanding of hydrogen isotope fractionation between environmental water and organic compounds. The purpose of this project is to investigate the importance of plant types and local climatic conditions on hydrogen apparent fractionation in higher terrestrial plants. We determined D/H composition of n-alkanes derived from leaf wax extracted from several extant plants representing common evergreen and deciduous conifer (Pinus and Larix) and deciduous angiosperm (Betula, Salix, and Sorbus) genera along a longitudinal transect from the UK to central Siberia at 10 different locations. These data were used to calculate the apparent fractionation factor (epsilon) between source water, estimated using the Online Isotopes in Precipitation Calculator, and n-alkanes. Our initial results show the following. First, we found large differences in the epsilon values among different genera at each location, e.g. Betula -63‰ vs. Salix -115‰ in Norwich, UK, and Betula -86‰ vs. Salix -146‰ in Novosibirsk, Russia. Assuming the plants at individual locations utilized soil water of very similar deltaD values, variations in the epsilon values are likely to be explained by differences in plant physiology and biochemistry. Second, we identified extensive shifts in the epsilon values in individual species along the transect from the UK to central Siberia, e.g. Betula -63‰ in Norwich vs. -104‰ in Zotino, Krasnoyarsk Krai, central Siberia and Salix -115‰ in Norwich vs. -164‰ in Sodankyla, Finland. With the exception of Sorbus, there is a positive relationship between the MAT (mean annual temperature) and epsilon values at locations above 2 °C MAT, suggesting a possible climatic effect on isotopic fractionation

  12. Performance of a hydrogen burner to simulate air entering scramjet combustors. [simulation of total temperature, total pressure, and volume fraction of oxygen of air at flight conditions

    NASA Technical Reports Server (NTRS)

    Russin, W. R.

    1974-01-01

    Tests were conducted to determine the performance of a hydrogen burner used to produce a test gas that simulates air entering a scramjet combustor at various flight conditions. The test gas simulates air in that it duplicates the total temperature, total pressure, and the volume fraction of oxygen of air at flight conditions. The main objective of the tests was to determine the performance of the burner as a function of the effective exhaust port area. The conclusions were: (1) pressure oscillations of the chugging type were reduced in amplitude to plus or minus 2 percent of the mean pressure level by proper sizing of hydrogen, oxygen, and air injector flow areas; (2) combustion efficiency remained essentially constant as the exhaust port area was increased by a factor of 3.4; (3) the mean total temperature determined from integrating the exit radial gas property profiles was within plus or minus 5 percent of the theoretical bulk total temperature; (4) the measured exit total temperature profile had a local peak temperature more than 30 percent greater than the theoretical bulk total temperature; and (5) measured heat transfer to the burner liner was 75 percent of that predicted by theory based on a flat radial temperature profile.

  13. Chain-Length Distribution and Hydrogen Isotopic Fraction of n-alkyl Lipids in Aquatic and Terrestrial Plants: Implications for Paleoclimate Reconstructions

    NASA Astrophysics Data System (ADS)

    Gao, L.; Littlejohn, S.; Hou, J.; Toney, J.; Huang, Y.

    2008-12-01

    Recent studies demonstrate that in lacustrine sediments, aquatic plant lipids (e.g., C22-fatty acid) record lake water D/H ratio variation, while long-chain fatty acids (C26-C32, major components of terrestrial plant leaf waxes), record D/H ratios of precipitation (especially in arid regions). However, there are insufficient literature data for the distribution and hydrogen isotopic fractionation of n-alkyl lipids in aquatic and terrestrial plants. In this study, we determined the chain-length distributions and D/H ratios of n-alkyl lipids from 17 aquatic plant species (9 emergent, 4 floating and 4 submerge species) and 13 terrestrial plant species (7 grasses and 6 trees) from Blood Pond, Massachusetts. Our results are consistent with previous studies and provide a solid basis for the paleoclimatic reconstruction using D/H ratios of aquatic and terrestrial plant biomarkers. In addition, systematic hydrogen isotopic analyses on leaf waxes, leaf, stem and soil waters from trees and grasses significantly advance our understanding of our previously observed large D/H ratio difference between tree and grass leaf waxes. Our data indicate that the observed difference is not due to differences in leaf water D/H ratios. In comparison with grasses, trees use greater proportion of D-enriched residual or stored carbohydrates (as opposed to current photosynthetic carbohydrates) for leaf wax biosynthesis, resulting in higher leaf wax D/H ratios. The residual carbohydrates are enriched in deuterium because of the preferential consumption of light-hydrogen substrates during plant metabolism.

  14. The neutral gas content of post-merger galaxies

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Fertig, Derek; Rosenberg, Jessica L.; Nair, Preethi; Simard, Luc; Torrey, Paul; Patton, David R.

    2015-03-01

    Measurements of the neutral hydrogen gas content of a sample of 93 post-merger galaxies are presented, from a combination of matches to the ALFALFA.40 data release and new Arecibo observations. By imposing completeness thresholds identical to that of the ALFALFA (Arecibo Legacy Fast ALFA) survey, and by compiling a mass-, redshift- and environment-matched control sample from the public ALFALFA.40 data release, we calculate gas fraction offsets (Δfgas) for the post-mergers, relative to the control sample. We find that the post-mergers have H I gas fractions that are consistent with undisturbed galaxies. However, due to the relative gas richness of the ALFALFA.40 sample, from which we draw our control sample, our measurements of gas fraction enhancements are likely to be conservative lower limits. Combined with comparable gas fraction measurements by Fertig et al. in a sample of galaxy pairs, who also determine gas fraction offsets consistent with zero, we conclude that there is no evidence for significant neutral gas consumption throughout the merger sequence. From a suite of 75 binary merger simulations we confirm that star formation is expected to decrease the post-merger gas fraction by only 0.06 dex, even several Gyr after the merger. Moreover, in addition to the lack of evidence for gas consumption from gas fraction offsets, the observed H I detection fraction in the complete sample of post-mergers is twice as high as the controls, which suggests that the post-merger gas fractions may actually be enhanced. We demonstrate that a gas fraction enhancement in post-mergers, relative to a stellar mass-matched control sample, would indeed be the natural result of merging randomly drawn pairs from a parent population which exhibits a declining gas fraction with increasing stellar mass.

  15. CO2-neutral fuels

    NASA Astrophysics Data System (ADS)

    Goede, A. P. H.

    2015-08-01

    The need for storage of renewable energy (RE) generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G) scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel cycle is

  16. D/H fractionation in the H2-H2O system at supercritical water conditions: Compositional and hydrogen bonding effects

    NASA Astrophysics Data System (ADS)

    Foustoukos, Dionysis I.; Mysen, Bjorn O.

    2012-06-01

    A series of experiments has been conducted in the H2-D2-D2O-H2O-Ti-TiO2 system at temperatures ranging from 300 to 800 °C and pressures between ∼0.3 and 1.3 GPa in a hydrothermal diamond anvil cell, utilizing Raman spectroscopy as a quantitative tool to explore the relative distribution of hydrogen and deuterium isotopologues of the H2 and H2O in supercritical fluids. In detail, H2O-D2O solutions (1:1) were reacted with Ti metal (3-9 h) in the diamond cell, leading to formation of H2, D2, HD, and HDO species through Ti oxidation and H-D isotope exchange reactions. Experimental results obtained in situ and at ambient conditions on quenched samples indicate significant differences from the theoretical estimates of the equilibrium thermodynamic properties of the H-D exchange reactions. In fact, the estimated enthalpy for the H2(aq)-D2(aq) disproportionation reaction (ΔHrxn) is about -3.4 kcal/mol, which differs greatly from the +0.16 kcal/mol predicted for the exchange reaction in the gas phase by statistical mechanics models. The exothermic behavior of the exchange reaction implies enhanced stability of H2 and D2 relative to HD. Accordingly, the significant energy difference of the internal H2(aq)-D2(aq)-HD(aq) equilibrium translates to strong differences of the fractionation effects between the H2O-H2 and D2O-D2 isotope exchange relationships. The D/H fractionation factors between H2O-H2(aq) and D2O-D2(aq) differ by 365‰ in the 600-800 °C temperature range, and are indicative of the greater effect of D2O contribution to the δD isotopic composition of supercritical fluids. The negative ΔHrxn values for the H2(aq)-D2(aq)-HD(aq) equilibrium and the apparent decrease of the equilibrium constant with increasing temperature might be because of differences of the Henry’s law constant between the H- and D-bearing species dissolved in supercritical aqueous solutions. Such effects may be attributed to the stronger hydrogen bonding in the O-H⋯O relative to the

  17. Water-soluble fractions from defatted sesame seeds protect human neuroblast cells against peroxyl radicals and hydrogen peroxide-induced oxidative stress.

    PubMed

    Ben Othman, Sana; Katsuno, Nakako; Kitayama, Akemi; Fujimura, Makoto; Kitaguchi, Kohji; Yabe, Tomio

    2016-09-01

    Oxidative stress is involved in the development of aging-related diseases, such as neurodegenerative diseases. Dietary antioxidants that can protect neuronal cells from oxidative damage play an important role in preventing such diseases. Previously, we reported that water-soluble fractions purified from defatted sesame seed flour exhibit good antioxidant activity in vitro. In the present study, we investigated the protective effects of white and gold sesame seed water-soluble fractions (WS-wsf and GS-wsf, respectively) against 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) and hydrogen peroxide (H2O2) induced oxidative stress in human neuroblast SH-SY5Y cells. Pretreatment with WS-wsf and GS-wsf did not protect cells against AAPH-induced cytotoxicity, while simultaneous co-treatment with AAPH significantly improved cell viability and inhibited membrane lipid peroxidation. These results suggest that WS-wsf and GS-wsf protect cells from AAPH-induced extracellular oxidative damage via direct scavenging of peroxyl radicals. When oxidative stress was induced by H2O2, pretreatment WS-wsf and GS-wsf significantly enhanced cell viability. These results suggest that in addition to radical scavenging, WS-wsf and GS-wsf enhance cellular resistance to intracellular oxidative stress by activation of the Nrf-2/ARE pathway as confirmed by the increased Nrf2 protein level in the nucleus and increased heme oxygenase 1 (HO-1) mRNA expression. The roles of ferulic and vanillic acids as bioactive antioxidants in these fractions were also confirmed. In conclusion, our results indicated that WS-wsf and GS-wsf, which showed antioxidant activity in vitro, are also efficient antioxidants in a cell system protecting SH-SY5Y cells against both extracellular and intracellular oxidative stress.

  18. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, William K.

    1986-01-01

    A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

  19. Hydrogen and oxygen isotope geochemistry of Ascension Island lavas and granites: variation with crystal fractionation and interaction with sea water

    NASA Astrophysics Data System (ADS)

    Sheppard, Simon M. F.; Harris, Chris

    1985-09-01

    Lavas and pyroclastics on Ascension Island contain plutonic blocks that include fluid-inclusion-bearing peralkaline-granite. 18O/16O ratios, F and Cl have been analysed on whole rocks and/or minerals for lavas and granites, and D/H ratios and H2O+ for comenditic obsidians and granites. Whole rock 18O/16O ratios of fresh alkali-basalt, hawaiite, trachyandesite, trachyte and comendite range from 6.0 to 6.9‰ with 18O tending to increase with increase in SiO2. The δ 18O values of the granites are from 0.0 to 0.3‰ depleted in 18O relative to the comendites. Comenditic obsidians have δD= -80±4‰ and H2O+ ˜0.3 wt.% while amphiboles from the granites have δD= -56±2‰ The O-isotope trend of the lavas is consistent with a crystal fractionation model. Fresh igneous rocks with δ 18O values greater than 7‰ involve processes in addition to crystal fractionation of a basaltic magma. The D/H ratios and Cl contents (˜ 3,000 ppm) of the H2O-poor comenditic obsidians represent undegassed primary magmatic values. The H-isotope compositions and low H2O and Cl (167 ppm) contents of the granites are consistent with the major degassing (loss of >90% of initial H2O) of an H2Osaturated magma derived from the interaction of sea (or possibly meteoric) water with the H2O-undersaturated comenditic melt. It is proposed that, associated with caldera subsidence and stoping, water was sucked in around the residual magma before the system had time to be sealed up. The H2O-undersaturated magma consumed this H2O with possibly some minor partial dehydration and dewatering of the hydrated volcanic roof blocks, at a pressure of about 1.5 kb. The granites are the plutonic equivalents of rhyolitic pyroclastics and not directly of the comendites. Granites from oceanic islands may, in general, be a result of generating an H2O-saturated acid melt by such direct or indirect crustal water-magma interaction processes.

  20. Flavonoid Fraction of Orange and Bergamot Juices Protect Human Lung Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Stress

    PubMed Central

    Ferlazzo, Nadia; Visalli, Giuseppa; Smeriglio, Antonella; Cirmi, Santa; Lombardo, Giovanni Enrico; Campiglia, Pietro; Di Pietro, Angela; Navarra, Michele

    2015-01-01

    It has been reported that oxidant/antioxidant imbalance triggers cell damage that in turn causes a number of lung diseases. Flavonoids are known for their health benefits, and Citrus fruits juices are one of the main food sources of these secondary plant metabolites. The present study was designed to evaluate the effect of the flavonoid fraction of bergamot and orange juices, on H2O2-induced oxidative stress in human lung epithelial A549 cells. First we tested the antioxidant properties of both extracts in cell-free experimental models and then we assayed their capability to prevent the cytotoxic effects induced by H2O2. Our results demonstrated that both Citrus juice extracts reduce the generation of reactive oxygen species and membrane lipid peroxidation, improve mitochondrial functionality, and prevent DNA-oxidative damage in A549 cells incubated with H2O2. Our data indicate that the mix of flavonoids present in both bergamot and orange juices may be of use in preventing oxidative cell injury and pave the way for further research into a novel healthy approach to avoid lung disorders. PMID:26221182

  1. Flavonoid Fraction of Orange and Bergamot Juices Protect Human Lung Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Stress.

    PubMed

    Ferlazzo, Nadia; Visalli, Giuseppa; Smeriglio, Antonella; Cirmi, Santa; Lombardo, Giovanni Enrico; Campiglia, Pietro; Di Pietro, Angela; Navarra, Michele

    2015-01-01

    It has been reported that oxidant/antioxidant imbalance triggers cell damage that in turn causes a number of lung diseases. Flavonoids are known for their health benefits, and Citrus fruits juices are one of the main food sources of these secondary plant metabolites. The present study was designed to evaluate the effect of the flavonoid fraction of bergamot and orange juices, on H2O2-induced oxidative stress in human lung epithelial A549 cells. First we tested the antioxidant properties of both extracts in cell-free experimental models and then we assayed their capability to prevent the cytotoxic effects induced by H2O2. Our results demonstrated that both Citrus juice extracts reduce the generation of reactive oxygen species and membrane lipid peroxidation, improve mitochondrial functionality, and prevent DNA-oxidative damage in A549 cells incubated with H2O2. Our data indicate that the mix of flavonoids present in both bergamot and orange juices may be of use in preventing oxidative cell injury and pave the way for further research into a novel healthy approach to avoid lung disorders.

  2. Reorientational dynamics of charged and neutral solutes in 1-alkyl-3-methylimidazoilum bis(trifluoromethylsulfonyl)imide ionic liquids: Realization of ionic component of hydrogen bond

    NASA Astrophysics Data System (ADS)

    Sahu, Prabhat Kumar; Sarkar, Moloy

    2016-05-01

    Role of electrostatic interaction on rotational relaxation dynamics of two charged solutes, sodium 8-methoxypyrene-1,3,6-trisulfonate (MPTS), 1-pyrenesulfonic acid sodium salt (1-PSA) and neutral perylene has been studied in two structurally similar but chemically distinguishable imidazolium-based ionic liquids (ILs). Analysis of the results reveals that rotational relaxation of MPTS is significantly hindered even in the IL where acidic C2-H of the imidazolium moiety is replaced by the methyl group. Moreover, rotational relaxation of neutral perylene is found to be faster than mononegative 1-PSA which is again observed to be faster than that of tri-negative MPTS in the same ILs.

  3. Carbon neutral hydrocarbons.

    PubMed

    Zeman, Frank S; Keith, David W

    2008-11-13

    Reducing greenhouse gas emissions from the transportation sector may be the most difficult aspect of climate change mitigation. We suggest that carbon neutral hydrocarbons (CNHCs) offer an alternative pathway for deep emission cuts that complement the use of decarbonized energy carriers. Such fuels are synthesized from atmospheric carbon dioxide (CO2) and carbon neutral hydrogen. The result is a liquid fuel compatible with the existing transportation infrastructure and therefore capable of a gradual deployment with minimum supply disruption. Capturing the atmospheric CO2 can be accomplished using biomass or industrial methods referred to as air capture. The viability of biomass fuels is strongly dependent on the environmental impacts of biomass production. Strong constraints on land use may favour the use of air capture. We conclude that CNHCs may be a viable alternative to hydrogen or conventional biofuels and warrant a comparable level of research effort and support.

  4. The Influence of Pickup Protons, from Interstellar Neutral Hydrogen, on the Propagation of Interplanetary Shocks from the Halloween 2003 Solar Events to ACE and Ulysses: A 3-D MHD Modeling Study

    NASA Technical Reports Server (NTRS)

    Detman, T. R.; Intriligator, D. S.; Dryer, M.; Sun, W.; Deehr, C. S.; Intriligator, J.

    2012-01-01

    We describe our 3-D, time ]dependent, MHD solar wind model that we recently modified to include the physics of pickup protons from interstellar neutral hydrogen. The model has a time-dependent lower boundary condition, at 0.1 AU, that is driven by source surface map files through an empirical interface module. We describe the empirical interface and its parameter tuning to maximize model agreement with background (quiet) solar wind observations at ACE. We then give results of a simulation study of the famous Halloween 2003 series of solar events. We began with shock inputs from the Fearless Forecast real ]time shock arrival prediction study, and then we iteratively adjusted input shock speeds to obtain agreement between observed and simulated shock arrival times at ACE. We then extended the model grid to 5.5 AU and compared those simulation results with Ulysses observations at 5.2 AU. Next we undertook the more difficult tuning of shock speeds and locations to get matching shock arrival times at both ACE and Ulysses. Then we ran this last case again with neutral hydrogen density set to zero, to identify the effect of pickup ions. We show that the speed of interplanetary shocks propagating from the Sun to Ulysses is reduced by the effects of pickup protons. We plan to make further improvements to the model as we continue our benchmarking process to 10 AU, comparing our results with Cassini observations, and eventually on to 100 AU, comparing our results with Voyager 1 and 2 observations.

  5. The Influence of Pickup Protons, from Interstellar Neutral Hydrogen, on the Propagation of Interplanetary Shocks from the Halloween 2003 Solar Events to ACE and Ulysses: A 3-D MHD Modeling Study

    NASA Technical Reports Server (NTRS)

    Detman, T. R.; Intriligator, D. S.; Dryer, M.; Sun, W.; Deehr, C. S.; Intriligator, J.

    2012-01-01

    We describe our 3-D, time ]dependent, MHD solar wind model that we recently modified to include the physics of pickup protons from interstellar neutral hydrogen. The model has a time-dependent lower boundary condition, at 0.1 AU, that is driven by source surface map files through an empirical interface module. We describe the empirical interface and its parameter tuning to maximize model agreement with background (quiet) solar wind observations at ACE. We then give results of a simulation study of the famous Halloween 2003 series of solar events. We began with shock inputs from the Fearless Forecast real ]time shock arrival prediction study, and then we iteratively adjusted input shock speeds to obtain agreement between observed and simulated shock arrival times at ACE. We then extended the model grid to 5.5 AU and compared those simulation results with Ulysses observations at 5.2 AU. Next we undertook the more difficult tuning of shock speeds and locations to get matching shock arrival times at both ACE and Ulysses. Then we ran this last case again with neutral hydrogen density set to zero, to identify the effect of pickup ions. We show that the speed of interplanetary shocks propagating from the Sun to Ulysses is reduced by the effects of pickup protons. We plan to make further improvements to the model as we continue our benchmarking process to 10 AU, comparing our results with Cassini observations, and eventually on to 100 AU, comparing our results with Voyager 1 and 2 observations.

  6. Improved Measurements of Neutral B Decay Branching Fractions to K0s pi+ pi- and the Charge Asymmetry of B0 -> K*+ pi-

    SciTech Connect

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Imperial Coll., London /Iowa U. /Iowa State U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Naples U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /Pisa U. /Pisa, Scuola Normale Superiore /INFN, Pisa /Prairie View A-M /Princeton U. /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Vanderbilt U. /Victoria U. /Warwick U. /Wisconsin U., Madison /Yale U.

    2005-08-26

    The authors analyze the decay B{sup 0} {yields} K{sub S}{sup 0}{pi}{sup +}{pi}{sup -} using a sample of 232 million {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the SLAC PEP-II asymmetric-energy B factory. A maximum likelihood fit finds the following branching fractions: {Beta}(B{sup 0} {yields} K{sup 0}{pi}{sup +}{pi}{sup -}) = (43.0 {+-} 2.3 {+-} 2.3) x 10{sup -6}, {Beta}(B{sup 0} {yields} f{sub 0}({yields} {pi}{sup +}{pi}{sup -})K{sup 0}) = (5.5 {+-} 0.7 {+-} 0.5 {+-} 0.3) x 10{sup -6} and {Beta}(B{sup 0} {yields} K*{sup +}{pi}{sup -}) = (11.0 {+-} 1.5 {+-} 0.5 {+-} 0.5) x 10{sup -6}. For these results, the first uncertainty is statistical, the second is systematic, and the third (if present) is due to the effect of interference from other resonances. They also measure the CP-violating charge asymmetry in the decay B{sup 0} {yields} K*{sup +}{pi}{sup -}, {Alpha}{sub K*{pi}} = -0.11 {+-} 0.14 {+-} 0.05.

  7. Interplay of resonant and Auger processes in proton neutralization after grazing surface scattering

    NASA Astrophysics Data System (ADS)

    Zimny, R.; Mišković, Z. L.; Nedeljković, N. N.; Nedeljković, Lj. D.

    1991-09-01

    We present model calculations for proton neutralization after grazing reflection at an aluminum surface over a wide range of projectile velocities around the Bohr or Fermi velocity. The contribution of excited hydrogen states to the neutral fraction, as well as negative-ion formation can be regarded as small in this case. Both resonant and Auger electron capture from the metallic conduction band into the 1s ground state of hydrogen as well as electron loss by resonance and Auger ionization of the ground state are taken into account on equal footing within a rate-equation approach. As a consequence, our model allows to estimate, for the first time, the effect of the particle velocity parallel to the surface plane on the relative role of resonant and Auger-type electron transfer in ion-surface neutralization. The results of our theoretical model are compared with recent experimental data for grazing scattering of protons at an Al(111) surface.

  8. Low density of neutral hydrogen and helium in the local interstellar medium: Extreme Ultraviolet Explorer photometry of the Lyman continuum of the hot white dwarfs MCT 0501-2858, MCT 0455-2812, HZ 43, and GD 153.

    PubMed

    Vennes, S; Dupuis, J; Bowyer, S; Fontaine, G; Wiercigroch, A; Jelinsky, P; Wesemael, F; Malina, R

    1994-01-20

    The first comprehensive sky survey of the extreme ultraviolet (EUV) spectral range performed by the Extreme Ultraviolet Explorer (EUVE) has uncovered a handful of very bright sources at wavelengths longer than the He I 504 angstroms photoionization edge. Among these objects are four white dwarfs with exceptionally low interstellar medium (ISM) column densities along the line of sight. Analysis of EUV photometry of the He-rich DO white dwarf MCT 0501-2858 and the H-rich DA white dwarf MCT 0455-2812 along one line of sight and of the DA white dwarfs HZ 43 and GD 153 near the north Galactic pole indicates that the overall minimum column density of the neutral material centered on the Sun is N(H I)= 0.5-1.0 x 10(18) cm-2. In the case of MCT 0501-2858, EUV photometric measurements provide a clear constraint to the effective temperature (60,000-70,000 K). Given these neutral hydrogen columns, the actual contribution to the density of neutral species from the immediate solar environment (the "local fluff") would only cover a distance of approximately 2-3 pc (assuming an average density n(H I) = 0.1 cm-3) leaving these lines of sight almost entirely within the hot phase of the ISM. A preliminary examination of the complete EUVE long-wavelength survey indicates that these lines of sight are exceptional and set a minimum column density in the solar environment.

  9. Low density of neutral hydrogen and helium in the local interstellar medium: Extreme Ultraviolet Explorer photometry of the Lyman continuum of the hot white dwarfs MCT 0501-2858, MCT 0455-2812, HZ 43, and GD 153

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane; Dupuis, Jean; Bowyer, Stuart; Fontaine, Gilles; Wiercigroch, Alexandria; Jelinsky, Patrick; Wesemael, Francois; Malina, Roger

    1994-01-01

    The first comprehensive sky survey of the extreme ultraviolet (EUV) spectral range performed by the Extreme Ultraviolet Explorer (EUVE) has uncovered a handful of very bright sources at wavelengths longer than the He I 504 A photoionization edge. Among these objects are four white dwarfs with exceptionally low interstellar medium (ISM) column densities along the line of sight. Analysis of EUV photometry of the He-rich DO white dwarf MCT 0501-2858 and the H-rich DA white dwarf MCT 0455-2812 along one line of sight and of the DA white dwarfs HZ 43 and GD 153 near the north Galactic pole indicates that the overall minimum column density of the neutral material centered on the Sun is N(H I) = 0.5-1.0 x 10(exp 18)/sq cm. In the case of MCT 0501-2858, EUV photometric measurements provide a clear constraint to the effective temperature (60,000-70,000 K). Given these neutral hydrogen columns, the actual contribution to the density of neutral species from the immediate solar environment (the 'local fluff') would only cover a distance of approximately equals 2-3 pc (assuming an average density n(H I) = 0.1/cu cm) leaving these lines of sight almost entirely within the hot phase of the ISM. A preliminary examination of the complete EUVE long-wavelength survey indicates that these lines of sight are exceptional and set a minimum column density in the solar environment.

  10. Comparison of in situ versus in vitro methods of fiber digestion at 120 and 288 hours to quantify the indigestible neutral detergent fiber fraction of corn silage samples.

    PubMed

    Bender, R W; Cook, D E; Combs, D K

    2016-07-01

    Ruminal digestion of neutral detergent fiber (NDF) is affected in part by the proportion of NDF that is indigestible (iNDF), and the rate at which the potentially digestible NDF (pdNDF) is digested. Indigestible NDF in forages is commonly determined as the NDF residue remaining after long-term in situ or in vitro incubations. Rate of pdNDF digestion can be determined by measuring the degradation of NDF in ruminal in vitro or in situ incubations at multiple time points, and fitting the change in residual pdNDF by time with log-transformed linear first order or nonlinear mathematical treatments. The estimate of indigestible fiber is important because it sets the pool size of potentially digestible fiber, which in turn affects the estimate of the proportion of potentially digestible fiber remaining in the time series analysis. Our objective was to compare estimates of iNDF based on in vitro (IV) and in situ (IS) measurements at 2 fermentation end points (120 and 288h). Further objectives were to compare the subsequent rate, lag, and estimated total-tract NDF digestibility (TTNDFD) when iNDF from each method was used with a 7 time point in vitro incubation of NDF to model fiber digestion. Thirteen corn silage samples were dried and ground through a 1-mm screen in a Wiley mill. A 2×2 factorial trial was conducted to determine the effect of time of incubation and method of iNDF analysis on iNDF concentration; the 2 factors were method of iNDF analysis (IS vs. IV) and incubation time (120 vs. 288h). Four sample replicates were used, and approximately 0.5g/sample was weighed into each Ankom F 0285 bag (Ankom Technology, Macedon, NY; pore size=25 µm) for all techniques. The IV-120 had a higher estimate of iNDF (37.8% of NDF) than IS-120 (32.1% of NDF), IV-288 (31.2% of NDF), or IS-288 technique (25.7% of NDF). Each of the estimates of iNDF was then used to calculate the rate of degradation of pdNDF from a 7 time point in vitro incubation. When the IV-120 NDF residue was

  11. Neutral Beam Injection for Plasma and Magnetic FieldDiagnostics

    SciTech Connect

    Vainionpaa, Jaakko Hannes; Leung, Ka Ngo; Kwan, Joe W.; Levinton,Fred

    2007-08-01

    At the Lawrence Berkeley National Laboratory (LBNL) adiagnostic neutral beam injection system for measuring plasma parameters,flow velocity, and local magnetic field is being developed. High protonfraction and small divergence is essential for diagnostic neutral beams.In our design, a neutral hydrogen beam with an 8 cm x 11 cm (or smaller)elliptical beam spot at 2.5 m from the end of the extraction column isproduced. The beam will deliver up to 5 A of hydrogen beam to the targetwith a pulse width of ~;1 s, once every 1 - 2 min. The H1+ ion species ofthe hydrogen beamwill be over 90 percent. For this application, we havecompared two types of RF driven multicusp ion sources operating at 13.56MHz. The first one is an ion source with an external spiral antennabehind a dielectric RF-window. The second one uses an internal antenna insimilar ion source geometry. The source needs to generate uniform plasmaover a large (8 cm x 5 cm) extraction area. We expect that the ion sourcewith internal antenna will be more efficient at producing the desiredplasma density but might have the issue of limited antenna lifetime,depending on the duty factor. For both approaches there is a need forextra shielding to protect the dielectric materials from the backstreaming electrons. The source walls will be made of insulator materialsuch as quartz that has been observed to generate plasma with higheratomic fraction than sources with metal walls. The ion beam will beextracted and accelerated by a set of grids with slits, thus forming anarray of 6 sheet-shaped beamlets. The multiple grid extraction will beoptimized using computer simulation programs. Neutralization of the beamwill be done in neutralization chamber, which has over 70 percentneutralization efficiency.

  12. High-mobility hydrogen-terminated Si(111) transistors for measurement of six-fold valley degenerate two-dimensional electron systems in fractional quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Hu, Binhui; Yazdanpanah, Mohamad Meqdad; Kane, Bruce E.

    2015-03-01

    The quality of hydrogen-terminated Si(111) (H-Si(111)) transistors has improved significantly. Peak electron mobility of 325,000 cm2/Vs was achieved at 90 mK, and the fractional quantum Hall effect (FQHE) at 1 < ν < 2 was studied extensively. We have further improved the device by solving gate leakage and contact problems with an updated design, in which a Si piece with thermal oxide acts as a gate through a vacuum cavity, and PN junctions are used to define a hexagonal two-dimensional (2D) region on a H-Si(111) piece. The device operates as an ambipolar transistor, in which a 2D electron system (2DES) and a 2D hole system can be induced at the same H-Si(111) surface. Peak electron mobility of more than 200,000 cm2/Vs is routinely achieved at 300 mK. The Si(111) surface has a six-fold valley degeneracy. The hexagonal device is designed to investigate the symmetry of the 2DES. Preliminary data show that the transport anisotropy at ν < 6 can be explained by the valley occupancy. The details of the valley occupancy can be caused by several mechanisms, such as miscut, magnetic field, pseudospin quantum Hall ferromagnetism (QHFM), and nematic valley polarization phases. The FQHE is investigated in magnetic fields up to 35T, and the properties of composite fermions will be discussed.

  13. Dry anaerobic co-digestion of organic fraction of municipal waste with paperboard mill sludge and gelatin solid waste for enhancement of hydrogen production.

    PubMed

    Elsamadony, M; Tawfik, A

    2015-09-01

    The aim of this study is to investigate the bio-H2 production via dry anaerobic co-fermentation of organic fraction of municipal solid waste (OFMSW) with protein and calcium-rich substrates such as gelatin solid waste (GSW) and paperboard mill sludge (PMS). Co-fermentation of OFMSW/GSW/PMS significantly enhanced the H2 production (HP) and H2 yield (HY). The maximum HP of 1082.5±91.4 mL and HY of 144.9±9.8 mL/gVSremoved were achieved at a volumetric ratio of 70% OFMSW:20% GSW:10% PMS. COD, carbohydrate, protein and lipids conversion efficiencies were 60.9±4.4%, 71.4±3.5%, 22.6±2.3% and 20.5±1.8% respectively. Co-fermentation process reduced the particle size distribution which is favorably utilized by hydrogen producing bacteria. The mean particle size diameters for feedstock and the digestate were 939.3 and 115.2μm, respectively with reduction value of 8.15-fold in the mixtures. The volumetric H2 production increased from 4.5±0.3 to 7.2±0.6 L(H2)/L(substrate) at increasing Ca(+2) concentrations from 1.8±0.1 to 6.3±0.5 g/L respectively.

  14. Modulation of Hydrogen Peroxide-Induced Oxidative Stress in Human Neuronal Cells by Thymoquinone-Rich Fraction and Thymoquinone via Transcriptomic Regulation of Antioxidant and Apoptotic Signaling Genes

    PubMed Central

    Ismail, Norsharina; Ismail, Maznah; Azmi, Nur Hanisah; Abu Bakar, Muhammad Firdaus; Basri, Hamidon; Abdullah, Maizaton Atmadini

    2016-01-01

    Nigella sativa Linn. (N. sativa) and its bioactive constituent Thymoquinone (TQ) have demonstrated numerous pharmacological attributes. In the present study, the neuroprotective properties of Thymoquinone-rich fraction (TQRF) and TQ against hydrogen peroxide- (H2O2-) induced neurotoxicity in differentiated human SH-SY5Y cells were investigated. TQRF was extracted using supercritical fluid extraction while TQ was acquired commercially, and their effects on H2O2 were evaluated using cell viability assay, reactive oxygen species (ROS) assay, morphological observation, and multiplex gene expression. Both TQRF and TQ protected the cells against H2O2 by preserving the mitochondrial metabolic enzymes, reducing intracellular ROS levels, preserving morphological architecture, and modulating the expression of genes related to antioxidants (SOD1, SOD2, and catalase) and signaling genes (p53, AKT1, ERK1/2, p38 MAPK, JNK, and NF-κβ). In conclusion, the enhanced efficacy of TQRF over TQ was likely due to the synergism of multiple constituents in TQRF. The efficacy of TQRF was better than that of TQ alone when equal concentrations of TQ in TQRF were compared. In addition, TQRF also showed comparable effects to TQ when the same concentrations were tested. These findings provide further support for the use of TQRF as an alternative to combat oxidative stress insults in neurodegenerative diseases. PMID:26823946

  15. Modulation of Hydrogen Peroxide-Induced Oxidative Stress in Human Neuronal Cells by Thymoquinone-Rich Fraction and Thymoquinone via Transcriptomic Regulation of Antioxidant and Apoptotic Signaling Genes.

    PubMed

    Ismail, Norsharina; Ismail, Maznah; Azmi, Nur Hanisah; Abu Bakar, Muhammad Firdaus; Basri, Hamidon; Abdullah, Maizaton Atmadini

    2016-01-01

    Nigella sativa Linn. (N. sativa) and its bioactive constituent Thymoquinone (TQ) have demonstrated numerous pharmacological attributes. In the present study, the neuroprotective properties of Thymoquinone-rich fraction (TQRF) and TQ against hydrogen peroxide- (H2O2-) induced neurotoxicity in differentiated human SH-SY5Y cells were investigated. TQRF was extracted using supercritical fluid extraction while TQ was acquired commercially, and their effects on H2O2 were evaluated using cell viability assay, reactive oxygen species (ROS) assay, morphological observation, and multiplex gene expression. Both TQRF and TQ protected the cells against H2O2 by preserving the mitochondrial metabolic enzymes, reducing intracellular ROS levels, preserving morphological architecture, and modulating the expression of genes related to antioxidants (SOD1, SOD2, and catalase) and signaling genes (p53, AKT1, ERK1/2, p38 MAPK, JNK, and NF-κβ). In conclusion, the enhanced efficacy of TQRF over TQ was likely due to the synergism of multiple constituents in TQRF. The efficacy of TQRF was better than that of TQ alone when equal concentrations of TQ in TQRF were compared. In addition, TQRF also showed comparable effects to TQ when the same concentrations were tested. These findings provide further support for the use of TQRF as an alternative to combat oxidative stress insults in neurodegenerative diseases.

  16. Key factors affecting on bio-hydrogen production from co-digestion of organic fraction of municipal solid waste and kitchen wastewater.

    PubMed

    Tawfik, Ahmed; El-Qelish, Mohamed

    2014-09-01

    The effects of sludge residence time (SRT) and dilution ratio (DR) on the continuous H2 production (HP) from co-digestion of organic fraction of municipal solid waste (OFMSW) and kitchen wastewater (KWW) via mesophilic anaerobic baffled reactor (ABR) was investigated. Increasing DR from 1:2 to 1:3 significantly (P<0.1) increased the H2 yield (HY) from 116.5±76 to 142.5±54 ml H2/g CODremoved d, respectively. However, at a DR of 1:4, the HY was dropped to 114.5±65 ml H2/g CODremoved d. Likewise, HY increased from 83±37 to 95±24 ml H2/g CODremoved d, when SRT increased from 3.6 to 4.0 d. Further increase in HY of 148±42 ml H2/g CODremoved d, was occurred at a SRT of 5.6d. Moreover, hydrogen fermentation facilitated carbohydrate, lipids, protein and volatile solids removal efficiencies of 87±5.8%, 74.3±9.12%, 76.4±11.3% and 84.8±4.1%, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The Gaseous Environment of High-z Galaxies: Precision Measurements of Neutral Hydrogen in the Circumgalactic Medium of z ~ 2-3 Galaxies in the Keck Baryonic Structure Survey

    NASA Astrophysics Data System (ADS)

    Rudie, Gwen C.; Steidel, Charles C.; Trainor, Ryan F.; Rakic, Olivera; Bogosavljević, Milan; Pettini, Max; Reddy, Naveen; Shapley, Alice E.; Erb, Dawn K.; Law, David R.

    2012-05-01

    We present results from the Keck Baryonic Structure Survey (KBSS), a unique spectroscopic survey of the distant universe designed to explore the details of the connection between galaxies and intergalactic baryons within the same survey volumes, focusing particularly on scales from ~50 kpc to a few Mpc. The KBSS is optimized for the redshift range z ~ 2-3, combining S/N ~100 Keck/HIRES spectra of 15 of the brightest QSOs in the sky at z ~= 2.5-2.9 with very densely sampled galaxy redshift surveys within a few arcmin of each QSO sightline. In this paper, we present quantitative results on the distribution, column density, kinematics, and absorber line widths of neutral hydrogen (H I) surrounding a subset of 886 KBSS star-forming galaxies with 2.0 <~ z <~ 2.8 and with projected distances <=3 physical Mpc from a QSO sightline. Using Voigt profile decompositions of the full Lyα forest region of all 15 QSO spectra, we compiled a catalog of ~6000 individual absorbers in the redshift range of interest, with 12 <= log (N H I ) <=21. These are used to measure H I absorption statistics near the redshifts of foreground galaxies as a function of projected galactocentric distance from the QSO sightline and for randomly chosen locations in the intergalactic medium (IGM) within the survey volume. We find that N H I and the multiplicity of velocity-associated H I components increase rapidly with decreasing galactocentric impact parameter and as the systemic redshift of the galaxy is approached. The strongest H I absorbers within ~= 100 physical kpc of galaxies have N H I ~3 orders of magnitude higher than those near random locations in the IGM. The circumgalactic zone of most significantly enhanced H I absorption is found within transverse distances of <~ 300 kpc and within ±300 km s-1 of galaxy systemic redshifts. Taking this region as the defining bounds of the circumgalactic medium (CGM), nearly half of absorbers with log(N H I ) > 15.5 are found within the CGM of galaxies

  18. Upgrading petroleum and petroleum fractions

    SciTech Connect

    Ferguson, S.; Reese, D.D.

    1988-06-21

    A method is described for neutralizing the organic naphthenic acids acidity present in petroleum and petroleum fractions to produce a neutralization number less than 1.0 whereby they are rendered suitable as lube oil feed stocks which consists essentially of treating the petroleum and petroleum fractions with a neutralizing amount of monoethanolamine to form an amine salt with the organic acids and then heating the thus-neutralized petroleum and petroleum fractions at a temperature at least about 25/sup 0/F greater than the boiling point of water and for a time sufficient to convert the amine salts to amides.

  19. HYDROGENATION OF PAH CATIONS: A FIRST STEP TOWARD H{sub 2} FORMATION

    SciTech Connect

    Boschman, L.; Cazaux, S.; Spaans, M.; Reitsma, G.; Schlathoelter, T.; Hoekstra, R.; Gonzalez-Magana, O.

    2012-12-20

    Molecular hydrogen is the most abundant molecule in the universe. A large fraction of H{sub 2} forms by association of hydrogen atoms adsorbed on polycyclic aromatic hydrocarbons (PAHs), where formation rates depend crucially on the H sticking probability. We have experimentally studied PAH hydrogenation by exposing coronene cations, confined in a radio-frequency ion trap, to gas phase atomic hydrogen. A systematic increase of the number of H atoms adsorbed on the coronene with the time of exposure is observed. Odd coronene hydrogenation states dominate the mass spectrum up to 11 H atoms attached. This indicates the presence of a barrier preventing H attachment to these molecular systems. For the second and fourth hydrogenations, barrier heights of 72 {+-} 6 meV and 40 {+-} 10 meV, respectively, are found, which are in good agreement with theoretical predictions for the hydrogenation of neutral PAHs. Our experiments, however, prove that the barrier does not vanish for higher hydrogenation states. These results imply that PAH cations, as their neutral counterparts, exist in highly hydrogenated forms in the interstellar medium. Due to this catalytic activity, PAH cations and neutrals seem to contribute similarly to the formation of H{sub 2}.

  20. Structure, Ionization, and Fragmentation of Neutral and Positively Charged Hydrogenated Carbon Clusters: C(n)H(m)(q+) (n = 1-5, m = 1-4, q = 0-3).

    PubMed

    Sánchez, Juan P; Aguirre, Néstor F; Díaz-Tendero, Sergio; Martín, Fernando; Alcamí, Manuel

    2016-02-04

    In this work we present a systematic theoretical study of neutral and positively charged hydrogenated carbon clusters (C(n)H(m)(q+) with n = 1–5, m = 1–4, and q = 0–3). A large number of isomers and spin states (1490 in total) was investigated. For all of them, we optimized the geometry and computed the vibrational frequencies at the B3LYP/6-311++G(3df,2dp) level of theory; more accurate values of the electronic energy were obtained at the CCSD(T)/6-311++G(3df,2dp) level over the geometry previously obtained. From these simulations we evaluated several properties such as relative energies between isomers, adiabatic and vertical ionization potentials, and dissociation energies of several fragmentation channels. A new analysis technique is proposed to evaluate a large number of fragmentation channels in a wide energy range.

  1. Rearrangements of transient neutral molecules in the gas phase. Does the conversion of CCCHO to HCCCO involve oxygen or hydrogen migration?

    PubMed

    Tran, Khoa M; McAnoy, Andrew M; Bowie, John H

    2004-01-01

    Stable (CC13CHO)- may be formed in the chemical ionisation ion source of a VG ZAB 2HF mass spectrometer by the SN2(Si) reaction between Me3SiC[triple bond]C13CHO and F-. Vertical (Franck-Condon) one-electron oxidation of (CC13CHO)- in the first of the tandem collision cells of a VG ZAB 2HF mass spectrometer gives CC13CHO. Some of these neutrals have sufficient excess energy to effect rearrangement to HCC13CO, some of which are energised and to decompose to HCC. and 13CO. Thus the neutral rearrangement exclusively involves H migration: no products from O migration are detected. The corresponding two-electron oxidation of (CC13CHO)- gives mainly unrearranged (CC13CHO)+. A minority of these cations are energised and rearrange by H and O migration to yield (HCC13CHO)+ and (OCC13CHO)+ respectively. All experimental observations are backed up by molecular modelling at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31G(d) level of theory.

  2. Enzymatic production of trans-free hard fat stock from fractionated rice bran oil, fully hydrogenated soybean oil, and conjugated linoleic Acid.

    PubMed

    Adhikari, P; Shin, J-A; Lee, J-H; Hu, J-N; Hwang, K T; Lee, K-T

    2009-03-01

    Rice bran oil (RBO) was fractionated into 2 phases, solid (S-RBO) and liquid (L-RBO), using acetone at -18 degrees C and the weight yield of each S-RBO and L-RBO was 45.5% and 54.5%, respectively. Then, trans-free hard fat was synthesized from trans-free substrate of S-RBO and fully hydrogenated soybean oil (FHSBO) at different molar ratios (S-RBO : FHSBO; 1 : 1, 1 : 1.5, 1 : 2, and 1 : 3) with Lipozyme TL IM lipase (10% of total substrate). Conjugated linoleic acid (CLA, 20% of total substrate) was used as functional fatty acids for the production of trans-free hard fat. After fatty acid analysis, CLA (12.2% to 14.2%) was found on the triacylglycerol (TAG) backbone of the interesterified products along with stearic (37.6% to 49%), palmitic (15% to 17.9%), and oleic acids (13.3% to 19.2%). The interesterified product contained higher level of saturated fatty acid (62.6% to 70.1%) at sn-2 position. Total tocopherols (alpha-, gamma-, and delta-; 1.4 to 2.6 mg/100 g) and phytosterols (campesterol, stigmasterol, and beta-sitosterol; 220.5 to 362.7 mg/100 g) were found in the interesterified products. From DSC results, solid fat contents of the interesterified products (S-RBO : FHSBO 1 : 1, 1 : 1.5, 1 : 2, and 1 : 3) at 25 degrees C were 23.1%, 27%, 30.1%, and 44.9%. The interesterified products consisted mostly of beta' form crystal with a small portion of beta form. The interesterified product (S-RBO : FHSBO 1 : 1.5) was softer than the physical blend but slightly harder than commercial shortenings as measured by texture analyzer. Thus, trans-free hard fat stock, which may have a potential functionality could be produced with various physical properties.

  3. Structures and IR/UV spectra of neutral and ionic phenol-Ar(n) cluster isomers (n ≤ 4): competition between hydrogen bonding and stacking.

    PubMed

    Schmies, Matthias; Patzer, Alexander; Fujii, Masaaki; Dopfer, Otto

    2011-08-21

    The structures, binding energies, and vibrational and electronic spectra of various isomers of neutral and ionic phenol-Ar(n) clusters with n ≤ 4, PhOH((+))-Ar(n), are characterized by quantum chemical calculations. The properties in the neutral and ionic ground electronic states (S(0), D(0)) are determined at the M06-2X/aug-cc-pVTZ level, whereas the S(1) excited state of the neutral species is investigated at the CC2/aug-cc-pVDZ level. The Ar complexation shifts calculated for the S(1) origin and the adiabatic ionisation potential, ΔS(1) and ΔIP, sensitively depend on the Ar positions and thus the sequence of filling the first Ar solvation shell. The calculated shifts confirm empirical additivity rules for ΔS(1) established recently from experimental spectra and enable thus a firm assignment of various S(1) origins to their respective isomers. A similar additivity model is newly developed for ΔIP using the M06-2X data. The isomer assignment is further confirmed by Franck-Condon simulations of the intermolecular vibrational structure of the S(1) ← S(0) transitions. In neutral PhOH-Ar(n), dispersion dominates the attraction and π-bonding is more stable than H-bonding. The solvation sequence of the most stable isomers is derived as (10), (11), (30), and (31) for n ≤ 4, where (km) denotes isomers with k and m Ar ligands binding above and below the aromatic plane, respectively. The π interaction is somewhat stronger in the S(1) state due to enhanced dispersion forces. Similarly, the H-bond strength increases in S(1) due to the enhanced acidity of the OH proton. In the PhOH(+)-Ar(n) cations, H-bonds are significantly stronger than π-bonds due to additional induction forces. Consequently, one favourable solvation sequence is derived as (H00), (H10), (H20), and (H30) for n ≤ 4, where (Hkm) denotes isomers with one H-bound ligand and k and m π-bonded Ar ligands above and below the aromatic plane, respectively. Another low-energy solvation motif for n = 2

  4. Neutralizing positive charges at the surface of a protein lowers its rate of amide hydrogen exchange without altering its structure or increasing its thermostability.

    PubMed

    Shaw, Bryan F; Arthanari, Haribabu; Narovlyansky, Max; Durazo, Armando; Frueh, Dominique P; Pollastri, Michael P; Lee, Andrew; Bilgicer, Basar; Gygi, Steven P; Wagner, Gerhard; Whitesides, George M

    2010-12-15

    This paper combines two techniques--mass spectrometry and protein charge ladders--to examine the relationship between the surface charge and hydrophobicity of a representative globular protein (bovine carbonic anhydrase II; BCA II) and its rate of amide hydrogen-deuterium (H/D) exchange. Mass spectrometric analysis indicated that the sequential acetylation of surface lysine-ε-NH3(+) groups--a type of modification that increases the net negative charge and hydrophobicity of the surface of BCA II without affecting its secondary or tertiary structure--resulted in a linear decrease in the aggregate rate of amide H/D exchange at pD 7.4, 15 °C. According to analysis with MS, the acetylation of each additional lysine generated between 1.4 and 0.9 additional hydrogens that are protected from H/D exchange during the 2 h exchange experiment at 15 °C, pD 7.4. NMR spectroscopy demonstrated that none of the hydrogen atoms which became protected upon acetylation were located on the side chain of the acetylated lysine residues (i.e., lys-ε-NHCOCH3) but were instead located on amide NHCO moieties in the backbone. The decrease in rate of exchange associated with acetylation paralleled a decrease in thermostability: the most slowly exchanging rungs of the charge ladder were the least thermostable (as measured by differential scanning calorimetry). This observation--that faster rates of exchange are associated with slower rates of denaturation--is contrary to the usual assumptions in protein chemistry. The fact that the rates of H/D exchange were similar for perbutyrated BCA II (e.g., [lys-ε-NHCO(CH2)2CH3]18) and peracetylated BCA II (e.g., [lys-ε-NHCOCH3]18) suggests that the electrostatic charge is more important than the hydrophobicity of surface groups in determining the rate of H/D exchange. These electrostatic effects on the kinetics of H/D exchange could complicate (or aid) the interpretation of experiments in which H/D exchange methods are used to probe the structural

  5. Neutralizing positive charges at the surface of a protein lowers its rate of amide hydrogen exchange without altering its structure or increasing its thermostability

    PubMed Central

    Shaw, Bryan F.; Arthanari, Haribabu; Narovlyansky, Max; Durazo, Armando; Frueh, Dominique P.; Pollastri, Michael P.; Lee, Andrew; Bilgicer, Basar; Gygi, Steven P.; Wagner, Gerhard; Whitesides, George M.

    2010-01-01

    This paper combines two techniques—mass spectrometry and protein charge ladders—to examine the relationship between the surface charge and hydrophobicity of a representative globular protein (bovine carbonic anhydrase II; BCA II) and its rate of amide hydrogen-deuterium (H/D) exchange. Mass spectrometric analysis indicated that the sequential acetylation of surface lysine-ε-NH3+ groups—a type of modification that increases the net negative charge and hydrophobicity of the surface of BCA II without affecting its 2° or 3° structure—resulted in a linear decrease in the aggregate rate of amide H/D exchange at pD 7.4, 15 °C. According to analysis with MS, the acetylation of each additional lysine generated between 1.4 and 0.9 additional hydrogens that are protected from H/D exchange during the 2 h exchange experiment at 15 °C, pD 7.4. NMR spectroscopy demonstrated that none of the hydrogen atoms which became protected upon acetylation were located on the side chain of the acetylated lysine residues (i.e., lys-ε-NHCOCH3) but were instead located on amide NHCO moieties in the backbone. The decrease in rate of exchange associated with acetylation paralleled a decrease in thermostability: the most slowly exchanging rungs of the charge ladder were the least thermostable (as measured by differential scanning calorimetry). This observation—that faster rates of exchange are associated with slower rates of denaturation—is contrary to the usual assumptions in protein chemistry. The fact that the rates of H/D exchange were similar for perbutyrated BCA II (e.g., [lys-ε-NHCO(CH2)2CH3]18) and peracetylated BCA II (e.g., [lys-ε-NHCOCH3]18) suggests that the electrostatic charge is more important than the hydrophobicity of surface groups in determining the rate of H/D exchange. These electrostatic effects on the kinetics of H/D exchange could complicate (or aid) the interpretation of experiments in which H/D exchange methods are used to probe the structural effects

  6. Energetic Neutral Atom Precipitation (ENAP)

    NASA Technical Reports Server (NTRS)

    Tinsley, B. A.

    1988-01-01

    The Energetic Neutral Atom Precipitation experiment is scheduled to be flown on the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission. The objective of this experiment is to measure very faint emissions at nighttime arising from fluxes of energetic neutral atoms in the thermosphere. These energetic atoms have energies ranging up to about 50 keV, and arise from ions of hydrogen, helium, and oxygen trapped in the inner magnetosphere. Some of these ions become neutralized in charge exchange reactions with neutral hydrogen in the hydrogen geocorona that extends through the region. The ions are trapped on magnetic field lines which cross the equatorial plane at 2 to 6 earth radii distance, and they mirror at a range of heights on these field lines, extending down to the thermosphere at 500 km altitude. The ATLAS 1 measurements will not be of the neutral atoms themselves but of the optical emission produced by those on trajectories that intersect the thermosphere. The ENAP measurements are to be made using the Imaging Spectrometric Observatory (ISO) which is being flown on the ATLAS mission primarily for daytime spectral observations, and the ENAP measurements will all be nighttime measurements because of the faintness of the emissions and the relatively low level of magnetic activity expected.

  7. Foil optimization for low energy neutral atom imaging

    SciTech Connect

    Funsten, H.O.; McComas, D.J.; Barraclough, B.L.

    1992-01-01

    Magnetospheric imaging has been proposed using remote detection of low energy neutral atoms (LENAs) of magnetospheric origin. In the detector, LENAs can be removed from the immense ambient EUV by charge modification (ionization) using a carbon stripping foil and can be subsequently deflected into an E/q analysis section. The detector sensitivity efficiency of LENAs is highly dependent on the ionization probability of neutrals as they transit the carbon foil. In this study, we present equilibrium charge state distributions and scatter distributions for 1-30 keV atomic hydrogen and oxygen transiting 0.5 {mu}g cm{sup {minus}2} carbon foils. The fraction of hydrogen exiting a foil as H{sup +} ranges from approximately 5% at 1 keV to 41% at 30 keV. The fraction of oxygen exiting the foil as O{sup +} ranges from 2% at 10 keV to 8% at 30 keV. Results obtained after coating the exit surface of foils with either aluminum (which forms aluminum oxide when exposed to air) or gold suggests that the exit surface chemistry has no effect on the charge state distributions due to foil contamination from exposure to air. Scattering resulting from the atom-foil interaction is shown to be independent of the charge state distribution, suggesting that the interaction mechanisms resulting in charge exchange and scattering are distinctly different.

  8. Modeling the adsorption of hydrogen, sodium, chloride and phthalate on goethite using a strict charge-neutral ion-exchange theory.

    PubMed

    Schulthess, Cristian P; Ndu, Udonna

    2017-01-01

    Simultaneous adsorption modeling of four ions was predicted with a strict net charge-neutral ion-exchange theory and its corresponding equilibrium and mass balance equations. An important key to the success of this approach was the proper collection of all the data, particularly the proton adsorption data, and the inclusion of variable concentrations of conjugate ions from the experimental pH adjustments. Using IExFit software, the ion-exchange model used here predicted the competitive retention of several ions on goethite by assuming that the co-adsorption or desorption of all ions occurred in the correct stoichiometries needed to maintain electroneutrality. This approach also revealed that the retention strength of Cl- ions on goethite increases in the presence of phthalate ions. That is, an anion-anion enhancement effect was observed. The retention of Cl- ions was much weaker than phthalate ions, and this also resulted in a higher sensitivity of the Cl- ions toward minor variations in the surface reactivity. The proposed model uses four goethite surface sites. The drop in retention of phthalate ions at low pH was fully described here as resulting from competitive Cl- reactions, which were introduced in increasing concentrations into the matrix as the conjugate base to the acid added to lower the pH.

  9. The importance of neutral hydrogen for the maintenance of the midlatitude winter nighttime ionosphere: Evidence from IS observations at Kharkiv, Ukraine, and field line interhemispheric plasma model simulations

    NASA Astrophysics Data System (ADS)

    Kotov, D. V.; Richards, P. G.; Bogomaz, O. V.; Chernogor, L. F.; Truhlik, V.; Emelyanov, L. Ya.; Chepurnyy, Ya. M.; Domnin, I. F.

    2016-07-01

    This study investigates the causes of nighttime enhancements in ionospheric density that are observed in winter by the incoherent scatter radar at Kharkiv, Ukraine. Calculations with a comprehensive physical model reveal that large downward ion fluxes from the plasmasphere are the main cause of the enhancements. These large fluxes are enabled by large upward H+ fluxes into the plasmasphere from the conjugate summer hemisphere during the daytime. The nighttime downward H+ flux at Kharkiv is sensitive to the thermosphere model H density, which had to be increased by factors of 2 to 3 to obtain model-data agreement for the topside H+ density. Other studies support the need for increasing the thermosphere model H density for all seasons at solar minimum. It was found that neutral winds are less effective than plasmaspheric fluxes for maintaining the nighttime ionosphere. This is partly because increased equatorward winds simultaneously oppose the downward H+ flux. The model calculations also reveal the need for a modest additional heat flow from the plasmasphere in the afternoon. This source could be the quiet time ring current.

  10. Modeling the adsorption of hydrogen, sodium, chloride and phthalate on goethite using a strict charge-neutral ion-exchange theory

    PubMed Central

    Ndu, Udonna

    2017-01-01

    Simultaneous adsorption modeling of four ions was predicted with a strict net charge-neutral ion-exchange theory and its corresponding equilibrium and mass balance equations. An important key to the success of this approach was the proper collection of all the data, particularly the proton adsorption data, and the inclusion of variable concentrations of conjugate ions from the experimental pH adjustments. Using IExFit software, the ion-exchange model used here predicted the competitive retention of several ions on goethite by assuming that the co-adsorption or desorption of all ions occurred in the correct stoichiometries needed to maintain electroneutrality. This approach also revealed that the retention strength of Cl− ions on goethite increases in the presence of phthalate ions. That is, an anion-anion enhancement effect was observed. The retention of Cl− ions was much weaker than phthalate ions, and this also resulted in a higher sensitivity of the Cl− ions toward minor variations in the surface reactivity. The proposed model uses four goethite surface sites. The drop in retention of phthalate ions at low pH was fully described here as resulting from competitive Cl− reactions, which were introduced in increasing concentrations into the matrix as the conjugate base to the acid added to lower the pH. PMID:28464020

  11. Characterization of an atomic hydrogen source for charge exchange experiments

    SciTech Connect

    Leutenegger, M. A.; Betancourt-Martinez, G. L.; Hell, N.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.

    2016-11-15

    We characterized the dissociation fraction of a thermal dissociation atomic hydrogen source by injecting the mixed atomic and molecular output of the source into an electron beam ion trap containing highly charged ions and recording the x-ray spectrum generated by charge exchange using a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchange state-selective capture cross sections are very different for atomic and molecular hydrogen incident on the same ions, enabling a clear spectroscopic diagnostic of the neutral species.

  12. Characterization of an atomic hydrogen source for charge exchange experiments

    NASA Astrophysics Data System (ADS)

    Leutenegger, M. A.; Beiersdorfer, P.; Betancourt-Martinez, G. L.; Brown, G. V.; Hell, N.; Kelley, R. L.; Kilbourne, C. A.; Magee, E. W.; Porter, F. S.

    2016-11-01

    We characterized the dissociation fraction of a thermal dissociation atomic hydrogen source by injecting the mixed atomic and molecular output of the source into an electron beam ion trap containing highly charged ions and recording the x-ray spectrum generated by charge exchange using a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchange state-selective capture cross sections are very different for atomic and molecular hydrogen incident on the same ions, enabling a clear spectroscopic diagnostic of the neutral species.

  13. Characterization of an Atomic Hydrogen Source for Charge Exchange Experiments

    NASA Technical Reports Server (NTRS)

    Leutenegger, M. A.; Beierdorfer, P.; Betancourt-Martinez, G. L.; Brown, G. V.; Hell, N; Kelley, R. L.; Kilbourne, C. A.; Magee, E. W.; Porter, F. S.

    2016-01-01

    We characterized the dissociation fraction of a thermal dissociation atomic hydrogen source byinjecting the mixed atomic and molecular output of the source into an electron beam ion trapcontaining highly charged ions and recording the x-ray spectrum generated by charge exchangeusing a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchangestate-selective capture cross sections are very different for atomic and molecular hydrogen incidenton the same ions, enabling a clear spectroscopic diagnostic of the neutral species.

  14. Enhanced As(III) oxidation and removal by combined use of zero valent iron and hydrogen peroxide in aerated waters at neutral pH values.

    PubMed

    Katsoyiannis, Ioannis A; Voegelin, Andreas; Zouboulis, Anastasios I; Hug, Stephan J

    2015-10-30

    The oxidation and removal of As(III) by commercially available micro-scale zero-valent iron (mZVI) was studied in aerated synthetic groundwater with initially 6.7 μM As(III) at neutral pH values. Batch experiments were performed to investigate the influence of ZVI and H2O2 concentrations on As(III) oxidation and removal. Oxidation and removal kinetics was significantly increased by increasing ZVI concentration or by adding H2O2 in micromolar concentrations slightly higher than that of initial As(III). Observed half-lifes for arsenic removal without added H2O2 were 81-17 min at ZVI concentrations of 0.15-2.5 g/L, respectively. X-ray absorption spectroscopy (XAS) confirmed that almost all As(III) was converted to As(V) after 2 h of reaction in the pH range 5-9. Addition of 9.6 μM H2O2 to 0.15 g/L ZVI suspensions diminished half-lifes for arsenic removal from 81 to 32 min and for As(III) oxidation from 77 to 8 min, i.e., by approximately a factor of 10. The increased rate of As(III) oxidation is attributable to enhanced formation of oxidants by the Fenton reaction with higher initial concentrations of H2O2. In practice, results of this study suggest that addition of small amounts (<1 mg/L) of H2O2 in various forms (e.g. stable and widely available Na-percarbonate) to water prior to treatment could significantly enhance As(III) oxidation and removal with ZVI. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Fast imaging measurements and modeling of neutral and impurity density on C-2U

    NASA Astrophysics Data System (ADS)

    Granstedt, Erik; Deng, B.; Dettrick, S.; Gupta, D. K.; Osin, D.; Roche, T.; Zhai, K.; TAE Team

    2016-10-01

    The C-2U device employed neutral beam injection and end-biasing to sustain an advanced beam-driven Field-Reversed Configuration plasma for 5+ ms, beyond characteristic transport time-scales. Three high-speed, filtered cameras observed visible light emission from neutral hydrogen and impurities, as well as deuterium pellet ablation and compact-toroid injection which were used for auxiliary particle fueling. Careful vacuum practices and titanium gettering successfully reduced neutral recycling from the confinement vessel wall. As a result, a large fraction of the remaining neutrals originate from charge-exchange between the neutral beams and plasma ions. Measured H/D- α emission is used with DEGAS2 neutral particle modeling to reconstruct the strongly non-axissymmetric neutral distribution. This is then used in fast-ion modeling to more accurately estimate their charge-exchange loss rate. Oxygen emission due to electron-impact excitation and charge-exchange recombination has also been measured using fast imaging. Reconstructed emissivity of O4+ is localized on the outboard side of the core plasma near the estimated location of the separatrix inferred by external magnetic measurements. Tri Alpha Energy.

  16. Recent Progress of Neutral Beam Injector and Beam Emission Diagnosis in LHD

    NASA Astrophysics Data System (ADS)

    Katsunori, Ikeda; Kenichi, Nagaoka; Yasuhiko, Takeiri; Masaki, Osakabe; Katsuyoshi, Tsumori; Osamu, Kaneko

    2009-08-01

    Large size hydrogen neutral beam injectors (NBI) used a negative ion source (NNBI) as well as a proton source (PNBI) were developed for the large helical device (LHD). The injected power from NNBI and PNBI have reached 16 MW and 6.8 MW, respectively. These injected powers have outstripped the nominal beam powers. A diagnostic system of beam-emitted hydrogen visible spectrum has been installed along the beam injection axis to estimate the energy fraction on PNBI. The full energy beam component is about half which is equivalent to 70% of injected beam power. The attenuation of high energy neutral beam is also observed on NNBI. The peak density distribution is effective to increase beam deposition power.

  17. Neutral beamline with improved ion energy recovery

    DOEpatents

    Kim, Jinchoon

    1984-01-01

    A neutral beamline employing direct energy recovery of unneutralized residual ions is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell, and thus improves the overall neutral beamline efficiency. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beam direction in the neutral izer exit region. The ions which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be loosely coupled. As a result, the fractional energy ions exiting the cell are reflected onto and collected at an interior wall of the neutralizer formed by the modified end geometry, and thus do not detract from the energy recovery efficiency of full energy ions exiting the cell. Electrons within the neutralizer are prevented from exiting the neutralizer end opening by the action of crossed fields drift (ExB) and are terminated to a collector collar around the downstream opening of the neutralizer. The correct combination of the extended neutralizer end structure and the magnet region is designed so as to maximize the exit of full energy ions and to contain the fractional energy ions.

  18. A search for pure compounds suitable for use as matrix in spectroscopic studies of radiation-produced radical cations. III. A selection of compounds based on the thermochemistry of hydrogen and proton transfer reactions between neutral molecules and their cations

    NASA Astrophysics Data System (ADS)

    Van den Bosch, Ann; Ceulemans, Jan

    A systematic investigation is made of the thermochemistry of hydrogen and proton transfer between neutral molecules and their cations covering the entire organic chemistry, with the aim of selecting those compounds that are suitable for use as matrices in spectroscopic studies of radiation-produced radical cations. Compounds that are characterized by positive reaction enthalpies may be considered promising for use as matrices in such studies. Calculations are based on experimentally determined ionization energies and proton affinities and on carbon-hydrogen bond strengths that are arbitrarily taken as 418 kJ.mol -1 (100 kcal.mol -1). Effects of actual deviations from this value are considered. In the aliphatic series of compounds, reaction enthalpies depend strongly on functional groups present. Marked positive reaction enthalpies are obtained for alkenes, alkadienes, thioethers, mercaptans, iodoalkanes and tertiary amines. Non-aromatic cyclic compounds generally behave as their aliphatic counterparts. Thus, positive reaction enthalpies are generally obtained for unsaturated alicyclic hydrocarbons and cyclic thioethers. Positive reaction enthalpies are also obtained for piperidine, quinuclidine, manxine and derivatives. In the homocyclic aromatic series of compounds, reaction enthalpies are generally positive. Thus, positive reaction enthalpies are obtained for aromatic hydrocarbons, fluoro- and chlorobenzenes, aromatic amines (amino group attached directly to the ring) and halo- and methoxyanilines. In the heterocyclic aromatic series of compounds reaction enthalpies are generally negative. This is for instance the case for a large number of pyridine derivatives, di- and triazines and a number of bi- and tricyclic compounds. Positive reaction enthalpies are however obtained for furan and pyrrole.

  19. High resolution spectral signatures of X-ray emission following charge exchange recombination between highly charged iron and neutral helium, molecular hydrogen and molecular nitrogen: A comparison between theory and experiment

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Cumbee, Renata; Gu, Liyi; Kelley, Richard L.; Kilbourne, Caroline; Leutenegger, Maurice A.; Porter, Frederick S.; Beiersdorfer, Peter

    2017-08-01

    We have used the LLNL electron beam ion trap EBIT-I and a NASA/GSFC quantum microcalorimeter to measure the X-ray emission following charge exchange recombination between highly charged Fe25+ and Fe 26+ and neutral helium, molecular hydrogen, and molecular nitrogen. The ~ 5 eV energy resolution of the microcalorimeter has made it possible to measure and resolve n to 1 K-shell transitions from up to n = 14. We compare the measurements to a model based on the Landau-Zener theory and also the models found in SPEX and APEC. Our results include relative intensities of the 1P1 resonance line to the 3S1 forbidden line, commonly referred to as lines w and z. These results are especially useful for interpreting spectra from celestial sources measured with XARM's Resolve and ATHENA's X-IFU. These data have also proved useful in the interpretation of Hitomi's SXS spectrum of the Perseus cluster.Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Reactive formulations for a neutralization of toxic industrial chemicals

    DOEpatents

    Tucker, Mark D.; Betty, Rita G.

    2006-10-24

    Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

  1. Modeling Secondary Neutral Helium in the Heliosphere

    NASA Astrophysics Data System (ADS)

    Müller, Hans-Reinhard; Möbius, Eberhard; Wood, Brian E.

    2016-11-01

    An accurate, analytic heliospheric neutral test-particle code for helium atoms from the interstellar medium (ISM) is coupled to global heliospheric models dominated by hydrogen and protons from the solar wind and the ISM. This coupling enables the forward-calculation of secondary helium neutrals from first principles. Secondaries are produced predominantly in the outer heliosheath, upwind of the heliopause, by charge exchange of helium ions with neutral atoms. The forward model integrates the secondary production terms along neutral trajectories and calculates the combined neutral helium phase space density in the innermost heliosphere where it can be related to in-situ observations. The phase space density of the secondary component is lower than that of primary neutral helium, but its presence can change the analysis of primaries and the ISM, and can yield valuable insight into the characteristics of the plasma in the outer heliosheath.

  2. Neutral hydrogen in the outer Galaxy

    NASA Technical Reports Server (NTRS)

    Diplas, Athanassios; Savage, Blair D.

    1991-01-01

    The H I 21 cm emission-line survey data of Stark et al. (1991) have been used to study the distribution of H I in the outer Galaxy and to improve understanding of the various systematic problems which influence all studies of Galactic H I. For n(H) greater than 0.01/cu cm, the distributions are similar to those found by Burton and te Lintel Hekkert (1986) but are 'better behaved' at substantially lower values of n(H). The z distribution of gas in the H I layer is best described as complicated. The behavior of the gaseous matter is consistent with the observed distribution of H I found in external spiral galaxies. In the directions of the maximum warp the average distance of the gas away from the Galactic plane reaches about 4 kpc at R about 24 kpc, while the flaring of the layer as measured by z(rms) increases to about 3 kpc. In directions where the warp layers particularly well measured, the Galaxy is followed to R about 30 kpc. The surface density of the atomic gas decreases exponentially.

  3. Gas cell neutralizers (Fundamental principles)

    SciTech Connect

    Fuehrer, B.

    1985-06-01

    Neutralizing an ion-beam of the size and energy levels involved in the neutral-particle-beam program represents a considerable extension of the state-of-the-art of neutralizer technology. Many different mediums (e.g., solid, liquid, gas, plasma, photons) can be used to strip the hydrogen ion of its extra electron. A large, multidisciplinary R and D effort will no doubt be required to sort out all of the ''pros and cons'' of these various techniques. The purpose of this particular presentation is to discuss some basic configurations and fundamental principles of the gas type of neutralizer cell. Particular emphasis is placed on the ''Gasdynamic Free-Jet'' neutralizer since this configuration has the potential of being much shorter than other type of gas cells (in the beam direction) and it could operate in nearly a continuous mode (CW) if necessary. These were important considerations in the ATSU design which is discussed in some detail in the second presentation entitled ''ATSU Point Design''.

  4. Quest for Inexpensive Hydrogen Isotopic Fractionation: Do We Need 2D Quantum Confining in Porous Materials or Are Rough Surfaces Enough? The Case of Ammonia Nanoclusters.

    PubMed

    Mella, Massimo; Curotto, E

    2016-10-05

    We study the adsorption energetics and quantum properties of the molecular hydrogen isotopes H2, D2, and T2 onto the surface of rigid ammonia nanoclusters with quantum simulations and accurate model potential energy surfaces (PES). A highly efficient diffusion Monte Carlo (DMC) algorithm for rigid rotors allowed us to accurately define zero-point adsorption energies for the three isotopes, as well as the degree of translational and rotational delocalization that each affords on the surface. From the data emerges that the quantum adsorption energy (Eads) of T2 can be up to twice the one of H2 at 0 K, suggesting the possibility of exploiting some form of solid ammonia to selectivity separate hydrogen isotopes at low temperatures (≃20 K). This is discussed by focusing on the structural motif that may be more effective for the task. The analysis of the contributions to Eads, however, surprisingly indicates that the average kinetic energy (E(kin)) and rotation energy (Erot(kin)) of T2 can also be, respectively, 2 times and 20 times higher than those of H2; this finding markedly deviates from what is predicted for hydrogen molecules inside carbon nanotubes (CNT) or metallic-organic frameworks (MOF), where E(kin) and Erot(kin) is higher for H2 due to the unavoidable effects of confinement and hindrance to its rotational motion. The rationale for these differences is provided by the geometrical distributions for the rigid rotors, which reveal an increasingly stronger coupling between rotational and translational degrees of freedom upon increasing the isotopic mass. This effect has never been observed before on adsorbing surfaces (e.g., graphite) and is induced by a strongly anisotropic and anharmonic bowl-like potential experienced by the rotors.

  5. Neutral thermospheric temperature from ion concentration measurements

    NASA Technical Reports Server (NTRS)

    Breig, E. L.; Donaldson, J. S.; Hanson, W. B.; Hoffman, J. H.; Power, R. A.; Kayser, D. C.; Spencer, N. W.; Wharton, L. E.

    1981-01-01

    A technique for extracting information on neutral temperature from in situ F region measurements of O(+) and H(+) ion concentrations is analyzed and evaluated. Advantage is taken of the condition of charge-exchange equilibrium of these species in the neighborhood of 320 km to infer the associated relative abundances of neutral oxygen and hydrogen. Results are shown to be generally consistent with other concurrent in situ measurements.

  6. Neutral thermospheric temperature from ion concentration measurements

    NASA Technical Reports Server (NTRS)

    Breig, E. L.; Donaldson, J. S.; Hanson, W. B.; Hoffman, J. H.; Power, R. A.; Kayser, D. C.; Spencer, N. W.; Wharton, L. E.

    1981-01-01

    A technique for extracting information on neutral temperature from in situ F region measurements of O(+) and H(+) ion concentrations is analyzed and evaluated. Advantage is taken of the condition of charge-exchange equilibrium of these species in the neighborhood of 320 km to infer the associated relative abundances of neutral oxygen and hydrogen. Results are shown to be generally consistent with other concurrent in situ measurements.

  7. Commissioning of heating neutral beams for COMPASS-D tokamak

    SciTech Connect

    Deichuli, P.; Davydenko, V.; Belov, V.; Gorbovsky, A.; Dranichnikov, A.; Ivanov, A.; Sorokin, A.; Mishagin, V.; Abdrashitov, A.; Kolmogorov, V.; Kondakov, A.

    2012-02-15

    Two neutral beam injectors have been developed for plasma heating on COMPASS-D tokamak (Institute of Plasma Physics, Prague). The 4-electrodes multihole ion-optical system with beam focusing was chosen to provide the low divergence 300 kW power in both deuterium and hydrogen atoms. The accelerating voltage is 40 kV at extracted ion current up to 15 A. The power supply system provides the continuous and modulated mode of the beam injection at a maximal pulse length 300 ms. The optimal arrangement of the cryopanels and the beam duct elements provides sufficiently short-length beamline which reduces the beam losses. The evolution of the impurities and molecular fraction content is studied in the process of the high voltage conditioning of the newly made ion sources. Two injectors of the same type have been successfully tested and are ready for operation at tokamak in IPP, Prague.

  8. Development of rf plasma generators for neutral beams

    SciTech Connect

    Vella, M.C.; Ehlers, K.W.; Kippenhan, D.; Pincosy, P.A.; Pyle, R.V.; DiVergilio, W.F.; Fosnight, V.V.

    1984-10-01

    The development of low frequency (1-2 MHz) rf plasma generators for high power neutral beam applications is summarized. Immersed couplers from one to three turns were used. Acceptable plasma profiles, less than or equal to 15% max/min, were obtained in a variety of field-free magnetic bucket and magnetic filter-bucket sources, with 10 x 10 cm or 10 x 40 cm extraction areas. Hydrogen beam properties were measured with a 7 x 10 cm accelerator operated at 80 kV. Atomic fraction and power efficiency were at least as high as with arc plasmas in similar chambers. The potential advantages of an rf plasma source are: ease of operation; reliability; and extended service lifetime.

  9. Kinetic Properties of the Neutral Solar Wind

    NASA Astrophysics Data System (ADS)

    Florinski, V.; Heerikhuisen, J.

    2017-03-01

    Charge-exchange collisions between the solar wind protons and interstellar hydrogen produce a distinctive population of neutral hydrogen streaming radially at nearly the solar-wind speed. This tenuous population, known as the neutral solar wind (NSW) is thought to play a key role in the appearance of the Interplanetary Boundary EXplorer ribbon, a bright circular band in the sky that is the source of neutral hydrogen with energies near 1 keV. According to the leading model of the ribbon, the velocity distribution of NSW hydrogen is imparted on the pickup ions (PUIs) generated via charge exchange with the interstellar protons beyond the heliopause, and in this way controls the stability of the resulting ring distribution of PUIs against hydromagnetic wave generation. In this paper, we examine the velocity distributions of the NSW atoms in the heliosphere and the outer heliosheath regions by following the phase-space trajectories of the Boltzmann equation. It is demonstrated that these distributions are highly anisotropic, with the parallel (radial) temperature greatly exceeding the perpendicular temperature. Ions picked up near 90° from the anisotropic NSW would form a stable ring distribution capable of generating the ribbon flux. We also discuss a second population of neutrals born in charge transfer collisions with interstellar PUIs, the so-called neutralized pickup ion (NPI) component. Their high thermal velocities translate into large parallel velocity spread of the daughter ribbon PUIs, which would adversely affect plasma stability in local interstellar space.

  10. HERSCHEL SURVEY OF GALACTIC OH{sup +}, H{sub 2}O{sup +}, AND H{sub 3}O{sup +}: PROBING THE MOLECULAR HYDROGEN FRACTION AND COSMIC-RAY IONIZATION RATE

    SciTech Connect

    Indriolo, Nick; Neufeld, D. A.; Gerin, M.; Falgarone, E.; Schilke, P.; Chambers, E. T.; Ossenkopf, V.; Benz, A. O.; Winkel, B.; Menten, K. M.; Black, John H.; Persson, C. M.; Bruderer, S.; Van Dishoeck, E. F.; Godard, B.; Lis, D. C.; Goicoechea, J. R.; Gupta, H.; Sonnentrucker, P.; Van der Tak, F. F. S.; and others

    2015-02-10

    In diffuse interstellar clouds the chemistry that leads to the formation of the oxygen-bearing ions OH{sup +}, H{sub 2}O{sup +}, and H{sub 3}O{sup +} begins with the ionization of atomic hydrogen by cosmic rays, and continues through subsequent hydrogen abstraction reactions involving H{sub 2}. Given these reaction pathways, the observed abundances of these molecules are useful in constraining both the total cosmic-ray ionization rate of atomic hydrogen (ζ{sub H}) and molecular hydrogen fraction (f{sub H{sub 2}}). We present observations targeting transitions of OH{sup +}, H{sub 2}O{sup +}, and H{sub 3}O{sup +} made with the Herschel Space Observatory along 20 Galactic sight lines toward bright submillimeter continuum sources. Both OH{sup +} and H{sub 2}O{sup +} are detected in absorption in multiple velocity components along every sight line, but H{sub 3}O{sup +} is only detected along 7 sight lines. From the molecular abundances we compute f{sub H{sub 2}} in multiple distinct components along each line of sight, and find a Gaussian distribution with mean and standard deviation 0.042 ± 0.018. This confirms previous findings that OH{sup +} and H{sub 2}O{sup +} primarily reside in gas with low H{sub 2} fractions. We also infer ζ{sub H} throughout our sample, and find a lognormal distribution with mean log (ζ{sub H}) = –15.75 (ζ{sub H} = 1.78 × 10{sup –16} s{sup –1}) and standard deviation 0.29 for gas within the Galactic disk, but outside of the Galactic center. This is in good agreement with the mean and distribution of cosmic-ray ionization rates previously inferred from H{sub 3}{sup +} observations. Ionization rates in the Galactic center tend to be 10-100 times larger than found in the Galactic disk, also in accord with prior studies.

  11. Hydrogen and Oxygen Stable Isotope Fractionation in Body Fluid Compartments of Dairy Cattle According to Season, Farm, Breed, and Reproductive Stage

    PubMed Central

    Abeni, Fabio; Petrera, Francesca; Capelletti, Maurizio; Dal Prà, Aldo; Bontempo, Luana; Tonon, Agostino; Camin, Federica

    2015-01-01

    Environmental temperature affects water turnover and isotope fractionation by causing water evaporation from the body in mammals. This may lead to rearrangement of the water stable isotope equilibrium in body fluids. We propose an approach to detect possible variations in the isotope ratio in different body fluids on the basis of different homoeothermic adaptations in varying reproductive stages. Three different reproductive stages (pregnant heifer, primiparous lactating cow, and pluriparous lactating cow) of two dairy cattle breeds (Italian Friesian and Modenese) were studied in winter and summer. Blood plasma, urine, faecal water, and milk were sampled and the isotope ratios of H (2H/1H) and O (18O/16O) were determined. Deuterium excess and isotope-fractionation factors were calculated for each passage from plasma to faeces, urine and milk. The effects of the season, reproductive stages and breed on δ2H and δ18O were significant in all the fluids, with few exceptions. Deuterium excess was affected by season in all the analysed fluids. The correlations between water isotope measurements in bovine body fluids ranged between 0.6936 (urine-milk) and 0.7848 (urine-plasma) for δ2H, and between 0.8705 (urine-milk) and 0.9602 (plasma-milk) for δ18O. The increase in both isotopic δ values in all body fluids during summer is representative of a condition in which fractionation took place as a consequence of a different ratio between ingested and excreted water, which leads to an increased presence of the heavy isotopes. The different body water turnover between adult lactating cattle and non-lactating heifers was confirmed by the higher isotopic δ for the latter, with a shift in the isotopic equilibrium towards values more distant from those of drinking water. PMID:25996911

  12. Hydrogen and oxygen stable isotope fractionation in body fluid compartments of dairy cattle according to season, farm, breed, and reproductive stage.

    PubMed

    Abeni, Fabio; Petrera, Francesca; Capelletti, Maurizio; Dal Prà, Aldo; Bontempo, Luana; Tonon, Agostino; Camin, Federica

    2015-01-01

    Environmental temperature affects water turnover and isotope fractionation by causing water evaporation from the body in mammals. This may lead to rearrangement of the water stable isotope equilibrium in body fluids. We propose an approach to detect possible variations in the isotope ratio in different body fluids on the basis of different homoeothermic adaptations in varying reproductive stages. Three different reproductive stages (pregnant heifer, primiparous lactating cow, and pluriparous lactating cow) of two dairy cattle breeds (Italian Friesian and Modenese) were studied in winter and summer. Blood plasma, urine, faecal water, and milk were sampled and the isotope ratios of H (2H/1H) and O (18O/16O) were determined. Deuterium excess and isotope-fractionation factors were calculated for each passage from plasma to faeces, urine and milk. The effects of the season, reproductive stages and breed on δ2H and δ18O were significant in all the fluids, with few exceptions. Deuterium excess was affected by season in all the analysed fluids. The correlations between water isotope measurements in bovine body fluids ranged between 0.6936 (urine-milk) and 0.7848 (urine-plasma) for δ2H, and between 0.8705 (urine-milk) and 0.9602 (plasma-milk) for δ18O. The increase in both isotopic δ values in all body fluids during summer is representative of a condition in which fractionation took place as a consequence of a different ratio between ingested and excreted water, which leads to an increased presence of the heavy isotopes. The different body water turnover between adult lactating cattle and non-lactating heifers was confirmed by the higher isotopic δ for the latter, with a shift in the isotopic equilibrium towards values more distant from those of drinking water.

  13. The relationship between visible light emission and species fraction of the hydrogen ion beams extracted from 2.45 GHz microwave discharge

    NASA Astrophysics Data System (ADS)

    Cortázar, O. D.; Megía-Macías, A.; Tarvainen, O.; Kalvas, T.; Koivisto, H.

    2015-08-01

    The relationship between Balmer-α and Fulcher-band emissions with extracted H+, H2 + , and H3 + ions is demonstrated for a 2.45 GHz microwave discharge. Ion mass spectra and optical measurements of Balmer-α and Fulcher-band emissions have been obtained with a Wien Filter having an optical view-port on the plasma chamber axis. The beam of approximately 1 mA is analyzed for different plasma conditions simultaneously with the measurement of light emissions both with temporal resolution. The use of visible light emissions as a valuable diagnostic tool for monitoring the species fraction of the extracted beams is proposed.

  14. The relationship between visible light emission and species fraction of the hydrogen ion beams extracted from 2.45 GHz microwave discharge.

    PubMed

    Cortázar, O D; Megía-Macías, A; Tarvainen, O; Kalvas, T; Koivisto, H

    2015-08-01

    The relationship between Balmer-α and Fulcher-band emissions with extracted H(+), H2(+), and H3(+) ions is demonstrated for a 2.45 GHz microwave discharge. Ion mass spectra and optical measurements of Balmer-α and Fulcher-band emissions have been obtained with a Wien Filter having an optical view-port on the plasma chamber axis. The beam of approximately 1 mA is analyzed for different plasma conditions simultaneously with the measurement of light emissions both with temporal resolution. The use of visible light emissions as a valuable diagnostic tool for monitoring the species fraction of the extracted beams is proposed.

  15. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M.

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  16. What governs the oxygen and hydrogen isotopic composition of precipitation? - A case for varying proportions of isotopically-distinct, convective and stratiform rain fractions

    NASA Astrophysics Data System (ADS)

    Aggarwal, P. K.; araguas Araguas, L.; Belachew, D.; Schumacher, C.; Funk, A. B.; Longstaffe, F. J.; Terzer, S.

    2016-12-01

    Beginning with the pioneering work of Dansgaard in 1953, stable water isotope ratios have been observed to be different in precipitation from different clouds, such as convective showers and continuous frontal rain, hydrologically more or less organized systems, or those with or without `bright bands' in radar reflectivity. The variability in isotope ratios of precipitation has always been interpreted, however, using a Rayleigh distillation framework, with lower isotope ratios resulting from condensation at lower temperatures and/or greater air mass distillation, a lack of below-cloud evaporation or in-cloud re-cycling, etc. Rayleigh distillation based approaches do not account for the fact that tropical and midlatitude precipitation consists of varying proportions of two fundamental rain types - widespread but lower intensity, stratiform and spatially-limited but higher intensity, convective - which form under very different cloud dynamical and microphysical environments. Using rain type fraction and isotope data from a large set of monitoring stations, we will show that differences in cloud processes impart characteristic isotope signatures to the two rain types and that their changing proportions during storm events are primarily responsible for precipitation isotope variability. As a result, isotope ratios can be used to partition precipitation into convective or stratiform rain fractions, which is important for understanding cloud feedbacks and atmospheric circulation response to precipitation, as well as climate impacts on the water cycle. We will also discuss the changing character of tropical and midlatitude precipitation over the past several decades and its implications.

  17. Hydrogen production using ammonia borane

    DOEpatents

    Hamilton, Charles W; Baker, R. Thomas; Semelsberger, Troy A; Shrestha, Roshan P

    2013-12-24

    Hydrogen ("H.sub.2") is produced when ammonia borane reacts with a catalyst complex of the formula L.sub.nM-X wherein M is a base metal such as iron, X is an anionic nitrogen- or phosphorus-based ligand or hydride, and L is a neutral ancillary ligand that is a neutral monodentate or polydentate ligand.

  18. The Integer and Fractional Quantum Hall Effect in the Lowest Landau Level of Valley Degenerate 2D Electrons on Hydrogen Terminated Si(111)

    NASA Astrophysics Data System (ADS)

    Kott, Tomasz M.; Hu, Binhui; Brown, S. H.; Kane, B. E.

    2013-03-01

    We report low temperature magnetotransport measurements on a high mobility (μ = 325 000 cm2/Vsec) 2D electron system on a H-terminated Si(111) surface. In Si(111), there are six degenerate, anisotropic valleys which can affect the magnetotransport in unexpected ways. While low magnetic field data indeed show a six-fold valley degenerate system, we observe the integral quantum Hall effect at all filling factors ν <= 6 , indicating a magnetic-field-induced breaking of the valley degeneracy. Additionally, we find that ν = 2 develops in an unusually narrow temperature range, which might indicate the existence of a novel broken-symmetry valley phase. Finally, we observe an extended, exclusively even numerator, fractional quantum Hall hierarchy surrounding ν = 3 / 2 with denominators up to 15. This hierarchy is consistent with two-fold valley-degenerate composite fermions. We determine activation energies and provide the first estimate the composite fermion mass in a multi-valley system.

  19. Plasma neutralizers for H negative or D