Science.gov

Sample records for neutral kaon interferometry

  1. Neutral Kaon Interferometry in Au+Au collisions at sqrt(s_NN) =200 GeV

    SciTech Connect

    Abelev, B.I.; Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett,J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai,Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai,X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Catu,O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen,H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford,H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho,P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch,E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti,M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos,H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo,Y.; Gupta, N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte,B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs,P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein,S.R.; Kocoloski, A.; Koetke, D.D.; et al.

    2006-08-05

    We present the first statistically meaningful results fromtwo-K0s interferometry in heavy-ion collisions. A model that takes theeffect of the strong interaction into account has been used to fit themeasured correlation function. The effects of single and coupled channelwere explored. At the mean transverse mass m_T = 1.07 GeV, we obtain thevalues R = 4.09 +- 0.46 (stat.) +- 0.31 (sys) fm and lambda = 0.92 +-0.23 (stat) +- 0.13 (sys), where R and lambda are the invariant radiusand chaoticity parameters respectively. The results are qualitativelyconsistent with m_T systematics established with pions in a scenariocharacterized by a strong collective flow.

  2. CP violation in neutral kaon decays

    SciTech Connect

    Buchalla, G.

    1997-05-01

    A brief review of the theoretical status of CP violation in decays of neutral kaons is presented. We focus on three important topics: {epsilon}, {epsilon}`/{epsilon} and K{sub L}{yields}{pi}{sup 0}{nu}{anti {nu}}.

  3. Electromagnetic charged and neutral kaon form factors

    SciTech Connect

    Roberts, C.D.; Burden, C.J.; Thomson, M.J.

    1995-08-01

    The electromagnetic form factor of the charged and neutral kaon is calculated using the approach applied in the successful study of the pion form factor, described above. The charged kaon form factor will be measured in forthcoming experiments at CEBAF. Our calculation involves the dressed strange quark propagator, to which F{sub {pi}}(q{sup 2}) is not sensitive, and hence it provides us with constraints on the strange-quark sector of QCD. Our preliminary results are encouraging. We find that the strange and up/down quark propagators are not too different, once the change in the current-quark-mass is accounted for. However, the difference that remains is important since it allows {l_angle}{bar s}s{r_angle}<{l_angle}{bar u}u{r_angle}. This calculation is the first to yield a value of f{sub K}/f{sub {pi}} that is in good agreement with experiment and also yields r{sub K+}/r{sub {pi}} in good agreement with experiment. Our calculated charged kaon form factor provides a prediction that will be tested in the forthcoming CEBAF experiments. Our studies also show that K{sup 0} has a negative charge radius, as is to be expected. Our calculated value will be compared with that measured in K{sub s}{sup 0} regeneration from electrons.

  4. Kaon decay interferometry as meson dynamics probes

    NASA Astrophysics Data System (ADS)

    D'ambrosio, G.; Paver, N.

    1994-05-01

    We discuss the time-dependent interferences between KL and KS in the decays in 3π and ππγ, to be studied at interferometry machines such as the φ factory and CERN LEAR. We emphasize the possibilities and the advantages of using interferences, in comparision with width measurements, to obtain information both on CP-conserving and CP-violating amplitudes. Comparision with present data and suggestions for future experiments are made.

  5. Bell inequality and /CP violation in the neutral kaon system

    NASA Astrophysics Data System (ADS)

    Bertlmann, R. A.; Grimus, W.; Hiesmayr, B. C.

    2001-10-01

    For the entangled neutral kaon system we formulate a Bell inequality sensitive to CP violation in mixing. Via this Bell inequality we obtain a bound on the leptonic CP asymmetry which is violated by experimental data. Furthermore, we connect the Bell inequality with a decoherence approach and find a lower bound on the decoherence parameter which practically corresponds to Furry's hypothesis.

  6. The measurement of CP asymmetries in the three-body charmless decay neutral B meson decays to neutral kaon(S) neutral kaon(S) neutral kaon(S)

    NASA Astrophysics Data System (ADS)

    Hadavand, Haleh K.

    In this dissertation, a measurement of CP-violating effects in decays of neutral B mesons is presented. The data sample for this measurement consists of about 272 million Upsilon(4 S) → BB¯ decays collected between 1999 and 2004 with the BABAR detector at the PEP-II asymmetric-energy e+e- collider, located at the Stanford Linear Accelerator Center. One neutral B meson is fully reconstructed in the CP eigenstate B0 → K0sK0s K0s . The other B meson is determined to be either a B0 or a B¯0, at the time of its decay, from the properties of its decay products. The proper time Deltat elapsed between the decay of the two mesons is determined by reconstructing their decay vertices, and by measuring the distance between them. A novel technique for determining the B vertex of the decay to the CP eigenstate B 0 → K0sK0s K0s has been applied since the tracks in the final state do not originate from the B decay vertex. The time-dependent CP asymmetry amplitudes are determined by the distributions of Delta t in events with a reconstructed B meson in the CP eigenstate. The detector resolution and the b flavor tagging parameters are constrained by the Deltat distributions of events with a fully reconstructed flavor eigenstate. Because of the special topology of this decay, the detector resolution on Delta t must be checked for consistency with decays with tracks which originate from the B decay. From a maximum likelihood fit to the Delta t distributions of all selected events, the value of the CP violating asymmetries are measured to be S3K0s=-0.71+0.38 -0.32 +/- 0.04 and C3K0s=-0.34+0.28 -0.25 +/- 0.05. Fixing C = 0 we measure the time-dependent CP asymmetry amplitude sin 2beta = -S3K0s=0.79+0.39 -0.36 +/- 0.04. The value of sin 2beta is in agreement with Standard Model predictions.

  7. The Measurement of CP Asymmetries in the Three-Body Charmless Decay Neutral B Meson Decays to Neutral Kaon(S) Neutral Kaon(S) Neutral Kaon(S)

    SciTech Connect

    Hadavand, Haleh K.; /UC, San Diego

    2006-03-28

    In this dissertation, a measurement of CP-violating effects in decays of neutral B mesons is presented. The data sample for this measurement consists of about 272 million {Upsilon}(4S) {yields} B{bar B} decays collected between 1999 and 2004 with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider, located at the Stanford Linear Accelerator Center. One neutral B meson is fully reconstructed in the CP eigenstate B{sup 0} {yields} K{sub S}{sup 0} K{sub S}{sup 0} K{sub S}{sup 0}. The other B meson is determined to be either a B{sup 0} or a {bar B}{sup 0}, at the time of its decay, from the properties of its decay products. The proper time {Delta}t elapsed between the decay of the two mesons is determined by reconstructing their decay vertices, and by measuring the distance between them. A novel technique for determining the B vertex of the decay to the CP eigenstate B{sup 0} {yields} K{sub S}{sup 0} K{sub S}{sup 0} K{sub S}{sup 0} has been applied since the tracks in the final state do not originate from the B decay vertex. The time-dependent CP asymmetry amplitudes are determined by the distributions of {Delta}t in events with a reconstructed B meson in the CP eigenstate. The detector resolution and the b flavor tagging parameters are constrained by the {Delta}t distributions of events with a fully reconstructed flavor eigenstate. Because of the special topology of this decay, the detector resolution on {Delta}t must be checked for consistency with decays with tracks which originate from the B decay. From a maximum likelihood fit to the {Delta}t distributions of all selected events, the value of the CP violating asymmetries are measured to be S{sub 3K{sub S}{sup 0}} = -0.71{sub -0.32}{sup +0.38} {+-} 0.04 and C{sub 3K{sub S}{sup 0}} = -0.34{sub -0.25}{sup +0.28} {+-} 0.05. Fixing C = 0 we measure the time-dependent CP asymmetry amplitude sin 2{beta} = -S{sub 3K{sub S}{sup 0}} = 0.79{sub -0.36}{sup +0.39} {+-} 0.04. The value of sin 2{beta} is

  8. Equivalence between classical and quantum dynamics. Neutral kaons and electric circuits

    NASA Astrophysics Data System (ADS)

    Caruso, M.; Fanchiotti, H.; Canal, C. A. Garcia

    2011-10-01

    An equivalence between the Schrödinger dynamics of a quantum system with a finite number of basis states and a classical dynamics is presented. The equivalence is an isomorphism that connects in univocal way both dynamical systems. We treat the particular case of neutral kaons and found a class of electric networks uniquely related to the kaon system finding the complete map between the matrix elements of the effective Hamiltonian of kaons and those elements of the classical dynamics of the networks. As a consequence, the relevant ɛ parameter that measures CP violation in the kaon system is completely determined in terms of network parameters.

  9. Equivalence between classical and quantum dynamics. Neutral kaons and electric circuits

    SciTech Connect

    Caruso, M. Fanchiotti, H.; Canal, C.A. Garcia

    2011-10-15

    An equivalence between the Schroedinger dynamics of a quantum system with a finite number of basis states and a classical dynamics is presented. The equivalence is an isomorphism that connects in univocal way both dynamical systems. We treat the particular case of neutral kaons and found a class of electric networks uniquely related to the kaon system finding the complete map between the matrix elements of the effective Hamiltonian of kaons and those elements of the classical dynamics of the networks. As a consequence, the relevant {epsilon} parameter that measures CP violation in the kaon system is completely determined in terms of network parameters. - Highlights: > We provide a formal equivalence between classical and quantum dynamics. > We make use of the decomplexification concept. > Neutral kaon systems can be represented by electric circuits. > CP symmetry violation can be taken into account by non-reciprocity. > Non-reciprocity is represented by gyrators.

  10. The Dynamical Nonlocality of Neutral Kaons and the Kaonic Quantum Eraser

    SciTech Connect

    Hiesmayr, Beatrix C.

    2011-03-28

    Testing quantum foundations for systems in high energy physics gets currently more and more attention e.g. witnessed for entangled neutral K-mesons by the approved programme of the KLOE collaboration at the accelerator facility DAPHNE (Frascati, Italy). We focus on this quantum system in high energy physics and discuss two topics, Bell inequalities and the kaonic quantum eraser, and show how the neutral kaon system differs from systems of ordinary matter and light. In detail, we show a relation of the imbalance of matter and antimatter to the violation of a Bell inequality and discuss another Bell inequality which is maximally violated for a non-maximally entangled state though neutral kaons can be considered as two state systems. We compare in general this system in high energy physics with bipartite qudits. Last but not least we review the quantum marking and eraser procedure and explain why neutral kaons offer more eraser possibilities than usual quantum systems.

  11. Photoproduction of neutral kaons on a liquid deuterium target in the threshold region

    SciTech Connect

    Tsukada, K.; Takahashi, T.; Watanabe, T.; Fujii, Y.; Futatsukawa, K.; Hashimoto, O.; Hirose, K.; Ito, K.; Kameoka, S.; Kanda, H.; Maeda, K.; Matsumura, A.; Miura, Y.; Miyase, H.; Nakamura, S. N.; Nomura, H.; Nonaka, K.; Osaka, T.; Okayasu, Y.; Tamura, H.

    2008-07-15

    The photoproduction process of neutral kaons on a liquid deuterium target is investigated near the threshold region, E{sub {gamma}}=0.8-1.1 GeV. K{sup 0} events are reconstructed from positive and negative pions, and differential cross sections are derived. Experimental momentum spectra are compared with those calculated in the spectator model using a realistic deuteron wave function. Elementary amplitudes as given by recent isobar models and a simple phenomenological model are used to study the effect of the new data on the angular behavior of the elementary cross section. The data favor a backward-peaked angular distribution of the elementary n({gamma},K{sup 0}){lambda} process, which provides additional constraints on current models of kaon photoproduction. The present study demonstrates that the n({gamma},K{sup 0}){lambda} reaction can provide key information on the mechanism of the photoproduction of strangeness.

  12. Test of CPT and Lorentz symmetry in entangled neutral kaons with the KLOE experiment

    NASA Astrophysics Data System (ADS)

    Babusci, D.; Balwierz-Pytko, I.; Bencivenni, G.; Bloise, C.; Bossi, F.; Branchini, P.; Budano, A.; Caldeira Balkeståhl, L.; Capon, G.; Ceradini, F.; Ciambrone, P.; Curciarello, F.; Czerwiński, E.; Danè, E.; De Leo, V.; De Lucia, E.; De Robertis, G.; De Santis, A.; De Simone, P.; Di Cicco, A.; Di Domenico, A.; Di Donato, C.; Di Salvo, R.; Domenici, D.; Erriquez, O.; Fanizzi, G.; Fantini, A.; Felici, G.; Fiore, S.; Franzini, P.; Gajos, A.; Gauzzi, P.; Giardina, G.; Giovannella, S.; Graziani, E.; Happacher, F.; Heijkenskjöld, L.; Höistad, B.; Jacewicz, M.; Johansson, T.; Kacprzak, K.; Kamińska, D.; Kupsc, A.; Lee-Franzini, J.; Loddo, F.; Loffredo, S.; Mandaglio, G.; Martemianov, M.; Martini, M.; Mascolo, M.; Messi, R.; Miscetti, S.; Morello, G.; Moricciani, D.; Moskal, P.; Nguyen, F.; Palladino, A.; Passeri, A.; Patera, V.; Prado Longhi, I.; Ranieri, A.; Santangelo, P.; Sarra, I.; Schioppa, M.; Sciascia, B.; Silarski, M.; Taccini, C.; Tortora, L.; Venanzoni, G.; Wiślicki, W.; Wolke, M.; Zdebik, J.

    2014-03-01

    Neutral kaon pairs produced in ϕ decays in anti-symmetric entangled state can be exploited to search for violation of CPT symmetry and Lorentz invariance. We present an analysis of the CP-violating process ϕ→KSKL→π+π-π+π- based on 1.7 fb of data collected by the KLOE experiment at the Frascati ϕ-factory DAΦNE. The data are used to perform a measurement of the CPT-violating parameters Δaμ for neutral kaons in the context of the Standard Model Extension framework. The parameters measured in the reference frame of the fixed stars are: Δa0=(-6.0±7.7stat±3.1syst)×10-18 GeV, ΔaX=(0.9±1.5stat±0.6syst)×10-18 GeV, ΔaY=(-2.0±1.5stat±0.5syst)×10-18 GeV, ΔaZ=(3.1±1.7stat±0.5syst)×10-18 GeV. These are presently the most precise measurements in the quark sector of the Standard Model Extension.

  13. Panofsky Prize Talk: Measurements of Direct CP Violation in the Decays of Neutral Kaons at Fermilab

    NASA Astrophysics Data System (ADS)

    Winstein, Bruce

    2007-04-01

    For many years after its discovery, CP Violation appeared to be a phenomenon isolated from the rest of physics. The first goal was to see if tCP violation was due to a ``superweak'' interaction in neutral kaon mixing (``indirect'' CP violation) or if there were a ``direct'' effect which would be manifest in the kaon decays themselves. For years, it seemed to be an interaction of the former kind, one that might not have any additional manifestations. A few years after the discovery, Sakharov realized that CP Violation in the very early Universe, in particular direct CP Violation, could lead to the matter-antimatter imbalance. A key development was the Kobayashi-Maskawa model which provided a framework in which to think about the problem, connecting it to quark mixing. This motivated a series of 2nd, 3rd, and 4th generation experiments to isolate the predicted direct effect. This talk will review how the problem was addressed in 3 Fermilab- based experiments spanning a 20 year period which culminated in a definitive detection of the effect by KTeV. The motivation and technical approaches to isolate this tiny effect with good control of systematic uncertainty will be reviewed together with the results and future prospects.

  14. Long-lived neutral-kaon flux measurement for the KOTO experiment

    NASA Astrophysics Data System (ADS)

    Masuda, T.; Ahn, J. K.; Banno, S.; Campbell, M.; Comfort, J.; Duh, Y. T.; Hineno, T.; Hsiung, Y. B.; Inagaki, T.; Iwai, E.; Kawasaki, N.; Kim, E. J.; Kim, Y. J.; Ko, J. W.; Komatsubara, T. K.; Kurilin, A. S.; Lee, G. H.; Lee, J. W.; Lee, S. K.; Lim, G. Y.; Ma, J.; MacFarland, D.; Maeda, Y.; Matsumura, T.; Murayama, R.; Naito, D.; Nakaya, Y.; Nanjo, H.; Nomura, T.; Odani, Y.; Okuno, H.; Ri, Y. D.; Sasao, N.; Sato, K.; Sato, T.; Seki, S.; Shimogawa, T.; Shinkawa, T.; Shiomi, K.; Son, J. S.; Sugiyama, Y.; Suzuki, S.; Tajima, Y.; Takahashi, G.; Takashima, Y.; Tecchio, M.; Togawa, M.; Toyoda, T.; Tung, Y. C.; Wah, Y. W.; Watanabe, H.; Woo, J. K.; Xu, J.; Yamanaka, T.; Yanagida, Y.; Yoshida, H. Y.; Yoshimoto, H.

    2016-01-01

    The KOTO (K^0 at Tokai) experiment aims to observe the CP-violating rare decay K_L rArr π ^0 ν bar {ν } by using a long-lived neutral-kaon beam produced by the 30 GeV proton beam at the Japan Proton Accelerator Research Complex. The K_L flux is an essential parameter for the measurement of the branching fraction. Three K_L neutral decay modes, K_L rArr 3π ^0, K_L rArr 2π ^0, and K_L rArr 2γ , were used to measure the K_L flux in the beam line in the 2013 KOTO engineering run. A Monte Carlo simulation was used to estimate the detector acceptance for these decays. Agreement was found between the simulation model and the experimental data, and the remaining systematic uncertainty was estimated at the 1.4% level. The K_L flux was measured as (4.183 ± 0.017_{stat.} ± 0.059_{sys.}) × 10^7 K_L per 2× 10^{14} protons on a 66-mm-long Au target.

  15. Neutral Kaon Mixing Parameter BK from Unquenched Mixed-action Lattice

    SciTech Connect

    Van de Water, R.; Aubin, C; Laiho, J

    2010-01-21

    We calculate the neutral kaon mixing parameter B{sub K} in unquenched lattice QCD using asqtad-improved staggered sea quarks and domain-wall valence quarks. We use the '2+1' flavor gauge configurations generated by the MILC Collaboration, and simulate with multiple valence and sea-quark masses at two lattice spacings of a {approx} 0.12 fm and a {approx} 0.09 fm. We match the lattice determination of B{sub K} to the continuum value using the nonperturbative method of Rome-Southampton, and extrapolate B{sub K} to the continuum and physical quark masses using mixed-action chiral perturbation theory. The 'mixed-action' method enables us to control all sources of systematic uncertainty and therefore to precisely determine B{sub K}; we find a value of B{sub K}{sup MS{sup -},NDR} (2 GeV) = 0.527(6)(21), where the first error is statistical and the second is systematic.

  16. The Neutral kaon mixing parameter B(K) from unquenched mixed-action lattice QCD

    SciTech Connect

    Christopher Aubin, Jack Laiho, Ruth S. Van de Water

    2010-01-01

    We calculate the neutral kaon mixing parameter B{sub K} in unquenched lattice QCD using asqtad-improved staggered sea quarks and domain-wall valence quarks. We use the '2+1' flavor gauge configurations generated by the MILC Collaboration, and simulate with multiple valence and sea quark masses at two lattice spacings of a {approx} 0.12 fm and a {approx} 0.09 fm. We match the lattice determination of B{sub K} to the continuum value using the nonperturbative method of Rome-Southampton, and extrapolate B{sub K} to the continuum and physical quark masses using mixed action chiral perturbation theory. The 'mixed-action' method enables us to control all sources of systematic uncertainty and therefore to precisely determine B{sub K}; we find a value of B{sub K}{sup {ovr MS},NDR} (2 GeV) = 0.527(6)(21), where the first error is statistical and the second is systematic.

  17. How to Test Atom and Neutron Neutrality with Atom Interferometry

    SciTech Connect

    Arvanitaki, Asimina; Dimopoulos, Savas; Geraci, Andrew A.; Hogan, Jason; Kasevich, Mark

    2008-03-28

    We propose an atom-interferometry experiment based on the scalar Aharonov-Bohm effect which detects an atom charge at the 10{sup -28}e level, and improves the current laboratory limits by 8 orders of magnitude. This setup independently probes neutron charges down to 10{sup -28}e, 7 orders of magnitude below current bounds.

  18. Testing Atom and Neutron Neutrality with Atom Interferometry

    SciTech Connect

    Arvanitaki, Asimina; Dimopoulos, Savas; Geraci, Andrew A.; Hogan, Jason; Kasevich, Mark; /Stanford U., Phys. Dept.

    2008-01-07

    We propose an atom-interferometry experiment based on the scalar Aharonov-Bohm effect which detects an atom charge at the 10{sup -28} e level, and improves the current laboratory limits by 8 orders of magnitude. This setup independently probes neutron charges down to 10{sup 28} e, 7 orders of magnitude below current bounds.

  19. New directions in kaon-nucleus physics

    SciTech Connect

    Dover, C.B.

    1982-01-01

    The prospects for nuclear physics with kaons are reviewed including (1) elementary interactions k/sup +-/N; (2) K/sup +/-induced processes on nuclei; (3) resonance physics with K/sup -/ and ..pi../sup +-/ (greater than or equal to 1 GeV/c/); (4) neutral kaon interactions; and (5) hypernuclear physics. Summary of kaon beam requirements is given. (WHK)

  20. Bose-Einstein correlations of charged and neutral kaons in pp and Pb—Pb collisions at the LHC with the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Mikhaylov, Konstantin

    2016-01-01

    Due to the effects of quantum statistics and final state interactions, momentum correlations of two or more particles at small relative velocities, i.e. at small relative momenta in their center-of-mass system, are sensitive to the space-time characteristics of the production processes at the level of fm (10-15 m). Kaons are the perfect tool to study Bose-Einstein correlations due to the fact that they are less influenced by resonance decays and therefore probe more effectively directly produced particles. In conjunction with femtoscopic measurements of pions and protons, they can also reveal properties of collective dynamics in heavy-ion collisions. We report on the results of Bose-Einstein correlations of charged and neutral kaons in pp collisions at√s = 7 TeV and in Pb-Pb collisions at √sNN = 2.76 TeV by the ALICE experiment at the LHC. The results are compared with existing data from Bose-Einstein correlations of identical pions at LHC energies, and of kaons in pp collisions. A comparison of experimental data with theoretical expectations is also carried out.

  1. Measurement of CP-Violating Asymmetries In Neutral B Meson Decays Into Three Kaons

    SciTech Connect

    Thompson, Joshua M.

    2008-12-01

    The Standard Model (SM) of particle physics successfully describes all of the observed interactions of the fundamental particles (with the exception of non-zero neutrino mass). Despite this enormous success, the SM is widely viewed as an incomplete theory. For example, the size of the asymmetry between matter and antimatter is not nearly large enough to account for the abundance of matter observed throughout the universe. It is thus believed that as-yet-unknown physical phenomena must exist that introduce new asymmetries between matter and antimatter. In this thesis, by studying decays that happen only rarely in the SM, we make measurements of asymmetries between matter and antimatter that are potentially sensitive to the existence of processes beyond the SM. At the PEP-II asymmetric-energy B Factory at SLAC, electrons and positrons are collided at the Υ(4S) resonance to create pairs of B mesons. The BABAR detector is used to measure the subsequent decay products. Using 383 million Υ(4S) → B$\\bar{B}$ decays, we study the decay B0 → K+K-K0. In the SM, this decay is dominated by loop amplitudes. Asymmetries between matter and antimatter (CP asymmetries) are extracted by measuring the time-dependence of the complex amplitudes describing the B0 and $\\bar{B}$0 decays as functions of their kinematics. The interference between decays with and without the mixing of neutral B mesons allows for the measurement of the angle βeff, which is a measure of CP violation. We also measure the direct CP asymmetry ACP. Data samples reconstructed from three K0 modes (KS0 → π+π-, KS0 → π0π0, and KL0) are fit simultaneously. They find ACP = -0.015 ± 0.077 ± 0.053 and βeff = 0.352 ± 0.076 ± 0.026 rad, corresponding to a CP violation

  2. Interferometry

    NASA Technical Reports Server (NTRS)

    Ridgway, Stephen; Wilson, Robert W.; Begelman, Mitchell C.; Bender, Peter; Burke, Bernard F.; Cornwell, Tim; Drever, Ronald; Dyck, H. Melvin; Johnston, Kenneth J.; Kibblewhite, Edward

    1991-01-01

    The following recommended programs are reviewed: (1) infrared and optical interferometry (a ground-based and space programs); (2) compensation for the atmosphere with adaptive optics (a program for development and implementation of adaptive optics); and (3) gravitational waves (high frequency gravitational wave sources (LIGO), low frequency gravitational wave sources (LAGOS), a gravitational wave observatory program, laser gravitational wave observatory in space, and technology development during the 1990's). Prospects for international collaboration and related issues are also discussed.

  3. Kaon Decays from AdS/QCD

    SciTech Connect

    Schvellinger, Martin

    2008-07-28

    We briefly review one of the current applications of the AdS/CFT correspondence known as AdS/QCD and discuss about the calculation of four-point quark-flavour current correlation functions and their applications to the calculation of observables related to neutral kaon decays and neutral kaon mixing processes.

  4. Study of the (,Lambda'12)B hypernuclear system with the (12)C(stopped Kaon-, neutral pion)(,Lambda'12)B reaction

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohammad Waseem

    The hypernuclear system B12L was studied for Λ binding energies in s- and p-shells of the hypernucleus, and charge-symmetry breaking (CSB) effects in the hyperon-nucleon interactions. The hyper-Boron was produced via charge- and strangeness-exchange reaction, a reaction which had not been previously used. A beam of negative kaons from the Alternating Gradient Synchrotron (AGS) at the Brookhaven National Laboratory (BNL) was brought to rest in a carbon target, leading to a formation of a neutral meson, p0 , and a recoiling hypernucleus, i.e., C12(K-stop ped,p0) 12LB . The Neutral Meson Spectrometer (NMS) and the Active Target Chambers (ATC) were then used to measure the total energy of the p0 , thereby deducing the energy state of the recoiling hypernucleus. The study of the decay K+-->p+p 0 indicated that a resolution of s~0.73 MeV was achieved for the energy measurement of the p0 . A preliminary p0 energy spectrum was produced from K- absorption at rest on a carbon target. The hypernuclear states arising by Λ coupling to the S1/2 or P 3/2 states of the 11B nuclear core have been found at 308.65 and 300.5 +/- 1.0 MeV, respectively. A Λ ground state binding energy, Bg.s.L , of 11.23 +/- 1.0 MeV has been extracted. A strong peak in the p0 energy spectrum from S+-->p0+p decay was also observed. The Σ+ initially resulted from the K- +p-->S++p- reaction on the protons in 12C.

  5. Neutral kaon and lambda production in electron-positron annihilation at 29 GeV and the Z boson resonance

    SciTech Connect

    Fordham, C.S.

    1990-10-01

    The production of K{sup 0} and {Lambda} in the hadronization of q{bar q} events from e{sup +}e{sup {minus}} collisions at 29 GeV and the Z{sup 0} resonance is studied using the Mark II detector as upgraded for running at the Stanford Linear Collider. Hadronization processes cannot presently be calculated with Quantum Chromodynamics; instead, hadronization models must be used in comparisons with data. In these models, hadronization occurs at local energy scales of a few GeV, a level at which small differences in quark and diquark mass significantly affect the production of particles such as K{sup 0} and {Lambda}, the lightest neutral meson and baryon containing strange quarks. Their production and behavior in hadronic events is a test for the accuracy of our understanding of hadronization. Two-charged- particle decays of the K{sup 0} and {Lambda} are isolated within the hadronic event sample. The resulting distribution of K{sup 0} and {Lambda} are corrected for inefficiencies and generalized to include all K{sup 0} and {Lambda}. Various kinematic distributions of the strange particles are examined. These distributions include the momentum and scaled momentum of the particles. The kinematics of the particles with respect to the original quark direction are examined through the distributions of rapidity and momentum transverse to the thrust both in and out of the event plane. The dependence of K{sup 0} and {Lambda} production on the sphericity of the hadronic events is also examined. All these distributions show that the behavior of K{sup 0} and {Lambda} in hadronic events is consistent with the hadronization models.

  6. A comparison of longitudinal and transverse cross sections in the proton(electron,electron' kaon+)lambda baryon and proton(electron,electron' kaon+)neutral sigma baryon reactions

    NASA Astrophysics Data System (ADS)

    Mohring, Richard Matthew

    Jefferson Lab Experiment E93-018 measured kaon electroproduction on hydrogen in two hyperon channels, p(e,e'K+)Λ and p(e,e'K+)Σ0. Data in both channels were taken at three (3) different values of the virtual photon transverse linear polarization, e , for each of four (4) values of Q2 = (0.52, 0.75, 1.00, 2.00) GeV2. Cross sections averaged over the azimuthal angle, φ, were extracted (i.e., σT + e σL) at each of these twelve points for each hyperon. Rosenbluth separations were performed to separate the longitudinal and transverse production cross sections.

  7. Velocity distribution of neutral species during magnetron sputtering by Fabry-Perot interferometry

    SciTech Connect

    Britun, N.; Han, J. G.; Oh, S.-G.

    2008-04-07

    The velocity distribution of a metallic neutral species sputtered in a dc magnetron discharge was measured using a planar Fabry-Perot interferometer and a hollow cathode lamp as a reference source. The measurement was performed under different angles of view relative to the target surface. The velocity distribution function in the direction perpendicular to the target becomes asymmetrical as the Ar pressure decreases, whereas it remains nearly symmetrical when the line of sight is parallel to the target surface. The average velocity of the sputtered Ti atoms was measured to be about 2 km/s.

  8. Femtoscopy correlations of kaons in Pb+Pb collisions at LHC within hydrokinetic model

    NASA Astrophysics Data System (ADS)

    Shapoval, V. M.; Braun-Munzinger, P.; Karpenko, Iu. A.; Sinyukov, Yu. M.

    2014-09-01

    We provide, within the hydrokinetic model, a detailed investigation of kaon interferometry in Pb+Pb collisions at LHC energy (√{sNN} = 2.76 TeV). Predictions are presented for 1D interferometry radii of KS0, KS0 and K±K± pairs as well as for 3D femtoscopy scales in out, side and long directions. The results are compared with existing pion interferometry radii. We also make predictions for full LHC energy.

  9. Measurements of CP Violation and Neutral Kaon Charge Radius using K(L) → π+π-e+e- Decays

    SciTech Connect

    Golossanov, Alexander

    2005-05-01

    CP violation and K{sup 0} charge radius were measured using KL → π+π-e+e- decays. Specifically, a unique CP-violating decay-plane asymmetry was measured along with the parameters of individual contributions to the decay invariant amplitude: (1) CP-conserving magnetic dipole direct emission form factor, (2) CP-conserving K0 charge radius transition amplitude and (3) an upper limit for the CP-violating electric dipole direct emission amplitude. The measurements were obtained from the data sample accumulated by KTeV experiment at Fermilab. KTeV had two major goals: the measurement of direct CP violation parameter Re(ϵ'/ϵ) and the study of rare kaon decays. The state of the art detector was constructed, commissioned, operated and maintained by an international collaboration of scientists from fourteen institutions. The KL → π+π-e+e-L decays took place in the KTeV fiducial decay region.

  10. RARE KAON DECAYS.

    SciTech Connect

    LITTENBERG, L.

    2005-07-19

    Lepton flavor violation (LFV) experiments have probed sensitivities corresponding to mass scales of well over 100 TeV, making life difficult for models predicting accessible LFV in kaon decay and discouraging new dedicated experiments of this type.

  11. Physics Results from KTeV (E799-II and E832): The Search for Direct CP Violation in 2 PI Decays and Rare Decays of the Neutral Kaon

    DOE Data Explorer

    KTeV includes the study of fundamental symmetries, rare decay processes, weak interactions, and polarization phenomena. A striking asymmetry of our world is the fact that the universe appears to be composed entirely of matter and no astronomical object made of anti-matter has ever been detected. In fact, the only anti-matter we find anywhere is minute quantities produced in high energy particle interactions like those studied at the Fermi National Accelerator Laboratory (Fermilab). At the time of this experiment, only one other place where an asymmetry of this kind, formally called "CP violation," has been observed. This is a tiny effect (about 1 part in 500) in certain decays of a particular elementary particle called the neutral Kaon. KTeV seeks to determine whether or not this effect can be fully understood in the context of the present picture of matter (the "Standard Model"). To do this, high-precision measurements on decays which are known to manifest CP violation are performed in order to study a variety of extremely rare decay processes.[copied with editing from http://ktev.fnal.gov/public/plain_english.html] This website provides access to numeric data and data plots from published papers. Drs Makoto Kobayashi, Toshihide Maskawa, and Yoichiro Nambu share a 2008 Nobel Prize in Physics for their work in this experiment.

  12. Nonsinglet kaon fragmentation function from e{sup +}e{sup -} kaon production

    SciTech Connect

    Albino, Simon; Christova, Ekaterina

    2010-05-01

    We perform fits to the available charged and neutral kaon-production data in e{sup +}+e{sup -{yields}}K+X, K=K{sup {+-},} and K{sub S}{sup 0}, and determine the nonsinglet combination of kaon fragmentation functions D{sub u}{sup K{+-}-}D{sub d}{sup K{+-}}in a model independent way and without any correlations to the other fragmentation functions. Only nuclear isospin invariance is assumed. Working with nonsinglets allows us to include the data at very low momentum fractions, which have so far been excluded in global fits, and to perform a first next-next-to leading order fit to fragmentation functions. We find that the kaon nonsinglet fragmentation function at large z is larger than that obtained by the other collaborations from global fit analysis and differs significantly at low z.

  13. Kaon-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Hong, Byungsik; Buck, Warren W.; Maung, Khin M.

    1989-01-01

    Two kinds of number density distributions of the nucleus, harmonic well and Woods-Saxon models, are used with the t-matrix that is taken from the scattering experiments to find a simple optical potential. The parameterized two body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to imaginary part of the forward elastic scattering amplitude, are shown. The eikonal approximation was chosen as the solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.

  14. Kaon-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Hong, Byungsik; Maung, Khin Maung; Wilson, John W.; Buck, Warren W.

    1989-01-01

    The derivations of the Lippmann-Schwinger equation and Watson multiple scattering are given. A simple optical potential is found to be the first term of that series. The number density distribution models of the nucleus, harmonic well, and Woods-Saxon are used without t-matrix taken from the scattering experiments. The parameterized two-body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to the imaginary part of the forward elastic scattering amplitude, are presented. The eikonal approximation was chosen as our solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.

  15. Beams for kaon research

    SciTech Connect

    Pile, P.H.

    1985-01-01

    A proposed 1-2 GeV/c kaon beam line for BNL, designed to deliver momentum analyzed negative kaon beams with intensities above 10/sup 6/ per spill, is discussed. The beam intensity is expected to be about an order of magnitude greater than presently available and it is expected to be a clean beam with no more than 1:1 (..pi../sup -/,..mu../sup -/,e/sup -/)/K/sup -/. The beam line will allow a detailed investigation of strangeness -2 systems as well as continued investigations of strangeness -1 systems.

  16. Kaon Condensation with Lattice QCD

    SciTech Connect

    Detmold, Will; Detmold, William; Detmold, Will; Detmold, William; Savage, Martin; Walker-Loud, Andre; Orginos, Konstantinos; Torok, Aaron

    2008-09-01

    doi: http://dx.doi.org/10.1103/PhysRevD.78.054514
    Kaon condensation may play an important role in the structure of hadronic matter at densities greater than that of nuclear matter, as exist in the interior of neutron stars. We present the results of the first lattice QCD calculation of kaon condensation obtained by studying systems containing up to twelve charged kaons. Surprisingly, the equation of state of the condensate is remarkably well reproduced by leading order chiral perturbation theory. We determine the three-kaon interaction from the multi-kaon systems and update our results for pion condensates.

  17. The Measurement of CP Asymmetries And Branching Fractions in Neutral B Meson Decays to Charged Rhos And Pions (Kaons) With the BaBar Detector

    SciTech Connect

    Liu, Ran; /Wisconsin U., Madison

    2005-09-23

    The authors present measurements of branching ratios and CP-violating asymmetries for neutral B decays into quasi two-body final states dominated by the modes {rho}{sup {+-}}{pi}{sup {-+}} and {rho}{sup {+-}}K{sup {-+}}. The data set used for these measurements was recorded during the 1999-2002 period, and corresponds to a total integrated luminosity of 81.9 fb{sup -1} taken on the {Upsilon}(4S) peak, and 9.5 fb{sup -1} taken 40 MeV off-peak. From a time-dependent maximum likelihood fit they find for the branching fractions {Beta}({rho}{sup 2}{pi}{sup {-+}}) = (22.6 {+-} 1.8(stat) {+-} 2.2(syst)) x 10{sup -6}, {Beta}({rho}{sup {+-}}K{sup {-+}}) = (7.3{sub -1.2}{sup +1.3}(stat) {+-} 1.3(syst)) x 10{sup -6}. For the CP violation parameters, they measure: {Alpha}{sub CP}{sup pK} = 0.28 {+-} 0.17(stat) {+-} 0.080(syst), {Alpha}{sub CP}{sup pk} = -0.18 {+-} 0.08(stat) {+-} 0.029(syst), C{sub pk} = 0.36 {+-} 0.18(stat) {+-} 0.041(syst), S{sub pt} = 0.19 {+-} 0.24(stat) {+-} 0.031(syst), and for the remaining parameters, required to fully describe the time dependence of the B{sup 0}({bar B}{sup 0} {yields} {rho}{sup {+-}}{pi}{sup {-+}}) decays, they obtain {Delta}C{sub pn} = 0.28{sub -0.19}{sup +0.18}(stat) {+-} 0.043(syst), {Delta}S{sub pk} = 0.15 {+-} 0.25(stat) {+-} 0.025(syst).

  18. Kaon Production Off the Nucleon

    SciTech Connect

    Alam, M. Rafi; Athar, M. Sajjad; Simo, I. Ruiz; Vacas, M. J. Vicente

    2011-10-06

    We have studied the weak kaon production off the nucleon induced by neutrinos at the low and intermediate energies. The studied mechanisms are the main source of kaon production for neutrino energies up to 1.2 to 1.5 GeV for the various channels and the cross sections are large enough to be amenable to be measured by experiments such as MINERvA and T2K.

  19. Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons

    DOE PAGES

    Adolph, C.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badełek, B.; Balestra, F.; et al

    2015-05-01

    Measurements of the Collins and Sivers asymmetries for charged pions and charged and neutral kaons produced in semi-inclusive deep-inelastic scattering of high energy muons off transversely polarised protons are presented. The results were obtained using all the available COMPASS proton data, which were taken in the years 2007 and 2010. The Collins asymmetries exhibit in the valence region a non-zero signal for pions and there are hints of non-zero signal also for kaons. The Sivers asymmetries are found to be positive for positive pions and kaons and compatible with zero otherwise.

  20. Hints for Enhanced b -> sg From Charm and Kaon Counting

    SciTech Connect

    Rathsman, Johan

    2003-05-09

    Previously, motivation for enhanced b {yields} sg from new flavor physics has centered on discrepancies between theory and experiment. Here two experimental hints are considered: (1) updated measurements of the charm multiplicity and {Beta}({bar B} {yields} X{sub c{bar c}s}) at the {Upsilon}(4S) imply {Beta}(B {yields} X{sub no charm}) {approx} 12.4 {+-} 5.6%, (2) the {bar B} {yields} K{sup -}X and {bar B} {yields} K{sup +}/K{sup -}X branching fractions are in excess of conventional {bar B} {yields} X{sub c} {yields} KX yields by about 16.9 {+-} 5.6% and 18 {+-} 5.3%, respectively. JETSET 7.4 was used to estimate kaon yields from s{bar s} popping in {bar B} {yields} X{sub c{bar u}d} decays. JETSET 7.4 Monte Carlos for {Beta}({bar B} {yields} X{sub sg}) {approx} 15% imply that the additional kaon production would lead to 1{sigma} agreement with observed charged and neutral kaon yields. The K{sub s} momentum spectrum would be consistent with recent CLEO bounds in the end point region. Search strategies for enhanced b {yields} sg are discussed in light of large theoretical uncertainty in the standard model fast kaon background from b {yields} s penguin operators.

  1. Study of Kaon Isospin Fluctuations in Au+Au Collisions at STAR

    NASA Astrophysics Data System (ADS)

    Rose, Andrew

    2002-10-01

    Recent theoretical studies have suggested that in heavy ion collisions the formation of disoriented chiral condensates (DCC) may result from the restoration and subsequent re-breaking of chiral symmetry. Searches for DCC have so far focused on the pion sector with little attention given to the Kaon sector. Recently however, Kapusta has suggested the observation of enhanced production of Ω and \\overlineΩ at s_NN = 17 GeV, in Pb+Pb collisions, can in part be explained by the production of many small strange DCC regions. Gavin and Kapusta have additionally shown that strange DCCs production may induce anomalous fluctuations of the Kaon total isospin. We present a statistical analysis of Kaon isospin fluctuations in Au+Au collisions at 130- and 200-GeV measured with the STAR apparatus. The analysis is based on the ν_dyn fluctuation measure which correlates the production of neutral and charged kaons.

  2. Bayesian analysis for kaon photoproduction

    SciTech Connect

    Marsainy, T. Mart, T.

    2014-09-25

    We have investigated contribution of the nucleon resonances in the kaon photoproduction process by using an established statistical decision making method, i.e. the Bayesian method. This method does not only evaluate the model over its entire parameter space, but also takes the prior information and experimental data into account. The result indicates that certain resonances have larger probabilities to contribute to the process.

  3. Interferometry concepts

    NASA Astrophysics Data System (ADS)

    Millour, F.

    2014-09-01

    This paper serves as an introduction to the current book. It provides the basic notions of long-baseline optical/infrared interferometry prior to reading all the subsequent chapters, and is not an extended introduction to the field.

  4. Systematic study of charged-pion and kaon femtoscopy in Au+Au collisions at √sNN = 200 GeV

    DOE PAGES

    Adare, A.

    2015-09-23

    We present a systematic study of charged pion and kaon interferometry in Au+Au collisions at √sNN=200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe the transverse-massmore » dependence of the oscillations.« less

  5. Systematic study of charged-pion and kaon femtoscopy in Au+Au collisions at √sNN = 200 GeV

    SciTech Connect

    Adare, A.

    2015-09-23

    We present a systematic study of charged pion and kaon interferometry in Au+Au collisions at √sNN=200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe the transverse-mass dependence of the oscillations.

  6. Systematic study of charged-pion and kaon femtoscopy in Au + Au collisions at √{sNN}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bickley, A. A.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Danley, D.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Hamilton, H. F.; Han, R.; Han, S. Y.; Hanks, J.; Hartouni, E. P.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hornback, D.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Ikeda, Y.; Imai, K.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Ivanishchev, D.; Jacak, B. V.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kang, J. H.; Kapustinsky, J.; Karatsu, K.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kimelman, B.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leite, M. A. L.; Leitner, E.; Lenzi, B.; Li, X.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Milov, A.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novak, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J.; Park, J. S.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Sako, H.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Sparks, N. A.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Themann, H.; Thomas, T. L.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; Valle, H.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, A. S.; White, S. N.; Winter, D.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhang, C.; Zhou, S.; Zolin, L.; Zou, L.; Phenix Collaboration

    2015-09-01

    We present a systematic study of charged-pion and kaon interferometry in Au +Au collisions at √{s NN}=200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe the transverse-mass dependence of the oscillations.

  7. Pion and kaon correlations in high energy heavy-ion collisions

    SciTech Connect

    Wolf, K.L.; Wolf, K.L.

    1996-12-31

    Data analysis is in progress for recent experiments performed by the NA44 collaboration with the first running of 160 A GeV {sup 208}Pb-induced reactions at the CERN SPS. Identified singles spectra were taken for pions, kaons, protons, deuterons, antiprotons and antideuterons. Two-pion interferometry measurements were made for semi-central-triggered {sup 208}Pb + Pb collisions. An upgraded multi-particle spectrometer allows high statistics data sets of identified particles to be collected near mid-rapidity. A second series of experiments will be performed in the fall of 1995 with more emphasis on identical kaon interferometry and on the measurement of rare particle spectra and correlations. Modest instrumentation upgrades by TAMU are designed to increase the trigger function for better impact parameter selection and improved collection efficiency of valid events. An effort to achieve the highest degree of projectile-target stopping is outlined and it is argued that an excitation function on the SPS is needed to better understand reaction mechanisms. Analysis of experimental results is in the final stages at LBL in the EOS collaboration for two-pion interferometry in the 1.2 A GeV Au+Au reaction, taken with full event characterization. 35 refs., 15 figs., 5 tabs.

  8. Spin Observables in Kaon Electroproduction

    SciTech Connect

    O.K. Baker

    1998-06-01

    The CEBAF accelerator at Jefferson Lab has proven to be a powerful tool for use in studying the electromagnetic production of hadronic systems containing a strange constituent quark. The electromagnetic probe only marginally disturbs the system being investigated, and is well understood. Its use as a means to probe the internal structure of hadronic systems has been well documented. Among the most studied of these hadronic systems, currently, is the nucleon. The unique opportunities afforded by the use of polarized, high-current, high-duty-factor electron beams provides an even more powerful probe of the electromagnetic structure of hadronic systems; the study of the spin dependence of the electromagnetic production and weak decay of the hyperon, specifically the {Lambda}-hyperon, becomes feasible. An experiment to study the electroproduction of the {Lambda} as a function of virtual photon momentum transfer, angle, and energy, using spin polarization observables in order to extract insights into its production and weak decay dynamics has already been approved at Jefferson Lab (E98-101; Spin Polarization in Kaon Electroproduction). The experiment aims to study the mechanism of polarization transfer in the reaction e + p {yields} e' + K + {Lambda}. The experiment requires only moderate momentum resolution and no specialized equipment other than that associated with the polarized beam. The data quality is expected to improve with higher electron beam energies, for higher Q{sup 2} measurements. Additionally, at higher energies the increased virtual photon flux allows the 4experiment to be run at lower currents (and therefore high beam polarization). A polarized electron beam and an unpolarized cryogenic hydrogen target are required. The study uses the electron arm spectrometer and the hadron arm spectrometer to detect the scattered electron and the electroproduced kaon before it decays in flight, respectively. Additionally, the hadron arm will be used to detect the

  9. Speckle interferometry

    NASA Astrophysics Data System (ADS)

    Sirohi, Rajpal S.

    2002-03-01

    Illumination of a rough surface by a coherent monochromatic wave creates a grainy structure in space termed a speckle pattern. It was considered a special kind of noise and was the bane of holographers. However, its information-carrying property was soon discovered and the phenomenon was used for metrological applications. The realization that a speckle pattern carried information led to a new measurement technique known as speckle interferometry (SI). Although the speckle phenomenon in itself is a consequence of interference among numerous randomly dephased waves, a reference wave is required in SI. Further, it employs an imaging geometry. Initially SI was performed mostly by using silver emulsions as the recording media. The double-exposure specklegram was filtered to extract the desired information. Since SI can be configured so as to be sensitive to the in-plane displacement component, the out-of-plane displacement component or their derivatives, the interferograms corresponding to these were extracted from the specklegram for further analysis. Since the speckle size can be controlled by the F number of the imaging lens, it was soon realized that SI could be performed with electronic detection, thereby increasing its accuracy and speed of measurement. Furthermore, a phase-shifting technique can also be incorporated. This technique came to be known as electronic speckle pattern interferometry (ESPI). It employed the same experimental configurations as SI. ESPI found many industrial applications as it supplements holographic interferometry. We present three examples covering diverse areas. In one application it has been used to measure residual stress in a blank recordable compact disk. In another application, microscopic ESPI has been used to study the influence of relative humidity on paint-coated figurines and also the effect of a conservation agent applied on top of this. The final application is to find the defects in pipes. These diverse applications

  10. Entanglement properties of kaons and tests of hidden-variable models

    SciTech Connect

    Genovese, M.

    2004-02-01

    In this paper we discuss entanglement properties of neutral kaons systems and their use for testing local realism. In particular, we analyze a Hardy-type scheme [A. Bramon and G. Garbarino, Phys. Rev. Lett. 89, 160401 (2002)] recently suggested for performing a test of hidden-variable theories against standard quantum mechanics. Our result is that this scheme could, in principle, lead to a conclusive test of local realism, but only if higher identification efficiencies than in today's experiments will be reached.

  11. Kaon condensation in dense stellar matter

    SciTech Connect

    Lee, Chang-Hwan; Rho, M. |

    1995-03-01

    This article combines two talks given by the authors and is based on Works done in collaboration with G.E. Brown and D.P. Min on kaon condensation in dense baryonic medium treated in chiral perturbation theory using heavy-baryon formalism. It contains, in addition to what was recently published, astrophysical backgrounds for kaon condensation discussed by Brown and Bethe, a discussion on a renormalization-group analysis to meson condensation worked out together with H.K. Lee and S.J. Sin, and the recent results of K.M. Westerberg in the bound-state approach to the Skyrme model. Negatively charged kaons are predicted to condense at a critical density 2 {approx_lt} {rho}/{rho}o {approx_lt} 4, in the range to allow the intriguing new phenomena predicted by Brown and Bethe to take place in compact star matter.

  12. Rare kaon, muon, and pion decay

    SciTech Connect

    Littenberg, L.

    1998-12-01

    The author discusses the status of and prospects for the study of rare decays of kaons, muons, and pions. Studies of rare kaon decays are entering an interesting new phase wherein they can deliver important short-distance information. It should be possible to construct an alternative unitarity triangle to that determined in the B sector, and thus perform a critical check of the Standard Model by comparing the two. Rare muon decays are beginning to constrain supersymmetric models in a significant way, and future experiments should reach sensitivities which this kind of model must show effects, or become far less appealing.

  13. Atom Interferometry

    SciTech Connect

    Kasevich, Mark

    2008-05-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton's constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gyroscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be used to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  14. Atom Interferometry

    SciTech Connect

    Mark Kasevich

    2008-05-07

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  15. Speckle Interferometry

    NASA Astrophysics Data System (ADS)

    Chiang, F. P.; Jin, F.; Wang, Q.; Zhu, N.

    Before the milestone work of Leedertz in 1970 coherent speckles generated from a laser illuminated object are considered noise to be eliminated or minimized. Leedertz shows that coherent speckles are actually information carriers. Since then the speckle technique has found many applications to fields of mechanics, metrology, nondestructive evaluation and material sciences. Speckles need not be coherent. Artificially created socalled white light speckles can also be used as information carriers. In this paper we present two recent developments of speckle technique with applications to micromechanics problems using SIEM (Speckle Interferometry with Electron Microscopy), to nondestructive evaluation of crevice corrosion and composite disbond and vibration of large structures using TADS (Time-Average Digital Specklegraphy).

  16. Atom Interferometry

    ScienceCinema

    Mark Kasevich

    2016-07-12

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  17. Pion and kaon correlations in high energy heavy-ion collisions. Annual report, April 1, 1995--March 31, 1996

    SciTech Connect

    Wolf, K.L.

    1996-12-31

    Data analysis is in progress for recent experiments performed by the NA44 collaboration with the first running of 160 A GeV {sup 208}Pb-induced reactions at the CERN SPS. Identified singles spectra were taken for pions, kaons, protons, deuterons, antiprotons and antideuterons. Two-pion interferometry measurements were made for semi-central-triggered {sup 208}Pb + Pb collisions. An upgraded multiple-particle spectrometer allows high statistics data sets of identified particles to be collected near mid-rapidity. A second series of experiments will be performed in the fall of 1995 with more emphasis on identical kaon interferometry and on the measurement of rare particle spectra and correlations. Modest instrumentation upgrades by TAMU are designed to increase the trigger function for better impact parameter selection and improved collection efficiency of valid events. An effort to achieve the highest degree of projectile-target stopping is outlined and it is argued that an excitation function on the SPS is needed to better understand reaction mechanisms. Analysis of experimental results is in the final stages at LBL in the EOS collaboration for two-ion interferometry in the 1.2 A GeV Au+Au reaction, taken with full event characterization.

  18. PLANS FOR KAON PHYSICS AT BNL.

    SciTech Connect

    REDLINGER,G.

    2004-06-05

    The author gives an overview of current plans for kaon physics at BNL. The program is centered around the rare decay modes K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}} and K{sub L} {yields} {pi}{sup 0}{nu}{bar {nu}}.

  19. Kaon-nuclear scattering at medium energies

    SciTech Connect

    Eisenstein, R.A.

    1981-01-01

    A brief review of kaon-nucleus scattering is given. The discussion includes an account of recent theoretical interpretations of existing elastic and inelastic data, as well as possible directions for future study. The current experimental facility at Brookhaven is described, and an outline of future progress in this area is presented.

  20. Hypernuclear Formation Through Kaon Electromagnetic Production.

    NASA Astrophysics Data System (ADS)

    Hsiao, Shian-Shyong

    The formation and excitation of hyperon systems through kaon (K('+) meson) photo and electroproduction, ((gamma),K('+)) and (e,e'K('+)) reactions, is theoretically investigated. The elementary kaon electroproduction process ep (--->) e'K('+)(LAMDA) is described using the first order, one-photon exchange approximation and related to kaon virtual -photoproduction through the polarization density matrix formalism. The fundamental current operator is expressed in terms of six invariant amplitudes obtained from evaluating five diagrams representing the exchange of baryons (p,(LAMDA),(SIGMA)('0)) in the s and u channel and mesons (K('+),(' )K*) in the t channel. Electromagnetic form factors are needed for each photon vertex and the hadronic coupling constants are obtained from a previous phenomenological photoproduction analysis. An improved description of the limited p(e,e'K('+))(LAMDA) experimental data is obtained when the kaon form factor is governed by the (phi) meson (vector dominance model) which provides further constraints for the size of the kaon. The reaction d(e,e'K('+))(LAMDA)n is treated in the relativistic impulse approximation by combining the deuteron vertex function with a covariant description of the elementary process ep (--->) e'K('+)(LAMDA). A covariant factorization method is employed to reduce the formula to the nonrelativistic limit. The off-shell and relativistic effects are found to be small. The sensitivity of the differential cross section (corresponding to double coincidence measurements) to the kaon form factor is comparable to the sensitivity to the deuteron wave function (Reid-soft core and Hamada-Johnston potentials are adopted) and for zero degree kaons the two effects cancel. The ingredients for describing the hypernuclear formation reactions A(e,e'K('+))(,(LAMDA))B and A((gamma), K('+))(,(LAMDA))B are the elementary one- body current operator and the nuclear shell model wave functions. The particle (lambda)-hole (proton) formalism is

  1. History of Stellar Interferometry

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.

    2004-01-01

    This viewgraph presentation reviews the history of stellar interferometry from the suggestion of Fizeau that stellar interferometry was possible,to the use of the Mark I, II and III for astrometry. Photographs, and parts of original articles are presented.

  2. Quantum Interferometry

    NASA Technical Reports Server (NTRS)

    Dowling, Jonathan P.

    2000-01-01

    Recently, several researchers, including yours truly, have been able to demonstrate theoretically that quantum photon entanglement has the potential to also revolutionize the entire field of optical interferometry, by providing many orders of magnitude improvement in interferometer sensitivity. The quantum entangled photon interferometer approach is very general and applies to many types of interferometers. In particular, without nonlocal entanglement, a generic classical interferometer has a statistical-sampling shot-noise limited sensitivity that scales like 1/Sqrt[N], where N is the number of particles (photons, electrons, atoms, neutrons) passing through the interferometer per unit time. However, if carefully prepared quantum correlations are engineered between the particles, then the interferometer sensitivity improves by a factor of Sqrt[N] (square root of N) to scale like 1/N, which is the limit imposed by the Heisenberg Uncertainty Principle. For optical (laser) interferometers operating at milliwatts of optical power, this quantum sensitivity boost corresponds to an eight-order-of-magnitude improvement of signal to noise. Applications are to tests of General Relativity such as ground and orbiting optical interferometers for gravity wave detection, Laser Interferometer Gravity Observatory (LIGO) and the European Laser Interferometer Space Antenna (LISA), respectively.

  3. Pion and kaon freezeout in NA44

    SciTech Connect

    NA44 Collaboration

    1994-12-01

    The NA44 spectrometer is optimized for the study of single and two-particle particle spectra near mid-rapidity for transverse momenta below {approx} 1 GeV/c. A large fraction of all pairs in the spectrometer`s acceptance are at low relative momenta, resulting in small statistical uncertainties on the extracted size parameters. In addition, the spectrometer`s clean particle identification allows the authors to measure correlation functions for pions, kaons, and protons. This contribution will concentrate on the source size parameters determined from pion and kaon correlation functions. These size parameters will be compared to calculations from the RQMD event generator and also interpreted in the context of a hydrodynamic model. Finally, the measured single particle spectra will be examined from the viewpoint of hydrodynamics.

  4. Weak kaon production off the nucleon

    SciTech Connect

    Rafi Alam, M.; Sajjad Athar, M.; Ruiz Simo, I.; Vicente Vacas, M. J.

    2010-08-01

    The weak kaon production off the nucleon induced by neutrinos is studied at the low and intermediate energies of interest for some ongoing and future neutrino oscillation experiments. This process is also potentially important for the analysis of proton decay experiments. We develop a microscopical model based on the SU(3) chiral Lagrangians. The basic parameters of the model are f{sub {pi},} the pion decay constant, Cabibbo's angle, the proton and neutron magnetic moments, and the axial vector coupling constants for the baryons octet, D and F, that are obtained from the analysis of the semileptonic decays of neutron and hyperons. The studied mechanisms are the main source of kaon production for neutrino energies up to 1.2 to 1.5 GeV for the various channels and the cross sections are large enough to be amenable to be measured by experiments such as Minerva and T2K.

  5. Unified description of kaon electroweak form factors

    SciTech Connect

    A. Afanasev; W. Buck

    1996-06-01

    A calculation of the semileptonic decays of the kaon (K{sub l3}) is presented. The results are direct predictions of a covariant model of the pion and kaon introduced earlier by Ito, Buck, Gross. The weak form factors for K{sub l3} are predicted with absolutely no parameter adjustments of the model. The authors obtained for the form factor parameters: f{sub {minus}}(q{sup 2}=m{sub l}{sup 2})/f{sub +}(q{sup 2}=m{sub l}{sup 2})={minus}0.28 and {lambda}{sub +}= 0.028, both within experimental error bars. Connections of this approach to heavy quark symmetry will also be discussed.

  6. Hadronic form factors in kaon photoproduction

    SciTech Connect

    Syukurilla, L. Mart, T.

    2014-09-25

    We have revisited the effect of hadronic form factors in kaon photoproduction process by utilizing an isobaric model developed for kaon photoproduction off the proton. The model is able to reproduce the available experimental data nicely as well as to reveal the origin of the second peak in the total cross section, which was the main source of confusion for decades. Different from our previous study, in the present work we explore the possibility of using different hadronic form factors in each of the KΛN vertices. The use of different hadronic form factors, e.g. dipole, Gaussian, and generalized dipole, has been found to produce a more flexible isobar model, which can provide a significant improvement in the model.

  7. Report of the kaon subcommittee of nuclear science advisory committee: Final report

    SciTech Connect

    Barnes, P.D.; Domingo, J.; Einhorn, M.; Feshbach, H.; Jackson, H.; Sirmann, R.; Zeller, M.

    1989-05-03

    This paper discusses the possibility of a joint US-Canada venture in support of a kaon ''factory'' to be built in Canada also discussed are the following topics: Proposed accelerator; anially costs at KAON; management; strong interaction physics at AHF/KAON; antiproton physics at AHF/KAON, and electroweak physics issues. (LSP)

  8. Kaon distribution amplitude from QCD sum rules

    SciTech Connect

    Khodjamirian, A.; Mannel, Th.; Melcher, M.

    2004-11-01

    We present a new calculation of the first Gegenbauer moment a{sub 1}{sup K} of the kaon light cone distribution amplitude. This moment is determined by the difference between the average momenta of strange and nonstrange valence quarks in the kaon. To calculate a{sub 1}{sup K}, QCD sum rule for the diagonal correlation function of local and nonlocal axial-vector currents is used. Contributions of condensates up to dimension six are taken into account, including O({alpha}{sub s})-corrections to the quark-condensate term. We obtain a{sub 1}{sup K}=0.05{+-}0.02, differing by the sign and magnitude from the recent sum rule estimate from the nondiagonal correlation function of pseudoscalar and axial-vector currents. We argue that the nondiagonal sum rule is numerically not reliable. Furthermore, an independent indication for a positive a{sub 1}{sup K} is given, based on the matching of two different light cone sum rules for the K{yields}{pi} form factor. With the new interval of a{sub 1}{sup K}, we update our previous numerical predictions for SU(3)-violating effects in B{sub (s)}{yields}K form factors and charmless B decays.

  9. Synthetic Aperture Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  10. Extracting the kaon Collins function from e+e- hadron pair production data

    NASA Astrophysics Data System (ADS)

    Anselmino, M.; Boglione, M.; D'Alesio, U.; Hernandez, J. O. Gonzalez; Melis, S.; Murgia, F.; Prokudin, A.

    2016-02-01

    The latest data released by the BABAR Collaboration on azimuthal correlations measured for pion-kaon and kaon-kaon pairs produced in e+e- annihilations allow, for the first time, a direct extraction of the kaon Collins functions. These functions are then used to compute the kaon Collins asymmetries in semi-inclusive deep inelastic scattering processes, which result in good agreement with the measurements performed by the HERMES and COMPASS collaborations.

  11. Kaon electroproduction at large four-momentum transfer

    SciTech Connect

    Pete Markowitz

    2003-06-16

    Exclusive H(e,e'K)Y data were taken in January, March and April of 2001 at the Jefferson Lab Hall A. The electrons and kaons were detected in coincidence in the hall's two High Resolution Spectrometers (HRS). The kaon arm of the pair had been specifically outfitted with two aerogel Cerenkov threshold detectors, designed to separately provide pion and proton particle identification thus allowing kaon identification. Preliminary data show the cross section's dependence on the invariant mass, W, along with results of systematic studies. Ultimately the data will be used to perform a Rosenbluth Separation as well, separating the longitudinal from the transverse response functions.

  12. Kaon, pion, and proton associated photofission of Bi nuclei

    NASA Astrophysics Data System (ADS)

    Song, Y.; Margaryan, A.; Acha, A.; Ahmidouch, A.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Baker, O. K.; Baturin, P.; Benmokhtar, F.; Carlini, R.; Chen, X.; Christy, M.; Cole, L.; Danagoulian, S.; Daniel, A.; Dharmawardane, V.; Egiyan, K.; Elaasar, M.; Ent, R.; Fenker, H.; Fujii, Y.; Furic, M.; Gan, L.; Gaskell, D.; Gasparian, A.; Gibson, E. F.; Grigoryan, N.; Gueye, P.; Halkyard, R.; Hashimoto, O.; Honda, D.; Horn, T.; Hu, B.; Hu, S.; Hungerford, Ed. V.; Ispiryan, M.; Johnston, K.; Jones, M.; Kalantarians, N.; Kaneta, M.; Kato, F.; Kato, S.; Kawama, D.; Keppel, C.; Knyazyan, S.; Li, Y.; Luo, W.; Mack, D.; Marikyan, G.; Maruyama, N.; Matsumura, A.; Miyoshi, T.; Mkrtchyan, A.; Mkrtchyan, H.; Nakamura, S. N.; Navasardyan, T.; Niculescu, G.; Niculescu, M.-I.; Nomura, H.; Nonaka, K.; Ohtani, A.; Okayasu, Y.; Pamela, P.; Parlakyan, L.; Perez, N.; Petkovic, T.; Randeniya, S.; Reinhold, J.; Rivera, R.; Roche, J.; Rodriguez, V. M.; Sato, Y.; Seva, T.; Simicevic, N.; Smith, G.; Sumihama, M.; Tadevosyan, V.; Takahashi, T.; Tamura, H.; Tang, L.; Tvaskis, V.; Vardanyan, H.; Vulcan, W.; Wang, B.; Wells, S.; Wood, S.; Yan, C.; Yuan, L.

    2010-10-01

    The first measurement of proton, pion, and kaon associated fission of Bi nuclei has been performed in a photon energy range 1. 45 < E γ < 1. 55 GeV. The fission probabilities are compared with an inclusive fission probabilities obtained with photons, protons and pions. The fission probability of Bi nuclei in coincidence with kaons is 0. 18 ± 0. 06 which is ˜3 times larger than the proton and pion associated fission probabilities and ˜2 times larger than inclusive ones. The kaon associated excess fission events are explained in terms of bound Λ residual states and their weak nonmesonic decays.

  13. Kaon B parameter in quenched QCD

    NASA Astrophysics Data System (ADS)

    Degrand, Thomas

    2004-01-01

    I calculate the kaon B parameter BK, defined via 8(mKfK)2BK/3=, with a lattice simulation in the quenched approximation. The lattice simulation uses an action possessing exact lattice chiral symmetry, an overlap action. Computations are performed at two lattice spacings, about 0.13 and 0.09 fm (parametrized by Wilson gauge action couplings β=5.9 and 6.1) with nearly the same physical volumes and quark masses. I describe particular potential difficulties which arise due to the use of such a lattice action in finite volume. The continuum-extrapolated result for quenched BNDRK(μ=2 GeV)=0.55(7) where the uncertainty includes statistics, extrapolation, and an estimate of uncertainty from the choice of matching factor and strange quark mass.

  14. Searches for very rare decays of kaons

    SciTech Connect

    Lang, K.

    1997-01-01

    The physics motivation for searches for very rare kaon decays, either forbidden or suppressed within the Standard Model, is briefly discussed. Simple arguments conclude that such searches probe possible new forces at a 200 TeV mass scale or constitute a precision test of the electroweak model. The examples of such process are decays of K{sub L}{sup 0} {yields} {mu} {sup {+-}}e{sup -+}, K{sup +} {yields} {pi}{sup +} {mu}{sup +} e{sup -}, K{sub L}{sup 0} {yields} {mu}{sup +} {mu}{sup -}, and K{sup +} {yields} {pi} {yields} {pi}{sup +}{nu}{bar {nu}}. We present the current experimental status and describe the new efforts to reach sensitivities down to one part in 10{sup 12}. The discussion is focused on the experimental program at the Alternating Gradient Synchrotron at Brookhaven National Laboratory, where intense beams make such studies possible.

  15. Rare and forbidden kaon decays at the AGS

    SciTech Connect

    Kettell, S.

    1997-12-09

    An overview of the Rare Kaon Decay program at the AGS is presented, with particular emphasis on the three major experiments currently running and analyzing data. A brief overview of earlier kaon decay experiments and of the AGs performance improvements is also provided. This review concludes with a discussion of proposed and developing experiments planned to run in the year 2000 and beyond (AGS-2000).

  16. Measurements of the kaon content in tau decays

    NASA Astrophysics Data System (ADS)

    Ronan, Michael T.

    1992-02-01

    Results on measurements of the kaon content in one-prong and three-prong τ decays are presented for data taken by the TPC/2γ detector at PEP. Using a self-consistent procedure to measure exclusive and inclusive decays, the one-prong analysis extends previous work to kaon decay modes. Three-prong results Kππ, Kπ and KKK decay modes provide improved branching ratios and a first look at strange axial-vector couplings in τ decays.

  17. Holograph and Interferometry.

    ERIC Educational Resources Information Center

    Altman, Thomas C.

    1992-01-01

    Describes a method to create holograms for use in different interferometry techniques. Students utilize these techniques in experiments to study the structural integrity of a clarinet reed and the effects of temperature on objects. (MDH)

  18. Kaon Thresholds and Two-Flavor Chiral Expansions for Hyperons

    SciTech Connect

    Fu-Jiun Jiang, Brian C. Tiburzi, Andre Walker-Loud

    2011-01-01

    Two-flavor chiral expansions provide a useful perturbative framework to study hadron properties. Such expansions should exhibit marked improvement over the conventional three-flavor chiral expansion. Although one can theoretically formulate two-flavor theories for the various hyperon multiplets, the nearness of kaon thresholds can seriously undermine the effectiveness of the perturbative expansion in practice. We investigate the importance of virtual kaon thresholds on hyperon properties, specifically their masses and isovector axial charges. Using a three-flavor expansion that includes SU(3) breaking effects, we uncover the underlying expansion parameter governing the description of virtual kaon thresholds. For spin-half hyperons, this expansion parameter is quite small. Consequently virtual kaon contributions are well described in the two-flavor theory by terms analytic in the pion mass-squared. For spin three-half hyperons, however, one is closer to the kaon production threshold, and the expansion parameter is not as small. Breakdown of SU(2) chiral perturbation theory is shown to arise from a pole in the expansion parameter associated with the kaon threshold. Estimating higher-order corrections to the expansion parameter is necessary to ascertain whether the two-flavor theory of spin three-half hyperons remains perturbative. We find that, despite higher-order corrections, there is a useful perturbative expansion for the masses and isovector axial charges of both spin-half and spin three-half hyperons.

  19. Precision Lattice Calculation of Kaon Decays with Mobius Domain Wall Fermions

    NASA Astrophysics Data System (ADS)

    Yin, Hantao

    We report our recent development in algorithms and progress in measurements in lattice QCD. The algorithmic development includes the forecasted force gradient integrator, and further theoretical development and implementation of the Mobius domain wall fermions. These new technologies make it practical to simulate large 483 x 96 and 643 x 128 lattice ensembles with (5.5fm)3 boxes and 140MeV pion. The calculation was performed using the Mobius domain wall fermions and the Iwasaki gauge action. Simulated directly at physical quark masses, these ensembles are of great value for our ongoing and future lattice measurement projects. With the help of measurement techniques such as the eigCG algorithm and the all mode averaging method, we perform a direct, precise lattice calculation of the semileptonic kaon decay K → pilnu using these newly generated high quality lattice ensembles. Our main result is the form factor f+/-Kp q2 evaluated directly at zero momentum transfer q2 = 0. Free of various systematic errors, this new result can be used to determine the CKM matrix element Vus to a very high precision when combined with experimental input. The calculation also provides results for various low energy strong interaction constants such as the pseudoscalar decay constants fK and fpi, and the neutral kaon mixing matrix element BK. These calculations are naturally performed by reusing the propagators calculated for the kaon semileptonic decay mentioned above. So they come with no or very low additional cost. The results allow us to also determine these important low energy constants on the lattice to unprecedented accuracy.

  20. Measurements of B Decays to Two Kaons

    SciTech Connect

    Abe, K.; Adachi, I.; Dragic, J.; Gershon, T.; Haba, J.; Hazumi, M.; Ishikawa, A.; Itoh, R.; Iwasaki, Y.; Katayama, N.; Kichimi, H.; Nakao, M.; Nishida, S.; Nozaki, T.; Ozaki, H.; Sakai, Y.; Tajima, O.; Takasaki, F.; Tamai, K.; Tanaka, M.

    2005-12-02

    We report measurements of B meson decays to two kaons using 253 fb{sup -1} of data collected with the Belle detector at the KEKB energy-asymmetric e{sup +}e{sup -} collider. We find evidence for signals in B{sup +}{yields}K{sup 0}K{sup +} and B{sup 0}{yields}K{sup 0}K{sup 0} with significances of 3.0{sigma} and 3.5{sigma}, respectively. (Charge-conjugate modes are included.) The corresponding branching fractions are measured to be B(B{sup +}{yields}K{sup 0}K{sup +})=(1.0{+-}0.4{+-}0.1)x10{sup -6} and B(B{sup 0}{yields}K{sup 0}K{sup 0})=(0.8{+-}0.3{+-}0.1)x10{sup -6}. These decay modes are examples of hadronic b{yields}d transitions. No signal is observed in the decay B{sup 0}{yields}K{sup +}K{sup -}, and we set an upper limit of 3.7x10{sup -7} at 90% confidence level.

  1. CP violation and kaon-pion interactions in B→Kπ+π- decays

    NASA Astrophysics Data System (ADS)

    El-Bennich, B.; Furman, A.; Kamiński, R.; Leśniak, L.; Loiseau, B.; Moussallam, B.

    2009-05-01

    We study CP violation and the contribution of the strong kaon-pion interactions in the three-body B→Kπ+π- decays. We extend our recent work on the effect of the two-pion S- and P-wave interactions to that of the corresponding kaon-pion ones. The weak amplitudes have a first term derived in QCD factorization and a second one as a phenomenological contribution added to the QCD penguin amplitudes. The effective QCD coefficients include the leading order contributions plus next-to-leading order vertex and penguins corrections. The matrix elements of the transition to the vacuum of the kaon-pion pairs, appearing naturally in the factorization formulation, are described by the strange Kπ scalar (S-wave) and vector (P-wave) form factors. These are determined from Muskhelishvili-Omn e s coupled channel equations using experimental kaon-pion T-matrix elements, together with chiral symmetry and asymptotic QCD constraints. From the scalar form factor study, the modulus of the K0*(1430) decay constant is found to be (32±5)MeV. The additional phenomenological amplitudes are fitted to reproduce the Kπ effective mass and helicity angle distributions, the B→K*(892)π branching ratios and the CP asymmetries of the recent data from Belle and BABAR collaborations. We use also the new measurement by the BABAR group of the phase difference between the B0 and Bmacr 0 decay amplitudes to K*(892)π. Our predicted B±→K0*(1430)π±, K0*(1430)→K±π∓ branching fraction, equal to (11.6±0.6)×10-6, is smaller than the result of the analyzes of both collaborations. For the neutral B0 decays, the predicted value is (11.1±0.5)×10-6. In order to reduce the large systematic uncertainties in the experimental determination of the B→K0*(1430)π branching fractions, a new parametrization is proposed. It is based on the Kπ scalar form factor, well constrained by theory and experiments other than those of B decays.

  2. LISA Long-Arm Interferometry

    NASA Technical Reports Server (NTRS)

    Thorpe, James I.

    2009-01-01

    An overview of LISA Long-Arm Interferometry is presented. The contents include: 1) LISA Interferometry; 2) Constellation Design; 3) Telescope Design; 4) Constellation Acquisition; 5) Mechanisms; 6) Optical Bench Design; 7) Phase Measurement Subsystem; 8) Phasemeter Demonstration; 9) Time Delay Interferometry; 10) TDI Limitations; 11) Active Frequency Stabilization; 12) Spacecraft Level Stabilization; 13) Arm-Locking; and 14) Embarassment of Riches.

  3. Kaon and pion femtoscopy at the highest energies available at the BNL Relativistic Heavy Ion Collider (RHIC) in a hydrokinetic model

    SciTech Connect

    Karpenko, Iu. A.; Sinyukov, Yu. M.

    2010-05-15

    The hydrokinetic approach that incorporates hydrodynamic expansion of the systems formed in A+A collisions and their dynamical decoupling is applied to restore the initial conditions and space-time picture of the matter evolution in central Au+Au collisions at the top Relativistic Heavy Ion Collider energy. The analysis is based on the detailed reproduction of the pion and kaon momentum spectra and femtoscopic data in whole interval of the transverse momenta studied by both the STAR and the PHENIX collaborations. The fitting procedure utilizes the two parameters: the maximal energy density at supposed thermalization time 1 fm/c and the strength of the prethermal flows developed to this time. The quark-gluon plasma and hadronic gas is supposed to be in complete local equilibrium above the chemical freeze-out temperature T{sub ch}=165 MeV with the equation of states (EoS) at high temperatures as in the lattice QCD. Below T{sub ch} the EoS in the expanding and gradually decoupling fluid depends on the composition of the hadron-resonance gas at each space-time point and accounts for decays of resonances into the nonequilibrated medium. A good description of the pion and kaon transverse momentum spectra and interferometry radii is reached at both used initial energy density profiles motivated by the Glauber and color glass condensate models, however, at different initial energy densities. The discussion as for the approximate pion and kaon m{sub T} scaling for the interferometry radii is based on a comparison of the emission functions for these particles.

  4. Interferometry science center

    NASA Technical Reports Server (NTRS)

    Sargent, A. I.

    2002-01-01

    The Interferometry Science Center (ISC) is operated jointly by Caltech and JPL and is part of NASA's Navigator Program. The ISC has been created to facilitate the timely and successful execution of scientific investigations within the Navigator program, particularly those that rely on observations from NASA's interferometer projects. Currently, ISC is expected to provide full life cycle support for the Keck Interferometer, the Starlight mission, the Space Interferometry Mission, and the Terrestrial Planet Finder Mission. The nature and goals of ISc will be described.

  5. Investigation of the In-Medium Kaon-Nucleon Interaction

    NASA Astrophysics Data System (ADS)

    Wood, Michael; CLAS Collaboration

    2013-10-01

    One method to study the strong interaction inside of the nucleus is with the absorption of hadrons. The E01-112 experiment in Hall B at the Thomas Jefferson National Accelerator provided data on the photo-production of the Ks0 in nuclei of deuterium, carbon, iron, and lead. The kaon is interesting since the antikaon-nucleon potential is attractive, leading to predictions of strangeness in a dense environment like a neutron star. On the other hand, the kaon-nucleon potential is repulsive, indicating that kaons should traverse the medium with fewer interactions. The absorption of the Ks0 by a bound nucleon inside a nucleus will indicate how the potential changes; is it strengthened or weakened in the medium. In this talk, I will present preliminary transparency ratios versus mass number.

  6. Electroproduction of kaons and light hypernuclei

    SciTech Connect

    Geesaman, D.F.; Jackson, H.E.; Jones, C.E.

    1995-08-01

    A detailed investigation of the basic hyperon-nucleon interactions in nuclei is one of the aims of Experiment 91-016, approved with high priority at CEBAF, to study the electroproduction of kaons on targets of deuterium, {sup 3}He, and {sup 4}He. Inasmuch as both the electron and K{sup +} are particles that interact relatively weakly with nucleons, electroproduction of light hypernuclei provides a low-distortion method for investigating the fundamental interactions between nucleons, {Alpha}`s, and {Epsilon}`s in few-body systems. In particular, the (e,e`K{sup +}) reactions on cryogenic targets of D, {sup 3}He, and {sup 4}He will be studied at incident electron energies near 3 GeV with coincident detection of the emergent e and K{sup +} in the HMS and SOS magnetic spectrometers in Hall C. Construction of the He target, operating at {approximately}10 atm, {approximately}50 K and capable of dissipating {approximately}30 W, is expected to be complete prior to commencement of production runs in Hall C. The first data runs for E91-016, expected to begin late in FY 1995, will also be the basis for a doctoral thesis at Hampton University. In addition to providing new information on the phases of hyperon-nucleon interactions, measurements of cross sections for hypernuclear formation, and interference phenomena, the data may provide evidence for the presence of bound {Epsilon}`s and strange di-baryonic states that are the subject of considerable theoretical discussion.

  7. Measurements of the kaon content in tau decays

    SciTech Connect

    Ronan, M.T. )

    1992-02-01

    Results on measurements of the kaon content in one-prong and three-prong [tau] decays are presented for data taken by the TPC/2[gamma] detector at PEP. Using a self-consistent procedure to measure exclusive and inclusive decays, the one-prong analysis extends previous work to kaon decay modes. Three-prong results [ital K][pi][pi], [ital K][pi] and [ital KKK] decay modes provide improved branching ratios and a first look at strange axial-vector couplings in [tau] decays.

  8. Simultaneous Immersion Mirau Interferometry

    NASA Astrophysics Data System (ADS)

    Lyulko, Oleksandra

    The present work describes a novel imaging technique for label-free no-UV vibration-insensitive imaging of live cells in an epi-illumination geometry. This technique can be implemented in a variety of imaging applications. For example, it can be used for cell targeting as a part of a platform for targeted cell irradiations - single-cell microbeam. The goal of microbeam facilities is to provide biological researchers with tools to study the effects of ionizing radiation on live cells. A common way of cell labeling - fluorescent staining - may alter cellular metabolism and UV illumination presents potential damage for the genetic material. The new imaging technique will allow the researchers to separate radiation-induced effects from the effects caused by confounding factors like fluorescent staining or UV light. Geometry of irradiation endstations at some microbeam facilities precludes the use of transmitted light, e.g. in the Columbia University's Radiological Research Accelerator Facility microbeam endstation, where the ion beam exit window is located just below the sample. Imaging techniques used at such endstations must use epi-illumination. Mirau Interferometry is an epi-illumination, non-stain imaging modality suitable for implementation at a microbeam endstation. To facilitate interferometry and to maintain cell viability, it is desirable that cells stay in cell growth medium during the course of an experiment. To accommodate the use of medium, Immersion Mirau Interferometry has been developed. A custom attachment for a microscope objective has been designed and built for interferometric imaging with the possibility of immersion of the apparatus into cell medium. The implemented data collection algorithm is based on the principles of Phase-Shifting Interferometry. The largest limitation of Phase-Shifting Interferometry is its sensitivity to the vertical position of the sample. In environments where vibration isolation is difficult, this makes image

  9. Digitally Enhanced Heterodyne Interferometry

    NASA Technical Reports Server (NTRS)

    Shaddock, Daniel; Ware, Brent; Lay, Oliver; Dubovitsky, Serge

    2010-01-01

    Spurious interference limits the performance of many interferometric measurements. Digitally enhanced interferometry (DEI) improves measurement sensitivity by augmenting conventional heterodyne interferometry with pseudo-random noise (PRN) code phase modulation. DEI effectively changes the measurement problem from one of hardware (optics, electronics), which may deteriorate over time, to one of software (modulation, digital signal processing), which does not. DEI isolates interferometric signals based on their delay. Interferometric signals are effectively time-tagged by phase-modulating the laser source with a PRN code. DEI improves measurement sensitivity by exploiting the autocorrelation properties of the PRN to isolate only the signal of interest and reject spurious interference. The properties of the PRN code determine the degree of isolation.

  10. A LISA Interferometry Primer

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira

    2010-01-01

    A key challenge for all gravitational wave detectors in the detection of changes in the fractional difference between pairs of test masses with sufficient precision to measure astrophysical strains with amplitudes on the order of approx.10(exp -21). ln the case of the five million km arms of LISA, this equates to distance measurements on the ten picometer level. LISA interferometry utilizes a decentralized topology, in which each of the sciencecraft houses its own light sources, detectors, and electronics. The measurements made at each of the sciencecraft are then telemetered to ground and combined to extract the strain experienced by the constellation as a whole. I will present an overview of LISA interferometry and highlight some of the key components and technologies that make it possible.

  11. Recent advances in interferometry

    NASA Astrophysics Data System (ADS)

    Hummel, C. A.

    2013-02-01

    Observations of spectroscopic double stars with long baseline optical interferometry have resolved many pairs, allowing their orbits to be measured and stellar masses and distances to be derived. A number of these measurements have accuracies worthy of comparison with high quality results from eclipsing binaries, thus able challenge stellar evolution models. I will review the contributions, and also show recent results, among them observations of massive O-stars and multiple systems.

  12. Spatial interferometry in optical astronomy

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude

    1990-01-01

    A bibliographic guide is presented to publications of spatial interferometry techniques applied to optical astronomy. Listings appear in alphabetical order, by first author, as well as in specific subject categories listed in chronological order, including imaging theory and speckle interferometry, experimental techniques, and observational results of astronomical studies of stars, the Sun, and the solar system.

  13. Neutralizer optimization

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Mohajeri, Kayhan

    1991-01-01

    The preliminary results of a test program to optimize a neutralizer design for 30 cm xenon ion thrusters are discussed. The impact of neutralizer geometry, neutralizer axial location, and local magnetic fields on neutralizer performance is discussed. The effect of neutralizer performance on overall thruster performance is quantified, for thruster operation in the 0.5-3.2 kW power range. Additionally, these data are compared to data published for other north-south stationkeeping (NSSK) and primary propulsion xenon ion thruster neutralizers.

  14. KTAG: The Kaon Identification Detector for CERN experiment NA62

    NASA Astrophysics Data System (ADS)

    Fry, J. R.

    2016-07-01

    In the study of ultra-rare kaon decays, CERN experiment NA62 exploits an unseparated monochromatic (75 GeV/c) beam of charged particles of flux 800 MHz, of which 50 MHz are K+. Kaons are identified with more than 95% efficiency, a time resolution of better than 100 ps, and misidentification of less than 10-4 using KTAG, a differential, ring-focussed, Cherenkov detector. KTAG utilises 8 sets of 48 Hamamatsu PMTs, of which 32 are of type 9880 and 16 of type 7400, with signals fed directly to the differential inputs of NINO front-end boards and then to TDC cards within the TEL62 system. Leading and trailing edges of the PMT signal are digitised, enabling slewing corrections to be made, and a mean hit rate of 5 MHz per PMT is supported. The electronics is housed within a cooled and insulated Faraday cage with environmental monitoring capabilities.

  15. Kaon content of three-prong decays of the tau lepton

    SciTech Connect

    Eastman, J.J.

    1990-12-01

    We present a series of measurements involving the production of charged kaons in three-prong hadronic decays of the {tau} lepton. The data sample was obtained with the TPC/Two-Gamma detector facility at PEP. We set a limit on the branching fraction BR({tau}{sup {minus}} {yields} {nu}{sub {tau}}K{sup {minus}}K{sup 0}) < 0.26% at the 95% confidence level. The process {tau}{sup {minus}} {yields} {nu}{sub {tau}}K{sup {minus}}K{sup 0} is related via SU(3) to the second-class current decay {tau}{sup {minus}} {yields} {nu}{sub {tau}}{pi}{sup {minus}}{eta}. We also present new measurements of the three-prong branching fractions BR({tau}{sup {minus}} {yields} {nu}{sub {tau}}K{sup {minus}}{pi}{sup +}{pi}{sup {minus}} + neutrals) = 0.70 (+0.20/{minus}0.17)% and BR({tau}{sup {minus}} {yields} {nu}{sub {tau}}K{sup {minus}}K{sup +}{pi}{sup {minus}} + neutrals) = 0.16 (+0.10/{minus}0.07)%. 68 refs., 29 figs., 15 tabs.

  16. Kaon decay studies at CERN SPS in the last decades

    NASA Astrophysics Data System (ADS)

    Ceccucci, A.; Goudzovski, E.; Kekelidze, V.; Madigozhin, D.; Potrebenikov, I.

    2016-07-01

    This review summarizes the kaon experimental results obtained in the last 15 years on the basis of data collected on the SPS in CERN with a participance of JINR physicists. These results contribute essentially into the Standard Model checks and search for its extension, fundamental symmetry violations and low energy strong interactions theory development. A progress in the experimental technique and prospects for the future results are also discussed.

  17. Kaon Photoproduction Near Threshold in Six Isospin Channels Revisited

    NASA Astrophysics Data System (ADS)

    Mart, T.

    2016-08-01

    In this talk I review the progress achieved in the investigation of kaon photoproduction on the nucleon near the production threshold. This investigation has been performed by using the so-called isobar model, which makes use of Feynman diagrams for the background terms and the Breit-Wigner multipoles for the resonance terms. The future prospect as well as application of this model in the hadronic sector are also briefly discussed.

  18. The Strange Quark Polarisation from Charged Kaon Production on Deuterons

    SciTech Connect

    Windmolders, R.

    2009-08-04

    The strange quark helicity distribution {delta}s(x) is derived at LO from the semi-inclusive and inclusive spin asymmetries measured by the COMPASS experiment at CERN. The significance of the results is found to depend critically on the ratio of the s-bar and u quark fragmentation functions into kaons {integral}D{sub s-bar}{sup K+}(z)dz/{integral}D{sub u}{sup K+}(z)dz.

  19. Hyperon and Charged Kaon Pair Production Close to Threshold

    SciTech Connect

    Wolke, M.; Adam, H.H.; Balewski, J.T.; Budzanowski, A.; Goodman, C.; Grzonka, D. Jarczyk, L.; Jochmann, M.; Khoukaz, A.; Kilian, K.; Koehler, M.; Kowina, P.; Lister, T.; Moskal, P.; Lang, N.; Oelert, W.; Quentmeier, C.; Santo, R.; Schepers, G.; Seddik, U.; Sefzick, T.; Sewerin, S.; Siemaszko, M.; Smyrski, J.; Strzalkowski, A.; Wuestner, P.; Zipper, W.

    2000-12-31

    Close-to-threshold data on the elementary kaon and antikaon production channels in the proton{endash}proton interaction have been taken using the COSY-11 installation at the cooler synchrotron COSY Juelich. The experimental technique applied at the internal COSY-11 facility{emdash}designed for meson production studies at small excess energy{emdash}is outlined. The threshold excitation functions for the kaon{endash}hyperon production via the reactions pp {yields} pK{sup +}{Lambda} and pp {yields} pK{sup +}{Sigma}{sup 0} are presented. The magnitude of the production amplitudes is compared at equal excess energies, and physical implications of the observed {Sigma}{sup 0} suppression in the threshold region are discussed. In addition, within a Dalitz plot analysis the spin-averaged S-wave scattering parameters could be extracted for the {Lambda}{endash}p channel. With the possibility of detecting all final state particles the elementary antikaon production in the reaction pp {yields} ppK{sup +}k{sup {minus}} has been investigated. Results on the exclusive total cross section fix the scale of the strangeness dissociation into two kaons.

  20. Charged Kaon Mass Measurement using the Cherenkov Effect

    SciTech Connect

    Graf, N.; Lebedev, A.; Abrams, R.J.; Akgun, U.; Aydin, G.; Baker, W.; Barnes, P.D., Jr.; Bergfeld, T.; Beverly, L.; Bujak, A.; Carey, D.; /Fermilab /Virginia U. /Iowa U.

    2009-09-01

    The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 ppm and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 GeV/c to +63 GeV/c. The measured value is 491.3 {+-} 1.7 MeV/c{sup 2}, which is within 1.4{sigma} of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.

  1. Lattice QCD study of mixed systems of pions and kaons

    SciTech Connect

    William Detmold, Brian Smigielski

    2011-07-01

    The O(100) different ground state energies of N-pion and M-kaon systems for N+M <= 12 are studied in lattice QCD. These energies are then used to extract the various two- and three- body interactions that occur in these systems. These calculations are performed using one ensemble of 2+1 flavor anisotropic lattices with a spatial lattice spacing $a_s$ ~ 0.125 fm, an anisotropy factor $\\xi=a_s/a_t=3.5$, and a spatial volume $L^3\\sim (2.5\\ {\\rm fm})^3$. Particular attention is paid to additional thermal states present in the spectrum because of the finite temporal extent. The quark masses used correspond to pion and kaon masses of $m_\\pi$ ~ 383 MeV and $m_K$ ~ 537 MeV, respectively. The isospin and strangeness chemical potentials of these systems are found to be in the region where chiral perturbation theory and hadronic models predict a phase transition between a pion condensed phase and a kaon condensed phase.

  2. Measurement of the charged kaon mass with the MIPP RICH

    SciTech Connect

    Graf, Nicholas J.

    2008-08-01

    The currently accepted value of the charged kaon mass is 493.677 ± 0.013 MeV (26 ppm). It is a weighted average of six measurements, most of which use kaonic atom X-ray energy techniques. The two most recent and precise results dominate the average but differ by 122 ppm. Inconsistency in the data set needs to be resolved, preferably using independent techniques. One possibility uses the Cherenkov effect. A measurement of the charged kaon mass using this technique is presented. The data was taken with the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory using a tagged beam of protons, kaons, and pions ranging in momentum from 37 GeV/c to 63 GeV/c. The measured value is 491.3 ± 1.7 MeV. This is within 1.4σ of the current value. An improvement in precision by a factor of 35 would make this technique competitive for resolving the ambiguity in the X-ray data.

  3. Laser neutralization

    SciTech Connect

    Peterson, O.G.

    1986-06-17

    Laser photodetachment of the excess electron to neutralize relativistic ions offers many advantages over the more conventional collisional methods using gases or thin foils as the neutralization agents. Probably the two most important advantages of laser photodetachment are the generation of a compact and low divergence beam, and the production of intense neutral beams at very high efficiency (approximately 90%). The high intensities or high current densities of the neutral beam result from the fixed maximum divergence that can be added to the beam by photodetachment of the charge using laser intensity of fixed wavelength and incident angle. The high neutralization efficiency is possible because there is no theoretical maximum to the neutralization efficiency, although higher efficiencies require higher laser powers and, therefore, costs. Additional advantages include focusability of the laser light onto the ion beam to maximize its efficacy. There certainly is no residual gas left in the particle beam path as is typical with gas neutralizers. The photodetachment process leaves the neutral atoms in the ground state so there is no excited state fluorescence to interfere with the subsequent beam sensing. Finally, since the beams to be neutralized are very high powered, for a large range of neutralization efficiencies the neutral beam can be increased more by increasing the power to the laser neutralizer than by adding an equal amount of power to the primary accelerator. 26 figs.

  4. Complex master slave interferometry.

    PubMed

    Rivet, Sylvain; Maria, Michael; Bradu, Adrian; Feuchter, Thomas; Leick, Lasse; Podoleanu, Adrian

    2016-02-01

    A general theoretical model is developed to improve the novel Spectral Domain Interferometry method denoted as Master/Slave (MS) Interferometry. In this model, two functions, g and h are introduced to describe the modulation chirp of the channeled spectrum signal due to nonlinearities in the decoding process from wavenumber to time and due to dispersion in the interferometer. The utilization of these two functions brings two major improvements to previous implementations of the MS method. A first improvement consists in reducing the number of channeled spectra necessary to be collected at Master stage. In previous MSI implementation, the number of channeled spectra at the Master stage equated the number of depths where information was selected from at the Slave stage. The paper demonstrates that two experimental channeled spectra only acquired at Master stage suffice to produce A-scans from any number of resolved depths at the Slave stage. A second improvement is the utilization of complex signal processing. Previous MSI implementations discarded the phase. Complex processing of the electrical signal determined by the channeled spectrum allows phase processing that opens several novel avenues. A first consequence of such signal processing is reduction in the random component of the phase without affecting the axial resolution. In previous MSI implementations, phase instabilities were reduced by an average over the wavenumber that led to reduction in the axial resolution.

  5. Testing the equivalence principle with atomic interferometry

    NASA Astrophysics Data System (ADS)

    Herrmann, Sven; Dittus, Hansjörg; Lämmerzahl, Claus; pre="the" post=""> QUANTUS,

    2012-09-01

    The weak equivalence principle (WEP), that is, the universality of free fall, states that all point-like neutral particles in a gravitational field fall in the same way. This is the basis of the geometrization of the gravitational interaction. Together with further requirements on the behavior of point particles, light propagation and clocks one can show that gravity is modeled by a Riemannian geometry. Since in the quantum domain all objects are extended, it is not clear whether the notion of a WEP in the quantum domain makes sense at all. We show that for matter wave interferometry the notion of WEP still can be given a meaning. We give a short overview over schemes which allows a violation of the WEP and emphasize that there are also schemes which show that there might be violations of the WEP in the quantum regime which are not present classically. This makes a test of the WEP with quantum matter necessary. We also give a brief outline of the efforts made for testing the WEP with interferometry with cold atoms in the Bremen drop tower carried out by the QUANTUS and PRIMUS collaboration.

  6. Intellectual property in holographic interferometry

    NASA Astrophysics Data System (ADS)

    Reingand, Nadya; Hunt, David

    2006-08-01

    This paper presents an overview of patents and patent applications on holographic interferometry, and highlights the possibilities offered by patent searching and analysis. Thousands of patent documents relevant to holographic interferometry were uncovered by the study. The search was performed in the following databases: U.S. Patent Office, European Patent Office, Japanese Patent Office and Korean Patent Office for the time frame from 1971 through May 2006. The patent analysis unveils trends in patent temporal distribution, patent families formation, significant technological coverage within the market of system that employ holographic interferometry and other interesting insights.

  7. CP violation and kaon-pion interactions in B{yields}K{pi}{sup +}{pi}{sup -} decays

    SciTech Connect

    El-Bennich, B.; Furman, A.; Loiseau, B.; Moussallam, B.

    2009-05-01

    We study CP violation and the contribution of the strong kaon-pion interactions in the three-body B{yields}K{pi}{sup +}{pi}{sup -} decays. We extend our recent work on the effect of the two-pion S- and P-wave interactions to that of the corresponding kaon-pion ones. The weak amplitudes have a first term derived in QCD factorization and a second one as a phenomenological contribution added to the QCD penguin amplitudes. The effective QCD coefficients include the leading order contributions plus next-to-leading order vertex and penguins corrections. The matrix elements of the transition to the vacuum of the kaon-pion pairs, appearing naturally in the factorization formulation, are described by the strange K{pi} scalar (S-wave) and vector (P-wave) form factors. These are determined from Muskhelishvili-Omnes coupled channel equations using experimental kaon-pion T-matrix elements, together with chiral symmetry and asymptotic QCD constraints. From the scalar form factor study, the modulus of the K{sub 0}*(1430) decay constant is found to be (32{+-}5) MeV. The additional phenomenological amplitudes are fitted to reproduce the K{pi} effective mass and helicity angle distributions, the B{yields}K*(892){pi} branching ratios and the CP asymmetries of the recent data from Belle and BABAR collaborations. We use also the new measurement by the BABAR group of the phase difference between the B{sup 0} and B{sup 0} decay amplitudes to K*(892){pi}. Our predicted B{sup {+-}}{yields}K{sub 0}*(1430){pi}{sup {+-}}, K{sub 0}*(1430){yields}K{sup {+-}}{pi}{sup {+-}} branching fraction, equal to (11.6{+-}0.6)x10{sup -6}, is smaller than the result of the analyzes of both collaborations. For the neutral B{sup 0} decays, the predicted value is (11.1{+-}0.5)x10{sup -6}. In order to reduce the large systematic uncertainties in the experimental determination of the B{yields}K{sub 0}{sup *}(1430){pi} branching fractions, a new parametrization is proposed. It is based on the K{pi} scalar form

  8. CP violation and kaon-pion interactions in B {r_arrow} K {pi}{sup +}{pi}{sup -} decays.

    SciTech Connect

    El-Bennich, B.; Furman, A.; Kaminski, R.; Lesniak, L.; Loiseau, B.; Moussallam, B.; Physics; Univ. Pierre et Marie Curie; ul. Bronowicka; Polish Academy of Sciences; Univ. Paris-Sud

    2009-01-01

    We study CP violation and the contribution of the strong kaon-pion interactions in the three-body B {yields} Kpi{sup +}pi{sup -} decays. We extend our recent work on the effect of the two-pion S- and P-wave interactions to that of the corresponding kaon-pion ones. The weak amplitudes have a first term derived in QCD factorization and a second one as a phenomenological contribution added to the QCD penguin amplitudes. The effective QCD coefficients include the leading order contributions plus next-to-leading order vertex and penguins corrections. The matrix elements of the transition to the vacuum of the kaon-pion pairs, appearing naturally in the factorization formulation, are described by the strange Kpi scalar (S-wave) and vector (P-wave) form factors. These are determined from Muskhelishvili-Omnes coupled channel equations using experimental kaon-pion T-matrix elements, together with chiral symmetry and asymptotic QCD constraints. From the scalar form factor study, the modulus of the K*{sub 0}(1430) decay constant is found to be (32 {+-} 5) MeV. The additional phenomenological amplitudes are fitted to reproduce the Kpi effective mass and helicity angle distributions, the B {yields} K*(892)pi branching ratios and the CP asymmetries of the recent data from Belle and BABAR collaborations. We use also the new measurement by the BABAR group of the phase difference between the B{sup 0} and [overline B]{sup 0} decay amplitudes to K*(892)pi. Our predicted B{sup {+-}} {yields} K*{sub 0}(1430)pi{sup {+-}}, K*{sub 0}(1430) {yields} K{sup {+-}}pi{sup {-+}} branching fraction, equal to (11.6 {+-} 0.6) x 10{sup -6}, is smaller than the result of the analyzes of both collaborations. For the neutral B{sup 0} decays, the predicted value is (11.1 {+-} 0.5) x 10{sup -6}. In order to reduce the large systematic uncertainties in the experimental determination of the B {yields} K*{sub 0}(1430)pi branching fractions, a new parametrization is proposed. It is based on the Kpi scalar

  9. Deep frequency modulation interferometry.

    PubMed

    Gerberding, Oliver

    2015-06-01

    Laser interferometry with pm/Hz precision and multi-fringe dynamic range at low frequencies is a core technology to measure the motion of various objects (test masses) in space and ground based experiments for gravitational wave detection and geodesy. Even though available interferometer schemes are well understood, their construction remains complex, often involving, for example, the need to build quasi-monolithic optical benches with dozens of components. In recent years techniques have been investigated that aim to reduce this complexity by combining phase modulation techniques with sophisticated digital readout algorithms. This article presents a new scheme that uses strong laser frequency modulations in combination with the deep phase modulation readout algorithm to construct simpler and easily scalable interferometers. PMID:26072834

  10. Portable intensity interferometry

    NASA Astrophysics Data System (ADS)

    Horch, Elliott P.; Camarata, Matthew A.

    2012-07-01

    A limitation of the current generation of long baseline optical interferometers is the need to make the light interfere prior to detection. This is unlike the radio regime where signals can be recorded fast enough to use electronics to accomplish the same result. This paper describes a modern optical intensity interferometer based on electronics with picosecond timing resolution. The instrument will allow for portable optical interferometry with much larger baselines than currently possible by using existing large telescopes. With modern electronics, the limiting magnitude of the technique at a 4-m aperture size becomes competitive with some amplitude-based interferometers. The instrumentation will permit a wireless mode of operation with GPS clocking technology, extending the work to extremely large baselines. We discuss the basic observing strategy, a planned observational program at the Lowell Observatory 1.8-m and 1.0-m telescopes, and the science that can realistically be done with this instrumentation.

  11. Shaken lattice interferometry

    NASA Astrophysics Data System (ADS)

    Weidner, Carrie; Yu, Hoon; Anderson, Dana

    2016-05-01

    In this work, we report on progress towards performing interferometry using atoms trapped in an optical lattice. That is, we start with atoms in the ground state of an optical lattice potential V(x) =V0cos [ 2 kx + ϕ(t) ] , and by a prescribed phase function ϕ(t) , transform from one atomic wavefunction to another. In this way, we implement the standard interferometric sequence of beam splitting, propagation, reflection, reverse propagation, and recombination. Through the use of optimal control techniques, we have computationally demonstrated a scalable accelerometer that provides information on the sign of the applied acceleration. Extension of this idea to a two-dimensional shaken-lattice-based gyroscope is discussed. In addition, we report on the experimental implementation of the shaken lattice system.

  12. Spectroscopic Low Coherence Interferometry

    NASA Astrophysics Data System (ADS)

    Bosschaart, Nienke; van Leeuwen, T. G.; Aalders, Maurice C.; Hermann, Boris; Drexler, Wolfgang; Faber, Dirk J.

    Low-coherence interferometry (LCI) allows high-resolution volumetric imaging of tissue morphology and provides localized optical properties that can be related to the physiological status of tissue. This chapter discusses the combination of spatial and spectroscopic information by means of spectroscopic OCT (sOCT) and low-coherence spectroscopy (LCS). We describe the theory behind these modalities for the assessment of spatially resolved optical absorption and (back)scattering coefficient spectra. These spectra can be used for the highly localized quantification of chromophore concentrations and assessment of tissue organization on (sub)cellular scales. This leads to a wealth of potential clinical applications, ranging from neonatology for the determination of billibrubin concentrations, to oncology for the optical assessment of the aggressiveness of a cancerous lesion.

  13. Deep frequency modulation interferometry.

    PubMed

    Gerberding, Oliver

    2015-06-01

    Laser interferometry with pm/Hz precision and multi-fringe dynamic range at low frequencies is a core technology to measure the motion of various objects (test masses) in space and ground based experiments for gravitational wave detection and geodesy. Even though available interferometer schemes are well understood, their construction remains complex, often involving, for example, the need to build quasi-monolithic optical benches with dozens of components. In recent years techniques have been investigated that aim to reduce this complexity by combining phase modulation techniques with sophisticated digital readout algorithms. This article presents a new scheme that uses strong laser frequency modulations in combination with the deep phase modulation readout algorithm to construct simpler and easily scalable interferometers.

  14. Optical Long Baseline Interferometry News

    NASA Astrophysics Data System (ADS)

    Lawson, P. R.; Malbet, F.

    2005-12-01

    The Optical Long Baseline Interferometry News is a website and forum for scientists, engineers, and students who share an interest in long baseline stellar interferometry. It was established in 1995 and is the focus of activity of the IAU Working Group on Optical/Infrared Interferometry. Here you will find links to projects devoted to stellar interferometry, news items, recent papers and preprints, and resources for further research. The email news forum was established in 2001 to complement the website and to facilitate exchanges and collaborations. The forum includes an email exploder and an archived list of discussions. You are invited to explore the forum and website at http://olbin.jpl.nasa.gov. Work by PRL was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  15. Kaon condensation in the linear sigma model at finite density and temperature

    SciTech Connect

    Tran Huu Phat; Nguyen Van Long; Nguyen Tuan Anh; Le Viet Hoa

    2008-11-15

    Basing on the Cornwall-Jackiw-Tomboulis effective action approach we formulate a theoretical formalism for studying kaon condensation in the linear sigma model at finite density and temperature. We derive the renormalized effective potential in the Hartree-Fock approximation, which preserves the Goldstone theorem. This quantity is then used to consider physical properties of kaon matter.

  16. Optical Interferometry Motivation and History

    NASA Technical Reports Server (NTRS)

    Lawson, Peter

    2006-01-01

    A history and motivation of stellar interferometry is presented. The topics include: 1) On Tides, Organ Pipes, and Soap Bubbles; 2) Armand Hippolyte Fizeau (1819-1896); 3) Fizeau Suggests Stellar Interferometry 1867; 4) Edouard Stephan (1837-1923); 5) Foucault Refractor; 6) Albert A. Michelson (1852-1931); 7) On the Application of Interference Methods to Astronomy (1890); 8) Moons of Jupiter (1891); 9) Other Applications in 19th Century; 10) Timeline of Interferometry to 1938; 11) 30 years goes by; 12) Mount Wilson Observatory; 13) Michelson's 20 ft Interferometer; 14) Was Michelson Influenced by Fizeau? 15) Work Continues in the 1920s and 30s; 16) 50 ft Interferometer (1931-1938); 17) Light Paths in the 50 ft Interferometer; 18) Ground-level at the 50 ft; 19) F.G. Pease (1881-1938); 20) Timeline of Optical Interferometry to 1970; 21) A New Type of Stellar Interferometer (1956); 22) Intensity Interferometer (1963- 1976; 23) Robert Hanbury Brown; 24) Interest in Optical Interferometry in the 1960s; 25) Interferometry in the Early 1970s; and 26) A New Frontier is Opened up in 1974.

  17. Pion and kaon masses in staggered chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Aubin, C.; Bernard, C.

    2003-08-01

    We show how to compute chiral logarithms that take into account both the O(a2) taste-symmetry breaking of staggered fermions and the fourth-root trick that produces one taste per flavor. The calculation starts from the Lee-Sharpe Lagrangian generalized to multiple flavors. An error in a previous treatment by one of us is explained and corrected. The one loop chiral logarithm corrections to the pion and kaon masses in the full (unquenched), partially quenched, and quenched cases are computed as examples.

  18. Pion and kaon valence-quark parton distribution functions

    SciTech Connect

    Nguyen, Trang; Bashir, Adnan; Roberts, Craig D.; Tandy, Peter C.

    2011-06-15

    A rainbow-ladder truncation of QCD's Dyson-Schwinger equations, constrained by existing applications to hadron physics, is employed to compute the valence-quark parton distribution functions of the pion and kaon. Comparison is made to {pi}-N Drell-Yan data for the pion's u-quark distribution and to Drell-Yan data for the ratio u{sub K}(x)/u{sub {pi}}(x): the environmental influence of this quantity is a parameter-free prediction, which agrees well with existing data. Our analysis unifies the computation of distribution functions with that of numerous other properties of pseudoscalar mesons.

  19. Pion and kaon valence-quark parton distribution functions.

    SciTech Connect

    Nguyen, T.; Bashir, A.; Roberts, C. D.; Tandy, P. C.

    2011-06-16

    A rainbow-ladder truncation of QCD's Dyson-Schwinger equations, constrained by existing applications to hadron physics, is employed to compute the valence-quark parton distribution functions of the pion and kaon. Comparison is made to {pi}-N Drell-Yan data for the pion's u-quark distribution and to Drell-Yan data for the ratio u{sub K}(x)/u{sub {pi}}(x): the environmental influence of this quantity is a parameter-free prediction, which agrees well with existing data. Our analysis unifies the computation of distribution functions with that of numerous other properties of pseudoscalar mesons.

  20. Kaon condensation, black holes, and cosmological natural selection.

    PubMed

    Brown, G E; Lee, Chang-Hwan; Rho, Mannque

    2008-08-29

    It is argued that a well-measured double neutron-star binary in which the two neutron stars are more than 4% different from each other in mass or a massive neutron star with mass M > or approximately 2M(middle dot in circle) would put in serious doubt or simply falsify the following chain of predictions: (1) a nearly vanishing vector meson mass at chiral restoration, (2) kaon condensation at a density n-3n0, (3) the Brown-Bethe maximum neutron-star mass Mmax approximately 1.5M(middle dot in circle), and (4) Smolin's "cosmological natural selection" hypothesis.

  1. Kaon condensation, black holes, and cosmological natural selection.

    PubMed

    Brown, G E; Lee, Chang-Hwan; Rho, Mannque

    2008-08-29

    It is argued that a well-measured double neutron-star binary in which the two neutron stars are more than 4% different from each other in mass or a massive neutron star with mass M > or approximately 2M(middle dot in circle) would put in serious doubt or simply falsify the following chain of predictions: (1) a nearly vanishing vector meson mass at chiral restoration, (2) kaon condensation at a density n-3n0, (3) the Brown-Bethe maximum neutron-star mass Mmax approximately 1.5M(middle dot in circle), and (4) Smolin's "cosmological natural selection" hypothesis. PMID:18851598

  2. CEBAF at higher energies and the kaon electromagnetic form factor

    SciTech Connect

    Baker, O.K.

    1994-04-01

    The electromagnetic production of strangeness, the physics of exciting systems having strangeness degrees of freedom (production of hadrons with one or more strange constituent quarks) using electromagnetic probes (real or virtual photons), is one of the frontier areas of research which will be investigated at the Continuous Electron Beam Accelerator Facility (CEBAF) when it becomes operational. CEBAF is expected to have an important impact upon this field of research using its specialized set of detection instruments and high quality electron beam. This paper focusses upon one aspect of the associated production of strangeness - the determination of the kaon electromagnetic form factor at high squared momentum transfers.

  3. Pion and kaon valence-quark parton distribution functions

    NASA Astrophysics Data System (ADS)

    Nguyen, Trang; Bashir, Adnan; Roberts, Craig D.; Tandy, Peter C.

    2011-06-01

    A rainbow-ladder truncation of QCD’s Dyson-Schwinger equations, constrained by existing applications to hadron physics, is employed to compute the valence-quark parton distribution functions of the pion and kaon. Comparison is made to π-N Drell-Yan data for the pion’s u-quark distribution and to Drell-Yan data for the ratio uK(x)/uπ(x): the environmental influence of this quantity is a parameter-free prediction, which agrees well with existing data. Our analysis unifies the computation of distribution functions with that of numerous other properties of pseudoscalar mesons.

  4. Neutral kaons as an open quantum system in a second quantization approach

    NASA Astrophysics Data System (ADS)

    Smoliński, Kordian Andrzej

    2015-09-01

    We have shown that it is possible to formulate the consistent and probability-preserving description of the CP -symmetry-violating evolution of a system of decaying particles. This has been done within the framework of quantum mechanics of open systems. This approach allows the description of both the exponential decay and flavor oscillations. We have solved explicitly the Kossakowski-Lindblad master equation for a system of particles with violated CP symmetry and found the evolution of any observable bilinear in creation and annihilation operators. The choice of a concrete observable can be done by the proper choice of initial conditions for the system of differential equations. We have calculated the evolution as well as mean values of the observables most interesting from the physical point of view, and we have found their lowest order difference with the CP -preserved values.

  5. Isospin symmetry violating effects and scattering length extraction from kaon decays

    SciTech Connect

    Gevorkyan, S. R.

    2013-08-15

    The isospin symmetry breaking effects in the charged kaons decays to two or three pions are considered. In semileptonic decay K{sup {+-}} {yields} {pi}{sup +}{pi}{sup -}e{sup {+-}}{nu} (called K{sub e4}) these effects turn out to be crucial for correct extraction of {pi}{pi} scattering lengths. Taking in account electromagnetic interaction between the pions in the final state and isospin symmetry breaking due to different masses of charged and neutral pions allows to adjust the values of scattering lengths obtained from experimental data on K{sub e4} decay and predictions of Chiral Perturbation Theory (ChPT). Final state interactions of pions in the decay K{sup {+-}} {yields} {pi}{sup {+-}}{pi}{sup 0}{pi}{sup 0} leading to the anomaly (cusp) in the {pi}{sup 0}{pi}{sup 0} invariant mass distribution in the vicinity of charged pions' threshold are discussed and recent results of accounting of the electromagnetic interaction among charged pions leading to {pi}{sup +}{pi}{sup -} bound states (pioniumatom) just under the charged pions' threshold are presented.

  6. Extreme ultraviolet interferometry

    SciTech Connect

    Goldberg, K A

    1997-12-01

    EUV lithography is a promising and viable candidate for circuit fabrication with 0.1-micron critical dimension and smaller. In order to achieve diffraction-limited performance, all-reflective multilayer-coated lithographic imaging systems operating near 13-nm wavelength and 0.1 NA have system wavefront tolerances of 0.27 nm, or 0.02 waves RMS. Owing to the highly-sensitive resonant reflective properties of multilayer mirrors and extraordinarily tight tolerances set forth for their fabrication, EUV optical systems require at-wavelength EUV interferometry for final alignment and qualification. This dissertation discusses the development and successful implementation of high-accuracy EUV interferometric techniques. Proof-of-principle experiments with a prototype EUV point-diffraction interferometer for the measurement of Fresnel zoneplate lenses first demonstrated sub-wavelength EUV interferometric capability. These experiments spurred the development of the superior phase-shifting point-diffraction interferometer (PS/PDI), which has been implemented for the testing of an all-reflective lithographic-quality EUV optical system. Both systems rely on pinhole diffraction to produce spherical reference wavefronts in a common-path geometry. Extensive experiments demonstrate EUV wavefront-measuring precision beyond 0.02 waves RMS. EUV imaging experiments provide verification of the high-accuracy of the point-diffraction principle, and demonstrate the utility of the measurements in successfully predicting imaging performance. Complementary to the experimental research, several areas of theoretical investigation related to the novel PS/PDI system are presented. First-principles electromagnetic field simulations of pinhole diffraction are conducted to ascertain the upper limits of measurement accuracy and to guide selection of the pinhole diameter. Investigations of the relative merits of different PS/PDI configurations accompany a general study of the most significant sources

  7. A transition radiation detector for kaon/pion separation

    NASA Astrophysics Data System (ADS)

    Baake, M.; Diekmann, B.; Gebert, F.; Heinloth, K.; Holzkamp, S.; Körsgen, G.; Voigtlaender-Tetzner, A.; Bagdassarian, L.; Kazarian, C.; Oganessian, A.

    1989-09-01

    The experiment WA69 at the CERN Omega spectrometer facility has studied fixed target photon and hadron production of inclusive hadronic final states with tagged photon beams of 65-175 GeV in comparison to charged hadron beams (π and K) of 80 and 140 GeV fixed energies. For the identification of final state pions and kaons above 100 GeV/c a transition radiation detector (TRAD) has been developed. This detector was constructed of 12 modules, each consisting of a polypropylene fibre radiator and a proportional chamber with a xenon/methane gas mixture to detect the transition radiation produced by fast moving charged particles. We give a description of the detector setup and working conditions. As a first result obtained with the TRAD the ratio of photoproduced kaons and pions in the extreme forward regime ( xF > 0.7 and - t < 1 GeV 2) is measured to be 10.2(±1.7)% which is in agreement with VDM predictions.

  8. Geometric time delay interferometry

    NASA Astrophysics Data System (ADS)

    Vallisneri, Michele

    2005-08-01

    The space-based gravitational-wave observatory LISA, a NASA-ESA mission to be launched after 2012, will achieve its optimal sensitivity using time delay interferometry (TDI), a LISA-specific technique needed to cancel the otherwise overwhelming laser noise in the interspacecraft phase measurements. The TDI observables of the Michelson and Sagnac types have been interpreted physically as the virtual measurements of a synthesized interferometer. In this paper, I present Geometric TDI, a new and intuitive approach to extend this interpretation to all TDI observables. Unlike the standard algebraic formalism, Geometric TDI provides a combinatorial algorithm to explore exhaustively the space of second-generation TDI observables (i.e., those that cancel laser noise in LISA-like interferometers with time-dependent arm lengths). Using this algorithm, I survey the space of second-generation TDI observables of length (i.e., number of component phase measurements) up to 24, and I identify alternative, improved forms of the standard second-generation TDI observables. The alternative forms have improved high-frequency gravitational-wave sensitivity in realistic noise conditions (because they have fewer nulls in the gravitational-wave and noise response functions), and are less susceptible to instrumental gaps and glitches (because their component phase measurements span shorter time periods).

  9. Preview of Blackbeard interferometry

    SciTech Connect

    Carter, M.J.

    1992-09-01

    Blackbeard is a broadband VHF measurements satellite experiment designed and built by the Space Science and Technology division of the Los Alamos National Laboratory. Blackbeard is a piggy-back experiment on the ALEXIS satellite to be launched into a 70 degree inclination orbit at an altitude of 750 km. The satellite experimental operation and data retrieval are controlled through a telemetry link from the Satellite Operations Center (SOC) located at Los Alamos, NM. The primary experimental objectives of Blackbeard are three-fold: (1) Study the dispersion of broad-band impulsive electromagnetic signals -- in particular, the higher-order amplitude and phase distortion due to propagation through the ionosphere. These depend on ionospheric conditions and irregularities. (2) Utilize RF interferometry and scintillation techniques in the low VHF-band to determine the size and extent of ionospheric irregularities and wave structure -- both natural and artificially induced. This narrow-band data will be used to categorize the ionospheric media as undisturbed, oscillatory, or turbulent. These parameters will then be input into transfer function simulations for broad-band propagation and compared with broad-band propagation data from Blackbeard. (3) Survey and characterize background noise in the VHF-band-consisting of (1) cataloging broadcast amplitudes and signatures and mapping their global pattern, and (2) cataloging the signatures of lightning events. Also, correlate emissions in the visible and VHF bands in an attempt to confirm broad-band RF emissions assumed to be associated with lightning.

  10. Preview of Blackbeard interferometry

    SciTech Connect

    Carter, M.J.

    1992-01-01

    Blackbeard is a broadband VHF measurements satellite experiment designed and built by the Space Science and Technology division of the Los Alamos National Laboratory. Blackbeard is a piggy-back experiment on the ALEXIS satellite to be launched into a 70 degree inclination orbit at an altitude of 750 km. The satellite experimental operation and data retrieval are controlled through a telemetry link from the Satellite Operations Center (SOC) located at Los Alamos, NM. The primary experimental objectives of Blackbeard are three-fold: (1) Study the dispersion of broad-band impulsive electromagnetic signals -- in particular, the higher-order amplitude and phase distortion due to propagation through the ionosphere. These depend on ionospheric conditions and irregularities. (2) Utilize RF interferometry and scintillation techniques in the low VHF-band to determine the size and extent of ionospheric irregularities and wave structure -- both natural and artificially induced. This narrow-band data will be used to categorize the ionospheric media as undisturbed, oscillatory, or turbulent. These parameters will then be input into transfer function simulations for broad-band propagation and compared with broad-band propagation data from Blackbeard. (3) Survey and characterize background noise in the VHF-band-consisting of (1) cataloging broadcast amplitudes and signatures and mapping their global pattern, and (2) cataloging the signatures of lightning events. Also, correlate emissions in the visible and VHF bands in an attempt to confirm broad-band RF emissions assumed to be associated with lightning.

  11. Shaken Lattice Interferometry

    NASA Astrophysics Data System (ADS)

    Weidner, Carrie; Yu, Hoon; Anderson, Dana

    2015-05-01

    This work introduces a method to perform interferometry using atoms trapped in an optical lattice. Starting at t = 0 with atoms in the ground state of a lattice potential V(x) =V0cos [ 2 kx + ϕ(t) ] , we show that it is possible to transform from one atomic wavefunction to another by a prescribed shaking of the lattice, i.e., by an appropriately tailored time-dependent phase shift ϕ(t) . In particular, the standard interferometer sequence of beam splitting, propagation, reflection, reverse propagation, and recombination can be achieved via a set of phase modulation operations {ϕj(t) } . Each ϕj(t) is determined using a learning algorithm, and the split-step method calculates the wavefunction dynamics. We have numerically demonstrated an interferometer in which the shaken wavefunctions match the target states to better than 1 % . We carried out learning using a genetic algorithm and optimal control techniques. The atoms remain trapped in the lattice throughout the full interferometer sequence. Thus, the approach may be suitable for use in an dynamic environment. In addition to the general principles, we discuss aspects of the experimental implementation. Supported by the Office of Naval Research (ONR) and Northrop Grumman.

  12. DETECTORS AND EXPERIMENTAL METHODS: Application of the HKS in the identification of kaons produced in the reaction (e,e'K+)

    NASA Astrophysics Data System (ADS)

    Song, Yu-Shou; Hu, Bi-Tao

    2009-06-01

    At Jefferson Laboratory the experiment E02-017 was carried out to investigate the fission associated with kaons in the hypernuclei-producing interaction p(e,K+e')Λ. The newly installed high resolution kaon spectrometer (HKS) in Hall C was used as a key instrument to identify kaons. This paper introduces the HKS hardware and describes the way the kaons are identified. Maintaining most of the kaons (nearly 100%) in the data, HKS identifies kaons with a purity of ~67% in this experiment. The resolution of the kaon target time reconstructed by HKS reaches 0.42 ns.

  13. Three-color differential interferometry.

    PubMed

    Desse, J M

    1997-10-01

    It is shown that differential interferometry using a Wollaston prism and a three-color laser source is an optical technique that has all the advantages of differential interferometry in polarized white light and of classical monochromatic interferometry. The interference fringe pattern obtained is very large and colored and presents a central white fringe that enables easy identification of the zero order of the interferogram. The three-color source is obtained by filtering the unwanted lines of the ionized laser (mixed argon and krypton) and balancing the three red, green, and blue lines by a technique that involves placing birefringent plates between the polarizer and the analyzer, the thickness of which has been calculated to create a natural filter. The unsteady aerodynamic flow downstream of a diamond shape airfoil has been visualized with this technique, which shows that the power of the light source is sufficient to record the interferograms at a high rate. PMID:18264221

  14. 100-Picometer Interferometry for EUVL

    SciTech Connect

    Sommargren, G E; Phillion, D W; Johnson, M A; Nguyen, N O; Barty, A; Snell, F J; Dillon, D R; Bradsher, L S

    2002-03-18

    Future extreme ultraviolet lithography (EWL) steppers will, in all likelihood, have six-mirror projection cameras. To operate at the diffraction limit over an acceptable depth of focus each aspheric mirror will have to be fabricated with an absolute figure accuracy approaching 100 pm rms. We are currently developing visible light interferometry to meet this need based on modifications of our present phase shifting diffraction interferometry (PSDI) methodology where we achieved an absolute accuracy of 250pm. The basic PSDI approach has been further simplified, using lensless imaging based on computational diffractive back-propagation, to eliminate auxiliary optics that typically limit measurement accuracy. Small remaining error sources, related to geometric positioning, CCD camera pixel spacing and laser wavelength, have been modeled and measured. Using these results we have estimated the total system error for measuring off-axis aspheric EUVL mirrors with this new approach to interferometry.

  15. Three-color differential interferometry.

    PubMed

    Desse, J M

    1997-10-01

    It is shown that differential interferometry using a Wollaston prism and a three-color laser source is an optical technique that has all the advantages of differential interferometry in polarized white light and of classical monochromatic interferometry. The interference fringe pattern obtained is very large and colored and presents a central white fringe that enables easy identification of the zero order of the interferogram. The three-color source is obtained by filtering the unwanted lines of the ionized laser (mixed argon and krypton) and balancing the three red, green, and blue lines by a technique that involves placing birefringent plates between the polarizer and the analyzer, the thickness of which has been calculated to create a natural filter. The unsteady aerodynamic flow downstream of a diamond shape airfoil has been visualized with this technique, which shows that the power of the light source is sufficient to record the interferograms at a high rate.

  16. Precision measurement with atom interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Jin

    2015-05-01

    Development of atom interferometry and its application in precision measurement are reviewed in this paper. The principle, features and the implementation of atom interferometers are introduced, the recent progress of precision measurement with atom interferometry, including determination of gravitational constant and fine structure constant, measurement of gravity, gravity gradient and rotation, test of weak equivalence principle, proposal of gravitational wave detection, and measurement of quadratic Zeeman shift are reviewed in detail. Determination of gravitational redshift, new definition of kilogram, and measurement of weak force with atom interferometry are also briefly introduced. Project supported by the National Basic Research Program of China (Grant No. 2010CB832805) and the National Natural Science Foundation of China (Grant No. 11227803).

  17. Techniques in Broadband Interferometry

    SciTech Connect

    Erskine, D J

    2004-01-04

    This is a compilation of my patents issued from 1997 to 2002, generally describing interferometer techniques that modify the coherence properties of broad-bandwidth light and other waves, with applications to Doppler velocimetry, range finding, imaging and spectroscopy. Patents are tedious to read in their original form. In an effort to improve their readability I have embedded the Figures throughout the manuscript, put the Figure captions underneath the Figures, and added section headings. Otherwise I have resisted the temptation to modify the words, though I found many places which could use healthy editing. There may be minor differences with the official versions issued by the US Patent and Trademark Office, particularly in the claims sections. In my shock physics work I measured the velocities of targets impacted by flyer plates by illuminating them with laser light and analyzing the reflected light with an interferometer. Small wavelength changes caused by the target motion (Doppler effect) were converted into fringe shifts by the interferometer. Lasers having long coherence lengths were required for the illumination. While lasers are certainly bright sources, and their collimated beams are convenient to work with, they are expensive. Particularly if one needs to illuminate a wide surface area, then large amounts of power are needed. Orders of magnitude more power per dollar can be obtained from a simple flashlamp, or for that matter, a 50 cent light bulb. Yet these inexpensive sources cannot practically be used for Doppler velocimetry because their coherence length is extremely short, i.e. their bandwidth is much too wide. Hence the motivation for patents 1 & 2 is a method (White Light Velocimetry) for allowing use of these powerful but incoherent lamps for interferometry. The coherence of the illumination is modified by passing it through a preparatory interferometer.

  18. Tests of non-local interferences in kaon physics at asymmetric [phi]-factories

    SciTech Connect

    Eberhard, P.H.

    1993-04-16

    Tests of non-local interference effects in the two-kaon system are proposed. The first kind of tests consists of measuring the amount of destructive interference between K[sub S] [yields] K[sub L] regeneration processes of two distant kaons. The second kind deals with constructive interference. These tests could be performed at an asymmetric [phi]-factory. Estimates are given of the number of events predicted by orthodox quantum mechanics and kaon regeneration theory in various suitable experimental conditions. The impact on local theories if the predictions of quantum mechanics hold is discussed.

  19. Tests of non-local interferences in kaon physics at asymmetric {phi}-factories

    SciTech Connect

    Eberhard, P.H.

    1993-04-16

    Tests of non-local interference effects in the two-kaon system are proposed. The first kind of tests consists of measuring the amount of destructive interference between K{sub S} {yields} K{sub L} regeneration processes of two distant kaons. The second kind deals with constructive interference. These tests could be performed at an asymmetric {phi}-factory. Estimates are given of the number of events predicted by orthodox quantum mechanics and kaon regeneration theory in various suitable experimental conditions. The impact on local theories if the predictions of quantum mechanics hold is discussed.

  20. High-Speed Digital Interferometry

    NASA Technical Reports Server (NTRS)

    De Vine, Glenn; Shaddock, Daniel A.; Ware, Brent; Spero, Robert E.; Wuchenich, Danielle M.; Klipstein, William M.; McKenzie, Kirk

    2012-01-01

    Digitally enhanced heterodyne interferometry (DI) is a laser metrology technique employing pseudo-random noise (PRN) codes phase-modulated onto an optical carrier. Combined with heterodyne interferometry, the PRN code is used to select individual signals, returning the inherent interferometric sensitivity determined by the optical wavelength. The signal isolation arises from the autocorrelation properties of the PRN code, enabling both rejection of spurious signals (e.g., from scattered light) and multiplexing capability using a single metrology system. The minimum separation of optical components is determined by the wavelength of the PRN code.

  1. Ratio of Pion Kaon Production in Proton Carbon Interactions

    SciTech Connect

    Lebedev, Andrey V.

    2007-05-01

    The ratio of pion-kaon production by 120 GeV/c protons incident on carbon target is presented. The data was recorded with the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory. Production ratios of K++, K--, K-/K+, and π-+ are measured in 24 bins in longitudinal momentum from 20 to 90 GeV/c and transverse momentum up to 2 GeV/c. The measurement is compared to existing data sets, particle production Monte Carlo results from FLUKA-06, parametrization of proton-beryllium data at 400/450 GeV/c, and ratios measured by the MINOS experiment on the NuMI target.

  2. The Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.

    1998-01-01

    The Space Interferometry Mission (SIM) is the next major space mission in NASA's Origins program after SIRTF. The SIM architecture uses three Michelson interferometers in low-earth orbit to provide 4 microarcsecond precision absolute astrometric measurements on approx. 40,000 stars. SIM will also provide synthesis imaging in the visible waveband to a resolution of 10 milliarcsecond, and interferometric nulling to a depth of 10(exp -4). A near-IR (1-2 micron) capability is being considered. Many key technologies will be demonstrated by SIM that will be carried over directly or can be readily scaled to future Origins missions such as TPF. The SIM spacecraft will carry a triple Michelson interferometer with baselines in the 10 meter range. Two interferometers act as high precision trackers, providing attitude information at all time, while the third one conducts the science observations. Ultra-accurate laser metrology and active systems monitor the systematic errors and to control the instrument vibrations in order to reach the 4 microarcsecond level on wide-angle measurements. SIM will produce a wealth of new astronomical data. With an absolute positional precision of 4 microarcsecond, SIM will improve on the best currently available measures (the Hipparcos catalog) by 2 or 3 orders of magnitude, providing parallaxes accurate to 10% and transverse velocities to 0.2 km/s anywhere in the Galaxy, to stars as faint as 20th magnitude. With the addition of radial velocities, knowledge of the 6-dimension phase space for objects of interest will allow us to attack a wide array of previously inaccessible problems such as: search for planets down to few earth masses; calibration of stellar luminosities and by means of standard candles, calibration of the cosmic distance scale; detecting perturbations due to spiral arms, disk warps and central bar in our galaxy; probe of the gravitational potential of the Galaxy, several kiloparsecs out of the galactic plane; synthesis imaging

  3. Meteorology Gauges for Spatial Interferometry

    NASA Technical Reports Server (NTRS)

    Gursel, Y.

    1996-01-01

    Heterodyne interferometers have been commercially available for many years. In addition, many versions have been built at JPL for various projects. This activity is aimed at improving the accuracy of such interferometers from the 1-30 nanometer level to the picometer level for use in the proposes Stellar Interferometry Mission (SIM) as metrology gauges.

  4. AIPY: Astronomical Interferometry in PYthon

    NASA Astrophysics Data System (ADS)

    Parsons, Aaron

    2016-09-01

    AIPY collects together tools for radio astronomical interferometry. In addition to pure-python phasing, calibration, imaging, and deconvolution code, this package includes interfaces to MIRIAD (ascl:1106.007) and HEALPix (ascl:1107.018), and math/fitting routines from SciPy.

  5. 1 to 2 GeV/c beam line for hypernuclear and kaon research

    SciTech Connect

    Chrien, R.E.

    1985-02-15

    A kaon beam line operating in the range from 1.0 to 2.0 GeV/c is proposed. The line is meant for kaon and pion research in a region hitherto inaccessible to experimenters. Topics in hypernuclear and kaon physics of high current interest include the investigation of doubly strange nuclear systems with the K/sup -/,K/sup +/ reaction, searching for dibaryon resonances, hyperon-nucleon interactions, hypernuclear ..gamma.. rays, and associated production of excited hypernuclei. The beam line would provide separated beams of momentum analyzed kaons at intensities greater than 10/sup 6/ particles per spill with a momentum determined to one part in a thousand. This intensity is an order of magnitude greater than that currently available. 63 references.

  6. Coexistence of Kaon Condensation and Hyperons in Hadronic Matter and Its Relevance to Quark Matter

    NASA Astrophysics Data System (ADS)

    Muto, T.; Maruyama, T.; Tatsumi, T.

    2015-11-01

    Coexistence of kaon condensation and hyperons, which may be realized in neutron stars, is investigated on the basis of the relativistic mean-field theory combined with the effective chiral Lagrangian. It is shown that the kaon-condensed phase in hyperon-mixed matter is plausible, but it leads to a significant softening of the equation of state (EOS). We discuss indispensable effects which make the EOS stiffer so as to be consistent with recent neutron-star observations.

  7. W.K.H. Panofsky Prize in Experimental Particle Physics Talk: Kaons Redux- Seeking New Physics with Rare Decays of Kaons

    NASA Astrophysics Data System (ADS)

    Bryman, Douglas

    2011-04-01

    Studies of rare decays of kaons have been important in establishing the current picture of particle physics and in constraining hypothetical new approaches which go beyond the Standard Model to deal with its known deficiencies. Experimental capabilities have increased in concert with theoretical understanding making this approach to searching for new physics more viable than ever and essential, even in the era of the LHC. In this talk, I will discuss the most interesting and incisive rare kaon decay experiments, particularly K+ -->π+ ν ν andKL0 -->π0 ν ν , emphasizing the prospects for major advancements in the near term and at future high intensity proton accelerators.

  8. Neutral Atmospheres

    NASA Astrophysics Data System (ADS)

    Mueller-Wodarg, I. C. F.; Strobel, D. F.; Moses, J. I.; Waite, J. H.; Crovisier, J.; Yelle, R. V.; Bougher, S. W.; Roble, R. G.

    This paper summarizes the understanding of aeronomy of neutral atmospheres in the solar system, discussing most planets as well as Saturn's moon Titan and comets. The thermal structure and energy balance is compared, highlighting the principal reasons for discrepancies amongst the atmospheres, a combination of atmospheric composition, heliocentric distance and other external energy sources not common to all. The composition of atmospheres is discussed in terms of vertical structure, chemistry and evolution. The final section compares dynamics in the upper atmospheres of most planets and highlights the importance of vertical dynamical coupling as well as magnetospheric forcing in auroral regions, where present. It is shown that a first order understanding of neutral atmospheres has emerged over the past decades, thanks to the combined effects of spacecraft and Earth-based observations as well as advances in theoretical modeling capabilities. Key gaps in our understanding are highlighted which ultimately call for a more comprehensive programme of observation and laboratory measurements.

  9. Neutral Atmospheres

    NASA Astrophysics Data System (ADS)

    Mueller-Wodarg, I. C. F.; Strobel, D. F.; Moses, J. I.; Waite, J. H.; Crovisier, J.; Yelle, R. V.; Bougher, S. W.; Roble, R. G.

    2008-08-01

    This paper summarizes the understanding of aeronomy of neutral atmospheres in the solar system, discussing most planets as well as Saturn’s moon Titan and comets. The thermal structure and energy balance is compared, highlighting the principal reasons for discrepancies amongst the atmospheres, a combination of atmospheric composition, heliocentric distance and other external energy sources not common to all. The composition of atmospheres is discussed in terms of vertical structure, chemistry and evolution. The final section compares dynamics in the upper atmospheres of most planets and highlights the importance of vertical dynamical coupling as well as magnetospheric forcing in auroral regions, where present. It is shown that a first order understanding of neutral atmospheres has emerged over the past decades, thanks to the combined effects of spacecraft and Earth-based observations as well as advances in theoretical modeling capabilities. Key gaps in our understanding are highlighted which ultimately call for a more comprehensive programme of observation and laboratory measurements.

  10. Optical and Infrared Interferometry IV

    NASA Astrophysics Data System (ADS)

    Rajagopal, Jayadev K.; Creech-Eakman, Michelle J.; Malbet, Fabien

    2014-08-01

    Optical and IR Interferometry IV at the SPIE 2014 symposium in Montreal had a strong and vibrant program. After initial fears about budget cuts and travel-funding constraints, the Program Committee had to work hard to accommodate as many quality submissions as possible. Innovative, creative and visionary work ensured that the field has progressed well, despite the bleak funding climate felt in the US, Europe and elsewhere. Montreal proved an excellent venue for this, the largest of Interferometry conferences and the only one that brings together practitioners from the world over. Let us summarize a few highlights to convey a glimpse of the excitement that is detailed in the rest of these Proceedings.

  11. Precision Geodesy via Radio Interferometry.

    PubMed

    Hinteregger, H F; Shapiro, I I; Robertson, D S; Knight, C A; Ergas, R A; Whitney, A R; Rogers, A E; Moran, J M; Clark, T A; Burke, B F

    1972-10-27

    Very-long-baseline interferometry experiments, involving observations of extragalactic radio sources, were performed in 1969 to determine the vector separations between antenna sites in Massachusetts and West Virginia. The 845.130-kilometer baseline was estimated from two separate experiments. The results agreed with each other to within 2 meters in all three components and with a special geodetic survey to within 2 meters in length; the differences in baseline direction as determined by the survey and by interferometry corresponded to discrepancies of about 5 meters. The experiments also yielded positions for nine extragalactic radio sources, most to within 1 arc second, and allowed the hydrogen maser clocks at the two sites to be synchronized a posteriori with an uncertainty of only a few nanoseconds.

  12. Integrated optics for astronomical interferometry

    NASA Astrophysics Data System (ADS)

    Marques, P. V. S.; Ghasempour, A.; Alexandre, D.; Leite, A. M. P.; Garcia, P. J. V.; Reynaud, F.

    2011-05-01

    Integrated optics is a well established technology that finds its main applications in the fields of optical communication and sensing. However, it is expanding into new areas, and in the last decade application in astronomical interferometry has been explored. In particular, several examples have been demonstrated in the areas of beam control and combination. In this paper, different examples of application integrated optics devices for fabrication of beam combiners for astronomical interferometry is given. For the multiaxial beam combiners, a UV laser direct writing unit is used for mask fabrication. The operation principles of the coaxial combiners fabricated in hybrid sol-gel were validated using an interferometric set-up. These results demonstrate that hybrid sol-gel technology can produce quality devices, opening the possibility of rapid prototyping of new designs and concepts.

  13. Virtually calibrated projection moire interferometry.

    PubMed

    Kimber, Mark; Blotter, Jonathan

    2005-05-01

    Projection moire interferometry (PMI) is an out-of-plane displacement measurement technique that consists of differencing reference and deformed images of a grid pattern projected onto the test object. In conventional PMI, a tedious process of computing the fringe sensitivity coefficient (FSC), which requires moving the test object or the reference plane to known displacements, is used. We present a new technique for computing the FSC values that is called virtually calibrated projection moire interferometry (VCPMI). VCPMI is based on computer simulations of the conventional PMI process and does not require moving the actual test object or reference plane. We validate the VCPMI approach by comparing results for a flat plate and an airfoil with those made by use of other measurement methods.

  14. Meson interferometry in relativistic heavy ion collisions

    SciTech Connect

    Not Available

    1993-05-01

    This report contains discussions on the following topics: Recent HBT results form CERN experiment NA44; interferometry results from E802/E859/E866; recent results on two particle correlations from E814; source sizes from CERN data; intermittency and interferometry; Bose-Einstein correlations in 200A GeV S+Au collisions; HBT correlations at STAR; HBT interferometry with PHENIX; HBT calculations from ARC; three pion correlations; and pion correlations in proton-induced reactions.

  15. Kaon B-parameter in mixed action chiral perturbation theory

    SciTech Connect

    Aubin, C.; Laiho, Jack; Water, Ruth S. van de

    2007-02-01

    We calculate the kaon B-parameter, B{sub K}, in chiral perturbation theory for a partially quenched, mixed-action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We find that the resulting expression is similar to that in the continuum, and in fact has only two additional unknown parameters. At 1-loop order, taste-symmetry violations in the staggered sea sector only contribute to flavor-disconnected diagrams by generating an O(a{sup 2}) shift to the masses of taste-singlet sea-sea mesons. Lattice discretization errors also give rise to an analytic term which shifts the tree-level value of B{sub K} by an amount of O(a{sup 2}). This term, however, is not strictly due to taste breaking, and is therefore also present in the expression for B{sub K} for pure Ginsparg-Wilson lattice fermions. We also present a numerical study of the mixed B{sub K} expression in order to demonstrate that both discretization errors and finite volume effects are small and under control on the MILC improved staggered lattices.

  16. An Introduction to Optical Stellar Interferometry

    NASA Astrophysics Data System (ADS)

    Labeyrie, A.; Lipson, S. G.; Nisenson, P.

    2006-06-01

    1. Introduction; 2 Basic concepts: a qualitative introduction; 3. Interference, diffraction and coherence; 4. Aperture synthesis; 5. Optical effects of the atmosphere; 6. Single-aperture techniques; 7. Intensity interferometry; 8. Amplitude interferometry: techniques and instruments; 9. The hypertelescope; 10. Nulling and coronagraphy; 11. A sampling of interferometric science; 12. Future ground and space projects; Appendices.

  17. An Introduction to Optical Stellar Interferometry

    NASA Astrophysics Data System (ADS)

    Labeyrie, A.; Lipson, S. G.; Nisenson, P.

    2014-03-01

    1. Introduction; 2 Basic concepts: a qualitative introduction; 3. Interference, diffraction and coherence; 4. Aperture synthesis; 5. Optical effects of the atmosphere; 6. Single-aperture techniques; 7. Intensity interferometry; 8. Amplitude interferometry: techniques and instruments; 9. The hypertelescope; 10. Nulling and coronagraphy; 11. A sampling of interferometric science; 12. Future ground and space projects; Appendices.

  18. Astronomical imaging by pupil plane interferometry

    NASA Technical Reports Server (NTRS)

    Ribak, Erez

    1989-01-01

    Comparing rotational shear interferometry to standard speckle interferometry, it is found that it is easier in the first case to separate the atmospheric phases from the object transform phases. Phase closure and blind deconvolution should be directly applicable. Laboratory simulations were conducted to verify theoretical predictions and computer simulations for the phase closure case, and preliminary results show promise.

  19. Kaon absorption in flight and the binding of K-bar in nuclei

    SciTech Connect

    Oset, E.; Magas, V. K.; Ramos, A.; Yamagata-Sekihara, J.; Hirenzaki, S.

    2010-08-05

    We make a theoretical study of the kaon absorption in flight on nuclei with a kaon beam of 1 GeV momentum, paying special attention to the forward and energetic emitted protons, which were used to claim a deep kaon nucleus optical potential in a recent experiment. We perform a Monte Carlo simulation of this reaction, which allows to account not only for quasi-elastic K{sup -}p scattering, but also for the other processes which contribute to the proton spectra and which are not taken into account by the ordinary Green's function method analysis. The experiment looks for fast protons, but in coincidence with at least one charged particle in a decay counters sandwiching the target. The coincidence requirement is assumed not to distort the shape of the proton spectra, but we show that this is not the case and as a consequence the conclusions drawn from the experimental analysis do not hold.

  20. Kaon-Nucleon systems and their interactions in the Skyrme model

    NASA Astrophysics Data System (ADS)

    Ezoe, Takashi; Hosaka, Atsushi

    2016-08-01

    We study kaon-nucleon systems in the Skyrme model in a method based on the bound state approach of Callan-Klebanov but with the kaon around the physical nucleon of the rotating hedgehog. This corresponds to the variation after projection, reversing the order of semiclassical quantization of 1 /Nc expansion. The method, however, is considered to be suited to the study of weakly interacting kaon-nucleon systems including loosely K ¯N bound states such as Λ (1405 ). We have found a bound state with binding energy of order 10 MeV, consistent with the observed state. We also discuss the K ¯N interaction and find that it consists of an attraction in the middle range and a repulsion in the short range.

  1. Monte Carlo simulation of polarization measurements in kaon electro-production

    SciTech Connect

    T. Angelescu; L. Teodorescu; O.Keith Baker; P. Gueye

    2000-05-01

    Kaon electro-production experiments with polarized electron beam are planed at the Thomas Jefferson National Accelerator Facility (Virginia, USA) in order to complete the information on polarization response functions for the kaon electro-production reactions. The experiment uses the self analyzing property of the L recoil. The scattered electrons will be detected in coincidence with the kaons and the decay protons. This paper presents the simulation of this experiment which takes into account the spectrometer acceptances, multiple scattering and radiative corrections. The phase space distribution of the decay protons in the L center-of-mass system are generated in order to extract information on the polarization on the three directions. An experimental test with an unpolarized beam has been performed to estimate the efficiency of the method.

  2. Interferometry with synthetic gauge fields

    SciTech Connect

    Anderson, Brandon M.; Taylor, Jacob M.; Galitski, Victor M.

    2011-03-15

    We propose a compact atom interferometry scheme for measuring weak, time-dependent accelerations. Our proposal uses an ensemble of dilute trapped bosons with two internal states that couple to a synthetic gauge field with opposite charges. The trapped gauge field couples spin to momentum to allow time-dependent accelerations to be continuously imparted on the internal states. We generalize this system to reduce noise and estimate the sensitivity of such a system to be S{approx}10{sup -7}(m/s{sup 2}/{radical}(Hz)).

  3. 50 years of holographic interferometry

    NASA Astrophysics Data System (ADS)

    Stetson, Karl A.

    2015-01-01

    Fifty years ago, Robert L. Powell and I discovered holographic interferometry while working at the Radar Laboratory of the University of Michigan's Institute of Science and Technology. I have worked in this field for this entire time span, watched it grow from an unexplored technology to become a widespread industrial testing method, and I have contributed to these developments. In this paper, I will trace my history in this field from our discovery to my involvement in its theory and applications. I will conclude with a discussion of digital holography, which is currently replacing photographic holography for most research and industrial applications.

  4. Radio interferometry depth sounding. II.

    NASA Technical Reports Server (NTRS)

    Rossiter, J. R.; Annan, A. P.; Latorraca, G. A.; Simmons, G.; Strangway, D. W.

    1973-01-01

    Experimental results from an analog scale model and from field tests on two glaciers using radio-frequency interferometry (RFI) are interpreted on the basis of previously described theoretical results. The RFI technique is found to be a practical method with which to study layering in low-loss dielectrics. Three parameters of the upper layer can be estimated from the data: the dielectric constant, the loss tangent, and an estimate of the thickness to a reflector. The method is an inexpensive way to sound ice sheets less than a few hundred meters thick, and could be used to study low-loss layers on the moon.

  5. Golographic interferometry of physical processes

    NASA Astrophysics Data System (ADS)

    Ostrovskaya, G. V.

    2016-06-01

    This paper is devoted to the contribution of Yuri Ostrovsky to holographic interferometry, one of the fundamental scientific and practical applications of holography. The title of this paper is the same as the title of his doctoral thesis that he defended in 1974, and, as it seems to me, reflects most of the specific features of the majority of his scientific publications, viz., an inseparable link of the methods developed by him with the results obtained with the help of these methods in a wide range of investigations of physical processes and phenomena.

  6. An Interferometry Imaging Beauty Contest

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Cotton, William D.; Hummel, Christian A.; Monnier, John D.; Zhaod, Ming; Young, John S.; Thorsteinsson, Hrobjartur; Meimon, Serge C.; Mugnier, Laurent; LeBesnerais, Guy; Thiebaut, Eric; Tuthill, Peter G.; Hani, Christopher A.; Pauls, Thomas; DuvertI, Gilles; Garcia, Paulo; Kuchner, Marc

    2004-01-01

    We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Six different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formated in the interferometry Data Exchange Standard and is designed to simulate a specific problem relevant to long-baseline imaging. The data are calibrated power spectra and bispectra measured with a ctitious array, intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.

  7. Vibration analysis using moire interferometry

    NASA Astrophysics Data System (ADS)

    Asundi, A.; Cheung, M. T.

    The present use of moire interferometry for low amplitude vibration and analysis demonstrates the possibility of obtaining out-of-plane displacement contours whose sensitivity is comparable to that of holographic methods. A major advantage of the present system, is the obviation of prior knowledge of resonant frequencies, as called for in time-average holography. The experimental apparatus employed encompasses a laser beam, a parabolic mirror, a high frequency (600 line/mm) grating, and a camera, in addition to the test model.

  8. Multiple pion and kaon production in high energy nucleus-nucleus collisions: measurements versus specific models

    NASA Astrophysics Data System (ADS)

    Guptaroy, P.; de, Bh.; Bhattacharyya, S.; Bhattacharyya, D. P.

    The pion and kaon rapidity densities and the nature of kaon-pion ratios offer two very prominent and crucial physical observables on which modestly sufficient data for heavy nucleus collisions are available to date. In the light of two sets of models - one purely phenomenological and the other with a modest degree of a dynamical basis - we try to examine the state of agreement between calculations and experimental results obtainable from the past and the latest measurements. Impact and implications of all these would also finally be spelt out.

  9. Violation of lepton flavor and lepton flavor universality in rare kaon decays

    NASA Astrophysics Data System (ADS)

    Crivellin, Andreas; D'Ambrosio, Giancarlo; Hoferichter, Martin; Tunstall, Lewis C.

    2016-04-01

    Recent anomalies in the decays of B mesons and the Higgs boson provide hints towards lepton flavor (universality) violating physics beyond the Standard Model. We observe that four-fermion operators which can explain the B -physics anomalies have corresponding analogs in the kaon sector, and we analyze their impact on K →π ℓℓ' and K →ℓℓ' decays (ℓ=μ ,e ) . For these processes, we note the corresponding physics opportunities at the NA62 experiment. In particular, assuming minimal flavor violation, we comment on the required improvements in sensitivity necessary to test the B -physics anomalies in the kaon sector.

  10. Pion, Kaon, Proton and Antiproton Production in Proton-Proton Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Blattnig, Steve R.

    2008-01-01

    Inclusive pion, kaon, proton, and antiproton production from proton-proton collisions is studied at a variety of proton energies. Various available parameterizations of Lorentz-invariant differential cross sections as a function of transverse momentum and rapidity are compared with experimental data. The Badhwar and Alper parameterizations are moderately satisfactory for charged pion production. The Badhwar parameterization provides the best fit for charged kaon production. For proton production, the Alper parameterization is best, and for antiproton production the Carey parameterization works best. However, no parameterization is able to fully account for all the data.

  11. Monitoring with Coda Wave Interferometry

    NASA Astrophysics Data System (ADS)

    Gret, A.; Snieder, R.

    2004-12-01

    Aki has been a pioneer in monitoring the subsurface with coda waves and with guided waves. His analysis of temporal and spatial variations in coda Q has proven to be a powerful tool for monitoring purposes. We have extended his technique in new method called coda wave interferometry where changes in the full waveforms of coda waves are used to monitor changes in the subsurface. We have developed and implemented the theory to use this technique to monitor the following changes: a change in the seismic velocity, a change in scatterer locations, and a change in the location of earthquakes. As shown by Aki, the seismic coda is dominated by shear waves. Therefore our technique is primarily sensitive to changes in the S-velocity. Aki also worked on wave propagation in volcanoes. We have used coda wave interferometry to monitor two active volcanoes, Arenal (Costa Rica) and Mt. Erebus (Antarctica). I will give several examples to illustrate how coda waves can be used for monitoring purposes.

  12. Bibliography of spatial interferometry in optical astronomy

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude

    1990-01-01

    The Bibliography of Spatial Interferometry in Optical Astronomy is a guide to the published literature in applications of spatial interferometry techniques to astronomical observations, theory and instrumentation at visible and infrared wavelengths. The key words spatial and optical define the scope of this discipline, distinguishing it from spatial interferometry at radio wavelengths, interferometry in the frequency domain applied to spectroscopy, or more general electro-optics theoretical and laboratory research. The main bibliography is a listing of all technical articles published in the international scientific literature and presented at the major international meetings and workshops attended by the spatial interferometry community. Section B summarizes publications dealing with the basic theoretical concepts and algorithms proposed and applied to optical spatial interferometry and imaging through a turbulent atmosphere. The section on experimental techniques is divided into twelve categories, representing the most clearly identified major areas of experimental research work. Section D, Observations, identifies publications dealing specifically with observations of astronomical sources, in which optical spatial interferometry techniques have been applied.

  13. Matter wave interferometry as a tool for molecule metrology

    NASA Astrophysics Data System (ADS)

    Gerlich, Stefan; Gring, Michael; Ulbricht, Hendrik; Hornberger, Klaus; Tuexen, Jens; Mayor, Marcel; Arndt, Markus

    2009-03-01

    Kapitza-Dirac-Talbot-Lau interferometry (KDTLI) has recently been established as an ideal method to perform quantum matter wave experiments with large, highly polarizable molecules in an unprecedented mass range of beyond 1000 atomic mass units [1]. Since the interference visibility reveals important information on the properties of the examined particles, such as their mass and polarizability, we identified KDTLI as a valuable tool for precision metrology. We demonstrate that quantum interferometry can therefore also serve as a powerful complement to mass spectrometry [2], in particular in cases where fragmentation may occur in the detector. Our new method is applicable to a wide range of molecules and is particularly valuable for characterizing neutral molecular beams. [1] S. Gerlich, L. Hackerm"uller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. M"uri, M. Mayor, M. Arndt, Nat. Phys. 2007, 3, 711 - 715. [2] Stefan Gerlich, Michael Gring, Hendrik Ulbricht, Klaus Hornberger, Jens T"uxen, Marcel Mayor, and Markus Arndt, Angew. Chem. Int. Ed. 2008, 47, 6195 - 6198.

  14. Kaon Condensation and Lambda-Nucleon Loop in the Relativistic Mean-Field Approach

    SciTech Connect

    Tomoyuki Maruyama; Takumi Muto; Toshitaka Tatsumi; Kazuo Tsushima; Anthony W. Thomas

    2005-02-24

    The possibility of kaon condensation in high-density symmetric nuclear matter is investigated including both s- and p-wave kaon-baryon interactions within the relativistic mean-field (RMF) theory. Above a certain density, we have a collective K{sub s} state carrying the same quantum numbers as the antikaon. The appearance of the K{sub s} state is caused by the time component of the axial-vector interaction between kaons and baryons. It is shown that the system becomes unstable with respect to condensation of K-Kbar{sub s} pairs. We consider how the effective baryon masses affect the kaon self-energy coming from the time component of the axial-vector interaction. Also, the role of the spatial component of the axial-vector interaction on the possible existence of the collective kaonic states is discussed in connection with Lambda-mixing effects in the ground state of high-density matter. Implications of K-Kbar{sub s} condensation for high-energy heavy-ion collisions are briefly mentioned.

  15. Kaon Tagging at 0° Scattering Angle for High-Resolution Decay-Pion Spectroscopy

    NASA Astrophysics Data System (ADS)

    Esser, Anselm; Achenbach, Patrick; Arai, Naoki; Ayerbe Gayoso, Carlos; Böhm, Ralph; Borodina, Olga; Bosnar, Damir; Bozkurt, Vakkas; Debenjak, Luka; Distler, Michael O.; Friščić, Ivica; Fujii, Yuu; Gogami, Toshiyuki; Gómez Rodríguez, Mar; Hashimoto, Osamu; Hirose, Satoshi; Kanda, Hiroki; Kaneta, Masashi; Kim, Eunhee; Kusaka, Junichiro; Maeda, Kazushige; Margaryan, Amur; Merkel, Harald; Müller, Ulrich; Nagao, Sho; Nakamura, Satoshi N.; Pochodzalla, Josef; Rappold, Christophe; Reinhold, Joerg; Saito, Takehiko R.; Sanchez Lorente, Alicia; Sánchez Majos, Salvador; Sören Schlimme, Björn; Schoth, Matthias; Schulz, Florian; Sfienti, Concettina; Širca, Simon; Tang, Liguang; Thiel, Michaela; Tsukada, Kyo

    2014-03-01

    At the Mainz Microtron hypernuclei can be studied by (e,e'K) reactions. By detecting the kaon which is emitted in forward direction, with the KAOS spectrometer placed at 0° scattering angle, reactions involving open strangeness production are tagged. High-resolution magnetic spectrometers are then used to coincidentally detect the monoenergetic decay-pions from mesonic two-body weak decays of light hypernuclei at rest. As a pioneering experiment has confirmed, the KAOS spectrometer is exposed to a large flux of background particles, mostly positrons from bremsstrahlung pair production. In order to increase the effciency of kaon identification the KAOS spectrometer was modified to suppress background particles at the cost of a high momentum resolution, which is less important for this experiment. This was achieved by placing up to 14 cm of lead absorbers in front of the detectors, in which positrons are blocked by forming electromagnetic showers while the effect on kaons is limited. An additional time-of-flight wall and a new threshold Čerenkov detector help to increase the detection effciency of kaons.

  16. Kaon femtoscopy in =200 GeV central Au+Au collsions at STAR

    NASA Astrophysics Data System (ADS)

    Vértesi, Róbert; Star Collaboration

    2014-05-01

    Three-dimensional analyses of the pion source revealed a heavy, non-Gaussian tail in the direction of the pair transverse momentum. The interpretation of these pion sources in terms of pure hydrodynamical evolution is, however, complicated by the strong contribution of feed-down from long-lived resonances to the source. On the other hand, kaons provide a much cleaner probe of the expanding fireball. Here we present a recent three-dimensional kaon correlation analysis using Cartesian harmonics decomposition technique. In contrary to pions, the three-dimensional source function of kaons is largely Gaussian. Comparison with thermal simulations and a hydrokinetic model show that resonance decays, as well as non-zero emission duration and/or rescattering in the hadronic phase play an important role. The analysis of the three dimensional extent of the kaon source w.r.t. the pair transverse momentum favors the hydrokinetic model over the exact mi-scaling featured by perfect hydrodynamical models.

  17. Parameterization of spectral distributions for pion and kaon production in proton-proton collisions

    NASA Technical Reports Server (NTRS)

    Schneider, John P.; Norbury, John W.; Cucinotta, Frank A.

    1995-01-01

    Accurate semi-empirical parameterizations of the energy-differential cross sections for charged pion and kaon production from proton-proton collisions are presented at energies relevant to cosmic rays. The parameterizations depend on the outgoing meson momentum and also the proton energy, and are able to be reduced to very simple analytical formulas suitable for cosmic-ray transport.

  18. Simulations for Light Collection Efficiency (Jlab Hall C 12 GeV Kaon Aerogel Detector)

    NASA Astrophysics Data System (ADS)

    Rothgeb, Laura

    2011-10-01

    Studying the additional flavor degree of freedom in charged kaon production allows for an unexampled insight into the transition from hadronic to partonic degrees of freedom in exclusive processes and specifically the reaction mechanism underlying strangeness production. This unique opportunity has gone greatly unexplored, however, because of the challenges posed by the experimental factors. One of these challenges is determining a method of separation for kaons from pion and proton backgrounds at high momenta. The simplest and most cost-effective solution is the implementation of a kaon aerogel Cherenkov detector. At the Catholic University of America, we are building such a detector for use in the 12GeV Hall C Super High Momentum Spectrometer at Jefferson Lab. The detector will use photo multiplier tubes to collect the Cherenkov radiation given off by the aerogel and convert that signal into analyzable data that will be used to determine the form factor of the kaon, which will yield a greater understanding of the internal structure of the proton. In this presentation I will present the results from the simulations carried out to optimize the aerogel coverage and study the effect of light guides on the efficiency of the detector. Supported in part by NSF grants PHY 1019521 and 1039446.

  19. Field fluctuations measured by interferometry

    NASA Astrophysics Data System (ADS)

    Glauber, R. J.; Orozco, L. A.; Vogel, K.; Schleich, W. P.; Walther, H.

    2010-09-01

    We derive the complete photon count statistics of an interferometer based on two beam splitters. As a special case we consider a joint intensity-electric field measurement. Our approach is based on the transformation properties of state vectors as well as field operators at a beam splitter. The work presented here was stimulated by discussions during the Lake Garda Conference 2001. The recent experimental interest in six-port interferometry has moved us to return to the problem. We feel, moreover, that the topic is appropriate for the Festschrift in honour of Stig Stenholm since he can truly be considered a pioneer in the field of quantum networks. We hope that our discussion may pique his interest.

  20. Michelson interferometry with Keck I

    NASA Astrophysics Data System (ADS)

    Tuthill, Peter G.; Monnier, John D.; Danchi, William C.; Haniff, Christopher A.

    1998-07-01

    We have used the technique of aperture masking to transform the 10m Keck telescope into a separate-element, multiple aperture Michelson interferometer. This has allowed a dramatic gain in signal-to-noise to be achieved as compared to conventional full-pupil interferometry for bright targets such as evolved giant and supergiant stars. Preliminary results from a program of near-IR diffraction-limited imaging of such stars are presented. Multi-wavelength images in the IR JHK and L bands have revealed complex and asymmetric morphologies in the inner dust shells surrounding a number of proto-typical dust-enshrouded IR stars. In addition, we have imaged the stellar photospheres of some of our largest target stars, allowing us to measure diameters and search for structure, such as giant convective cells, on the stellar surface.

  1. Synthetic aperture interferometry: error analysis

    SciTech Connect

    Biswas, Amiya; Coupland, Jeremy

    2010-07-10

    Synthetic aperture interferometry (SAI) is a novel way of testing aspherics and has a potential for in-process measurement of aspherics [Appl. Opt.42, 701 (2003)].APOPAI0003-693510.1364/AO.42.000701 A method to measure steep aspherics using the SAI technique has been previously reported [Appl. Opt.47, 1705 (2008)].APOPAI0003-693510.1364/AO.47.001705 Here we investigate the computation of surface form using the SAI technique in different configurations and discuss the computational errors. A two-pass measurement strategy is proposed to reduce the computational errors, and a detailed investigation is carried out to determine the effect of alignment errors on the measurement process.

  2. Differential spacecraft tracking by interferometry

    NASA Technical Reports Server (NTRS)

    Border, James S.; Folkner, William M.

    1990-01-01

    This study estimates measurement system errors for two space vehicles on the surface of Mars, and for two Mars orbiting spacecraft, which are being tracked by differential interferometry. In these examples, signals from all spacecraft lie within the same beamwidth of an earth-based radio antenna. The measurements of all spacecraft signals are made simultaneously; errors that scale with angular source separation or with temporal separation between measurement epochs are practically removed. It is shown that errors due to system thermal noise and to systematic effects within ground receiver electronics dominate, except for geometries when signals pass close to the sun, when solar plasma becomes the dominant error source. The instantaneous relative position of two orbiters may be measured to within ten meters, leading to 50-meter three-dimensional orbital accuracy.

  3. Uncertainty formulations for multislit interferometry

    NASA Astrophysics Data System (ADS)

    Biniok, Johannes C. G.

    2014-12-01

    In the context of (far-field) multislit interferometry we investigate the utility of two formulations of uncertainty in accounting for the complementarity of spatial localization and fringe width. We begin with a characterization of the relevant observables and general considerations regarding the suitability of different types of measures. The detailed analysis shows that both of the discussed uncertainty formulations yield qualitatively similar results, confirming that they correctly capture the relevant tradeoff. One approach, based on an idea of Aharonov and co-workers, is intuitively appealing and relies on a modification of the Heisenberg uncertainty relation. The other approach, developed by Uffink and Hilgevoord for single- and double-slit experiments, is readily applied to multislits. However, it is found that one of the underlying concepts requires generalization and that the choice of the parameters requires more consideration than was known.

  4. Signal competition in heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    de La Rochefoucauld, Ombeline; Khanna, Shyam M.; Olson, Elizabeth S.

    2006-06-01

    The Organ of Corti is a complex structure with many reflecting surfaces characterized by a wide range of reflectivities. Heterodyne interferometry has been the primary technique for measuring motion of the cochlear sensory tissue for some time. We would like to know under what conditions reflections from out-of-focus surfaces affect the measured velocity of the in-focus surface. Heterodyne interferometry uses interference between two laser beams (object and reference). The velocity of the test object shifts the frequency of the object beam due to the Doppler effect. The heterodyne signal (a frequency modulated (FM) wave) is decoded using a frequency demodulator. By reviewing the theory of FM demodulation and showing tests with our Revox FM demodulator, we demonstrate that the influence of a secondary signal on a measurement depends on the modulation index (ratio of the frequency deviation (Δf=2V °/λ) to the modulation frequency, f m where V ° is the velocity amplitude and λ is the laser wavelength). For high-modulation-index signals, the fundamental component of the FM demodulator output is not affected by a secondary signal unless the secondary signal's power is nearly as large as that of the primary signal. However, the output waveform can be distorted. For a low-modulation-index signal, a secondary competing signal can have a relatively large effect on the fundamental component of the output signal, but the output signal waveform is not distorted. The results underscore the benefit of steep optical sectioning to reduce contamination by out-of-focus signals.

  5. Fringe Formation in Dual-Hologram Interferometry

    NASA Technical Reports Server (NTRS)

    Burner, A. W.

    1989-01-01

    A first order geometrical optics treatment of holograms combined with the generation of interference fringes by two point sources is used to describe reference fringe formation in non-diffuse dual-hologram interferometry.

  6. Pion-Kaon correlations in central Au+Au collisions at square root [sNN] = 130 GeV.

    PubMed

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Ganti, M S; Gutierrez, T D; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Rykov, V; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, H Y; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2003-12-31

    Pion-kaon correlation functions are constructed from central Au+Au STAR data taken at sqrt[s(NN)]=130 GeV by the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The results suggest that pions and kaons are not emitted at the same average space-time point. Space-momentum correlations, i.e., transverse flow, lead to a space-time emission asymmetry of pions and kaons that is consistent with the data. This result provides new independent evidence that the system created at RHIC undergoes a collective transverse expansion. PMID:14754044

  7. Fringe formation in dual-hologram interferometry

    NASA Technical Reports Server (NTRS)

    Burner, A. W.

    1990-01-01

    Reference-fringe formation in nondiffuse dual-hologram interferometry is described by combining a first-order geometrical hologram treatment with interference fringes generated by two point sources. The first-order imaging relationships can be used to describe reference-fringe patterns for the geometry of the dual-hologram interferometry. The process can be completed without adjusting the two holograms when the reconstructing wavelength is less than the exposing wavelength, and the process is found to facilitate basic intereferometer adjustments.

  8. Multi-chord fiber-coupled interferometry of supersonic plasma jets (invited)

    SciTech Connect

    Merritt, Elizabeth C.; Lynn, Alan G.; Gilmore, Mark A.; Thoma, Carsten; Loverich, John; Hsu, Scott C.

    2012-10-15

    A multi-chord fiber-coupled interferometer is being used to make time-resolved density measurements of supersonic argon plasma jets on the Plasma Liner Experiment. The long coherence length of the laser (>10 m) allows signal and reference path lengths to be mismatched by many meters without signal degradation, making for a greatly simplified optical layout. Measured interferometry phase shifts are consistent with a partially ionized plasma in which both positive and negative phase shift values are observed depending on the ionization fraction. In this case, both free electrons and bound electrons in ions and neutral atoms contribute to the index of refraction. This paper illustrates how the interferometry data, aided by numerical modeling, are used to derive total jet density, jet propagation velocity ({approx}15-50 km/s), jet length ({approx}20-100 cm), and 3D expansion.

  9. Spectral Interferometry with Electron Microscopes.

    PubMed

    Talebi, Nahid

    2016-01-01

    Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential. PMID:27649932

  10. Neutron interferometry with cold stage

    NASA Astrophysics Data System (ADS)

    Mineeva, Taisiya; Arif, M.; Huber, M. G.; Shahi, C. B.; Clark, C. W.; Cory, D. G.; Nsofini, J.; Sarenac, D.; Pushin, D. A.

    Neutron interferometry (NI) is amongst the most precise methods for characterizing neutron interactions by measuring the relative difference between two neutron paths, one of which contains a sample-of-interest. Because neutrons carry magnetic moment and are deeply penetrating, they are excellent probes to investigate properties of magnetic materials. The advantage of NI is its unique sensitivity which allows to directly measure magnetic and structural transitions in materials. Up to now NI has been sparingly used in material research due to its sensitivity to environmental noise. However, recent successes in implementing Quantum Error Correction principles lead to an improved NI design making it robust against mechanical vibrations. Following these advances, a new user facility at the National Institute for Standards and Technology was built to study condensed matter applications, biology and quantum physics. Incorporating cold sample stage inside NI is the first of its kind experiment which can be carried out on large range of temperatures down to 4K. Upon successful realization, it will open new frontiers to characterize magnetic domains, phase transitions and spin properties in a variety of materials such as, for example, iron-based superconductors and spintronic materials. Supported in part by CERC, CIFAR, NSERC and CREATE.

  11. Spectral Interferometry with Electron Microscopes

    PubMed Central

    Talebi, Nahid

    2016-01-01

    Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential. PMID:27649932

  12. Spectral Interferometry with Electron Microscopes.

    PubMed

    Talebi, Nahid

    2016-01-01

    Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential.

  13. Precision optical interferometry in space

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.

    1993-01-01

    POINTS, an astrometric Optical interferometer with a nominal measurement accuracy of 5 microarcseconds for the angle between a pair of stars separated by about 90 deg, is presently under consideration by two divisions of NASA-OSSA. It will be a powerful new multi-disciplinary tool for astronomical research. If chosen as the TOPS-1 (Toward Other Planetary Systems) instrument by the Solar-System Exploration Division, it will perform a definitive search for extra-solar planetary systems, either finding and characterizing a large number of them or showing that they are far less numerous than now believed. If chosen as the AIM (Astrometric Interferometry Mission) by the Astrophysics Division, POINTS will open new areas of astrophysical research and change the nature of the questions being asked in some old areas. In either case. it will be the first of a new class of powerful instruments in space and will prove the technology for the larger members of that class to follow. Based on a preliminary indication of the observational needs of the two missions, we find that a single POINTS mission will meet the science objectives of both TOPS-1 and AIM. The instrument detects dispersed fringe (channel led spectrum) and therefore can tolerate large pointing errors.

  14. Persistent Scatterer Interferometry Using SENTINEL-1 Data

    NASA Astrophysics Data System (ADS)

    Crosetto, M.; Monserrat, O.; Devanthéry, N.; Cuevas-González, M.; Barra, A.; Crippa, B.

    2016-06-01

    This paper is focused on deformation monitoring using a Persistent Scatterer Interferometry technique and the interferometric SAR data acquired by the Sentinel-1 satellite of the European Space Agency. The first part of the paper describes the procedure used to process and analyze Sentinel-1 interferometric SAR data. Two main approaches are described. The first one is a simplified Persistent Scatterer Interferometry approach that exploits two key properties of the Sentinel-1 data: the high coherence of the 12-day interferograms and the reduced orbital tube. The second approach is a full Persistent Scatterer Interferometry approach, where a more sophisticate data treatment is employed. The second part of the paper illustrates the results obtained with the two processing approaches. Two case studies are described. The first one concerns landslide detection and monitoring. In this case, the simplified Persistent Scatterer Interferometry approach was used. The second one regards the deformation monitoring of an urban area. In this case, a full Persistent Scatterer Interferometry approach was used.

  15. Exclusive channels in semi-inclusive production of pions and kaons

    SciTech Connect

    Markus Diehl; Wolfgang Kugler; Andreas Schaefer; Christian Weiss

    2005-06-01

    We investigate the role of exclusive channels in semi-inclusive electroproduction of pions and kaons. Using the QCD factorization theorem for hard exclusive processes we evaluate the cross sections for exclusive pseudoscalar and vector meson production in terms of generalized parton distributions and meson distribution amplitudes. We investigate the uncertainties arising from the modeling of the nonperturbative input quantities. Combining these results with available experimental data, we compare the cross sections for exclusive channels to that obtained from quark fragmentation in semi-inclusive deep inelastic scattering. We find that rho0 production is the only exclusive channel with significant contributions to semi-inclusive pion production at large z and moderate Q2. The corresponding contribution to kaon production from the decay of exclusively produced phi and Kstar is rather small.

  16. Measurement of pion, kaon and proton production in proton-proton collisions at TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Rinella, G. Aglieri; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmed, I.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Molina, R. Alfaro; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Prado, C. Alves Garcia; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Pedrosa, F. Baltasar Dos Santos; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Camejo, A. Batista; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Martinez, H. Bello; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, S.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Diaz, L. Calero; Caliva, A.; Villar, E. Calvo; Camerini, P.; Carena, F.; Carena, W.; Castellanos, J. Castillo; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Sanchez, C. Ceballos; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Barroso, V. Chibante; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Balbastre, G. Conesa; Valle, Z. Conesa del; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Morales, Y. Corrales; Maldonado, I. Cortés; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Albino, R. Cruz; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; Caro, A. De; Cataldo, G. de; Cuveland, J. de; Falco, A. De; Gruttola, D. De; Marco, N. De; Pasquale, S. De; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; Bari, D. Di; Mauro, A. Di; Nezza, P. Di; Corchero, M. A. Diaz; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Gimenez, D. Domenicis; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erhardt, F.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Téllez, A. Fernández; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Girard, M. Fusco; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Dziadus, E. Gladysz; Glässel, P.; Ramirez, A. Gomez; Zamora, P. González; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Corral, G. Herrera; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Bustamante, R. T. Jimenez; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Uysal, A. Karasu; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Kox, S.; Meethaleveedu, G. Koyithatta; Kral, J.; Králik, I.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; Pointe, S. L. La; Rocca, P. La; Fernandes, C. Lagana; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; Monzón, I. León; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Loizides, C.; Lopez, X.; Torres, E. López; Lowe, A.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luparello, G.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Cervantes, I. Maldonado; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Blanco, J. Martin; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Pedreira, M. Martinez; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Masui, H.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Pérez, J. Mercado; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Zetina, L. Montaño; Montes, E.; Morando, M.; Godoy, D. A. Moreira De; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Silva, A. C. Oliveira Da; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Velasquez, A. Ortiz; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Costa, H. Pereira Da; Filho, E. Pereira De Oliveira; Peresunko, D.; Lara, C. E. Pérez; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Cahuantzi, M. Rodríguez; Manso, A. Rodriguez; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Montero, A. J. Rubio; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Castro, X. Sanchez; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seeder, K. S.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Stassinaki, M. Spyropoulou; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Toledo, A. Szanto de; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tanaka, N.; Tangaro, M. A.; Takaki, J. D. Tapia; Peloni, A. Tarantola; Tariq, M.; Tarzila, M. G.; Tauro, A.; Muñoz, G. Tejeda; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Palomo, L. Valencia; Vallero, S.; Maarel, J. Van Der; Hoorne, J. W. Van; Leeuwen, M. van; Vanat, T.; Vyvre, P. Vande; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Limón, S. Vergara; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Baillie, O. Villalobos; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Haller, B. von; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yano, S.; Yasnopolskiy, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2015-05-01

    The measurement of primary , , and production at mid-rapidity ( 0.5) in proton-proton collisions at 7 TeV performed with a large ion collider experiment at the large hadron collider (LHC) is reported. Particle identification is performed using the specific ionisation energy-loss and time-of-flight information, the ring-imaging Cherenkov technique and the kink-topology identification of weak decays of charged kaons. Transverse momentum spectra are measured from 0.1 up to 3 GeV/ for pions, from 0.2 up to 6 GeV/ for kaons and from 0.3 up to 6 GeV/ for protons. The measured spectra and particle ratios are compared with quantum chromodynamics-inspired models, tuned to reproduce also the earlier measurements performed at the LHC. Furthermore, the integrated particle yields and ratios as well as the average transverse momenta are compared with results at lower collision energies.

  17. Charged kaon femtoscopic correlations in pp collisions at s=7TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agocs, A. G.; Agostinelli, A.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahn, S. U.; Ahn, S. A.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alici, A.; Alkin, A.; Almaráz Aviña, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Böttger, S.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Braidot, E.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carlin Filho, N.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chawla, I.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Colamaria, F.; Colella, D.; Collu, A.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, S.; Das, I.; Das, D.; Das, K.; Dash, A.; Dash, S.; De, S.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Deloff, A.; De Marco, N.; Dénes, E.; De Pasquale, S.; Deppman, A.; D Erasmo, G.; de Rooij, R.; Diaz Corchero, M. A.; Di Bari, D.; Dietel, T.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Dutta Majumdar, M. R.; Elia, D.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, M.; Gheata, A.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Ferreiro, E. G.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, S.; Grigoryan, A.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Han, B. H.; Hanratty, L. D.; Hansen, A.; Harmanová-Tóthová, Z.; Harris, J. W.; Hartig, M.; Harton, A.; Hasegan, D.; Hatzifotiadou, D.; Hayashi, S.; Hayrapetyan, A.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, N.; Hess, B. A.; Hetland, K. F.; Hicks, B.; Hippolyte, B.; Hori, Y.; Hristov, P.; Hřivnáčová, I.; Huang, M.; Humanic, T. J.; Hwang, D. S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Innocenti, P. G.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, V.; Ivanov, A.; Ivanov, M.; Ivanytskyi, O.; Jachołkowski, A.; Jacobs, P. M.; Jang, H. J.; Janik, M. A.; Janik, R.; Jayarathna, P. H. S. Y.; Jena, S.; Jha, D. M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kaidalov, A. B.; Kalcher, S.; Kaliňák, P.; Kalliokoski, T.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Khan, M. M.; Khan, P.; Khan, K. H.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, S.; Kim, M.; Kim, M.; Kim, J. S.; Kim, J. H.; Kim, D. W.; Kim, B.; Kim, D. J.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kliemant, M.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kompaniets, M.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kour, R.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krawutschke, T.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A. B.; Kurepin, A.; Kuryakin, A.; Kushpil, V.; Kushpil, S.; Kvaerno, H.; Kweon, M. J.; Kwon, Y.; Ladrón de Guevara, P.; Lakomov, I.; Langoy, R.; La Pointe, S. L.; Lara, C.; Lardeux, A.; La Rocca, P.; Lea, R.; Lechman, M.; Lee, G. R.; Lee, K. S.; Lee, S. C.; Legrand, I.; Lehnert, J.; Lenhardt, M.; Lenti, V.; León, H.; León Monzón, I.; León Vargas, H.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Loo, K. K.; Lopez, X.; López Torres, E.; Løvhøiden, G.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luzzi, C.; Ma, K.; Ma, R.; Madagodahettige-Don, D. M.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez Davalos, A.; Martínez García, G.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matthews, Z. L.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhailov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitu, C.; Mizuno, S.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Monteno, M.; Montes, E.; Moon, T.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Musa, L.; Musinsky, J.; Musso, A.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Navin, S.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Niida, T.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Nilsson, M. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Novitzky, N.; Nyanin, A.; Nyatha, A.; Nygaard, C.; Nystrand, J.; Ochirov, A.; Oeschler, H.; Oh, S. K.; Oh, S.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Ostrowski, P.; Otwinowski, J.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palaha, A.; Palmeri, A.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Piano, S.; Piccotti, A.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piyarathna, D. B.; Planinic, M.; Płoskoń, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polák, K.; Polichtchouk, B.; Pop, A.; Porteboeuf-Houssais, S.; Pospíšil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Punin, V.; Putiš, M.; Putschke, J.; Quercigh, E.; Qvigstad, H.; Rachevski, A.; Rademakers, A.; Räihä, T. S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Ramírez Reyes, A.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riccati, L.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roy, P.; Roy, C.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahoo, R.; Sahu, P. K.; Saini, J.; Sakaguchi, H.; Sakai, S.; Sakata, D.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Santoro, R.; Sarkamo, J.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, H. R.; Schmidt, C.; Schuchmann, S.; Schukraft, J.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Selyuzhenkov, I.; Senyukov, S.; Seo, J.; Serci, S.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Sharma, S.; Sharma, N.; Rohni, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Sicking, E.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, T.; Sinha, B. C.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J. M.; Søgaard, C.; Soltz, R.; Son, H.; Song, M.; Song, J.; Soos, C.; Soramel, F.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Subieta Vásquez, M. A.; Sugitate, T.; Suire, C.; Sultanov, R.; Šumbera, M.; Susa, T.; Symons, T. J. M.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szostak, A.; Szymański, M.; Takahashi, J.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Tlusty, D.; Toia, A.; Torii, H.; Toscano, L.; Trubnikov, V.; Truesdale, D.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Ulrich, J.; Uras, A.; Urbán, J.; Urciuoli, G. M.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, Y.; Vinogradov, L.; Vinogradov, A.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Voloshin, K.; Voloshin, S.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, V.; Wagner, B.; Wan, R.; Wang, D.; Wang, M.; Wang, Y.; Wang, Y.; Watanabe, K.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, A.; Wilk, G.; Williams, M. C. S.; Windelband, B.; Xaplanteris Karampatsos, L.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yoon, J.; Yu, W.; Yuan, X.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zelnicek, P.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhou, D.; Zhou, Y.; Zhou, F.; Zhu, J.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.

    2013-03-01

    Correlations of two charged identical kaons (KchKch) are measured in pp collisions at s=7TeV by the ALICE experiment at the Large Hadron Collider (LHC). One-dimensional KchKch correlation functions are constructed in three multiplicity and four transverse momentum ranges. The KchKch femtoscopic source parameters R and λ are extracted. The KchKch correlations show a slight increase of femtoscopic radii with increasing multiplicity and a slight decrease of radii with increasing transverse momentum. These trends are similar to the ones observed for ππ and Ks0Ks0 correlations in pp and heavy-ion collisions. However at high multiplicities, there is an indication that the one-dimensional correlation radii for charged kaons are larger than those for pions in contrast to what was observed in heavy-ion collisions at the Relativistic Heavy-Ion Collider.

  18. Sivers asymmetries for inclusive pion and kaon production in deep-inelastic scattering

    SciTech Connect

    Ellis, John; Hwang, Dae Sung; Kotzinian, Aram

    2009-10-01

    We calculate the Sivers distribution functions induced by the final-state interaction due to one-gluon exchange in diquark models of a nucleon structure, treating the cases of scalar and axial-vector diquarks with both dipole and Gaussian form factors. We use these distribution functions to calculate the Sivers single-spin asymmetries for inclusive pion and kaon production in deep-inelastic scattering. We compare our calculations with the results of HERMES and COMPASS, finding good agreement for {pi}{sup +} production at HERMES, and qualitative agreement for {pi}{sup 0} and K{sup +} production. Our predictions for pion and kaon production at COMPASS could be probed with increased statistics. The successful comparison of our calculations with the HERMES data constitutes prima facie evidence that the quarks in the nucleon have some orbital angular momentum in the infinite-momentum frame.

  19. Study of Branching Ratio And Polarization Fraction in Neutral B Meson Decays to Negative Rho Meson Positive Kaon Resonance

    SciTech Connect

    Cheng, Baosen; /Wisconsin U., Madison

    2006-03-07

    We present the preliminary results on the search for B{sup 0} {yields} {rho}{sup -}K*{sup +}. The data sample comprises 122.7 million B{bar B} pairs in the e{sup +}e{sup -} annihilation through the {Upsilon}(4S) resonance collected during 1999-2003 with the BABAR detector at the PEP-II asymmetric-energy collider at Stanford Linear Accelerator Center (SLAC). We obtain an upper limit of the branching ratio at 90% confidence level as {Beta}(B{sup 0} {yields} {rho}{sup -}K*{sup +}) < 17.2 x 10{sup -6}. The fitted result on the polarization fraction shows no evidence that the decay is longitudinally dominated as predicted by various theoretical models.

  20. Flavor dependence of the pion and kaon form factors and parton distribution functions

    NASA Astrophysics Data System (ADS)

    Hutauruk, Parada T. P.; Cloët, Ian C.; Thomas, Anthony W.

    2016-09-01

    The separate quark flavor contributions to the pion and kaon valence quark distribution functions are studied, along with the corresponding electromagnetic form factors in the space-like region. The calculations are made using the solution of the Bethe-Salpeter equation for the model of Nambu and Jona-Lasinio with proper-time regularization. Both the pion and kaon form factors and the valence quark distribution functions reproduce many features of the available empirical data. The larger mass of the strange quark naturally explains the empirical fact that the ratio uK+(x ) /uπ+(x ) drops below unity at large x , with a value of approximately Mu2/Ms2 as x →1 . With regard to the elastic form factors we report a large flavor dependence, with the u -quark contribution to the kaon form factor being an order of magnitude smaller than that of the s -quark at large Q2, which may be a sensitive measure of confinement effects in QCD. Surprisingly though, the total K+ and π+ form factors differ by only 10%. In general we find that flavor breaking effects are typically around 20%.

  1. Optical intensity interferometry through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Tan, P. K.; Chan, A. H.; Kurtsiefer, C.

    2016-04-01

    Conventional ground-based astronomical observations suffer from image distortion due to atmospheric turbulence. This can be minimized by choosing suitable geographic locations or adaptive optical techniques, and avoided altogether by using orbital platforms outside the atmosphere. One of the promises of optical intensity interferometry is its independence from atmospherically induced phase fluctuations. By performing narrow-band spectral filtering on sunlight and conducting temporal intensity interferometry using actively quenched avalanche photodiodes, the Solar g(2)(τ) signature was directly measured. We observe an averaged photon bunching signal of g(2)(τ) = 1.693 ± 0.003 from the Sun, consistently throughout the day despite fluctuating weather conditions, cloud cover and elevation angle. This demonstrates the robustness of the intensity interferometry technique against atmospheric turbulence and opto-mechanical instabilities, and the feasibility to implement measurement schemes with both large baselines and long integration times.

  2. Measuring subwavelength spatial coherence with plasmonic interferometry

    NASA Astrophysics Data System (ADS)

    Morrill, Drew; Li, Dongfang; Pacifici, Domenico

    2016-10-01

    Optical interferometry has enabled quantification of the spatial and temporal correlations of electromagnetic fields, which laid the foundations for the theory of optical coherence. Despite significant advances in fundamental theories and applications, the measurement of nanoscale coherence lengths for highly incoherent optical fields has remained elusive. Here, we employ plasmonic interferometry (that is, optical interferometry with surface plasmons) to characterize the spatial degree of coherence of light beams down to subwavelength scales, with measured coherence lengths as low as ∼330 nm for an incident wavelength of 500 nm. Furthermore, we demonstrate a compact coherence meter that integrates this method with an image sensor. Precise determination of spatial coherence can advance high-resolution imaging and tomographic schemes, and provide an experimental platform for the development and testing of optical coherence theories at the nanoscale.

  3. Soft x-ray interferometry

    SciTech Connect

    Not Available

    1993-09-01

    The purpose of the soft x-ray interferometry workshop held at Lawrence Berkeley Laboratory was to discuss with the scientific community the proposed technical design of the soft x-ray Fourier-transform spectrometer being developed at the ALS. Different design strategies for the instrument`s components were discussed, as well as detection methods, signal processing issues, and how to meet the manufacturing tolerances that are necessary for the instrument to achieve the desired levels of performance. Workshop participants were encouraged to report on their experiences in the field of Fourier transform spectroscopy. The ALS is developing a Fourier transform spectrometer that is intended to operate up to 100 eV. The motivation is solely improved resolution and not the throughput (Jaquinot) or multiplex (Fellgett) advantage, neither of which apply for the sources and detectors used in this spectral range. The proposed implementation of this is via a Mach-Zehnder geometry that has been (1) distorted from a square to a rhombus to get grazing incidence of a suitable angle for 100 eV and (2) provided with a mirror-motion system to make the path difference between the interfering beams tunable. The experiment consists of measuring the emergent light intensity (I(x)) as a function of the path difference (x). The resolving power of the system is limited by the amount of path difference obtainable that is 1 cm (one million half-waves at 200{angstrom} wavelength) in the design thus allowing a resolving power of one million. The free spectral range of the system is limited by the closeness with which the function I(x) is sampled. It is proposed to illuminate a helium absorption cell with roughly 1%-band-width light from a monochromator thus allowing one hundred aliases without spectral overlap even for sampling of I(x) at one hundredth of the Nyquist frequency.

  4. Advances in Small-Telescope Speckle Interferometry

    NASA Astrophysics Data System (ADS)

    Rowe, David J.

    2016-06-01

    The current revolution in CMOS camera technology has enabled a new generation of small telescope systems targeted at the measurement of close binary systems using the techniques of speckle interferometry and bispectrum analysis. These inexpensive, ultra-sensitive, high resolution cameras are now outperforming CCD technology, and come at a truly affordable price. In addition, dedicated, user-friendly speckle interferometry reduction software has been developed for the amateur, making it easy to perform the otherwise complicated data processing tasks. This talk will address these recent advances in hardware and software, and describe some of the results of the informal amateur-professional collaboration that has formed around them.

  5. Global astrometry with the space interferometry mission

    NASA Technical Reports Server (NTRS)

    Boden, A.; Unwin, S.; Shao, M.

    1997-01-01

    The prospects for global astrometric measurements with the space interferometry mission (SIM) are discussed. The SIM mission will perform four microarcsec astrometric measurements on objects as faint as 20 mag using the optical interferometry technique with a 10 m baseline. The SIM satellite will perform narrow angle astrometry and global astrometry by means of an astrometric grid. The sensitivities of the SIM global astrometric performance and the grid accuracy versus instrumental parameters and sky coverage schemes are reported on. The problems in finding suitable astrometric grid objects to support microarcsec astrometry, and related ground-based observation programs are discussed.

  6. Altimetry Using GPS-Reflection/Occultation Interferometry

    NASA Technical Reports Server (NTRS)

    Cardellach, Estel; DeLaTorre, Manuel; Hajj, George A.; Ao, Chi

    2008-01-01

    A Global Positioning System (GPS)- reflection/occultation interferometry was examined as a means of altimetry of water and ice surfaces in polar regions. In GPS-reflection/occultation interferometry, a GPS receiver aboard a satellite in a low orbit around the Earth is used to determine the temporally varying carrier- phase delay between (1) one component of a signal from a GPS transmitter propagating directly through the atmosphere just as the GPS transmitter falls below the horizon and (2) another component of the same signal, propagating along a slightly different path, reflected at glancing incidence upon the water or ice surface.

  7. Holographic interferometry: A user`s guide

    SciTech Connect

    Griggs, D.

    1993-10-01

    This manual describes the procedures and components necessary to produce a holographic interferogram of a flow field in the Sandia National Laboratories hypersonic wind tunnel. In contrast to classical interferometry, holographic interferometry records the amplitude and phase distribution of a lightwave passing through the flow field at some instant of time. This information can then be reconstructed outside the wind tunnel for visual analysis and digital processing, yielding precise characterizations of aerodynamic phenomena. The reconstruction and subsequent hologram image storage process is discussed, with particular attention paid to the digital image processor and the data reduction technique.

  8. Spectral modulation interferometry for quantitative phase imaging

    PubMed Central

    Shang, Ruibo; Chen, Shichao; Li, Chengshuai; Zhu, Yizheng

    2015-01-01

    We propose a spectral-domain interferometric technique, termed spectral modulation interferometry (SMI), and present its application to high-sensitivity, high-speed, and speckle-free quantitative phase imaging. In SMI, one-dimensional complex field of an object is interferometrically modulated onto a broadband spectrum. Full-field phase and intensity images are obtained by scanning along the orthogonal direction. SMI integrates the high sensitivity of spectral-domain interferometry with the high speed of spectral modulation to quantify fast phase dynamics, and its dispersive and confocal nature eliminates laser speckles. The principle and implementation of SMI are discussed. Its performance is evaluated using static and dynamic objects. PMID:25780737

  9. A prototype storage ring for neutral molecules.

    PubMed

    Crompvoets, F M; Bethlem, H L; Jongma, R T; Meijer, G

    2001-05-10

    The ability to cool and manipulate atoms with light has yielded atom interferometry, precision spectroscopy, Bose-Einstein condensates and atom lasers. The extension of controlled manipulation to molecules is expected to be similarly rewarding, but molecules are not as amenable to manipulation by light owing to a far more complex energy-level spectrum. However, time-varying electric and magnetic fields have been successfully used to control the position and velocity of ions, suggesting that these schemes can also be used to manipulate neutral particles having an electric or magnetic dipole moment. Although the forces exerted on neutral species are many orders of magnitude smaller than those exerted on ions, beams of neutral dipolar molecules have been successfully slowed down in a series of pulsed electric fields and subsequently loaded into an electrostatic trap. Here we extend the scheme to include a prototype electrostatic storage ring made of a hexapole torus with a circumference of 80 cm. After injection, decelerated bunches of deuterated ammonia molecules, each containing about 106 molecules in a single quantum state and with a translational temperature of 10 mK, travel up to six times around the ring. Stochastic cooling might provide a means to increase the phase-space density of the stored molecules in the storage ring, and we expect this to open up new opportunities for molecular spectroscopy and studies of cold molecular collisions.

  10. The Doubling of 846 nm Light to Produce 423 nm Light for use in Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Archibald, James; Birrell, Jeremey; Tang, Rebecca; Erickson, Chris; Goggins, Landon; Durfee, Dallin

    2009-10-01

    We present progress on a 423 nm fluorescence probe/cooling laser for use in our neutral calcium atom interferometer. The finished system will include an 846 nm diode laser that is coupled to a tapered amplifier. This light will be sent to a buildup cavity where we will achieve second-harmonic generation (SHG) using either a BBO non-linear crystal or a periodically-poled KTP crystal. We will discuss the theoretical considerations relating to the doubling of light in a crystal and the construction of our buildup cavity. We will also discuss its proposed application for use in atom interferometry.

  11. Rare Kaon Decays, KEK experiment E391 and E14 at the Japan Physics and Accelerator Research Complex (J-PARC)

    SciTech Connect

    Wah, Yau Wai

    2012-12-06

    The goal of the J-PARC neutral kaon experiment (E14/KOTO) is to discover and measure the rate of the kaon rare decay to pi-zero and two neutrinos. This flavor changing neutral current decay proceeds through second-order weak interactions. Other, as yet undiscovered particles, which can mediate the decay could provide an enhancement (or depletion) to the branching ratio which in the Standard Model is accurately predicted within a few percent to be 2.8x10-11. The experiment is designed to observe more than 100 events at the Standard Model branching. It is a follow-up of the KEK E391a experiment and has stage-2 approval by J-PARC PAC in 2007. E14/KOTO has collaborators from Japan (Kyoto, Osaka, Yamagata, Saga), US (Arizona State, Chicago, Michigan Ann Arbor), Taiwan (National Taiwan), Korea, and Russia (Dubna). The experiment exploits the 300kW 30-50 GeV proton delivery of the J-PARC accelerator with a hermetic high acceptance detector with a fine grained Cesium Iodide (CsI) crystal calorimeter, and state of the art electronic front end and data acquisition system. With the recovery of the tsunami disaster on March 11th 2011, E14 is scheduled to start collecting data in December 2012. During the detector construction phase, Chicago focuses on the front end electronics readout of the entire detector system, particularly the CsI calorimeter. The CsI crystals together with its photomultipliers were previously used at the Fermilab KTeV experiment (E832/E799), and were loaned to E14 via this Chicago DOE support. The new readout electronics includes an innovative 10-pole pulse-shaping technique coupled with high speed digitization (14-bit 125MHz and 12-bit 500MHz). This new instrument enables us to measure both energy and timing, particularly with timing resolution better than 100 psec. Besides the cost saving by elimination of the standard time to digital converters, it is now possible to measure the momenta of the final state photons for additional background suppression

  12. Multiple Beam Interferometry in Elementary Teaching

    ERIC Educational Resources Information Center

    Tolansky, S.

    1970-01-01

    Discusses a relatively simple technique for demonstrating multiple beam interferometry. The technique can be applied to measuring (1) radii of curvature of lenses, (2) surface finish of glass, and (3) differential phase change on reflection. Microtopographies, modulated fringe systems and opaque objects may also be observed by this technique.…

  13. Apparatus and method for laser velocity interferometry

    DOEpatents

    Stanton, Philip L.; Sweatt, William C.; Crump, Jr., O. B.; Bonzon, Lloyd L.

    1993-09-14

    An apparatus and method for laser velocity interferometry employing a fixed interferometer cavity and delay element. The invention permits rapid construction of interferometers that may be operated by those non-skilled in the art, that have high image quality with no drift or loss of contrast, and that have long-term stability even without shock isolation of the cavity.

  14. Detection of deoxynivalenol using biolayer interferometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biolayer interferometry allows for the real time monitoring of the interactions between molecules without the need for reagents with enzymatic, fluorescent, or radioactive labels. The technology is based upon the changes in interference pattern of light reflected from the surface of an optical fiber...

  15. Radio interferometry: Techniques for Geodesy. [conference

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Progress in the development and application of radio interferometry as a tool for geophysical research is reported and discussed. Among the topics reviewed are: Surveys of is the Seventies, Movements, Terrestrial and Celestial, Degrees Kelvin and Degrees of Phase, the Mark 3 VLBI System, Waves of the Future and other Emissions, and Adherence and Coherence in Networks, and Plans.

  16. Freeze-out dynamics via charged kaon femtoscopy in sNN=200 GeV central Au + Au collisions

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Barnovska, Z.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bhattarai; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bruna, E.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, P.; Chwastowski, J.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks; Ding, F.; Dion, A.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elnimr, M.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Gliske, S.; Grebenyuk, O. G.; Grosnick, D.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hajkova, O.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Hays-Wehle, J. P.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jena, C.; Judd, E. G.; Kabana, S.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Kikola, D. P.; Kiryluk, J.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lima, L. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Mioduszewski, S.; Mitrovski, M. K.; Mohammed, Y.; Mohanty, B.; Mondal, M. M.; Munhoz, M. G.; Mustafa, M. K.; Naglis, M.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nogach, L. V.; Novak, J.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Oliveira, R. A. N.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Plyku, D.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Powell, C. B.; Pruneau, C.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, B.; Schmitz, N.; Schuster, T. R.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shao, M.; Sharma, B.; Sharma, M.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; deSouza, U. G.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y.; Xu, Z.; Yan; Yang, C.; Yang, Y.; Yang, Y.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.

    2013-09-01

    We present measurements of three-dimensional correlation functions of like-sign, low-transverse-momentum kaon pairs from sNN=200 GeV Au+Au collisions. A Cartesian surface-spherical harmonic decomposition technique was used to extract the kaon source function. The latter was found to have a three-dimensional Gaussian shape and can be adequately reproduced by Therminator event-generator simulations with resonance contributions taken into account. Compared to the pion one, the kaon source function is generally narrower and does not have the long tail along the pair transverse momentum direction. The kaon Gaussian radii display a monotonic decrease with increasing transverse mass mT over the interval of 0.55≤mT≤1.15 GeV/c2. While the kaon radii are adequately described by the mT -scaling in the outward and sideward directions, in the longitudinal direction the lowest mT value exceeds the expectations from a pure hydrodynamical model prediction.

  17. Neutral beam monitoring

    DOEpatents

    Fink, Joel H.

    1981-08-18

    Method and apparatus for monitoring characteristics of a high energy neutral beam. A neutral beam is generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange neutralizes the high energy ion beam. The neutral beam is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are further identified.

  18. Future Looks Bright for Interferometry

    NASA Astrophysics Data System (ADS)

    2008-09-01

    First Light for the PRIMA instrument The PRIMA instrument [1] of the ESO Very Large Telescope Interferometer (VLTI) recently saw "first light" at its new home atop Cerro Paranal in Chile. When fully operational, PRIMA will boost the capabilities of the VLTI to see sources much fainter than any previous interferometers, and enable astrometric precision unmatched by any other existing astronomical facility. PRIMA will be a unique tool for the detection of exoplanets. First Light of the PRIMA Instrument ESO PR Photo 29a/08 Preparing for PRIMA "PRIMA is specifically designed to see if one star 'wobbles' to and fro because it is has unseen planetary companions", says instrument scientist Gerard van Belle. "This allows us to not only detect exoplanets, but to measure their mass." PRIMA's expected astrometric precision of tens of micro-arcseconds is unmatched by any other existing astronomical facility, whether on the ground or in orbit [2]. In addition to taking astrometric measurements PRIMA will be the key to the imaging of faint sources with the VLTI using the science instruments AMBER and MIDI. Interferometry combines the light received by two or more telescopes, concentrating on tiny differences between the signals to measure angles with exquisite precision. Using this technique PRIMA can pick out details as sharply as a single telescope with a diameter equivalent to the largest distance between the telescopes. For the VLTI, the distance between the two telescope elements is about 200 metres. The PRIMA instrument is unique amongst the VLTI instruments, in that it is effectively two interferometers in one. PRIMA will take data from two sources on the sky simultaneously: the brighter source can be used for tracking, allowing the interferometer to "stare" at the fainter source for longer than is now possible with conventional interferometers. Although there have been earlier pathfinder experiments to test this technique, PRIMA represents the first facility

  19. A New Hypernuclear Experiment with the High Resolution Kaon Spectrometer(HKS) at JLAB Hall C

    SciTech Connect

    Satoshi Nakamura

    2003-12-01

    As a natural extension of the first successful hypernuclear spectroscopy through the (e,e'K+) reaction (JLAB-E89-009), a new experiment with a newly developed High Resolution Kaon Spectrometer (HKS) and new configuration of the electron spectrometer was proposed. The high performance of the HKS and the new electron spectrometer configuration (tilt method) enables us to improve the energy resolution by a factor of 2, the hypernuclear yield by a factor of 50 and the signal to noise ratio by a factor of 10.

  20. Towards NNLO accuracy in the QCD sum rule for the kaon distribution amplitude

    NASA Astrophysics Data System (ADS)

    Chetyrkin, K. G.; Khodjamirian, A.; Pivovarov, A. A.

    2008-03-01

    We calculate the O (αs) and O (αs2) gluon radiative corrections to the QCD sum rule for the first Gegenbauer moment a1K of the kaon light-cone distribution amplitude. The NNLO accuracy is achieved for the perturbative term and quark-condensate contributions to the sum rule. A complete factorization is implemented, removing logarithms of s-quark mass from the coefficients in the operator-product expansion. The sum rule with radiative corrections yields a1K (1 GeV) = 0.10 ± 0.04.

  1. Effects of the Consistent Interaction on Kaon Photoproduction with Spin 5/2 Nucleon Resonances

    NASA Astrophysics Data System (ADS)

    Clymton, S.; Mart, T.

    2016-08-01

    Theoretical models for kaon photoproduction with spin 5/2 nucleon resonances have been plagued with the problem of interaction consistency. A number of studies predicted that a model with a consistent interaction leads to a better agreement with data. In this study a model with consistent interaction (model 2) is compared to the old model, which utilizes an inconsistent interaction (model 1), as well as to experimental data. The unknown parameters in scattering amplitude are extracted from fitting to 7400 experimental data points. This is performed by minimizing the X2/N value. It is found that model with a consistent interaction (model 2) is more suitable for explaining experimental data.

  2. Lattice QCD Calculation of the Kaon B Parameter with the Wilson Quark Action

    NASA Astrophysics Data System (ADS)

    Aoki, S.; Fukugita, M.; Hashimoto, S.; Ishizuka, N.; Iwasaki, Y.; Kanaya, K.; Kuramashi, Y.; Okawa, M.; Ukawa, A.; Yoshie, T.; Jlqcd Collaboration

    1998-08-01

    The kaon B parameter is calculated in quenched lattice QCD with the Wilson quark action. The mixing problem of the Δs = 2 four-quark operators is solved nonperturbatively with full use of chiral Ward identities, and this method enables us to construct the weak four-quark operators exhibiting good chiral behavior. We find BK\\(NDR,2 GeV\\) = 0.69\\(7\\) (where NDR denotes naive dimensional regularization) at the lattice cutoff scale of a-1 = 2.7-4.3 GeV.

  3. COMPASS Measurement of Pion and Kaon Multiplicities and Extraction of Quark Fragmentation Functions into Pions

    NASA Astrophysics Data System (ADS)

    Kunne, Fabienne

    2016-02-01

    We present preliminary COMPASS results on pion and kaon multiplicities produced in semi inclusive deep inelastic scattering of 160GeV muons off an isoscalar (6LiD) target. The results constitute an impressive data set of more than 400 points in p and 400 in K, covering a large x,Q2 and z domain in a fine binning, which will be used in future QCD fits at next to leading order to extract quark fragmentation functions. We show results of a first leading order fit performed to extract the favored and unfavored quark fragmentation functions into pions Dfavπ and Dunfavπ.

  4. Comparing laser interferometry and atom interferometry approaches to space-based gravitational-wave measurement

    NASA Astrophysics Data System (ADS)

    Ira Thorpe, James; Jennrich, Oliver; McNamara, Paul; Baker, John G.

    2012-07-01

    The science enabled by a space-based low-frequency gravitational-wave instrument is a high-priority objective of the international astronomy community. Mission concepts based on laser interferometry, such as the Laser Interferometer Space Antenna (LISA), have been thoroughly studied and determined to be capable of delivering significant science returns. Ongoing developments in laboratory atom interferometry techniques have inspired new gravitational-wave mission concepts. We present a comparative analysis of LISA-like light interferometer systems and atom interferometer systems for gravitational-wave detection. Specific attention is paid to the sources of instrumental noise that are most important for light interferometer systems. We find that the response to laser frequency noise is identical in light interferometer and atom interferometer systems and that similar mitigation strategies (e.g. multiple-arm interferometers) must be employed to reach interesting gravitational wave sensitivities. Response to acceleration of the optical platforms is slightly different, allowing smaller spacecraft separations in the atom interferometry approach, but the acceleration noise requirements are similar. Based on this analysis, we find no clear advantage of the atom interferometry approach over traditional laser interferometry.

  5. On neutral plasma oscillations

    SciTech Connect

    Shadwick, B.A.; Morrison, P.J.

    1993-06-01

    We examine the conditions for the existence of spectrally stable neutral modes in a Vlasov-Poisson plasma and show that for stable equilibria of systems that have unbounded spatial domain, the only possible neutral modes are those with phase velocities that correspond to stationary inflection points of the equilibrium distribution function. It is seen that these neutral modes can possess positive or negative free energy.

  6. Station keeping strategy for multiple spacecraft interferometry

    NASA Technical Reports Server (NTRS)

    Decou, Anthony B.

    1991-01-01

    The feasibility of multiple spacecraft stationkeeping for submillimeter and optical interferometry is examined. A condition for interferometry is that two or more spacecraft must control their relative positions with better than 1 mn accuracy indefinitely in both radial and transverse directions although separated by as much as 1 Km in LEO and 100 Km in GEO. They must also maneuver through a useful area of the U-V plane of an arbitrary astronomical source. The problem is first outlined and a solution which utilizes gravity gradient forces to do most of the work and ion thrusters for additional maneuvering is proposed. All the perturbing forces are shown to be small compared to the ion thruster requirements. An inertial position and attitude control strategy is suggested which utilizes existing or soon to be available sensors and actuators. Finally, the fuel and power system mass requirements are estimated and found to be within reason for a 10 year mission.

  7. Speckle Interferometry with Amateur-Class Equipment

    NASA Astrophysics Data System (ADS)

    Harshaw, Richard; Wuthrich, Ethan; Dolbear, Kyle

    2015-05-01

    The relatively young field of speckle interferometry of close double stars has up to now been the domain of large telescopes and expensive scientific CCD cameras. With the advent of relatively inexpensive and high-performance CCD cameras, the domain of speckle interferometry has been extended into the serious amateur realm allowing amateurs with equipment as small as 8-inches aperture to do actual speckle analysis of binary star systems. This paper describes the work of one such team of amateur astronomers and students as part of their course work for an on-line scientific research experience course provided on-line by Cuesta College of San Luis Obispo, California. An explanation of speckle and how it works is followed by a discussion of how the camera was calibrated, then a discussion of the research methodology. Results of calibration and double star measurements are then given and implications of the process and results discussed.

  8. Near-Earth Object Astrometric Interferometry

    NASA Technical Reports Server (NTRS)

    Werner, Martin R.

    2005-01-01

    Using astrometric interferometry on near-Earth objects (NEOs) poses many interesting and difficult challenges. Poor reflectance properties and potentially no significant active emissions lead to NEOs having intrinsically low visual magnitudes. Using worst case estimates for signal reflection properties leads to NEOs having visual magnitudes of 27 and higher. Today the most sensitive interferometers in operation have limiting magnitudes of 20 or less. The main reason for this limit is due to the atmosphere, where turbulence affects the light coming from the target, limiting the sensitivity of the interferometer. In this analysis, the interferometer designs assume no atmosphere, meaning they would be placed at a location somewhere in space. Interferometer configurations and operational uncertainties are looked at in order to parameterize the requirements necessary to achieve measurements of low visual magnitude NEOs. This analysis provides a preliminary estimate of what will be required in order to take high resolution measurements of these objects using interferometry techniques.

  9. Externally Dispersed Interferometry for Planetary Studies

    SciTech Connect

    Erskine, D J; Edelstein, J; Harbeck, D; Lloyd, J

    2005-07-06

    We describe a plan to study the radial velocity of low mass stars and brown dwarfs using a combination of interferometry and multichannel dispersive spectroscopy, Externally Dispersed Interferometry (EDI). The EDI technology allows implementation of precision velocimetry and spectroscopy on existing moderate-resolution echelle or linear grating spectrograph over their full and simultaneous bandwidth. We intend to add EDI to the new Cornell TripleSpec infrared simultaneous JHK-band spectrograph at the Palomar Observatory 200'' telescope for a science-demonstration program that will allow a unique Doppler-search for planets orbiting low mass faint M, L and T type stars. The throughput advantage of EDI with a moderate resolution spectrograph is critical to achieving the requisite sensitivity for the low luminosity late L and T dwarfs.

  10. Subaperture stitching interferometry based on digital holography

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Lu, Xiaoyun; Dong, Bin; Ma, Xichao; Xiao, Wen

    2016-11-01

    A novel subaperture stitching interferometry based on digital holography is developed to measure the deformation of spherical surfaces. The subaperture measurement is performed by off-axis digital holography on single exposure. Then, the subaperture phase maps are obtained by digital holographic reconstruction, in which the phase aberration caused by position errors of each subaperture measurement is effectively compensated by the method of numerical parametric lens. After that, the full aperture phase map is retrieved by a subaperture stitching algorithm, in which the relative alignment errors of adjacent subapertures are eliminated with an iterative process of stitching optimization. The experiments demonstrate the feasibility and effectiveness of the proposed interferometry, which provides a rapid and robust way to measure spherical surfaces with high resolution and precision. A practical example is given to demonstrate the performance of this method. The stitching result shows good agreement with the full-aperture result.

  11. Nanoscale optical interferometry with incoherent light

    NASA Astrophysics Data System (ADS)

    Li, Dongfang; Feng, Jing; Pacifici, Domenico

    2016-02-01

    Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications.

  12. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    SciTech Connect

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie; Lee, Rebekah; Cole, Chris

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  13. Nanoscale optical interferometry with incoherent light

    PubMed Central

    Li, Dongfang; Feng, Jing; Pacifici, Domenico

    2016-01-01

    Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications. PMID:26880171

  14. ALEX neutral beam probe

    SciTech Connect

    Pourrezaei, K.

    1982-01-01

    A neutral beam probe capable of measuring plasma space potential in a fully 3-dimensional magnetic field geometry has been developed. This neutral beam was successfully used to measure an arc target plasma contained within the ALEX baseball magnetic coil. A computer simulation of the experiment was performed to refine the experimental design and to develop a numerical model for scaling the ALEX neutral beam probe to other cases of fully 3-dimensional magnetic field. Based on this scaling a 30 to 50 keV neutral cesium beam probe capable of measuring space potential in the thermal barrier region of TMX Upgrade was designed.

  15. Search for neutral leptons

    SciTech Connect

    Perl, M.L.

    1984-12-01

    At present we know of three kinds of neutral leptons: the electron neutrino, the muon neutrino, and the tau neutrino. This paper reviews the search for additional neutral leptons. The method and significance of a search depends upon the model used for the neutral lepton being sought. Some models for the properties and decay modes of proposed neutral leptons are described. Past and present searches are reviewed. The limits obtained by some completed searches are given, and the methods of searches in progress are described. Future searches are discussed. 41 references.

  16. Defect Depth Measurement Using White Light Interferometry

    NASA Technical Reports Server (NTRS)

    Parker, Don; Starr, Stan

    2009-01-01

    The objectives of the White Light Interferometry project are the following: (1) Demonstrate a small hand-held instrument capable of performing inspections of identified defects on Orbiter outer pane window surfaces. (2) Build and field-test a prototype device using miniaturized optical components. (3) Modify the instrument based on field testing and begin the conversion of the unit to become a certified shop-aid.

  17. Electronic speckle pattern interferometry using vortex beams.

    PubMed

    Restrepo, René; Uribe-Patarroyo, Néstor; Belenguer, Tomás

    2011-12-01

    We show that it is possible to perform electronic speckle pattern interferometry (ESPI) using, for the first time to our knowledge, vortex beams as the reference beam. The technique we propose is easy to implement, and the advantages obtained are, among others, environmental stability, lower processing time, and the possibility to switch between traditional ESPI and spiral ESPI. The experimental results clearly show the advantages of using the proposed technique for deformation studies of complex structures.

  18. Moire interferometry for thermal expansion of composites

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Tenney, D. R.; Post, D.; Herakovich, C. T.

    1981-01-01

    Moire interferometry by reflection has been demonstrated using a real reference grating of 1200 lines/mm. The method is shown to be well adapted to thermal environments. Thermal expansion coefficients of graphite-epoxy composites have been measured with high precision over a wide range from nearly zero to 3300 microstrains in the temperature range 297-422 K. Random errors characterized by one standard deviation can be as small as one microstrain.

  19. Precision surveying using very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Ryan, J. W.; Clark, T. A.; Coates, R.; Ma, C.; Robertson, D. S.; Corey, B. E.; Counselman, C. C.; Shapiro, I. I.; Wittels, J. J.; Hinteregger, H. F.

    1977-01-01

    Radio interferometry measurements were used to measure the vector baselines between large microwave radio antennas. A 1.24 km baseline in Massachusetts between the 36 meter Haystack Observatory antenna and the 18 meter Westford antenna of Lincoln Laboratory was measured with 5 mm repeatability in 12 separate experiments. Preliminary results from measurements of the 3,928 km baseline between the Haystack antenna and the 40 meter antenna at the Owens Valley Radio Observatory in California are presented.

  20. Lateral shear interferometry with holo shear lens

    NASA Astrophysics Data System (ADS)

    Joenathan, C.; Mohanty, R. K.; Sirohi, R. S.

    1984-12-01

    A simple method for obtaining lateral shear using holo shear lenses (HSL) has been discussed. This simple device which produces lateral shears in the orthogonal directions has been used for lens testing. The holo shear lens is placed at or near the focus of the lens to be tested. It has also been shown that HSL can be used in speckle shear interferometry as it performs both the functions of shearing and imaging.

  1. Interferometry theory for the block 2 processor

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1987-01-01

    Presented is the interferometry theory for the Block 2 processor, including a high-level functional description and a discussion of data structure. The analysis covers the major processing steps: cross-correlation, fringe counter-rotation, transformation to the frequency domain, phase calibration, bandwidth synthesis, and extraction of the observables of amplitude, phase, phase rate, and delay. Also included are analyses for fractional bitshift correction, station clock error, ionosphere correction, and effective frequencies for the observables.

  2. GPS radio interferometry of travelling ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Afraimovich, E. L.; Palamartchouk, K. S.; Perevalova, N. P.

    1998-01-01

    This paper presents some results investigating the new possibilities of radio interferometry of Travelling Ionospheric Disturbances (TIDs) that are based on exploiting standard measurements of transionospheric radio signal characteristics and coordinate-time measurements using dual-frequency multichannel receivers of the Global Positioning System (GPS). A Statistical Angle-of-arrival and Doppler Method for GPS radio interferometry (SADM-GPS) is proposed for determining the characteristics of the TIDs dynamics by measuring variations of GPS phase derivatives with respect to time and spatial coordinates. These data are used to calculate corresponding values of the velocity vector, in view of a correction for satellite motions based on the current information available regarding the angular coordinates of the satellites. Subsequently, velocity and direction distributions are constructed and analyzed to verify the hypothesis of whether there is a predominant displacement. If it exists, then the pattern can be considered to be travelling, and the mean travel velocity can be determined from the velocity distribution. Through a computer simulation it was shown that multi-satellite GPS radio interferometry in conjunction with the SADM-GPS algorithm allows the detection and measurement of the velocity vector of TIDs in virtually the entire azimuthal range of possible TID propagation directions. The use of the proposed method is exemplified by an investigation of TIDs during the solar eclipse of 9 March 1997, using the GPS-radio interferometer GPSINT at Irkutsk.

  3. Optical interferometry in fluid dynamics research

    NASA Technical Reports Server (NTRS)

    Bachalo, W. D.; Houser, M. J.

    1985-01-01

    Optical interferometry techniques have been applied to the investigation of transonic airfoil flow fields in large-scale wind tunnels. Holographic interferometry techniques were used in the study of two-dimensional symmetric NACA 64A010 and Douglas Aircraft Company DSMA671 supercritical airfoil performance in the NASA Ames 2 ft x 2 ft transonic wind tunnel. Quantitative data obtained from the interferograms were compared to the surface pressure data. The excellent agreement obtained verified the accuracy of the flow visualization and demonstrated the potential for acquiring quantitative scalar results. Measurements of the inviscid flow speed and the boundary layer and wake velocity profiles were extracted from the interferograms and compared to laser Doppler velocimeter measurements. These results were also in good agreement. A method for acquiring real-time interferometric data in large-scale facilities was developed. This method, based on the point diffraction interferometer, was successfully tested in the Ames 2 ft x 2 ft transonic wind tunnel. The holographic and real-time interferometry methods were applied to the investigations of circulation control airfoils utilizing the Coanda effect. These results revealed the details of the jet interaction with the trailing edge boundary layer and the other parameters affecting the lift augmentation.

  4. Gravitational wave detection using atom interferometry

    NASA Astrophysics Data System (ADS)

    Hogan, Jason

    2016-05-01

    The advent of gravitational wave astronomy promises to provide a new window into the universe. Low frequency gravitational waves below 10 Hz are expected to offer rich science opportunities both in astrophysics and cosmology, complementary to signals in LIGO's band. Detector designs based on atom interferometry have a number of advantages over traditional approaches in this band, including the possibility of substantially reduced antenna baseline length in space and high isolation from seismic noise for a terrestrial detector. In particular, atom interferometry based on the clock transition in group II atoms offers tantalizing new possibilities. Such a design is expected to be highly immune to laser frequency noise because the signal arises strictly from the light propagation time between two ensembles of atoms. This would allow for a gravitational wave detector with a single linear baseline, potentially offering advantages in cost and design flexibility. In support of these proposals, recent progress in long baseline atom interferometry in a 10-meter drop tower has enabled observation of matter wave interference with atomic wavepacket separations exceeding 50 cm and interferometer durations of more than 2 seconds. This approach can provide ground-based proof-of-concept demonstrations of many of the technical requirements of both terrestrial and satellite gravitational wave detectors.

  5. Optical interferometry in fluid dynamics research

    NASA Technical Reports Server (NTRS)

    Bachalo, W. D.; Houser, M. J.

    1987-01-01

    Optical interferometry techniques were applied to the investigation of transonic airfoil flow fields in large wind tunnels. Holographic interferometry techniques were used to study 2 dimensional symmetric NACA 64A010 and Douglas Aircraft Co. DSMA671 supercritical airfoil performance in the NASA Ames 2 x 2 ft transonic wind tunnel. Quantitative data obtained from the interferograms were compared to the surface pressure data. The agreement obtained verified the accuracy of the flow visualization and demonstrated the potential for acquiring quantitative scalar results. Measurements of the inviscid flow speed and the boundary layer and wake velocity profiles were extracted from the interferograms and compared to laser Doppler velocimeter measurements. These results were also in good agreement. A method for acquiring real time interferometric data in large scale facilities was developed. This method, based on the point diffraction interferometer, was successfully tested in the 2 x 2 ft transonic wind tunnel. The holographic and real time interferometry methods were applied to the investigations of circulation control airfoils utilizing the Coanda effect. These results reveals the details of the jet interacting with the trailing edge boundary layer and the other parameters affecting the lift augmentation.

  6. Two color holographic interferometry for microgravity application

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Weber, David C.

    1995-01-01

    Holographic interferometry is a primary candidate for determining temperature and concentration in crystal growth experiments designed for space. The method measures refractive index changes within the fluid of an experimental test cell resulting from temperature and/or concentration changes. When the refractive index changes are caused by simultaneous temperature and concentration changes, the contributions of the two effects cannot be separated by single wavelength interferometry. By using two wavelengths, however, two independent interferograms can provide the additional independent equation required to determine the two unknowns. There is no other technique available that provides this type of information. The primary objectives of this effort were to experimentally verify the mathematical theory of two color holographic interferometry (TCHI) and to determine the practical value of this technique for space application. In the foregoing study, the theory of TCHI has been tested experimentally over a range of interest for materials processing in space where measurements of temperature and concentration in a solution are required. New techniques were developed and applied to stretch the limits beyond what could be done with existing procedures. The study resulted in the production of one of the most advanced, enhanced sensitivity holographic interferometers in existence. The interferometric measurements made at MSFC represent what is believed to be the most accurate holographic interferometric measurements made in a fluid to date. The tests have provided an understanding of the limitations of the technique in practical use.

  7. Development of Speckle Interferometry Algorithm and System

    SciTech Connect

    Shamsir, A. A. M.; Jafri, M. Z. M.; Lim, H. S.

    2011-05-25

    Electronic speckle pattern interferometry (ESPI) method is a wholefield, non destructive measurement method widely used in the industries such as detection of defects on metal bodies, detection of defects in intergrated circuits in digital electronics components and in the preservation of priceless artwork. In this research field, this method is widely used to develop algorithms and to develop a new laboratory setup for implementing the speckle pattern interferometry. In speckle interferometry, an optically rough test surface is illuminated with an expanded laser beam creating a laser speckle pattern in the space surrounding the illuminated region. The speckle pattern is optically mixed with a second coherent light field that is either another speckle pattern or a smooth light field. This produces an interferometric speckle pattern that will be detected by sensor to count the change of the speckle pattern due to force given. In this project, an experimental setup of ESPI is proposed to analyze a stainless steel plate using 632.8 nm (red) wavelength of lights.

  8. Holographic Interferometry Applications In External Osteosynthesis

    NASA Astrophysics Data System (ADS)

    Jacquot, P.; Rastogi, P. K.; Pflug, L.

    1985-08-01

    In order to maintain fragments of fractured bones in a state of immobilization, the use of an external rigid frame has proved to be very advantageous. Confronted by contradictory requirements, the conception of external fixation has, however, been a difficult task. The present paper aims to show, through three examples of varied bearings, the interest of holographic interferometry in external osteosynthesis. The first example deals with the mechanical behavior of a key element of the fixation device the ball joint submitted to realistic loads. The last two examples compare two models of ball joints as to their characteristics of rigidity and of resistance to slipping. Whereas in the former case holographic interferometry primarily fulfills the function of a prelude to the modelization work, in the latter cases it serves to formulate an engineering diagnostic. The findings relate to the remarkable elastic behavior of the ball joint, to the effectiveness of a lightened bowl design, and to the fact that cousin models may behave quite differently as to their resistance to slipping rotations of the bar. In comparison with other experimental methods, holographic interferometry appears to be very competitive and result-oriented and, as such, is expected to multiply applications in similar evaluation tasks.

  9. Atom Interferometry on a Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Becker, Dennis; Seidel, Stephan; Lachmann, Maike; Rasel, Ernst; Quantus Collaboration

    2015-05-01

    The universality of free fall is one of the fundamental postulates of our description of nature. The comparison of the free fall of two ultra-cold clouds of different atomic species via atom interferometry comprises a method to precisely test this assumption. By performing the experiments in a microgravity environment the sensitivity of such an atom interferometric measurement can be increased. In order to fully utilize the potential of these experiments the usage of a Bose-Einstein condensate as the initial state of the atom interferometer is necessary. As a step towards the transfer of such a system in space an atom optical experiment is currently being prepared as the scientific payload for a sounding rocket mission. This mission is aiming at the first demonstration of a Bose-Einstein condensate in space and using this quantum degenerate matter as a source for atom interferometry. The launch of the rocket is planned for 2015 from ESRANGE. This first mission will be followed by two more that extend the scientific goals to the creation of degenerate mixtures in space and simultaneous atom interferometry with two atomic species. Their success would mark a major advancement towards a precise measurement of the universality of free fall with a space-born atom interferometer. This research is funded by the German Space Agency DLR under grant number DLR 50 1131-37.

  10. Two color holographic interferometry for microgravity application

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.

    1993-01-01

    Holographic interferometry is a primary candidate for the measurement of temperature and concentration in various crystal growth experiments destined for space. The method measures refractive index changes in the experiment test cell. A refractive index change can be caused by concentration changes, temperature changes, or a combination of temperature and concentration changes. If the refractive index changes are caused by temperature and concentration changes occurring simultaneously in the experiment test cell, the contributions by the two effects cannot be separated by conventional measurement methods. By using two wavelengths, two independent interferograms can be produced from the reconstruction of the hologram. The two interferograms will be different due to dispersion properties of fluid materials. These differences provide the additional information that allows the separation of simultaneously occurring temperature and concentration gradients. There is no other technique available that can provide this type of information. The primary objectives of this effort are to experimentally verify the mathematical theory of two color holographic interferometry and to determine the practical value of this technique for space application. To achieve these objectives, the accuracy and sensitivity of the technique must be determined for geometry's and materials that are relevant to the Materials Processing in the Space program of NASA. This will be achieved through the use of a specially designed two-color holographic interferometry breadboard optical system. In addition to experiments to achieve the primary goals, the breadboard will also provide inputs to the design of an optimum space flight system.

  11. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement

    NASA Technical Reports Server (NTRS)

    Baker, John; Thorpe, Ira

    2012-01-01

    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  12. Off-shell electromagnetic form factors of pions and kaons in chiral perturbation theory

    SciTech Connect

    Rudy, T.E.; Fearing, H.W.; Scherer, S. )

    1994-07-01

    The off-shell electromagnetic vertex of a (pseudo)scalar particle contains, in general, two form factors [ital F] and [ital G] which depend, in addition to the squared momentum transfer, on the invariant masses associated with the initial and final legs of the vertex. Chiral perturbation theory to one loop is used to calculate the off-shell form factors of pions and kaons. The formalism of Gasser and Leutwyler, which was previously used to calculate the on-shell limit of the form factor [ital F], is extended to accommodate the most general form for off-shell Green's functions in the pseudoscalar meson sector. We find that chiral symmetry predicts that the form factors [ital F] of the charged pions and kaons go off-shell in the same way, i.e., the off-shell slope at the real photon point is given by the same new phenomenological constant [beta][sub 1]. Furthermore, it is shown that at order [ital p][sup 4] the form factor [ital F] of the [ital K][sup 0] does not show any off-shell dependence. The form factors [ital G] are all related to the form factors [ital F] in the correct fashion as required by the Ward-Takahashi identity. Numerical results for different off-shell kinematics are presented.

  13. Neutrality in Language Policy

    ERIC Educational Resources Information Center

    Wee, Lionel

    2010-01-01

    The unavoidability of language makes it critical that language policies appeal to some notion of language neutrality as part of their rationale, in order to assuage concerns that the policies might otherwise be unduly discriminatory. However, the idea of language neutrality is deeply ideological in nature, since it is not only an attempt to treat…

  14. Measurement of production properties of positively charged kaons in proton-carbon interactions at 31 GeV/c

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Aduszkiewicz, A.; Anticic, T.; Antoniou, N.; Argyriades, J.; Baatar, B.; Blondel, A.; Blumer, J.; Bogusz, M.; Boldizsar, L.; Bravar, A.; Brooks, W.; Brzychczyk, J.; Bubak, A.; Bunyatov, S. A.; Busygina, O.; Cetner, T.; Choi, K.-U.; Christakoglou, P.; Czopowicz, T.; Davis, N.; Diakonos, F.; Di Luise, S.; Dominik, W.; Dumarchez, J.; Engel, R.; Ereditato, A.; Esposito, L. S.; Feofilov, G. A.; Fodor, Z.; Ferrero, A.; Fulop, A.; Garrido, X.; Gaździcki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hakobyan, H.; Hasegawa, T.; Idczak, R.; Ivanov, Y.; Ivashkin, A.; Kadija, K.; Kapoyannis, A.; Katryńska, N.; Kiełczewska, D.; Kikola, D.; Kim, J.-H.; Kirejczyk, M.; Kisiel, J.; Kobayashi, T.; Kochebina, O.; Kolesnikov, V. I.; Kolev, D.; Kondratiev, V. P.; Korzenev, A.; Kowalski, S.; Krasnoperov, A.; Kuleshov, S.; Kurepin, A.; Lacey, R.; Lagoda, J.; Laszlo, A.; Lyubushkin, V. V.; Maćkowiak-Pawłowska, M.; Majka, Z.; Malakhov, A. I.; Marchionni, A.; Marcinek, A.; Maris, I.; Marin, V.; Matulewicz, T.; Matveev, V.; Melkumov, G. L.; Meregaglia, A.; Messina, M.; Mrówczyński, St.; Murphy, S.; Nakadaira, T.; Nishikawa, K.; Palczewski, T.; Palla, G.; Panagiotou, A. D.; Paul, T.; Peryt, W.; Petukhov, O.; Płaneta, R.; Pluta, J.; Popov, B. A.; Posiadała, M.; Puławski, S.; Rauch, W.; Ravonel, M.; Renfordt, R.; Robert, A.; Röhrich, D.; Rondio, E.; Rossi, B.; Roth, M.; Rubbia, A.; Rybczyński, M.; Sadovsky, A.; Sakashita, K.; Sekiguchi, T.; Seyboth, P.; Shibata, M.; Skrzypczak, E.; Słodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Strabel, C.; Ströbele, H.; Susa, T.; Szaflik, P.; Szuba, M.; Tada, M.; Taranenko, A.; Tereshchenko, V.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberič, D.; Vechernin, V. V.; Vesztergombi, G.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarć, A.; Yi, J.-G.; Yoo, I.-K.; Zambelli, L.; Zipper, W.

    2012-03-01

    Spectra of positively charged kaons in p+C interactions at 31 GeV/c were measured with the NA61/SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2007 with a graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections and charged pion spectra were already measured using the same set of data. These new measurements in combination with the published ones are required to improve predictions of the neutrino flux for the T2K long-baseline neutrino oscillation experiment in Japan. In particular, the knowledge of kaon production is crucial for precisely predicting the intrinsic electron neutrino component and the high-energy tail of the T2K beam. The results are presented as a function of laboratory momentum in two intervals of the laboratory polar angle covering the range from 20 to 240 mrad. The kaon spectra are compared with predictions of several hadron production models. Using the published pion results and the new kaon data, the K+/π+ ratios are computed.

  15. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space

    NASA Technical Reports Server (NTRS)

    Kohel, James M.

    2012-01-01

    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  16. Phase-Shift Interferometry with a Digital Photocamera

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Trivi, Marcelo; Molesini, Giuseppe

    2007-01-01

    A phase-shift interferometry experiment is proposed, working on a Twyman-Green optical configuration with additional polarization components. A guideline is provided to modern phase-shift interferometry, using concepts and laboratory equipment at the level of undergraduate optics courses. (Contains 5 figures.)

  17. Practical aspects of laser holographic interferometry in wind tunnels

    NASA Technical Reports Server (NTRS)

    Licursi, J.; Lee, G.

    1985-01-01

    Practical aspects of using laser holographic interferometry in some NASA Ames wind tunnels are presented. These aspects include the development of techniques for dual-plate interferometry, optics alignment, and laser alignment. In addition, methods to alleviate problems associated with vibration, photographic processing, photographic drying, and photographic reconstruction are discussed.

  18. Experiments in cold atom optics towards precision atom interferometry

    NASA Astrophysics Data System (ADS)

    Aveline, David C.

    Atom optics has been a highly active field of research with many scientific breakthroughs over the past two decades, largely due to successful advances in laser technology, microfabrication techniques, and the development of laser cooling and trapping of neutral atoms. This dissertation details several atom optics experiments with the motivation to develop tools and techniques for precision atom wave interferometry. It provides background information about atom optics and the fundamentals behind laser cooling and trapping, including basic techniques for cold gas thermometry and absorptive detection of atoms. A brief overview of magnetic trapping and guiding in tight wire-based traps is also provided before the experimental details are presented. We developed a novel laser source of 780 nm light using frequency-doubled 1560 nm fiber amplifier. This laser system provided up to a Watt of tunable frequency stabilized light for two Rb laser cooling and trapping experiments. One system generates Bose-Einstein condensates in an optical trap while the second is based on atom chip magnetic traps. The atom chip system, detailed in this thesis, was designed and built to develop the tools necessary for transport and loading large numbers of cold atoms and explore the potential for guided atom interferometry. Techniques and results from this experiment are presented, including an efficient magnetic transport and loading method to deliver cold atom to atom chip traps. We also developed a modeling tool for the magnetic fields formed by coiled wire geometries, as well as planar wire patterns. These models helped us design traps and determine adiabatic transportation of cold atoms between macro-scale traps and micro-traps formed on atom chips. Having achieved near unity transfer efficiency, we demonstrated that this approach promises to be a consistent method for loading large numbers of atoms into micro-traps. Furthermore, we discuss an in situ imaging technique to investigate

  19. Kaon electroproduction

    SciTech Connect

    Markowitz, P.

    1994-04-01

    The talk will focus on the physics which can be addressed by looking at semi-inclusive and exclusive channels in the DIS region. In particular, the author examines how this physics is reflected in the separated response functions.

  20. Feasibility of satellite interferometry for surveillance, navigation, and traffic control

    NASA Technical Reports Server (NTRS)

    Gopalapillai, S.; Ruck, G. T.; Mourad, A. G.

    1976-01-01

    The feasibility of using a satellite borne interferometry system for surveillance, navigation, and traffic control applications was investigated. The evaluation was comprised of: (1) a two part systems analysis (software and hardware); (2) a survey of competitive navigation systems (both experimental and planned); (3) a comparison of their characteristics and capabilities with those of an interferometry system; and (4) a limited survey of potential users to determine the variety of possible applications for the interferometry system and the requirements which it would have to meet. Five candidate or "strawman" interferometry systems for various applications with various capabilities were configured (on a preliminary basis) and were evaluated. It is concluded that interferometry in conjunction with a geostationary satellite has an inherent ability to provide both a means for navigation/position location and communication. It offers a very high potential for meeting a large number of user applications and requirements for navigation and related functions.

  1. Neutralization Assay for Chikungunya Virus Infection: Plaque Reduction Neutralization Test.

    PubMed

    Azami, Nor Azila Muhammad; Moi, Meng Ling; Takasaki, Tomohiko

    2016-01-01

    Neutralization assay is a technique that detects and quantifies neutralizing antibody in serum samples by calculating the percentage of reduction of virus activity, as the concentration of virus used is usually constant. Neutralizing antibody titer is conventionally determined by calculating the percentage reduction in total virus infectivity by counting and comparing number of plaques (localized area of infection due to cytopathic effect) with a standard amount of virus. Conventional neutralizing test uses plaque-reduction neutralization test (PRNT) to determine neutralizing antibody titers against Chikungunya virus (CHIKV). Here we describe the plaque reduction neutralization assay (PRNT) using Vero cell lines to obtain neutralizing antibody titers.

  2. Agile interferometry: a non-traditional approach

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.; Yaqoob, Zahid

    2004-11-01

    A new approach called agile interferometry is introduced to attain interferometric information with high sensitivity and scenario-based intelligence. Compared to traditional interferometric techniques, the proposed method thrives on dynamic control of the reference signal strength and detector integration time for efficient interferometric detection with high signal-to-noise ratio and significantly improved detected signal dynamic range capabilities. Theoretical analysis is presented with the operational methodology of the new approach. A high-speed optical attenuator is required in the interferometer reference arm to implement the proposed agile interferometer.

  3. Report on ''European Radio Interferometry School 2015''

    NASA Astrophysics Data System (ADS)

    Laing, R.; Richards, A.

    2016-03-01

    The sixth European Interferometry School (ERIS2015) was held at ESO for the first time. As usual the school was aimed at graduate students and early-career postdocs, but this year the emphasis was on enhanced wide-bandwidth interferometers covering metre to submillimetre wavebands. More than 100 participants attended ERIS2015. The topics of the school are briefly described here. They covered a wide range, from an introduction to radio interferometric techniques through packages for data reduction and analysis to hands-on workshop sessions and proposal writing.

  4. Breast cancer detection by holographic interferometry

    NASA Astrophysics Data System (ADS)

    Woisetschlaeger, Jakob; Sheffer, Daniel B.; Mikati, H.; Somasundaram, Kavitha; Loughry, C. William; Chawla, Surendra K.; Wesolowski, Piotr J.

    1993-02-01

    The overall breast cancer mortality rate has remained unchanged the last 50 years. The most significant factor in the treatment is its early detection which will alter the mortality rate. In this investigation, the feasibility of holographic interferometry for the purpose of detecting breast cancer was examined. Optical setups were developed to enable the collection of holographic interferograms in vivo of asymptomatic breasts and those containing cancerous lesions. Different stressing concepts of holographic nondestructive testing and their applicability for the detection of breast cancer were tested.

  5. Phase shifting interferometry of cold atoms.

    PubMed

    Ku, Tzu-Ping; Huang, Chi-Yuan; Shiau, Bor-Wen; Han, Dian-Jiun

    2011-02-14

    We propose a scheme to engage phase shifting interferometry on cold atomic samples and present the simulation results under several experimentally achievable conditions nowadays. This method allows far-detuning, low power probing, and is intrinsically nondestructive. This novel detection means yields image quality superior to the conventional phase contrast imaging at certain conditions and could be experimentally realized. Furthermore, the longitudinal resolution of imaging by this manner is mainly set by optical interference and can be better than the diffraction limit. This scheme also provides special advantages to diagnose the surface-trapped clouds, with which phase imaging on the fabricated wires and atoms altogether is possible as well.

  6. Damage Detection Using Holography and Interferometry

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2003-01-01

    This paper reviews classical approaches to damage detection using laser holography and interferometry. The paper then details the modern uses of electronic holography and neural-net-processed characteristic patterns to detect structural damage. The design of the neural networks and the preparation of the training sets are discussed. The use of a technique to optimize the training sets, called folding, is explained. Then a training procedure is detailed that uses the holography-measured vibration modes of the undamaged structures to impart damage-detection sensitivity to the neural networks. The inspections of an optical strain gauge mounting plate and an International Space Station cold plate are presented as examples.

  7. The critical angle in seismic interferometry

    USGS Publications Warehouse

    Van Wijk, K.; Calvert, A.; Haney, M.; Mikesell, D.; Snieder, R.

    2008-01-01

    Limitations with respect to the characteristics and distribution of sources are inherent to any field seismic experiment, but in seismic interferometry these lead to spurious waves. Instead of trying to eliminate, filter or otherwise suppress spurious waves, crosscorrelation of receivers in a refraction experiment indicate we can take advantage of spurious events for near-surface parameter extraction for static corrections or near-surface imaging. We illustrate this with numerical examples and a field experiment from the CSM/Boise State University Geophysics Field Camp.

  8. Atom interferometry with polarizing beam splitters

    NASA Astrophysics Data System (ADS)

    Hinderthür, H.; Pautz, A.; Ruschewitz, F.; Sengstock, K.; Ertmer, W.

    1998-06-01

    A special kind of atomic beam splitter using a four-level atomic system in combination with polarized light fields is demonstrated. These specific atom optical elements are used to operate an atom interferometer where the beam-splitting mechanism acts selectively on specific paths only and therefore allows for several different interferometer geometries. Based on a Ramsey-Bordé configuration, the experimental data show considerably better accuracy and a contrast enhanced by 65% compared to the two-level interferometer. Our concept appears to be especially interesting in the context of metrological aspects in matter-wave interferometry.

  9. A simple laser system for atom interferometry

    NASA Astrophysics Data System (ADS)

    Merlet, S.; Volodimer, L.; Lours, M.; Pereira Dos Santos, F.

    2014-07-01

    We present here a simple laser system for a laser-cooled atom interferometer, where all functions (laser cooling, interferometry and detection) are realized using only two extended cavity laser diodes, amplified by a common tapered amplifier. One laser is locked by frequency modulation transfer spectroscopy, the other being phase locked with an offset frequency determined by an field-programmable gate array-controlled direct digital synthesizer, which allows for efficient and versatile tuning of the laser frequency. Raman lasers are obtained with a double pass acoustooptic modulator. We demonstrate a gravimeter using this laser system, with performances close to the state of the art.

  10. Space Interferometry Mission: Measuring the Universe

    NASA Technical Reports Server (NTRS)

    Marr, James; Dallas, Saterios; Laskin, Robert; Unwin, Stephen; Yu, Jeffrey

    1991-01-01

    The Space Interferometry Mission (SIM) will be the NASA Origins Program's first space based long baseline interferometric observatory. SIM will use a 10 m Michelson stellar interferometer to provide 4 microarcsecond precision absolute position measurements of stars down to 20th magnitude over its 5 yr. mission lifetime. SIM will also provide technology demonstrations of synthesis imaging and interferometric nulling. This paper describes the what, why and how of the SIM mission, including an overall mission and system description, science objectives, general description of how SIM makes its measurements, description of the design concepts now under consideration, operations concept, and supporting technology program.

  11. Probing dark energy with atom interferometry

    SciTech Connect

    Burrage, Clare; Copeland, Edmund J.; Hinds, E.A. E-mail: Edmund.Copeland@nottingham.ac.uk

    2015-03-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  12. Moire interferometry for vibration analysis of plates

    NASA Astrophysics Data System (ADS)

    Asundi, A.; Cheung, M. T.

    1987-12-01

    Moire interferometry is used to locate nodal regions and measure vibration amplitudes of sinusoidally vibrating square plates. The high sensitivity afforded by this technique makes possible the study of plate vibrations at high frequencies and low amplitudes. The initial pattern is modulated by the zero-order Bessel function representing the vibratory motion. The fringe (or fringes) with best contrast indicate the nodal regions, while the higher order fringes, describing loci of points vibrating with the same amplitude, have decreasing contrast which is improved by spatial filtering.

  13. Solar Neutral Particles

    NASA Video Gallery

    This animation shows a neutral solar particle's path leaving the sun, following the magnetic field lines out to the heliosheath. The solar particle hits a hydrogen atom, stealing its electron, and ...

  14. The kaon B-parameter from 2+1-flavor Domain-Wall-Fermion lattices

    SciTech Connect

    Cohen, Saul; Anthony, David

    2007-11-01

    We present the final results of the RBC/UKQCD calculation of the kaon B-parameter on 2+1- flavor domain-wall fermion lattices at a^?1 = 1.73(3) GeV. We simulate on two lattice volumes of about (1.8 fm)^3 and (2.7 fm)^3, with the lightest valence pion about on the large volume approximately 250 MeV. The light pion masses and our chiral fermion action allow us to compare lattice data to NLO chiral perturbation theory, facilitating a controlled extrapolation to the physical point. We present a final result including nonperturbative renormalization and detailed systematic errors. Our final result is BMS/K (2 GeV) = 0.524(10)(28).

  15. Effect of the Spin 3/2 Nucleon Resonances in Kaon Photoproduction

    NASA Astrophysics Data System (ADS)

    Arifi, A. J.; Mart, T.

    2016-08-01

    We have studied two different formulations of spin 3/2 nucleon resonance by means of kaon photoproduction on the proton γp→K+Λ. The formulations of spin 3/2 nucleon resonances proposed by Adelseck (model A) and Pascalutsa (model B) have been used in deriving the scattering amplitudes. The amplitudes are calculated by means of the relevant Feynman diagrams for the process. All nucleon resonances with spin up to 3/2 listed by the Particle Data Group are included in the model. Both formulations are then compared with the experimental data, which include differential cross section and polarization observables, through X2 minimization. It is found that the Pascalutsa's formulation of the spin 3/2 leads to a better agreement with the experimental data.

  16. Direct Measurement of Ab and Ac Using Vertex/Kaon Charge Tags at SLD

    SciTech Connect

    Abe, K.

    2004-10-13

    Exploiting the manipulation of the SLC electron-beam polarization, we present precise direct measurements of the parity violation parameters A{sub c} and A{sub b} in the Z boson-c quark and Z boson-b quark coupling. Quark/antiquark discrimination is accomplished via a unique algorithm that takes advantage of the precise SLD CCD vertex detector, employing the net charge of displaced vertices as well as the charge of kaons that emanate from those vertices. From the 1996-98 sample of 400,000 Z decays, produced with an average beam polarization of 73.4%, we find A{sub c} = 0.673 {+-} 0.029(stat.) {+-} 0.023(syst.) and A{sub b} = 0.919 {+-} 0.018(stat.) {+-} 0.017(syst.).

  17. Kaon electro-production on protons at JLab in Hall A

    SciTech Connect

    Mauro Iodice

    2003-07-15

    The elementary reaction of kaon exclusive electro-production on protons has been studied in a broad kinematical range at Jefferson Lab in Hall A. Data have been taken at different values of the invariant center-of-mass energy W in the range W=1.8-2.2 GeV, for two values of the transferred 4-momentum Q2 =1.9 and 2.4 (GeV/c)2. Each kinematics was measured at different electron beam energies so as to separate the longitudinal (L) and transverse (T) contributions to the cross-section. The LT interference term has also been measured for a limited number of kinematics. The preliminary data are compared to results of different models developed in the framework of hadronic field and Regge theories.

  18. Predictions for net-proton and net-kaon distributions at LHC energies

    NASA Astrophysics Data System (ADS)

    Mehtar-Tani, Yacine; Wolschin, Georg

    2010-05-01

    We investigate baryon and charge transport in relativistic heavy-ion collisions, compare with Au + Au RHIC data at √{sNN} = 0.2 TeV, and make predictions for net-proton rapidity distributions in central Pb + Pb collisions at CERN LHC energies of √{sNN} = 2.8, 3.9, and 5.5 TeV. We use the gluon saturation model and put special emphasis on the midrapidity valley | y | ⩽ 2. Net-kaon distributions are calculated and compared to BRAHMS Au + Au data at RHIC energies of √{sNN} = 0.2 TeV, and predicted for Pb + Pb at 5.5 TeV.

  19. Spaceborne radar interferometry for coastal DEM construction

    USGS Publications Warehouse

    Hong, S.-H.; Lee, C.-W.; Won, J.-S.; Kwoun, Oh-Ig; Lu, Zhiming

    2005-01-01

    Topographic features in coastal regions including tidal flats change more significantly than landmass, and are characterized by extremely low slopes. High precision DEMs are required to monitor dynamic changes in coastal topography. It is difficult to obtain coherent interferometric SAR pairs especially over tidal flats mainly because of variation of tidal conditions. Here we focus on i) coherence of multi-pass ERS SAR interferometric pairs and ii) DEM construction from ERS-ENVISAT pairs. Coherences of multi-pass ERS interferograms were good enough to construct DEM under favorable tidal conditions. Coherence in sand dominant area was generally higher than that in muddy surface. The coarse grained coastal areas are favorable for multi-pass interferometry. Utilization of ERS-ENVISAT interferometric pairs is taken a growing interest. We carried out investigation using a cross-interferometric pair with a normal baseline of about 1.3 km, a 30 minutes temporal separation and the height sensitivity of about 6 meters. Preliminary results of ERS-ENVISAT interferometry were not successful due to baseline and unfavorable scattering conditions. ?? 2005 IEEE.

  20. Is Space-based Interferometry Dead?

    NASA Astrophysics Data System (ADS)

    Leisawitz, David; Benford, D.; Blain, A.; Carr, J.; Fich, M.; Fischer, J.; Goldsmith, P.; Greaves, J.; Griffin, M.; Helou, G.; Ivison, R.; Kuchner, M.; Lyon, R.; Matsuo, H.; Rinehart, S. A.; Serabyn, E.; Shibai, H.; Silverberg, R.; Staguhn, J.; Unwin, S.; Wilner, D.; Wootten, A.; Wright, E. L.

    2011-05-01

    In the wake of the Decadal Survey and a January 2011 meeting of NASA's Exoplanet Exploration Program Analysis Group (ExoPAG), one might be tempted to conclude that space interferometry is dead. We explain why this slogan is hyperbole, summarize the steps currently being taken to prepare for a space-based far-IR interferometer, and reiterate the science case for an imaging and spectroscopic interferometer - SPIRIT - that would operate in space at long infrared wavelengths. Space-based interferometry is alive and well, but the center of activity has shifted to a spectral region (25 to 400 microns) in which no alternative measurement technique can provide information essential to answering several scientific questions deemed compelling by the Decadal Survey. Astrophysicists will use SPIRIT to: discover how the conditions for habitability arise during planetary system formation; find and characterize exoplanets by measuring their sculpting effects on protoplanetary and debris disks; and study the formation, merger history, and star formation history of galaxies.

  1. Interferometry-based Kolsky bar apparatus

    NASA Astrophysics Data System (ADS)

    Avinadav, C.; Ashuach, Y.; Kreif, R.

    2011-07-01

    A new experimental approach of the Kolsky bar system using optical interferometry is presented for determination of dynamic behavior of materials. Conventional measurements in the Kolsky bar system are based on recording the strain histories on the incident and transmitter bars with two strain gauges, and require good adhesion between the gauge and the bar. We suggest an alternative approach, based on measuring the actual velocities of the bars by using fiber-based velocity interferometry. Two fiber focusers illuminate the bars at a small angle and collect reflected Doppler-shifted light, which is interfered with a reference beam. Velocities are calculated from short-time Fourier transform and phase-based analysis, and the dynamic stress-strain curve is derived directly from the measured velocity traces. We demonstrate that the results coincide with those obtained by conventional strain gauge measurements. The new method is non-intervening and thus not affected by bar impacts, making it more robust and reliable than strain gauges.

  2. Diffusion in solids with holographic interferometry

    NASA Astrophysics Data System (ADS)

    Liu, Dingyu

    1996-12-01

    It is of great importance for the formation of p-n junction in semiconductors by penetrating some impurities through the depth near the surface, so it has long been paid attention to control the concentration distribution of impurities during the diffusion process. In recent years, ionic carburizing, and ion bombardment penetration etc. for the treatment of metal surface have also attracted by material sciences. It requires that the diffusion depth and the diffusion time of the impurities should be under precise control. Different methods, such as the method of radioisotopic detection and the method of chemical analysis have been adopted, however, the reports of different workers are very different, especially in the real time measurement, so, finding new method is never ending. In 1984, H. Fenichel have performed experiments on the solutions of table salt and sugar with the method of holographic interferometry. As for metals which are opaque for the visible light, but they become transparent by making them into a very thin film so that, in principle, the diffusion of atoms within a film is capable of measure by holographic interferometry. Alternatively, the electromagnetic waves within 1 - 70 micrometers wavelengths may be utilized, some materials, such as high purified germanium and silicon are good materials for infrared transmission. Some fluorides of alkaline-earth metals have high transmittance in the range of 1 - 8 micrometers , the concentration of impurities in the semiconductor and metal surface treatment are of 1015 - 1020 atoms per cubic cm, which is capable of detection.

  3. Speckle interferometry of nearby multiple stars

    NASA Astrophysics Data System (ADS)

    Balega, I. I.; Balega, Y. Y.; Hofmann, K.-H.; Maksimov, A. F.; Pluzhnik, E. A.; Schertl, D.; Shkhagosheva, Z. U.; Weigelt, G.

    2002-04-01

    We present the results of diffraction-limited optical speckle interferometry and infrared bispectrum speckle interferometry of 111 double and 10 triple systems performed in 1998-1999 with the 6-m telescope of the Special Astrophysical Observatory in Zelenchuk. The observations concentrated on nearby close binaries discovered during the Hipparcos mission. Many nearby fast-orbiting low-mass binaries known before Hipparcos were also included in the program. New companions were first resolved in 4 systems: HIP 5245, ADS 3179, Kui 99, and ADS 16138. In addition to accurate relative positions, magnitude differences were measured for most of the pairs. We combined our results with the Hipparcos parallaxes to derive absolute magnitudes and spectral types for 63 binaries and 4 triples. Preliminary orbital elements and the mass-sum are derived for HIP 689, and improved orbits are presented for HIP 16602 (CHR 117) and HIP 21280 (CHR 17). Based on data collected at the Special Astrophysical Observatory, Russia Table 1 is only, and Table 2 also, available in electronic form at the CDS via anonymons ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/385/87

  4. Stellar Interferometry from the Ground and Space

    NASA Technical Reports Server (NTRS)

    Danchi, William C.; Oegerle, William (Technical Monitor)

    2002-01-01

    Stellar Interferometry began more than 80 years ago with the pioneering measurement of the diameter of Betelqueuse by Michelson and Pease using a 20 foot beam mounted at the top of the 10011 Hooker telescope at Mt. Wilson. Essentially no other work was done in this field until the 1960's when Hanbury-Brown and his colleagues developed and used the Intensity Interferometer at Narrabri, Australia to measure the diameters of a number of important hot stars. The modern period of Stellar Interferometry really began in the 1970's with the successes of 3 or 4 small research groups in the US and Europe, and scientific and technical progress in the field has been outstanding, particularly in the last decade. This has lead to the development of two major ground based facilities: NASA's own Keck Interferometer and ESO's Very Large Telescope Interferometer, and a number of space interferometers such as the Space Interferometer Mission (SIM), and the Terrestrial Planet Finder (TPF), among others. I will review the principles, history, and scientific progress in the field both on the ground and in space, and I will discuss a mission concept under development here at NASA Goddard, the Fourier-Kelvin Stellar Interferometer, a near-term mid-infrared imaging interferometer, which can serve as a scientific and technical pre-cursor for some of the more ambitious concepts being discussed within the Astronomical and NASA communities.

  5. Multi-chord fiber-coupled interferometry of supersonic plasma jets andcomparisons with synthetic data

    SciTech Connect

    Merritt, Elizabeth C.; Lynn, Alan G.; Gilmore, Mark A.; Thoma, Carsten; Loverich, John; Hsu, Scott C.

    2012-05-03

    A multi-chord fiber-coupled interferometer [Merritt et al., Rev. Sci. Instrum. 83, 033506 (2012)] is being used to make time-resolved density measurements of supersonic argon plasma jets on the Plasma Liner Experiment [Hsu et al., Bull. Amer. Phys. Soc. 56, 307 (2011)]. The long coherence length of the laser (> 10 m) allows signal and reference path lengths to be mismatched by many meters without signal degradation, making for a greatly simplified optical layout. Measured interferometry phase shifts are consistent with a partially ionized plasma in which an initially positive phase shift becomes negative when the ionization fraction drops below a certain threshold. In this case, both free electrons and bound electrons in ions and neutral atoms contribute to the index of refraction. This paper illustrates how the interferometry data, aided by numerical modeling, are used to derive total jet density, jet propagation velocity ({approx} 15-50 km/s), jet length ({approx} 20-100 cm), and 3D expansion.

  6. The Wide-Field Imaging Interferometry Testbed: Recent Progress

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2010-01-01

    The Wide-Field Imaging Interferometry Testbed (WIIT) at NASA's Goddard Space Flight Center was designed to demonstrate the practicality and application of techniques for wide-field spatial-spectral ("double Fourier") interferometry. WIIT is an automated system, and it is now producing substantial amounts of high-quality data from its state-of-the-art operating environment, Goddard's Advanced Interferometry and Metrology Lab. In this paper, we discuss the characterization and operation of the testbed and present the most recent results. We also outline future research directions. A companion paper within this conference discusses the development of new wide-field double Fourier data analysis algorithms.

  7. Applications of speckle interferometry to civil engineering in Cuba

    NASA Astrophysics Data System (ADS)

    Gonzalez-Pena, Rolando; Cibrian-Ortiz de Anda, Rosa M.; Marti-Lopez, Luis

    2003-05-01

    Speckle interferometry has been introduced in Civil Engineering at CUJAE in 1988 as a useful technique in research work. This paper describes some applications of speckle interferometry in civil engineering. Speckle photography has been utilized to study deformation in shearwalls, and also studding of behavior building model under concentrate loading. Displacements were numerically calculated using a finite element method. Electronic Speckle Pattern Interferometry (ESPI) has been used for the measurement of the Young's modulus in mortars and concrete. Obtained values of the Young's modulus are in good agreement with reported for mortars or measured by a static compressive technique for concrete.

  8. Calibration and imaging algorithms for full-Stokes optical interferometry

    NASA Astrophysics Data System (ADS)

    Elias, Nicholas M.; Mozurkewich, David; Schmidt, Luke M.; Jurgenson, Colby A.; Edel, Stanislav S.; Jones, Carol E.; Halonen, Robert J.; Schmitt, Henrique R.; Jorgensen, Anders M.; Hutter, Donald J.

    2012-07-01

    Optical interferometry and polarimetry have separately provided new insights into stellar astronomy, especially in the fields of fundamental parameters and atmospheric models. Optical interferometers will eventually add full-Stokes polarization measuring capabilities, thus combining both techniques. In this paper, we: 1) list the observables, calibration quantities, and data acquisition strategies for both limited and full optical interferometric polarimetry (OIP); 2) describe the masking interferometer AMASING and its polarization measuring enhancement called AMASING-POL; 3) show how a radio interferometry imaging package, CASA, can be used for optical interferometry data reduction; and 4) present imaging simulations for Be stars.

  9. Status of holographic interferometry at Wright Patterson Air Force Base

    NASA Technical Reports Server (NTRS)

    Seibert, George

    1987-01-01

    At Wright Patterson AFB, holographic interferometry has been used for nearly 15 years in a variety of supersonic and hypersonic wind tunnels. Specifically, holographic interferometry was used to study boundary layers, shock boundary layer interaction, and general flow diagnostics. Although a considerable amount of quantitative work was done, the difficulty of reducing data severely restricted this. In the future, it is of interest to use holographic interferometry in conjunction with laser Doppler velocimetry to do more complete diagnostics. Also, there is an interest to do particle field diagnostics in the combustion research facility. Finally, there are efforts in nondestructive testing where automated fringe readout and analysis would be extremely helpful.

  10. Tautomerism in neutral histidine.

    PubMed

    Bermúdez, Celina; Mata, Santiago; Cabezas, Carlos; Alonso, José L

    2014-10-01

    Histidine is an important natural amino acid, involved in many relevant biological processes, which, because of its physical properties, proved difficult to characterize experimentally in its neutral form. In this work, neutral histidine has been generated in the gas phase by laser ablation of solid samples and its N(ε)H tautomeric form unraveled through its rotational spectrum. The quadrupole hyperfine structure, arising from the existing three (14)N nuclei, constituted a site-specifically probe for revealing the tautomeric form as well as the side chain configuration of this proteogenic amino acid.

  11. Pion yields and the nature of kaon-pion ratios in high energy nucleus-nucleus collisons: models versus measurements

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; De, B.; Guptaroy, P.

    2001-08-01

    The pion densities and the nature of kaon-pion ratios offer two very prominent and crucial physical observables on which sufficient data for heavy nucleus collisions, to date, are available. In the light of two models - one purely phenomenological and the other with a sound dynamical basis - we would try to examine here the state of agreement between calculations and experimental results obtainable from the past and the latest measurements. Impact and implications of all these would also finally be spelt out.

  12. A Study of Quark Fragmentation Using Kaons Produced in Association with Prompt $D_s^±/D^±$ Mesons

    SciTech Connect

    Singh, Niharika Ranjan

    2012-01-01

    Quarks are considered to be the fundamental constituents of hadronic matter, but they have never been observed as free particles. When quarks are produced at high energy colliders, they quickly form bound colorless states, which then decay to produce the particles observed in experiments. The process by which an initially free quark combines with other quarks to form a hadronic particle is called quark fragmentation and has been described using phenomenological models since quarks were first proposed. Since then, several models have been developed to describe the quark fragmentation phenomenon, and these have been tuned to reproduce many average properties of hadrons produced in high energy collisions. In this dissertation, we describe an analysis that probes the properties of particles produced in association with a hadron containing a charm quark that provides a way, for the first time, to study what is thought of as the second particle produced in the process of heavy quar k fragmentation. Data from proton anti-proton collisions was used to carry out this research, which were collected with the CDF II detector at the Fermilab Tevatron and corresponds to 360/pb-1 of integrated luminosity. We reconstruct $D_s^±$ and $D^±$ mesons, which contain charm quarks, and identify the kaons produced in association with them. The kinematic properties of these kaons are compared with predictions of the fragmentation models implemented in the PYTHIA and HERWIG event generators. We find that kaon production in association with $D_s^±$ mesons is enhanced at levels that are in agreement with the fragmentation models but observe differences in production rates of kaons that are produced later in the fragmentation process.

  13. Observations of Circumstellar Disks with Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Akeson, Rachel

    2008-01-01

    Star formation is arguably the area of astrophysics in which infrared interferometry has had the biggest impact. The optically thick portion of T Tauri and Herbig Ae/Be disks DO NOT extend to a few stellar radii of the stellar surface. Emission is coming from near the dust sublimation radius, but not all from a single radius. The Herbig Ae stars can be either flared or self-shadowed but very massive (early Be) stars are geometrically thin. The Herbig Ae stars can be either flared or self-shadowed but very massive (early Be) stars are geometrically thin. Observational prospects are rapidly improving: a) Higher spectral resolution will allow observations of the gas: jets, winds, accretion. b) Closure phase and imaging will help eliminate model uncertainties/dependencies.

  14. Refractive index determination by coherence scanning interferometry.

    PubMed

    Yoshino, H; Kaminski, P M; Smith, R; Walls, J M; Mansfield, D

    2016-05-20

    Coherence scanning interferometry is established as a powerful noncontact, three-dimensional, metrology technique used to determine accurate surface roughness and topography measurements with subnanometer precision. The helical complex field (HCF) function is a topographically defined helix modulated by the electrical field reflectance, originally developed for the measurement of thin films. An approach to extend the capability of the HCF function to determine the spectral refractive index of a substrate or absorbing film has recently been proposed. In this paper, we confirm this new capability, demonstrating it on surfaces of silicon, gold, and a gold/palladium alloy using silica and zirconia oxide thin films. These refractive index dispersion measurements show good agreement with those obtained by spectroscopic ellipsometry. PMID:27411157

  15. Polarization Effects Aboard the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Levin, Jason; Young, Martin; Dubovitsky, Serge; Dorsky, Leonard

    2006-01-01

    For precision displacement measurements, laser metrology is currently one of the most accurate measurements. Often, the measurement is located some distance away from the laser source, and as a result, stringent requirements are placed on the laser delivery system with respect to the state of polarization. Such is the case with the fiber distribution assembly (FDA) that is slated to fly aboard the Space Interferometry Mission (SIM) next decade. This system utilizes a concatenated array of couplers, polarizers and lengthy runs of polarization-maintaining (PM) fiber to distribute linearly-polarized light from a single laser to fourteen different optical metrology measurement points throughout the spacecraft. Optical power fluctuations at the point of measurement can be traced back to the polarization extinction ration (PER) of the concatenated components, in conjunction with the rate of change in phase difference of the light along the slow and fast axes of the PM fiber.

  16. In situ mechanical interferometry of matrigel films.

    PubMed

    Reed, Jason; Walczak, Wanda J; Petzold, Odessa N; Gimzewski, James K

    2009-01-01

    Many biological materials and cell substrates are very soft (Young's modulus <500 Pa) and it is difficult to characterize their mechanical properties. Here we report local elasticity of the surface layers of Matrigel films used for cell culture. We used a new measurement technology, mechanical imaging interferometry, to obtain point mechanical measurements over micron-sized areas. The median values of 650 +/- 400 Pa (# measurements, n = 50), determined by the Hertz contact model, agree well with bulk measurements; however, on the microscale, the films were heterogeneous and contained regions distinctly stiffer than average (1-2 kPa). The first measurement of yield strengths of 170 +/- 100 Pa (n = 43) indicates that Matrigel films deform plastically at stress levels of similar scale to cell tractional forces.

  17. Speckle interferometry of asteroids. I - 433 Eros

    NASA Technical Reports Server (NTRS)

    Drummond, J. D.; Cocke, W. J.; Hege, E. K.; Strittmatter, P. A.; Lambert, J. V.

    1985-01-01

    Analytical expressions are derived for the semimajor and semiminor axes and orientation angle of the ellipse projected by a triaxial asteroid, and the results are applied speckle-interferometry observations of the 433 Eros asteroid. The expressions were calculated as functions of the dimensions and pole of the body and of the asterocentric position of the earth and the sun. On the basis of the analytical expressions, the dimensions of 433 Eros are obtained. The light curve from December 18, 1981 is compared to the dimensions to obtain a geometric albedo of 0.156 (+ or - 0.010). A series of two-dimensional power spectra and autocorrelation functions for 433 Eros show that it is spinning in space.

  18. Hydroxyl density measurements with resonant holographic interferometry

    SciTech Connect

    Trolinger, J.D.; Hess, C.F.; Yip, B.; Battles, B.; Hanson, R.K. Stanford University, CA )

    1992-01-01

    This paper describes experimentation with a new type of flow diagnostics referred to as Resonant Holographic Interferometry Spectroscopy (RHIS). This technique combines the power of holography with the species selectivity of spectroscopy to provide three-dimensional images of the density profile of selected species in complex flows. The technique is particularly suitable to study mixing processes as well as to measure minor species in combustion processes. The method would allow the measurement of minor species in the presence of major species, as well as major species in a heterogeneous low pressure environment. Both experiments and modeling are being conducted to establish the feasibility of RHIS in measuring the hydroxyl concentrations in combustion processes. It is expected that in addition to the species concentration, the resonant holographic technique has the potential of providing temperature, pressure, and flow velocity. 28 refs.

  19. Optics and interferometry with atoms and molecules

    SciTech Connect

    Cronin, Alexander D.; Schmiedmayer, Joerg; Pritchard, David E.

    2009-07-15

    Interference with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory fields technique used in atomic clocks. Atom interferometry is now reaching maturity as a powerful art with many applications in modern science. In this review the basic tools for coherent atom optics are described including diffraction by nanostructures and laser light, three-grating interferometers, and double wells on atom chips. Scientific advances in a broad range of fields that have resulted from the application of atom interferometers are reviewed. These are grouped in three categories: (i) fundamental quantum science, (ii) precision metrology, and (iii) atomic and molecular physics. Although some experiments with Bose-Einstein condensates are included, the focus of the review is on linear matter wave optics, i.e., phenomena where each single atom interferes with itself.

  20. Sagnac Interferometry with a Single Atomic Clock.

    PubMed

    Stevenson, R; Hush, M R; Bishop, T; Lesanovsky, I; Fernholz, T

    2015-10-16

    The Sagnac effect enables interferometric measurements of rotation with high precision. Using matter waves instead of light promises resolution enhancement by orders of magnitude that scales with particle mass. So far, the paradigm for matter wave Sagnac interferometry relies on de Broglie waves and thus on free propagation of atoms either in free fall or within waveguides. However, the Sagnac effect can be expressed as a proper time difference experienced by two observers moving in opposite directions along closed paths and has indeed been measured with atomic clocks flown around Earth. Inspired by this, we investigate an interferometer comprised of a single atomic clock. The Sagnac effect manifests as a phase shift between trapped atoms in different internal states after transportation along closed paths in opposite directions, without any free propagation. With analytic models, we quantify limitations of the scheme arising from atomic dynamics and finite temperature. Furthermore, we suggest an implementation with previously demonstrated technology.

  1. Aperture-synthesis interferometry at optical wavelengths

    NASA Technical Reports Server (NTRS)

    Burke, Bernard F.

    1987-01-01

    The prospects for applying aperture-synthesis interferometry to the optical domain are reviewed. The radio examples such as the VLA provide a model, since the concepts are equally valid for radio and optical wavelengths. If scientific problems at the milliarc-second resolution level (or better) are to be addressed, a space-based optical array seems to be the only practical alternative, for the same reasons that dictated array development at radio wavelengths. One concept is examined, and speculations are offered concerning the prospects for developing real systems. Phase-coherence is strongly desired for a practical array, although self-calibration and phase-closure techniques allow one to relax the restriction on absolute phase stability. The design of an array must be guided by the scientific problems to be addressed.

  2. Transonic flow visualization using holographic interferometry

    NASA Technical Reports Server (NTRS)

    Bryanston-Cross, Peter J.

    1987-01-01

    An account is made of some of the applications of holographic interferometry to the visualization of transonic flows. In the case of the compressor shock visualization, the method is used regularly and has moved from being a research department invention to a design test tool. With the implementation of automatic processing and simple digitization systems, holographic vibrational analysis has also moved into routine nondestructive testing. The code verification interferograms were instructive, but the main turbomachinery interest is now in 3 dimensional flows. A major data interpretation effort will be required to compute tomographically the 3 dimensional flow around the leading or the trailing edges of a rotating blade row. The bolt on approach shows the potential application to current unsteady flows of interest. In particular that of the rotor passing and vortex interaction effects is experienced by the new generation of unducted fans. The turbocharger tests presents a new area for the application of holography.

  3. Quantum interferometry with three-dimensional geometry

    PubMed Central

    Spagnolo, Nicolò; Aparo, Lorenzo; Vitelli, Chiara; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Mataloni, Paolo; Sciarrino, Fabio

    2012-01-01

    Quantum interferometry uses quantum resources to improve phase estimation with respect to classical methods. Here we propose and theoretically investigate a new quantum interferometric scheme based on three-dimensional waveguide devices. These can be implemented by femtosecond laser waveguide writing, recently adopted for quantum applications. In particular, multiarm interferometers include “tritter” and “quarter” as basic elements, corresponding to the generalization of a beam splitter to a 3- and 4-port splitter, respectively. By injecting Fock states in the input ports of such interferometers, fringe patterns characterized by nonclassical visibilities are expected. This enables outperforming the quantum Fisher information obtained with classical fields in phase estimation. We also discuss the possibility of achieving the simultaneous estimation of more than one optical phase. This approach is expected to open new perspectives to quantum enhanced sensing and metrology performed in integrated photonics. PMID:23181189

  4. Moire interferometry for thermal expansion of composites

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Tenney, D. R.; Post, D.; Herakovich, C. T.

    1982-01-01

    Moire interferometry by reflection is described and demonstrated for the case of a real reference grating of 1200 lines/mm. Extraneous beams can be displaced and stopped by using a wedge-shaped air gap between reference and specimen gratings. Double-order dominance, the use of diffraction sequences for reflection, the isolation of preferred sequences, and the use of two-beam interference are discussed. Experimental accuracy is enhanced significantly by using several data points to establish displacements along a line, and random errors characterized by one standard deviation can be as small as one microstrain. The method is well adapted to thermal environments, coefficients of thermal expansion of selected graphite-epoxy laminates being determined in the temperature range of 297-422 K. Very good precision was achieved for a wide range of thermal expansion coefficients, from approximately zero to 27 microstrains/K.

  5. Sagnac Interferometry with a Single Atomic Clock.

    PubMed

    Stevenson, R; Hush, M R; Bishop, T; Lesanovsky, I; Fernholz, T

    2015-10-16

    The Sagnac effect enables interferometric measurements of rotation with high precision. Using matter waves instead of light promises resolution enhancement by orders of magnitude that scales with particle mass. So far, the paradigm for matter wave Sagnac interferometry relies on de Broglie waves and thus on free propagation of atoms either in free fall or within waveguides. However, the Sagnac effect can be expressed as a proper time difference experienced by two observers moving in opposite directions along closed paths and has indeed been measured with atomic clocks flown around Earth. Inspired by this, we investigate an interferometer comprised of a single atomic clock. The Sagnac effect manifests as a phase shift between trapped atoms in different internal states after transportation along closed paths in opposite directions, without any free propagation. With analytic models, we quantify limitations of the scheme arising from atomic dynamics and finite temperature. Furthermore, we suggest an implementation with previously demonstrated technology. PMID:26550871

  6. Low Coherence Interferometry in Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Neef, A.; Seyda, V.; Herzog, D.; Emmelmann, C.; Schönleber, M.; Kogel-Hollacher, M.

    Selective Laser Melting (SLM) is an additive layer manufacturing technology that offers several advantages compared to conven- tional methods of production such as an increased freedom of design and a toolless production suited for variable lot sizes. Despite these attractive aspects today's state of the art SLM machines lack a holistic process monitoring system that detects and records typical defects during production. A novel sensor concept based on the low coherence interferometry (LCI) was integrated into an SLM production setup. The sensor is mounted coaxially to the processing laser beam and is capable of sampling distances along the optical axis. Measurements during and between the processing of powder layers can reveal crucial topology information which is closely related to the final part quality. The overall potential of the sensor in terms of quality assurance and process control is being discussed. Furthermore fundamental experiments were performed to derive the performance of the system.

  7. Externally Dispersed Interferometry for Precision Radial Velocimetry

    SciTech Connect

    Erskine, D J; Muterspaugh, M W; Edelstein, J; Lloyd, J; Herter, T; Feuerstein, W M; Muirhead, P; Wishnow, E

    2007-03-27

    Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic spectral comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. The moire pattern shifts in phase in response to a Doppler shift. Moire patterns are broader than the underlying spectral features and more easily survive spectrograph blurring and common distortions. Thus, the EDI technique allows lower resolution spectrographs having relaxed optical tolerances (and therefore higher throughput) to return high precision velocity measurements, which otherwise would be imprecise for the spectrograph alone.

  8. Apparatus for Ultra-Cold Fermion Interferometry

    NASA Astrophysics Data System (ADS)

    Aubin, Seth; Garcia, Aiyana; Desalvo, Brian

    2008-05-01

    We present progress on the construction of an apparatus for ultra-cold fermion interferometry experiments. The apparatus consists of two connected glass vacuum cells: Fermionic potassium (^40K) and bosonic rubidium (^87Rb) atoms are cooled and collected in a dual-species magneto-optical trap (MOT) in the first cell and are then transported magnetically to the second cell, where they are loaded into a micro-magnetic chip trap. We use radio-frequency (RF) evaporation to cool the rubidium atoms, which in turn sympathetically cool the potassium atoms. The apparatus takes advantage of the rapid cooling inherent to micro-magnetic traps, while also benefiting from the ultra high vacuum achievable with a two chamber vacuum system. In describing our experimental approach, we address the experimental challenges and possible force-sensing applications of fermion interferometers on chips.

  9. Speckle interferometry of nearby multiple stars. II.

    NASA Astrophysics Data System (ADS)

    Balega, I.; Balega, Y. Y.; Maksimov, A. F.; Pluzhnik, E. A.; Schertl, D.; Shkhagosheva, Z. U.; Weigelt, G.

    2004-08-01

    This paper is a continuation of diffraction-limited speckle interferometry of binary and multiple stars carried out at the 6-m telescope of the Special Astrophysical Observatory in Zelenchuk. The program has concentrated on nearby (π>10 mas) close binaries discovered or measured during the Hipparcos mission. Here, we present 132 measurements of relative positions and magnitude differences for 99 pairs and 8 measurements for 6 triple systems. 54 entries in the paper are new Hipparcos binaries. New triple systems with late-type dwarf components, discovered in the course of observations, are HIP 8533 and HIP 25354. Based on data collected at the Special Astrophysical Observatory, Russia. {Tables 1-3 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?/A+A/422/627

  10. Measurements of strangeness production in the STAR experiment at RHIC

    SciTech Connect

    Wilson, W.K.

    1995-07-15

    Simulations of the ability of the STAR (Solenoidal Tracker at RHIC) detector to measure strangeness production in central Au+Au collisions at RHIC are presented. Emphasis is placed on the reconstruction of short lived particles using a high resolution inner tracker. The prospects for performing neutral kaon interferometry are discussed. Simulation results for measurements of strange and multi-strange baryons are presented.

  11. CO2-Neutral Fuels

    NASA Astrophysics Data System (ADS)

    Goede, Adelbert; van de Sanden, Richard

    2016-06-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy efficiency.

  12. Bleach Neutralizes Mold Allergens

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Researchers at National Jewish Medical and Research Center have demonstrated that dilute bleach not only kills common household mold, but may also neutralize the mold allergens that cause most mold-related health complaints. The study, published in the Journal of Allergy and Clinical Immunology, is the first to test the effect on allergic…

  13. Determination of thin hydrodynamic lubricating film thickness using dichromatic interferometry.

    PubMed

    Guo, L; Wong, P L; Guo, F; Liu, H C

    2014-09-10

    This paper introduces the application of dichromatic interferometry for the study of hydrodynamic lubrication. In conventional methods, two beams with different colors are projected consecutively on a static object. By contrast, the current method deals with hydrodynamic lubricated contacts under running conditions and two lasers with different colors are projected simultaneously to form interference images. Dichromatic interferometry incorporates the advantages of monochromatic and chromatic interferometry, which are widely used in lubrication research. This new approach was evaluated statically and dynamically by measuring the inclination of static wedge films and the thickness of the hydrodynamic lubricating film under running conditions, respectively. Results show that dichromatic interferometry can facilitate real-time determination of lubricating film thickness and is well suited for the study of transient or dynamic lubricating problems. PMID:25321689

  14. A Possible Future for Space-Based Interferometry

    NASA Technical Reports Server (NTRS)

    Labadie, L.; Leger, A.; Malbet, F.; Danchi, William C.; Lopez, B.

    2013-01-01

    We address the question of space interferometry following the recent outcome of the science themes selection by ESA for the L2/L3 missions slots. We review the current context of exoplanetary sciences and its impact for an interferometric mission. We argue that space interferometry will make a major step forward when the scientific communities interested in this technique will merge their efforts into a coherent technology development plan.

  15. Applications of whole field interferometry in mechanics and acoustics

    NASA Astrophysics Data System (ADS)

    Molin, Nils-Erik

    1999-07-01

    A description is given of fringe formation in holographic interferometry, in electronic speckle pattern interferometry, in electro-optic or TV holography and for a newly developed system for pulsed TV-holography. A numerical example, which simulates the equations describing the different techniques, is included. A strain measuring system using defocused digital speckle photography is described. Experiments showing mode shapes of musical instruments, transient bending wave propagation in beams and plates as well as sound pressure fields in air are included.

  16. An rf separated kaon beam from the Main Injector: Superconducting aspects

    SciTech Connect

    D.A. Edwards

    1998-11-01

    ThE report is intended to focus on the superconducting aspects of a potential separated kaon beam facility for the Main Injector, and most of this document reflects that emphasis. However, the RF features cannot be divorced from the overall beam requirements, and so the next section is devoted to the latter subject. The existing optics design that meets the needs of the two proposed experiments is outliied, and its layout at Fermilab is shown. The frequency and deflection gradient choices present implementation dMiculties, and the section closes with some commentary on these issues. Sec. 3 provides an introduction to cavity design considerations, and, in particular carries forward the discussion of resonator shape and frequency selection. The R&D program is the subject of Sec. 4. Provisional parameter choices will be summarized. Initial steps toward cavity fabrication based `on copper models have been taken. The next stages in cavity fabrication will be reviewed in some detail. The infrastructure needs and availability will be discussed. Sec. 5 discusses what maybe characterized as the in~edlents of a point design. At this writing, some aspects are clear and some are not. The basic systems are reasonably clear and are described. The final section presents a cost and schedule estimate for both the Ft&D and production phase. Some supporting material and elaboration is provided in the Appendices.

  17. Proposed Fermilab fixed target experiment: Kaons at the Tevatron. Environmental Assessment

    SciTech Connect

    Not Available

    1993-12-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-0898, evaluating the impacts associated with the proposed fixed target experiment at the Fermi National Accelerator Laboratory (Femilab) in Batavia, Illinois, known as Kaons at the Tevatron (KTeV). The proposed KTeV project includes reconfiguration of an existing target station, enhancement of an existing beam transport system connected to existing utility facilities, and construction of a new experimental detector hall area. The study of the K meson, a type of subatomic particle, has been going on at Fermilab for 20 years. The proposed KTEV project advances the search for the origins of a violation of a fundamental symmetry of nature called charge parity (CP) violation. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

  18. The Kaon B-parameter in mixed action chiral perturbation theory

    SciTech Connect

    Aubin, C.; Laiho, Jack; Van de Water, Ruth S.; /Fermilab

    2006-09-01

    We calculate the kaon B-parameter, B{sub K}, in chiral perturbation theory for a partially quenched, mixed action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We find that the resulting expression is similar to that in the continuum, and in fact has only two additional unknown parameters. At one-loop order, taste-symmetry violations in the staggered sea sector only contribute to flavor-disconnected diagrams by generating an {Omicron}(a{sup 2}) shift to the masses of taste-singlet sea-sea mesons. Lattice discretization errors also give rise to an analytic term which shifts the tree-level value of B{sub K} by an amount of {Omicron}(a{sup 2}). This term, however, is not strictly due to taste-breaking, and is therefore also present in the expression for B{sub K} for pure G-W lattice fermions. We also present a numerical study of the mixed B{sub K} expression in order to demonstrate that both discretization errors and finite volume effects are small and under control on the MILC improved staggered lattices.

  19. Kaon B parameter with the Wilson quark action using chiral Ward identities

    NASA Astrophysics Data System (ADS)

    Aoki, S.; Fukugita, M.; Hashimoto, S.; Ishizuka, N.; Iwasaki, Y.; Kanaya, K.; Kuramashi, Y.; Okawa, M.; Ukawa, A.; Yoshié, T.

    1999-08-01

    A lattice QCD calculation of the kaon B parameter BK is carried out with the Wilson quark action in the quenched approximation at β=6/g2=5.9-6.5. The mixing problem of the Δs=2 four-quark operators is solved nonperturbatively with full use of chiral Ward identities employing four external quarks with an equal off-shell momentum in the Landau gauge. This method, without invoking any effective theory, enables us to construct the weak four-quark operators exhibiting good chiral behavior. Our results for BK with the nonperturbative mixing coefficients show small scaling violation beyond the lattice cutoff a-1~2.5 GeV. Our estimate concludes BK(NDR,2 GeV)=0.69(7) at a-1=2.7-4.3 GeV, which agrees with the value obtained with the Kogut-Susskind quark action. For comparison we also calculate BK with one-loop perturbative mixing coefficients. While this yields incorrect values at finite lattice spacing, a linear extrapolation to the continuum limit as a function of a leads to a result consistent with those obtained with the Ward identity method.

  20. Polarized structure function sigma_lt' for kaon electroproduction in the nucleon resonance region

    SciTech Connect

    Rakhsha Nasseripour; B. Raue; Daniel Carman; Pawel Ambrozewicz

    2008-02-19

    The first measurements of the polarized structure function $\\sigma_{LT'}$ for the reaction $p(\\vec e,e'K^+)\\Lambda$ in the nucleon resonance region are reported. Measurements are included from threshold up to $W$=2.05~GeV for central values of $Q^2$ of 0.65 and 1.00~GeV$^2$, and nearly the entire kaon center-of-mass angular range. $\\sigma_{LT'}$ is the imaginary part of the longitudinal-transverse response and is expected to be sensitive to interferences between competing intermediate $s$-channel resonances, as well as resonant and non-resonant processes. The results for $\\sigma_{LT'}$ are comparable in magnitude to previously reported results from CLAS for $\\sigma_{LT}$, the real part of the same response. An intriguing sign change in $\\sigma_{LT'}$ is observed in the high $Q^2$ data at $W\\approx 1.9$~GeV. Comparisons to several existing model predictions are shown.

  1. Between detection and neutralization.

    SciTech Connect

    Snell, Mark Kamerer; Green, Mary Wilson; Adams, Douglas Glenn; Pritchard, Daniel Allison

    2005-08-01

    Security system analytical performance analysis is generally based on the probability of system effectiveness. The probability of effectiveness is a function of the probabilities of interruption and neutralization. Interruption occurs if the response forces are notified in sufficient time to engage the adversary. Neutralization occurs if the adversary attack is defeated after the security forces have actively engaged the adversary. Both depend upon communications of data. This paper explores details of embedded communications functions that are often assumed to be inconsequential. It is the intent of the authors to bring focus to an issue in security system modeling that, if not well understood, has the potential to be a deciding factor in the overall system failure or effectiveness.

  2. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, William K.

    1986-01-01

    A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

  3. Antihypertensive neutral lipid

    DOEpatents

    Snyder, F.L.; Blank, M.L.

    1984-10-26

    The invention relates to the discovery of a class of neutral acetylated either-linked glycerolipids having the capacity to lower blood presure in warm-blooded animals. This physiological effect is structure sensitive requiring a long chain alkyl group at the sn-1 position and a short carbon chain acyl group (acetyl or propionyl) at the sn-2 position, and a hydroxyl group at the sn-3 position.

  4. Antihypertensive neutral lipid

    DOEpatents

    Snyder, Fred L.; Blank, Merle L.

    1986-01-01

    The invention relates to the discovery of a class of neutral acetylated ether-linked glycerolipids having the capacity to lower blood pressure in warm-blooded animals. This physiological effect is structure sensitive requiring a long chain alkyl group at the sn-1 position and a short carbon chain acyl group (acetyl or propionyl) at the sn-2 position, and a hydroxyl group at the sn-3 position.

  5. Neutral atom traps.

    SciTech Connect

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  6. Exercise Equipment: Neutral Buoyancy

    NASA Technical Reports Server (NTRS)

    Shackelford, Linda; Valle, Paul

    2016-01-01

    Load Bearing Equipment for Neutral Buoyancy (LBE-NB) is an exercise frame that holds two exercising subjects in position as they apply counter forces to each other for lower extremity and spine loading resistance exercises. Resistance exercise prevents bone loss on ISS, but the ISS equipment is too massive for use in exploration craft. Integrating the human into the load directing, load generating, and motion control functions of the exercise equipment generates safe exercise loads with less equipment mass and volume.

  7. Neutral Buoyancy Simulator Test

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A diver tests a secondary camera and maneuvering platform in Marshall's Neutral Buoyancy Simulator (NBS).The secondary camera will be beneficial for recording repairs and other extra vehicular activities (EVA) the astronuats will perform while making repairs on the Hubble Space Telescope (HST). The maneuvering platform was developed to give the astronauts something to stand on while performing maintenance tasks. These platforms were developed to be mobile so that the astronauts could move them to accommadate different sites.

  8. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  9. Testing nonlinear vacuum electrodynamics with Michelson interferometry

    NASA Astrophysics Data System (ADS)

    Schellstede, Gerold O.; Perlick, Volker; Lämmerzahl, Claus

    2015-07-01

    We discuss the theoretical foundations for testing nonlinear vacuum electrodynamics with Michelson interferometry. Apart from some nondegeneracy conditions to be imposed, our discussion applies to all nonlinear electrodynamical theories of the Plebański class, i.e., to all Lagrangians that depend only on the two Lorentz-invariant scalars quadratic in the field strength. The main idea of the experiment proposed here is to use the fact that, according to nonlinear electrodynamics, the phase velocity of light should depend on the strength and on the direction of an electromagnetic background field. There are two possible experimental setups for testing this prediction with Michelson interferometry. The first possibility is to apply a strong electromagnetic field to the beam in one arm of the interferometer and to compare the situation where the field is switched on with the situation where it is switched off. The second possibility is to place the whole interferometer in a strong electromagnetic field and to rotate it. If an electromagnetic field is placed in one arm, the interferometer could have the size of a gravitational wave detector, i.e., an arm length of several hundred meters. If the whole interferometer is placed in an electromagnetic field, one would have to do the experiment with a tabletop interferometer. As an alternative to a traditional Michelson interferometer, one could use a pair of optical resonators that are not bigger than a few centimeters. Then the whole apparatus would be placed in the background field and one would either compare the situation where the field is switched on with the situation where it is switched off or one would rotate the apparatus with the field kept switched on. We derive the theoretical foundations for these types of experiments, in the context of an unspecified nonlinear electrodynamics of the Plebański class, and we discuss their feasibility. A null result of the experiment would place bounds on the parameters of the

  10. Neutrality between Government and Religion.

    ERIC Educational Resources Information Center

    Mawdsley, Ralph D.

    1996-01-01

    The overall guiding principle of neutrality between government and religion masks a tension that exists between free exercise of religion and establishment of religion. Reviews the development and current status of "Lemon" as a test for neutrality; proposes a new test for neutrality, evenhandedness, that is common to both the Free Exercise and…

  11. A review of connected element radio interferometry directed at establishing an almost internal reference frame

    NASA Technical Reports Server (NTRS)

    Johnston, K. J.

    1980-01-01

    The present status of connected element radio interferometry towards establishing an accurate grid of positions of extragalactic radio sources is reviewed. Many of the problems being encountered are, in general, also faced by very long baseline interferometry.

  12. Speckle reference beam holographic and speckle photographic interferometry in non-destructive test systems

    NASA Technical Reports Server (NTRS)

    Liu, H. K.

    1976-01-01

    The techniques of speckle beam holographic interferometry and speckle photographic interferometry are described. In particular, their practical limitations and their applications to the existing holographic nondestructive test system are discussed.

  13. Bounding the Higgs boson width through interferometry.

    PubMed

    Dixon, Lance J; Li, Ye

    2013-09-13

    We study the change in the diphoton-invariant-mass distribution for Higgs boson decays to two photons, due to interference between the Higgs resonance in gluon fusion and the continuum background amplitude for gg→γγ. Previously, the apparent Higgs mass was found to shift by around 100 MeV in the standard model in the leading-order approximation, which may potentially be experimentally observable. We compute the next-to-leading-order QCD corrections to the apparent mass shift, which reduce it by about 40%. The apparent mass shift may provide a way to measure, or at least bound, the Higgs boson width at the Large Hadron Collider through "interferometry." We investigate how the shift depends on the Higgs width, in a model that maintains constant Higgs boson signal yields. At Higgs widths above 30 MeV, the mass shift is over 200 MeV and increases with the square root of the width. The apparent mass shift could be measured by comparing with the ZZ* channel, where the shift is much smaller. It might be possible to measure the shift more accurately by exploiting its strong dependence on the Higgs transverse momentum.

  14. Experimental demonstration of deep frequency modulation interferometry.

    PubMed

    Isleif, Katharina-Sophie; Gerberding, Oliver; Schwarze, Thomas S; Mehmet, Moritz; Heinzel, Gerhard; Cervantes, Felipe Guzmán

    2016-01-25

    Experiments for space and ground-based gravitational wave detectors often require a large dynamic range interferometric position readout of test masses with 1 pm/√Hz precision over long time scales. Heterodyne interferometer schemes that achieve such precisions are available, but they require complex optical set-ups, limiting their scalability for multiple channels. This article presents the first experimental results on deep frequency modulation interferometry, a new technique that combines sinusoidal laser frequency modulation in unequal arm length interferometers with a non-linear fit algorithm. We have tested the technique in a Michelson and a Mach-Zehnder Interferometer topology, respectively, demonstrated continuous phase tracking of a moving mirror and achieved a performance equivalent to a displacement sensitivity of 250 pm/Hz at 1 mHz between the phase measurements of two photodetectors monitoring the same optical signal. By performing time series fitting of the extracted interference signals, we measured that the linearity of the laser frequency modulation is on the order of 2% for the laser source used. PMID:26832546

  15. Chameleon dark energy and atom interferometry

    NASA Astrophysics Data System (ADS)

    Elder, Benjamin; Khoury, Justin; Haslinger, Philipp; Jaffe, Matt; Müller, Holger; Hamilton, Paul

    2016-08-01

    Atom interferometry experiments are searching for evidence of chameleon scalar fields with ever-increasing precision. As experiments become more precise, so too must theoretical predictions. Previous work has made numerous approximations to simplify the calculation, which in general requires solving a three-dimensional nonlinear partial differential equation. This paper calculates the chameleonic force using a numerical relaxation scheme on a uniform grid. This technique is more general than previous work, which assumed spherical symmetry to reduce the partial differential equation to a one-dimensional ordinary differential equation. We examine the effects of approximations made in previous efforts on this subject and calculate the chameleonic force in a setup that closely mimics the recent experiment of Hamilton et al. Specifically, we simulate the vacuum chamber as a cylinder with dimensions matching those of the experiment, taking into account the backreaction of the source mass, its offset from the center, and the effects of the chamber walls. Remarkably, the acceleration on a test atomic particle is found to differ by only 20% from the approximate analytical treatment. These results allow us to place rigorous constraints on the parameter space of chameleon field theories, although ultimately the constraint we find is the same as the one we reported in Hamilton et al. because we had slightly underestimated the size of the vacuum chamber. This computational technique will continue to be useful as experiments become even more precise and will also be a valuable tool in optimizing future searches for chameleon fields and related theories.

  16. Optical interferometry from the lunar surface

    NASA Astrophysics Data System (ADS)

    Rayman, M. D.; Saunders, R. S.

    A preliminary study was conducted to determine the feasibility of a concept for a robust and expandable lunar optical interferometer that would perform new science even with the modest first element. With a phased approach, early steps verify technology for later phases. As elements are added to the observational system, astronomical observations unachievable from the surface of Earth are made possible. The initial experiment is supported by the Lunar Ultraviolet Telescope Experiment (LUTE), a 1-meter-class transit telescope. The first interferometry element, the Lunar Interferometer Technology Experiment (LITE), will perform ultraviolet astrometry and will demonstrate critical interferometer technologies (including optical delay lines and nanometer-level metrology) in the lunar environment. Subsequent elements will add capability, building on the design and performance of both LITE and LUTE. The starlight collectors will be based on the LUTE design but will be capable of being pointed. They will relay the received light to a centrally positioned beam combiner. As more collectors are added, the system will build up from an astrometric interferometer to an imaging interferometer with 100-m-class baselines. Because discrete elements are used, if any one of the collectors fails completely, the system remains functional.

  17. Multifrequency perturbations in matter-wave interferometry

    NASA Astrophysics Data System (ADS)

    Günther, A.; Rembold, A.; Schütz, G.; Stibor, A.

    2015-11-01

    High-contrast matter-wave interferometry is essential in various fundamental quantum mechanical experiments as well as for technical applications. Thereby, contrast and sensitivity are typically reduced by decoherence and dephasing effects. While decoherence accounts for a general loss of quantum information in a system due to entanglement with the environment, dephasing is due to collective time-dependent external phase shifts, which can be related to temperature drifts, mechanical vibrations, and electromagnetic oscillations. In contrast to decoherence, dephasing can, in principle, be reversed. Here, we demonstrate in experiment and theory a method for the analysis and reduction of the influence of dephasing noise and perturbations consisting of several external frequencies in an electron interferometer. This technique uses the high spatial and temporal resolution of a delay-line detector to reveal and remove dephasing perturbations by second-order correlation analysis. It allows matter-wave experiments under perturbing laboratory conditions and can be applied, in principle, to electron, atom, ion, neutron, and molecule interferometers.

  18. Clutter suppression interferometry system design and processing

    NASA Astrophysics Data System (ADS)

    Knight, Chad; Deming, Ross; Gunther, Jake

    2015-05-01

    Clutter suppression interferometry (CSI) has received extensive attention due to its multi-modal capability to detect slow-moving targets, and concurrently form high-resolution synthetic aperture radar (SAR) images from the same data. The ability to continuously augment SAR images with geo-located ground moving target indicators (GMTI) provides valuable real-time situational awareness that is important for many applications. CSI can be accomplished with minimal hardware and processing resources. This makes CSI a natural candidate for applications where size, weight and power (SWaP) are constrained, such as unmanned aerial vehicles (UAVs) and small satellites. This paper will discuss the theory for optimal CSI system configuration focusing on sparse time-varying transmit and receive array manifold due to SWaP considerations. The underlying signal model will be presented and discussed as well as the potential benefits that a sparse time-varying transmit receive manifold provides. The high-level processing objectives will be detailed and examined on simulated data. Then actual SAR data collected with the Space Dynamic Laboratory (SDL) FlexSAR radar system will be analyzed. The simulated data contrasted with actual SAR data helps illustrate the challenges and limitations found in practice vs. theory. A new novel approach incorporating sparse signal processing is discussed that has the potential to reduce false- alarm rates and improve detections.

  19. Radar Interferometry Time Series Analysis and Tools

    NASA Astrophysics Data System (ADS)

    Buckley, S. M.

    2006-12-01

    We consider the use of several multi-interferogram analysis techniques for identifying transient ground motions. Our approaches range from specialized InSAR processing for persistent scatterer and small baseline subset methods to the post-processing of geocoded displacement maps using a linear inversion-singular value decomposition solution procedure. To better understand these approaches, we have simulated sets of interferograms spanning several deformation phenomena, including localized subsidence bowls with constant velocity and seasonal deformation fluctuations. We will present results and insights from the application of these time series analysis techniques to several land subsidence study sites with varying deformation and environmental conditions, e.g., arid Phoenix and coastal Houston-Galveston metropolitan areas and rural Texas sink holes. We consistently find that the time invested in implementing, applying and comparing multiple InSAR time series approaches for a given study site is rewarded with a deeper understanding of the techniques and deformation phenomena. To this end, and with support from NSF, we are preparing a first-version of an InSAR post-processing toolkit to be released to the InSAR science community. These studies form a baseline of results to compare against the higher spatial and temporal sampling anticipated from TerraSAR-X as well as the trade-off between spatial coverage and resolution when relying on ScanSAR interferometry.

  20. Advancing differential atom interferometry for space applications

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-Wey; Williams, Jason; Yu, Nan

    2016-05-01

    Atom interferometer (AI) based sensors exhibit precision and accuracy unattainable with classical sensors, thanks to the inherent stability of atomic properties. Dual atomic sensors operating in a differential mode further extend AI applicability beyond environmental disturbances. Extraction of the phase difference between dual AIs, however, typically introduces uncertainty and systematic in excess of that warranted by each AI's intrinsic noise characteristics, especially in practical applications and real time measurements. In this presentation, we report our efforts in developing practical schemes for reducing noises and enhancing sensitivities in the differential AI measurement implementations. We will describe an active phase extraction method that eliminates the noise overhead and demonstrates a performance boost of a gravity gradiometer by a factor of 3. We will also describe a new long-baseline approach for differential AI measurements in a laser ranging assisted AI configuration. The approach uses well-developed AIs for local measurements but leverage the mature schemes of space laser interferometry for LISA and GRACE. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a Contract with NASA.

  1. A spectroscopic refractometer based on plasmonic interferometry

    NASA Astrophysics Data System (ADS)

    Feng, Jing; Pacifici, Domenico

    2016-02-01

    We describe the design, fabrication, and testing of a spectroscopic refractometer that employs plasmonic interferometry to measure the optical dielectric functions of materials in the visible range. The proposed device, dubbed a plasmonic refractometer, consists of an array of slit-groove plasmonic interferometers etched in a ˜300 nm-thick metal film (silver or gold) with arm lengths varying in steps of 25 nm up to ˜8 μm. The nano-groove in each interferometer is able to generate propagating surface plasmon polaritons efficiently in a broad wavelength range, without requiring prism- or grating-coupling configurations. An integrated microfluidic channel ensures uniform delivery of dielectric materials in liquid phase. Spectrally resolved plasmonic interferograms are generated by measuring light transmission spectra through the slit of each slit-groove plasmonic interferometer and plotting the normalized intensity as a function of arm length (0.26-8.16 μm) and incident wavelength (400-800 nm) for various combinations of metal/dielectric materials. Fits of the plasmonic interferograms with a surface plasmon interference model allow determination of the refractive index dispersion of a broad class of dielectric materials, over a wide range of wavelengths and dielectric constants. As proof of concept, we extract and report the dielectric functions of representative materials, such as silver, gold, water, methanol, and ethanol.

  2. Quasar Astrophysics with the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen; Wehrle, Ann; Meier, David; Jones, Dayton; Piner, Glenn

    2007-01-01

    Optical astrometry of quasars and active galaxies can provide key information on the spatial distribution and variability of emission in compact nuclei. The Space Interferometry Mission (SIM PlanetQuest) will have the sensitivity to measure a significant number of quasar positions at the microarcsecond level. SIM will be very sensitive to astrometric shifts for objects as faint as V = 19. A variety of AGN phenomena are expected to be visible to SIM on these scales, including time and spectral dependence in position offsets between accretion disk and jet emission. These represent unique data on the spatial distribution and time dependence of quasar emission. It will also probe the use of quasar nuclei as fundamental astrometric references. Comparisons between the time-dependent optical photocenter position and VLBI radio images will provide further insight into the jet emission mechanism. Observations will be tailored to each specific target and science question. SIM will be able to distinguish spatially between jet and accretion disk emission; and it can observe the cores of galaxies potentially harboring binary supermassive black holes resulting from mergers.

  3. Laser wavelength comparison by high resolution interferometry.

    PubMed

    Layer, H P; Deslattes, R D; Schweitzer, W G

    1976-03-01

    High resolution interferometry has been used to determine the wavelength ratio between two molecularly stabilized He-Ne lasers, one locked to a methane absorption at 3.39 microm and the other locked to the k peak of (129)I(2) at 633 nm. An optical beat frequency technique gave fractional orders while a microwave sideband method yielded the integer parts. Conventional (third derivative) peak seeking servoes stabilized both laser and cavity lengths. Reproducibility of the electronic control system and optics was a few parts in 10(12), while systematic errors associated with curvature of the cavity mirrors limited the accuracy of the wavelength ratio measurement to 2 parts in 10(10). The measured wavelength ratio of the methane stabilized He-Ne laser at 3.39 microm [P(7) line, nu(3) band] to the (129)I(2) (k peak) stabilized He-Ne laser at 633 nm was 5.359 049 260 6 (0.000 2 ppm). This ratio agrees with that calculated from the (lower accuracy) results of earlier wavelength measurements made relative to the (86)Kr standard. Its higher accuracy thus permits a provisional extension of the frequency scale based on the cesium oscillator into the visible spectrum.

  4. Extending temporal coherence in speckle interferometry

    NASA Astrophysics Data System (ADS)

    Crespo Contiñas, J. M.; Moreno de las Cuevas, V.; Gallas Torreira, M.; Calizaya Calizaya, M.

    2013-11-01

    Electronic Speckle Pattern Interferometry (ESPI) and Shearography (ESPSI) techniques have been used in the field of non-destructive testing for a long time, providing accuracy, and allowing whole field analysis of pure deformation (ESPI) or the gradient of deformation (ESPSI). One of the major weaknesses of this two techniques is linked to speckle de-correlation. When the deformation process produces a displacement greater than a certain proportion of the speckle size, there is a severe loss of coherence which limits the application of these techniques to processes with strong or fast deformations. In order to avoid this limitation, the use of a dynamically updated reference frame is tested in this work. First, in ESPI and ESPSI setups, a metacrylathe bar is used as specimen for testing procedures, and finally a human jaw bone will be used in an ESPSI setup. One basic and regular-shaped object, the bar, and a structurally 3D complex structure, the human jaw bone, with complex elastic properties are the samples to test.

  5. Thermal expansion of composites using Moire interferometry

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Post, D.; Herakovich, C. T.; Tenny, D. R.

    1980-01-01

    An experimental technique for precise measurement of the thermal response of fiber-reinforced composite materials uses moire interferometry with fringe multiplication which yield a sensitivity of 833 nm (32.8 mu in.) per fringe. Results from the technique are compared with those obtained from electrical resistance strain gages, and also those predicted from classical lamination theory. Temperature dependent coefficients of thermal expansion for composite materials subjected to thermal cycling in the temperature range of 297 K (75 F) to 422 K (300 F) were determined for four laminate configurations (0, 90, 0/ + or - 45/90 sub s and 0/90/ + or - 45 sub s) of T300/5208 graphite epoxy, and ranged from -0.107 mu epsilon K/1 (-0.059 mu epsilon deg F/-) for the 0 laminate to 32.18 mu epsilon K/1 (17.88 mu epsilon F/1) for the 90 laminate. Moisture was found to greatly influence the thermal response of a quasi-isotropic laminate, resulting in hysteresis and residual compressive strain as the moisture content was reduced. Comparisons between moire and strain gage measurements were inconclusive with both techniques giving consistent but systematically different results. Differences of as much as 29% were observed.

  6. General Relativistic Effects in Atom Interferometry

    SciTech Connect

    Dimopoulos, Savas; Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; /Stanford U., Phys. Dept.

    2008-03-17

    Atom interferometry is now reaching sufficient precision to motivate laboratory tests of general relativity. We begin by explaining the non-relativistic calculation of the phase shift in an atom interferometer and deriving its range of validity. From this we develop a method for calculating the phase shift in general relativity. This formalism is then used to find the relativistic effects in an atom interferometer in a weak gravitational field for application to laboratory tests of general relativity. The potentially testable relativistic effects include the non-linear three-graviton coupling, the gravity of kinetic energy, and the falling of light. We propose experiments, one currently under construction, that could provide a test of the principle of equivalence to 1 part in 10{sup 15} (300 times better than the present limit), and general relativity at the 10% level, with many potential future improvements. We also consider applications to other metrics including the Lense-Thirring effect, the expansion of the universe, and preferred frame and location effects.

  7. Two-dimensional laser interferometry analysis

    NASA Astrophysics Data System (ADS)

    Mehr, Leo; Concepcion, Ricky; Duggan, Robert; Moore, Hannah; Novick, Asher; Ransohoff, Lauren; Gourdain, Pierre-Alexandre; Hammer, David; Kusse, Bruce

    2013-10-01

    The objective of our research was to create a two-dimensional interferometer which we will use to measure plasma densities at the Cornell Research Beam Accelerator (COBRA). We built two shearing interferometers and mounted them on an optics table. They intercept the probe laser beam which travels directly through the plasma and is captured by a 16-bit CCD camera. In comparing the interferometer images before the shot and during the plasma shot, we observed both lateral and vertical shifts in the interference pattern caused by the change of the refractive index due to the plasma electrons. We developed a computer program using Matlab to map a vector field depicting the shift between the two images. This shift is proportional to the line integral of electron density through the plasma chamber. We show this method provides a reliable way to determine the plasma electron density profile. Additionally, we hope this method can improve upon the diagnostic capabilities and efficiency of data collection used with standard one-dimensional interferometry. Undergraduate.

  8. Pulsed field sample neutralization

    DOEpatents

    Appelhans, Anthony D.; Dahl, David A.; Delmore, James E.

    1990-01-01

    An apparatus and method for alternating voltage and for varying the rate of extraction during the extraction of secondary particles, resulting in periods when either positive ions, or negative ions and electrons are extracted at varying rates. Using voltage with alternating charge during successive periods to extract particles from materials which accumulate charge opposite that being extracted causes accumulation of surface charge of opposite sign. Charge accumulation can then be adjusted to a ratio which maintains a balance of positive and negative charge emission, thus maintaining the charge neutrality of the sample.

  9. Interferometry in the Era of Very Large Telescopes

    NASA Technical Reports Server (NTRS)

    Barry, Richard K.

    2010-01-01

    Research in modern stellar interferometry has focused primarily on ground-based observatories, with very long baselines or large apertures, that have benefited from recent advances in fringe tracking, phase reconstruction, adaptive optics, guided optics, and modern detectors. As one example, a great deal of effort has been put into development of ground-based nulling interferometers. The nulling technique is the sparse aperture equivalent of conventional coronography used in filled aperture telescopes. In this mode the stellar light itself is suppressed by a destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. Nulling interferometry has helped to advance our understanding of the astrophysics of many distant objects by providing the spatial resolution necessary to localize the various faint emission sources near bright objects. We illustrate the current capabilities of this technique by describing the first scientific results from the Keck Interferometer Nuller that combines the light from the two largest optical telescopes in the world including new, unpublished measurements of exozodiacal dust disks. We discuss prospects in the near future for interferometry in general, the capabilities of secondary masking interferometry on very large telescopes, and of nulling interferometry using outriggers on very large telescopes. We discuss future development of a simplified space-borne NIR nulling architecture, the Fourier-Kelvin Stellar Interferometer, capable of detecting and characterizing an Earth twin in the near future and how such a mission would benefit from the optical wavelength coverage offered by large, ground-based instruments.

  10. Robust signal evaluation for Chromatic Confocal Spectral Interferometry

    NASA Astrophysics Data System (ADS)

    Boettcher, Tobias; Lyda, Wolfram; Gronle, Marc; Mauch, Florian; Osten, Wolfgang

    2013-04-01

    The hybrid measurement principle Chromatic Confocal Spectral Interferometry combines Spectral Interferometry with Chromatic Confocal Microscopy and therefore benefits from their respective advantages. Our actual demonstrator setup enables an axial measurement range up to 100 μm with resolution up to 5 nm depending on the employed evaluation method and the characteristics of the object's surface. On structured surfaces, lateral features down to 1 μm can be measured. As the sensor raw signal consists of a Spectral Interferometry type wavelet modulated by a confocal envelope, two classes of evaluation methods working on the phasing or the position of the envelope are employed. Even though both of these information channels are subject to their respective problems, we show that a proper combination of the individual methods leads to a robust signal evaluation. In particular, we show that typical artifacts on curved surfaces, that are known from Chromatic Confocal Microscopy, are minimized or completely removed by taking the phasing of the Spectral Interferometry wavelet into consideration. At the same time the problem of determining the right fringe order of the Spectral Interferometry signal at surface discontinuities can be solved by evaluation of the confocal envelope. We present here a first approach using a contrast threshold on the signal and a median referencing for trusted sections of the analysed topography, which yields a reduction of artifacts in a submicron range on steep gradients, discontinuous specimen or curved mirror-like surfaces.

  11. Charged Kaon interferometric probes of space-time evolution in Au+Au collisions at sqrt[S(NN)]=200 GeV.

    PubMed

    Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Al-Jamel, A; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Campbell, S; Chai, J-S; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Chujo, T; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; Dahms, T; Das, K; David, G; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Fields, D E; Fleuret, F; Fokin, S L; Forestier, B; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Fung, S-Y; Gadrat, S; Gastineau, F; Germain, M; Glenn, A; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-A; Hachiya, T; Hadj Henni, A; Haggerty, J S; Hagiwara, M N; Hamagaki, H; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; Heffner, M; Hemmick, T K; Heuser, J M; He, X; Hiejima, H; Hill, J C; Hobbs, R; Holmes, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hur, M G; Ichihara, T; Imai, K; Inaba, M; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kaneta, M; Kang, J H; Kawagishi, T; Kazantsev, A V; Kelly, S; Khanzadeev, A; Kim, D J; Kim, E; Kim, Y-S; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klein-Boesing, C; Kochenda, L; Kochetkov, V; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lajoie, J G; Lebedev, A; Le Bornec, Y; Leckey, S; Lee, D M; Lee, M K; Leitch, M J; Leite, M A L; Lim, H; Litvinenko, A; Liu, M X; Li, X H; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Masui, H; Matathias, F; McCain, M C; McGaughey, P L; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mitchell, J T; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakamura, T; Newby, J; Nguyen, M; Norman, B E; Nouicer, R; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Omiwade, O O; Oskarsson, A; Otterlund, I; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Samsonov, V; Sato, H D; Sato, S; Sawada, S; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Thomas, T L; Togawa, M; Tojo, J; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tuli, S K; Tydesjö, H; Tyurin, N; Vale, C; Valle, H; van Hecke, H W; Velkovska, J; Vértesi, R; Vinogradov, A A; Vznuzdaev, E; Wagner, M; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Woody, C L; Wysocki, M; Xie, W; Yanovich, A; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zimányi, J; Zolin, L

    2009-10-01

    Bose-Einstein correlations of charged kaons are used to probe Au+Au collisions at sqrt[S(NN)]=200 GeV and are compared to charged pion probes, which have a larger hadronic scattering cross section. Three-dimensional Gaussian source radii are extracted, along with a one-dimensional kaon emission source function. The centrality dependences of the three Gaussian radii are well described by a single linear function of N(part)1/3 with a zero intercept. Imaging analysis shows a deviation from a Gaussian tail at r greater than or approximately equal to 10 fm, although the bulk emission at lower radius is well described by a Gaussian. The presence of a non-Gaussian tail in the kaon source reaffirms that the particle emission region in a heavy-ion collision is extended, and that similar measurements with pions are not solely due to the decay of long-lived resonances. PMID:19905563

  12. Charged Kaon Interferometric Probes of Space-Time Evolution in Au+Au Collisions at sqrtSNN = 200 GeV

    SciTech Connect

    Afanasiev, S.; Awes, Terry C; Cianciolo, Vince; Efremenko, Yuri; Enokizono, Akitomo; Read Jr, Kenneth F; Silvermyr, David O; Sorensen, Soren P; Stankus, Paul W; Young, Glenn R; PHENIX, Collaboration

    2009-01-01

    Bose-Einstein correlations of charged kaons are used to probe Au+Au collisions at {radical}s{sub NN} = 200 GeV and are compared to charged pion probes, which have a larger hadronic scattering cross section. Three-dimensional Gaussian source radii are extracted, along with a one-dimensional kaon emission source function. The centrality dependences of the three Gaussian radii are well described by a single linear function of N{sub part}{sup 1/3} with a zero intercept. Imaging analysis shows a deviation from a Gaussian tail at r {approx}> 10 fm, although the bulk emission at lower radius is well described by a Gaussian. The presence of a non-Gaussian tail in the kaon source reaffirms that the particle emission region in a heavy-ion collision is extended, and that similar measurements with pions are not solely due to the decay of long-lived resonances.

  13. Charged Kaon interferometric probes of space-time evolution in Au+Au collisions at sqrt[S(NN)]=200 GeV.

    PubMed

    Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Al-Jamel, A; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Campbell, S; Chai, J-S; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Chujo, T; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; Dahms, T; Das, K; David, G; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Fields, D E; Fleuret, F; Fokin, S L; Forestier, B; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Fung, S-Y; Gadrat, S; Gastineau, F; Germain, M; Glenn, A; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-A; Hachiya, T; Hadj Henni, A; Haggerty, J S; Hagiwara, M N; Hamagaki, H; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; Heffner, M; Hemmick, T K; Heuser, J M; He, X; Hiejima, H; Hill, J C; Hobbs, R; Holmes, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hur, M G; Ichihara, T; Imai, K; Inaba, M; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kaneta, M; Kang, J H; Kawagishi, T; Kazantsev, A V; Kelly, S; Khanzadeev, A; Kim, D J; Kim, E; Kim, Y-S; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klein-Boesing, C; Kochenda, L; Kochetkov, V; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lajoie, J G; Lebedev, A; Le Bornec, Y; Leckey, S; Lee, D M; Lee, M K; Leitch, M J; Leite, M A L; Lim, H; Litvinenko, A; Liu, M X; Li, X H; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Masui, H; Matathias, F; McCain, M C; McGaughey, P L; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mitchell, J T; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakamura, T; Newby, J; Nguyen, M; Norman, B E; Nouicer, R; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Omiwade, O O; Oskarsson, A; Otterlund, I; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Samsonov, V; Sato, H D; Sato, S; Sawada, S; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Thomas, T L; Togawa, M; Tojo, J; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tuli, S K; Tydesjö, H; Tyurin, N; Vale, C; Valle, H; van Hecke, H W; Velkovska, J; Vértesi, R; Vinogradov, A A; Vznuzdaev, E; Wagner, M; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Woody, C L; Wysocki, M; Xie, W; Yanovich, A; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zimányi, J; Zolin, L

    2009-10-01

    Bose-Einstein correlations of charged kaons are used to probe Au+Au collisions at sqrt[S(NN)]=200 GeV and are compared to charged pion probes, which have a larger hadronic scattering cross section. Three-dimensional Gaussian source radii are extracted, along with a one-dimensional kaon emission source function. The centrality dependences of the three Gaussian radii are well described by a single linear function of N(part)1/3 with a zero intercept. Imaging analysis shows a deviation from a Gaussian tail at r greater than or approximately equal to 10 fm, although the bulk emission at lower radius is well described by a Gaussian. The presence of a non-Gaussian tail in the kaon source reaffirms that the particle emission region in a heavy-ion collision is extended, and that similar measurements with pions are not solely due to the decay of long-lived resonances.

  14. Bose-Einstein correlation of kaons in Si + Au collisions at 14.6 A GeV/c

    NASA Technical Reports Server (NTRS)

    Akiba, Y.; Beavis, D.; Beery, P.; Britt, H. C.; Budick, B.; Chasman, C.; Chen, Z.; Chi, C. Y.; Chu, Y. Y.; Cianciolo, V.

    1993-01-01

    The E-802 spectrometer at the Brookhaven Alternating Gradient Synchrotron, enhanced by a trigger for selection of events with one or more specified particles, has been used to measure the momentum-space correlation between pairs of K(+)s emitted in central Si + Au collisions at 14.6 A GeV/c. This correlation has been projected onto the Lorentz-invariant relative four-momentum axis. Fits to this correlation function yield a size for the kaon source that is comparable to that found using pi(+) pairs from a similar rapidity range, once a transformation from the particle-pair frames to a single source frame is made.

  15. Azimuthal distributions of charged hadrons, pions, and kaons produced in deep-inelastic scattering off unpolarized protons and deuterons

    NASA Astrophysics Data System (ADS)

    Airapetian, A.; Akopov, N.; Akopov, Z.; Aschenauer, E. C.; Augustyniak, W.; Avakian, R.; Avetissian, A.; Avetisyan, E.; Belostotski, S.; Blok, H. P.; Borissov, A.; Bowles, J.; Bryzgalov, V.; Burns, J.; Capiluppi, M.; Cisbani, E.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Deconinck, W.; De Leo, R.; De Nardo, L.; De Sanctis, E.; Diefenthaler, M.; Di Nezza, P.; Düren, M.; Elbakian, G.; Ellinghaus, F.; Fantoni, A.; Felawka, L.; Frullani, S.; Gapienko, G.; Gapienko, V.; Garibaldi, F.; Gavrilov, G.; Gharibyan, V.; Giordano, F.; Gliske, S.; Golembiovskaya, M.; Hadjidakis, C.; Hartig, M.; Hasch, D.; Hillenbrand, A.; Hoek, M.; Holler, Y.; Hristova, I.; Imazu, Y.; Ivanilov, A.; Jackson, H. E.; Jo, H. S.; Joosten, S.; Kaiser, R.; Karyan, G.; Keri, T.; Kinney, E.; Kisselev, A.; Korotkov, V.; Kozlov, V.; Kravchenko, P.; Krivokhijine, V. G.; Lagamba, L.; Lapikás, L.; Lehmann, I.; Lenisa, P.; López Ruiz, A.; Lorenzon, W.; Ma, B.-Q.; Mahon, D.; Makins, N. C. R.; Manaenkov, S. I.; Manfré, L.; Mao, Y.; Marianski, B.; Martinez de la Ossa, A.; Marukyan, H.; Miller, C. A.; Miyachi, Y.; Movsisyan, A.; Murray, M.; Nappi, E.; Naryshkin, Y.; Nass, A.; Negodaev, M.; Nowak, W.-D.; Pappalardo, L. L.; Perez-Benito, R.; Petrosyan, A.; Raithel, M.; Reimer, P. E.; Reolon, A. R.; Riedl, C.; Rith, K.; Rosner, G.; Rostomyan, A.; Rubin, J.; Ryckbosch, D.; Salomatin, Y.; Sanftl, F.; Schäfer, A.; Schnell, G.; Schüler, K. P.; Seitz, B.; Shibata, T.-A.; Stancari, M.; Statera, M.; Steijger, J. J. M.; Stewart, J.; Stinzing, F.; Terkulov, A.; Truty, R. M.; Trzcinski, A.; Tytgat, M.; Vandenbroucke, A.; Van Haarlem, Y.; Van Hulse, C.; Veretennikov, D.; Vikhrov, V.; Vilardi, I.; Wang, S.; Yaschenko, S.; Ye, Z.; Yen, S.; Yu, W.; Zagrebelnyy, V.; Zeiler, D.; Zihlmann, B.; Zupranski, P.

    2013-01-01

    The azimuthal cos⁡ϕ and cos⁡2ϕ modulations of the distribution of hadrons produced in unpolarized semi-inclusive deep-inelastic scattering of electrons and positrons off hydrogen and deuterium targets have been measured in the HERMES experiment. For the first time these modulations were determined in a four-dimensional kinematic space for positively and negatively charged pions and kaons separately, as well as for unidentified hadrons. These azimuthal dependences are sensitive to the transverse motion and polarization of the quarks within the nucleon via, e.g., the Cahn, Boer-Mulders and Collins effects.

  16. Infrasonic interferometry of stratospherically refracted microbaroms--a numerical study.

    PubMed

    Fricke, Julius T; El Allouche, Nihed; Simons, Dick G; Ruigrok, Elmer N; Wapenaar, Kees; Evers, Läslo G

    2013-10-01

    The atmospheric wind and temperature can be estimated through the traveltimes of infrasound between pairs of receivers. The traveltimes can be obtained by infrasonic interferometry. In this study, the theory of infrasonic interferometry is verified and applied to modeled stratospherically refracted waves. Synthetic barograms are generated using a raytracing model and taking into account atmospheric attenuation, geometrical spreading, and phase shifts due to caustics. Two types of source wavelets are implemented for the experiments: blast waves and microbaroms. In both numerical experiments, the traveltimes between the receivers are accurately retrieved by applying interferometry to the synthetic barograms. It is shown that microbaroms can be used in practice to obtain the traveltimes of infrasound through the stratosphere, which forms the basis for retrieving the wind and temperature profiles. PMID:24116404

  17. Resolving microstructures in Z pinches with intensity interferometry

    SciTech Connect

    Apruzese, J. P.; Kroupp, E.; Maron, Y.; Giuliani, J. L.; Thornhill, J. W.

    2014-03-15

    Nearly 60 years ago, Hanbury Brown and Twiss [R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956)] succeeded in measuring the 30 nrad angular diameter of Sirius using a new type of interferometry that exploited the interference of photons independently emitted from different regions of the stellar disk. Its basis was the measurement of intensity correlations as a function of detector spacing, with no beam splitting or preservation of phase information needed. Applied to Z pinches, X pinches, or laser-produced plasmas, this method could potentially provide spatial resolution under one micron. A quantitative analysis based on the work of Purcell [E. M. Purcell, Nature 178, 1449 (1956)] reveals that obtaining adequate statistics from x-ray interferometry of a Z-pinch microstructure would require using the highest-current generators available. However, using visible light interferometry would reduce the needed photon count and could enable its use on sub-MA machines.

  18. Application of the holographic interferometry in transport phenomena studies

    NASA Astrophysics Data System (ADS)

    Hartmann, A.; Lucic, A.

    This article provides an overview of all the experimental research studies in the field of heat and mass transfer by means of the holographic interferometry which were performed under the supervision of Professor Franz Mayinger during his professorship. The principle objective of this paper is to contribute to the knowledge base of the heat and mass transfer processes in various fields as well as to illustrate the capabilities of the holographic interferometry. Investigations of the heat transfer pattern in grooved channels and in various geometries of compact heat exchangers, drying processes of a dispersed, water-based varnish on paper, mixed convection in bent ducts, the growth and condensation of vapor bubbles in subcooled boiling and the simultaneous heat and mass transfer are presented. The results of all these studies demonstrate the successful application of the holographic interferometry and Professor Mayinger's highly valuable contribution in this area.

  19. The Beauty and Limitations of 10 Micron Heterodyne Interferometry (ISI)

    NASA Technical Reports Server (NTRS)

    Danchi, William C.

    2003-01-01

    Until recently, heterodyne interferometry at 10 microns has been the only successful technique for stellar interferometry in the very difficult atmospheric window from 9-12 microns. For most of its operational lifetime the U.C. Berkeley Infrared Spatial Interferometer was a single-baseline two telescope (1.65 m aperture) system using CO2 lasers as local oscillators. This instrument was designed and constructed from 1983-1988, and first fringes were obtained at Mt. Wilson in June 1988. During the past few years, a third telescope was constructed and just recently the first closure phases were obtained at 11.15 microns. We discuss the history, physics and technology of heterodyne interferometry in the mid-infrared, and some key astronomical results that have come from this unique instrument.

  20. Leading-twist pion and kaon distribution amplitudes in the gauge-invariant nonlocal chiral quark model from the instanton vacuum

    SciTech Connect

    Nam, Seung-il; Kim, Hyun-Chul

    2006-10-01

    We investigate the leading-twist light-cone distribution amplitudes for the pion and kaon based on the gauge-invariant nonlocal chiral quark model from the instanton vacuum in the presence of external axial-vector currents. We find that the nonlocal contribution from the gauge invariance has much effects on the pion distribution amplitudes, while it changes mildly the kaon ones. We also study the Gegenbauer moments of the distribution amplitudes and compare them with the empirical analysis of the CLEO data.

  1. Progress in electron- and ion-interferometry

    NASA Astrophysics Data System (ADS)

    Hasselbach, Franz

    2010-01-01

    In the 1970s the prominent goal was to overcome the limitations of electron microscopy caused by aberrations of electron lenses by the development of electron holography. In the meantime this problem has been solved, not only in the roundabout way of holography, but directly by correcting the aberrations of the lenses. Nevertheless, many quantitative electron microscopical measurement methods—e.g. mapping and visualization of electric and magnetic fields—were developed within the context of holography and have become fields of their own. In this review we focus on less popular electron interferometric experiments which complement the field of electron holography. The paper is organized as follows. After a short sketch of the development of electron biprism interferometry after its invention in 1954, recent advances in technology are discussed that made electron biprism interferometry an indispensable tool for solving fundamental and applied questions in physics: the development and preparation of conventional and single-atom field electron and field ion sources with their extraordinary properties. Single- and few-atom sources exhibit spectacular features: their brightness at 100 keV exceeds that of conventional field emitters by two orders in magnitude. Due to the extremely small aberrations of diode field emitter extraction optics, the virtual source size of single-atom tips is on the order of 0.2 nm. As a consequence it illuminates an area 7 cm in diameter on a screen at a distance of 15 cm coherently. Projection electron micrographs taken with these sources reach spatial resolutions of atomic dimensions and in-line holograms are—due to the absence of lenses with their aberrations—not blurred. Their reconstruction is straightforward. By addition of a carbon nanotube biprism into the beam path of a projection microscope a lensless electron interferometer has been realized. In extremely ultrahigh vacuum systems flicker noise is practically absent in the new

  2. Seismic interferometry by multidimensional deconvolution without wavefield separation

    NASA Astrophysics Data System (ADS)

    Ravasi, Matteo; Meles, Giovanni; Curtis, Andrew; Rawlinson, Zara; Yikuo, Liu

    2015-07-01

    Seismic interferometry comprises a suite of methods to redatum recorded wavefields to those that would have been recorded if different sources (so-called virtual sources) had been activated. Seismic interferometry by cross-correlation has been formulated using either two-way (for full wavefields) or one-way (for directionally decomposed wavefields) representation theorems. To obtain improved Green's function estimates, the cross-correlation result can be deconvolved by a quantity that identifies the smearing of the virtual source in space and time, the so-called point-spread function. This type of interferometry, known as interferometry by multidimensional deconvolution (MDD), has so far been applied only to one-way directionally decomposed fields, requiring accurate wavefield decomposition from dual (e.g. pressure and velocity) recordings. Here we propose a form of interferometry by multidimensional deconvolution that uses full wavefields with two-way representations, and simultaneously invert for pressure and (normal) velocity Green's functions, rather than only velocity responses as for its one-way counterpart. Tests on synthetic data show that two-way MDD improves on results of interferometry by cross-correlation, and generally produces estimates of similar quality to those obtained by one-way MDD, suggesting that the preliminary decomposition into up- and downgoing components of the pressure field is not required if pressure and velocity data are jointly used in the deconvolution. We also show that constraints on the directionality of the Green's functions sought can be added directly into the MDD inversion process to further improve two-way multidimensional deconvolution. Finally, as a by-product of having pressure and particle velocity measurements, we adapt one- and two-way representation theorems to convert any particle velocity receiver into its corresponding virtual dipole/gradient source by means of MDD. Thus data recorded from standard monopolar (e

  3. Integrated Optics Achromatic Nuller for Stellar Interferometry

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander

    2012-01-01

    This innovation will replace a beam combiner, a phase shifter, and a mode conditioner, thus simplifying the system design and alignment, and saving weight and space in future missions. This nuller is a dielectric-waveguide-based, four-port asymmetric coupler. Its nulling performance is based on the mode-sorting property of adiabatic asymmetric couplers that are intrinsically achromatic. This nuller has been designed, and its performance modeled, in the 6.5-micrometer to 9.25-micrometer spectral interval (36% bandwidth). The calculated suppression of starlight for this 15-cm-long device is 10(exp -5) or better through the whole bandwidth. This is enough to satisfy requirements of a flagship exoplanet-characterization mission. Nulling interferometry is an approach to starlight suppression that will allow the detection and spectral characterization of Earth-like exoplanets. Nulling interferometers separate the light originating from a dim planet from the bright starlight by placing the star at the bottom of a deep, destructive interference fringe, where the starlight is effectively cancelled, or nulled, thus allowing the faint off-axis light to be much more easily seen. This process is referred to as nulling of the starlight. Achromatic nulling technology is a critical component that provides the starlight suppression in interferometer-based observatories. Previously considered space-based interferometers are aimed at approximately 6-to-20-micrometer spectral range. While containing the spectral features of many gases that are considered to be signatures of life, it also offers better planet-to-star brightness ratio than shorter wavelengths. In the Integrated Optics Achromatic Nuller (IOAN) device, the two beams from the interferometer's collecting telescopes pass through the same focusing optic and are incident on the input of the nuller.

  4. Very Long Baseline Interferometry From the Moon

    NASA Astrophysics Data System (ADS)

    Gurvits, L. I.

    Very Long Baseline Interferometry (VLBI) occupies a special place among tools for studying the Universe due to its record high angular resolution. The latter depends on the aperture size of interferometer baseline at any given wavelength. Until recently, the available angular resolution in radio domain of about 1 milliarcsecond was limited by the Earth diameter. However, many astrophysical problems require a higher angular resolution. The only way to achieve it is to create an interferometer with the baseline larger than the Earth diameter by placing at least one telescope in space. In February 1997, the first dedicated Space VLBI mission, VSOP, led by the Institute of Space and Astronautical Sciences (Japan) has been launched. Undoubtfully, the VSOP opens a new dimension in the development of radio astronomy tools of extremely high angular resolution. The Moon, as an inevitable step in the exploring and exploiting the Space by the mankind offers several very attractive features for building effective astronomical facilities, particularly radio telescopes. One can mention among these features an RFI-free environment (especially on the far side of the Moon), natural deep cooling of temperature-sensitive detectors, an absence of a natural magnetic field (hence, an ionosphere) and an atmosphere, considerably lower gravitational field (hence lower gravitational deformations of large structures). All these advantages certainly would lead eventually to constructing a highly sensitive radio telescope on the Moon (possibly, a Moon-based analog of the SKAI radio telescope). And once such a telescope is becoming a reality, it would be an obvious mistake not to use it as a part of VLBI system. I briefly discuss the scientific motivation and some technical aspects of a VLBI telescope on the Moon. I conclude, that VLBI could not and should not be considered as a primary drive for a radio astronomy base on the Moon. However, VLBI would be a very valuable addition to the

  5. Single-mode fiber, velocity interferometry

    SciTech Connect

    Krauter, K. G.; Jacobson, G. F.; Patterson, J. R.; Nguyen, J. H.; Ambrose, W. P.

    2011-04-15

    In this paper, we describe a velocity interferometer system based entirely on single-mode fiber optics. This paper includes a description of principles used in developing the single-mode velocity interferometry system (SMV). The SMV design is based on polarization-insensitive components. Polarization adjusters are included to eliminate the effects of residual birefringence and polarization dependent losses in the interferometers. Characterization measurements and calibration methods needed for data analysis and a method of data analysis are described. Calibration is performed directly using tunable lasers. During development, we demonstrated its operation using exploding-foil bridge-wire fliers up to 200 m/s. In a final test, we demonstrated the SMV in a gas gun experiment up to 1.2 km/sec. As a basis for comparison in the gas gun experiment, we used another velocimetry technique that is also based on single-mode fiber optics: photonic Doppler velocimetry (PDV). For the gas gun experiment, we split the light returned from a single target spot and performed a direct comparison of the homodyne (SMV) and heterodyne (PDV) techniques concurrently. The two techniques had a negligible mean difference and a 1.5% standard deviation in the one-dimensional shock zone. Within one interferometer delay time after a sudden Doppler shift, a SMV unencumbered by multimode-fiber dispersion exhibits two color beats. These beats have the same period as PDV beats--this interference occurs between the ''recently'' shifted and ''formerly unshifted'' paths within the interferometer. We believe that recognizing this identity between homodyne and heterodyne beats is novel in the shock-physics field. SMV includes the conveniences of optical fiber, while removing the time resolution limitations associated with the multimode delivery fiber.

  6. Grating interferometry method for torsion measurement

    NASA Astrophysics Data System (ADS)

    Li, Xiang-rong; Qiao, Yan-feng; Liu, Wei; Zhang, Yao-yu

    2006-01-01

    Method of grating interferometry was presented for torsion angle measurement, moire fringe generated by two gratings is used in a new field, it breaks through moire fringe's routine application. Measurement principle is described, torsion angle can be gotten by the tilt angle or the width of moire fringe. Different from moire fringe's characteristic information extracting methods in traditional measurement fields, fringe-tilt method and fringe-width method were put forward to extract moire fringe's characteristic information. Fringe-tilt method is on the basis of moire fringe's tilt to acquire torsion angle, uniform formula was built aiming at all positions of two gratings in the coordinates, fringe-width method is on the basis of moire fringe's width to acquire torsion angle, three key problems are given about fringe-width method. Thick, middle and thin moire fringe were collected in experiments and processed by two methods, fringe-width method's result shows that magnitude of boat torsion error is satisfied with that of theoretical precision analysis, and the change rule of torsion error is also same to that of theoretical analysis, the thicker fringe is, the higher precision is, when fringe width arrives to be 1695μm, the precision is 1.7", the thinner fringe is, the lower precision is, when fringe width arrives to be 734.7μm, the precision is 6.7". In addition to these, the results of repeatability experiments, sensibility experiments are given. In a word, the measurement principle is right and the precision of fringe processing is also reliable.

  7. Determination of Young's modulus of silica aerogels using holographic interferometry

    NASA Astrophysics Data System (ADS)

    Chikode, Prashant P.; Sabale, Sandip R.; Vhatkar, Rajiv S.

    2016-05-01

    Digital holographic interferometry technique is used to determine elastic modulus of silica aerogels. Tetramethoxysilane precursor based Silica aerogels were prepared by the sol-gel process followed by supercritical methanol drying. The alcogels were prepared by keeping the molar ratio of tetramethoxysilane: methyltrimethoxysilane: H2O constant at 1:0.6:4 while the methanol / tetramethoxysilane molar ratio (M) was varied systematically from 12 to 18. Holograms of translucent aerogel samples have been successfully recorded using the digital holographic interferometry technique. Stimulated digital interferograms gives localization of interference fringes on the aerogel surface and these fringes are used to determine the surface deformation and Young's modulus (Y) of the aerogels.

  8. The development of thin film metrology by coherence scanning interferometry

    NASA Astrophysics Data System (ADS)

    Yoshino, Hirokazu; Smith, Roger; Walls, John M.; Mansfield, Daniel

    2016-02-01

    Scanning White Light Interferometry (SWLI), now referred to as Coherence Scanning Interferometry (CSI), is established as a powerful tool for sub-nanometer surface metrology. The technique provides accurate and rapid three dimensional topographical analysis without contacting the surface under measurement. This paper will focus on recent developments of CSI using the Helical Complex Field (HCF) function that have extended its use for important thin film measurements. These developments now enable CSI to perform thin film thickness measurements, to measure the surface profile and the interfacial surface roughness of a buried interface and to derive optical constants (index of refraction n and extinction coefficient K).

  9. Modulated Source Interferometry with Combined Amplitude and Frequency Modulation

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor)

    1998-01-01

    An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.

  10. Generalized parametric down conversion, many particle interferometry, and Bell's theorem

    NASA Technical Reports Server (NTRS)

    Choi, Hyung Sup

    1992-01-01

    A new field of multi-particle interferometry is introduced using a nonlinear optical spontaneous parametric down conversion (SPDC) of a photon into more than two photons. The study of SPDC using a realistic Hamiltonian in a multi-mode shows that at least a low conversion rate limit is possible. The down converted field exhibits many stronger nonclassical phenomena than the usual two photon parametric down conversion. Application of the multi-particle interferometry to a recently proposed many particle Bell's theorem on the Einstein-Podolsky-Rosen problem is given.

  11. Speckle interferometry measurements in testing halls for civil engineering applications

    NASA Astrophysics Data System (ADS)

    Facchini, Mauro; Jacquot, Pierre M.

    1999-08-01

    Speckle interferometry is an interesting tool for the measurement of micro-deformations and has found application in many different fields ranging from material testing to structural assessment. This kind of applications, however, has often been confined inside optical laboratories where operational conditions are optimal. This paper is devoted to the extension of speckle interferometry to various measurements--performed not inside well protected rooms but in testing halls dedicated to experimentation in civil engineering--where the environmental conditions are severe for an interferometric method.

  12. Antihypertensive neutral lipid

    SciTech Connect

    Snyder, F.L.; Blank, M.L.

    1986-06-17

    A method is described for treating a warm-blooded animal comprising administering to the animal a neutral glycerolipid with a 12 to 20 carbon alkyl group at the sn-1 position, a short carbon chain acyl group at the sn-2 position and a hydroxyl group at the sn-3 position in an amount sufficient to lower the arterial blood pressure of the animal. A method is also described for treating a warm-blooded animal comprising administering a composition consisting essentially of a 1-alkyl-2-acetyl (or propionyl)-sn glycerol in combination with a 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine, wherein the 1-alkyl groups contain 12 to 20 carbon atoms, dissolved in an inert pharmaceutically acceptable solvent in amounts sufficient to lower the arterial blood pressure of the animal.

  13. Transient ion neutralization by electrons.

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1973-01-01

    The nonlinear initial-boundary-value problems describing the lateral neutralization of ion beams for the cases that (1) an auxiliary electric field accelerates the electrons into the ion space, and (2) the electrons are injected into the ion space at a prescribed current density are treated. Analytical solutions are derived which give the position and speed of the neutralization front as a function of time, and the temporal development of the electron density, velocity, and electric fields during the neutralization process.

  14. Measurement of the B meson decaying to psi meson-S meson-neutral kaon branching fraction on BaBar at the Stanford Linear Accelerator Center

    NASA Astrophysics Data System (ADS)

    Olivas, Alexander Raymond, Jr.

    The decays of B0 mesons to hadronic final states remains a rich area of physics on BaBar. Not only do the cc¯ -K final states (e.g. B0 → psi(2 S)K0) allow for the measurement of CP Violation, but the branching fractions provide a sensitive test of the theoretical methods used to account for low energy non-perturbative QCD effects. We present the measurement of the branching fraction for the decay B0 → psi(2S)K s. The data set consists of 88.8 +/- 1.0 x 10 6 BB¯ pairs collected on the e +e- → Upsilon(4 S) resonance on BaBar/PEP-II at the Stanford Linear Accelerator Center (SLAC). This analysis features a modification of present cuts, with respect to those published so far on BaBar, on the Ks → pi +pi- and psi(2S) → J/psipi+pi- which aim at reducing the background while keeping the signal intact. Various data selection criteria are studied for the lepton modes (e+ e- and mu+mu- ) of the J/psi and psi(2S) to improve signal purity as well as study the stability of the resultant branching fractions.

  15. Calculation of acceptance and efficiency for neutral D mesons decaying to electron-positrons and rates of pions and kaons faking electron signals at CDF

    SciTech Connect

    Dhaliwal, Daljit K.; /Wayne State U.

    2006-01-01

    In the 19th century, the fundamental units of matter were believed to be atoms. Further experiments in the early 20th century demonstrated that protons and neutrons are just two examples of a class of particles called hadrons, and that hadrons are composed of quarks bound together by gluons. This has evolved to today's Standard Model of particle physics (SM) which encapsulates our knowledge of elementary particles and the fundamental forces between them.

  16. Chemistry of carotenoid neutral radicals.

    PubMed

    Ligia Focsan, A; Magyar, Adam; Kispert, Lowell D

    2015-04-15

    Proton loss from the carotenoid radical cations (Car(+)) to form neutral radicals (#Car) was investigated by numerous electrochemical, EPR, ENDOR and DFT studies described herein. The radical cation and neutral radicals were formed in solution electrochemically and stabilized on solid silica-alumina and MCM-41 matrices. Carotenoid neutral radicals were recently identified in Arabidopsis thaliana plant and photosystem II samples. Deprotonation at the terminal ends of a zeaxanthin radical cation could provide a secondary photoprotection pathway which involves quenching excited state chlorophyll by the long-lived zeaxanthin neutral radicals formed. PMID:25687648

  17. Constraining the Europa Neutral Torus

    NASA Astrophysics Data System (ADS)

    Smith, Howard T.; Mitchell, Donald; mauk, Barry; Johnson, Robert E.; clark, george

    2016-10-01

    "Neutral tori" consist of neutral particles that usually co-orbit along with their source forming a toroidal (or partial toroidal) feature around the planet. The distribution and composition of these features can often provide important, if not unique, insight into magnetospheric particles sources, mechanisms and dynamics. However, these features can often be difficult to directly detect. One innovative method for detecting neutral tori is by observing Energetic Neutral Atoms (ENAs) that are generally considered produced as a result of charge exchange interactions between charged and neutral particles.Mauk et al. (2003) reported the detection of a Europa neutral particle torus using ENA observations. The presence of a Europa torus has extremely large implications for upcoming missions to Jupiter as well as understanding possible activity at this moon and providing critical insight into what lies beneath the surface of this icy ocean world. However, ENAs can also be produced as a result of charge exchange interactions between two ionized particles and in that case cannot be used to infer the presence of neutral particle population. Thus, a detailed examination of all possible source interactions must be considered before one can confirm that likely original source population of these ENA images is actually a Europa neutral particle torus. For this talk, we examine the viability that the Mauk et al. (2003) observations were actually generated from a neutral torus emanating from Europa as opposed to charge particle interactions with plasma originating from Io. These results help constrain such a torus as well as Europa source processes.

  18. A proposed neutral line signature

    NASA Technical Reports Server (NTRS)

    Doxas, I.; Speiser, T. W.; Dusenbery, P. B.; Horton, W.

    1992-01-01

    An identifying signature is proposed for the existence and location of the neutral line in the magnetotail. The signature, abrupt density, and temperature changes in the Earthtail direction, was first discovered in test particle simulations. Such temperature variations have been observed in ISEE data (Huang et. al. 1992), but their connection to the possible existence of a neutral line in the tail has not yet been established. The proposed signature develops earlier than the ion velocity space ridge of Martin and Speiser (1988), but can only be seen by spacecraft in the vicinity of the neutral line, while the latter can locate a neutral line remotely.

  19. Laser Interferometry for Harsh Environment MEMS Sensors

    NASA Astrophysics Data System (ADS)

    Nieva, Patricia

    2008-03-01

    Silicon-based MEMS technology has enabled the fabrication of a broad range of sensor and actuator systems that are having a great impact in areas that benefit from miniaturization and increased functionality. The main advantage of Si-based MEMS technologies is their possibility of integration with microelectronics thus allowing the economical production of smart microsystems. In the automotive industry for example, there is a need for inexpensive smart MEMS sensors for engine control applications. For instance, smart MEMS sensors capable of operating ``in cylinder'', where temperatures are around 400 C, could continuously monitor the combustion quality of the cylinders of automotive engines thus leading to reduced emissions and improved fuel economy. However, when the environment temperature is too high (>180 C), conventional Si-based microelectronics suffer from severe performance degradation, thus making smart Si-based MEMS impractical. Hence, further development, in terms of new MEMS materials and/or new technologies, is needed especially where high temperature capability is crucial to realizing improved electronic control. Remote sensing through optical signal detection has major advantages for safe signal transmission in harsh environments. It is highly resistant to electromagnetic interference (EMI) and radio frequency interference (RFI) and at the same time, it eliminates the necessity of on-board electronics, which has been one of the main obstacles in the development of smart MEMS sensors for high temperature applications. An economical way to deal with higher temperatures and other aggressive environmental conditions is to build MEMS sensors out of robust materials (e.g. Silicon nitride, SiC) and integrate them with optical signal detection techniques to form MOEMS. In this paper, we review recent trends for the use of laser interferometry for MEMS sensors in the context of using them for high temperature applications. Technological challenges faced in

  20. Results of Infrasound Interferometry in Netherlands

    NASA Astrophysics Data System (ADS)

    Fricke, J. T.; Ruigrok, E. N.; Evers, L. G.; Simons, D. G.; Wapenaar, K.

    2012-04-01

    with an aperture of around 100 km. The in-house developed microbarometers are able to measure infrasound up to a period of 1000 seconds, which is in the acoustic-gravity wave regime. The results will also be directly applicable to the verification of the 'Comprehensive Nuclear-Test-Ban Treaty' (CTBT), where uncertainties in the atmospheric propagation of infrasound play a dominant role. This research is made possible by the support of the 'Netherlands Organisation for Scientific Research' (NWO). Haney, M., 2009. Infrasonic ambient noise interferometry from correlations of microbaroms, Geophysical Research Letters, 36, L19808, doi:10.1029/2009GL040179

  1. NEUTRAL-BEAM INJECTION

    SciTech Connect

    Kunkel, W.B.

    1980-06-01

    The emphasis in the preceding chapters has been on magnetic confinement of high temperature plasmas. The question of production and heating of such plasmas has been dealt with relatively more briefly. It should not be inferred, however, that these matters must therefore be either trivial or unimportant. A review of the history reveals that in the early days all these aspects of the controlled fusion problem were considered to be on a par, and were tackled simultaneously and with equal vigor. Only the confinement problem turned out to be much more complex than initially anticipated, and richer in challenge to the plasma physicist than the questions of plasma production and heating. On the other hand, the properties of high-temperature plasmas and plasma confinement can only be studied experimentally after the problems of production and of heating to adequate temperatures are solved. It is the purpose of this and the next chapter to supplement the preceding discussions with more detail on two important subjects: neutral-beam injection and radio-frequency heating. These are the major contenders for heating in present and future tokamak and mirror fusion experiments, and even in several proposed reactors. For neutral beams we emphasize here the technology involved, which has undergone a rather remarkable development. The physics of particle and energy deposition in the plasma, and the discussion of the resulting effects on the confined plasma, have been included in previous chapters, and some experimental results are quoted there. Other heating processes of relevance to fusion are mentioned elsewhere in this book, in connection with the experiments where they are used: i.e. ohmic heating, adiabatic compression heating, and alpha-particle heating in Chapter 3 by H.P. Furth; more ohmic heating in Chapter 7, and shock-implosion heating, laser heating, and relativistic-electron beam heating in Chapter 8, both by W. E. Quinn. These methods are relatively straightforward in

  2. CO2-neutral fuels

    NASA Astrophysics Data System (ADS)

    Goede, A. P. H.

    2015-08-01

    The need for storage of renewable energy (RE) generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G) scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel cycle is

  3. Mask Design for the Space Interferometry Mission Internal Metrology

    NASA Technical Reports Server (NTRS)

    Marx, David; Zhao, Feng; Korechoff, Robert

    2005-01-01

    This slide presentation reviews the mask design used for the internal metrology of the Space Interferometry Mission (SIM). Included is information about the project, the method of measurements with SIM, the internal metrology, numerical model of internal metrology, wavefront examples, performance metrics, and mask design

  4. Laser optical interferometry for electric gas discharge diagnosis

    NASA Astrophysics Data System (ADS)

    Ralea, Mihai F.; Rosu, Nicu; Popescu, Ion M.; Iova, Iancu; Paraschiv, R.; Mircea, D.

    1995-03-01

    A new double-differential method based on holographic interferometry in real time with references fringes for the determination of gas parameters in cylindrical tubes is presented. By studying the interferograms one gets a graphical recording of the radial distribution of the refraction index of the gas in any region of the tube at a given time, as well as their axial distribution.

  5. Method of investigating phenomena in liquids by holographic interferometry

    NASA Astrophysics Data System (ADS)

    Rosu, Nicu; Ralea, Mihai F.; Iova, Iancu

    1996-05-01

    A method based on holographic interferometry in real time with reference fringes for the determination of liquid parameters in cells with one inclined wall is presented. By studying the interferograms one gets a graphical recording of the spatial distribution of the refraction index of the liquid at a given time.

  6. Kitt Peak Speckle Interferometry of Close Visual Binary Stars (Abstract)

    NASA Astrophysics Data System (ADS)

    Gener, R.; Rowe, D.; Smith, T. C.; Teiche, A.; Harshaw, R.; Wallace, D.; Weise, E.; Wiley, E.; Boyce, G.; Boyce, P.; Branston, D.; Chaney, K.; Clark, R. K.; Estrada, C.; Estrada, R.; Frey, T.; Green, W. L.; Haurberg, N.; Jones, G.; Kenney, J.; Loftin, S.; McGieson, I.; Patel, R.; Plummer, J.; Ridgely, J.; Trueblood, M.; Westergren, D.; Wren, P.

    2014-12-01

    (Abstract only) Speckle interferometry can be used to overcome normal seeing limitations by taking many very short exposures at high magnification and analyzing the resulting speckles to obtain the position angles and separations of close binary stars. A typical speckle observation of a close binary consists of 1,000 images, each 20 milliseconds in duration. The images are stored as a multi-plane FITS cube. A portable speckle interferometry system that features an electron-multiplying CCD camera was used by the authors during two week-long observing runs on the 2.1-meter telescope at Kitt Peak National Observatory to obtain some 1,000 data cubes of close binaries selected from a dozen different research programs. Many hundreds of single reference stars were also observed and used in deconvolution to remove undesirable atmospheric and telescope optical effects. The database of well over one million images was reduced with the Speckle Interferometry Tool of platesolve3. A few sample results are provided. During the second Kitt Peak run, the McMath-Pierce 1.6- and 0.8-meter solar telescopes were evaluated for nighttime speckle interferometry, while the 0.8-meter Coude feed was used to obtain differential radial velocities of short arc binaries.

  7. Engineering photonics: from nanoscale sensing to full-field interferometry

    NASA Astrophysics Data System (ADS)

    Tatam, Ralph P.

    2005-09-01

    This paper will present recent developments in optical fibre sensors and optical fibre based instrumentation research undertaken at Cranfield University. New sensor techniques based on nanoscale molecular coatings deposited on singlemode fibres containing long period gratings and the use of singlemode fibres and coherent imaging fibre bundles in full-field speckle interferometry and planar Doppler velocimetry will be presented.

  8. Recording depth and signal competition in heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    de La Rochefoucauld, Ombeline; Khanna, Shyam M.; Olson, Elizabeth S.

    2005-03-01

    A common way to measure submicroscopic motion of the organ of Corti is heterodyne interferometry. The depth over which vibration can be accurately measured with heterodyne interferometry is determined by both the optics, which controls to what extent light from nonfocal planes reaches the photodetectors, and demodulation electronics, which determines to what extent signal generated by out-of-focal-plane light influences the measurements. The influence of a second reflecting surface is investigated theoretically and experimentally. By reviewing the theory of FM demodulation and showing tests with a Revox FM demodulator, it is demonstrated that the influence of a secondary signal on a measurement depends on the modulation index. Both high- and low-modulation index signals are encountered in heterodyne interferometry of the cochlea. Using a He-Ne-like diode laser (λ=638 nm), the border between low- and high-modulation signals is at a displacement of about 25-100 nm. Confocal interferometry reduces the magnitude of out-of-focus signals, and therefore their effect on vibration measurement. The response of the confocal system to reflected signals from two surfaces separated by distances encountered within the cochlear partition is shown. The results underscore the benefit of steep optical sectioning for intracochlear measurements. .

  9. Holographic interferometry applied to the case of large deformations.

    PubMed

    Schumann, W

    1989-11-01

    This investigation in holographic interferometry concerns an approach to a systematic quasi-compensation by appropriate optical modifications at the reconstruction in order that the fringes of interference become visible in the case of large unknown object deformations. The relevant relations are established by using the aberration theory for the image formation in combination with elementary intrinsic differential geometry.

  10. The Compact and Inexpensive "Arrowhead" Setup for Holographic Interferometry

    ERIC Educational Resources Information Center

    Ladera, Celso L.; Donoso, Guillermo

    2011-01-01

    Hologram recording and holographic interferometry are intrinsically sensitive to phase changes, and therefore both are easily perturbed by minuscule optical path perturbations. It is therefore very convenient to bank on holographic setups with a reduced number of optical components. Here we present a compact off-axis holographic setup that…

  11. Focus retrocollimated interferometry for long-radius-of-curvature measurement

    NASA Astrophysics Data System (ADS)

    Xiang, Yang

    2001-12-01

    Focus retrocollimated interferometry is described for measuring long radius of curvature (>1 m), and achievable accuracy is discussed. It is shown that this method can be applied to both concave and convex spherical surfaces and can provide measurement to accuracy of 0.01-0.1%.

  12. Distinguishing between Dirac and Majorana neutrinos withtwo-particle interferometry

    SciTech Connect

    Gutierrez, Thomas D.

    2006-03-02

    Two-particle interferometry, a second-order interferenceeffect, is explored as another possible tool to distinguish betweenmassive Dirac and Majorana neutrinos. A simple theoretical framework isdiscussed in the context of several gedanken experiments. The method canin principle provide both the mass scale and the quantum nature of theneutrino for a certain class of incoherent left-handed sourcecurrents.

  13. Neutral Buoyancy Simulator (NBS)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This is a cutaway illustration of the Neutral Buoyancy Simulator (NBS) at the Marshall Space Flight Center (MSFC ). The MSFC NBS provided an excellent environment for testing hardware to examine how it would operate in space and for evaluating techniques for space construction and spacecraft servicing. Here, engineers, designers, and astronauts performed various tests to develop basic concepts, preliminary designs, final designs, and crew procedures. The NBS was constructed of welded steel with polyester-resin coating. The water tank was 75-feet (22.9- meters) in diameter, 40-feet (12.2-meters) deep, and held 1.32 million gallons of water. Since it opened for operation in 1968, the NBS had supported a number of successful space missions, such as the Skylab, Solar Maximum Mission Satellite, Marned Maneuvering Unit, Experimental Assembly of Structures in Extravehicular Activity/Assembly Concept for Construction of Erectable Space Structures (EASE/ACCESS), the Hubble Space Telescope, and the Space Station. The function of the MSFC NBS was moved to the larger simulator at the Johnson Space Center and is no longer operational.

  14. Europa's Neutral Gas Torus

    NASA Astrophysics Data System (ADS)

    Mauk, B. H.; Mitchell, D. G.; McEntire, R. W.; Paranicas, C. P.; Roelof, E. C.; Williams, D. J.; Krimigis, S. M.; Lagg, A.

    2004-05-01

    In-situ energetic ion measurements from the Galileo spacecraft and remote energetic neutral atom (ENA) images from the Cassini spacecraft have been previously interpreted as revealing an unexpectedly massive torus of gas co-orbiting with Jupiter's moon Europa (Lagg et al., 2003; Mauk et al., 2003). Here we report on the results of detailed modeling of the ENA emission process from the Europa regions. Updates to the distribution and composition of the trapped energetic ion populations are included in the models, as are considerations of the partitioning of the gas products into multiple atomic and molecular species. Comparisons between the models and the Cassini observations reveal a torus with a total gas content equal to (0.5 +/- 0.2) E34 atoms plus molecules. This value is higher than, but within a factor of 3 of, an estimate inferred from a prediction of gas densities derived from Voyager plasma measurements and modeling of the interaction between the plasmas and the gases assumed to be emanating from Europa (Schreier et al., 1993). Lagg, A., N. Krupp, J. Woch, and D. J. Williams, Geophys. Res. Lett., 30, DOI 10.1029/2003GL017214, 2003. Mauk, B. H., D. G. Mitchell, S. M. Krimigs, E. C. Roelof, and C. P. Paranicas, Nature, 241, 920, 2003. Schreier, S., A. Eviatar, V. M. Vasyliunas, and J. D. Richardson, J. Geophys. Res., 98, 21231, 1993.

  15. Neutralization tests on the SERT 2 spacecraft

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Domitz, S.

    1979-01-01

    Neutralization test data obtained on the SERT 2 spacecraft are presented. Tests included ion beam neutralization of a thruster by a close (normal design) neutralizer as well as by a distant (1 meter) neutralizer. Parameters affecting neutralization, such as neutralizer bias voltage, neutralizer anode voltage, local spacecraft plasma density, and solar array voltage configuration were varied and changes in plasma potentials were measured. A plasma model is presented as an approximation of observed results.

  16. Precision Measurements with Matter-wave Interferometry

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher; Christensen, Dan; Washburn, Matthew; Archibald, James; van Zjill, Marshall; Birrell, Jeremiah; Burdett, Adam; Durfee, Dallin

    2007-06-01

    We will discuss progress on a neutral-calcium beam interferometer which is nearing completion. We will also present a proposal to measure electric and magnetic fields with extreme precision using a slow ion interferometer. The calcium interferometer utilizes a thermal beam for simplicity and high atom flux. Doppler shifts will be reduced using a novel alignment scheme for the Ramsey beams using precision prisms. The ion interferometer will utilize a slow beam of strontium-87 ions created by photon-ionizing a slow atomic beam. The ions will interact with three sets of laser beams which will drive stimulated Raman transitions. The proposed device will be used to search for variations from Coulomb's inverse-square law and a possible photon rest mass with a precision which is several orders of magnitude better than previous laboratory experiments.

  17. Neutral point detection by satellites. [magnetospheric neutral sheets

    NASA Technical Reports Server (NTRS)

    Schindler, K.; Ness, N. F.

    1974-01-01

    The concept of a neutral point depends on the physical phenomena described. The regions with B less than about 1 gamma detected by Schindler and Ness may be interpreted as neutral regions for the ion-tearing process. The assumption of the presence of a multiple neutral point structure (with temporal variations) is still the most promising interpretation of the Explorer 34 data. Alternatives suggested by Russell lead to difficulties. Nevertheless, the final answer can come only from multiple satellite systems. A 1-day displacement of the day count in the data discussed by Schindler and Ness is corrected.

  18. Are collapse models testable with quantum oscillating systems? The case of neutrinos, kaons, chiral molecules.

    PubMed

    Bahrami, M; Donadi, S; Ferialdi, L; Bassi, A; Curceanu, C; Di Domenico, A; Hiesmayr, B C

    2013-01-01

    Collapse models provide a theoretical framework for understanding how classical world emerges from quantum mechanics. Their dynamics preserves (practically) quantum linearity for microscopic systems, while it becomes strongly nonlinear when moving towards macroscopic scale. The conventional approach to test collapse models is to create spatial superpositions of mesoscopic systems and then examine the loss of interference, while environmental noises are engineered carefully. Here we investigate a different approach: We study systems that naturally oscillate-creating quantum superpositions-and thus represent a natural case-study for testing quantum linearity: neutrinos, neutral mesons, and chiral molecules. We will show how spontaneous collapses affect their oscillatory behavior, and will compare them with environmental decoherence effects. We will show that, contrary to what previously predicted, collapse models cannot be tested with neutrinos. The effect is stronger for neutral mesons, but still beyond experimental reach. Instead, chiral molecules can offer promising candidates for testing collapse models.

  19. Environmental neutralization of polonium-218

    SciTech Connect

    Goldstein, S.D.; Hopke, P.K.

    1985-01-01

    Previous work has indicated that two mechanisms of neutralization of the singly charged polonium ion exist. Charged Polonium-218 can be neutralized by reacting with oxygen to form a polonium oxide ion with a higher ionization potential than that of the polonium metal and then accepting an electron transferred from a lower ionization potential gas. In this present work, this mechanism has been verified by determining that the polonium oxide has an ionization potential in the range 10.35-10.53 eV. It was also previously reported that /sup 218/Po can be neutralized, in the absence of oxygen, by the scavenging of electrons by a trace gas such as water or nitrogen dioxide and their diffusion to the polonium ion. To verify this second neutralization mechanism, concentrations of nitrogen dioxide in nitrogen in the range of 50 ppb-1 ppm were examined for their ability to neutralize the polonium ion. Complete neutralization of /sup 218/Po was observed at nitrogen dioxide concentrations greater than 700 ppb. For concentrations below 700 ppb, the degree of neutralization was found to increase smoothly with the nitrogen dioxide concentration.

  20. Positional nystagmus showing neutral points.

    PubMed

    Hiruma, Kiyoshi; Numata, Tsutomu

    2004-01-01

    We encountered patients who had their static direction-changing positional nystagmus canceled at about 20-30 degrees yaw head rotation from the supine position. This nystagmus was also canceled when the head was rotated 180 degrees from this position. We call these head positions neutral points. At the neutral points, the cupula of the horizontal semicircular canal of the affected ear is positioned vertical to the gravitational plane and no deflection of the cupula occurs. The positional nystagmus observed (except the neutral points) was thought to occur due to a "heavy cupula" or "light cupula", which may be determined by the specific gravity of its endolymph.

  1. Neutral current interactions in MINOS

    SciTech Connect

    Sousa, Alexandre; /Oxford U.

    2007-07-01

    The Main Injector Neutrino Oscillation Search (MINOS) long-baseline experiment has been actively collecting beam data since 2005, having already accumulated 3 x 10{sup 20} protons-on-target (POT). The several million neutrinos per year observed at the Near detector may improve the existing body of knowledge of neutrino cross-sections and the Near-Far comparison of the observed energy spectrum neutral current events constrains oscillations into sterile neutrinos. MINOS capabilities of observing neutral current neutrino events are described and the employed methodology for event selection is discussed, along with preliminary results obtained. An outlook on the expected neutral current related contributions from MINOS is also presented.

  2. [Neutral Medical Claim Management Committee].

    PubMed

    Komatsu, Mitsuru

    2013-03-01

    The Ibaraki Medical Association established the Committee for Alternative Dispute Resolution called the Neutral Medical Claim Management Committee in 2006. Among 64 claims presented to the committee, 29 were settled through mediation or consultation. Patients were generally satisfied that their claims were considered fairly by the committee and that they were able to talk directly with healthcare professionals. However, some did not consider the committee to be completely neutral. The healthcare professionals involved rated the committee highly because they felt that the processes were neutral and no emotional aspects were involved. PMID:23617190

  3. Temperature-dependent cross sections for charmonium dissociation in collisions with kaons and η mesons in hadronic matter

    NASA Astrophysics Data System (ADS)

    Ji, Shi-Tao; Shen, Zhen-Yu; Xu, Xiao-Ming

    2015-09-01

    We study kaon-charmonium and η-charmonium dissociation reactions. The K-charmonium dissociation and the η-charmonium dissociation include the following 27 reactions: {KJ}/\\psi \\to {\\bar{D}}*{D}s+, \\bar{D}{D}s*+ and {\\bar{D}}*{D}s*+; K\\psi \\prime \\to {\\bar{D}}*{D}s+, \\bar{D}{D}s*+ and {\\bar{D}}*{D}s*+; K{χ }c\\to {\\bar{D}}*{D}s+, \\bar{D}{D}s*+ and {\\bar{D}}*{D}s*+; η J/\\psi \\to {\\bar{D}}*D, \\bar{D}{D}*, {\\bar{D}}*{D}*, {D}s*-{D}s+, {D}s-{D}s*+ and {D}s*-{D}s*+; η \\psi \\prime \\to {\\bar{D}}*D, \\bar{D}{D}*, {\\bar{D}}*{D}*, {D}s*-{D}s+, {D}s-{D}s*+ and {D}s*-{D}s*+; η {χ }c\\to {\\bar{D}}*D, \\bar{D}{D}*, {\\bar{D}}*{D}*, {D}s*-{D}s+, {D}s-{D}s*+ and {D}s*-{D}s*+. Cross sections for the reactions are calculated in the Born approximation, in the quark-interchange mechanism and with a temperature-dependent quark potential. The temperature dependence of peak cross sections of endothermic reactions is linked to the temperature dependence of quark-antiquark relative-motion wave functions, meson masses and the quark potential. Although the η meson and kaon have similar masses, the energy and temperature dependence of the η-charmonium dissociation cross sections are quite different from those of the K-charmonium dissociation cross sections. Using the η-charmonium and π-charmonium dissociation cross sections, we calculate the ratio of the corresponding dissociation rates in hadronic matter and we find that such rates are comparable at low J/\\psi momenta.

  4. Incomplete Neutralization and Deviation from Sigmoidal Neutralization Curves for HIV Broadly Neutralizing Monoclonal Antibodies.

    PubMed

    McCoy, Laura E; Falkowska, Emilia; Doores, Katie J; Le, Khoa; Sok, Devin; van Gils, Marit J; Euler, Zelda; Burger, Judith A; Seaman, Michael S; Sanders, Rogier W; Schuitemaker, Hanneke; Poignard, Pascal; Wrin, Terri; Burton, Dennis R

    2015-08-01

    The broadly neutralizing HIV monoclonal antibodies (bnMAbs) PG9, PG16, PGT151, and PGT152 have been shown earlier to occasionally display an unusual virus neutralization profile with a non-sigmoidal slope and a plateau at <100% neutralization. In the current study, we were interested in determining the extent of non-sigmoidal slopes and plateaus at <100% for HIV bnMAbs more generally. Using both a 278 panel of pseudoviruses in a CD4 T-cell (U87.CCR5.CXCR4) assay and a panel of 117 viruses in the TZM-bl assay, we found that bnMAbs targeting many neutralizing epitopes of the spike had neutralization profiles for at least one virus that plateaued at <90%. Across both panels the bnMAbs targeting the V2 apex of Env and gp41 were most likely to show neutralization curves that plateaued <100%. Conversely, bnMAbs targeting the high-mannose patch epitopes were less likely to show such behavior. Two CD4 binding site (CD4bs) Abs also showed this behavior relatively infrequently. The phenomenon of incomplete neutralization was also observed in a large peripheral blood mononuclear cells (PBMC)-grown molecular virus clone panel derived from patient viral swarms. In addition, five bnMAbs were compared against an 18-virus panel of molecular clones produced in 293T cells and PBMCs and assayed in TZM-bl cells. Examples of plateaus <90% were seen with both types of virus production with no consistent patterns observed. In conclusion, incomplete neutralization and non-sigmoidal neutralization curves are possible for all HIV bnMAbs against a wide range of viruses produced and assayed in both cell lines and primary cells with implications for the use of antibodies in therapy and as tools for vaccine design. PMID:26267277

  5. Incomplete Neutralization and Deviation from Sigmoidal Neutralization Curves for HIV Broadly Neutralizing Monoclonal Antibodies.

    PubMed

    McCoy, Laura E; Falkowska, Emilia; Doores, Katie J; Le, Khoa; Sok, Devin; van Gils, Marit J; Euler, Zelda; Burger, Judith A; Seaman, Michael S; Sanders, Rogier W; Schuitemaker, Hanneke; Poignard, Pascal; Wrin, Terri; Burton, Dennis R

    2015-08-01

    The broadly neutralizing HIV monoclonal antibodies (bnMAbs) PG9, PG16, PGT151, and PGT152 have been shown earlier to occasionally display an unusual virus neutralization profile with a non-sigmoidal slope and a plateau at <100% neutralization. In the current study, we were interested in determining the extent of non-sigmoidal slopes and plateaus at <100% for HIV bnMAbs more generally. Using both a 278 panel of pseudoviruses in a CD4 T-cell (U87.CCR5.CXCR4) assay and a panel of 117 viruses in the TZM-bl assay, we found that bnMAbs targeting many neutralizing epitopes of the spike had neutralization profiles for at least one virus that plateaued at <90%. Across both panels the bnMAbs targeting the V2 apex of Env and gp41 were most likely to show neutralization curves that plateaued <100%. Conversely, bnMAbs targeting the high-mannose patch epitopes were less likely to show such behavior. Two CD4 binding site (CD4bs) Abs also showed this behavior relatively infrequently. The phenomenon of incomplete neutralization was also observed in a large peripheral blood mononuclear cells (PBMC)-grown molecular virus clone panel derived from patient viral swarms. In addition, five bnMAbs were compared against an 18-virus panel of molecular clones produced in 293T cells and PBMCs and assayed in TZM-bl cells. Examples of plateaus <90% were seen with both types of virus production with no consistent patterns observed. In conclusion, incomplete neutralization and non-sigmoidal neutralization curves are possible for all HIV bnMAbs against a wide range of viruses produced and assayed in both cell lines and primary cells with implications for the use of antibodies in therapy and as tools for vaccine design.

  6. Effects of wall temperature on skin-friction measurements by oil-film interferometry

    NASA Astrophysics Data System (ADS)

    Bottini, H.; Kurita, M.; Iijima, H.; Fukagata, K.

    2015-10-01

    Wind-tunnel skin-friction measurements with thin-oil-film interferometry have been taken on an aluminum sample to investigate the effects of wall temperature on the accuracy of the technique. The sample has been flush-mounted onto a flat plate with an electric heater at its bottom and mirror-smooth temperature-sensitive paint sprayed on its top. The heater has varied the sample temperature from ambient to 328 K, and the paint has permitted wall temperature measurements on the same area of the skin-friction measurements and during the same test. The measured wall temperatures have been used to calculate the correct oil viscosities, and these viscosities and the constant nominal viscosity at 298 K have been used to calculate two different sets of skin-friction coefficients. These sets have been compared to each other and with theoretical values. This comparison shows that the effects of wall temperature on the accuracy of skin-friction measurements are sensible, and more so as wall temperature differs from 298 K. Nonetheless, they are effectively neutralized by the use of wall temperature measurements in combination with the correct oil viscosity-temperature law. In this regard, the special temperature-sensitive paint developed for this study shows advantages with respect to more traditional wall temperature measurement techniques.

  7. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths, a powerful tool for scientific discovery, We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers,

  8. Optical Distortion Evaluation in Large Area Windows using Interferometry

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Skow, Miles; Nurge, Mark A.

    2015-01-01

    It is important that imagery seen through large area windows, such as those used on space vehicles, not be substantially distorted. Many approaches are described in the literature for measuring the distortion of an optical window, but most suffer from either poor resolution or processing difficulties. In this paper a new definition of distortion is presented, allowing accurate measurement using an optical interferometer. This new definition is shown to be equivalent to the definitions provided by the military and the standards organizations. In order to determine the advantages and disadvantages of this new approach the distortion of an acrylic window is measured using three different methods; image comparison, Moiré interferometry, and phase-shifting interferometry.

  9. Interferometry With ENVISAT ASAR Alternating Polarization Mode Data

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao; Zeng, Qiming; Liang, Cunren; Cui, Xiai; Jiao, Jian

    2010-10-01

    The Environmental Satellite Advanced Synthetic Aperture Radar (ASAR) sensor has been designed to provide enhanced capabilities for interferometric applications [?]. Different types of interferometric products can be obtained by combining the various ASAR modes, most of which are stripmap [image mode (IM)] and ScanSAR [wide swath (WS) mode]. However, the Alternating Polarization [AP mode] has been rarely used for interferometric experiments. This letter deals with the possibility of using AP mode data to produce two kinds of differential interferograms (HH/HH and HH/VV). We propose a complete processing chain of AP mode interferometry and the results are encouraging, of which the specialty of meaning is explained. The data is processed by the newly developed Peking University Multi-mode SAR Interferometry Processing Kit (PUMSIP v1.0), supported by ROI_PAC of JPL/Caltech.

  10. Study of tympanic membrane displacements with digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Hernández-Montes, María del Socorro; Mendoza-Santoyo, Fernando; Muñoz-Solís, Silvino

    2010-09-01

    The study of the tympanic membrane is fundamental because it is one of the most important components of the middle ear. By finding the membrane's vibration patterns and quantifying the induced displacement, it is possible to characterize and determine its physiological state. Digital Holographic Interferometry (DHI) has proved to be a promising optical non-invasive and quasi-real time method for the investigation of different mechanical parameters of biological tissues. In this paper, we present a digital holographic interferometry setup used to measure the frequency response of the tympanic membrane in post-mortem cats subject to acoustic stimuli in the range of 485 Hz up to 10 kHz. We show the resonant vibration patterns found for this range of frequencies and the corresponding displacement amplitudes induced by the acoustic waves. The results show the potential that this method has to help improve the understanding of the tympanic membrane's working mechanisms.

  11. MAGIA - using atom interferometry to determine the Newtonian gravitational constant

    NASA Astrophysics Data System (ADS)

    Stuhler, J.; Fattori, M.; Petelski, T.; Tino, G. M.

    2003-04-01

    We describe our experiment MAGIA (misura accurata di G mediante interferometria atomica), in which we will use atom interferometry to perform a high precision measurement of the Newtonian gravitational constant G. Free-falling laser-cooled atoms in a vertical atomic fountain will be accelerated due to the gravitational potential of nearby source masses (SMs). Detecting this acceleration with techniques of Raman atom interferometry will enable us to assign a value to G. To suppress systematic effects we will implement a double-differential measurement. This includes launching two atom clouds in a gradiometer configuration and moving the SMs to different vertical positions. We briefly summarize the general idea of the MAGIA experiment and put it in the context of other high precision G-measurements. We present the current status of the experiment and report on analyses of the expected measurement accuracy.

  12. Holodiagram: elliptic visualizing interferometry, relativity, and light-in-flight.

    PubMed

    Abramson, Nils H

    2014-04-10

    In holographic interferometry, there is usually a static distance separating the point of illumination and the point of observation. In Special Relativity, this separation is dynamic and is caused by the velocity of the observer. The corrections needed to compensate for these separations are similar in the two fields. We use the ellipsoids of the holodiagram for measurement and in a graphic way to explain and evaluate optical resolution, gated viewing, radar, holography, three-dimensional interferometry, Special Relativity, and light-in-flight recordings. Lorentz contraction together with time dilation is explained as the result of the eccentricity of the measuring ellipsoid, caused by its velocity. The extremely thin ellipsoid of the very first light appears as a beam aimed directly at the observer, which might explain the wave or ray duality of light and entanglement. Finally, we introduce the concept of ellipsoids of observation.

  13. Holodiagram: elliptic visualizing interferometry, relativity, and light-in-flight.

    PubMed

    Abramson, Nils H

    2014-04-10

    In holographic interferometry, there is usually a static distance separating the point of illumination and the point of observation. In Special Relativity, this separation is dynamic and is caused by the velocity of the observer. The corrections needed to compensate for these separations are similar in the two fields. We use the ellipsoids of the holodiagram for measurement and in a graphic way to explain and evaluate optical resolution, gated viewing, radar, holography, three-dimensional interferometry, Special Relativity, and light-in-flight recordings. Lorentz contraction together with time dilation is explained as the result of the eccentricity of the measuring ellipsoid, caused by its velocity. The extremely thin ellipsoid of the very first light appears as a beam aimed directly at the observer, which might explain the wave or ray duality of light and entanglement. Finally, we introduce the concept of ellipsoids of observation. PMID:24787410

  14. Dual-wavelength laser source for onboard atom interferometry.

    PubMed

    Ménoret, V; Geiger, R; Stern, G; Zahzam, N; Battelier, B; Bresson, A; Landragin, A; Bouyer, P

    2011-11-01

    We present a compact and stable dual-wavelength laser source for onboard atom interferometry with two different atomic species. It is based on frequency-doubled telecom lasers locked on a femtosecond optical frequency comb. We take advantage of the maturity of fiber telecom technology to reduce the number of free-space optical components, which are intrinsically less stable, and to make the setup immune to vibrations and thermal fluctuations. The source provides the frequency agility and phase stability required for atom interferometry and can easily be adapted to other cold atom experiments. We have shown its robustness by achieving the first dual-species K-Rb magneto-optical trap in microgravity during parabolic flights.

  15. Noise Characterization of Supercontinuum Sources for Low Coherence Interferometry Applications

    PubMed Central

    Brown, William J.; Kim, Sanghoon; Wax, Adam

    2015-01-01

    We examine the noise properties of supercontinuum light sources when used in low coherence interferometry applications. The first application is a multiple-scattering low-coherence interferometry (ms2/LCI) system where high power and long image acquisition times are required to image deep into tissue. For this system we compare the noise characteristics of two supercontinuum sources from different suppliers. Both sources have long term drift that limits the amount of time over which signal averaging is advantageous for reducing noise. The second application is a high resolution optical coherence tomography system where broadband light is needed for high axial resolution. For this system we compare the noise performance of the two supercontinuum sources and a light source based on four superluminescent diodes (SLDs) using imaging contrast as a comparative metric. We find that the NKT SuperK has superior noise performance compared to the Fianium SC-450-4 but neither meets the performance of the SLDs. PMID:25606759

  16. Applications Of A Spatial Filtering Detector To Dynamic Interferometry

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Ichirou

    1987-01-01

    Interferometry has recently shown great advances in practical applications owing to progress and utility of electrooptic devices and computers. For objects of interferometry it is now strongly desired to measure such dynamic quantities as displacement, vibration, strain, and temperature. In this case rapid movement of interference fringes or speckle patterns has to be detected. However, the conventional image processing techniques using digital computers are not quick enough for this purpose. For reducing computation time it is necessary to endow the detector with a preprocessing function. One of the solutions is a spatial filtering detector with electronic scanning facility which has been used for three dimensional displacement meter [1] and for accerelating a laser speckle strain gauge [2]. This detector, which consists of a photodiode array and its control circuit, delivers a voltage that is proportional to speckle displacement normal to the array. This paper reports applications of this detector to catch the movement of speckles and interference fringes obtained from optical fiber interferometers.

  17. Photofragmentation Beam Splitters for Matter-Wave Interferometry

    NASA Astrophysics Data System (ADS)

    Dörre, Nadine; Rodewald, Jonas; Geyer, Philipp; von Issendorff, Bernd; Haslinger, Philipp; Arndt, Markus

    2014-12-01

    Extending the range of quantum interferometry to a wider class of composite nanoparticles requires new tools to diffract matter waves. Recently, pulsed photoionization light gratings have demonstrated their suitability for high mass matter-wave physics. Here, we extend quantum interference experiments to a new class of particles by introducing photofragmentation beam splitters into time-domain matter-wave interferometry. We present data that demonstrate this coherent beam splitting mechanism with clusters of hexafluorobenzene and we show single-photon depletion gratings based both on fragmentation and ionization for clusters of vanillin. We propose that photofragmentation gratings can act on a large set of van der Waals clusters and biomolecules which are thermally unstable and often resilient to single-photon ionization.

  18. Experimental steps towards a digital revival of Stellar Intensity Interferometry

    NASA Astrophysics Data System (ADS)

    Matthews, Nolan; Kieda, David; Lebohec, Stephan; Abeysekara, Udara

    2016-03-01

    Over the last decade there has been a growing interest in using Stellar intensity interferometry (sii) for high-resolution imaging of hot stars in the optical and uv. In contrast to standard amplitude interferometry, the sii technique is unaffected by atmospheric turbulence allowing for extremely large baselines (>100m) and angular resolution scales down to tens of micro-arcseconds. The technique can be applied to existing and planned observatories which employ imaging air cherenkov telescopes (iacts) due to the similar requirements of large light collection areas and nano-second time resolution capabilities. The university of utah operates the starbase-utah observatory, located in Grantsville, ut, consisting of dual three meter diameter telescopes serving as a test-bed for sii instrumentation. I will summarize the sii technique and highlight the motivation for using sii. I will also present laboratory results in the reconstruction of artificial sources using pseudo-thermal light and the development of starbase-utah.

  19. Atom Interferometry for Detection of Gravitational Waves: Progress and Prospects

    NASA Astrophysics Data System (ADS)

    Hogan, Jason

    2015-04-01

    Gravitational wave astronomy promises to provide a new window into the universe, collecting information about astrophysical systems and cosmology that is difficult or impossible to acquire by other methods. Detector designs based on atom interferometry offer a number of advantages over traditional approaches, including access to conventionally inaccessible frequency ranges and substantially reduced antenna baselines. Atomic physics techniques also make it possible to build a gravitational wave detector with a single linear baseline, potentially offering advantages in cost and design flexibility. In support of these proposals, recent progress in long baseline atom interferometry has enabled observation of matter wave interference with atomic wavepacket separations exceeding 10 cm and interferometer durations of more than 2 seconds. These results are obtained in a 10-meter drop tower incorporating large momentum transfer atom optics. This approach can provide ground-based proof-of-concept demonstrations of many of the technical requirements of both terrestrial and satellite gravitational wave detectors.

  20. Picosecond resolution soft x-ray laser plasma interferometry

    SciTech Connect

    Moon, S; Nilsen, J; Ng, A; Shlyaptsev, V; Dunn, J; Hunter, J; Keenan, R; Marconi, M; Filevich, J; Rocca, J; Smith, R

    2003-12-01

    We describe a soft x-ray laser interferometry technique that allows two-dimensional diagnosis of plasma electron density with picosecond time resolution. It consists of the combination of a robust high throughput amplitude division interferometer and a 14.7 nm transient inversion soft x-ray laser that produces {approx} 5 ps pulses. Due to its picosecond resolution and short wavelength scalability, this technique has potential for extending the high inherent precision of soft x-ray laser interferometry to the study of very dense plasmas of significant fundamental and practical interest, such as those investigated for inertial confined fusion. Results of its use in the diagnostics of dense large scale laser-created plasmas are presented.

  1. Deformations and strains in adhesive joints by moire interferometry

    NASA Technical Reports Server (NTRS)

    Post, D.; Czarnek, R.; Wood, J.; John, D.; Lubowinski, S.

    1984-01-01

    Displacement fields in a thick adherend lap joint and a cracked lap shear specimen were measured by high sensitivity moire interferometry. Contour maps of in-plane U and V displacements were obtained across adhesive and adherent surfaces. Loading sequences ranged from modest loads to near-failure loads. Quantitative results are given for displacements and certain strains in the adhesive and along the adhesive/adherend boundary lines. The results show nonlinear displacements and strains as a function of loads or stresses and they show viscoelastic or time-dependent response. Moire interferometry is an excellent method for experimental studies of adhesive joint performance. Subwavelength displacement resolution of a few micro-inches, and spatial resolution corresponding to 1600 fringes/inch (64 fringes/mm), were obtained in these studies. The whole-field contour maps offer insights not available from local measurements made by high sensitivity gages.

  2. Two-dimensional attosecond electron wave-packet interferometry.

    PubMed

    Xie, Xinhua

    2015-05-01

    We propose a two-dimensional interferometry based on the electron wave-packet interference by using a cycle-shaped orthogonally polarized two-color laser field. With such a method, the subcycle and intercycle interferences can be disentangled into different directions in the measured photoelectron momentum spectra. The Coulomb influence can be minimized and the overlapping of interference fringes with the complicated low-energy structures can be avoided as well. The contributions of the excitation effect and the long-range Coulomb potential can be traced in the Fourier domain of the photoelectron distribution. Because of these advantages, precise information on valence electron dynamics of atoms or molecules with attosecond temporal resolution and additional spatial information with angstrom resolution can be obtained with the two-dimensional electron wave-packet interferometry.

  3. Application Of Holographic Interferometry To Shock Wave Research

    NASA Astrophysics Data System (ADS)

    Takayama, K.

    1983-10-01

    Paper reports a successful application of holographic interferometry to the shock wave research. Four topics are discussed; i) transonic flow over an aerofoil, ii) shock wave propagation and diffraction past a circular cross-sectional 90° bend and two-dimensional straight or curved wedges, iii) stability of converging cylindrical shock waves and iv) propagation and focusing of underwater shock waves. Experiments were conducted on shock tubes equipped with a double exposure holographic interferometer. In each case isopycnics around shock waves were determined and three-dimensional shock wave interactions were also observed. Results are not only bringing forth new interesting findings to the shock wave research but also showing a further potentiality of holographic interferometry to the high speed gasdynamic study.

  4. Two-Dimensional Attosecond Electron Wave-Packet Interferometry

    NASA Astrophysics Data System (ADS)

    Xie, Xinhua

    2015-05-01

    We propose a two-dimensional interferometry based on the electron wave-packet interference by using a cycle-shaped orthogonally polarized two-color laser field. With such a method, the subcycle and intercycle interferences can be disentangled into different directions in the measured photoelectron momentum spectra. The Coulomb influence can be minimized and the overlapping of interference fringes with the complicated low-energy structures can be avoided as well. The contributions of the excitation effect and the long-range Coulomb potential can be traced in the Fourier domain of the photoelectron distribution. Because of these advantages, precise information on valence electron dynamics of atoms or molecules with attosecond temporal resolution and additional spatial information with angstrom resolution can be obtained with the two-dimensional electron wave-packet interferometry.

  5. Searching for Dark Matter with Atomic Clocks and Laser Interferometry

    NASA Astrophysics Data System (ADS)

    Stadnik, Yevgeny; Flambaum, Victor

    2016-05-01

    We propose new schemes for the direct detection of low-mass bosonic dark matter, which forms a coherently oscillating classical field and resides in the observed galactic dark matter haloes, using atomic clock, atomic spectroscopy and laser interferometry measurements in the laboratory. We have recently shown that such dark matter can produce both a `slow' cosmological evolution and oscillating variations in the fundamental constants. Using recent atomic dysprosium spectroscopy measurements in, we have derived limits on the quadratic interactions of scalar dark matter with ordinary matter that improve on existing constraints by up to 15 orders of magnitude. We have also proposed the use of laser and maser interferometry as novel high-precision platforms to search for dark matter, with effects due to the variation of the electromagnetic fine-structure constant on alterations in the accumulated phase enhanced by up to 14 orders of magnitude. Other possibilities include the use of highly-charged ions, molecules and nuclear clocks.

  6. Deformation Measurement Of Lumbar Vertebra By Holographic Interferometry

    NASA Astrophysics Data System (ADS)

    Matsumoto, Toshiro; Kojima, Arata; Ogawa, Ryoukei; Iwata, Koichi; Nagata, Ryo

    1988-01-01

    The mechanical properties of normal lumbar vertebra and one with the interarticular part cut off to simulate hemi-spondylolysis were measured by the double exposure holographic interferometry. In the normal lumbar vertebra, displacement due to the load applied to the inferior articular process was greater than that of superior articular process under the same load. The interarticular part was subjected to the high stress. From these points, one of the valuable data to consider the cause of spondylolysis was obtained.

  7. Laser holographic interferometry for investigations of cylindrical transparent tubes

    NASA Astrophysics Data System (ADS)

    Ralea, Mihai F.; Rosu, Nicu; Iova, Iancu

    1996-05-01

    A new double differential refractometer for student laboratories, based on holographic interferometry in real time with reference hologram and reference fringes, is presented. By studying the interferograms one gets a graphical record of the radial, axial, and temporal distribution of the refraction index in cylindrical tubes. This method permits the determination of the experimental parameters for cases when the relationship between these parameters and the refraction index is known. The paper presents experimental results for gas-discharge parameters.

  8. Laser Development for Gravitational-Wave Interferometry in Space

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2012-01-01

    We are reporting on our development work on laser (master oscillator) and optical amplifier systems for gravitational-wave interferometry in space. Our system is based on the mature, wave-guided optics technologies, which have advantages over bulk, crystal-based, free-space optics. We are investing in a new type of compact, low-noise master oscillator, called the planar-waveguide external cavity diode laser. We made measurements, including those of noise, and performed space-qualification tests.

  9. Spatial interferometry for white light processing: The coherence interferometer

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.

    1984-01-01

    An optical systems design approach for a parallel optical processor that has an information throughput capacity in excess of one petabit per second is discussed. This system enables predetection processing of white light, passively illuminated scenes. Integrated with a programmable Van der Lugt filter, this system is an effective data compression method. A program to implement this parallel optical processing by interferometry system is discussed.

  10. Coda wave interferometry for estimating nonlinear behavior in seismic velocity.

    PubMed

    Snieder, Roel; Grêt, Alexandre; Douma, Huub; Scales, John

    2002-03-22

    In coda wave interferometry, one records multiply scattered waves at a limited number of receivers to infer changes in the medium over time. With this technique, we have determined the nonlinear dependence of the seismic velocity in granite on temperature and the associated acoustic emissions. This technique can be used in warning mode, to detect the presence of temporal changes in the medium, or in diagnostic mode, where the temporal change in the medium is quantified.

  11. VO Access to Complex Data - MERLIN and Other Interferometry Archives

    NASA Astrophysics Data System (ADS)

    Richards, A. M. S.; Allen, M. D.; Garrington, S. T.; Harrison, P. A.; Lamb, P.; Muxlow, T. W. B.; Power, R.; Reynolds, C.; Stirling, A.; Thomasson, P.; Venturi, T.; Winstanley, N.

    2004-07-01

    Radio interferometry data should be as accessible as any other part of the electromagnetic spectrum in the form of images, spectra or whatever the astronomer requires, without laborious massive dataset transport or esoteric software at the user end. Many existing facilities are developing on-line access to archive and current data, incorporating VO compatibility. The next generation of interferometers will have data access for non-experts designed into their archives.

  12. Using Atom Interferometry to Search for New Forces

    SciTech Connect

    Wacker, Jay G.; /SLAC

    2009-12-11

    Atom interferometry is a rapidly advancing field and this Letter proposes an experiment based on existing technology that can search for new short distance forces. With current technology it is possible to improve the sensitivity by up to a factor of 10{sup 2} and near-future advances will be able to rewrite the limits for forces with ranges from 100 {micro}m to 1km.

  13. Infrasonic interferometry applied to synthetic and measured data

    NASA Astrophysics Data System (ADS)

    Fricke, Julius T.; Evers, Läslo G.; Ruigrok, Elmer; Wapenaar, Kees; Simons, Dick G.

    2013-04-01

    The estimation of the traveltime of infrasound through the atmosphere is interesting for several applications. For example, it could be used to determine temperature and wind of the atmosphere, since the traveltime depends on these atmospheric conditions (Haney, 2009). In this work the traveltime is estimated with infrasonic interferometry. In other words, we calculate the crosscorrelations of data of spatially distributed receivers. With this method the traveltime between two receivers is determined without the need for ground truth events. In a first step, we crosscorrelate synthetic data, which are generated by a raytracing model. This model takes into account the traveltime along the rays, the attenuation of the different atmospheric layers, the spreading of the rays and the influence of caustics. In these numerical experiments we show that it is possible to determine the traveltime through infrasonic interferometry. We present the results of infrasonic interferometry applied to measured data. Microbaroms are used in the crosscorrelation approach. Microbaroms are caused by ocean waves and are measured by the 'Large Aperture Infrasound Array' (LAIA). LAIA is being installed by the Royal Netherlands Meteorological Institute (KNMI) in the framework of the radio-astronomical 'Low Frequency Array' (LOFAR) initiative. LAIA consists currently of around twenty receivers (microbarometers) with an aperture of around 100 km, allowing for several inter-station distances. Here, we show the results of crosscorrelations as a function of receivers distance, to assess the signal coherency. This research is made possible by the support of the 'Netherlands Organization for Scientific Research' (NWO). Haney, M., 2009. Infrasonic ambient noise interferometry from correlations of microbaroms, Geophysical Research Letters, 36, L19808

  14. Sensitivity in X-ray grating interferometry on compact systems

    SciTech Connect

    Thuering, Thomas; Modregger, Peter; Haemmerle, Stefan; Weiss, Stephan; Nueesch, Joachim; Stampanoni, Marco

    2012-07-31

    The optimization of compact X-ray grating interferometry systems is crucial for the progress of this technique in industrial devices. Here, an analytical formulation for the sensitivity of the phase contrast image acquisition is derived using previous results from noise analyses. Furthermore, experimental measurements of the sensitivity for different configurations are compared, providing further insight into the dependence on polychromatic radiation. Finally, strategies for the geometrical optimization are given.

  15. Special topics in infrared interferometry. [Michelson interferometer development

    NASA Technical Reports Server (NTRS)

    Hanel, R. A.

    1985-01-01

    Topics in IR interferometry related to the development of a Michelson interferometer are treated. The selection and reading of the signal from the detector to the analog to digital converter is explained. The requirements for the Michelson interferometer advance speed are deduced. The effects of intensity modulation on the interferogram are discussed. Wavelength and intensity calibration of the interferometer are explained. Noise sources (Nyquist or Johnson noise, phonon noise), definitions of measuring methods of noise, and noise measurements are presented.

  16. Grazing Incidence Optics for X-rays Interferometry

    NASA Technical Reports Server (NTRS)

    Shipley, Ann; Zissa, David; Cash, Webster; Joy, Marshall

    1999-01-01

    Grazing incidence mirror parameters and constraints for x-ray interferometry are described. We present interferometer system tolerances and ray trace results used to define mirror surface accuracy requirements. Mirror material, surface figure, roughness, and geometry are evaluated based on analysis results. We also discuss mirror mount design constraints, finite element analysis, environmental issues, and solutions. Challenges associated with quantifying high accuracy mirror surface quality are addressed and test results are compared with theoretical predictions.

  17. Sagnac Interferometry Using Bright Matter-Wave Solitons

    NASA Astrophysics Data System (ADS)

    Helm, J. L.; Cornish, S. L.; Gardiner, S. A.

    2015-04-01

    We use an effective one-dimensional Gross-Pitaevskii equation to study bright matter-wave solitons held in a tightly confining toroidal trapping potential, in a rotating frame of reference, as they are split and recombined on narrow barrier potentials. In particular, we present an analytical and numerical analysis of the phase evolution of the solitons and delimit a velocity regime in which soliton Sagnac interferometry is possible, taking account of the effect of quantum uncertainty.

  18. Two-Particle Interferometry of 200 GeV Au+Au Collisions at PHENIX

    SciTech Connect

    Heffner, M

    2004-04-19

    The PHENIX experiment has measured pion-pion, kaon-kaon, and proton-proton correlations in Au+Au collisions at {radical}S{sub NN} = 200GeV. The correlations are fit to extract radii using both the Bowler Coulomb correction and full calculation of the two-particle wave function. The resulting radii are similar for all three species and decrease with increasing k{sub t} as expected for collective flow. The R{sub out} and R{sub side} radii are approximately equal indicating a short emission duration.

  19. Vibration modal analysis using stroboscopic digital speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Xizhou; Tan, Yushan

    1991-12-01

    Digital speckle pattern interferometry (DSPI) is a promising optoelectronic testing technique for a wide range of applications. Compared with holographic and speckle interferometry, it has some attractive features such as needlessness of tedious film processing, high measuring accuracy, and satisfactory automaticity. The measuring data can be displayed on the monitor at real time. In this paper, the vibration of a clamped steel plate is tested using stroboscopic digital speckle pattern interferometry. The advantages of stroboscopic technique are that it can give both the amplitude and phase information of a harmonic vibration. This is very useful for the vibration modal analysis of engineering structures. This work is realized on an image processing system based on IBM-PC/AT personal computer. The stroboscopic wavefronts are obtained by chopping a CW He-Ne laser using acousto-optic modulator. The fringe patterns obtained with stroboscopic DSPI are superior to that with time-averaging TV holography (ESPI or DPI). The interpretation of the stroboscopic DSPI fringes and selection of the system parameters are discussed in detail. The measured results are also given.

  20. The Brief Lives of Massive Stars as Witnessed by Interferometry

    NASA Astrophysics Data System (ADS)

    Hummel, C.

    2014-09-01

    Massive stars present the newest and perhaps most challenging opportunity for long baseline interferometry to excel. Large distances require high angular resolution both to study the means of accreting enough mass in a short time and to split new-born multiples into their components for the determination of their fundamental parameters. Dust obscuration of young stellar objects requires interferometry in the mid-infrared, while post-main-sequence stellar phases require high-precision measurements to challenge stellar evolution models. I will summarize my recent work on modeling mid-IR observations of a massive YSO in NGC 3603, and on the derivation of masses and luminosities of a massive hot supergiant star in another star-forming region in Orion. Challenges presented themselves when constraining the geometry of a hypothetical accretion disk as well as obtaining spectroscopy matching the interferometric precision when working with only a few photospheric lines. As a rapidly evolving application of interferometry, massive stars have a bright future.

  1. The brief lives of massive stars as witnessed by interferometry}

    NASA Astrophysics Data System (ADS)

    Hummel, Christian

    2013-06-01

    Massive stars present the newest and perhaps most challenging opportunity for long baseline interferometry to excel. Large distances require high angular resolution both to study the means of accreting enough mass in a short time and to split new-born multiples into their components for the determination of their fundamental parameters. Dust obscuration of young stellar objects require interferometry in the infrared, while post-mainsequence stellar phases require high-precision measurements to challenge stellar evolution models. I will summarize our work on a massive YSO in NGC 3603 including modeling mid-IR interferometric observations, as well as recent sub-mm imaging and spectroscopy with APEX. We find some evidence for a disk in the MIR, resolve multiple cores in the sub-mm with emission line spectra untypical for hot cores. I also report on the derivation of masses and luminosities of a massive O-type supergiant (ζ Orionis) in another star forming region in Orion. The small radial velocity semi-amplitudes coupled with few usable (i.e. wind-free) lines have made this work very challenging and forced us to base the mass determination on a photometric distance estimate. As a rapidly evolving application of interferometry, massive stars have a bright future.

  2. Super-resolution imaging with radio interferometry using sparse modeling

    NASA Astrophysics Data System (ADS)

    Honma, Mareki; Akiyama, Kazunori; Uemura, Makoto; Ikeda, Shiro

    2014-10-01

    We propose a new technique to obtain super-resolution images with radio interferometry using sparse modeling. In standard radio interferometry, sampling of (u, v) is quite often incomplete and thus obtaining an image from observed visibilities becomes an underdetermined problem, and a technique of so-called "zero-padding" is often used to fill up unsampled grids in the (u, v) plane, resulting in image degradation by finite beam size as well as numerous side-lobes. In this paper we show that directly solving such an underdetermined problem based on sparse modeling (in this paper, Least Absolute Shrinkage and Selection Operator, known as LASSO) avoids the above problems introduced by zero-padding, leading to super-resolution images in which structure finer than the standard beam size (diffraction limit) can be reproduced. We present results of one-dimensional and two-dimensional simulations of interferometric imaging, and discuss its implications for super-resolution imaging, particularly focusing on imaging of black hole shadows with millimeter VLBI (Very Long Baseline Interferometry).

  3. Comparison of Laser Interferometry and Atom Interferometry for Gravitational Wave Observations in Space

    NASA Astrophysics Data System (ADS)

    Bender, Peter L.

    2015-08-01

    1. In 2013 a suggestion was made by Graham et al. [1] [Phys. Rev. Lett. 110, 171102 (2013)] of possible GW observations over 10^3 km baselines using strongly forbidden single photon transitions in atoms such as Sr-87. A comparison of the requirements for such a mission with those for laser interferometer missions such as LISA or eLISA with roughly 10^6 km baselines was published in 2014 [Bender, Phys. Rev. D 89, 062004 (2014)]. The comparison will be somewhat updated in this talk.2. Recently, a possible method for gravitational wave observations with atom interferometry over million km scale baselines has been suggested by Hogan and Kasevich [arXiv:1501.06797v1 (2015)]. As an example, they consider observations similar to those discussed in [1], but over a 2*10^6 km baseline. The atomic transitions in the two spacecraft would be driven by separate lasers that are phase locked using 1 W laser power and 30 cm diam. telescopes. Total observation times for individual clouds of 80 to 320 s are assumed, along with 50 concurrent interferometers and a 60 Hz Rabi frequency for the laser pulses.3. After the flight of the LISA Pathfinder mission later this year, it is expected that more intensive work will start on a laser interferometer gravitational wave mission. Probably the most important objective will be the observation of GW signals from the mergers at high redshifts of massive black holes with masses in the range from perhaps 10^4 to 10^7 M_sun. Such signals would give new constraints on the mechanisms for the formation of intermediate mass and larger black holes at early times, and probably contribute to understanding the observed close correlation between the growth of galaxies and of the massive black holes at their centers.

  4. Neutral and Non-Neutral Evolution of Drosophila Mitochondrial DNA

    PubMed Central

    Rand, D. M.; Dorfsman, M.; Kann, L. M.

    1994-01-01

    To test hypotheses of neutral evolution of mitochondrial DNA (mtDNA), nucleotide sequences were determined for 1515 base pairs of the NADH dehydrogenase subunit 5 (ND5) gene in the mitochondrial DNA of 29 lines of Drosophila melanogaster and 9 lines of its sibling species Drosophila simulans. In contrast to the patterns for nuclear genes, where D. melanogaster generally exhibits much less nucleotide polymorphism, the number of segregating sites was slightly higher in a global sample of nine ND5 sequences in D. melanogaster (s = 8) than in the nine lines of D. simulans (s = 6). When compared to variation at nuclear loci, the mtDNA variation in D. melanogaster does not depart from neutral expectations. The ND5 sequences in D. simulans, however, show fewer than half the number of variable sites expected under neutrality when compared to sequences from the period locus. While this reduction in variation is not significant at the 5% level, HKA tests with published restriction data for mtDNA in D. simulans do show a significant reduction of variation suggesting a selective sweep of variation in the mtDNA in this species. Tests of neutral evolution based on the ratios of synonymous and replacement polymorphism and divergence are generally consistent with neutral expectations, although a significant excess of amino acid polymorphism within both species is localized in one region of the protein. The rate of mtDNA evolution has been faster in D. melanogaster than in D. simulans and the population structure of mtDNA is distinct in these species. The data reveal how different rates of mtDNA evolution between species and different histories of neutral and adaptive evolution within species can compromise historical inferences in population and evolutionary biology. PMID:7851771

  5. Energetic Neutral Atom Precipitation (ENAP)

    NASA Technical Reports Server (NTRS)

    Tinsley, B. A.

    1988-01-01

    The Energetic Neutral Atom Precipitation experiment is scheduled to be flown on the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission. The objective of this experiment is to measure very faint emissions at nighttime arising from fluxes of energetic neutral atoms in the thermosphere. These energetic atoms have energies ranging up to about 50 keV, and arise from ions of hydrogen, helium, and oxygen trapped in the inner magnetosphere. Some of these ions become neutralized in charge exchange reactions with neutral hydrogen in the hydrogen geocorona that extends through the region. The ions are trapped on magnetic field lines which cross the equatorial plane at 2 to 6 earth radii distance, and they mirror at a range of heights on these field lines, extending down to the thermosphere at 500 km altitude. The ATLAS 1 measurements will not be of the neutral atoms themselves but of the optical emission produced by those on trajectories that intersect the thermosphere. The ENAP measurements are to be made using the Imaging Spectrometric Observatory (ISO) which is being flown on the ATLAS mission primarily for daytime spectral observations, and the ENAP measurements will all be nighttime measurements because of the faintness of the emissions and the relatively low level of magnetic activity expected.

  6. Search for the flavor-changing neutral current decay K sup + yields. pi. sup +. nu. nu

    SciTech Connect

    Ito, M.M. . Joseph Henry Labs.)

    1990-01-01

    The observation that flavor-changing neutral currents (FCNC) in weak decays are highly suppressed was first explained by Glashow, Iliopoulos and Maiani in 1970, and their idea has since become a cornerstone of the Standard Model. They proposed a model of the weak interaction that included a then new fourth quark and which, in a natural way, allowed the existence of a neutral vector boson without inducing FCNC's at tree level. Thus the couplings of the neutral intermediary{hor ellipsis}cause no embarrassment.'' In higher order through, decays like K {yields} {pi}l{bar l} can proceed. Measurements of such processes provide a detailed test of the Standard Model since definite predictions for their rates can be calculated. Conversely, if no contradictions are found and the standard model is assumed to describe the physics, measurements limit the allowed values of the parameters of the model. As is often the case in studying processes that are highly suppressed and heretofore unseen, improvements in the sensitivity of experiments allow the possibility for the discovery of new physics that exhibits a similar experimental signature. This paper describes experiment 787 at Brookhaven which is expected to address some of these issues. The status and future of the experiment will be described here. The main goal of E787 is to measure the rate of K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}} at the standard model level. In addition, the experiment has sensitivity to other FCNC decays of the charged kaon, in particular the decays K{sup +} {yields} {pi}{sup +}{mu}{sup +}{mu}{sup {minus}} and K{sup +} {yields} {pi}{sup +}{gamma}{gamma}.

  7. Measurement of differential cross sections and Cx and Cz for gamma photon-proton going to kaon-lambda baryon and gamma photon-proton going to kaon-sigma baryon using CLAS at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Bradford, Robert K., Jr.

    This work presents several observables for the reactions gamma p → K+Λ and gamma p → K+Sigma°. In addition to measuring differential cross sections, we have made first measurements of the double polarization observables Cx and Cz. Cx and C z characterize the transfer of polarization from the incident photon to the produced hyperons. Data were obtained at Jefferson Lab using a circularly polarized photon beam at endpoint energies of 2.4, 2.9, and 3.1 GeV. Events were detected with the CLAS spectrometer. In the Λ channel, the cross sections support the recent observation of new resonant structure at W = 1900 MeV. Studies of the invariant cross section, dsdd show scaling behavior suggesting that the production mechanism becomes t-channel dominated near threshold at forward kaon angles. The double polarization observables show that the recoiling Λ is almost maximally polarized along the direction of the incident photon from mid to forward kaon angles. While Sigmao differential cross sections are of the same magnitude as the Λ differential cross sections, there is evidence of different physics dominating the production mechanism. The Sigma° invariant cross sections do not show the same t-scaling behavior present in the Λ results. The double polarization observables indicate that the Sigma° is not polarized as strongly as the Λ. They also fail to identify one preferred polarization axis. Complete interpretation of these results will rely on model calculations. Currently available isobar models obtain varying degrees of success while attempting to predict the double polarization observables. While the models are in better agreement with the differential cross sections, discrepancies with our cross sections indicate that they must be re-optimized in light of the new data. While the data suggest that a Regge model would provide a good description of K+Λ over most of the range in W, the available Regge calculation overstates the strength of the cross section

  8. High-resolution kaon spectrometer (HKS) for medium-heavy Mass Lambda-hypernuclear structure studies at the Jlab (E01-011 Collaboration)

    SciTech Connect

    T. Petkovic; Y. Fujii; O. Hashimoto; H. Kanda; K. Maeda; S. N. Nakamura; Y. Okayasu; T. Takahashi; H. Tamura; K. Tsukada; H. Yamaguchi; S. Kato; H. Noumi; Y. Sato; T. Motoba; O. K. Baker; M. Christy; L. Cole; P. Gueye; C. Keppel; L. Tang; A. Uzzle; L. Yuan; P. Baturin; P. Markowitz; J. Reinhold; A. Daniel; E. Hungerford; K. Lan; T. Miyoshi; V. M. Rodriguez; G. H. Xu; R. Carlini; R. Ent; H. Fenker; D. Mack; G. Smith; W. Vulcan; S. Wood; C. Yan; A. Ahmidouch; S. Danagoulian; L. Gan; A. Gasparian; D. Dehnhard; H. Juengst; N. Simicevic; S. Wells; R. Asaturyan; A. Margaryan; H. Mkrtchyan; S. Stepanyan; V. Tadevosyan; D. Androic; I. Bertovic; M. Furic; M. Planinic; T. Seva; T. Angelescu; V. P. Likhachev

    2005-05-01

    An experimental technique for single-Lambda spectroscopy of the light and medium-heavy mass Lambda-hypernuclei developed at the Jlab by the E01-011 Collaboration has been described. The technique is based on the electroproduction of Lambda-hypernuclei by the (e,eK+) reaction and newly constructed 2nd generation high resolution large solid angle kaon spectrometer (HKS).

  9. 46 CFR 502.404 - Neutrals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... resolution proceeding. A neutral shall have no official, financial, or personal conflict of interest with... Dispute Resolution § 502.404 Neutrals. (a) A neutral may be a permanent or temporary officer or employee... Maritime Commission Dispute Resolution Specialist will seek to provide a neutral in dispute...

  10. 46 CFR 502.404 - Neutrals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... resolution proceeding. A neutral shall have no official, financial, or personal conflict of interest with... Dispute Resolution § 502.404 Neutrals. (a) A neutral may be a permanent or temporary officer or employee... Maritime Commission Dispute Resolution Specialist will seek to provide a neutral in dispute...

  11. 46 CFR 502.404 - Neutrals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... resolution proceeding. A neutral shall have no official, financial, or personal conflict of interest with... Dispute Resolution § 502.404 Neutrals. (a) A neutral may be a permanent or temporary officer or employee... Maritime Commission Dispute Resolution Specialist will seek to provide a neutral in dispute...

  12. 46 CFR 502.404 - Neutrals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... resolution proceeding. A neutral shall have no official, financial, or personal conflict of interest with... Dispute Resolution § 502.404 Neutrals. (a) A neutral may be a permanent or temporary officer or employee... Maritime Commission Dispute Resolution Specialist will seek to provide a neutral in dispute...

  13. 46 CFR 502.404 - Neutrals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... resolution proceeding. A neutral shall have no official, financial, or personal conflict of interest with... Dispute Resolution § 502.404 Neutrals. (a) A neutral may be a permanent or temporary officer or employee... Maritime Commission Dispute Resolution Specialist will seek to provide a neutral in dispute...

  14. A Re-Examiniation of Phonological Neutralization.

    ERIC Educational Resources Information Center

    Dinnsen, D.

    1985-01-01

    Reviews research studies that raise serious questions about phonological neutralization, that is, the merger of a contrast in certain contexts. Some findings cast doubt on the very existence of neutralization and the correctness of the theoretical principles that make assumptions based on neutralization. Reanalyzes neutralization in light of these…

  15. A Measurement of the Time Dependence of B{sub d}-bar B{sub d} Mixing with Kaon Tagging

    SciTech Connect

    Wittlin, Jodi L.

    2001-12-10

    The time dependence of B{sub d} - {bar B}{sub d} mixing has been measured in b{bar b} events containing one or more kaons at the SLD experiment at the Stanford Linear Accelerator Center. A simultaneous measurement of the ''right sign production fraction'' of kaons from B{sub d} decays has also been made. The initial state B hadron flavor was determined using the large forward-backward asymmetry provided by the polarized electron beam of the SLC in combination with a jet charge technique and information from the opposite hemisphere. From a sample of 400,000 Z{sup 0} events collected by the SLD experiment at SLC from 1996 to 1998, the kaon right sign production fraction has been measured to be 0.797 {+-} 0.022 and the mass difference between the two B{sub d} eigenstates has been measured to be {Delta}m{sub d} = 0.503 {+-} 0.028 {+-} 0.020 ps{sup -1}.

  16. Developement of a same-side kaon tagging algorithm of B^0_s decays for measuring delta m_s at CDF II

    SciTech Connect

    Menzemer, Stephanie; /Heidelberg U.

    2006-06-01

    The authors developed a Same-Side Kaon Tagging algorithm to determine the production flavor of B{sub s}{sup 0} mesons. Until the B{sub s}{sup 0} mixing frequency is clearly observed the performance of the Same-Side Kaon Tagging algorithm can not be measured on data but has to be determined on Monte Carlo simulation. Data and Monte Carlo agreement has been evaluated for both the B{sub s}{sup 0} and the high statistics B{sup +} and B{sup 0} modes. Extensive systematic studies were performed to quantify potential discrepancies between data and Monte Carlo. The final optimized tagging algorithm exploits the particle identification capability of the CDF II detector. it achieves a tagging performance of {epsilon}D{sup 2} = 4.0{sub -1.2}{sup +0.9} on the B{sub s}{sup 0} {yields} D{sub s}{sup -} {pi}{sup +} sample. The Same-Side Kaon Tagging algorithm presented here has been applied to the ongoing B{sub s}{sup 0} mixing analysis, and has provided a factor of 3-4 increase in the effective statistical size of the sample. This improvement results in the first direct measurement of the B{sub s}{sup 0} mixing frequency.

  17. PDX neutral beam reionization losses

    SciTech Connect

    Kugel, H.W.; Dylla, H.F.; Eubank, H.P.; Kozub, T.A.; Moore, R.; Schilling, G.; Stuart, L.D.; Von Halle, A.; Williams, M.D.

    1982-04-01

    Reionization losses for 1.5 MW H /sup 0/ and 2 MW D /sup 0/ neutral beams injected into the PDX tokamak were studied using pressure gauges, phototransistors, thermocouples, surface shielding, and surface sample analysis. Considerable outgassing of conventionally prepared 304 SS ducts occurred during initial injections and gradually decreased with the cumulative absorption of beam power. Reionization power losses are presently about 5% in the ducts and about 12% total for a beamline including the duct. Present duct pressures are attributed primarily to gas from the ion source and neutralizer with much smaller contributions from residual wall desorption. Physical mechanisms for the observed duct outgassing are discussed.

  18. ATF neutral beam injection system

    SciTech Connect

    Menon, M.M.; Morris, R.N.; Edmonds, P.H.

    1985-01-01

    The Advanced Toroidal Facility is a stellarator torsatron being built at Oak Ridge National Laboratory to investigate improved plasma confinement schemes. Plasmas heating will be carried out predominantly by means of neutral beam injection. This paper describes the basic parameters of the injection system. Numerical calculations were done to optimize the aiming of the injectors. The results of these calculations and their implications on the neutral power to the machine are elaborated. The effects of improving the beam optics and altering the focal length on the power transmitted to the plasma are discussed.

  19. Magnetostriction Measured by Holographic Interferometry with the Simple and Inexpensive "Arrowhead" Setup

    ERIC Educational Resources Information Center

    Ladera, Celso L.; Donoso, Guillermo; Contreras, Johnny H.

    2012-01-01

    Double-exposure holographic interferometry is applied to measure the "linear" or "longitudinal" magnetostriction constant of a soft-ferrite rod. This high-accuracy measurement is done indirectly, by measuring the small rotations of a lever in contact with the rod using double-exposure holographic interferometry implemented with a robust…

  20. MSFC Skylab neutral buoyancy simulator

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of a neutral buoyancy simulator for developing extravehicular activity systems and for training astronauts in weightless activities is discussed. The construction of the facility and the operations are described. The types of tests and the training activities conducted in the simulator are reported. Photographs of the components of the simulator and actual training exercises are included.

  1. Photodetachment process for beam neutralization

    DOEpatents

    Fink, J.H.; Frank, A.M.

    1979-02-20

    A process for neutralization of accelerated ions employing photo-induced charge detachment is disclosed. The process involves directing a laser beam across the path of a negative ion beam such as to effect photodetachment of electrons from the beam ions. The frequency of the laser beam employed is selected to provide the maximum cross-section for the photodetachment process. 2 figs.

  2. Photodetachment process for beam neutralization

    DOEpatents

    Fink, Joel H. [Livermore, CA; Frank, Alan M. [Livermore, CA

    1979-02-20

    A process for neutralization of accelerated ions employing photo-induced charge detachment. The process involves directing a laser beam across the path of a negative ion beam such as to effect photodetachment of electrons from the beam ions. The frequency of the laser beam employed is selected to provide the maximum cross-section for the photodetachment process.

  3. RE: Pedagogy--After Neutrality

    ERIC Educational Resources Information Center

    I'Anson, John

    2010-01-01

    Within the UK and in many parts of the world, official accounts of what it is to make sense of religion are framed within a rhetorics of neutrality in which such study is premised upon the possibility of dispassionate engagement and analysis. This paper, which is largely theoretical in scope, explores both the affordances and the costs of such an…

  4. Self-neutralized ion beam

    SciTech Connect

    Salvadori, M. C.; Teixeira, F. S.; Nikolaev, A.; Savkin, K. P.; Oks, E. M.; Spaedtke, P.; Yu, K. M.; Brown, I. G.

    2011-10-15

    A vacuum arc ion source provides high current beams of metal ions that have been used both for accelerator injection and for ion implantation, and in both of these applications the degree of space charge neutralization of the beam is important. In accelerator injection application, the beam from the ion source may be accelerated further (post-acceleration), redirected by a bending magnet(s), or focused with magnetic or electrostatic lenses, and knowledge of the beam space charge is needed for optimal design of the optical elements. In ion implantation application, any build-up of positive charge in the insulating targets must be compensated by a simultaneous flux of cold electrons so as to provide overall charge neutrality of the target. We show that in line-of-sight ion implantation using a vacuum arc ion source, the high current ion beam carries along its own background sea of cold electrons, and this copious source of electrons provides a ''self-neutralizing'' feature to the beam. Here we describe experiments carried out in order to demonstrate this effect, and we provide an analysis showing that the beam is space-charge-neutralized to a very high degree.

  5. Experimental Investigation of Textile Composite Materials Using Moire Interferometry

    NASA Technical Reports Server (NTRS)

    Ifju, Peter G.

    1995-01-01

    The viability as an efficient aircraft material of advanced textile composites is currently being addressed in the NASA Advanced Composites Technology (ACT) Program. One of the expected milestones of the program is to develop standard test methods for these complex material systems. Current test methods for laminated composites may not be optimum for textile composites, since the architecture of the textile induces nonuniform deformation characteristics on the scale of the smallest repeating unit of the architecture. The smallest repeating unit, also called the unit cell, is often larger than the strain gages used for testing of tape composites. As a result, extending laminated composite test practices to textiles can often lead to pronounced scatter in material property measurements. It has been speculated that the fiber architectures produce significant surface strain nonuniformities, however, the magnitudes were not well understood. Moire interferometry, characterized by full-field information, high displacement sensitivity, and high spatial resolution, is well suited to document the surface strain on textile composites. Studies at the NASA Langley Research Center on a variety of textile architectures including 2-D braids and 3-D weaves, has evidenced the merits of using moire interferometry to guide in test method development for textile composites. Moire was used to support tensile testing by validating instrumentation practices and documenting damage mechanisms. It was used to validate shear test methods by mapping the full-field deformation of shear specimens. Moire was used to validate open hole tension experiments to determine the strain concentration and compare then to numeric predictions. It was used for through-the-thickness tensile strength test method development, to verify capabilities for testing of both 2-D and 3-D material systems. For all of these examples, moire interferometry provided vision so that test methods could be developed with less

  6. Application of Phase Shifted, Laser Feedback Interferometry to Fluid Physics

    NASA Technical Reports Server (NTRS)

    Ovryn, Ben; Eppell, Steven J.; Andrews, James H.; Khaydarov, John

    1996-01-01

    We have combined the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce a new instrument that can measure both optical path length (OPL) changes and discern sample reflectivity variations. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. LFI can yield a high signal-to-noise ratio even for low reflectivity samples. By combining PSI and LFI, we have produced a robust instrument, based upon a HeNe laser, with high dynamic range that can be used to measure either static (dc) or oscillatory changes along the optical path. As with other forms of interferometry, large changes in OPL require phase unwrapping. Conversely, small phase changes are limited by the fraction of a fringe that can be measured. We introduce the phase shifts with an electro-optic modulator (EOM) and use either the Carre or Hariharan algorithms to determine the phase and visibility. We have determined the accuracy and precision of our technique by measuring both the bending of a cantilevered piezoelectric bimorph and linear ramps to the EOM. Using PSI, sub-nanometer displacements can be measured. We have combined our interferometer with a commercial microscope and scanning piezoelectric stage and have measured the variation in OPL and visibility for drops of PDMS (silicone oil) on coated single crystal silicon. Our measurement of the static contact angle agrees with the value of 68 deg stated in the literature.

  7. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2010-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter Michelson interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.

  8. BETTII: The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2011-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding the universe. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII),8oeight-meter Michelson interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks io young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.

  9. Equivalent wavelength self-mixing interferometry for displacement measurement.

    PubMed

    Huang, Zhen; Li, Chengwei; Li, Songquan; Li, Dongyu

    2016-09-01

    In order to improve fringe precision of a self-mixing signal, a simple and effective method based on an equivalent wavelength self-mixing interferometer is presented. And a linearization fringe counting method is proposed for equivalent wavelength self-mixing interferometry to quickly reconstruct target displacement. The validity of the proposed method was demonstrated by means of simulated signals and confirmed by several experimental measurements for both harmonic and aleatory target displacement with a fringe resolution of ∼125  nm. PMID:27607290

  10. The Wide-Field Imaging Interferometry Testbed: Recent Results

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2006-01-01

    We present recent results from the Wide-Field Imaging Interferometry Testbed (WIIT). The data acquired with the WIIT is "double Fourier" data, including both spatial and spectral information within each data cube. We have been working with this data, and starting to develop algorithms, implementations, and techniques for reducing this data. Such algorithms and tools are of great importance for a number of proposed future missions, including the Space Infrared Interferometric Telescope (SPIRIT), the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Terrestrial Planet Finder Interferometer (TPF-I)/Darwin. Recent results are discussed and future study directions are described.

  11. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer to simultaneously obtain spatial and spectral information on science targets; the long baseline provides subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.

  12. Automated small tilt-angle measurement using Lau interferometry

    SciTech Connect

    Prakash, Shashi; Singh, Sumitra; Rana, Santosh

    2005-10-01

    A technique for a tilt-angle measurement of reflecting objects based on the Lau interferometry coupled with the moire readout has been proposed. A white-light incoherent source illuminates a set of two gratings, resulting in the generation of the Fresnel image due to the Lau effect. The Fresnel image is projected onto a reflecting object. The image reflected from the object is superimposed onto an identical grating, which results in the formation of a moire fringe pattern. The inclination angle of moire fringes is a function of tilt angle of the object. Theory and experimental arrangement of the proposed technique is presented and results of the investigation are reported.

  13. Thermal characterization of optical fibers using wavelength-sweeping interferometry

    SciTech Connect

    Perret, Luc; Pfeiffer, Pierre; Serio, Bruno; Twardowski, Patrice

    2010-06-20

    In this paper, we report a new method of thermal characterization of optical fibers using wavelength-sweeping interferometry and discuss its advantages compared to other techniques. The setup consists of two temperature-stabilized interferometers, a reference Michelson and a Mach-Zehnder, containing the fiber under test. The wavelength sweep is produced by an infrared tunable laser diode. We obtained the global phase shift coefficients of a large effective area fiber and gold-coated fiber optics with a 10{sup -7} accuracy.

  14. An in situ method for diagnosing phase shifting interferometry

    NASA Astrophysics Data System (ADS)

    Shao, J.; Ma, D.; Zhang, H.; Xie, Y.

    2016-05-01

    Current diagnosing phase shifting interferometry is a time and funds consuming process. Hence a brief and effective method is necessary to satisfy the real-time testing. In this paper, mathematical solutions for errors were deduced from the difference of intensity patterns. Based on the diversity of error distributions, an effective method for distinguishing and diagnosing the error sources is proposed and verified by an elaborative designed simulation. In the actual comparison experiment, vibration, phase-shift error and intensity fluctuation were imposed to demonstrate this method. The results showed that this method can be applied into the real-time measurement and provide an in situ diagnosing technique.

  15. Fast and accurate line scanner based on white light interferometry

    NASA Astrophysics Data System (ADS)

    Lambelet, Patrick; Moosburger, Rudolf

    2013-04-01

    White-light interferometry is a highly accurate technology for 3D measurements. The principle is widely utilized in surface metrology instruments but rarely adopted for in-line inspection systems. The main challenges for rolling out inspection systems based on white-light interferometry to the production floor are its sensitivity to environmental vibrations and relatively long measurement times: a large quantity of data needs to be acquired and processed in order to obtain a single topographic measurement. Heliotis developed a smart-pixel CMOS camera (lock-in camera) which is specially suited for white-light interferometry. The demodulation of the interference signal is treated at the level of the pixel which typically reduces the acquisition data by one orders of magnitude. Along with the high bandwidth of the dedicated lock-in camera, vertical scan-speeds of more than 40mm/s are reachable. The high scan speed allows for the realization of inspection systems that are rugged against external vibrations as present on the production floor. For many industrial applications such as the inspection of wafer-bumps, surface of mechanical parts and solar-panel, large areas need to be measured. In this case either the instrument or the sample are displaced laterally and several measurements are stitched together. The cycle time of such a system is mostly limited by the stepping time for multiple lateral displacements. A line-scanner based on white light interferometry would eliminate most of the stepping time while maintaining robustness and accuracy. A. Olszak proposed a simple geometry to realize such a lateral scanning interferometer. We demonstrate that such inclined interferometers can benefit significantly from the fast in-pixel demodulation capabilities of the lock-in camera. One drawback of an inclined observation perspective is that its application is limited to objects with scattering surfaces. We therefore propose an alternate geometry where the incident light is

  16. Three Dimensional Imaging with Multiple Wavelength Speckle Interferometry

    SciTech Connect

    Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.; Mendoza, Albert

    2014-05-28

    We present the design, modeling, construction, and results of a three-dimensional imager based upon multiple-wavelength speckle interferometry. A surface under test is illuminated with tunable laser light in a Michelson interferometer configuration while a speckled image is acquired at each laser frequency step. The resulting hypercube is Fourier transformed in the frequency dimension and the beat frequencies that result map the relative offsets of surface features. Synthetic wavelengths resulting from the laser tuning can probe features ranging from 18 microns to hundreds of millimeters. Three dimensional images will be presented along with modeling results.

  17. New surface forces apparatus using two-beam interferometry

    SciTech Connect

    Kawai, Hiroshi; Sakuma, Hiroshi; Mizukami, Masashi; Abe, Takashi; Fukao, Yasuhiro; Tajima, Haruo; Kurihara, Kazue

    2008-04-15

    We designed a new surface forces apparatus for measuring the interactions between two nontransparent substrates and/or in nontransparent liquids. The small displacement of a surface, the bottom one in this study, was measured by the two-beam (twin path) interferometry technique using the phase difference between the laser light reflected by the fixed mirror and that by the mirror on the back of the bottom surface unit. It is possible to determine the distance with a resolution of 1 nm in the working range of 5 {mu}m. This apparatus was successfully applied to measure the forces between mica surfaces in pure water and aqueous KBr solutions.

  18. Measurement of the gravity-field curvature by atom interferometry.

    PubMed

    Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M

    2015-01-01

    We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed. PMID:25615464

  19. Dual exposure interferometry. [gas dynamics and flow visualization

    NASA Technical Reports Server (NTRS)

    Smeets, G.; George, A.

    1982-01-01

    The application of dual exposure differential interferometry to gas dynamics and flow visualization is discussed. A differential interferometer with Wallaston prisms can produce two complementary interference fringe systems, depending on the polarization of the incident light. If these two systems are superimposed on a film, with one exposure during a phenomenon, the other before or after, the phenomenon will appear on a uniform background. By regulating the interferometer to infinite fringe distance, a resolution limit of approximately lambda/500 can be obtained in the quantitative analysis of weak phase objects. This method was successfully applied to gas dynamic investigations.

  20. Rapid prototyping of versatile atom chips for atom interferometry applications.

    NASA Astrophysics Data System (ADS)

    Kasch, Brian; Squires, Matthew; Olson, Spencer; Kroese, Bethany; Imhof, Eric; Kohn, Rudolph; Stuhl, Benjamin; Schramm, Stacy; Stickney, James

    2016-05-01

    We present recent advances in the manipulation of ultracold atoms with ex-vacuo atom chips (i.e. atom chips that are not inside to the UHV chamber). Details will be presented of an experimental system that allows direct bonded copper (DBC) atom chips to be removed and replaced in minutes, requiring minimal re-optimization of parameters. This system has been used to create Bose-Einstein condensates, as well as magnetic waveguides with precisely tunable axial parameters, allowing double wells, pure harmonic confinement, and modified harmonic traps. We investigate the effects of higher order magnetic field contributions to the waveguide, and the implications for confined atom interferometry.

  1. Precision Gravity Tests with Atom Interferometry in Space

    NASA Astrophysics Data System (ADS)

    Tino, G. M.; Sorrentino, F.; Aguilera, D.; Battelier, B.; Bertoldi, A.; Bodart, Q.; Bongs, K.; Bouyer, P.; Braxmaier, C.; Cacciapuoti, L.; Gaaloul, N.; Gürlebeck, N.; Hauth, M.; Herrmann, S.; Krutzik, M.; Kubelka, A.; Landragin, A.; Milke, A.; Peters, A.; Rasel, E. M.; Rocco, E.; Schubert, C.; Schuldt, T.; Sengstock, K.; Wicht, A.

    2013-10-01

    Atom interferometry provides extremely sensitive and accurate tools for the measurement of inertial forces. Operation of atom interferometers in microgravity is expected to enhance the performance of such sensors. This paper presents two possible implementations of a dual 85Rb-87Rb atom interferometer to perform differential gravity measurements in space, with the primary goal to test the Weak Equivalence Principle. The proposed scheme is in the framework of two projects of the European Space Agency, namely Q-WEP and STE-QUEST. The paper describes the baseline experimental configuration, and discusses the technology readiness, noise and error budget for the two proposed experiments.

  2. Impact of atmospheric turbulence on geodetic very long baseline interferometry

    NASA Astrophysics Data System (ADS)

    Nilsson, T.; Haas, R.

    2010-03-01

    We assess the impact of atmospheric turbulence on geodetic very long baseline interferometry (VLBI) through simulations of atmospheric delays. VLBI observations are simulated for the two best existing VLBI data sets: The continuous VLBI campaigns CONT05 and CONT08. We test different methods to determine the magnitude of the turbulence above each VLBI station, i.e., the refractive index structure constant Cn2. The results from the analysis of the simulated data and the actually observed VLBI data are compared. We find that atmospheric turbulence today is the largest error source for geodetic VLBI. Accurate modeling of atmospheric turbulence is necessary to reach the highest accuracy with geodetic VLBI.

  3. Spherical grating based x-ray Talbot interferometry

    SciTech Connect

    Cong, Wenxiang E-mail: xiy2@rpi.edu Xi, Yan E-mail: xiy2@rpi.edu Wang, Ge E-mail: xiy2@rpi.edu

    2015-11-15

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  4. New Orbits Based on Speckle Interferometry at SOAR

    NASA Astrophysics Data System (ADS)

    Tokovinin, Andrei

    2016-11-01

    The orbits of 55 visual binary stars are computed using recent speckle interferometry data from the SOAR telescope: 33 first-time orbits and 22 revisions of previous orbit calculations. The orbital periods range from 1.4–370 years, and the quality of the orbits ranges from definitive to preliminary and tentative. Most binaries consist of low-mass dwarfs and have short periods (median period 31 years). The dynamical parallaxes and masses are evaluated and compared to the Hipparcos parallaxes. Using differential speckle photometry, binary components are placed on the color–magnitude diagram. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope.

  5. Insect wing deformation measurements using high speed digital holographic interferometry.

    PubMed

    Aguayo, Daniel D; Mendoza Santoyo, Fernando; De la Torre-I, Manuel H; Salas-Araiza, Manuel D; Caloca-Mendez, Cristian; Gutierrez Hernandez, David Asael

    2010-03-15

    An out-of-plane digital holographic interferometry system is used to detect and measure insect's wing micro deformations. The in-vivo phenomenon of the flapping is registered using a high power cw laser and a high speed camera. A series of digital holograms with the deformation encoded are obtained. Full field deformation maps are presented for an eastern tiger swallowtail butterfly (Pterourus multicaudata). Results show no uniform or symmetrical deformations between wings. These deformations are in the order of hundreds of nanometers over the entire surface. Out-of-plane deformation maps are presented using the unwrapped phase maps. PMID:20389581

  6. Background-free nonlinear microspectroscopy with vibrational molecular interferometry

    NASA Astrophysics Data System (ADS)

    Garbacik, Erik T.; Korterik, Jeroen P.; Otto, Cees; Mukamel, Shaul; Herek, Jennifer L.; Offerhaus, Herman L.

    2012-03-01

    We demonstrate a method for performing nonlinear microspectroscopy that provides an intuitive and unified description of the various signal contributions, and allows the direct extraction of the vibrational response. Three optical fields create a pair of Stokes Raman pathways that interfere in the same vibrational state. Frequency modulating one of the fields leads to amplitude modulations on all of the fields. This vibrational molecular interferometry (VMI) technique allows imaging at high speed free of non-resonant background, and is able to distinguish between electronic and vibrational contributions to the total signal.

  7. Quantification of skin wrinkles using low coherence interferometry

    NASA Astrophysics Data System (ADS)

    Oh, Jung-Taek; Kim, Beop-Min; Son, Sang-Ryoon; Lee, Sang-Won; Kim, Dong-Yoon; Kim, Youn-Soo

    2004-07-01

    We measure the skin wrinkle topology by means of low coherence interferometry (LCI), which forms the basis of the optical coherence tomography (OCT). The skin topology obtained using LCI and corresponding 2-D fast Fourier transform allow quantification of skin wrinkles. It took approximately 2 minutes to obtain 2.1 mm x 2.1 mm topological image with 4 um and 16 um resolutions in axial and transverse directions, respectively. Measurement examples show the particular case of skin contour change after-wrinkle cosmeceutical treatments and atopic dermatitis

  8. Structured scintillator for hard x-ray grating interferometry

    SciTech Connect

    Rutishauser, Simon; Donath, Tilman; David, Christian; Zanette, Irene; Sahlholm, Anna; Linnros, Jan

    2011-04-25

    Grating interferometry at conventional x-ray tubes improves the quality of radiographies and tomograms by providing phase and scattering contrast data. The main challenge encountered when applying this technique at high photon energies, as required by many applications to obtain sufficient penetration depth, is to maintain a high fringe visibility. In this letter, we report on a substantial improvement in fringe visibility and according improvements in image quality achieved by replacing the absorbing analyzer grating of the interferometer with a structured scintillator grating. This development represents a significant step toward the implementation of this technique in industrial testing and medical applications.

  9. Measurement of the gravity-field curvature by atom interferometry.

    PubMed

    Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M

    2015-01-01

    We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed.

  10. Interferometry in the Extreme Ultraviolet and X-Ray

    NASA Technical Reports Server (NTRS)

    Cash, W.; Shipley, A.; Osterman, S.; Joy, M. K.

    2000-01-01

    We report on demonstration of an x-ray interferometer that uses plane mirrors at grazing incidence to create interference fringes in the extreme ultraviolet and soft x-ray portions of the spectrum. X-ray interferometry has historically been implemented through narrow band, diffractive systems that split the wavefront. Our system, by using two separate optical channels to create interference from two areas of the wavefront, has broad band response and much higher efficiency. We discuss some applications of this technique to astronomy and microscopy including the possibility of eventually capturing a micro-arcsecond image of a black hole.

  11. Double-pulse digital speckle pattern interferometry for vibration analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Dazhi; Xue, Jingfeng; Chen, Lu; Wen, Juying; Wang, Jingjing

    2014-12-01

    The double-pulse Digital Speckle Pattern Interferometry (DSPI) in the laboratory is established. Two good performances have been achieved at the same time, which is uniform distribution of laser beam energy by space filter and recording two successive pictures by a CCD camera successfully. Then two-dimensional discrete orthogonal wavelet transform method is used for the process of filtering method. By using the DSPI, speckle pattern of a vibrated object is obtained with interval of (2~800)μs, and 3D plot of the transient vibration is achieved. Moreover, good agreements of the mode shapes and displacement are obtained by comparing with Laser Doppler Vibrometer (LDV) .

  12. Spherical interferometry for the characterization of precision spheres

    NASA Astrophysics Data System (ADS)

    Nicolaus, R. A.; Bartl, G.

    2016-09-01

    Interferometry with spherical wavefronts is usually used for characterizing precise optics. A special spherical interferometer was set up to measure the volume of high precision spheres used for the new definition of the SI unit kilogram, for which a fundamental constant, such as Planck’s constant h or Avogadro’s constant N A, was to be determined. Furthermore with this type of interferometer and with a special evaluating algorithm, absolute form deviations of spheres can be determined. With this knowledge, a sphere can be processed further to reach unrivaled small sphericity deviations.

  13. North and northeast Greenland ice discharge from satellite radar interferometry

    SciTech Connect

    Rignot, E.J.; Gogineni, S.P.; Krabill, W.B.

    1997-05-09

    Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier front, because basal melting is extensive at the underside of the floating glacier sections. The results suggest that the north and northeast parts of the Greenland ice sheet may be thinning and contributing positively to sea-level rise. 24 refs., 3 figs., 1 tab.

  14. Nonlocal Pancharatnam phase in two-photon interferometry

    SciTech Connect

    Mehta, Poonam; Samuel, Joseph; Sinha, Supurna

    2010-09-15

    We propose a polarized intensity interferometry experiment, which measures the nonlocal Pancharatnam phase acquired by a pair of Hanbury-Brown-Twiss photons. The setup involves two polarized thermal sources illuminating two polarized detectors. Varying the relative polarization angle of the detectors introduces a two-photon geometric phase. Local measurements at either detector do not reveal the effects of the phase, which is an optical analog of the multiparticle Aharonov-Bohm effect. The geometric phase sheds light on the three-slit experiment and suggests ways of tuning entanglement.

  15. IMAP: Interferometry for Material Property Measurement in MEMS

    SciTech Connect

    Jensen, B.D.; Miller, S.L.; de Boer, M.P.

    1999-03-10

    An interferometric technique has been developed for non-destructive, high-confidence, in-situ determination of material properties in MEMS. By using interferometry to measure the full deflection curves of beams pulled toward the substrate under electrostatic loads, the actual behavior of the beams has been modeled. No other method for determining material properties allows such detailed knowledge of device behavior to be gathered. Values for material properties and non-idealities (such as support post compliance) have then been extracted which minimize the error between the measured and modeled deflections. High accuracy and resolution have been demonstrated, allowing the measurements to be used to enhance process control.

  16. Denoising in digital speckle pattern interferometry using wave atoms.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2007-05-15

    We present an effective method for speckle noise removal in digital speckle pattern interferometry, which is based on a wave-atom thresholding technique. Wave atoms are a variant of 2D wavelet packets with a parabolic scaling relation and improve the sparse representation of fringe patterns when compared with traditional expansions. The performance of the denoising method is analyzed by using computer-simulated fringes, and the results are compared with those produced by wavelet and curvelet thresholding techniques. An application of the proposed method to reduce speckle noise in experimental data is also presented.

  17. Energy Dependence of Moments of Net-Proton, Net-Kaon, and Net-Charge Multiplicity Distributions at STAR

    NASA Astrophysics Data System (ADS)

    Xu, Ji

    2016-08-01

    One of the main goals of the RHIC Beam Energy Scan (BES) program is to study the QCD phase structure, which includes the search for the QCD critical point, over a wide range of chemical potential (μB). Theoretical calculations predict that fluctuations of conserved quantities, such as baryon number (B), charge (Q), and strangeness (S), are sensitive to the correlation length of the dynamical system. Experimentally, higher moments of multiplicity distributions have been utilized to search for the QCD critical point in heavy-ion collisions. In this paper, we report recent efficiency-corrected cumulants and cumulants ratios of the net- proton, net-kaon, and net-charge multiplicity distributions in Au+Au collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV collected in the years 2010, 2011, and 2014 with STAR at RHIC. The centrality and energy dependence of the cumulants up to the fourth order, as well as their ratios, are presented. Furthermore, the comparisons with baseline calculations (Poisson) and non-critical-point models (UrQMD) will also be discussed.

  18. Experiments with the High Resolution Kaon Spectrometer at JLab Hall C and the new spectroscopy of Λ12B hypernuclei

    NASA Astrophysics Data System (ADS)

    Tang, L.; Chen, C.; Gogami, T.; Kawama, D.; Han, Y.; Yuan, L.; Matsumura, A.; Okayasu, Y.; Seva, T.; Rodriguez, V. M.; Baturin, P.; Acha, A.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Badui, R.; Baker, O. K.; Benmokhtar, F.; Boeglin, W.; Bono, J.; Bosted, P.; Brash, E.; Carter, P.; Carlini, R.; Chiba, A.; Christy, M. E.; Cole, L.; Dalton, M. M.; Danagoulian, S.; Daniel, A.; De Leo, R.; Dharmawardane, V.; Doi, D.; Egiyan, K.; Elaasar, M.; Ent, R.; Fenker, H.; Fujii, Y.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Gibson, E. F.; Gueye, P.; Hashimoto, O.; Honda, D.; Horn, T.; Hu, B.; Hungerford, Ed V.; Jayalath, C.; Jones, M.; Johnston, K.; Kalantarians, N.; Kanda, H.; Kaneta, M.; Kato, F.; Kato, S.; Kawai, M.; Keppel, C.; Khanal, H.; Kohl, M.; Kramer, L.; Lan, K. J.; Li, Y.; Liyanage, A.; Luo, W.; Mack, D.; Maeda, K.; Malace, S.; Margaryan, A.; Marikyan, G.; Markowitz, P.; Maruta, T.; Maruyama, N.; Maxwell, V.; Millener, D. J.; Miyoshi, T.; Mkrtchyan, A.; Mkrtchyan, H.; Motoba, T.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman, Nomura, H.; Nonaka, K.; Ohtani, A.; Oyamada, M.; Perez, N.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Randeniya, S.; Raue, B.; Reinhold, J.; Rivera, R.; Roche, J.; Samanta, C.; Sato, Y.; Sawatzky, B.; Segbefia, E. K.; Schott, D.; Shichijo, A.; Simicevic, N.; Smith, G.; Song, Y.; Sumihama, M.; Tadevosyan, V.; Takahashi, T.; Taniya, N.; Tsukada, K.; Tvaskis, V.; Veilleux, M.; Vulcan, W.; Wells, S.; Wesselmann, F. R.; Wood, S. A.; Yamamoto, T.; Yan, C.; Ye, Z.; Yokota, K.; Zhamkochyan, S.; Zhu, L.; HKS JLab E05-115; E01-011 Collaborations

    2014-09-01

    Since the pioneering experiment E89-009 studying hypernuclear spectroscopy using the (e,e'K+) reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "tilt method," to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet (E05-115) were added to produce new data sets of precision, high-resolution hypernuclear spectroscopy. All three experiments obtained a spectrum for Λ12B, which is the most characteristic p-shell hypernucleus and is commonly used for calibration. Independent analyses of these different experiments demonstrate excellent consistency and provide the clearest level structure to date of this hypernucleus as produced by the (e,e'K+) reaction. This paper presents details of these experiments, and the extraction and analysis of the observed Λ12B spectrum.

  19. Twist-3 pion and kaon distribution amplitudes from the instanton vacuum with flavor SU(3) symmetry breaking

    SciTech Connect

    Nam, Seung-il; Kim, Hyun-Chul

    2006-11-01

    We investigate the twist-3 pion and kaon distribution amplitudes of the pseudoscalar ({phi}{sub {pi}}{sub ,K}{sup p}) and pseudotensor ({phi}{sub {pi}}{sub ,K}{sup {sigma}}) types, based on the effective chiral action from the instanton vacuum. Flavor SU(3) symmetry breaking effects are explicitly taken into account. The Gegenbauer moments and the moments of the distribution amplitudes (<{xi}{sup m}>) are also computed. Our results are summarized as follows: a{sub 2,{pi}}{sup p}{approx}0.4, a{sub 1,K}{sup p}{approx}0.02 and a{sub 2,K}{sup p}{approx}0.14, and a{sub 2,{pi}}{sup {sigma}}{approx}0.02 and a{sub 1,K}{sup {sigma}}{approx}a{sub 2,K}{sup {sigma}}{approx}0; <{xi}{sup 2}>{sub {pi}}{sup p}{approx}<{xi}{sup 2}>{sub K}{sup p}{approx}0.37 and <{xi}>{sub K}{sup p}{approx}0, and <{xi}{sup 2}>{sub {pi}}{sup {sigma}}{approx}<{xi}{sup 2}>{sub K}{sup {sigma}}{approx}0.20 and <{xi}>{sub K}{sup {sigma}}{approx}0. We compare our results with those from the QCD sum rules. We also discuss the relevant Wilson coefficients which were analyzed recently in chiral perturbation theory.

  20. Experiments with the High Resolution Kaon Spectrometer at Jlab Hall C and the New Spectroscopy of ^12_Lambda B Hypernuclei

    SciTech Connect

    Tang, Liguang; Chen, Chunhua; Gogami, Toshiyuki; Kawama, Daisuke; Han, Yuncheng; Yuan, Lulin; Matsumura, Akihiko; Okayasu, Yuichi; Seva, Tomislav; Rodriguez, Victor; Baturin, Pavlo; Acha Quimper, Armando; Achenbach, Carsten; Ahmidouch, Abdellah; Albayrak, Ibrahim; Androic, Darko; Asaturyan, Arshak; Asaturyan, Razmik; Ates, Ozgur; Badui, Rafael; Baker, Oliver; Benmokhtar, Fatiha; Boeglin, Werner; Bono, Jason; Bosted, Peter; Brash, Edward; Carter, Philip; Carlini, Roger; Chiba, Atsushi; Christy, Michael; Cole, Leon; Dalton, Mark; Danagoulian, Samuel; Daniel, Aji; De Leo, Raffaele; Dharmawardane, Kahanawita; Doi, Daisuke; Egiyan, Kim; Elaasar, Mostafa; Ent, Rolf; Fenker, Howard; Fujii, Yu; Furic, Miroslav; Gabrielyan, Marianna; Gan, Liping; Garibaldi, Franco; Gaskell, David; Gasparian, Ashot; Gibson, Edward; Gueye, Paul; Hashimoto, Osamu; Honda, D; Horn, Tanja; Hu, Bitao; Hungerford, Ed; Jayalath, Chandana; Jones, Mark; Johnston, Kathleen; Kalantarians, Narbe; Kanda, Hiroki; Kaneta, M; Kato, F; Kato, Seigo; Kawai, Masaharu; Keppel, Cynthia; Khanal, Hari; Kohl, M; Kramer, Laird; Lan, Kejian; Li, Ya; Habarakada Liyanage, Anusha; Luo, Wei; Mack, David; Maeda, Kazushige; Malace, Simona; Margaryan, Amur; Marikyan, Gagik; Markowitz, Pete; Maruta, Tomofumi; Maruyama, Nayuta; Maxwell, Victor; Millener, David; Miyoshi, Toshinobu; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Motoba, Toshio; Nagao, Sho; Nakamura, Satoshi; Narayan, Amrendra; Neville, Casey; Niculescu, Gabriel; Niculescu, Maria; Nunez, Angel; Nuruzzaman, nfn; Nomura, Hiroshi; Nonaka, Kenichi; Ohtani, Atsushi; Oyamada, Masamichi; Perez, Naipy; Petkovic, Tomislav; Pochodzalla, J; Qiu, Xiyu; Randeniya, Kapugodage; Raue, Brian; Reinhold, Joerg; Rivera, R; Roche, Julie; Samanta, Chhanda; Sato, Yoshinori; Sawatzky, Bradley; Segbefia, Edwin; Schott, Diane; Shichijo, Ayako; Simicevic, Neven; Smith, Gregory; Song, Yushou; Sumihama, Mizuki; Tadevosyan, Vardan; Takahashi, Toshiyuki; Taniya, Naotaka; Tsukada, Kyo; Tvaskis, Vladas; Veilleux, Micah; Vulcan, William; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yamamoto, Taku; Yan, Chen; Ye, Z; Yokota, Kosuke; Zhamkochyan, Simon; Zhu, Lingyan

    2014-09-01

    Since the pioneering experiment, E89-009 studying hypernuclear spectroscopy using the $(e,e^{\\prime}K^+)$ reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "Tilt Method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet were added to produce precision, high-resolution hypernuclear spectroscopy. These two experiments, E01-011 and E05-115, resulted in two new data sets, producing sub-MeV energy resolution in the spectra of ${}^{7}_{\\Lambda}\\text{He}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{28}_{\\Lambda} \\text{Al}$ and ${}^{7}_{\\Lambda}\\text{He}$, ${}^{10}_{\\Lambda}\\text{Be}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{52}_{\\Lambda}\\text{V}$. All three experiments obtained a ${}^{12}_{\\Lambda}\\text{B}$, spectrum, which is the most characteristic $p$-shell hypernucleus and is commonly used for calibration. Independent analyses of these different experiments demonstrate excellent consistency and provide the clearest level structure to date of this hypernucleus as produced by the $(e,e^{\\prime}K^+)$ reaction. This paper presents details of these experiments, and the extraction and analysis of the observed ${}^{12}_{\\Lambda}\\text{B}$ spectrum.