Sample records for neutralizing cd4 binding

  1. Fusion proteins of HIV-1 envelope glycoprotein gp120 with CD4-induced antibodies showed enhanced binding to CD4 and CD4 binding site antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Weizao, E-mail: chenw3@mail.nih.gov; Feng, Yang; Wang, Yanping

    Highlights: Black-Right-Pointing-Pointer Some recombinant HIV-1 gp120s do not preserve their conformations on gp140s. Black-Right-Pointing-Pointer We hypothesize that CD4i antibodies could induce conformational changes in gp120. Black-Right-Pointing-Pointer CD4i antibodies enhance binding of CD4 and CD4bs antibodies to gp120. Black-Right-Pointing-Pointer CD4i antibody-gp120 fusion proteins could have potential as vaccine immunogens. -- Abstract: Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibitmore » decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.« less

  2. PGV04, an HIV-1 gp120 CD4 Binding Site Antibody, Is Broad and Potent in Neutralization but Does Not Induce Conformational Changes Characteristic of CD4

    PubMed Central

    Falkowska, Emilia; Ramos, Alejandra; Feng, Yu; Zhou, Tongqing; Moquin, Stephanie; Walker, Laura M.; Wu, Xueling; Seaman, Michael S.; Wrin, Terri; Kwong, Peter D.; Wyatt, Richard T.; Mascola, John R.; Poignard, Pascal

    2012-01-01

    Recently, several broadly neutralizing monoclonal antibodies (bnMAbs) directed to the CD4-binding site (CD4bs) of gp120 have been isolated from HIV-1-positive donors. These include VRC01, 3BNC117, and NIH45-46, all of which are capable of neutralizing about 90% of circulating HIV-1 isolates and all of which induce conformational changes in the HIV-1 gp120 monomer similar to those induced by the CD4 receptor. In this study, we characterize PGV04 (also known as VRC-PG04), a MAb with potency and breadth that rivals those of the prototypic VRC01 and 3BNC117. When screened on a large panel of viruses, the neutralizing profile of PGV04 was distinct from those of CD4, b12, and VRC01. Furthermore, the ability of PGV04 to neutralize pseudovirus containing single alanine substitutions exhibited a pattern distinct from those of the other CD4bs MAbs. In particular, substitutions D279A, I420A, and I423A were found to abrogate PGV04 neutralization. In contrast to VRC01, PGV04 did not enhance the binding of 17b or X5 to their epitopes (the CD4-induced [CD4i] site) in the coreceptor region on the gp120 monomer. Furthermore, in contrast to CD4, none of the anti-CD4bs MAbs induced the expression of the 17b epitope on cell surface-expressed cleaved Env trimers. We conclude that potent CD4bs bnMAbs can display differences in the way they recognize and access the CD4bs and that mimicry of CD4, as assessed by inducing conformational changes in monomeric gp120 that lead to enhanced exposure of the CD4i site, is not uniquely correlated with effective neutralization at the site of CD4 binding on HIV-1. PMID:22345481

  3. Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses

    DOE PAGES

    Moody, M.  Anthony; Gao, Feng; Gurley, Thaddeus  C.; ...

    2015-09-09

    The third variable (V3) loop and the CD4 binding site (CD4bs) of the viral envelope are frequently targeted by neutralizing antibodies (nAbs) in HIV-1-infected individuals. In chronic infection, virus escape mutants repopulate the plasma and V3 and CD4bs nAbs emerge that can neutralize heterologous tier 1 easy-to-neutralize, but not tier 2 difficult-to-neutralize HIV-1 isolates. However, neutralization sensitivity of autologous plasma viruses to this type of nAb response has not been studied. We describe the development and evolution in vivo of antibodies distinguished by their target specificity for V3and CD4bs epitopes on autologous tier 2 viruses but not on heterologous tiermore » 2 viruses. A surprisingly high fraction of autologous circulating viruses was sensitive to these antibodies. These findings demonstrate a role for V3 and CD4bs antibodies in constraining the native envelope trimer in vivo to a neutralization-resistant phenotype, explaining why HIV-1 transmission generally occurs by tier 2 neutralization-resistant viruses.« less

  4. Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, M.  Anthony; Gao, Feng; Gurley, Thaddeus  C.

    The third variable (V3) loop and the CD4 binding site (CD4bs) of the viral envelope are frequently targeted by neutralizing antibodies (nAbs) in HIV-1-infected individuals. In chronic infection, virus escape mutants repopulate the plasma and V3 and CD4bs nAbs emerge that can neutralize heterologous tier 1 easy-to-neutralize, but not tier 2 difficult-to-neutralize HIV-1 isolates. However, neutralization sensitivity of autologous plasma viruses to this type of nAb response has not been studied. We describe the development and evolution in vivo of antibodies distinguished by their target specificity for V3and CD4bs epitopes on autologous tier 2 viruses but not on heterologous tiermore » 2 viruses. A surprisingly high fraction of autologous circulating viruses was sensitive to these antibodies. These findings demonstrate a role for V3 and CD4bs antibodies in constraining the native envelope trimer in vivo to a neutralization-resistant phenotype, explaining why HIV-1 transmission generally occurs by tier 2 neutralization-resistant viruses.« less

  5. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site.

    PubMed

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S; Mkhize, Nonhlanhla N; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D; Labuschagne, Phillip; Louder, Mark K; Bailer, Robert T; Abdool Karim, Salim S; Mascola, John R; Williamson, Carolyn; Moore, Penny L; Kwong, Peter D; Morris, Lynn

    2016-11-15

    All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. The conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive. Studies have shown that strain-specific antibodies can evolve into broadly neutralizing antibodies or in some cases act as helper lineages. Therefore, characterizing the epitopes of strain-specific antibodies may help to inform the design of HIV-1 immunogens to elicit broadly neutralizing antibodies. In this study, we isolate a narrowly neutralizing N276 glycan-dependent antibody and use X-ray crystallography and viral deep sequencing to describe how gp120 lacking glycans in V5 might have elicited these early glycan-dependent CD4 binding site antibodies. These data highlight how glycan holes can play a role in the elicitation of B-cell lineages targeting the CD4 binding site. Copyright © 2016 Wibmer et al.

  6. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.

    ABSTRACT All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report themore » isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. IMPORTANCEThe conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive. Studies have shown that strain-specific antibodies can evolve into broadly neutralizing antibodies or in some cases act as helper lineages. Therefore, characterizing the epitopes of strain-specific antibodies may help to inform the design of HIV-1 immunogens to elicit broadly neutralizing antibodies. In this study, we isolate a narrowly neutralizing N276 glycan-dependent antibody and use X-ray crystallography and viral deep sequencing to describe how gp120 lacking glycans in V5 might have elicited these early glycan-dependent CD4 binding site antibodies. These data highlight how glycan holes can play a role in the elicitation of B-cell lineages targeting the CD4 binding site.« less

  7. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site

    PubMed Central

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.; Mkhize, Nonhlanhla N.; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D.; Labuschagne, Phillip; Louder, Mark K.; Bailer, Robert T.; Abdool Karim, Salim S.; Mascola, John R.; Williamson, Carolyn; Moore, Penny L.

    2016-01-01

    ABSTRACT All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. IMPORTANCE The conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive. Studies have shown that strain-specific antibodies can evolve into broadly neutralizing antibodies or in some cases act as helper lineages. Therefore, characterizing the epitopes of strain-specific antibodies may help to inform the design of HIV-1 immunogens to elicit broadly neutralizing antibodies. In this study, we isolate a narrowly neutralizing N276 glycan-dependent antibody and use X-ray crystallography and viral deep sequencing to describe how gp120 lacking glycans in V5 might have elicited these early glycan-dependent CD4 binding site antibodies. These data highlight how glycan holes can play a role in the elicitation of B-cell lineages targeting the CD4 binding site. PMID:27581986

  8. Structural Basis of Immune Evasion at the Site of CD4 Attachment on HIV-1 gp120

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Lei; Kwon, Young Do; Zhou, Tongqing

    2010-01-13

    The site on HIV-1 gp120 that binds to the CD4 receptor is vulnerable to antibodies. However, most antibodies that interact with this site cannot neutralize HIV-1. To understand the basis of this resistance, we determined co-crystal structures for two poorly neutralizing, CD4-binding site (CD4BS) antibodies, F105 and b13, in complexes with gp120. Both antibodies exhibited approach angles to gp120 similar to those of CD4 and a rare, broadly neutralizing CD4BS antibody, b12. Slight differences in recognition, however, resulted in substantial differences in F105- and b13-bound conformations relative to b12-bound gp120. Modeling and binding experiments revealed these conformations to be poorlymore » compatible with the viral spike. This incompatibility, the consequence of slight differences in CD4BS recognition, renders HIV-1 resistant to all but the most accurately targeted antibodies.« less

  9. Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses.

    PubMed

    Moody, M Anthony; Gao, Feng; Gurley, Thaddeus C; Amos, Joshua D; Kumar, Amit; Hora, Bhavna; Marshall, Dawn J; Whitesides, John F; Xia, Shi-Mao; Parks, Robert; Lloyd, Krissey E; Hwang, Kwan-Ki; Lu, Xiaozhi; Bonsignori, Mattia; Finzi, Andrés; Vandergrift, Nathan A; Alam, S Munir; Ferrari, Guido; Shen, Xiaoying; Tomaras, Georgia D; Kamanga, Gift; Cohen, Myron S; Sam, Noel E; Kapiga, Saidi; Gray, Elin S; Tumba, Nancy L; Morris, Lynn; Zolla-Pazner, Susan; Gorny, Miroslaw K; Mascola, John R; Hahn, Beatrice H; Shaw, George M; Sodroski, Joseph G; Liao, Hua-Xin; Montefiori, David C; Hraber, Peter T; Korber, Bette T; Haynes, Barton F

    2015-09-09

    The third variable (V3) loop and the CD4 binding site (CD4bs) of the HIV-1 envelope are frequently targeted by neutralizing antibodies (nAbs) in infected individuals. In chronic infection, HIV-1 escape mutants repopulate the plasma, and V3 and CD4bs nAbs emerge that can neutralize heterologous tier 1 easy-to-neutralize but not tier 2 difficult-to-neutralize HIV-1 isolates. However, neutralization sensitivity of autologous plasma viruses to this type of nAb response has not been studied. We describe the development and evolution in vivo of antibodies distinguished by their target specificity for V3 and CD4bs epitopes on autologous tier 2 viruses but not on heterologous tier 2 viruses. A surprisingly high fraction of autologous circulating viruses was sensitive to these antibodies. These findings demonstrate a role for V3 and CD4bs antibodies in constraining the native envelope trimer in vivo to a neutralization-resistant phenotype, explaining why HIV-1 transmission generally occurs by tier 2 neutralization-resistant viruses. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Crystal Structure of the Neutralizing Llama VHH D7 and Its Mode of HIV-1 gp120 Interaction

    PubMed Central

    Hinz, Andreas; Lutje Hulsik, David; Forsman, Anna; Koh, Willie Wee-Lee; Belrhali, Hassan; Gorlani, Andrea; de Haard, Hans; Weiss, Robin A.; Verrips, Theo; Weissenhorn, Winfried

    2010-01-01

    HIV-1 entry into host cells is mediated by the sequential binding of the envelope glycoprotein gp120 to CD4 and a chemokine receptor. Antibodies binding to epitopes overlapping the CD4-binding site on gp120 are potent inhibitors of HIV entry, such as the llama heavy chain antibody fragment VHH D7, which has cross-clade neutralizing properties and competes with CD4 and mAb b12 for high affinity binding to gp120. We report the crystal structure of the D7 VHH at 1.5 Å resolution, which reveals the molecular details of the complementarity determining regions (CDR) and substantial flexibility of CDR3 that could facilitate an induced fit interaction with gp120. Structural comparison of CDRs from other CD4 binding site antibodies suggests diverse modes of interaction. Mutational analysis identified CDR3 as a key component of gp120 interaction as determined by surface plasmon resonance. A decrease in affinity is directly coupled to the neutralization efficiency since mutations that decrease gp120 interaction increase the IC50 required for HIV-1 IIIB neutralization. Thus the structural study identifies the long CDR3 of D7 as the key determinant of interaction and HIV-1 neutralization. Furthermore, our data confirm that the structural plasticity of gp120 can accommodate multiple modes of antibody binding within the CD4 binding site. PMID:20463957

  11. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody

    PubMed Central

    Kwong, Peter D.; Wyatt, Richard; Robinson, James; Sweet, Raymond W.; Sodroski, Joseph; Hendrickson, Wayne A.

    2017-01-01

    The entry of human immunodeficiency virus (HIV) into cells requires the sequential interaction of the viral exterior envelope glycoprotein, gp120, with the CD4 glycoprotein and a chemokine receptor on the cell surface. These interactions initiate a fusion of the viral and cellular membranes. Although gpl20 can elicit virus-neutralizing antibodies, HIV eludes the immune system. We have solved the X-ray crystal structure at 2.5 Å resolution of an HIV-1 gp120 core complexed with a two-domain fragment of human CD4 and an antigen-binding fragment of a neutralizing antibody that blocks chemokine-receptor binding. The structure reveals a cavity-laden CD4-gp120 interface, a conserved binding site for the chemokine receptor, evidence for a conformational change upon CD4 binding, the nature of a CD4-induced antibody epitope, and specific mechanisms for immune evasion. Our results provide a framework for understanding the complex biology of HIV entry into cells and should guide efforts to intervene. PMID:9641677

  12. Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site.

    PubMed

    Cheng, Hao D; Grimm, Sebastian K; Gilman, Morgan Sa; Gwom, Luc Christian; Sok, Devin; Sundling, Christopher; Donofrio, Gina; Hedestam, Gunilla B Karlsson; Bonsignori, Mattia; Haynes, Barton F; Lahey, Timothy P; Maro, Isaac; von Reyn, C Fordham; Gorny, Miroslaw K; Zolla-Pazner, Susan; Walker, Bruce D; Alter, Galit; Burton, Dennis R; Robb, Merlin L; Krebs, Shelly J; Seaman, Michael S; Bailey-Kellogg, Chris; Ackerman, Margaret E

    2018-03-08

    Major advances in donor identification, antigen probe design, and experimental methods to clone pathogen-specific antibodies have led to an exponential growth in the number of newly characterized broadly neutralizing antibodies (bnAbs) that recognize the HIV-1 envelope glycoprotein. Characterization of these bnAbs has defined new epitopes and novel modes of recognition that can result in potent neutralization of HIV-1. However, the translation of envelope recognition profiles in biophysical assays into an understanding of in vivo activity has lagged behind, and identification of subjects and mAbs with potent antiviral activity has remained reliant on empirical evaluation of neutralization potency and breadth. To begin to address this discrepancy between recombinant protein recognition and virus neutralization, we studied the fine epitope specificity of a panel of CD4-binding site (CD4bs) antibodies to define the molecular recognition features of functionally potent humoral responses targeting the HIV-1 envelope site bound by CD4. Whereas previous studies have used neutralization data and machine-learning methods to provide epitope maps, here, this approach was reversed, demonstrating that simple binding assays of fine epitope specificity can prospectively identify broadly neutralizing CD4bs-specific mAbs. Building on this result, we show that epitope mapping and prediction of neutralization breadth can also be accomplished in the assessment of polyclonal serum responses. Thus, this study identifies a set of CD4bs bnAb signature amino acid residues and demonstrates that sensitivity to mutations at signature positions is sufficient to predict neutralization breadth of polyclonal sera with a high degree of accuracy across cohorts and across clades.

  13. Antigenic Properties of the HIV Envelope on Virions in Solution

    PubMed Central

    Mengistu, Meron; Lewis, George K.; Lakowicz, Joseph R.

    2014-01-01

    The structural flexibility found in human immunodeficiency virus (HIV) envelope glycoproteins creates a complex relationship between antigenicity and sensitivity to antiviral antibodies. The study of this issue in the context of viral particles is particularly problematic as conventional virus capture approaches can perturb antigenicity profiles. Here, we employed a unique analytical system based on fluorescence correlation spectroscopy (FCS), which measures antibody-virion binding with all reactants continuously in solution. Panels of nine anti-envelope monoclonal antibodies (MAbs) and five virus types were used to connect antibody binding profiles with neutralizing activities. Anti-gp120 MAbs against the 2G12 or b12 epitope, which marks functional envelope structures, neutralized viruses expressing CCR5-tropic envelopes and exhibited efficient virion binding in solution. MAbs against CD4-induced (CD4i) epitopes considered hidden on functional envelope structures poorly bound these viruses and were not neutralizing. Anti-gp41 MAb 2F5 was neutralizing despite limited virion binding. Similar antigenicity patterns occurred on CXCR4-tropic viruses, except that anti-CD4i MAbs 17b and 19e were neutralizing despite little or no virion binding. Notably, anti-gp120 MAb PG9 and anti-gp41 MAb F240 bound to both CCR5-tropic and CXCR4-tropic viruses without exerting neutralizing activity. Differences in the virus production system altered the binding efficiencies of some antibodies but did not enhance antigenicity of aberrant gp120 structures. Of all viruses tested, only JRFL pseudoviruses showed a direct relationship between MAb binding efficiency and neutralizing potency. Collectively, these data indicate that the antigenic profiles of free HIV particles generally favor the exposure of functional over aberrant gp120 structures. However, the efficiency of virion-antibody interactions in solution inconsistently predicts neutralizing activity in vitro. PMID:24284318

  14. Structure of Simian Immunodeficiency Virus Envelope Spikes Bound with CD4 and Monoclonal Antibody 36D5.

    PubMed

    Hu, Guiqing; Liu, Jun; Roux, Kenneth H; Taylor, Kenneth A

    2017-08-15

    The human immunodeficiency virus type 1 (HIV-1)/simian immunodeficiency virus (SIV) envelope spike (Env) mediates viral entry into host cells. The V3 loop of the gp120 component of the Env trimer contributes to the coreceptor binding site and is a target for neutralizing antibodies. We used cryo-electron tomography to visualize the binding of CD4 and the V3 loop monoclonal antibody (MAb) 36D5 to gp120 of the SIV Env trimer. Our results show that 36D5 binds gp120 at the base of the V3 loop and suggest that the antibody exerts its neutralization effect by blocking the coreceptor binding site. The antibody does this without altering the dynamics of the spike motion between closed and open states when CD4 is bound. The interaction between 36D5 and SIV gp120 is similar to the interaction between some broadly neutralizing anti-V3 loop antibodies and HIV-1 gp120. Two conformations of gp120 bound with CD4 are revealed, suggesting an intrinsic dynamic nature of the liganded Env trimer. CD4 binding substantially increases the binding of 36D5 to gp120 in the intact Env trimer, consistent with CD4-induced changes in the conformation of gp120 and the antibody binding site. Binding by MAb 36D5 does not substantially alter the proportions of the two CD4-bound conformations. The position of MAb 36D5 at the V3 base changes little between conformations, indicating that the V3 base serves as a pivot point during the transition between these two states. IMPORTANCE Glycoprotein spikes on the surfaces of SIV and HIV are the sole targets available to the immune system for antibody neutralization. Spikes evade the immune system by a combination of a thick layer of polysaccharide on the surface (the glycan shield) and movement between spike domains that masks the epitope conformation. Using SIV virions whose spikes were "decorated" with the primary cellular receptor (CD4) and an antibody (36D5) at part of the coreceptor binding site, we visualized multiple conformations trapped by the rapid freezing step, which were separated using statistical analysis. Our results show that the CD4-induced conformational dynamics of the spike enhances binding of the antibody. Copyright © 2017 American Society for Microbiology.

  15. Gp120/CD4 blocking antibodies are frequently elicited in ART-naïve chronically HIV-1 infected individuals.

    PubMed

    Carrillo, Jorge; Molinos-Albert, Luis Manuel; Rodríguez de la Concepción, Maria Luisa; Marfil, Silvia; García, Elisabet; Derking, Ronald; Sanders, Rogier W; Clotet, Bonaventura; Blanco, Julià

    2015-01-01

    Antibodies with the ability to block the interaction of HIV-1 envelope glycoprotein (Env) gp120 with CD4, including those overlapping the CD4 binding site (CD4bs antibodies), can protect from infection by HIV-1, and their elicitation may be an interesting goal for any vaccination strategy. To identify gp120/CD4 blocking antibodies in plasma samples from HIV-1 infected individuals we have developed a competitive flow cytometry-based functional assay. In a cohort of treatment-naïve chronically infected patients, we showed that gp120/CD4 blocking antibodies were frequently elicited (detected in 97% plasma samples) and correlated with binding to trimeric HIV-1 envelope glycoproteins. However, no correlation was observed between functional CD4 binding blockade data and titer of CD4bs antibodies determined by ELISA using resurfaced gp120 proteins. Consistently, plasma samples lacking CD4bs antibodies were able to block the interaction between gp120 and its receptor, indicating that antibodies recognizing other epitopes, such as PGT126 and PG16, can also play the same role. Antibodies blocking CD4 binding increased over time and correlated positively with the capacity of plasma samples to neutralize the laboratory-adapted NL4.3 and BaL virus isolates, suggesting their potential contribution to the neutralizing workforce of plasma in vivo. Determining whether this response can be boosted to achieve broadly neutralizing antibodies may provide valuable information for the design of new strategies aimed to improve the anti-HIV-1 humoral response and to develop a successful HIV-1 vaccine.

  16. Gp120/CD4 Blocking Antibodies Are Frequently Elicited in ART-Naïve Chronically HIV-1 Infected Individuals

    PubMed Central

    Carrillo, Jorge; Molinos-Albert, Luis Manuel; de la Concepción, Maria Luisa Rodríguez; Marfil, Silvia; García, Elisabet; Derking, Ronald; Sanders, Rogier W.; Clotet, Bonaventura; Blanco, Julià

    2015-01-01

    Antibodies with the ability to block the interaction of HIV-1 envelope glycoprotein (Env) gp120 with CD4, including those overlapping the CD4 binding site (CD4bs antibodies), can protect from infection by HIV-1, and their elicitation may be an interesting goal for any vaccination strategy. To identify gp120/CD4 blocking antibodies in plasma samples from HIV-1 infected individuals we have developed a competitive flow cytometry-based functional assay. In a cohort of treatment-naïve chronically infected patients, we showed that gp120/CD4 blocking antibodies were frequently elicited (detected in 97% plasma samples) and correlated with binding to trimeric HIV-1 envelope glycoproteins. However, no correlation was observed between functional CD4 binding blockade data and titer of CD4bs antibodies determined by ELISA using resurfaced gp120 proteins. Consistently, plasma samples lacking CD4bs antibodies were able to block the interaction between gp120 and its receptor, indicating that antibodies recognizing other epitopes, such as PGT126 and PG16, can also play the same role. Antibodies blocking CD4 binding increased over time and correlated positively with the capacity of plasma samples to neutralize the laboratory-adapted NL4.3 and BaL virus isolates, suggesting their potential contribution to the neutralizing workforce of plasma in vivo. Determining whether this response can be boosted to achieve broadly neutralizing antibodies may provide valuable information for the design of new strategies aimed to improve the anti-HIV-1 humoral response and to develop a successful HIV-1 vaccine. PMID:25803681

  17. Envelope residue 375 substitutions in simian–human immunodeficiency viruses enhance CD4 binding and replication in rhesus macaques

    PubMed Central

    Li, Hui; Wang, Shuyi; Kong, Rui; Ding, Wenge; Lee, Fang-Hua; Parker, Zahra; Kim, Eunlim; Learn, Gerald H.; Hahn, Paul; Policicchio, Ben; Brocca-Cofano, Egidio; Deleage, Claire; Hao, Xingpei; Chuang, Gwo-Yu; Gorman, Jason; Gardner, Matthew; Lewis, Mark G.; Hatziioannou, Theodora; Santra, Sampa; Apetrei, Cristian; Pandrea, Ivona; Alam, S. Munir; Liao, Hua-Xin; Shen, Xiaoying; Tomaras, Georgia D.; Farzan, Michael; Chertova, Elena; Keele, Brandon F.; Estes, Jacob D.; Lifson, Jeffrey D.; Doms, Robert W.; Montefiori, David C.; Haynes, Barton F.; Sodroski, Joseph G.; Kwong, Peter D.; Hahn, Beatrice H.; Shaw, George M.

    2016-01-01

    Most simian–human immunodeficiency viruses (SHIVs) bearing envelope (Env) glycoproteins from primary HIV-1 strains fail to infect rhesus macaques (RMs). We hypothesized that inefficient Env binding to rhesus CD4 (rhCD4) limits virus entry and replication and could be enhanced by substituting naturally occurring simian immunodeficiency virus Env residues at position 375, which resides at a critical location in the CD4-binding pocket and is under strong positive evolutionary pressure across the broad spectrum of primate lentiviruses. SHIVs containing primary or transmitted/founder HIV-1 subtype A, B, C, or D Envs with genotypic variants at residue 375 were constructed and analyzed in vitro and in vivo. Bulky hydrophobic or basic amino acids substituted for serine-375 enhanced Env affinity for rhCD4, virus entry into cells bearing rhCD4, and virus replication in primary rhCD4 T cells without appreciably affecting antigenicity or antibody-mediated neutralization sensitivity. Twenty-four RMs inoculated with subtype A, B, C, or D SHIVs all became productively infected with different Env375 variants—S, M, Y, H, W, or F—that were differentially selected in different Env backbones. Notably, SHIVs replicated persistently at titers comparable to HIV-1 in humans and elicited autologous neutralizing antibody responses typical of HIV-1. Seven animals succumbed to AIDS. These findings identify Env–rhCD4 binding as a critical determinant for productive SHIV infection in RMs and validate a novel and generalizable strategy for constructing SHIVs with Env glycoproteins of interest, including those that in humans elicit broadly neutralizing antibodies or bind particular Ig germ-line B-cell receptors. PMID:27247400

  18. AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges

    PubMed Central

    Gardner, Matthew R.; Kattenhorn, Lisa M.; Kondur, Hema R.; von Schaewen, Markus; Dorfman, Tatyana; Chiang, Jessica J.; Haworth, Kevin G.; Decker, Julie M.; Alpert, Michael D.; Bailey, Charles C.; Neale, Ernest S.; Fellinger, Christoph H.; Joshi, Vinita R.; Fuchs, Sebastian P.; Martinez-Navio, Jose M.; Quinlan, Brian D.; Yao, Annie Y.; Mouquet, Hugo; Gorman, Jason; Zhang, Baoshan; Poignard, Pascal; Nussenzweig, Michel C.; Burton, Dennis R.; Kwong, Peter D.; Piatak, Michael; Lifson, Jeffrey D.; Gao, Guangping; Desrosiers, Ronald C.; Evans, David T.; Hahn, Beatrice H.; Ploss, Alexander; Cannon, Paula M.; Seaman, Michael S.; Farzan, Michael

    2015-01-01

    Long-term in vivo expression of a broad and potent entry inhibitor could circumvent the need for a conventional vaccine for HIV-1. Adeno-associated virus (AAV) vectors can stably express HIV-1 broadly neutralizing antibodies (bNAbs)1,2. However even the best bNAbs neutralize 10–50% of HIV-1 isolates inefficiently (IC80 > 5 μg/ml), suggesting that high concentrations of these antibodies would be necessary to achieve general protection3–6. Here we show that eCD4-Ig, a fusion of CD4-Ig with a small CCR5-mimetic sulfopeptide, binds avidly and cooperatively to the HIV-1 envelope glycoprotein (Env) and is more potent than the best bNAbs (geometric mean IC50 < 0.05 μg/ml). Because eCD4-Ig binds only conserved regions of Env, it is also much broader than any bNAb. For example, eCD4-Ig efficiently neutralized 100% of a diverse panel of neutralization-resistant HIV-1, HIV-2, and SIV isolates, including a comprehensive set of isolates resistant to the CD4-binding site bNAbs VRC01, NIH45-46, and 3BNC117. Rhesus macaques inoculated with an AAV vector stably expressed 17 to 77 μg/ml of fully functional rhesus eCD4-Ig for 40 weeks, and these macaques were protected from multiple infectious challenges with SHIV-AD8. Rhesus eCD4-Ig was also markedly less immunogenic than rhesus forms of four well characterized bNAbs. Our data suggest that AAV-delivered eCD4-Ig can function like an effective HIV-1 vaccine. PMID:25707797

  19. Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jinghe; Kang, Byong H.; Ishida, Elise

    Detailed studies of the broadly neutralizing antibodies (bNAbs) that underlie the best available examples of the humoral immune response to HIV are providing important information for the development of therapies and prophylaxis for HIV-1 infection. Here, we report a CD4-binding site (CD4bs) antibody, named N6, that potently neutralized 98% of HIV-1 isolates, including 16 of 20 that were resistant to other members of its class. N6 evolved a mode of recognition such that its binding was not impacted by the loss of individual contacts across the immunoglobulin heavy chain. In addition, structural analysis revealed that the orientation of N6 permittedmore » it to avoid steric clashes with glycans, which is a common mechanism of resistance. Thus, an HIV-1-specific bNAb can achieve potent, near-pan neutralization of HIV-1, making it an attractive candidate for use in therapy and prophylaxis.« less

  20. Elicitation of Neutralizing Antibodies Directed against CD4-Induced Epitope(s) Using a CD4 Mimetic Cross-Linked to a HIV-1 Envelope Glycoprotein

    PubMed Central

    Dey, Antu K.; Burke, Brian; Sun, Yide; Sirokman, Klara; Nandi, Avishek; Hartog, Karin; Lian, Ying; Geonnotti, Anthony R.; Montefiori, David; Franti, Michael; Martin, Grégoire; Carfi, Andrea; Kessler, Pascal; Martin, Loïc; Srivastava, Indresh K.; Barnett, Susan W.

    2012-01-01

    The identification of HIV-1 envelope glycoprotein (Env) structures that can generate broadly neutralizing antibodies (BNAbs) is pivotal to the development of a successful vaccine against HIV-1 aimed at eliciting effective humoral immune responses. To that end, the production of novel Env structure(s) that might induce BNAbs by presentation of conserved epitopes, which are otherwise occluded, is critical. Here, we focus on a structure that stabilizes Env in a conformation representative of its primary (CD4) receptor-bound state, thereby exposing highly conserved “CD4 induced” (CD4i) epitope(s) known to be important for co-receptor binding and subsequent virus infection. A CD4-mimetic miniprotein, miniCD4 (M64U1-SH), was produced and covalently complexed to recombinant, trimeric gp140 envelope glycoprotein (gp140) using site-specific disulfide linkages. The resulting gp140-miniCD4 (gp140-S-S-M64U1) complex was recognized by CD4i antibodies and the HIV-1 co-receptor, CCR5. The gp140-miniCD4 complex elicited the highest titers of CD4i binding antibodies as well as enhanced neutralizing antibodies against Tier 1 viruses as compared to gp140 protein alone following immunization of rabbits. Neutralization against HIV-27312/V434M and additional serum mapping confirm the specific elicitation of antibodies directed to the CD4i epitope(s). These results demonstrate the utility of structure-based approach in improving immunogenic response against specific region, such as the CD4i epitope(s) here, and its potential role in vaccine application. PMID:22291921

  1. Heterogeneity of envelope molecules expressed on primary human immunodeficiency virus type 1 particles as probed by the binding of neutralizing and nonneutralizing antibodies.

    PubMed

    Poignard, Pascal; Moulard, Maxime; Golez, Edwin; Vivona, Veronique; Franti, Michael; Venturini, Sara; Wang, Meng; Parren, Paul W H I; Burton, Dennis R

    2003-01-01

    Virion capture assays, in which immobilized antibodies (Abs) capture virus particles, have been used to suggest that nonneutralizing Abs bind effectively to human immunodeficiency virus type 1 (HIV-1) primary viruses. Here, we show that virion capture assays, under conditions commonly reported in the literature, give a poor indication of epitope expression on the surface of infectious primary HIV-1. First, estimation of primary HIV-1 capture by p24 measurements shows a very poor correlation with an estimation based on infectivity measurements. Second, virion capture appears to require relatively low Ab affinity for the virion, as shown by the ability of a monoclonal Ab to capture a wild-type and a neutralization escape variant virus equally well. Nevertheless, in a more interpretable competition format, it is shown that nonneutralizing anti-CD4 binding site (CD4bs) Abs compete with a neutralizing anti-CD4bs Ab (b12) for virus capture, suggesting that the nonneutralizing anti-CD4bs Abs are able to bind to the envelope species that is involved in virion capture in these experiments. However, the nonneutralizing anti-CD4bs Abs do not inhibit neutralization by b12 even at considerable excess. This suggests that the nonneutralizing Abs are unable to bind effectively to the envelope species required for virus infectivity. The results were obtained for three different primary virus envelopes. The explanation that we favor is that infectious HIV-1 primary virions can express two forms of gp120, an accessible nonfunctional form and a functional form with limited access. Binding to the nonfunctional form, which needs only to be present at relatively low density on the virion, permits capture but does not lead to neutralization. The expression of a nonfunctional but accessible form of gp120 on virions may contribute to the general failure of HIV-1 infection to elicit cross-neutralizing Abs and may represent a significant problem for vaccines based on viruses or virus-like particles.

  2. Antibodies Elicited by Multiple Envelope Glycoprotein Immunogens in Primates Neutralize Primary Human Immunodeficiency Viruses (HIV-1) Sensitized by CD4-Mimetic Compounds

    PubMed Central

    Madani, Navid; Princiotto, Amy M.; Easterhoff, David; Bradley, Todd; Luo, Kan; Williams, Wilton B.; Liao, Hua-Xin; Moody, M. Anthony; Phad, Ganesh E.; Vázquez Bernat, Néstor; Melillo, Bruno; Santra, Sampa; Smith, Amos B.; Karlsson Hedestam, Gunilla B.; Haynes, Barton

    2016-01-01

    ABSTRACT The human immunodeficiency virus (HIV-1) envelope glycoproteins (Env) mediate virus entry through a series of complex conformational changes triggered by binding to the receptors CD4 and CCR5/CXCR4. Broadly neutralizing antibodies that recognize conserved Env epitopes are thought to be an important component of a protective immune response. However, to date, HIV-1 Env immunogens that elicit broadly neutralizing antibodies have not been identified, creating hurdles for vaccine development. Small-molecule CD4-mimetic compounds engage the CD4-binding pocket on the gp120 exterior Env and induce Env conformations that are highly sensitive to neutralization by antibodies, including antibodies directed against the conserved Env region that interacts with CCR5/CXCR4. Here, we show that CD4-mimetic compounds sensitize primary HIV-1 to neutralization by antibodies that can be elicited in monkeys and humans within 6 months by several Env vaccine candidates, including gp120 monomers. Monoclonal antibodies directed against the gp120 V2 and V3 variable regions were isolated from the immunized monkeys and humans; these monoclonal antibodies neutralized a primary HIV-1 only when the virus was sensitized by a CD4-mimetic compound. Thus, in addition to their direct antiviral effect, CD4-mimetic compounds dramatically enhance the HIV-1-neutralizing activity of antibodies that can be elicited with currently available immunogens. Used as components of microbicides, the CD4-mimetic compounds might increase the protective efficacy of HIV-1 vaccines. IMPORTANCE Preventing HIV-1 transmission is a high priority for global health. Eliciting antibodies that can neutralize transmitted strains of HIV-1 is difficult, creating problems for the development of an effective vaccine. We found that small-molecule CD4-mimetic compounds sensitize HIV-1 to antibodies that can be elicited in vaccinated humans and monkeys. These results suggest an approach to prevent HIV-1 sexual transmission in which a virus-sensitizing microbicide is combined with a vaccine. PMID:26962221

  3. Neutralization Properties of Simian Immunodeficiency Viruses Infecting Chimpanzees and Gorillas

    PubMed Central

    Barbian, Hannah J.; Decker, Julie M.; Bibollet-Ruche, Frederic; Galimidi, Rachel P.; West, Anthony P.; Learn, Gerald H.; Parrish, Nicholas F.; Iyer, Shilpa S.; Li, Yingying; Pace, Craig S.; Song, Ruijiang; Huang, Yaoxing; Denny, Thomas N.; Mouquet, Hugo; Martin, Loic; Acharya, Priyamvada; Zhang, Baoshan; Kwong, Peter D.; Mascola, John R.; Verrips, C. Theo; Strokappe, Nika M.; Rutten, Lucy; McCoy, Laura E.; Weiss, Robin A.; Brown, Corrine S.; Jackson, Raven; Silvestri, Guido; Connors, Mark; Burton, Dennis R.; Shaw, George M.; Nussenzweig, Michel C.; Bjorkman, Pamela J.; Ho, David D.; Farzan, Michael

    2015-01-01

    ABSTRACT Broadly cross-reactive neutralizing antibodies (bNabs) represent powerful tools to combat human immunodeficiency virus type 1 (HIV-1) infection. Here, we examined whether HIV-1-specific bNabs are capable of cross-neutralizing distantly related simian immunodeficiency viruses (SIVs) infecting central (Pan troglodytes troglodytes) (SIVcpzPtt) and eastern (Pan troglodytes schweinfurthii) (SIVcpzPts) chimpanzees (n = 11) as well as western gorillas (Gorilla gorilla gorilla) (SIVgor) (n = 1). We found that bNabs directed against the CD4 binding site (n = 10), peptidoglycans at the base of variable loop 3 (V3) (n = 5), and epitopes at the interface of surface (gp120) and membrane-bound (gp41) envelope glycoproteins (n = 5) failed to neutralize SIVcpz and SIVgor strains. In addition, apex V2-directed bNabs (n = 3) as well as llama-derived (heavy chain only) antibodies (n = 6) recognizing both the CD4 binding site and gp41 epitopes were either completely inactive or neutralized only a fraction of SIVcpzPtt strains. In contrast, one antibody targeting the membrane-proximal external region (MPER) of gp41 (10E8), functional CD4 and CCR5 receptor mimetics (eCD4-Ig, eCD4-Igmim2, CD4-218.3-E51, and CD4-218.3-E51-mim2), as well as mono- and bispecific anti-human CD4 (iMab and LM52) and CCR5 (PRO140, PRO140-10E8) receptor antibodies neutralized >90% of SIVcpz and SIVgor strains with low-nanomolar (0.13 to 8.4 nM) potency. Importantly, the latter antibodies blocked virus entry not only in TZM-bl cells but also in Cf2Th cells expressing chimpanzee CD4 and CCR5 and neutralized SIVcpz in chimpanzee CD4+ T cells, with 50% inhibitory concentrations (IC50s) ranging from 3.6 to 40.5 nM. These findings provide new insight into the protective capacity of anti-HIV-1 bNabs and identify candidates for further development to combat SIVcpz infection. PMID:25900654

  4. In vivo emergence of HIV-1 highly sensitive to neutralizing antibodies.

    PubMed

    Aasa-Chapman, Marlén M I; Cheney, Kelly M; Hué, Stéphane; Forsman, Anna; O'Farrell, Stephen; Pellegrino, Pierre; Williams, Ian; McKnight, Áine

    2011-01-01

    The rapid and continual viral escape from neutralizing antibodies is well documented in HIV-1 infection. Here we report in vivo emergence of viruses with heightened sensitivity to neutralizing antibodies, sometimes paralleling the development of neutralization escape. Sequential viral envs were amplified from seven HIV-1 infected men monitored from seroconversion up to 5 years after infection. Env-recombinant infectious molecular clones were generated and tested for coreceptor use, macrophage tropism and neutralization sensitivity to homologous and heterologous serum, soluble CD4 and monoclonal antibodies IgG1b12, 2G12 and 17b. We found that HIV-1 evolves sensitivity to contemporaneous neutralizing antibodies during infection. Neutralization sensitive viruses grow out even when potent autologous neutralizing antibodies are present in patient serum. Increased sensitivity to neutralization was associated with susceptibility of the CD4 binding site or epitopes induced after CD4 binding, and mediated by complex envelope determinants including V3 and V4 residues. The development of neutralization sensitive viruses occurred without clinical progression, coreceptor switch or change in tropism for primary macrophages. We propose that an interplay of selective forces for greater virus replication efficiency without the need to resist neutralizing antibodies in a compartment protected from immune surveillance may explain the temporal course described here for the in vivo emergence of HIV-1 isolates with high sensitivity to neutralizing antibodies.

  5. Identification and Characterization of a Broadly Cross-Reactive HIV-1 Human Monoclonal Antibody That Binds to Both gp120 and gp41

    PubMed Central

    Zhang, Mei-Yun; Yuan, Tingting; Li, Jingjing; Rosa Borges, Andrew; Watkins, Jennifer D.; Guenaga, Javier; Yang, Zheng; Wang, Yanping; Wilson, Richard; Li, Yuxing; Polonis, Victoria R.; Pincus, Seth H.; Ruprecht, Ruth M.; Dimitrov, Dimiter S.

    2012-01-01

    Identification of broadly cross-reactive HIV-1-neutralizing antibodies (bnAbs) may assist vaccine immunogen design. Here we report a novel human monoclonal antibody (mAb), designated m43, which co-targets the gp120 and gp41 subunits of the HIV-1 envelope glycoprotein (Env). M43 bound to recombinant gp140 s from various primary isolates, to membrane-associated Envs on transfected cells and HIV-1 infected cells, as well as to recombinant gp120 s and gp41 fusion intermediate structures containing N-trimer structure, but did not bind to denatured recombinant gp140 s and the CD4 binding site (CD4bs) mutant, gp120 D368R, suggesting that the m43 epitope is conformational and overlaps the CD4bs on gp120 and the N-trimer structure on gp41. M43 neutralized 34% of the HIV-1 primary isolates from different clades and all the SHIVs tested in assays based on infection of peripheral blood mononuclear cells (PBMCs) by replication-competent virus, but was less potent in cell line-based pseudovirus assays. In contrast to CD4, m43 did not induce Env conformational changes upon binding leading to exposure of the coreceptor binding site, enhanced binding of mAbs 2F5 and 4E10 specific for the membrane proximal external region (MPER) of gp41 Envs, or increased gp120 shedding. The overall modest neutralization activity of m43 is likely due to the limited binding of m43 to functional Envs which could be increased by antibody engineering if needed. M43 may represent a new class of bnAbs targeting conformational epitopes overlapping structures on both gp120 and gp41. Its novel epitope and possibly new mechanism(s) of neutralization could helpdesign improved vaccine immunogens and candidate therapeutics. PMID:22970187

  6. A New Glycan-Dependent CD4-Binding Site Neutralizing Antibody Exerts Pressure on HIV-1 In Vivo

    PubMed Central

    Freund, Natalia T.; Horwitz, Joshua A.; Nogueira, Lilian; Sievers, Stuart A.; Scharf, Louise; Scheid, Johannes F.; Gazumyan, Anna; Liu, Cassie; Velinzon, Klara; Goldenthal, Ariel; Sanders, Rogier W.; Moore, John P.; Bjorkman, Pamela J.; Seaman, Michael S.; Walker, Bruce D.; Klein, Florian; Nussenzweig, Michel C.

    2015-01-01

    The CD4 binding site (CD4bs) on the envelope glycoprotein is a major site of vulnerability that is conserved among different HIV-1 isolates. Many broadly neutralizing antibodies (bNAbs) to the CD4bs belong to the VRC01 class, sharing highly restricted origins, recognition mechanisms and viral escape pathways. We sought to isolate new anti-CD4bs bNAbs with different origins and mechanisms of action. Using a gp120 2CC core as bait, we isolated antibodies encoded by IGVH3-21 and IGVL3-1 genes with long CDRH3s that depend on the presence of the N-linked glycan at position-276 for activity. This binding mode is similar to the previously identified antibody HJ16, however the new antibodies identified herein are more potent and broad. The most potent variant, 179NC75, had a geometric mean IC80 value of 0.42 μg/ml against 120 Tier-2 HIV-1 pseudoviruses in the TZM.bl assay. Although this group of CD4bs glycan-dependent antibodies can be broadly and potently neutralizing in vitro, their in vivo activity has not been tested to date. Here, we report that 179NC75 is highly active when administered to HIV-1-infected humanized mice, where it selects for escape variants that lack a glycan site at position-276. The same glycan was absent from the virus isolated from the 179NC75 donor, implying that the antibody also exerts selection pressure in humans. PMID:26516768

  7. Enhanced HIV-1 neutralization by a CD4-VH3-IgG1 fusion protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyuhas, Ronit; Noy, Hava; Fishman, Sigal

    2009-08-21

    HIV-1 gp120 is an alleged B cell superantigen, binding certain VH3+ human antibodies. We reasoned that a CD4-VH3 fusion protein could possess higher affinity for gp120 and improved HIV-1 inhibitory capacity. To test this we produced several human IgG1 immunoligands harboring VH3. Unlike VH3-IgG1 or VH3-CD4-IgG1, CD4-VH3-IgG1 bound gp120 considerably stronger than CD4-IgG1. CD4-VH3-IgG1 exhibited {approx}1.5-2.5-fold increase in neutralization of two T-cell laboratory-adapted strains when compared to CD4-IgG1. CD4-VH3-IgG1 improved neutralization of 7/10 clade B primary isolates or pseudoviruses, exceeding 20-fold for JR-FL and 13-fold for Ba-L. It enhanced neutralization of 4/8 clade C viruses, and had negligible effect onmore » 1/4 clade A pseudoviruses. We attribute this improvement to possible pairing of VH3 with CD4 D1 and stabilization of an Ig Fv-like structure, rather than to superantigen interactions. These novel findings support the current notion that CD4 fusion proteins can act as better HIV-1 entry inhibitors with potential clinical implications.« less

  8. Antibody specificities associated with neutralization breadth in plasma from human immunodeficiency virus type 1 subtype C-infected blood donors.

    PubMed

    Gray, Elin S; Taylor, Natasha; Wycuff, Diane; Moore, Penny L; Tomaras, Georgia D; Wibmer, Constantinos Kurt; Puren, Adrian; DeCamp, Allan; Gilbert, Peter B; Wood, Blake; Montefiori, David C; Binley, James M; Shaw, George M; Haynes, Barton F; Mascola, John R; Morris, Lynn

    2009-09-01

    Defining the specificities of the anti-human immunodeficiency virus type 1 (HIV-1) envelope antibodies able to mediate broad heterologous neutralization will assist in identifying targets for an HIV-1 vaccine. We screened 70 plasmas from chronically HIV-1-infected individuals for neutralization breadth. Of these, 16 (23%) were found to neutralize 80% or more of the viruses tested. Anti-CD4 binding site (CD4bs) antibodies were found in almost all plasmas independent of their neutralization breadth, but they mainly mediated neutralization of the laboratory strain HxB2 with little effect on the primary virus, Du151. Adsorption with Du151 monomeric gp120 reduced neutralizing activity to some extent in most plasma samples when tested against the matched virus, although these antibodies did not always confer cross-neutralization. For one plasma, this activity was mapped to a site overlapping the CD4-induced (CD4i) epitope and CD4bs. Anti-membrane-proximal external region (MPER) (r = 0.69; P < 0.001) and anti-CD4i (r = 0.49; P < 0.001) antibody titers were found to be correlated with the neutralization breadth. These anti-MPER antibodies were not 4E10- or 2F5-like but spanned the 4E10 epitope. Furthermore, we found that anti-cardiolipin antibodies were correlated with the neutralization breadth (r = 0.67; P < 0.001) and anti-MPER antibodies (r = 0.6; P < 0.001). Our study suggests that more than one epitope on the envelope glycoprotein is involved in the cross-reactive neutralization elicited during natural HIV-1 infection, many of which are yet to be determined, and that polyreactive antibodies are possibly involved in this phenomenon.

  9. Antibody Specificities Associated with Neutralization Breadth in Plasma from Human Immunodeficiency Virus Type 1 Subtype C-Infected Blood Donors▿ †

    PubMed Central

    Gray, Elin S.; Taylor, Natasha; Wycuff, Diane; Moore, Penny L.; Tomaras, Georgia D.; Wibmer, Constantinos Kurt; Puren, Adrian; DeCamp, Allan; Gilbert, Peter B.; Wood, Blake; Montefiori, David C.; Binley, James M.; Shaw, George M.; Haynes, Barton F.; Mascola, John R.; Morris, Lynn

    2009-01-01

    Defining the specificities of the anti-human immunodeficiency virus type 1 (HIV-1) envelope antibodies able to mediate broad heterologous neutralization will assist in identifying targets for an HIV-1 vaccine. We screened 70 plasmas from chronically HIV-1-infected individuals for neutralization breadth. Of these, 16 (23%) were found to neutralize 80% or more of the viruses tested. Anti-CD4 binding site (CD4bs) antibodies were found in almost all plasmas independent of their neutralization breadth, but they mainly mediated neutralization of the laboratory strain HxB2 with little effect on the primary virus, Du151. Adsorption with Du151 monomeric gp120 reduced neutralizing activity to some extent in most plasma samples when tested against the matched virus, although these antibodies did not always confer cross-neutralization. For one plasma, this activity was mapped to a site overlapping the CD4-induced (CD4i) epitope and CD4bs. Anti-membrane-proximal external region (MPER) (r = 0.69; P < 0.001) and anti-CD4i (r = 0.49; P < 0.001) antibody titers were found to be correlated with the neutralization breadth. These anti-MPER antibodies were not 4E10- or 2F5-like but spanned the 4E10 epitope. Furthermore, we found that anti-cardiolipin antibodies were correlated with the neutralization breadth (r = 0.67; P < 0.001) and anti-MPER antibodies (r = 0.6; P < 0.001). Our study suggests that more than one epitope on the envelope glycoprotein is involved in the cross-reactive neutralization elicited during natural HIV-1 infection, many of which are yet to be determined, and that polyreactive antibodies are possibly involved in this phenomenon. PMID:19553335

  10. Scorpion-Toxin Mimics of CD4 in Complex with Human Immunodeficiency Virus gp120: Crystal Structures, Molecular Mimicry, and Neutralization Breadth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chih-chin; Stricher, Francois; Martin, Loic

    The binding surface on CD4 for the HIV-1 gp120 envelope glycoprotein has been transplanted previously onto a scorpion-toxin scaffold. Here, we use X-ray crystallography to characterize atomic-level details of gp120 with this transplant, CD4M33. Despite known envelope flexibility, the conformation of gp120 induced by CD4M33 was so similar to that induced by CD4 that localized measures were required to distinguish ligand-induced differences from lattice variation. To investigate relationships between structure, function, and mimicry, an F23 analog of CD4M33 was devised. Structural and thermodynamic analyses showed F23 to be a better molecular mimic of CD4 than CD4M33. F23 also showed increasedmore » neutralization breadth, against diverse isolates of HIV-1, HIV-2, and SIVcpz. Our results lend insight into the stability of the CD4 bound conformation of gp120, define measures that quantify molecular mimicry as a function of evolutionary distance, and suggest how such evaluations might be useful in developing mimetic antagonists with increased neutralization breadth.« less

  11. Blocking of HIV-1 Infectivity by a Soluble, Secreted Form of the CD4 Antigen

    NASA Astrophysics Data System (ADS)

    Smith, Douglas H.; Byrn, Randal A.; Marsters, Scot A.; Gregory, Timothy; Groopman, Jerome E.; Capon, Daniel J.

    1987-12-01

    The initial event in the infection of human T lymphocytes, macrophages, and other cells by human immunodeficiency virus (HIV-1) is the attachment of the HIV-1 envelope glycoprotein gp120 to its cellular receptor, CD4. As a step toward designing antagonists of this binding event, soluble, secreted forms of CD4 were produced by transfection of mammalian cells with vectors encoding versions of CD4 lacking its transmembrane and cytoplasmic domains. The soluble CD4 so produced binds gp120 with an affinity and specificity comparable to intact CD4 and is capable of neutralizing the infectivity of HIV-1. These studies reveal that the high-affinity CD4-gp120 interaction does not require other cell or viral components and may establish a novel basis for therapeutic intervention in the acquired immune deficiency syndrome (AIDS).

  12. Vaccine Induction of Heterologous Tier 2 HIV-1 Neutralizing Antibodies in Animal Models.

    PubMed

    Saunders, Kevin O; Verkoczy, Laurent K; Jiang, Chuancang; Zhang, Jinsong; Parks, Robert; Chen, Haiyan; Housman, Max; Bouton-Verville, Hilary; Shen, Xiaoying; Trama, Ashley M; Scearce, Richard; Sutherland, Laura; Santra, Sampa; Newman, Amanda; Eaton, Amanda; Xu, Kai; Georgiev, Ivelin S; Joyce, M Gordon; Tomaras, Georgia D; Bonsignori, Mattia; Reed, Steven G; Salazar, Andres; Mascola, John R; Moody, M Anthony; Cain, Derek W; Centlivre, Mireille; Zurawski, Sandra; Zurawski, Gerard; Erickson, Harold P; Kwong, Peter D; Alam, S Munir; Levy, Yves; Montefiori, David C; Haynes, Barton F

    2017-12-26

    The events required for the induction of broad neutralizing antibodies (bnAbs) following HIV-1 envelope (Env) vaccination are unknown, and their induction in animal models as proof of concept would be critical. Here, we describe the induction of plasma antibodies capable of neutralizing heterologous primary (tier 2) HIV-1 strains in one macaque and two rabbits. Env immunogens were designed to induce CD4 binding site (CD4bs) bnAbs, but surprisingly, the macaque developed V1V2-glycan bnAbs. Env immunization of CD4bs bnAb heavy chain rearrangement (V H DJ H ) knockin mice similarly induced V1V2-glycan neutralizing antibodies (nAbs), wherein the human CD4bs V H  chains were replaced with mouse rearrangements bearing diversity region (D)-D fusions, creating antibodies with long, tyrosine-rich HCDR3s. Our results show that Env vaccination can elicit broad neutralization of tier 2 HIV-1, demonstrate that V1V2-glycan bnAbs are more readily induced than CD4bs bnAbs, and define V H replacement and diversity region fusion as potential mechanisms for generating V1V2-glycan bnAb site antibodies. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonsignori, Mattia; Zhou, Tongqing; Sheng, Zizhang

    Here, we report that antibodies with ontogenies from V H1-2 or V H1-46-germline genes dominate the broadly neutralizing response against the CD4-binding site (CD4bs) on HIV-1. We define with longitudinal sampling from time-of-infection the development of a V H1-46-derived antibody lineage that matured to neutralize 90% of HIV-1 isolates. Structures of lineage antibodies CH235 (week 41 from time-of-infection, 18% breadth), CH235.9 (week 152, 77%), and CH235.12 (week 323, 90%) demonstrated the maturing epitope to focus on the conformationally invariant portion of the CD4bs. Similarities between CH235 lineage and five unrelated CD4bs lineages in epitope focusing, length-of-time to develop breadth, andmore » extraordinary level of somatic hypermutation suggested commonalities in maturation among all CD4bs antibodies. Fortunately, the required CH235-lineage hypermutation appeared substantially guided by the intrinsic mutability of the VH1-46 gene, which closely resembled V H1-2. Lastly, we integrated our CH235-lineage findings with a second broadly neutralizing lineage and HIV-1 co-evolution to suggest a vaccination strategy for inducing both lineages.« less

  14. Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody

    DOE PAGES

    Bonsignori, Mattia; Zhou, Tongqing; Sheng, Zizhang; ...

    2016-04-01

    Here, we report that antibodies with ontogenies from V H1-2 or V H1-46-germline genes dominate the broadly neutralizing response against the CD4-binding site (CD4bs) on HIV-1. We define with longitudinal sampling from time-of-infection the development of a V H1-46-derived antibody lineage that matured to neutralize 90% of HIV-1 isolates. Structures of lineage antibodies CH235 (week 41 from time-of-infection, 18% breadth), CH235.9 (week 152, 77%), and CH235.12 (week 323, 90%) demonstrated the maturing epitope to focus on the conformationally invariant portion of the CD4bs. Similarities between CH235 lineage and five unrelated CD4bs lineages in epitope focusing, length-of-time to develop breadth, andmore » extraordinary level of somatic hypermutation suggested commonalities in maturation among all CD4bs antibodies. Fortunately, the required CH235-lineage hypermutation appeared substantially guided by the intrinsic mutability of the VH1-46 gene, which closely resembled V H1-2. Lastly, we integrated our CH235-lineage findings with a second broadly neutralizing lineage and HIV-1 co-evolution to suggest a vaccination strategy for inducing both lineages.« less

  15. Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site

    PubMed Central

    Crooks, Ema T.; Tong, Tommy; Chakrabarti, Bimal; Narayan, Kristin; Georgiev, Ivelin S.; Menis, Sergey; Huang, Xiaoxing; Kulp, Daniel; Osawa, Keiko; Muranaka, Janelle; Stewart-Jones, Guillaume; Destefano, Joanne; O’Dell, Sijy; LaBranche, Celia; Robinson, James E.; Montefiori, David C.; McKee, Krisha; Du, Sean X.; Doria-Rose, Nicole; Kwong, Peter D.; Mascola, John R.; Zhu, Ping; Schief, William R.; Wyatt, Richard T.; Whalen, Robert G.; Binley, James M.

    2015-01-01

    Eliciting broad tier 2 neutralizing antibodies (nAbs) is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs) expressing trimers (trimer VLP sera) and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera). All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs). Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype) rendered 50% or 16.7% (n = 18) of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative “glycan fence” that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine. PMID:26023780

  16. Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site.

    PubMed

    Crooks, Ema T; Tong, Tommy; Chakrabarti, Bimal; Narayan, Kristin; Georgiev, Ivelin S; Menis, Sergey; Huang, Xiaoxing; Kulp, Daniel; Osawa, Keiko; Muranaka, Janelle; Stewart-Jones, Guillaume; Destefano, Joanne; O'Dell, Sijy; LaBranche, Celia; Robinson, James E; Montefiori, David C; McKee, Krisha; Du, Sean X; Doria-Rose, Nicole; Kwong, Peter D; Mascola, John R; Zhu, Ping; Schief, William R; Wyatt, Richard T; Whalen, Robert G; Binley, James M

    2015-05-01

    Eliciting broad tier 2 neutralizing antibodies (nAbs) is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs) expressing trimers (trimer VLP sera) and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera). All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs). Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype) rendered 50% or 16.7% (n = 18) of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative "glycan fence" that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine.

  17. Cell-Cell Transmission Enables HIV-1 to Evade Inhibition by Potent CD4bs Directed Antibodies

    PubMed Central

    Schanz, Merle; Reynell, Lucy; Günthard, Huldrych F.; Rusert, Peter; Trkola, Alexandra

    2012-01-01

    HIV is known to spread efficiently both in a cell-free state and from cell to cell, however the relative importance of the cell-cell transmission mode in natural infection has not yet been resolved. Likewise to what extent cell-cell transmission is vulnerable to inhibition by neutralizing antibodies and entry inhibitors remains to be determined. Here we report on neutralizing antibody activity during cell-cell transmission using specifically tailored experimental strategies which enable unambiguous discrimination between the two transmission routes. We demonstrate that the activity of neutralizing monoclonal antibodies (mAbs) and entry inhibitors during cell-cell transmission varies depending on their mode of action. While gp41 directed agents remain active, CD4 binding site (CD4bs) directed inhibitors, including the potent neutralizing mAb VRC01, dramatically lose potency during cell-cell transmission. This implies that CD4bs mAbs act preferentially through blocking free virus transmission, while still allowing HIV to spread through cell-cell contacts. Thus providing a plausible explanation for how HIV maintains infectivity and rapidly escapes potent and broadly active CD4bs directed antibody responses in vivo. PMID:22496655

  18. Cd-binding to model membranes

    NASA Astrophysics Data System (ADS)

    Geszner, R.; Saibene, S.; Butz, T.; Lerf, A.

    1990-08-01

    The binding of Cd2+ to the model membranes Di-myristoyl L-α-phosphatidic acid (DMPA) and Di-myristoyl L-α-phosphatidylcholine (DMPC) was studied by time differential perturbed angular correlation (TDPAC) on111mCd, via its nuclear quadrupole interaction. Whereas Cd2+ does not bind to the neutral DMPC, it binds to charged DMPA up to a 0.8∶1 Cd/lipid ratio.

  19. Sequential CD4-Coreceptor Interactions in Human Immunodeficiency Virus Type 1 Env Function: Soluble CD4 Activates Env for Coreceptor-Dependent Fusion and Reveals Blocking Activities of Antibodies against Cryptic Conserved Epitopes on gp120

    PubMed Central

    Salzwedel, Karl; Smith, Erica D.; Dey, Barna; Berger, Edward A.

    2000-01-01

    We devised an experimental system to examine sequential events by which the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) interacts with CD4 and coreceptor to induce membrane fusion. Recombinant soluble CD4 (sCD4) activated fusion between effector cells expressing Env and target cells expressing coreceptor (CCR5 or CXCR4) but lacking CD4. sCD4-activated fusion was dose dependent, occurred comparably with two- and four-domain proteins, and demonstrated Env-coreceptor specificities parallel to those reported in conventional fusion and infectivity systems. Fusion activation occurred upon sCD4 preincubation and washing of the Env-expressing effector cells but not the coreceptor-bearing target cells, thereby demonstrating that sCD4 exerts its effects by acting on Env. These findings provide direct functional evidence for a sequential two-step model of Env-receptor interactions, whereby gp120 binds first to CD4 and becomes activated for subsequent functional interaction with coreceptor, leading to membrane fusion. We used the sCD4-activated system to explore neutralization by the anti-gp120 human monoclonal antibodies 17b and 48d. These antibodies reportedly bind conserved CD4-induced epitopes involved in coreceptor interactions but neutralize HIV-1 infection only weakly. We found that 17b and 48d had minimal effects in the standard cell fusion system using target cells expressing both CD4 and coreceptor but potently blocked sCD4-activated fusion with target cells expressing coreceptor alone. Both antibodies strongly inhibited sCD4-activated fusion by Envs from genetically diverse HIV-1 isolates. Thus, the sCD4-activated system reveals conserved Env-blocking epitopes that are masked in native Env and hence not readily detected by conventional systems. PMID:10590121

  20. Diverse specificity and effector function among human antibodies to HIV-1 envelope glycoprotein epitopes exposed by CD4 binding

    DOE PAGES

    Guan, Yongjun; Pazgier, Marzena; Sajadi, Mohammad M.; ...

    2012-12-13

    The HIV-1 envelope glycoprotein (Env) undergoes conformational transitions consequent to CD4 binding and coreceptor engagement during viral entry. The physical steps in this process are becoming defined, but less is known about their significance as targets of antibodies potentially protective against HIV-1 infection. Here we probe the functional significance of transitional epitope exposure by characterizing 41 human mAbs specific for epitopes exposed on trimeric Env after CD4 engagement. These mAbs recognize three epitope clusters: cluster A, the gp120 face occluded by gp41 in trimeric Env; cluster B, a region proximal to the coreceptor-binding site (CoRBS) and involving the V1/V2 domain;more » and cluster C, the coreceptor-binding site. The mAbs were evaluated functionally by antibody-dependent, cell-mediated cytotoxicity (ADCC) and for neutralization of Tiers 1 and 2 pseudoviruses. All three clusters included mAbs mediating ADCC. However, there was a strong potency bias for cluster A, which harbors at least three potent ADCC epitopes whose cognate mAbs have electropositive paratopes. Cluster A epitopes are functional ADCC targets during viral entry in an assay format using virion-sensitized target cells. In contrast, only cluster C contained epitopes that were recognized by neutralizing mAbs. There was significant diversity in breadth and potency that correlated with epitope fine specificity. In contrast, ADCC potency had no relationship with neutralization potency or breadth for any epitope cluster. In conclusion, Fc-mediated effector function and neutralization coselect with specificity in anti-Env antibody responses, but the nature of selection is distinct for these two antiviral activities.« less

  1. An Aptamer That Neutralizes R5 Strains of Human Immunodeficiency Virus Type 1 Blocks gp120-CCR5 Interaction

    PubMed Central

    Dey, Antu K.; Khati, Makobetsa; Tang, Min; Wyatt, Richard; Lea, Susan M.; James, William

    2005-01-01

    We recently described the isolation and structural characterization of 2′-fluoropyrimidine-substituted RNA aptamers that bind to gp120 of R5 strains of human immunodeficiency virus type 1 and thereby potently neutralize the infectivity of phylogenetically diverse R5 strains. Here we investigate the physical basis of their antiviral action. We show that both N-linked oligosaccharides and the variable loops V1/V2 and V3 are not required for binding of one aptamer, B40, to gp120. Using surface plasmon resonance binding analyses, we show that the aptamer binds to the CCR5-binding site on gp120 in a relatively CD4-independent manner, providing a mechanistic explanation for its neutralizing potency. PMID:16227301

  2. B cell recognition of the conserved HIV-1 co-receptor binding site is altered by endogenous primate CD4.

    PubMed

    Forsell, Mattias N E; Dey, Barna; Mörner, Andreas; Svehla, Krisha; O'dell, Sijy; Högerkorp, Carl-Magnus; Voss, Gerald; Thorstensson, Rigmor; Shaw, George M; Mascola, John R; Karlsson Hedestam, Gunilla B; Wyatt, Richard T

    2008-10-03

    The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3). Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4) rabbits with envelope glycoprotein (Env) trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT) rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity) primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naïve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein.

  3. Dominant-negative effect of hetero-oligomerization on the function of the human immunodeficiency virus type 1 envelope glycoprotein complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Carolina; Klasse, Per Johan; Kibler, Christopher W.

    2006-07-20

    The human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein forms trimers that mediate interactions with the CD4 receptor and a co-receptor on the target cell surface, thereby triggering viral fusion with the cell membrane. Cleavage of Env into its surface, gp120, and transmembrane, gp41, moieties is necessary for activation of its fusogenicity. Here, we produced pseudoviruses with phenotypically mixed wild-type (Wt) and mutant, cleavage-incompetent Env in order to quantify the effects of incorporating uncleaved Env on virion infectivity, antigenicity and neutralization sensitivity. We modeled the relative infectivity of three such phenotypically mixed viral strains, JR-FL, HXBc2 and a derivativemore » of the latter, 3.2P, as a function of the relative amount of Wt Env. The data were fit very closely (R {sup 2} > 0.99) by models which assumed that only Wt homotrimers were functional, with different approximate thresholds of critical numbers of functional trimers per virion for the three strains. We also produced 3.2P pseudoviruses containing both a cleavage-competent Env that is defective for binding the neutralizing monoclonal antibody (NAb) 2G12, and a cleavage-incompetent Env that binds 2G12. The 2G12 NAb was not able to reduce the infectivity of these pseudoviruses detectably. Their neutralization by the CD4-binding site-directed agents CD4-IgG2 and NAb b12 was also unaffected by 2G12 binding to uncleaved Env. These results further strengthen the conclusion that only homotrimers consisting of cleaved Env are functional. They also imply that the function of a trimer is unaffected sterically by the binding of an antibody to an adjacent trimer.« less

  4. Ligand accessibility to the HIV-1 Env co-receptor binding site can occur prior to CD4 engagement and is independent of viral tier category.

    PubMed

    Boliar, Saikat; Patil, Shilpa; Shukla, Brihaspati N; Ghobbeh, Ali; Deshpande, Suprit; Chen, Weizao; Guenaga, Javier; Dimitrov, Dimiter S; Wyatt, Richard T; Chakrabarti, Bimal K

    2018-06-01

    HIV-1 virus entry into target cells requires the envelope glycoprotein (Env) to first bind the primary receptor, CD4 and subsequently the co-receptor. Antibody access to the co-receptor binding site (CoRbs) in the pre-receptor-engaged state, prior to cell attachment, remains poorly understood. Here, we have demonstrated that for tier-1 Envs, the CoRbs is directly accessible to full-length CD4-induced (CD4i) antibodies even before primary receptor engagement, indicating that on these Envs the CoRbs site is either preformed or can conformationally sample post-CD4-bound state. Tier-2 and tier-3 Envs, which are resistant to full-length CD4i antibody, are neutralized by m36.4, a lower molecular mass of CD4i-directed domain antibody. In some tier-2 and tier-3 Envs, CoRbs is accessible to m36.4 even prior to cellular attachment in an Env-specific manner independent of their tier category. These data suggest differential structural arrangements of CoRbs and varied masking of ligand access to the CoRbs in different Env isolates. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costantini, Lindsey M.; Irvin, Susan C.; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461

    The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFPmore » enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. - Highlights: • Development of fluorescent protein labeled HIV-1 envelope gp120. • Imaging of gp120 dynamics and trafficking in live cells. • Quantitative visual assay of antibody-mediated inhibition of gp120 binding to CD4 on live cells.« less

  6. Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Do Kwon, Young; Pancera, Marie; Acharya, Priyamvada

    As the sole viral antigen on the HIV-1–virion surface, trimeric Env is a focus of vaccine efforts. In this paper, we present the structure of the ligand-free HIV-1–Env trimer, fix its conformation and determine its receptor interactions. Epitope analyses revealed trimeric ligand-free Env to be structurally compatible with broadly neutralizing antibodies but not poorly neutralizing ones. We coupled these compatibility considerations with binding antigenicity to engineer conformationally fixed Envs, including a 201C 433C (DS) variant specifically recognized by broadly neutralizing antibodies. DS-Env retained nanomolar affinity for the CD4 receptor, with which it formed an asymmetric intermediate: a closed trimer boundmore » by a single CD4 without the typical antigenic hallmarks of CD4 induction. Finally, antigenicity-guided structural design can thus be used both to delineate mechanism and to fix conformation, with DS-Env trimers in virus-like-particle and soluble formats providing a new generation of vaccine antigens.« less

  7. Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env

    DOE PAGES

    Do Kwon, Young; Pancera, Marie; Acharya, Priyamvada; ...

    2015-06-22

    As the sole viral antigen on the HIV-1–virion surface, trimeric Env is a focus of vaccine efforts. In this paper, we present the structure of the ligand-free HIV-1–Env trimer, fix its conformation and determine its receptor interactions. Epitope analyses revealed trimeric ligand-free Env to be structurally compatible with broadly neutralizing antibodies but not poorly neutralizing ones. We coupled these compatibility considerations with binding antigenicity to engineer conformationally fixed Envs, including a 201C 433C (DS) variant specifically recognized by broadly neutralizing antibodies. DS-Env retained nanomolar affinity for the CD4 receptor, with which it formed an asymmetric intermediate: a closed trimer boundmore » by a single CD4 without the typical antigenic hallmarks of CD4 induction. Finally, antigenicity-guided structural design can thus be used both to delineate mechanism and to fix conformation, with DS-Env trimers in virus-like-particle and soluble formats providing a new generation of vaccine antigens.« less

  8. Epitope-dependent mechanisms of CD27 neutralization revealed by X-ray crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obmolova, Galina; Teplyakov, Alexey; Malia, Thomas J.

    CD27 is a T and B cell co-stimulatory protein of the TNF receptor superfamily dependent on the availability of the TNF-like ligand CD70. Two anti-CD27 neutralizing monoclonal antibodies were obtained from mouse hybridoma and subsequently humanized and optimized for binding the target. The two antibodies are similar in terms of their CD27-binding affinity and ability to block NF-κB signaling, however their clearance rates in monkeys are very different. The pharmacokinetics profiles could be epitope dependent. To identify the epitopes, we determined the crystal structure of the ternary complex between CD27 and the Fab fragments of these non-competing antibodies. The structuremore » reveals the binding modes of the antibodies suggesting that their mechanisms of action are distinctly different and provides a possible explanation of the in vivo data.« less

  9. The Glycosylphosphatidylinositol-Anchored Variable Region of Llama Heavy Chain-Only Antibody JM4 Efficiently Blocks both Cell-Free and T Cell-T Cell Transmission of Human Immunodeficiency Virus Type 1

    PubMed Central

    Liu, Lihong; Wang, Weiming; Matz, Julie; Ye, Chaobaihui; Bracq, Lucie; Delon, Jerome; Kimata, Jason T.; Chen, Zhiwei

    2016-01-01

    ABSTRACT The variable regions (VHHs) of two heavy chain-only antibodies, JM2 and JM4, from llamas that have been immunized with a trimeric gp140 bound to a CD4 mimic have been recently isolated (here referred to as VHH JM2 and VHH JM4, respectively). JM2 binds the CD4-binding site of gp120 and neutralizes HIV-1 strains from subtypes B, C, and G. JM4 binds gp120 and neutralizes HIV-1 strains from subtypes A, B, C, A/E, and G in a CD4-dependent manner. In the present study, we constructed glycosylphosphatidylinositol (GPI)-anchored VHH JM2 and JM4 along with an E4 control and transduced them into human CD4+ cell lines and primary CD4 T cells. We report that by genetically linking the VHHs with a GPI attachment signal, VHHs are targeted to the lipid rafts of the plasma membranes. Expression of GPI-VHH JM4, but not GPI-VHH E4 and JM2, on the surface of transduced TZM.bl cells potently neutralizes multiple subtypes of HIV-1 isolates, including tier 2 or 3 strains, transmitted founders, quasispecies, and soluble single domain antibody (sdAb) JM4-resistant viruses. Moreover, transduction of CEMss-CCR5 cells with GPI-VHH JM4, but not with GPI-VHH E4, confers resistance to both cell-free and T cell-T cell transmission of HIV-1 and HIV-1 envelope-mediated fusion. Finally, GPI-VHH JM4-transduced human primary CD4 T cells efficiently resist both cell-free and T cell-T cell transmission of HIV-1. Thus, we conclude that VHH JM4, when targeted to the lipid rafts of the plasma membrane, efficiently neutralizes HIV-1 infection via both cell-free and T cell-T cell transmission. Our findings should have important implications for GPI-anchored antibody-based therapy against HIV-1. IMPORTANCE Lipid rafts are specialized dynamic microdomains of the plasma membrane and have been shown to be gateways for HIV-1 budding as well as entry into T cells and macrophages. In nature, many glycosylphosphatidylinositol (GPI)-anchored proteins localize in the lipid rafts. In the present study, we developed GPI-anchored variable regions (VHHs) of two heavy chain-only antibodies, JM2 and JM4, from immunized llamas. We show that by genetically linking the VHHs with a GPI attachment signal, VHHs are targeted to the lipid rafts of the plasma membranes. GPI-VHH JM4, but not GPI-VHH JM2, in transduced CD4+ cell lines and human primary CD4 T cells not only efficiently blocks diverse HIV-1 strains, including tier 2 or 3 strains, transmitted founders, quasispecies, and soluble sdAb JM4-resistant strains, but also efficiently interferes T cell-T cell transmissions of HIV-1 and HIV-1 envelope-mediated fusion. Our findings should have important implications in GPI-anchored antibody-based therapy against HIV-1. PMID:27654286

  10. Structure-Based Design of a Small Molecule CD4-Antagonist with Broad Spectrum Anti-HIV-1 Activity

    DOE PAGES

    Curreli, Francesca; Kwon, Young Do; Zhang, Hongtao; ...

    2015-08-24

    Earlier we reported the discovery and design of NBD-556 and their analogs which demonstrated their potential as HIV-1 entry inhibitors. However, progress in developing these inhibitors has been stymied by their CD4-agonist properties, an unfavorable trait for use as drug. Here in this paper, we demonstrate the successful conversion of a full CD4-agonist (NBD-556) through a partial CD4-agonist (NBD-09027), to a full CD4-antagonist (NBD-11021) by structure-based modification of the critical oxalamide midregion, previously thought to be intolerant of modification. NBD-11021 showed unprecedented neutralization breath for this class of inhibitors, with pan-neutralization against a panel of 56 Env-pseudotyped HIV-1 representing diversemore » subtypes of clinical isolates (IC 50 as low as 270 nM). The cocrystal structure of NBD-11021 complexed to a monomeric HIV-1 gp120 core revealed its detail binding characteristics. The study is expected to provide a framework for further development of NBD series as HIV-1 entry inhibitors for clinical application against AIDS.« less

  11. Structure-Based Design of a Small Molecule CD4-Antagonist with Broad Spectrum Anti-HIV-1 Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curreli, Francesca; Kwon, Young Do; Zhang, Hongtao

    Earlier we reported the discovery and design of NBD-556 and their analogs which demonstrated their potential as HIV-1 entry inhibitors. However, progress in developing these inhibitors has been stymied by their CD4-agonist properties, an unfavorable trait for use as drug. Here in this paper, we demonstrate the successful conversion of a full CD4-agonist (NBD-556) through a partial CD4-agonist (NBD-09027), to a full CD4-antagonist (NBD-11021) by structure-based modification of the critical oxalamide midregion, previously thought to be intolerant of modification. NBD-11021 showed unprecedented neutralization breath for this class of inhibitors, with pan-neutralization against a panel of 56 Env-pseudotyped HIV-1 representing diversemore » subtypes of clinical isolates (IC 50 as low as 270 nM). The cocrystal structure of NBD-11021 complexed to a monomeric HIV-1 gp120 core revealed its detail binding characteristics. The study is expected to provide a framework for further development of NBD series as HIV-1 entry inhibitors for clinical application against AIDS.« less

  12. Incomplete Neutralization and Deviation from Sigmoidal Neutralization Curves for HIV Broadly Neutralizing Monoclonal Antibodies

    PubMed Central

    McCoy, Laura E.; Falkowska, Emilia; Doores, Katie J.; Le, Khoa; Sok, Devin; van Gils, Marit J.; Euler, Zelda; Burger, Judith A.; Seaman, Michael S.; Sanders, Rogier W.; Schuitemaker, Hanneke; Poignard, Pascal; Wrin, Terri; Burton, Dennis R.

    2015-01-01

    The broadly neutralizing HIV monoclonal antibodies (bnMAbs) PG9, PG16, PGT151, and PGT152 have been shown earlier to occasionally display an unusual virus neutralization profile with a non-sigmoidal slope and a plateau at <100% neutralization. In the current study, we were interested in determining the extent of non-sigmoidal slopes and plateaus at <100% for HIV bnMAbs more generally. Using both a 278 panel of pseudoviruses in a CD4 T-cell (U87.CCR5.CXCR4) assay and a panel of 117 viruses in the TZM-bl assay, we found that bnMAbs targeting many neutralizing epitopes of the spike had neutralization profiles for at least one virus that plateaued at <90%. Across both panels the bnMAbs targeting the V2 apex of Env and gp41 were most likely to show neutralization curves that plateaued <100%. Conversely, bnMAbs targeting the high-mannose patch epitopes were less likely to show such behavior. Two CD4 binding site (CD4bs) Abs also showed this behavior relatively infrequently. The phenomenon of incomplete neutralization was also observed in a large peripheral blood mononuclear cells (PBMC)-grown molecular virus clone panel derived from patient viral swarms. In addition, five bnMAbs were compared against an 18-virus panel of molecular clones produced in 293T cells and PBMCs and assayed in TZM-bl cells. Examples of plateaus <90% were seen with both types of virus production with no consistent patterns observed. In conclusion, incomplete neutralization and non-sigmoidal neutralization curves are possible for all HIV bnMAbs against a wide range of viruses produced and assayed in both cell lines and primary cells with implications for the use of antibodies in therapy and as tools for vaccine design. PMID:26267277

  13. Incomplete Neutralization and Deviation from Sigmoidal Neutralization Curves for HIV Broadly Neutralizing Monoclonal Antibodies.

    PubMed

    McCoy, Laura E; Falkowska, Emilia; Doores, Katie J; Le, Khoa; Sok, Devin; van Gils, Marit J; Euler, Zelda; Burger, Judith A; Seaman, Michael S; Sanders, Rogier W; Schuitemaker, Hanneke; Poignard, Pascal; Wrin, Terri; Burton, Dennis R

    2015-08-01

    The broadly neutralizing HIV monoclonal antibodies (bnMAbs) PG9, PG16, PGT151, and PGT152 have been shown earlier to occasionally display an unusual virus neutralization profile with a non-sigmoidal slope and a plateau at <100% neutralization. In the current study, we were interested in determining the extent of non-sigmoidal slopes and plateaus at <100% for HIV bnMAbs more generally. Using both a 278 panel of pseudoviruses in a CD4 T-cell (U87.CCR5.CXCR4) assay and a panel of 117 viruses in the TZM-bl assay, we found that bnMAbs targeting many neutralizing epitopes of the spike had neutralization profiles for at least one virus that plateaued at <90%. Across both panels the bnMAbs targeting the V2 apex of Env and gp41 were most likely to show neutralization curves that plateaued <100%. Conversely, bnMAbs targeting the high-mannose patch epitopes were less likely to show such behavior. Two CD4 binding site (CD4bs) Abs also showed this behavior relatively infrequently. The phenomenon of incomplete neutralization was also observed in a large peripheral blood mononuclear cells (PBMC)-grown molecular virus clone panel derived from patient viral swarms. In addition, five bnMAbs were compared against an 18-virus panel of molecular clones produced in 293T cells and PBMCs and assayed in TZM-bl cells. Examples of plateaus <90% were seen with both types of virus production with no consistent patterns observed. In conclusion, incomplete neutralization and non-sigmoidal neutralization curves are possible for all HIV bnMAbs against a wide range of viruses produced and assayed in both cell lines and primary cells with implications for the use of antibodies in therapy and as tools for vaccine design.

  14. Sequences in Glycoprotein gp41, the CD4 Binding Site, and the V2 Domain Regulate Sensitivity and Resistance of HIV-1 to Broadly Neutralizing Antibodies

    PubMed Central

    O'Rourke, Sara M.; Schweighardt, Becky; Phung, Pham; Mesa, Kathryn A.; Vollrath, Aaron L.; Tatsuno, Gwen P.; To, Briana; Sinangil, Faruk; Limoli, Kay; Wrin, Terri

    2012-01-01

    The swarm of quasispecies that evolves in each HIV-1-infected individual represents a source of closely related Env protein variants that can be used to explore various aspects of HIV-1 biology. In this study, we made use of these variants to identify mutations that confer sensitivity and resistance to the broadly neutralizing antibodies found in the sera of selected HIV-1-infected individuals. For these studies, libraries of Env proteins were cloned from infected subjects and screened for infectivity and neutralization sensitivity. The nucleotide sequences of the Env proteins were then compared for pairs of neutralization-sensitive and -resistant viruses. In vitro mutagenesis was used to identify the specific amino acids responsible for the neutralization phenotype. All of the mutations altering neutralization sensitivity/resistance appeared to induce conformational changes that simultaneously enhanced the exposure of two or more epitopes located in different regions of gp160. These mutations appeared to occur at unique positions required to maintain the quaternary structure of the gp160 trimer, as well as conformational masking of epitopes targeted by neutralizing antibodies. Our results show that sequences in gp41, the CD4 binding site, and the V2 domain all have the ability to act as global regulators of neutralization sensitivity. Our results also suggest that neutralization assays designed to support the development of vaccines and therapeutics targeting the HIV-1 Env protein should consider virus variation within individuals as well as virus variation between individuals. PMID:22933284

  15. Recombinant Hepatitis C Virus Envelope Glycoprotein Vaccine Elicits Antibodies Targeting Multiple Epitopes on the Envelope Glycoproteins Associated with Broad Cross-Neutralization

    PubMed Central

    Wong, Jason Alexander Ji-Xhin; Bhat, Rakesh; Hockman, Darren; Logan, Michael; Chen, Chao; Levin, Aviad; Frey, Sharon E.; Belshe, Robert B.; Tyrrell, D. Lorne

    2014-01-01

    ABSTRACT Although effective hepatitis C virus (HCV) antivirals are on the horizon, a global prophylactic vaccine for HCV remains elusive. The diversity of the virus is a major concern for vaccine development; there are 7 major genotypes of HCV found globally. Therefore, a successful vaccine will need to protect against HCV infection by all genotypes. Despite the diversity, many monoclonal antibodies (MAbs) with broadly cross-neutralizing activity have been described, suggesting the presence of conserved epitopes that can be targeted to prevent infection. Similarly, a vaccine comprising recombinant envelope glycoproteins (rE1E2) derived from the genotype 1a HCV-1 strain has been shown to be capable of eliciting cross-neutralizing antibodies in guinea pigs, chimpanzees, and healthy human volunteers. In order to investigate the basis for this cross-neutralization, epitope mapping of anti-E1E2 antibodies present within antisera from goats and humans immunized with HCV-1 rE1E2 was conducted through peptide mapping and competition studies with a panel of cross-neutralizing MAbs targeting various epitopes within E1E2. The immunized-goat antiserum was shown to compete with the binding of all MAbs tested (AP33, HC33.4, HC84.26, 1:7, AR3B, AR4A, AR5A, IGH526, and A4). Antisera showed the best competition against HC84.26 and AR3B and the weakest competition against AR4A. Furthermore, antisera from five immunized human vaccinees were shown to compete with five preselected MAbs (AP33, AR3B, AR4A, AR5A, and IGH526). These data show that immunization with HCV-1 rE1E2 elicits antibodies targeting multiple cross-neutralizing epitopes. Our results further support the use of such a vaccine antigen to induce cross-genotype neutralization. IMPORTANCE An effective prophylactic vaccine for HCV is needed for optimal control of the disease burden. The high diversity of HCV has posed a challenge for developing vaccines that elicit neutralizing antibodies for protection against infection. Despite this, we have previously shown that a vaccine comprising recombinant envelope glycoproteins derived from a single genotype 1a strain was capable of eliciting a cross-neutralizing antibody response in human volunteers. Here, we have used competition binding assays and peptide binding assays to show that antibodies present in the antisera from vaccinated goats and humans bind epitopes overlapping with those of a variety of well-characterized cross-neutralizing monoclonal antibodies. This provides a mechanism for the cross-neutralizing human antisera: antibodies present in the antisera bind to conserved regions associated with cross-neutralization. Importantly, this work provides further support for a vaccine comprising recombinant envelope glycoproteins, perhaps in a formulation with a vaccine component eliciting strong anti-HCV CD4+ and CD8+ T cell responses. PMID:25275133

  16. Toward Effective HIV Vaccination INDUCTION OF BINARY EPITOPE REACTIVE ANTIBODIES WITH BROAD HIV NEUTRALIZING ACTIVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishiyama, Yasuhiro; Planque, Stephanie; Mitsuda, Yukie

    2009-11-23

    We describe murine monoclonal antibodies (mAbs) raised by immunization with an electrophilic gp120 analog (E-gp120) expressing the rare ability to neutralize genetically heterologous human immunodeficiency virus (HIV) strains. Unlike gp120, E-gp120 formed covalent oligomers. The reactivity of gp120 and E-gp120 with mAbs to reference neutralizing epitopes was markedly different, indicating their divergent structures. Epitope mapping with synthetic peptides and electrophilic peptide analogs indicated binary recognition of two distinct gp120 regions by anti-E-gp120 mAbs, the 421-433 and 288-306 peptide regions. Univalent Fab and single chain Fv fragments expressed the ability to recognize both peptides. X-ray crystallography of an anti-E-gp120 Fab fragmentmore » revealed two neighboring cavities, the typical antigen-binding cavity formed by the complementarity determining regions (CDRs) and another cavity dominated by antibody heavy chain variable (VH) domain framework (FR) residues. Substitution of the FR cavity VH Lys-19 residue by an Ala residue resulted in attenuated binding of the 421-433 region peptide probe. The CDRs and VH FR replacement/silent mutation ratios exceeded the ratio for a random mutation process, suggesting adaptive development of both putative binding sites. All mAbs studied were derived from VH1 family genes, suggesting biased recruitment of the V gene germ line repertoire by E-gp120. The conserved 421-433 region of gp120 is essential for HIV binding to host CD4 receptors. This region is recognized weakly by the FR of antibodies produced without exposure to HIV, but it usually fails to induce adaptive synthesis of neutralizing antibodies. We present models accounting for improved CD4-binding site recognition and broad HIV neutralizing activity of the mAbs, long sought goals in HIV vaccine development.« less

  17. Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia

    NASA Astrophysics Data System (ADS)

    Shingai, Masashi; Nishimura, Yoshiaki; Klein, Florian; Mouquet, Hugo; Donau, Olivia K.; Plishka, Ronald; Buckler-White, Alicia; Seaman, Michael; Piatak, Michael; Lifson, Jeffrey D.; Dimitrov, Dimiter; Nussenzweig, Michel C.; Martin, Malcolm A.

    2013-11-01

    Neutralizing antibodies can confer immunity to primate lentiviruses by blocking infection in macaque models of AIDS. However, earlier studies of anti-human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies administered to infected individuals or humanized mice reported poor control of virus replication and the rapid emergence of resistant variants. A new generation of anti-HIV-1 monoclonal antibodies, possessing extraordinary potency and breadth of neutralizing activity, has recently been isolated from infected individuals. These neutralizing antibodies target different regions of the HIV-1 envelope glycoprotein including the CD4-binding site, glycans located in the V1/V2, V3 and V4 regions, and the membrane proximal external region of gp41 (refs 9, 10, 11, 12, 13, 14). Here we have examined two of the new antibodies, directed to the CD4-binding site and the V3 region (3BNC117 and 10-1074, respectively), for their ability to block infection and suppress viraemia in macaques infected with the R5 tropic simian-human immunodeficiency virus (SHIV)-AD8, which emulates many of the pathogenic and immunogenic properties of HIV-1 during infections of rhesus macaques. Either antibody alone can potently block virus acquisition. When administered individually to recently infected macaques, the 10-1074 antibody caused a rapid decline in virus load to undetectable levels for 4-7days, followed by virus rebound during which neutralization-resistant variants became detectable. When administered together, a single treatment rapidly suppressed plasma viraemia for 3-5weeks in some long-term chronically SHIV-infected animals with low CD4+ T-cell levels. A second cycle of anti-HIV-1 monoclonal antibody therapy, administered to two previously treated animals, successfully controlled virus rebound. These results indicate that immunotherapy or a combination of immunotherapy plus conventional antiretroviral drugs might be useful as a treatment for chronically HIV-1-infected individuals experiencing immune dysfunction.

  18. Llama Antibody Fragments Recognizing Various Epitopes of the CD4bs Neutralize a Broad Range of HIV-1 Subtypes A, B and C

    PubMed Central

    Aasa-Chapman, Marlèn; Gorlani, Andrea; Forsman Quigley, Anna; Hulsik, David Lutje; Chen, Lei; Weiss, Robin; de Haard, Hans; Verrips, Theo

    2012-01-01

    Many of the neutralising antibodies, isolated to date, display limited activities against the globally most prevalent HIV-1 subtypes A and C. Therefore, those subtypes are considered to be an important target for antibody-based therapy. Variable domains of llama heavy chain antibodies (VHH) have some superior properties compared with classical antibodies. Therefore we describe the application of trimeric forms of envelope proteins (Env), derived from HIV-1 of subtype A and B/C, for a prolonged immunization of two llamas. A panel of VHH, which interfere with CD4 binding to HIV-1 Env were selected with use of panning. The results of binding and competition assays to various Env, including a variant with a stabilized CD4-binding state (gp120Ds2), cross-competition experiments, maturation analysis and neutralisation assays, enabled us to classify the selected VHH into three groups. The VHH of group I were efficient mainly against viruses of subtype A, C and B′/C. The VHH of group II resemble the broadly neutralising antibody (bnmAb) b12, neutralizing mainly subtype B and C viruses, however some had a broader neutralisation profile. A representative of the third group, 2E7, had an even higher neutralization breadth, neutralizing 21 out of the 26 tested strains belonging to the A, A/G, B, B/C and C subtypes. To evaluate the contribution of certain amino acids to the potency of the VHH a small set of the mutants were constructed. Surprisingly this yielded one mutant with slightly improved neutralisation potency against 92UG37.A9 (subtype A) and 96ZM651.02 (subtype C). These findings and the well-known stability of VHH indicate the potential application of these VHH as anti-HIV-1 microbicides. PMID:22438910

  19. Comparative evaluation of trimeric envelope glycoproteins derived from subtype C and B HIV-1 R5 isolates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Indresh K.; Kan, Elaine; Sun Yide

    2008-03-15

    We previously reported that an envelope (Env) glycoprotein immunogen (o-gp140{delta}V2SF162) containing a partial deletion in the second variable loop (V2) derived from the R5-tropic HIV-1 isolate SF162 partially protected vaccinated rhesus macaques against pathogenic SHIV{sub SF162P4} virus. Extending our studies to subtype C isolate TV1, we have purified o-gp140{delta}V2TV1 (subtype C {delta}V2 trimer) to homogeneity, performed glycosylation analysis, and determined its ability to bind CD4, as well as a panel of well-characterized neutralizing monoclonal antibodies (mAb). In general, critical epitopes are preserved on the subtype C {delta}V2 trimer; however, we did not observe significant binding for the b12 mAb. Themore » molecular mass of subtype C {delta}V2 trimer was found to be 450 kDa, and the hydrodynamic radius was found to be 10.87 nm. Our data suggest that subtype C {delta}V2 trimer binds to CD4 with an affinity comparable to o-gp140{delta}V2SF162 (subtype B {delta}V2 trimer). Using isothermal titration calorimetric (ITC) analysis, we demonstrated that all three CD4 binding sites (CD4-BS) in both subtype C and B trimers are exposed and accessible. However, compared to subtype B trimer, the three CD4-BS in subtype C trimer have different affinities for CD4, suggesting a cooperativity of CD4 binding in subtype C trimer but not in subtype B trimer. Negative staining electron microscopy of the subtype C {delta}V2 trimer has demonstrated that it is in fact a trimer. These results highlight the importance of studying subtype C Env, and also of developing appropriate subtype C-specific reagents that may be used for better immunological characterization of subtype C Env for developing an AIDS vaccine.« less

  20. Structural basis for highly effective HIV-1 neutralization by CD4-mimetic miniproteins revealed by 1.5 Å co-crystal structure of gp120 and M48U1

    PubMed Central

    Acharya, Priyamvada; Luongo, Timothy; Louder, Mark K.; McKee, Krisha; Yang, Yongping; Kwon, Young Do; Mascola, John R.; Kessler, Pascal; Martin, Loïc; Kwong, Peter D.

    2014-01-01

    The interface between HIV-1 gp120 envelope glycoprotein and CD4 receptor contains an unusual interfacial cavity, the “Phe43 cavity”, which miniprotein mimetics of CD4 with non-natural extensions can potentially utilize to enhance their neutralization of HIV-1. Here we report co-crystal structures of HIV-1 gp120 with miniproteins M48U1 and M48U7, which insert cyclohexylmethoxy and 5-hydroxypentylmethoxy extensions, respectively, into the Phe43 cavity. Both inserts displayed flexibility and hydrophobic interactions, but the M48U1 insert showed better shape complementarity with the Phe43 cavity than the M48U7 insert. Subtle alteration in gp120 conformation played a substantial role in optimizing fit. With M48U1, these translated into a YU2-gp120 affinity of 0.015 nM and neutralization of all 180-circulating HIV-1 strains tested, except clade-A/E isolates with non-canonical Phe43 cavities. Ligand chemistry, shape complementary, surface burial, and gp120 conformation act in concert to modulate binding of ligands to the gp120-Phe43 cavity and, when optimized, can effect near pan-neutralization of HIV-1. PMID:23707685

  1. HIV-1 Antibody Neutralization Breadth Is Associated with Enhanced HIV-Specific CD4+ T Cell Responses

    PubMed Central

    Soghoian, Damien Z.; Lindqvist, Madelene; Ghebremichael, Musie; Donaghey, Faith; Carrington, Mary; Seaman, Michael S.; Kaufmann, Daniel E.; Walker, Bruce D.

    2015-01-01

    ABSTRACT Antigen-specific CD4+ T helper cell responses have long been recognized to be a critical component of effective vaccine immunity. CD4+ T cells are necessary to generate and maintain humoral immune responses by providing help to antigen-specific B cells for the production of antibodies. In HIV infection, CD4+ T cells are thought to be necessary for the induction of Env-specific broadly neutralizing antibodies. However, few studies have investigated the role of HIV-specific CD4+ T cells in association with HIV neutralizing antibody activity in vaccination or natural infection settings. Here, we conducted a comprehensive analysis of HIV-specific CD4+ T cell responses in a cohort of 34 untreated HIV-infected controllers matched for viral load, with and without neutralizing antibody breadth to a panel of viral strains. Our results show that the breadth and magnitude of Gag-specific CD4+ T cell responses were significantly higher in individuals with neutralizing antibodies than in those without neutralizing antibodies. The breadth of Gag-specific CD4+ T cell responses was positively correlated with the breadth of neutralizing antibody activity. Furthermore, the breadth and magnitude of gp41-specific, but not gp120-specific, CD4+ T cell responses were significantly elevated in individuals with neutralizing antibodies. Together, these data suggest that robust Gag-specific CD4+ T cells and, to a lesser extent, gp41-specific CD4+ T cells may provide important intermolecular help to Env-specific B cells that promote the generation or maintenance of Env-specific neutralizing antibodies. IMPORTANCE One of the earliest discoveries related to CD4+ T cell function was their provision of help to B cells in the development of antibody responses. Yet little is known about the role of CD4+ T helper responses in the setting of HIV infection, and no studies to date have evaluated the impact of HIV-specific CD4+ T cells on the generation of antibodies that can neutralize multiple different strains of HIV. Here, we addressed this question by analyzing HIV-specific CD4+ T cell responses in untreated HIV-infected persons with and without neutralizing antibodies. Our results indicate that HIV-infected persons with neutralizing antibodies have significantly more robust CD4+ T cell responses targeting Gag and gp41 proteins than individuals who lack neutralizing antibodies. These associations suggest that Gag- and gp41-specific CD4+ T cell responses may provide robust help to B cells for the generation or maintenance of neutralizing antibodies in natural HIV-infection. PMID:26656715

  2. The glycan-mediated mechanism on the interactions of gp120 with CD4 and antibody: Insights from molecular dynamics simulation.

    PubMed

    Zhang, Yan; Niu, Yuzhen; Tian, Jiaqi; Liu, Xuewei; Yao, Xiaojun; Liu, Huanxiang

    2017-12-01

    N-linked glycans such as 234 and 276 gp 120 glycans are vital components of HIV evasion from humoral immunity and important for HIV-1 neutralization of many broadly neutralizing antibodies (bNAbs). However, it is unknown the action mechanism of two glycans. To investigate the roles of the glycans on the interactions of gp120 with CD4 and antibody, molecular dynamic simulations based on gp120-CD4-8ANC195 complex with 234 and 276 gp 120 glycans, 234 gp 120 glycan, 276 gp 120 glycan, and without glycan were performed. Our results reveal that 276 gp 120 glycan can enhance gp120-CD4 and gp120-antibody interactions through the formation of hydrogen bonds of the glycan with CD4 and antibody and make the binding interface of gp120, CD4 and antibody stable; 234 gp 120 glycan primarily reinforces gp120-antibody interactions and weakly affects gp120-CD4 interactions as it mainly lies between gp120 and antibody. The co-operating of two glycans can enhance gp120-CD4 and gp120-antibody associations. Through the structural analysis, it can be seen that 234 gp 120 glycan leads to moving upward of two glycans and the variable region of heavy chain, which is favorable for the interactions of gp120 with CD4 and antibody. The information obtained in this study can provide the guidance for design vaccines and small molecule inhibitors. © 2017 John Wiley & Sons A/S.

  3. Identification of a D-amino acid decapeptide HIV-1 entry inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boggiano, Cesar; Jiang Shibo; Lu Hong

    2006-09-08

    Entry of human immunodeficiency virus type 1 (HIV-1) virion into host cells involves three major steps, each being a potential target for the development of entry inhibitors: gp120 binding to CD4, gp120-CD4 complex interacting with a coreceptor, and gp41 refolding to form a six-helix bundle. Using a D-amino acid decapeptide combinatorial library, we identified peptide DC13 as having potent HIV-1 fusion inhibitory activity, and effectively inhibiting infection by several laboratory-adapted and primary HIV-1 strains. While DC13 did not block binding of gp120 to CD4, nor disrupt the gp41 six-helix bundle formation, it effectively blocked the binding of an anti-CXCR4 monoclonalmore » antibody and chemokine SDF-1{alpha} to CXCR4-expressing cells. However, because R5-using primary viruses were also neutralized, the antiviral activity of DC13 implies additional mode(s) of action. These results suggest that DC13 is a useful HIV-1 coreceptor antagonist for CXCR4 and, due to its biostability and simplicity, may be of value for developing a new class of HIV-1 entry inhibitors.« less

  4. A Novel Assay for Antibody-Dependent Cell-Mediated Cytotoxicity against HIV-1- or SIV-Infected Cells Reveals Incomplete Overlap with Antibodies Measured by Neutralization and Binding Assays

    PubMed Central

    Alpert, Michael D.; Heyer, Lisa N.; Williams, David E. J.; Harvey, Jackson D.; Greenough, Thomas; Allhorn, Maria

    2012-01-01

    The resistance of human immunodeficiency virus type 1 (HIV-1) to antibody-mediated immunity often prevents the detection of antibodies that neutralize primary isolates of HIV-1. However, conventional assays for antibody functions other than neutralization are suboptimal. Current methods for measuring the killing of virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC) are limited by the number of natural killer (NK) cells obtainable from individual donors, donor-to-donor variation, and the use of nonphysiological targets. We therefore developed an ADCC assay based on NK cell lines that express human or macaque CD16 and a CD4+ T-cell line that expresses luciferase from a Tat-inducible promoter upon HIV-1 or simian immunodeficiency virus (SIV) infection. NK cells and virus-infected targets are mixed in the presence of serial plasma dilutions, and ADCC is measured as the dose-dependent loss of luciferase activity. Using this approach, ADCC titers were measured in plasma samples from HIV-infected human donors and SIV-infected macaques. For the same plasma samples paired with the same test viruses, this assay was approximately 2 orders of magnitude more sensitive than optimized assays for neutralizing antibodies—frequently allowing the measurement of ADCC in the absence of detectable neutralization. Although ADCC correlated with other measures of Env-specific antibodies, neutralizing and gp120 binding titers did not consistently predict ADCC activity. Hence, this assay affords a sensitive method for measuring antibodies capable of directing ADCC against HIV- or SIV-infected cells expressing native conformations of the viral envelope glycoprotein and reveals incomplete overlap of the antibodies that direct ADCC and those measured in neutralization and binding assays. PMID:22933282

  5. Focused Evolution of HIV-1 Neutralizing Antibodies Revealed by Structures and Deep Sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xueling; Zhou, Tongqing; Zhu, Jiang

    2013-03-04

    Antibody VRC01 is a human immunoglobulin that neutralizes about 90% of HIV-1 isolates. To understand how such broadly neutralizing antibodies develop, we used x-ray crystallography and 454 pyrosequencing to characterize additional VRC01-like antibodies from HIV-1-infected individuals. Crystal structures revealed a convergent mode of binding for diverse antibodies to the same CD4-binding-site epitope. A functional genomics analysis of expressed heavy and light chains revealed common pathways of antibody-heavy chain maturation, confined to the IGHV1-2*02 lineage, involving dozens of somatic changes, and capable of pairing with different light chains. Broadly neutralizing HIV-1 immunity associated with VRC01-like antibodies thus involves the evolution ofmore » antibodies to a highly affinity-matured state required to recognize an invariant viral structure, with lineages defined from thousands of sequences providing a genetic roadmap of their development.« less

  6. A view of the E2-CD81 interface at the binding site of a neutralizing antibody against hepatitis C virus.

    PubMed

    Harman, Christine; Zhong, Lilin; Ma, Li; Liu, Peter; Deng, Lu; Zhao, Zhong; Yan, Hailing; Struble, Evi; Virata-Theimer, Maria Luisa; Zhang, Pei

    2015-01-01

    Hepatitis C virus (HCV) glycoprotein E2 is considered a major target for generating neutralizing antibodies against HCV, primarily due to its role of engaging host entry factors, such as CD81, a key cell surface protein associated with HCV entry. Based on a series of biochemical analyses in combination with molecular docking, we present a description of a potential binding interface formed between the E2 protein and CD81. The virus side of this interface includes a hydrophobic helix motif comprised of residues W(437)LAGLF(442), which encompasses the binding site of a neutralizing monoclonal antibody, mAb41. The helical conformation of this motif provides a structural framework for the positioning of residues F442 and Y443, serving as contact points for the interaction with CD81. The cell side of this interface likewise involves a surface-exposed hydrophobic helix, namely, the D-helix of CD81, which coincides with the binding site of 1D6, a monoclonal anti-CD81 antibody known to block HCV entry. Our illustration of this virus-host interface suggests an important role played by the W(437)LAGLF(442) helix of the E2 protein in the hydrophobic interaction with the D-helix of CD81, thereby facilitating our understanding of the mechanism for antibody-mediated neutralization of HCV. Characterization of the interface established between a virus and host cells can provide important information that may be used for the control of virus infections. The interface that enables hepatitis C virus (HCV) to infect human liver cells has not been well understood because of the number of cell surface proteins, factors, and conditions found to be associated with the infection process. Based on a series of biochemical analyses in combination with molecular docking, we present such an interface, consisting of two hydrophobic helical structures, from the HCV E2 surface glycoprotein and the CD81 protein, a major host cell receptor recognized by all HCV strains. Our study reveals the critical role played by hydrophobic interactions in the formation of this virus-host interface, thereby contributing to our understanding of the mechanism for antibody-mediated neutralization of HCV. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. The impact of vaccination on the breadth and magnitude of the antibody response to influenza A viruses in HIV-infected individuals.

    PubMed

    Kohler, Ines; Kouyos, Roger; Bianchi, Matteo; Grube, Christina; Wyrzucki, Arkadiusz; Günthard, Huldrych F; Hangartner, Lars

    2015-09-10

    HIV-positive individuals have lower antibody titers to influenza viruses than HIV-negative individuals, and the benefits of the annual vaccinations are controversially discussed. Also, there is no information about the breadth of the antibody response in HIV-infected individuals. The binding and neutralizing antibody titers to various human and nonhuman influenza A virus strain were determined in sera from 146 HIV-infected volunteers: They were compared with those found in 305 randomly selected HIV-negative donors, and put in relation to HIV-specific parameters. Univariable and multivariable regression was used to identify HIV-specific parameters associated with the measured binding and neutralizing activity. Enzyme-linked immunosorbent assays and in-vitro neutralization assays were used to determine the binding and neutralizing antibodiy titers to homo and heterosubtypic influenza A subtypes. We found that both homo and heterosubtypic antibody titers are lower in HIV-positive individuals. Vaccination promoted higher binding and neutralizing antibody titers to human but not to nonhuman isolates. HIV-induced immune damage (high viral load, low CD4 T-cell counts, and long untreated disease progression) is associated with impaired homosubtypic responses, but can have beneficial effects on the development of heterosubtypic antibodies, and an improved ratio of binding to neutralizing antibody titers to homosubtypic isolates. Our results indicate that repetitive vaccinations in HIV-positive individuals enhance antibody titers to human isolates. Interestingly, development of antibody titers to conserved heterosubtypic epitopes paradoxically appeared to profit from HIV-induced immune damage, as did the ratio of binding to neutralizing antibodies.

  8. A Role for Small Antibody Fragments to Bind and Neutralize HIV | Center for Cancer Research

    Cancer.gov

    The surface of the Human Immunodeficiency Virus (HIV) is studded with numerous copies of the glycoprotein Env. Each Env spike is composed of three copies of the proteins gp41, which sits in the viral membrane, and gp120, which rests on top of each gp41 molecule. Env is essential for HIV-mediated infection because the binding of gp120 to the T cell surface receptor CD4

  9. Combined use of chiral ionic liquid surfactants and neutral cyclodextrins: evaluation of ionic liquid head groups for enantioseparation of neutral compounds in capillary electrophoresis.

    PubMed

    Liu, Yijin; Shamsi, Shahab A

    2014-09-19

    Cyclodextrins (CDs) are most commonly used chiral selectors in capillary electrophoresis (CE). Although the use of neutral CDs and its derivatives have shown to resolve plethora of charged enantiomers, they cannot resolve neutral enantiomers. The use of ionic liquids (ILs) surfactants forming successful complex with CDs present itself an opportunity to resolve neutral enantiomers. In this work, the effect of IL head groups and their complexation ability with heptakis (2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD) was studied for the separation of neutral enantiomers by CE. First, cationic IL type surfactants with different chiral head groups were synthesized. Physicochemical properties such as critical micelle concentration were determined by surface tension, whereas aggregation and polarity were determined by fluorescence spectroscopy. The complexation ability of ILs with TM-β-CD was characterized in the gas phase by CE-mass spectrometry. The influence of the type of ILs head group and its concentration on chiral resolution, resolution per unit time and selectivity were investigated for four structurally diverse neutral compounds. The binding constants of the neutral analytes to the IL-CD complex were estimated by y-reciprocal method. The hydrophobicity of the side chain of the IL head group displayed significant effect on the binding constants and enantioseparations. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Structural Plasticity and Conformational Transitions of HIV Envelope Glycoprotein gp120

    PubMed Central

    Korkut, Anil; Hendrickson, Wayne A.

    2012-01-01

    HIV envelope glycoproteins undergo large-scale conformational changes as they interact with cellular receptors to cause the fusion of viral and cellular membranes that permits viral entry to infect targeted cells. Conformational dynamics in HIV gp120 are also important in masking conserved receptor epitopes from being detected for effective neutralization by the human immune system. Crystal structures of HIV gp120 and its complexes with receptors and antibody fragments provide high-resolution pictures of selected conformational states accessible to gp120. Here we describe systematic computational analyses of HIV gp120 plasticity in such complexes with CD4 binding fragments, CD4 mimetic proteins, and various antibody fragments. We used three computational approaches: an isotropic elastic network analysis of conformational plasticity, a full atomic normal mode analysis, and simulation of conformational transitions with our coarse-grained virtual atom molecular mechanics (VAMM) potential function. We observe collective sub-domain motions about hinge points that coordinate those motions, correlated local fluctuations at the interfacial cavity formed when gp120 binds to CD4, and concerted changes in structural elements that form at the CD4 interface during large-scale conformational transitions to the CD4-bound state from the deformed states of gp120 in certain antibody complexes. PMID:23300605

  11. Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site

    PubMed Central

    West, Anthony P; Schamber, Michael; Gazumyan, Anna; Golijanin, Jovana; Seaman, Michael S; Fätkenheuer, Gerd; Klein, Florian; Nussenzweig, Michel C; Bjorkman, Pamela J

    2016-01-01

    HIV-1 vaccine design is informed by structural studies elucidating mechanisms by which broadly neutralizing antibodies (bNAbs) recognize and/or accommodate N-glycans on the trimeric envelope glycoprotein (Env). Variability in high-mannose and complex-type Env glycoforms leads to heterogeneity that usually precludes visualization of the native glycan shield. We present 3.5-Å- and 3.9-Å-resolution crystal structures of the HIV-1 Env trimer with fully processed and native glycosylation, revealing a glycan shield of high-mannose and complex-type N-glycans, which we used to define complete epitopes of two bNAbs. Env trimer was complexed with 10-1074 (against the V3-loop) and IOMA, a new CD4-binding site (CD4bs) antibody. Although IOMA derives from VH1-2*02, the germline gene of CD4bs-targeting VRC01-class bNAbs, its light chain lacks the short CDRL3 that defines VRC01-class bNAbs. Thus IOMA resembles 8ANC131-class/VH1-46–derived CD4bs bNAbs, which have normal-length CDRL3s. The existence of bNAbs that combine features of VRC01-class and 8ANC131-class antibodies has implications for immunization strategies targeting VRC01-like bNAbs. PMID:27617431

  12. Persistent infection of macaques with simian-human immunodeficiency viruses.

    PubMed Central

    Li, J T; Halloran, M; Lord, C I; Watson, A; Ranchalis, J; Fung, M; Letvin, N L; Sodroski, J G

    1995-01-01

    Chimeric simian-human immunodeficiency viruses (SHIV) containing the human immunodeficiency virus type 1 (HIV-1) tat, rev, env, and, in some cases, vpu genes were inoculated into eight cynomolgus monkeys. Viruses could be consistently recovered from the CD8-depleted peripheral blood lymphocytes of all eight animals for at least 2 months. After this time, virus isolation varied among the animals, with viruses continuing to be isolated from some animals beyond 600 days after inoculation. The level of viral RNA in plasma during acute infection and the frequency of virus isolation after the initial 2-month period were higher for the Vpu-positive viruses. All of the animals remained clinically healthy, and the absolute numbers of CD4-positive lymphocytes were stable. Antibodies capable of neutralizing HIV-1 were generated at high titers in animals exhibiting the greatest consistency of virus isolation. Strain-specific HIV-1-neutralizing antibodies were initially elicited, and then more broadly neutralizing antibodies were elicited. env sequences from two viruses isolated more than a year after infection were analyzed. In the Vpu-negative SHIV, for which virus loads were lower, a small amount of env variation, which did not correspond to that found in natural HIV-1 variants, was observed. By contrast, in the Vpu-positive virus, which was consistently isolated from the host animal, extensive variation of the envelope glycoproteins in the defined variable gp120 regions was observed. Escape from neutralization by CD4 binding site monoclonal antibodies was observed for the viruses with the latter envelope glycoproteins, and the mechanism of escape appears to involve decreased binding of the antibody to the monomeric gp120 glycoproteins. The consistency with which SHIV infection of cynomolgus monkeys is initiated and the similarities in the neutralizing antibody response to SHIV and HIV-1 support the utility of this model system for the study of HIV-1 prophylaxis. PMID:7474126

  13. Hydrogen passivation and multiple hydrogen-Hg vacancy complex impurities (nH-VHg, n = 1,2,3,4) in Hg0.75Cd0.25Te

    NASA Astrophysics Data System (ADS)

    Xue, L.; Tang, D. H.; Qu, X. D.; Sun, L. Z.; Lu, Wei; Zhong, J. X.

    2011-09-01

    Using first-principles method within the framework of the density functional theory, we study the formation energies and the binding energies of multiple hydrogen-mercury vacancy complex impurities (nH-VHg, n = 1,2,3,4) in Hg0.75Cd0.25Te. We find that, when mercury vacancies exist in Hg0.75Cd0.25Te, the formation of the complex impurity between H and VHg (1H-VHg) is easy and its binding energy is up to 0.56 eV. In this case, the deep acceptor level of mercury vacancy is passivated. As the hydrogen concentration increases, we find that the complex impurity between VHg and two hydrogen atoms (2H-VHg) is more stable than 1H-VHg. This complex passivates both the two acceptor levels introduced by mercury vacancy and neutralizes the p-type dopant characteristics of VHg in Hg0.75Cd0.25Te. Moreover, we find that the complex impurities formed by one VHg and three or four H atoms (3H-VHg, 4H-VHg) are still stable in Hg0.75Cd0.25Te, changing the VHg doped p-type Hg0.75Cd0.25Te to n-type material.

  14. Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Young Do; Finzi, Andrés; Wu, Xueling

    2013-03-04

    The HIV-1 envelope (Env) spike (gp120{sub 3}/gp41{sub 3}) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformationalmore » fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2- and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a 'ground state' for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from 'snapping' into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry.« less

  15. DNA vaccines expressing soluble CD4-envelope proteins fused to C3d elicit cross-reactive neutralizing antibodies to HIV-1.

    PubMed

    Bower, Joseph F; Green, Thomas D; Ross, Ted M

    2004-10-25

    DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d3) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d3. In addition, both sCD4-gp120 and sCD4-gp120-mC3d3 bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d3 or sCD4-gp120-mC3d3 elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d3-DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d3 had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d.

  16. Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits

    PubMed Central

    2014-01-01

    Background The trimeric envelope glycoproteins (Env) on the surface of HIV-1 virions are the targets for neutralizing antibodies (NAbs). No candidate HIV-1 immunogen has yet induced potent, broadly active NAbs (bNAbs). Part of the explanation may be that previously tested Env proteins inadequately mimic the functional, native Env complex. Trimerization and the proteolytic processing of Env precursors into gp120 and gp41 profoundly alter antigenicity, but soluble cleaved trimers are too unstable to serve as immunogens. By introducing stabilizing mutations (SOSIP), we constructed soluble, cleaved Env trimers derived from the HIV-1 subtype A isolate BG505 that resemble native Env spikes on virions both structurally and antigenically. Results We used surface plasmon resonance (SPR) to quantify antibody binding to different forms of BG505 Env: the proteolytically cleaved SOSIP.664 trimers, cleaved gp120-gp41ECTO protomers, and gp120 monomers. Non-NAbs to the CD4-binding site bound only marginally to the trimers but equally well to gp120-gp41ECTO protomers and gp120 monomers, whereas the bNAb VRC01, directed to the CD4bs, bound to all three forms. In contrast, bNAbs to V1V2 glycan-dependent epitopes bound preferentially (PG9 and PG16) or exclusively (PGT145) to trimers. We also explored the antigenic consequences of three different features of SOSIP.664 gp140 trimers: the engineered inter-subunit disulfide bond, the trimer-stabilizing I559P change in gp41ECTO, and proteolytic cleavage at the gp120-gp41ECTO junction. Each of these three features incrementally promoted native-like trimer antigenicity. We compared Fab and IgG versions of bNAbs and validated a bivalent model of IgG binding. The NAbs showed widely divergent binding kinetics and degrees of binding to native-like BG505 SOSIP.664. High off-rate constants and low stoichiometric estimates of NAb binding were associated with large amounts of residual infectivity after NAb neutralization of the corresponding BG505.T332N pseudovirus. Conclusions The antigenicity and structural integrity of cleaved BG505 SOSIP.664 trimers render these proteins good mimics of functional Env spikes on virions. In contrast, uncleaved gp140s antigenically resemble individual gp120-gp41ECTO protomers and gp120 monomers, but not native trimers. Although NAb binding to functional trimers may thus be both necessary and sufficient for neutralization, the kinetics and stoichiometry of the interaction influence the neutralizing efficacy of individual NAbs. PMID:24884783

  17. Effect of Dioxygen on Copper(II) Binding to α-Synuclein

    PubMed Central

    Lucas, Heather R.; Lee, Jennifer C.

    2010-01-01

    Using the fluorescent amino acid tryptophan (Trp), we have characterized the copper(II) binding of F4W α-synuclein in the presence and absence of dioxygen at neutral pH. Variations in Trp fluorescence indicate that copper(II) binding is enhanced by the presence of dioxygen, with the apparent dissociation constant (Kd(app)) changing from 100 nM (anaerobic) to 10 nM (aerobic). To investigate the possible role of methionine oxidation, complementary work focused on synthetic peptide models of the N-terminal Cu(II)-α-syn site, MDV(F/W) and M*DV(F/W), where M*= methionine sulfoxide. Furthermore, we employed circular dichroism (CD) spectroscopy to demonstrate that the phenyl-to-indole (F→W) substitution does not alter copper(II) binding properties and to confirm the 1:1 metal-peptide binding stoichiometry. CD comparisons also revealed that Met1 oxidation does not affect the copper-peptide conformation and further suggested the possible existence of a CuII-Trp/Phe (cation-π) interaction. PMID:20064662

  18. Interfacial Cavity Filling To Optimize CD4-Mimetic Miniprotein Interactions with HIV-1 Surface Glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morellato-Castillo, Laurence; Acharya, Priyamvada; Combes, Olivier

    Ligand affinities can be optimized by interfacial cavity filling. A hollow (Phe43 cavity) between HIV-1 surface glycoprotein (gp120) and cluster of differentiation 4 (CD4) receptor extends beyond residue phenylalanine 43 of CD4 and cannot be fully accessed by natural amino acids. To increase HIV-1 gp120 affinity for a family of CD4-mimetic miniproteins (miniCD4s), we targeted the gp120 Phe43 cavity with 11 non-natural phenylalanine derivatives, introduced into a miniCD4 named M48 (1). The best derivative, named M48U12 (13), bound HIV-1 YU2 gp120 with 8 pM affinity and showed potent HIV-1 neutralization. It contained a methylcyclohexyl derivative of 4-aminophenylalanine, and its cocrystalmore » structure with gp120 revealed the cyclohexane ring buried within the gp120 hydrophobic core but able to assume multiple orientations in the binding pocket, and the aniline nitrogen potentially providing a focus for further improvement. Altogether, the results provide a framework for filling the interfacial Phe43 cavity to enhance miniCD4 affinity.« less

  19. Design and crystal structure of a native-like HIV-1 envelope trimer that engages multiple broadly neutralizing antibody precursors in vivo

    DOE PAGES

    Medina-Ramírez, Max; Garces, Fernando; Escolano, Amelia; ...

    2017-08-28

    Induction of broadly neutralizing antibodies (bNAbs) by HIV-1 envelope glycoprotein immunogens would be a major advance toward an effective vaccine. A critical step in this process is the activation of naive B cells expressing germline (gl) antibody precursors that have the potential to evolve into bNAbs. Here, we reengineered the BG505 SOSIP.664 glycoprotein to engage gl precursors of bNAbs that target either the trimer apex or the CD4-binding site. The resulting BG505 SOSIP.v4.1-GT1 trimer binds multiple bNAb gl precursors in vitro. Immunization experiments in knock-in mice expressing gl-VRC01 or gl-PGT121 show that this trimer activates B cells in vivo, resultingmore » in the secretion of specific antibodies into the sera. A crystal structure of the gl-targeting trimer at 3.2-Å resolution in complex with neutralizing antibodies 35O22 and 9H+109L reveals a native-like conformation and the successful incorporation of design features associated with binding of multiple gl-bNAb precursors.« less

  20. Design and crystal structure of a native-like HIV-1 envelope trimer that engages multiple broadly neutralizing antibody precursors in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina-Ramírez, Max; Garces, Fernando; Escolano, Amelia

    Induction of broadly neutralizing antibodies (bNAbs) by HIV-1 envelope glycoprotein immunogens would be a major advance toward an effective vaccine. A critical step in this process is the activation of naive B cells expressing germline (gl) antibody precursors that have the potential to evolve into bNAbs. Here, we reengineered the BG505 SOSIP.664 glycoprotein to engage gl precursors of bNAbs that target either the trimer apex or the CD4-binding site. The resulting BG505 SOSIP.v4.1-GT1 trimer binds multiple bNAb gl precursors in vitro. Immunization experiments in knock-in mice expressing gl-VRC01 or gl-PGT121 show that this trimer activates B cells in vivo, resultingmore » in the secretion of specific antibodies into the sera. A crystal structure of the gl-targeting trimer at 3.2-Å resolution in complex with neutralizing antibodies 35O22 and 9H+109L reveals a native-like conformation and the successful incorporation of design features associated with binding of multiple gl-bNAb precursors.« less

  1. B cells from knock-in mice expressing broadly neutralizing HIV antibody b12 carry an innocuous B cell receptor responsive to HIV vaccine candidates.

    PubMed

    Ota, Takayuki; Doyle-Cooper, Colleen; Cooper, Anthony B; Doores, Katherine J; Aoki-Ota, Miyo; Le, Khoa; Schief, William R; Wyatt, Richard T; Burton, Dennis R; Nemazee, David

    2013-09-15

    Broadly neutralizing Abs against HIV protect from infection, but their routine elicitation by vaccination has not been achieved. To generate small animal models to test vaccine candidates, we have generated targeted transgenic ("knock-in") mice expressing, in the physiological Ig H and L chain loci, two well-studied broadly neutralizing Abs: 4E10, which interacts with the membrane proximal external region of gp41, and b12, which binds to the CD4 binding site on gp120. 4E10HL mice are described in the companion article (Doyle-Cooper et al., J. Immunol. 191: 3186-3191). In this article, we describe b12 mice. B cells in b12HL mice, in contrast to the case in 4E10 mice, were abundant and essentially monoclonal, retaining the b12 specificity. In cell culture, b12HL B cells responded avidly to HIV envelope gp140 trimers and to BCR ligands. Upon transfer to wild-type recipients, b12HL B cells responded robustly to vaccination with gp140 trimers. Vaccinated b12H mice, although generating abundant precursors and Abs with affinity for Env, were unable to rapidly generate neutralizing Abs, highlighting the importance of developing Ag forms that better focus responses to neutralizing epitopes. The b12HL and b12H mice should be useful in optimizing HIV vaccine candidates to elicit a neutralizing response while avoiding nonprotective specificities.

  2. DNA vaccines expressing soluble CD4-envelope proteins fused to C3d elicit cross-reactive neutralizing antibodies to HIV-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bower, Joseph F.; Green, Thomas D.; Ross, Ted M.

    2004-10-25

    DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d{sub 3}) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d{sub 3}. In addition, bothmore » sCD4-gp120 and sCD4-gp120-mC3d{sub 3} bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d{sub 3} or sCD4-gp120-mC3d{sub 3} elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d{sub 3}-DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d{sub 3} had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d.« less

  3. Energetics of dendrimer binding to HIV-1 gp120-CD4 complex and mechanismic aspects of its role as an entry-inhibitor

    NASA Astrophysics Data System (ADS)

    Saurabh, Suman; Sahoo, Anil Kumar; Maiti, Prabal K.

    2016-10-01

    Experiments and computational studies have established that de-protonated dendrimers (SPL7013 and PAMAM) act as entry-inhibitors of HIV. SPL7013 based Vivagel is currently under clinical development. The dendrimer binds to gp120 in the gp120-CD4 complex, destabilizes it by breaking key contacts between gp120 and CD4 and prevents viral entry into target cells. In this work, we provide molecular details and energetics of the formation of the SPL7013-gp120-CD4 ternary complex and decipher modes of action of the dendrimer in preventing viral entry. It is also known from experiments that the dendrimer binds weakly to gp120 that is not bound to CD4. It binds even more weakly to the CD4-binding region of gp120 and thus cannot directly block gp120-CD4 complexation. In this work, we examine the feasibility of dendrimer binding to the gp120-binding region of CD4 and directly blocking gp120-CD4 complex formation. We find that the process of the dendrimer binding to CD4 can compete with gp120-CD4 binding due to comparable free energy change for the two processes, thus creating a possibility for the dendrimer to directly block gp120-CD4 complexation by binding to the gp120-binding region of CD4.

  4. Antibody Conjugation Approach Enhances Breadth and Potency of Neutralization of Anti-HIV-1 Antibodies and CD4-IgG

    PubMed Central

    Gavrilyuk, Julia; Ban, Hitoshi; Uehara, Hisatoshi; Sirk, Shannon J.; Saye-Francisco, Karen; Cuevas, Angelica; Zablowsky, Elise; Oza, Avinash; Seaman, Michael S.; Burton, Dennis R.

    2013-01-01

    Broadly neutralizing antibodies PG9 and PG16 effectively neutralize 70 to 80% of circulating HIV-1 isolates. In this study, the neutralization abilities of PG9 and PG16 were further enhanced by bioconjugation with aplaviroc, a small-molecule inhibitor of virus entry into host cells. A novel air-stable diazonium hexafluorophosphate reagent that allows for rapid, tyrosine-selective functionalization of proteins and antibodies under mild conditions was used to prepare a series of aplaviroc-conjugated antibodies, including b12, 2G12, PG9, PG16, and CD4-IgG. The conjugated antibodies blocked HIV-1 entry through two mechanisms: by binding to the virus itself and by blocking the CCR5 receptor on host cells. Chemical modification did not significantly alter the potency of the parent antibodies against nonresistant HIV-1 strains. Conjugation did not alter the pharmacokinetics of a model IgG in blood. The PG9-aplaviroc conjugate was tested against a panel of 117 HIV-1 strains and was found to neutralize 100% of the viruses. PG9-aplaviroc conjugate IC50s were lower than those of PG9 in neutralization studies of 36 of the 117 HIV-1 strains. These results support this new approach to bispecific antibodies and offer a potential new strategy for combining HIV-1 therapies. PMID:23427154

  5. Broadly Neutralizing Antibody Responses in a Large Longitudinal Sub-Saharan HIV Primary Infection Cohort

    PubMed Central

    Landais, Elise; Huang, Xiayu; Havenar-Daughton, Colin; Murrell, Ben; Price, Matt A.; Wickramasinghe, Lalinda; Ramos, Alejandra; Bian, Charoan B.; Simek, Melissa; Allen, Susan; Karita, Etienne; Kilembe, William; Lakhi, Shabir; Inambao, Mubiana; Kamali, Anatoli; Sanders, Eduard J.; Anzala, Omu; Edward, Vinodh; Bekker, Linda-Gail; Tang, Jianming; Gilmour, Jill; Kosakovsky-Pond, Sergei L.; Phung, Pham; Wrin, Terri; Crotty, Shane; Godzik, Adam; Poignard, Pascal

    2016-01-01

    Broadly neutralizing antibodies (bnAbs) are thought to be a critical component of a protective HIV vaccine. However, designing vaccines immunogens able to elicit bnAbs has proven unsuccessful to date. Understanding the correlates and immunological mechanisms leading to the development of bnAb responses during natural HIV infection is thus critical to the design of a protective vaccine. The IAVI Protocol C program investigates a large longitudinal cohort of primary HIV-1 infection in Eastern and South Africa. Development of neutralization was evaluated in 439 donors using a 6 cross-clade pseudo-virus panel predictive of neutralization breadth on larger panels. About 15% of individuals developed bnAb responses, essentially between year 2 and year 4 of infection. Statistical analyses revealed no influence of gender, age or geographical origin on the development of neutralization breadth. However, cross-clade neutralization strongly correlated with high viral load as well as with low CD4 T cell counts, subtype-C infection and HLA-A*03(-) genotype. A correlation with high overall plasma IgG levels and anti-Env IgG binding titers was also found. The latter appeared not associated with higher affinity, suggesting a greater diversity of the anti-Env responses in broad neutralizers. Broadly neutralizing activity targeting glycan-dependent epitopes, largely the N332-glycan epitope region, was detected in nearly half of the broad neutralizers while CD4bs and gp41-MPER bnAb responses were only detected in very few individuals. Together the findings suggest that both viral and host factors are critical for the development of bnAbs and that the HIV Env N332-glycan supersite may be a favorable target for vaccine design. PMID:26766578

  6. Broadly Neutralizing Antibody Responses in a Large Longitudinal Sub-Saharan HIV Primary Infection Cohort.

    PubMed

    Landais, Elise; Huang, Xiayu; Havenar-Daughton, Colin; Murrell, Ben; Price, Matt A; Wickramasinghe, Lalinda; Ramos, Alejandra; Bian, Charoan B; Simek, Melissa; Allen, Susan; Karita, Etienne; Kilembe, William; Lakhi, Shabir; Inambao, Mubiana; Kamali, Anatoli; Sanders, Eduard J; Anzala, Omu; Edward, Vinodh; Bekker, Linda-Gail; Tang, Jianming; Gilmour, Jill; Kosakovsky-Pond, Sergei L; Phung, Pham; Wrin, Terri; Crotty, Shane; Godzik, Adam; Poignard, Pascal

    2016-01-01

    Broadly neutralizing antibodies (bnAbs) are thought to be a critical component of a protective HIV vaccine. However, designing vaccines immunogens able to elicit bnAbs has proven unsuccessful to date. Understanding the correlates and immunological mechanisms leading to the development of bnAb responses during natural HIV infection is thus critical to the design of a protective vaccine. The IAVI Protocol C program investigates a large longitudinal cohort of primary HIV-1 infection in Eastern and South Africa. Development of neutralization was evaluated in 439 donors using a 6 cross-clade pseudo-virus panel predictive of neutralization breadth on larger panels. About 15% of individuals developed bnAb responses, essentially between year 2 and year 4 of infection. Statistical analyses revealed no influence of gender, age or geographical origin on the development of neutralization breadth. However, cross-clade neutralization strongly correlated with high viral load as well as with low CD4 T cell counts, subtype-C infection and HLA-A*03(-) genotype. A correlation with high overall plasma IgG levels and anti-Env IgG binding titers was also found. The latter appeared not associated with higher affinity, suggesting a greater diversity of the anti-Env responses in broad neutralizers. Broadly neutralizing activity targeting glycan-dependent epitopes, largely the N332-glycan epitope region, was detected in nearly half of the broad neutralizers while CD4bs and gp41-MPER bnAb responses were only detected in very few individuals. Together the findings suggest that both viral and host factors are critical for the development of bnAbs and that the HIV Env N332-glycan supersite may be a favorable target for vaccine design.

  7. Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus.

    PubMed

    Giang, Erick; Dorner, Marcus; Prentoe, Jannick C; Dreux, Marlène; Evans, Matthew J; Bukh, Jens; Rice, Charles M; Ploss, Alexander; Burton, Dennis R; Law, Mansun

    2012-04-17

    Hepatitis C virus (HCV) infects ∼2% of the world's population. It is estimated that there are more than 500,000 new infections annually in Egypt, the country with the highest HCV prevalence. An effective vaccine would help control this expanding global health burden. HCV is highly variable, and an effective vaccine should target conserved T- and B-cell epitopes of the virus. Conserved B-cell epitopes overlapping the CD81 receptor-binding site (CD81bs) on the E2 viral envelope glycoprotein have been reported previously and provide promising vaccine targets. In this study, we isolated 73 human mAbs recognizing five distinct antigenic regions on the virus envelope glycoprotein complex E1E2 from an HCV-immune phage-display antibody library by using an exhaustive-panning strategy. Many of these mAbs were broadly neutralizing. In particular, the mAb AR4A, recognizing a discontinuous epitope outside the CD81bs on the E1E2 complex, has an exceptionally broad neutralizing activity toward diverse HCV genotypes and protects against heterologous HCV challenge in a small animal model. The mAb panel will be useful for the design and development of vaccine candidates to elicit broadly neutralizing antibodies to HCV.

  8. Antibody neutralization of retargeted measles viruses

    PubMed Central

    Lech, Patrycja J.; Pappoe, Roland; Nakamura, Takafumi; Tobin, Gregory J.; Nara, Peter L.; Russell, Stephen J.

    2014-01-01

    The measles virus (MV) vaccine lineage is a promising oncolytic but prior exposure to the measles vaccine or wild-type MV strains limits treatment utility due to the presence of anti-measles antibodies. MV entry can be redirected by displaying a polypeptide ligand on the Hemagglutinin (H) C-terminus. We hypothesized that retargeted MV would escape neutralization by monoclonal antibodies (mAbs) recognizing the H receptor-binding surface and be less susceptible to neutralization by human antisera. Using chimeric H proteins, with and without mutations that ablate MV receptor binding, we show that retargeted MVs escape mAbs that target the H receptor-binding surface by virtue of mutations that ablate infection via SLAM and CD46. However, C-terminally displayed domains do not mediate virus entry in the presence of human antibodies that bind to the underlying H domain. In conclusion, utility of retargeted oncolytic measles viruses does not extend to evasion of human serum neutralization. PMID:24725950

  9. Envelope conformational changes induced by human immunodeficiency virus type 1 attachment inhibitors prevent CD4 binding and downstream entry events.

    PubMed

    Ho, Hsu-Tso; Fan, Li; Nowicka-Sans, Beata; McAuliffe, Brian; Li, Chang-Ben; Yamanaka, Gregory; Zhou, Nannan; Fang, Hua; Dicker, Ira; Dalterio, Richard; Gong, Yi-Fei; Wang, Tao; Yin, Zhiwei; Ueda, Yasutsugu; Matiskella, John; Kadow, John; Clapham, Paul; Robinson, James; Colonno, Richard; Lin, Pin-Fang

    2006-04-01

    BMS-488043 is a small-molecule human immunodeficiency virus type 1 (HIV-1) CD4 attachment inhibitor with demonstrated clinical efficacy. The compound inhibits soluble CD4 (sCD4) binding to the 11 distinct HIV envelope gp120 proteins surveyed. Binding of BMS-488043 and that of sCD4 to gp120 are mutually exclusive, since increased concentrations of one can completely block the binding of the other without affecting the maximal gp120 binding capacity. Similarly, BMS-488043 inhibited virion envelope trimers from binding to sCD4-immunoglobulin G (IgG), with decreasing inhibition as the sCD4-IgG concentration increased, and BMS-488043 blocked the sCD4-induced exposure of the gp41 groove in virions. In both virion binding assays, BMS-488043 was active only when added prior to sCD4. Collectively, these results indicate that obstruction of gp120-sCD4 interactions is the primary inhibition mechanism of this compound and that compound interaction with envelope must precede CD4 binding. By three independent approaches, BMS-488043 was further shown to induce conformational changes within gp120 in both the CD4 and CCR5 binding regions. These changes likely prevent gp120-CD4 interactions and downstream entry events. However, BMS-488043 could only partially inhibit CD4 binding to an HIV variant containing a specific envelope truncation and altered gp120 conformation, despite effectively inhibiting the pseudotyped virus infection. Taken together, BMS-488043 inhibits viral entry primarily through altering the envelope conformation and preventing CD4 binding, and other downstream entry events could also be inhibited as a result of these induced conformational changes.

  10. In silico Analysis of HIV-1 Env-gp120 Reveals Structural Bases for Viral Adaptation in Growth-Restrictive Cells

    PubMed Central

    Yokoyama, Masaru; Nomaguchi, Masako; Doi, Naoya; Kanda, Tadahito; Adachi, Akio; Sato, Hironori

    2016-01-01

    Variable V1/V2 and V3 loops on human immunodeficiency virus type 1 (HIV-1) envelope-gp120 core play key roles in modulating viral competence to recognize two infection receptors, CD4 and chemokine-receptors. However, molecular bases for the modulation largely remain unclear. To address these issues, we constructed structural models for a full-length gp120 in CD4-free and -bound states. The models showed topologies of gp120 surface loop that agree with those in reported structural data. Molecular dynamics simulation showed that in the unliganded state, V1/V2 loop settled into a thermodynamically stable arrangement near V3 loop for conformational masking of V3 tip, a potent neutralization epitope. In the CD4-bound state, however, V1/V2 loop was rearranged near the bound CD4 to support CD4 binding. In parallel, cell-based adaptation in the absence of anti-viral antibody pressures led to the identification of amino acid substitutions that individually enhance viral entry and growth efficiencies in association with reduced sensitivity to CCR5 antagonist TAK-779. Notably, all these substitutions were positioned on the receptors binding surfaces in V1/V2 or V3 loop. In silico structural studies predicted some physical changes of gp120 by substitutions with alterations in viral replication phenotypes. These data suggest that V1/V2 loop is critical for creating a gp120 structure that masks co-receptor binding site compatible with maintenance of viral infectivity, and for tuning a functional balance of gp120 between immune escape ability and infectivity to optimize HIV-1 replication fitness. PMID:26903989

  11. Comprehensive Cross-Clade Characterization of Antibody-Mediated Recognition, Complement-Mediated Lysis, and Cell-Mediated Cytotoxicity of HIV-1 Envelope-Specific Antibodies toward Eradication of the HIV-1 Reservoir.

    PubMed

    Mujib, Shariq; Liu, Jun; Rahman, A K M Nur-Ur; Schwartz, Jordan A; Bonner, Phil; Yue, Feng Yun; Ostrowski, Mario A

    2017-08-15

    Immunotherapy with passive administration of broadly neutralizing HIV-1 envelope-specific antibodies (bnAbs) in the setting of established infection in vivo has yielded mixed results. The contribution of different antibodies toward the direct elimination of infected cells is poorly understood. In this study, we determined the ability of 12 well-characterized anti-HIV-1 neutralizing antibodies to recognize and eliminate primary CD4 T cells infected with HIV-1 belonging to clades A, B, C, and D, via antibody-dependent complement-mediated lysis (ADCML) and antibody-dependent cell-mediated cytotoxicity (ADCC), in vitro We further tested unique combinations of these antibodies to determine the optimal antibody cocktails to be tested in future clinical trials. We report that antibody binding to infected CD4 T cells is highly variable and correlates with ADCML and ADCC processes. Particularly, antibodies targeting the envelope glycan shield (2G12) and V1/V2 site (PG9, PG16, and PGT145) are best at recognizing HIV-1-infected CD4 T cells. However, only PG9 and PG16 and their combinations with other bnAbs sufficiently induced the elimination of HIV-1-infected CD4 T cells by ADCML, ADCC, or both. Notably, CD4 binding site antibodies VRC01, 3BNC117, and NIH45-46 G54W did not exhibit recognition of infected cells and were unable to induce their killing. Future trials geared toward the development of a cure for HIV/AIDS should incorporate V1/V2 antibodies for maximal clearance of infected cells. With the use of only primary immune cells, we conducted a comprehensive cross-clade physiological analysis to aid the direction of antibodies as therapeutics toward the development of a cure for HIV/AIDS. IMPORTANCE Several antibodies capable of neutralizing the majority of circulating HIV-1 strains have been identified to date and have been shown to prevent infection in animal models. However, the use of combinations of such broadly neutralizing antibodies (bnAbs) for the treatment and eradication of HIV-1 in infected humans remains uncertain. In this study, we tested the ability of bnAbs to directly recognize and eliminate primary human CD4 T cells infected with diverse HIV-1 strains representative of the global epidemic by antibody-dependent pathways. We also tested several combinations of bnAbs in our assays in order to maximize the clearance of infected cells. We show that the ability of bnAbs to identify and kill infected cells is highly variable and that only a few of them are able to exert this function. Our data will help guide the formulation of bnAbs to test in future human trials aimed at the development of a cure. Copyright © 2017 American Society for Microbiology.

  12. Minimally Activated CD8 Autoreactive T Cells Specific for IRBP Express a High Level of Foxp3 and Are Functionally Suppressive

    PubMed Central

    Peng, Yong; Shao, Hui; Ke, Yan; Zhang, Ping; Han, Gencheng; Kaplan, Henry J.; Sun, Deming

    2008-01-01

    Purpose Results in previous reports have demonstrated that immunization of the EAU-prone B6 mouse activates both CD4 and CD8 IRBP-specific T cells. The purpose of this study was to investigate structural and functional differences between CD4 and CD8 autoreactive T cells activated by the uveitogenic peptide. Methods Purified CD4 and CD8 isolated from B6 mice immunized with an uveitogenic peptide, interphotoreceptor retin-oid-binding protein (IRBP)1-20, were stimulated in vitro with various doses of immunizing peptide. The activated T cells were determined for cytokine production, expression of Foxp3, and suppressor activity. Results CD4 autoreactive T cells underwent full activation when stimulated with high or medium concentrations of immunizing peptide, whereas a high dose of antigenic peptide resulted in only modest activation of CD8 autoreactive T cells. When stimulated by a low dose (<0.1 μg/mL) of antigen or by of a high dose of antigen and a small amount of TGF-β1, the minimally activated CD8 T cells expressed a high level of Foxp3 and gained suppressor function. Conclusions Minimally activated CD8 autoreactive T cells can be functionally suppressive and may neutralize the tissue-damaging effect of the CD4 autoreactive T cells. PMID:17460277

  13. Subtype C gp140 Vaccine Boosts Immune Responses Primed by the South African AIDS Vaccine Initiative DNA-C2 and MVA-C HIV Vaccines after More than a 2-Year Gap

    PubMed Central

    Mayer, Kenneth H.; Elizaga, Marnie L.; Bekker, Linda-Gail; Allen, Mary; Morris, Lynn; Montefiori, David; De Rosa, Stephen C.; Sato, Alicia; Gu, Niya; Tomaras, Georgia D.; Tucker, Timothy; Barnett, Susan W.; Mkhize, Nonhlanhla N.; Shen, Xiaoying; Downing, Katrina; Williamson, Carolyn; Pensiero, Michael; Corey, Lawrence; Williamson, Anna-Lise

    2016-01-01

    A phase I safety and immunogenicity study investigated South African AIDS Vaccine Initiative (SAAVI) HIV-1 subtype C (HIV-1C) DNA vaccine encoding Gag-RT-Tat-Nef and gp150, boosted with modified vaccinia Ankara (MVA) expressing matched antigens. Following the finding of partial protective efficacy in the RV144 HIV vaccine efficacy trial, a protein boost with HIV-1 subtype C V2-deleted gp140 with MF59 was added to the regimen. A total of 48 participants (12 U.S. participants and 36 Republic of South Africa [RSA] participants) were randomized to receive 3 intramuscular (i.m.) doses of SAAVI DNA-C2 of 4 mg (months 0, 1, and 2) and 2 i.m. doses of SAAVI MVA-C of 1.45 × 109 PFU (months 4 and 5) (n = 40) or of a placebo (n = 8). Approximately 2 years after vaccination, 27 participants were rerandomized to receive gp140/MF59 at 100 μg or placebo, as 2 i.m. injections, 3 months apart. The vaccine regimen was safe and well tolerated. After the DNA-MVA regimen, CD4+ T-cell and CD8+ T-cell responses occurred in 74% and 32% of the participants, respectively. The protein boost increased CD4+ T-cell responses to 87% of the subjects. All participants developed tier 1 HIV-1C neutralizing antibody responses as well as durable Env binding antibodies that recognized linear V3 and C5 peptides. The HIV-1 subtype C DNA-MVA vaccine regimen showed promising cellular immunogenicity. Boosting with gp140/MF59 enhanced levels of binding and neutralizing antibodies as well as CD4+ T-cell responses to HIV-1 envelope. (This study has been registered at ClinicalTrials.gov under registration no. NCT00574600 and NCT01423825.) PMID:27098021

  14. Broad neutralization response in a subset of HIV-1 subtype C-infected viraemic non-progressors from southern India.

    PubMed

    Nandagopal, Paneerselvam; Bhattacharya, Jayanta; Srikrishnan, Aylur K; Goyal, Rajat; Ravichandran Swathirajan, Chinnambedu; Patil, Shilpa; Saravanan, Shanmugam; Deshpande, Suprit; Vignesh, Ramachandran; Solomon, Sunil Suhas; Singla, Nikhil; Mukherjee, Joyeeta; Murugavel, Kailapuri G

    2018-02-05

    Broadly neutralizing antibodies (bnAbs) have been considered to be potent therapeutic tools and potential vaccine candidates to enable protection against various clades of human immunodeficiency virus (HIV). The generation of bnAbs has been associated with enhanced exposure to antigen, high viral load and low CD4+ T cell counts, among other factors. However, only limited data are available on the generation of bnAbs in viraemic non-progressors that demonstrate moderate to high viraemia. Further, since HIV-1 subtype C viruses account for more than 50 % of global HIV infections, the identification of bnAbs with novel specificities is crucial to enable the development of potent tools to aid in HIV therapy and prevention. In the present study, we analysed and compared the neutralization potential of responses in 70 plasma samples isolated from ART-naïve HIV-1 subtype C-infected individuals with various disease progression profiles against a panel of 30 pseudoviruses. Among the seven samples that exhibited a neutralization breadth of ≥70 %, four were identified as 'elite neutralizers', and three of these were from viraemic non-progressors while the fourth was from a typical progressor. Analysis of the neutralization specificities revealed that none of the four elite neutralizers were reactive to epitopes in the membrane proximal external region (MPER), CD4-binding site and V1V2 or V3 glycan. However, two of the four elite neutralizers exhibited enhanced sensitivity towards viruses lacking N332 glycan, indicating high neutralization potency. Overall, our findings indicate that the identification of potent neutralization responses with distinct epitope specificities is possible from the as yet unexplored Indian population, which has a high prevalence of HIV-1 subtype C infection.

  15. Cytokine refacing effect reduces granulocyte macrophage colony-stimulating factor susceptibility to antibody neutralization

    PubMed Central

    Heinzelman, Pete; Carlson, Sharon J.; Cox, George N.

    2015-01-01

    Crohn's Disease (CD) afflicts over half a million Americans with an annual economic impact exceeding $10 billion. Granulocyte macrophage colony-stimulating factor (GM-CSF) can increase patient immune responses against intestinal microbes that promote CD and has been effective for some patients in clinical trials. We have made important progress toward developing GM-CSF variants that could be more effective CD therapeutics by virtue of being less prone to neutralization by the endogenous GM-CSF autoantibodies that are highly expressed in CD patients. Yeast display engineering revealed mutations that increase GM-CSF variant binding affinity by up to ∼3-fold toward both GM-CSF receptor alpha and beta subunits in surface plasmon resonance experiments. Increased binding affinity did not reduce GM-CSF half-maximum effective concentration (EC50) values in conventional in vitro human leukocyte proliferation assays. Affinity-enhancing mutations did, however, promote a ‘refacing effect’ that imparted all five evaluated GM-CSF variants with increased in vitro bioactivity in the presence of GM-CSF-neutralizing polyclonal antisera. The most improved variant, H15L/R23L, was 6-fold more active than wild-type GM-CSF. Incorporation of additional known affinity-increasing mutations could augment the refacing effect and concomitant bioactivity improvements described here. PMID:25855658

  16. HIV-1 Therapy with Monoclonal Antibody 3BNC117 Elicits Host Immune Responses against HIV-1

    PubMed Central

    Schoofs, Till; Klein, Florian; Braunschweig, Malte; Kreider, Edward F.; Feldmann, Anna; Nogueira, Lilian; Oliveira, Thiago; Lorenzi, Julio C. C.; Parrish, Erica H.; Learn, Gerald H.; West, Anthony P.; Bjorkman, Pamela J.; Schlesinger, Sarah J.; Seaman, Michael S.; Czartoski, Julie; McElrath, M. Juliana; Pfeifer, Nico; Hahn, Beatrice H.; Caskey, Marina; Nussenzweig, Michel C.

    2016-01-01

    3BNC117 is a broad and potent anti-HIV-1 neutralizing antibody that targets the CD4 binding site on the viral envelope spike. When administered passively, this antibody can prevent infection in animal models and suppress viremia in HIV-1-infected individuals. Here we report that HIV-1 immunotherapy with a single injection of 3BNC117 impacts host antibody responses in viremic subjects. In comparison to untreated controls that showed little change in their neutralizing activity over a six-month period, 3BNC117 infusion significantly improved neutralizing responses to heterologous tier 2 viruses in nearly all study participants. We conclude that 3BNC117-mediated immunotherapy enhances host humoral immunity to HIV-1. PMID:27199429

  17. A Comparative Phase I Study of Combination, Homologous Subtype-C DNA, MVA, and Env gp140 Protein/Adjuvant HIV Vaccines in Two Immunization Regimes

    PubMed Central

    Joseph, Sarah; Quinn, Killian; Greenwood, Aldona; Cope, Alethea V.; McKay, Paul F.; Hayes, Peter J.; Kopycinski, Jakub T.; Gilmour, Jill; Miller, Aleisha N.; Geldmacher, Christof; Nadai, Yuka; Ahmed, Mohamed I. M.; Montefiori, David C.; Dally, Len; Bouliotis, George; Lewis, David J. M.; Tatoud, Roger; Wagner, Ralf; Esteban, Mariano; Shattock, Robin J.; McCormack, Sheena; Weber, Jonathan

    2017-01-01

    There remains an urgent need for a prophylactic HIV vaccine. We compared combined MVA and adjuvanted gp140 to sequential MVA/gp140 after DNA priming. We expected Env-specific CD4+ T-cells after DNA and MVA priming, and Env-binding antibodies in 100% individuals after boosting with gp140 and that combined vaccines would not compromise safety and might augment immunogenicity. Forty volunteers were primed three times with DNA plasmids encoding (CN54) env and (ZM96) gag-pol-nef at 0, 4 and 8 weeks then boosted with MVA-C (CN54 env and gag-pol-nef) and glucopyranosyl lipid adjuvant—aqueous formulation (GLA-AF) adjuvanted CN54gp140. They were randomised to receive them in combination at the same visit at 16 and 20 weeks (accelerated) or sequentially with MVA-C at 16, 20, and GLA-AF/gp140 at 24 and 28 weeks (standard). All vaccinations were intramuscular. Primary outcomes included ≥grade 3 safety events and the titer of CN54gp140-specific binding IgG. Other outcomes included neutralization, binding antibody specificity and T-cell responses. Two participants experienced asymptomatic ≥grade 3 transaminitis leading to discontinuation of vaccinations, and three had grade 3 solicited local or systemic reactions. A total of 100% made anti-CN54gp140 IgG and combining vaccines did not significantly alter the response; geometric mean titer 6424 (accelerated) and 6578 (standard); neutralization of MW965.2 Tier 1 pseudovirus was superior in the standard group (82 versus 45% responders, p = 0.04). T-cell ELISpot responses were CD4+ and Env-dominant; 85 and 82% responding in the accelerated and standard groups, respectively. Vaccine-induced IgG responses targeted multiple regions within gp120 with the V3 region most immunodominant and no differences between groups detected. Combining MVA and gp140 vaccines did not result in increased adverse events and did not significantly impact upon the titer of Env-specific binding antibodies, which were seen in 100% individuals. The approach did however affect other immune responses; neutralizing antibody responses, seen only to Tier 1 pseudoviruses, were poorer when the vaccines were combined and while T-cell responses were seen in >80% individuals in both groups and similarly CD4 and Env dominant, their breadth/polyfunctionality tended to be lower when the vaccines were combined, suggesting attenuation of immunogenicity and cautioning against this accelerated regimen. PMID:28275375

  18. Scavenger receptor function of mouse Fcγ receptor III contributes to progression of atherosclerosis in apolipoprotein E hyperlipidemic mice.

    PubMed

    Zhu, Xinmei; Ng, Hang Pong; Lai, Yen-Chun; Craigo, Jodi K; Nagilla, Pruthvi S; Raghani, Pooja; Nagarajan, Shanmugam

    2014-09-01

    Recent studies showed loss of CD36 or scavenger receptor-AI/II (SR-A) does not ameliorate atherosclerosis in a hyperlipidemic mouse model, suggesting receptors other than CD36 and SR-A may also contribute to atherosclerosis. In this report, we show that apolipoprotein E (apoE)-CD16 double knockout (DKO; apoE-CD16 DKO) mice have reduced atherosclerotic lesions compared with apoE knockout mice. In vivo and in vitro foam cell analyses showed apoE-CD16 DKO macrophages accumulated less neutral lipids. Reduced foam cell formation in apoE-CD16 DKO mice is not due to change in expression of CD36, SR-A, and LOX-1. This led to a hypothesis that CD16 may have scavenger receptor activity. We presented evidence that a soluble form of recombinant mouse CD16 (sCD16) bound to malondialdehyde-modified low-density lipoprotein (MDALDL), and this binding is blocked by molar excess of MDA- modified BSA and anti-MDA mAbs, suggesting CD16 specifically recognizes MDA epitopes. Interestingly, sCD16 inhibited MDALDL binding to macrophage cell line, as well as soluble forms of recombinant mouse CD36, SR-A, and LOX-1, indicating CD16 can cross-block MDALDL binding to other scavenger receptors. Anti-CD16 mAb inhibited immune complex binding to sCD16, whereas it partially inhibited MDALDL binding to sCD16, suggesting MDALDL binding site may be in close proximity to the immune complex binding site in CD16. Loss of CD16 expression resulted in reduced levels of MDALDL-induced proinflammatory cytokine expression. Finally, CD16-deficient macrophages showed reduced MDALDL-induced Syk phosphorylation. Collectively, our findings suggest scavenger receptor activity of CD16 may, in part, contribute to the progression of atherosclerosis. Copyright © 2014 by The American Association of Immunologists, Inc.

  19. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus

    PubMed Central

    Liao, Hua-Xin; Lynch, Rebecca; Zhou, Tongqing; Gao, Feng; Alam, S. Munir; Boyd, Scott D.; Fire, Andrew Z.; Roskin, Krishna M.; Schramm, Chaim A.; Zhang, Zhenhai; Zhu, Jiang; Shapiro, Lawrence; Mullikin, James C.; Gnanakaran, S.; Hraber, Peter; Wiehe, Kevin; Kelsoe, Garnett; Yang, Guang; Xia, Shi-Mao; Montefiori, David C.; Parks, Robert; Lloyd, Krissey E.; Scearce, Richard M.; Soderberg, Kelly A.; Cohen, Myron; Kaminga, Gift; Louder, Mark K.; Tran, Lillan M.; Chen, Yue; Cai, Fangping; Chen, Sheri; Moquin, Stephanie; Du, Xiulian; Joyce, Gordon M.; Srivatsan, Sanjay; Zhang, Baoshan; Zheng, Anqi; Shaw, George M.; Hahn, Beatrice H.; Kepler, Thomas B.; Korber, Bette T.M.; Kwong, Peter D.; Mascola, John R.; Haynes, Barton F.

    2013-01-01

    Current HIV-1 vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in ~20% of HIV-1-infected individuals, and details of their generation could provide a roadmap for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from time of infection. The mature antibody, CH103, neutralized ~55% of HIV-1 isolates, and its co-crystal structure with gp120 revealed a novel loop-based mechanism of CD4-binding site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the CH103-lineage unmutated common ancestor avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data elucidate the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies and provide insights into strategies to elicit similar antibodies via vaccination. PMID:23552890

  20. Targeting HIV Reservoir in Infected CD4 T Cells by Dual-Affinity Re-targeting Molecules (DARTs) that Bind HIV Envelope and Recruit Cytotoxic T Cells

    PubMed Central

    Sloan, Derek D.; Lam, Chia-Ying Kao; Irrinki, Alivelu; Liu, Liqin; Tsai, Angela; Pace, Craig S.; Kaur, Jasmine; Murry, Jeffrey P.; Balakrishnan, Mini; Moore, Paul A.; Johnson, Syd; Nordstrom, Jeffrey L.; Cihlar, Tomas; Koenig, Scott

    2015-01-01

    HIV reservoirs and production of viral antigens are not eliminated in chronically infected participants treated with combination antiretroviral therapy (cART). Novel therapeutic strategies aiming at viral reservoir elimination are needed to address chronic immune dysfunction and non-AIDS morbidities that exist despite effective cART. The HIV envelope protein (Env) is emerging as a highly specific viral target for therapeutic elimination of the persistent HIV-infected reservoirs via antibody-mediated cell killing. Dual-Affinity Re-Targeting (DART) molecules exhibit a distinct mechanism of action via binding the cell surface target antigen and simultaneously engaging CD3 on cytotoxic T lymphocytes (CTLs). We designed and evaluated Env-specific DARTs (HIVxCD3 DARTs) derived from known antibodies recognizing diverse Env epitopes with or without broadly neutralizing activity. HIVxCD3 DARTs derived from PGT121, PGT145, A32, and 7B2, but not VRC01 or 10E8 antibodies, mediated potent CTL-dependent killing of quiescent primary CD4 T cells infected with diverse HIV isolates. Similar killing activity was also observed with DARTs structurally modified for in vivo half-life extension. In an ex vivo model using cells isolated from HIV-infected participants on cART, combinations of the most potent HIVxCD3 DARTs reduced HIV expression both in quiescent and activated peripheral blood mononuclear cell cultures isolated from HIV-infected participants on suppressive cART. Importantly, HIVxCD3 DARTs did not induce cell-to-cell virus spread in resting or activated CD4 T cell cultures. Collectively, these results provide support for further development of HIVxCD3 DARTs as a promising therapeutic strategy for targeting HIV reservoirs. PMID:26539983

  1. Understanding the molecular mechanism of the broad and potent neutralization of HIV-1 by antibody VRC01 from the perspective of molecular dynamics simulation and binding free energy calculations.

    PubMed

    Zhang, Yan; Pan, Dabo; Shen, Yulin; Jin, Nengzhi; Liu, Huanxiang; Yao, Xiaojun

    2012-09-01

    VRC01 is one of the most broadly and potently neutralizing HIV-1 antibodies known-it has been shown to neutralize 91 % of the tested primary isolate Env pseudoviruses by recognizing the viral envelope glycoprotein gp120. To explore the mechanism of HIV-1 neutralization by VRC01 and thus obtain valuable information for vaccine design, we performed molecular dynamics simulations and binding free energy calculations for apo-VRC01, apo-gp120, and the gp120-VRC01 complex. For gp120, residue energy decomposition analysis showed that the hotspot residues Asn280, Lys282, Asp368, Ile371, and Asp457 are located in three primary loops, including the CD4-binding loop, loop D, and loop V5. For VRC01, the hotspot residues Trp47, Trp50, Asn58, Arg61, Gln64, Trp100, and Tyr91 mainly come from CDR2 of the heavy chain. By decomposing the binding free energy into different components, intermolecular van der Waals interactions and nonpolar solvation were found to dominate the binding process. Principal component analysis of loops D and V5, which are related to neutralization resistance, indicated that these two areas have a larger conformational space in apo-gp120 compared to bound gp120. A comparison of three representative structures from the cluster analysis of loops D and V5 indicated that changes primarily occur at the tip of loop V5, and are caused by fluctuations in the terminal Glu1 residue of the antibody. This information can be used to guide the design of vaccines and small molecule inhibitors.

  2. Antibody neutralization of retargeted measles viruses.

    PubMed

    Lech, Patrycja J; Pappoe, Roland; Nakamura, Takafumi; Tobin, Gregory J; Nara, Peter L; Russell, Stephen J

    2014-04-01

    The measles virus (MV) vaccine lineage is a promising oncolytic but prior exposure to the measles vaccine or wild-type MV strains limits treatment utility due to the presence of anti-measles antibodies. MV entry can be redirected by displaying a polypeptide ligand on the Hemagglutinin (H) C-terminus. We hypothesized that retargeted MV would escape neutralization by monoclonal antibodies (mAbs) recognizing the H receptor-binding surface and be less susceptible to neutralization by human antisera. Using chimeric H proteins, with and without mutations that ablate MV receptor binding, we show that retargeted MVs escape mAbs that target the H receptor-binding surface by virtue of mutations that ablate infection via SLAM and CD46. However, C-terminally displayed domains do not mediate virus entry in the presence of human antibodies that bind to the underlying H domain. In conclusion, utility of retargeted oncolytic measles viruses does not extend to evasion of human serum neutralization. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. CXCL4 downregulates the atheroprotective hemoglobin receptor CD163 in human macrophages.

    PubMed

    Gleissner, Christian A; Shaked, Iftach; Erbel, Christian; Böckler, Dittmar; Katus, Hugo A; Ley, Klaus

    2010-01-08

    CXCL4 is a platelet-derived chemokine that promotes macrophage differentiation from monocytes. Deletion of the PF4 gene that encodes CXCL4 reduces atherosclerotic lesions in ApoE(-/-) mice. We sought to study effects of CXCL4 on macrophage differentiation with possible relevance for atherogenesis. Flow cytometry for expression of surface markers in macrophage colony-stimulating factor (M-CSF)- and CXCL4-induced macrophages demonstrated virtually complete absence of the hemoglobin scavenger receptor CD163 in CXCL4-induced macrophages. mRNA for CD163 was downregulated as early as 2 hours after CXCL4. CD163 protein reached a minimum after 3 days, which was not reversed by treatment of cells with M-CSF. The CXCL4 effect was entirely neutralized by heparin, which bound CXCL4 and prevented CXCL4 surface binding to monocytes. Pretreatment of cells with chlorate, which inhibits glycosaminoglycan synthesis, strongly inhibited CXCL4-dependent downregulation of CD163. Similar to recombinant CXCL4, releasate from human platelets also reduced CD163 expression. CXCL4-differentiated macrophages were unable to upregulate the atheroprotective enzyme heme oxygenase-1 at the RNA and protein level in response to hemoglobin-haptoglobin complexes. Immunofluorescence of human atherosclerotic plaques demonstrated presence of both CD68+CD163+ and CD68+CD163- macrophages. PF4 and CD163 gene expression within human atherosclerotic lesions were inversely correlated, supporting the in vivo relevance of CXCL4-induced downregulation of CD163. CXCL4 may promote atherogenesis by suppressing CD163 in macrophages, which are then unable to upregulate the atheroprotective enzyme heme oxygenase-1 in response to hemoglobin.

  4. CXCL4 Downregulates the Atheroprotective Hemoglobin Receptor CD163 in Human Macrophages

    PubMed Central

    Gleissner, Christian A.; Shaked, Iftach; Erbel, Christian; Böckler, Dittmar; Katus, Hugo A.; Ley, Klaus

    2010-01-01

    Rationale CXCL4 is a platelet-derived chemokine that promotes macrophage differentiation from monocytes. Deletion of the PF4 gene that encodes CXCL4 reduces atherosclerotic lesions in ApoE−/− mice. Objective We sought to study effects of CXCL4 on macrophage differentiation with possible relevance for atherogenesis. Methods and Results Flow cytometry for expression of surface markers in macrophage colony–stimulating factor (M-CSF)– and CXCL4-induced macrophages demonstrated virtually complete absence of the hemoglobin scavenger receptor CD163 in CXCL4-induced macrophages. mRNA for CD163 was downregulated as early as 2 hours after CXCL4. CD163 protein reached a minimum after 3 days, which was not reversed by treatment of cells with M-CSF. The CXCL4 effect was entirely neutralized by heparin, which bound CXCL4 and prevented CXCL4 surface binding to monocytes. Pretreatment of cells with chlorate, which inhibits glycosaminoglycan synthesis, strongly inhibited CXCL4-dependent downregulation of CD163. Similar to recombinant CXCL4, releasate from human platelets also reduced CD163 expression. CXCL4-differentiated macrophages were unable to upregulate the atheroprotective enzyme heme oxygenase-1 at the RNA and protein level in response to hemoglobin–haptoglobin complexes. Immunofluorescence of human atherosclerotic plaques demonstrated presence of both CD68+CD163+ and CD68+CD163− macrophages. PF4 and CD163 gene expression within human atherosclerotic lesions were inversely correlated, supporting the in vivo relevance of CXCL4-induced downregulation of CD163. Conclusions CXCL4 may promote atherogenesis by suppressing CD163 in macrophages, which are then unable to upregulate the atheroprotective enzyme heme oxygenase-1 in response to hemoglobin. PMID:19910578

  5. Structural Basis of HCV Neutralization by Human Monoclonal Antibodies Resistant to Viral Neutralization Escape

    PubMed Central

    Krey, Thomas; Meola, Annalisa; Keck, Zhen-yong; Damier-Piolle, Laurence; Foung, Steven K. H.; Rey, Felix A.

    2013-01-01

    The high mutation rate of hepatitis C virus allows it to rapidly evade the humoral immune response. However, certain epitopes in the envelope glycoproteins cannot vary without compromising virus viability. Antibodies targeting these epitopes are resistant to viral escape from neutralization and understanding their binding-mode is important for vaccine design. Human monoclonal antibodies HC84-1 and HC84-27 target conformational epitopes overlapping the CD81 receptor-binding site, formed by segments aa434–446 and aa610–619 within the major HCV glycoprotein E2. No neutralization escape was yet observed for these antibodies. We report here the crystal structures of their Fab fragments in complex with a synthetic peptide comprising aa434–446. The structures show that the peptide adopts an α-helical conformation with the main contact residues F442 and Y443 forming a hydrophobic protrusion. The peptide retained its conformation in both complexes, independently of crystal packing, indicating that it reflects a surface feature of the folded glycoprotein that is exposed similarly on the virion. The same residues of E2 are also involved in interaction with CD81, suggesting that the cellular receptor binds the same surface feature and potential escape mutants critically compromise receptor binding. In summary, our results identify a critical structural motif at the E2 surface, which is essential for virus propagation and therefore represents an ideal candidate for structure-based immunogen design for vaccine development. PMID:23696737

  6. Uninfected Bystander Cells Impact the Measurement of HIV-Specific Antibody-Dependent Cellular Cytotoxicity Responses.

    PubMed

    Richard, Jonathan; Prévost, Jérémie; Baxter, Amy E; von Bredow, Benjamin; Ding, Shilei; Medjahed, Halima; Delgado, Gloria G; Brassard, Nathalie; Stürzel, Christina M; Kirchhoff, Frank; Hahn, Beatrice H; Parsons, Matthew S; Kaufmann, Daniel E; Evans, David T; Finzi, Andrés

    2018-03-20

    The conformation of the HIV-1 envelope glycoprotein (Env) substantially impacts antibody recognition and antibody-dependent cellular cytotoxicity (ADCC) responses. In the absence of the CD4 receptor at the cell surface, primary Envs sample a "closed" conformation that occludes CD4-induced (CD4i) epitopes. The virus controls CD4 expression through the actions of Nef and Vpu accessory proteins, thus protecting infected cells from ADCC responses. However, gp120 shed from infected cells can bind to CD4 present on uninfected bystander cells, sensitizing them to ADCC mediated by CD4i antibodies (Abs). Therefore, we hypothesized that these bystander cells could impact the interpretation of ADCC measurements. To investigate this, we evaluated the ability of antibodies to CD4i epitopes and broadly neutralizing Abs (bNAbs) to mediate ADCC measured by five ADCC assays commonly used in the field. Our results indicate that the uninfected bystander cells coated with gp120 are efficiently recognized by the CD4i ligands but not the bNabs. Consequently, the uninfected bystander cells substantially affect in vitro measurements made with ADCC assays that fail to identify responses against infected versus uninfected cells. Moreover, using an mRNA flow technique that detects productively infected cells, we found that the vast majority of HIV-1-infected cells in in vitro cultures or ex vivo samples from HIV-1-infected individuals are CD4 negative and therefore do not expose significant levels of CD4i epitopes. Altogether, our results indicate that ADCC assays unable to differentiate responses against infected versus uninfected cells overestimate responses mediated by CD4i ligands. IMPORTANCE Emerging evidence supports a role for antibody-dependent cellular cytotoxicity (ADCC) in protection against HIV-1 transmission and disease progression. However, there are conflicting reports regarding the ability of nonneutralizing antibodies targeting CD4-inducible (CD4i) Env epitopes to mediate ADCC. Here, we performed a side-by-side comparison of different methods currently being used in the field to measure ADCC responses to HIV-1. We found that assays which are unable to differentiate virus-infected from uninfected cells greatly overestimate ADCC responses mediated by antibodies to CD4i epitopes and underestimate responses mediated by broadly neutralizing antibodies (bNAbs). Our results strongly argue for the use of assays that measure ADCC against HIV-1-infected cells expressing physiologically relevant conformations of Env to evaluate correlates of protection in vaccine trials. Copyright © 2018 Richard et al.

  7. Cross-neutralizing human anti-poliovirus antibodies bind the recognition site for cellular receptor

    PubMed Central

    Chen, Zhaochun; Fischer, Elizabeth R.; Kouiavskaia, Diana; Hansen, Bryan T.; Ludtke, Steven J.; Bidzhieva, Bella; Makiya, Michelle; Agulto, Liane; Purcell, Robert H.; Chumakov, Konstantin

    2013-01-01

    Most structural information about poliovirus interaction with neutralizing antibodies was obtained in the 1980s in studies of mouse monoclonal antibodies. Recently we have isolated a number of human/chimpanzee anti-poliovirus antibodies and demonstrated that one of them, MAb A12, could neutralize polioviruses of both serotypes 1 and 2. This communication presents data on isolation of an additional cross-neutralizing antibody (F12) and identification of a previously unknown epitope on the surface of poliovirus virions. Epitope mapping was performed by sequencing of antibody-resistant mutants and by cryo-EM of complexes of virions with Fab fragments. The results have demonstrated that both cross-neutralizing antibodies bind the site located at the bottom of the canyon surrounding the fivefold axis of symmetry that was previously shown to interact with cellular poliovirus receptor CD155. However, the same antibody binds to serotypes 1 and 2 through different specific interactions. It was also shown to interact with type 3 poliovirus, albeit with about 10-fold lower affinity, insufficient for effective neutralization. Antibody interaction with the binding site of the cellular receptor may explain its broad reactivity and suggest that further screening or antibody engineering could lead to a universal antibody capable of neutralizing all three serotypes of poliovirus. PMID:24277851

  8. A Role for Small Antibody Fragments to Bind and Neutralize HIV | Center for Cancer Research

    Cancer.gov

    The surface of the Human Immunodeficiency Virus (HIV) is studded with numerous copies of the glycoprotein Env. Each Env spike is composed of three copies of the proteins gp41, which sits in the viral membrane, and gp120, which rests on top of each gp41 molecule. Env is essential for HIV-mediated infection because the binding of gp120 to the T cell surface receptor CD4 initiates a conformational change in Env exposing the fusion peptide, which inserts into the T cell membrane and helps fuse the T cell and virus together. This makes Env an attractive target for designing therapeutic inhibitory antibodies. However, the complexities of the HIV surface proteins and the tight association of the virus and T cell during infection have hampered the identification of full-length antibodies with effective HIV neutralizing activity.

  9. Isolation of HIV-1-Neutralizing Mucosal Monoclonal Antibodies from Human Colostrum

    PubMed Central

    Friedman, James; Alam, S. Munir; Shen, Xiaoying; Xia, Shi-Mao; Stewart, Shelley; Anasti, Kara; Pollara, Justin; Fouda, Genevieve G.; Yang, Guang; Kelsoe, Garnett; Ferrari, Guido; Tomaras, Georgia D.; Haynes, Barton F.; Liao, Hua-Xin

    2012-01-01

    Background Generation of potent anti-HIV antibody responses in mucosal compartments is a potential requirement of a transmission-blocking HIV vaccine. HIV-specific, functional antibody responses are present in breast milk, and these mucosal antibody responses may play a role in protection of the majority of HIV-exposed, breastfeeding infants. Therefore, characterization of HIV-specific antibodies produced by B cells in milk could guide the development of vaccines that elicit protective mucosal antibody responses. Methods We isolated B cells from colostrum of an HIV-infected lactating woman with a detectable neutralization response in milk and recombinantly produced and characterized the resulting HIV-1 Envelope (Env)-specific monoclonal antibodies (mAbs). Results The identified HIV-1 Env-specific colostrum mAbs, CH07 and CH08, represent two of the first mucosally-derived anti-HIV antibodies yet to be reported. Colostrum mAb CH07 is a highly-autoreactive, weakly-neutralizing gp140-specific mAb that binds to linear epitopes in the gp120 C5 region and gp41 fusion domain. In contrast, colostrum mAb CH08 is a nonpolyreactive CD4-inducible (CD4i) gp120-specific mAb with moderate breadth of neutralization. Conclusions These novel HIV-neutralizing mAbs isolated from a mucosal compartment provide insight into the ability of mucosal B cell populations to produce functional anti-HIV antibodies that may contribute to protection against virus acquisition at mucosal surfaces. PMID:22624058

  10. Synthesis of a ratiometric fluorescent peptide sensor for the highly selective detection of Cd2+.

    PubMed

    Li, Yan; Li, Lianzhi; Pu, Xuewei; Ma, Guolin; Wang, Erqiong; Kong, Jinming; Liu, Zhipeng; Liu, Yangzhong

    2012-06-15

    A novel ratiometric fluorescent peptidyl chemosensor (Dansyl-Cys-Pro-Gly-Cys-Trp-NH(2), D-P5) for metal ions detection has been synthesized via Fmoc solid-phase peptide synthesis. The chemosensor exhibited a high selectivity for Cd(2+) over other metal ions including competitive transition and Group I and II metal ions in neutral pH. The fluorescence emission intensity of D-P5 was significantly enhanced in the presence of Cd(2+) by fluorescent resonance energy transfer (FRET) and chelation enhanced fluorescence (CHEF) effects. The binding stoichiometry, detection limit, binding affinity, reversibility and pH sensitivity of the sensor for Cd(2+) were investigated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Delineating CD4 dependency of HIV-1: Adaptation to infect low level CD4 expressing target cells widens cellular tropism but severely impacts on envelope functionality

    PubMed Central

    Beauparlant, David; Rusert, Peter; Magnus, Carsten; Weber, Jacqueline; Uhr, Therese; Clapham, Paul R.; Metzner, Karin J.

    2017-01-01

    A hallmark of HIV-1 infection is the continuously declining number of the virus’ predominant target cells, activated CD4+ T cells. With diminishing CD4+ T cell levels, the capacity to utilize alternate cell types and receptors, including cells that express low CD4 receptor levels such as macrophages, thus becomes crucial. To explore evolutionary paths that allow HIV-1 to acquire a wider host cell range by infecting cells with lower CD4 levels, we dissected the evolution of the envelope-CD4 interaction under in vitro culture conditions that mimicked the decline of CD4high target cells, using a prototypic subtype B, R5-tropic strain. Adaptation to CD4low targets proved to severely alter envelope functions including trimer opening as indicated by a higher affinity to CD4 and loss in shielding against neutralizing antibodies. We observed a strikingly decreased infectivity on CD4high target cells, but sustained infectivity on CD4low targets, including macrophages. Intriguingly, the adaptation to CD4low targets altered the kinetic of the entry process, leading to rapid CD4 engagement and an extended transition time between CD4 and CCR5 binding during entry. This phenotype was also observed for certain central nervous system (CNS) derived macrophage-tropic viruses, highlighting that the functional perturbation we defined upon in vitro adaptation to CD4low targets occurs in vivo. Collectively, our findings suggest that CD4low adapted envelopes may exhibit severe deficiencies in entry fitness and shielding early in their evolution. Considering this, adaptation to CD4low targets may preferentially occur in a sheltered and immune-privileged environment such as the CNS to allow fitness restoring compensatory mutations to occur. PMID:28264054

  12. Uninfected Bystander Cells Impact the Measurement of HIV-Specific Antibody-Dependent Cellular Cytotoxicity Responses

    PubMed Central

    Richard, Jonathan; Prévost, Jérémie; Baxter, Amy E.; Ding, Shilei; Medjahed, Halima; Delgado, Gloria G.; Brassard, Nathalie; Stürzel, Christina M.; Kirchhoff, Frank; Hahn, Beatrice H.; Parsons, Matthew S.; Kaufmann, Daniel E.; Evans, David T.

    2018-01-01

    ABSTRACT The conformation of the HIV-1 envelope glycoprotein (Env) substantially impacts antibody recognition and antibody-dependent cellular cytotoxicity (ADCC) responses. In the absence of the CD4 receptor at the cell surface, primary Envs sample a “closed” conformation that occludes CD4-induced (CD4i) epitopes. The virus controls CD4 expression through the actions of Nef and Vpu accessory proteins, thus protecting infected cells from ADCC responses. However, gp120 shed from infected cells can bind to CD4 present on uninfected bystander cells, sensitizing them to ADCC mediated by CD4i antibodies (Abs). Therefore, we hypothesized that these bystander cells could impact the interpretation of ADCC measurements. To investigate this, we evaluated the ability of antibodies to CD4i epitopes and broadly neutralizing Abs (bNAbs) to mediate ADCC measured by five ADCC assays commonly used in the field. Our results indicate that the uninfected bystander cells coated with gp120 are efficiently recognized by the CD4i ligands but not the bNabs. Consequently, the uninfected bystander cells substantially affect in vitro measurements made with ADCC assays that fail to identify responses against infected versus uninfected cells. Moreover, using an mRNA flow technique that detects productively infected cells, we found that the vast majority of HIV-1-infected cells in in vitro cultures or ex vivo samples from HIV-1-infected individuals are CD4 negative and therefore do not expose significant levels of CD4i epitopes. Altogether, our results indicate that ADCC assays unable to differentiate responses against infected versus uninfected cells overestimate responses mediated by CD4i ligands. PMID:29559570

  13. Segregated Regulatory CD39+ CD4+ T Cell Function: TGF-β-Producing FoxP3− and IL-10-Producing FoxP3+ Cells Are Interdependent for Protection Against Collagen-Induced Arthritis1

    PubMed Central

    Kochetkova, Irina; Thornburg, Theresa; Callis, Gayle; Pascual, David W.

    2011-01-01

    Oral immunization with a Salmonella vaccine vector expressing enterotoxigenic E. coli colonization factor antigen I (CFA/I) can protect against collagen-induced arthritis (CIA) by dampening IL-17 and IFN-γ via enhanced IL-4, IL-10, and TGF-β. To identify the responsible regulatory CD4+ T cells making the host refractory to CIA, Salmonella-CFA/I induced CD39+CD4+ T cells with enhanced apyrase activity relative to Salmonella vector-immunized mice. Adoptive transfer of vaccine-induced CD39+CD4+ T cells into CIA mice conferred complete protection, while CD39−CD4+ T cells did not. Subsequent analysis of vaccinated FoxP3-GFP mice revealed the CD39+ T cells were composed of FoxP3-GFP− and FoxP3-GFP+ subpopulations. Although each adoptively transferred Salmonella-CFA/I-induced FoxP3− and FoxP3+CD39+CD4+ T cells could protect against CIA, each subset was not as efficacious as total CD39+CD4+ T cells, suggesting their interdependence for optimal protection. Cytokine analysis revealed FoxP3− CD39+CD4+ T cells produced TGF-β, and FoxP3+CD39+CD4+ T cells produced IL-10, showing a segregation of function. Moreover, donor FoxP3-GFP− CD4+ T cells converted to FoxP3-GFP+ CD39+CD4+ T cells in the recipients, showing plasticity of these regulatory T cells. TGF-β was found to be essential for protection since in vivo TGF-β neutralization reversed activation of cAMP-response element-binding protein (CREB) and reduced the development of CD39+CD4+ T cells. Thus, CD39 apyrase-expressing CD4+ T cells stimulated by Salmonella-CFA/I are composed of TGF-β-producing FoxP3− CD39+CD4+ T cells and support the stimulation of IL-10-producing FoxP3+ CD39+CD4+ T cells. PMID:21967895

  14. Vaccination with an adenoviral vector that encodes and displays a retroviral antigen induces improved neutralizing antibody and CD4+ T-cell responses and confers enhanced protection.

    PubMed

    Bayer, Wibke; Tenbusch, Matthias; Lietz, Ruth; Johrden, Lena; Schimmer, Simone; Uberla, Klaus; Dittmer, Ulf; Wildner, Oliver

    2010-02-01

    We present a new type of adenoviral vector that both encodes and displays a vaccine antigen on the capsid, thus combining in itself gene-based and protein vaccination; this vector resulted in an improved vaccination outcome in the Friend virus (FV) model. For presentation of the envelope protein gp70 of Friend murine leukemia virus on the adenoviral capsid, gp70 was fused to the adenovirus capsid protein IX. When compared to vaccination with conventional FV Env- and Gag-encoding adenoviral vectors, vaccination with the adenoviral vector that encodes and displays pIX-gp70 combined with an FV Gag-encoding vector resulted in significantly improved protection against systemic FV challenge infection, with highly controlled viral loads in plasma and spleen. This improved protection correlated with improved neutralizing antibody titers and stronger CD4(+) T-cell responses. Using a vector that displays gp70 without encoding it, we found that while the antigen display on the capsid alone was sufficient to induce high levels of binding antibodies, in vivo expression was necessary for the induction of neutralizing antibodies. This new type of adenovirus-based vaccine could be a valuable tool for vaccination.

  15. Specific ganglioside binding to receptor sites on T lymphocytes that couple to ganglioside-induced decrease of CD4 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, W.J.; Offner, H.; Vandenbark, A.A.

    1989-01-01

    The binding of different gangliosides to rat T-helper lymphocytes was characterized under conditions that decrease CD4 expression on different mammalian T-helper lymphoctyes. Saturation binding by monosialylated ({sub 3}H)-GM{sub 1} to rat T-lymphocytes was time- and temperature-dependent, had a dissociation constant (K{sub D}) of 2.2 {plus minus} 1.4 {mu}M and a binding capacity near 2 fmoles/cell. Competitive inhibition of ({sup 3}H)- GM{sub 1} binding demonstrated a structural-activity related to the number of unconstrained sialic acid moieties on GM{sub 1}-congeneric gangliosides. A comparison between the results of these binding studies and gangliosides-induced decrease of CD4 expression demonstrated that every aspect of ({supmore » 3}H)-GM{sub 1} binding concurs with ganglioside modulation of CD4 expression. It is concluded that the specific decrease of CD4 expression induced by pretreatment with gangliosides involves the initial process of gangliosides binding to specific sites on CD4{sup {double dagger}} T-helper lymphocytes.« less

  16. A single amino-acid change in a highly conserved motif of gp41 elicits HIV-1 neutralization and protects against CD4 depletion.

    PubMed

    Petitdemange, Caroline; Achour, Abla; Dispinseri, Stefania; Malet, Isabelle; Sennepin, Alexis; Ho Tsong Fang, Raphaël; Crouzet, Joël; Marcelin, Anne-Geneviève; Calvez, Vincent; Scarlatti, Gabriella; Debré, Patrice; Vieillard, Vincent

    2013-09-01

    The induction of neutralizing antibodies against conserved regions of the human immunodeficiency virus type 1 (HIV-1) envelope protein is a major goal of vaccine strategies. We previously identified 3S, a critical conserved motif of gp41 that induces the NKp44L ligand of an activating NK receptor. In vivo, anti-3S antibodies protect against the natural killer (NK) cell-mediated CD4 depletion that occurs without efficient viral neutralization. Specific substitutions within the 3S peptide motif were prepared by directed mutagenesis. Virus production was monitored by measuring the p24 production. Neutralization assays were performed with immune-purified antibodies from immunized mice and a cohort of HIV-infected patients. Expression of NKp44L on CD4(+) T cells and degranulation assay on activating NK cells were both performed by flow cytometry. Here, we show that specific substitutions in the 3S motif reduce viral infection without affecting gp41 production, while decreasing both its capacity to induce NKp44L expression on CD4(+) T cells and its sensitivity to autologous NK cells. Generation of antibodies in mice against the W614 specific position in the 3S motif elicited a capacity to neutralize cross-clade viruses, notable in its magnitude, breadth, and durability. Antibodies against this 3S variant were also detected in sera from some HIV-1-infected patients, demonstrating both neutralization activity and protection against CD4 depletion. These findings suggest that a specific substitution in a 3S-based immunogen might allow the generation of specific antibodies, providing a foundation for a rational vaccine that combine a capacity to neutralize HIV-1 and to protect CD4(+) T cells.

  17. R5 clade C SHIV strains with tier 1 or 2 neutralization sensitivity: tools to dissect env evolution and to develop AIDS vaccines in primate models.

    PubMed

    Siddappa, Nagadenahalli B; Watkins, Jennifer D; Wassermann, Klemens J; Song, Ruijiang; Wang, Wendy; Kramer, Victor G; Lakhashe, Samir; Santosuosso, Michael; Poznansky, Mark C; Novembre, Francis J; Villinger, François; Else, James G; Montefiori, David C; Rasmussen, Robert A; Ruprecht, Ruth M

    2010-07-21

    HIV-1 clade C (HIV-C) predominates worldwide, and anti-HIV-C vaccines are urgently needed. Neutralizing antibody (nAb) responses are considered important but have proved difficult to elicit. Although some current immunogens elicit antibodies that neutralize highly neutralization-sensitive (tier 1) HIV strains, most circulating HIVs exhibiting a less sensitive (tier 2) phenotype are not neutralized. Thus, both tier 1 and 2 viruses are needed for vaccine discovery in nonhuman primate models. We constructed a tier 1 simian-human immunodeficiency virus, SHIV-1157ipEL, by inserting an "early," recently transmitted HIV-C env into the SHIV-1157ipd3N4 backbone [1] encoding a "late" form of the same env, which had evolved in a SHIV-infected rhesus monkey (RM) with AIDS. SHIV-1157ipEL was rapidly passaged to yield SHIV-1157ipEL-p, which remained exclusively R5-tropic and had a tier 1 phenotype, in contrast to "late" SHIV-1157ipd3N4 (tier 2). After 5 weekly low-dose intrarectal exposures, SHIV-1157ipEL-p systemically infected 16 out of 17 RM with high peak viral RNA loads and depleted gut CD4+ T cells. SHIV-1157ipEL-p and SHIV-1157ipd3N4 env genes diverge mostly in V1/V2. Molecular modeling revealed a possible mechanism for the increased neutralization resistance of SHIV-1157ipd3N4 Env: V2 loops hindering access to the CD4 binding site, shown experimentally with nAb b12. Similar mutations have been linked to decreased neutralization sensitivity in HIV-C strains isolated from humans over time, indicating parallel HIV-C Env evolution in humans and RM. SHIV-1157ipEL-p, the first tier 1 R5 clade C SHIV, and SHIV-1157ipd3N4, its tier 2 counterpart, represent biologically relevant tools for anti-HIV-C vaccine development in primates.

  18. Loss of a single N-linked glycan allows CD4-independent human immunodeficiency virus type 1 infection by altering the position of the gp120 V1/V2 variable loops.

    PubMed

    Kolchinsky, P; Kiprilov, E; Bartley, P; Rubinstein, R; Sodroski, J

    2001-04-01

    The gp120 envelope glycoprotein of primary human immunodeficiency virus type 1 (HIV-1) promotes virus entry by sequentially binding CD4 and the CCR5 chemokine receptor on the target cell. Previously, we adapted a primary HIV-1 isolate, ADA, to replicate in CD4-negative canine cells expressing human CCR5. The gp120 changes responsible for CD4-independent replication were limited to the V2 loop-V1/V2 stem. Here we show that elimination of a single glycosylation site at asparagine 197 in the V1/V2 stem is sufficient for CD4-independent gp120 binding to CCR5 and for HIV-1 entry into CD4-negative cells expressing CCR5. Deletion of the V1/V2 loops also allowed CD4-independent viral entry and gp120 binding to CCR5. The binding of the wild-type ADA gp120 to CCR5 was less dependent upon CD4 at 4 degrees C than at 37 degrees C. In the absence of the V1/V2 loops, neither removal of the N-linked carbohydrate at asparagine 197 nor lowering of the temperature increased the CD4-independent phenotypes. A CCR5-binding conformation of gp120, achieved by CD4 interaction or by modification of temperature, glycosylation, or variable loops, was preferentially recognized by the monoclonal antibody 48d. These results suggest that the CCR5-binding region of gp120 is occluded by the V1/V2 variable loops, the position of which can be modulated by temperature, CD4 binding, or an N-linked glycan in the V1/V2 stem.

  19. Boosting of HIV envelope CD4 binding site antibodies with long variable heavy third complementarity determining region in the randomized double blind RV305 HIV-1 vaccine trial

    PubMed Central

    Ackerman, Margaret; Saunders, Kevin O.; Pollara, Justin; Vandergrift, Nathan; Parks, Rob; Michael, Nelson L.; O’Connell, Robert J.; Vasan, Sandhya; Rerks-Ngarm, Supachai; Kaewkungwal, Jaranit; Pitisuttithum, Punnee; Nitayaphan, Sorachai; Sinangil, Faruk; Phogat, Sanjay; Alam, S. Munir; Liao, Hua-Xin; Ferrari, Guido; Seaman, Michael S.; Montefiori, David C.; Harrison, Stephen C.; Haynes, Barton F.

    2017-01-01

    The canary pox vector and gp120 vaccine (ALVAC-HIV and AIDSVAX B/E gp120) in the RV144 HIV-1 vaccine trial conferred an estimated 31% vaccine efficacy. Although the vaccine Env AE.A244 gp120 is antigenic for the unmutated common ancestor of V1V2 broadly neutralizing antibody (bnAbs), no plasma bnAb activity was induced. The RV305 (NCT01435135) HIV-1 clinical trial was a placebo-controlled randomized double-blinded study that assessed the safety and efficacy of vaccine boosting on B cell repertoires. HIV-1-uninfected RV144 vaccine recipients were reimmunized 6–8 years later with AIDSVAX B/E gp120 alone, ALVAC-HIV alone, or a combination of ALVAC-HIV and AIDSVAX B/E gp120 in the RV305 trial. Env-specific post-RV144 and RV305 boost memory B cell VH mutation frequencies increased from 2.9% post-RV144 to 6.7% post-RV305. The vaccine was well tolerated with no adverse events reports. While post-boost plasma did not have bnAb activity, the vaccine boosts expanded a pool of envelope CD4 binding site (bs)-reactive memory B cells with long third heavy chain complementarity determining regions (HCDR3) whose germline precursors and affinity matured B cell clonal lineage members neutralized the HIV-1 CRF01 AE tier 2 (difficult to neutralize) primary isolate, CNE8. Electron microscopy of two of these antibodies bound with near-native gp140 trimers showed that they recognized an open conformation of the Env trimer. Although late boosting of RV144 vaccinees expanded a novel pool of neutralizing B cell clonal lineages, we hypothesize that boosts with stably closed trimers would be necessary to elicit antibodies with greater breadth of tier 2 HIV-1 strains. Trial Registration: ClinicalTrials.gov NCT01435135 PMID:28235027

  20. Boosting of HIV envelope CD4 binding site antibodies with long variable heavy third complementarity determining region in the randomized double blind RV305 HIV-1 vaccine trial.

    PubMed

    Easterhoff, David; Moody, M Anthony; Fera, Daniela; Cheng, Hao; Ackerman, Margaret; Wiehe, Kevin; Saunders, Kevin O; Pollara, Justin; Vandergrift, Nathan; Parks, Rob; Kim, Jerome; Michael, Nelson L; O'Connell, Robert J; Excler, Jean-Louis; Robb, Merlin L; Vasan, Sandhya; Rerks-Ngarm, Supachai; Kaewkungwal, Jaranit; Pitisuttithum, Punnee; Nitayaphan, Sorachai; Sinangil, Faruk; Tartaglia, James; Phogat, Sanjay; Kepler, Thomas B; Alam, S Munir; Liao, Hua-Xin; Ferrari, Guido; Seaman, Michael S; Montefiori, David C; Tomaras, Georgia D; Harrison, Stephen C; Haynes, Barton F

    2017-02-01

    The canary pox vector and gp120 vaccine (ALVAC-HIV and AIDSVAX B/E gp120) in the RV144 HIV-1 vaccine trial conferred an estimated 31% vaccine efficacy. Although the vaccine Env AE.A244 gp120 is antigenic for the unmutated common ancestor of V1V2 broadly neutralizing antibody (bnAbs), no plasma bnAb activity was induced. The RV305 (NCT01435135) HIV-1 clinical trial was a placebo-controlled randomized double-blinded study that assessed the safety and efficacy of vaccine boosting on B cell repertoires. HIV-1-uninfected RV144 vaccine recipients were reimmunized 6-8 years later with AIDSVAX B/E gp120 alone, ALVAC-HIV alone, or a combination of ALVAC-HIV and AIDSVAX B/E gp120 in the RV305 trial. Env-specific post-RV144 and RV305 boost memory B cell VH mutation frequencies increased from 2.9% post-RV144 to 6.7% post-RV305. The vaccine was well tolerated with no adverse events reports. While post-boost plasma did not have bnAb activity, the vaccine boosts expanded a pool of envelope CD4 binding site (bs)-reactive memory B cells with long third heavy chain complementarity determining regions (HCDR3) whose germline precursors and affinity matured B cell clonal lineage members neutralized the HIV-1 CRF01 AE tier 2 (difficult to neutralize) primary isolate, CNE8. Electron microscopy of two of these antibodies bound with near-native gp140 trimers showed that they recognized an open conformation of the Env trimer. Although late boosting of RV144 vaccinees expanded a novel pool of neutralizing B cell clonal lineages, we hypothesize that boosts with stably closed trimers would be necessary to elicit antibodies with greater breadth of tier 2 HIV-1 strains. ClinicalTrials.gov NCT01435135.

  1. Variables influencing anti-human immunodeficiency virus type 1 neutralizing human monoclonal antibody (NhMAb) production among infected Thais.

    PubMed

    Akapirat, Siriwat; Avihingsanon, Anchalee; Ananworanich, Jintanat; Schuetz, Alexandra; Ramasoota, Pongrama; Luplertlop, Natthanej; Ono, Ken-Ichiro; Ikuta, Kazuyoshi; Utachee, Piraporn; Kameoka, Masanori; Leaungwutiwong, Pornsawan

    2013-09-01

    We conducted this study to determine the clinical variables associated with the production of human immunodeficiency virus type 1 (HIV-1) circulating recombinant form (CRF) 01_AE neutralizing human monoclonal antibodies (NhMAbs) using a hybridoma technique. This cross sectional study was performed in 20 asymptomatic HIV-1-infected Thais. Peripheral blood mononuclear cells (PBMCs) were obtained from each study participant and fused with SPYMEG cells. Culture supernatant collected from growing hybridomas was tested for neutralizing activity against HIV-1 CRF01_AE Env-recombinant viruses. Fifty hybridomas expressing anti-HIV-1 NhMAbs with strong neutralizing activity against at least 1 CRF01_AE Env-recombinant virus were found. A positive association between the numbers of hybridomas produced and the CD4 counts of study participants (p = 0.019) was observed. NhMAb-producing hybridomas with strong neutralizing activity were mostly found in participans diagnosed with HIV-1 infection within the previous 1 year. The HIV-1 viral load was not significantly correlated with the numbers of either established hybridomas or clones expressing anti-HIV-1 NhMAbs with strong neutralizing activity. To our knowledge, this is the first study of NhMAb-producing hybridomas obtained from HIV-1 CRF01_AE-infected populations identified by antibody binding to HIV-1 V3 loop peptide enzyme-linked immunosorbent assay (ELISA) or TRUGENE HIV-1 Genotyping Assay (HIV-1 pol sequence). It provides important criterion to slect study participants with high CD4 counts who produce large numbers of hybridoma clones. The results are valuable for further studies related to nurtalizing antibodies production and HIV-1 vaccine development.

  2. CD4-binding site alterations in CCR5-using HIV-1 envelopes influencing gp120-CD4 interactions and fusogenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterjovski, Jasminka; Churchill, Melissa J.; Roche, Michael

    2011-02-20

    CD4-binding site (CD4bs) alterations in gp120 contribute to different pathophysiological phenotypes of CCR5-using (R5) HIV-1 strains, but the potential structural basis is unknown. Here, we characterized functionally diverse R5 envelope (Env) clones (n = 16) to elucidate potential structural alterations within the gp120 CD4bs that influence Env function. Initially, we showed that the magnitude of gp120-CD4-binding correlates with increased fusogenicity and reduced CD4 dependence. Analysis of three-dimensional gp120 structural models revealed two CD4bs variants, D279 and N362, that were associated with reduced CD4 dependence. Further structural analysis showed that a wider aperture of the predicted CD4bs cavity, as constrained bymore » the inner-most atoms at the gp120 V1V2 stem and the V5 loop, was associated with amino acid alterations within V5 and correlated with increased gp120-CD4 binding and increased fusogenicity. Our results provide evidence that the gp120 V5 loop may alter CD4bs conformation and contribute to increased gp120-CD4 interactions and Env fusogenicity.« less

  3. Distinct Mechanisms Regulate Exposure of Neutralizing Epitopes in the V2 and V3 Loops of HIV-1 Envelope

    PubMed Central

    Upadhyay, Chitra; Mayr, Luzia M.; Zhang, Jing; Kumar, Rajnish; Gorny, Miroslaw K.; Nádas, Arthur; Zolla-Pazner, Susan

    2014-01-01

    ABSTRACT Broadly neutralizing antibodies targeting the HIV-1 envelope (Env) are key components for protection against HIV-1. However, many cross-reactive epitopes are often occluded. This study investigates the mechanisms contributing to the masking of V2i (variable loop V2 integrin) epitopes compared to the accessibility of V3 epitopes. V2i are conformation-dependent epitopes encompassing the integrin α4β7-binding motif on the V1V2 loop of HIV-1 Env gp120. The V2i monoclonal antibodies (MAbs) display extensive cross-reactivity with gp120 monomers from many subtypes but neutralize only few viruses, indicating V2i's cryptic nature. First, we asked whether CD4-induced Env conformational changes affect V2i epitopes similarly to V3. CD4 treatment of BaL and JRFL pseudoviruses increased their neutralization sensitivity to V3 MAbs but not to the V2i MAbs. Second, the contribution of N-glycans in masking V2i versus V3 epitopes was evaluated by testing the neutralization of pseudoviruses produced in the presence of a glycosidase inhibitor, kifunensine. Viruses grown in kifunensine were more sensitive to neutralization by V3 but not V2i MAbs. Finally, we evaluated the time-dependent dynamics of the V2i and V3 epitopes. Extending the time of virus-MAb interaction to 18 h before adding target cells increased virus neutralization by some V2i MAbs and all V3 MAbs tested. Consistent with this, V2i MAb binding to Env on the surface of transfected cells also increased in a time-dependent manner. Hence, V2i and V3 epitopes are highly dynamic, but distinct factors modulate the antibody accessibility of these epitopes. The study reveals the importance of the structural dynamics of V2i and V3 epitopes in determining HIV-1 neutralization by antibodies targeting these sites. IMPORTANCE Conserved neutralizing epitopes are present in the V1V2 and V3 regions of HIV-1 Env, but these epitopes are often occluded from Abs. This study reveals that distinct mechanisms contribute to the masking of V3 epitopes and V2i epitopes in the V1V2 domain. Importantly, V3 MAbs and some V2i MAbs display greater neutralization against relatively resistant HIV-1 isolates when the MAbs interact with the virus for a prolonged period of time. Given their highly immunogenic nature, V3 and V2i epitopes are valuable targets that would augment the efficacy of HIV vaccines. PMID:25165106

  4. Single N277A substitution in C2 of simian immunodeficiency virus envelope influences vaccine-elicited CD4i neutralizing and anti-V2 antibody responses.

    PubMed

    Tang, Xian; Guo, Jia; Cheng, Lin; Sun, Caijun; Liu, Li; Zuo, Teng; Wang, Hui; Chen, Ling; Zhang, Linqi; Chen, Zhiwei

    2017-05-02

    An effective HIV vaccine remains elusive, and immunogens capable of eliciting protective host humoral immunity have not yet been identified. Although HIV/SIV infections result in the abundant production of CD4-induced (CD4i) antibodies (Abs), these Abs are not protective due to steric restrictions following gp120 binding to CD4 on target cells. Here we report that both DNA- and vaccinia-based vaccines encoding SIV mac239 gp160 readily elicited high levels of CD4i Abs in experimental animals. We identified a highly conserved N-linked glycosylation site N277 in the C2 region which strongly affected the immunogenicity of the CD4i Ab domain. Moreover, a single N277A substitution significantly enhanced the immunogenicity of the V2 domain yielding higher titers and frequency of anti-V2 Ab responses as determined by ELISA and yeast antigen display mapping, respectively. Importantly, immune sera elicited by the N277A-mutated gp160 exhibited elevated antibody-dependent cellular cytotoxicity (ADCC) activity. ADCC activity correlated positively with the anti-V2 Ab titer yet, inversely with CD4i Ab titer. Thus, we identified a determinant of the CD4i domain that might affect vaccine-elicited anti-V2 Ab and ADCC responses to SIV mac239 . Our findings may have implications for design of immunogens to direct B cell recognition in the development of an Ab-based HIV vaccine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The presence of anti-Tat antibodies in HIV-infected individuals is associated with containment of CD4+ T-cell decay and viral load, and with delay of disease progression: results of a 3-year cohort study

    PubMed Central

    2014-01-01

    Background Tat is a key HIV-1 virulence factor, which plays pivotal roles in virus gene expression, replication, transmission and disease progression. After release, extracellular Tat accumulates in tissues and exerts effects on both the virus and the immune system, promoting immune activation and virus spreading while disabling the host immune defense. In particular, Tat binds Env spikes on virus particles forming a virus entry complex, which favors infection of dendritic cells and efficient transmission to T cells via RGD-binding integrins. Tat also shields the CCR5-binding sites of Env rendering ineffective virus neutralization by anti-Env antibodies (Abs). This is reversed by the anti-Tat Abs present in natural infection or induced by vaccination. Findings Here we present the results of a cohort study, showing that the presence of anti-Tat Abs in asymptomatic and treatment-naïve HIV-infected subjects is associated with containment of CD4+ T-cell loss and viral load and with a delay of disease progression. In fact, no subjects with high anti-Tat Ab titers initiated antiretroviral therapy during the three years of follow-up. In contrast, no significant effects were seen for anti-Env and anti-Gag Abs. The increase of anti-Env Ab titers was associated with a reduced risk of starting therapy only in the presence of anti-Tat Abs, suggesting an effect of combined anti-Tat and anti-Env Abs on the Tat/Env virus entry complex and on virus neutralization. Conclusions Anti-Tat immunity may help delay HIV disease progression, thus, targeting Tat may offer a novel therapeutic intervention to postpone antiretroviral treatment or to increase its efficacy. PMID:24961156

  6. Isolated receptor binding domains of HTLV-1 and HTLV-2 envelopes bind Glut-1 on activated CD4+ and CD8+ T cells

    PubMed Central

    Kinet, Sandrina; Swainson, Louise; Lavanya, Madakasira; Mongellaz, Cedric; Montel-Hagen, Amélie; Craveiro, Marco; Manel, Nicolas; Battini, Jean-Luc; Sitbon, Marc; Taylor, Naomi

    2007-01-01

    Background We previously identified the glucose transporter Glut-1, a member of the multimembrane-spanning facilitative nutrient transporter family, as a receptor for both HTLV-1 and HTLV-2. However, a recent report concluded that Glut-1 cannot serve as a receptor for HTLV-1 on CD4 T cells: This was based mainly on their inability to detect Glut-1 on this lymphocyte subset using the commercial antibody mAb1418. It was therefore of significant interest to thoroughly assess Glut-1 expression on CD4 and CD8 T cells, and its association with HTLV-1 and -2 envelope binding. Results As previously reported, ectopic expression of Glut-1 but not Glut-3 resulted in significantly augmented binding of tagged proteins harboring the receptor binding domains of either HTLV-1 or HTLV-2 envelope glycoproteins (H1RBD or H2RBD). Using antibodies raised against the carboxy-terminal peptide of Glut-1, we found that Glut-1 expression was significantly increased in both CD4 and CD8 cells following TCR stimulation. Corresponding increases in the binding of H1RBD as well as H2RBD, not detected on quiescent T cells, were observed following TCR engagement. Furthermore, increased Glut-1 expression was accompanied by a massive augmentation in glucose uptake in TCR-stimulated CD4 and CD8 lymphocytes. Finally, we determined that the apparent contradictory results obtained by Takenouchi et al were due to their monitoring of Glut-1 with a mAb that does not bind cells expressing endogenous Glut-1, including human erythrocytes that harbor 300,000 copies per cell. Conclusion Transfection of Glut-1 directly correlates with the capacities of HTLV-1 and HTLV-2 envelope-derived ligands to bind cells. Moreover, Glut-1 is induced by TCR engagement, resulting in massive increases in glucose uptake and binding of HTLV-1 and -2 envelopes to both CD4 and CD8 T lymphocytes. Therefore, Glut-1 is a primary binding receptor for HTLV-1 and HTLV-2 envelopes on activated CD4 as well as CD8 lymphocytes. PMID:17504522

  7. External protons destabilize the activated voltage sensor in hERG channels.

    PubMed

    Shi, Yu Patrick; Cheng, Yen May; Van Slyke, Aaron C; Claydon, Tom W

    2014-03-01

    Extracellular acidosis shifts hERG channel activation to more depolarized potentials and accelerates channel deactivation; however, the mechanisms underlying these effects are unclear. External divalent cations, e.g., Ca(2+) and Cd(2+), mimic these effects and coordinate within a metal ion binding pocket composed of three acidic residues in hERG: D456 and D460 in S2 and D509 in S3. A common mechanism may underlie divalent cation and proton effects on hERG gating. Using two-electrode voltage clamp, we show proton sensitivity of hERG channel activation (pKa = 5.6), but not deactivation, was greatly reduced in the presence of Cd(2+) (0.1 mM), suggesting a common binding site for the Cd(2+) and proton effect on activation and separable effects of protons on activation and deactivation. Mutational analysis confirmed that D509 plays a critical role in the pH dependence of activation, as shown previously, and that cooperative actions involving D456 and D460 are also required. Importantly, neutralization of all three acidic residues abolished the proton-induced shift of activation, suggesting that the metal ion binding pocket alone accounts for the effects of protons on hERG channel activation. Voltage-clamp fluorimetry measurements demonstrated that protons shifted the voltage dependence of S4 movement to more depolarized potentials. The data indicate a site and mechanism of action for protons on hERG activation gating; protonation of D456, D460 and D509 disrupts interactions between these residues and S4 gating charges to destabilize the activated configuration of S4.

  8. Increased frequencies of CD8+CD57+ T cells are associated with antibody neutralization breadth against HIV in viraemic controllers

    PubMed Central

    Palmer, Christine D; Romero-Tejeda, Marisol; Scully, Eileen P; Lockhart, Ainsley; Seaman, Michael S; Goldenthal, Ariel; Piechocka-Trocha, Alicja; Walker, Bruce D; Chibnik, Lori B; Jost, Stephanie; Porichis, Filippos

    2016-01-01

    Introduction An effective prophylactic vaccine against HIV will need to elicit antibody responses capable of recognizing and neutralizing rapidly evolving antigenic regions. The immunologic milieu associated with development of neutralizing antibody breadth remains to be fully defined. In this study, we sought to identify immunological signatures associated with neutralization breadth in HIV controllers. We applied an immune monitoring approach to analyze markers of T cell and myeloid cell activation by flow cytometry, comparing broad neutralizers with low- and non-neutralizers using multivariate and univariate analyses. Methods Antibody neutralization breadth was determined, and cryopreserved peripheral blood mononuclear cells were stained for T cell and myeloid cell activation markers. Subjects were grouped according to neutralization breadth, and T cell and myeloid cell activation was analyzed by partial least squares discriminant analysis to determine immune signatures associated with high neutralization breadth. Results We show that neutralization breadth in HIV viraemic controllers (VC) was strongly associated with increased frequencies of CD8+CD57+ T cells and that this association was independent of viral load, CD4 count and time since HIV diagnosis. Conclusions Our data show elevated frequencies of CD8+CD57+ T cells in VC who develop neutralization breadth against HIV. This immune signature could serve as a potential biomarker of neutralization breadth and should be further investigated in other HIV-positive cohorts and in HIV vaccine trials. PMID:27938646

  9. Molecular basis of unusually high neutralization resistance in tier 3 HIV-1 strain 253-11.

    PubMed

    Moyo, Thandeka; Ereño-Orbea, June; Jacob, Rajesh Abraham; Pavillet, Clara E; Kariuki, Samuel Mundia; Tangie, Emily N; Julien, Jean-Philippe; Dorfman, Jeffrey R

    2018-04-04

    Understanding the mechanisms used by HIV-1 to evade antibody neutralization may contribute to the design of a high-coverage vaccine. The tier 3 virus 253-11, is poorly neutralized by subtype-matched and subtype C sera, even when compared to other tier 3 viruses, and is also recognized poorly by V3/glycan targeting monoclonal antibodies. We found that sequence polymorphism in the V3 loop and N-linked glycosylation sites only minimally contribute to the high neutralization resistance of 253-11. Interestingly, the 253-11 membrane proximal external region (MPER) is rarely recognized by sera in the context of the wild-type virus, but is commonly recognized in the context of an HIV-2 chimeric virus, suggesting steric or kinetic hindrance of binding to MPER in the native Env. Mutations in the 253-11 MPER - which were previously reported to increase the lifetime of the pre-fusion Envelope (Env) conformation - affected the resistance of 253-11 to antibodies targeting various epitopes on HIV-1 Env, presumably destabilizing its otherwise stable, closed trimer structure. To gain insight into the structure of 253-11, we constructed and crystallized a recombinant 253-11 SOSIP trimer. The resulting structure revealed that the heptad repeat helices in gp41 are drawn in close proximity to the trimer axis and that gp120 protomers also showed a relatively compact disposition around the trimer axis. These observations give substantial insight into the molecular features of an envelope spike from a tier 3 virus and into possible mechanisms that may contribute to its unusually high neutralization resistance. IMPORTANCE HIV-1 isolates that are highly resistant to broadly neutralizing antibodies could limit the efficacy of an antibody-based vaccine. We studied 253-11, which is highly resistant to commonly-elicited neutralizing antibodies. To further understand its resistance, we made mutations that are known to delay fusion and thus increase the time the virus spends in the open conformation following CD4-binding. Interestingly, we found that these mutations affect the 253-11 Envelope (Env) spike before CD4 binding, presumably by destabilizing the trimer structure. To gain further information about the structure of the 253-11 Env trimer, we generated a recombinant 253-11 SOSIP trimer. The crystal structure of the SOSIP trimer revealed that the gp41 helices and the gp120 protomers were drawn in towards the center of the molecule compared to most solved HIV-1 Env structures. These observations provide insight into the distinct molecular features of a Tier 3 envelope spike. Copyright © 2018 American Society for Microbiology.

  10. Abnormal B cell memory subsets dominate HIV-specific responses in infected individuals

    PubMed Central

    Kardava, Lela; Moir, Susan; Shah, Naisha; Wang, Wei; Wilson, Richard; Buckner, Clarisa M.; Santich, Brian H.; Kim, Leo J.Y.; Spurlin, Emily E.; Nelson, Amy K.; Wheatley, Adam K.; Harvey, Christopher J.; McDermott, Adrian B.; Wucherpfennig, Kai W.; Chun, Tae-Wook; Tsang, John S.; Li, Yuxing; Fauci, Anthony S.

    2014-01-01

    Recently, several neutralizing anti-HIV antibodies have been isolated from memory B cells of HIV-infected individuals. Despite extensive evidence of B cell dysfunction in HIV disease, little is known about the cells from which these rare HIV-specific antibodies originate. Accordingly, we used HIV envelope gp140 and CD4 or coreceptor (CoR) binding site (bs) mutant probes to evaluate HIV-specific responses in peripheral blood B cells of HIV-infected individuals at various stages of infection. In contrast to non-HIV responses, HIV-specific responses against gp140 were enriched within abnormal B cells, namely activated and exhausted memory subsets, which are largely absent in the blood of uninfected individuals. Responses against the CoRbs, which is a poorly neutralizing epitope, arose early, whereas those against the well-characterized neutralizing epitope CD4bs were delayed and infrequent. Enrichment of the HIV-specific response within resting memory B cells, the predominant subset in uninfected individuals, did occur in certain infected individuals who maintained low levels of plasma viremia and immune activation with or without antiretroviral therapy. The distribution of HIV-specific responses among memory B cell subsets was corroborated by transcriptional analyses. Taken together, our findings provide valuable insight into virus-specific B cell responses in HIV infection and demonstrate that memory B cell abnormalities may contribute to the ineffectiveness of the antibody response in infected individuals. PMID:24892810

  11. Induction of a Tier-1-Like Phenotype in Diverse Tier-2 Isolates by Agents That Guide HIV-1 Env to Perturbation-Sensitive, Nonnative States.

    PubMed

    Johnson, Jacklyn; Zhai, Yinjie; Salimi, Hamid; Espy, Nicole; Eichelberger, Noah; DeLeon, Orlando; O'Malley, Yunxia; Courter, Joel; Smith, Amos B; Madani, Navid; Sodroski, Joseph; Haim, Hillel

    2017-08-01

    The envelope glycoproteins (Envs) on the surfaces of HIV-1 particles are targeted by host antibodies. Primary HIV-1 isolates demonstrate different global sensitivities to antibody neutralization; tier-1 isolates are sensitive, whereas tier-2 isolates are more resistant. Single-site mutations in Env can convert tier-2 into tier-1-like viruses. We hypothesized that such global change in neutralization sensitivity results from weakening of intramolecular interactions that maintain Env integrity. Three strategies commonly applied to perturb protein structure were tested for their effects on global neutralization sensitivity: exposure to low temperature, Env-activating ligands, and a chaotropic agent. A large panel of diverse tier-2 isolates from clades B and C was analyzed. Incubation at 0°C, which globally weakens hydrophobic interactions, causes gradual and reversible exposure of the coreceptor-binding site. In the cold-induced state, Envs progress at isolate-specific rates to unstable forms that are sensitive to antibody neutralization and then gradually lose function. Agents that mimic the effects of CD4 (CD4Ms) also induce reversible structural changes to states that exhibit isolate-specific stabilities. The chaotropic agent urea (at low concentrations) does not affect the structure or function of native Env. However, urea efficiently perturbs metastable states induced by cold and CD4Ms and increases their sensitivity to antibody neutralization and their inactivation rates Therefore, chemical and physical agents can guide Env from the stable native state to perturbation-sensitive forms and modulate their stability to bestow tier-1-like properties on primary tier-2 strains. These concepts can be applied to enhance the potency of vaccine-elicited antibodies and microbicides at mucosal sites of HIV-1 transmission. IMPORTANCE An effective vaccine to prevent transmission of HIV-1 is a primary goal of the scientific and health care communities. Vaccine-elicited antibodies target the viral envelope glycoproteins (Envs) and can potentially inhibit infection. However, the potency of such antibodies is generally low. Single-site mutations in Env can enhance the global sensitivity of HIV-1 to neutralization by antibodies. We found that such a hypersensitivity phenotype can also be induced by agents that destabilize protein structure. Exposure to 0°C or low concentrations of Env-activating ligands gradually guides Env to metastable forms that expose cryptic epitopes and that are highly sensitive to neutralization. Low concentrations of the chaotropic agent urea do not affect native Env but destabilize perturbed states induced by cold or CD4Ms and increase their neutralization. The concept of enhancing antibody sensitivity by chemical agents that affect the structural stability of proteins can be applied to increase the potency of topical microbicides and vaccine-elicited antibodies. Copyright © 2017 American Society for Microbiology.

  12. Heterogeneity in Neutralization Sensitivities of Viruses Comprising the Simian Immunodeficiency Virus SIVsmE660 Isolate and Vaccine Challenge Stock

    PubMed Central

    Lopker, Michael; Easlick, Juliet; Sterrett, Sarah; Decker, Julie M.; Barbian, Hannah; Learn, Gerald; Keele, Brandon F.; Robinson, James E.; Li, Hui; Hahn, Beatrice H.; Shaw, George M.

    2013-01-01

    The sooty mangabey-derived simian immunodeficiency virus (SIV) strain E660 (SIVsmE660) is a genetically heterogeneous, pathogenic isolate that is commonly used as a vaccine challenge strain in the nonhuman primate (NHP) model of human immunodeficiency virus type 1 (HIV-1) infection. Though it is often employed to assess antibody-based vaccine strategies, its sensitivity to antibody-mediated neutralization has not been well characterized. Here, we utilize single-genome sequencing and infectivity assays to analyze the neutralization sensitivity of the uncloned SIVsmE660 isolate, individual viruses comprising the isolate, and transmitted/founder (T/F) viruses arising from low-dose mucosal inoculation of macaques with the isolate. We found that the SIVsmE660 isolate overall was highly sensitive to neutralization by SIV-infected macaque plasma samples (50% inhibitory concentration [IC50] < 10−5) and monoclonal antibodies targeting V3 (IC50 < 0.01 μg/ml), CD4-induced (IC50 < 0.1 μg/ml), CD4 binding site (IC50 ∼ 1 μg/ml), and V4 (IC50, ∼5 μg/ml) epitopes. In comparison, SIVmac251 and SIVmac239 were highly resistant to neutralization by these same antibodies. Differences in neutralization sensitivity between SIVsmE660 and SIVmac251/239 were not dependent on the cell type in which virus was produced or tested. These findings indicate that in comparison to SIVmac251/239 and primary HIV-1 viruses, SIVsmE660 generally exhibits substantially less masking of antigenically conserved Env epitopes. Interestingly, we identified a minor population of viruses (∼10%) in both the SIVsmE660 isolate and T/F viruses arising from it that were substantially more resistant (>1,000-fold) to antibody neutralization and another fraction (∼20%) that was intermediate in neutralization resistance. These findings may explain the variable natural history and variable protection afforded by heterologous Env-based vaccines in rhesus macaques challenged by high-dose versus low-dose SIVsmE660 inoculation regimens. PMID:23468494

  13. Optimal combinations of broadly neutralizing antibodies for prevention and treatments of HIV-1 clade C infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagh, Kshitij; Bhattacharya, Tanmoy; Williamson, Carolyn

    In this study, the identification of a new generation of potent broadly neutralizing HIV-1 antibodies (bnAbs) has generated substantial interest in their potential use for the prevention and/or treatment of HIV-1 infection. While combinations of bnAbs targeting distinct epitopes on the viral envelope (Env) will likely be required to overcome the extraordinary diversity of HIV-1, a key outstanding question is which bnAbs, and how many, will be needed to achieve optimal clinical benefit. We assessed the neutralizing activity of 15 bnAbs targeting four distinct epitopes of Env, including the CD4-binding site (CD4bs), the V1/V2-glycan region, the V3-glycan region, and themore » gp41 membrane proximal external region (MPER), against a panel of 200 acute/early clade C HIV-1 Env pseudoviruses. A mathematical model was developed that predicted neutralization by a subset of experimentally evaluated bnAb combinations with high accuracy. Using this model, we performed a comprehensive and systematic comparison of the predicted neutralizing activity of over 1,600 possible double, triple, and quadruple bnAb combinations. The most promising bnAb combinations were identified based not only on breadth and potency of neutralization, but also other relevant measures, such as the extent of complete neutralization and instantaneous inhibitory potential (IIP). By this set of criteria, triple and quadruple combinations of bnAbs were identified that were significantly more effective than the best double combinations, and further improved the probability of having multiple bnAbs simultaneously active against a given virus, a requirement that may be critical for countering escape in vivo. These results provide a rationale for advancing bnAb combinations with the best in vitro predictors of success into clinical trials for both the prevention and treatment of HIV-1 infection.« less

  14. Optimal combinations of broadly neutralizing antibodies for prevention and treatments of HIV-1 clade C infection

    DOE PAGES

    Wagh, Kshitij; Bhattacharya, Tanmoy; Williamson, Carolyn; ...

    2016-03-30

    In this study, the identification of a new generation of potent broadly neutralizing HIV-1 antibodies (bnAbs) has generated substantial interest in their potential use for the prevention and/or treatment of HIV-1 infection. While combinations of bnAbs targeting distinct epitopes on the viral envelope (Env) will likely be required to overcome the extraordinary diversity of HIV-1, a key outstanding question is which bnAbs, and how many, will be needed to achieve optimal clinical benefit. We assessed the neutralizing activity of 15 bnAbs targeting four distinct epitopes of Env, including the CD4-binding site (CD4bs), the V1/V2-glycan region, the V3-glycan region, and themore » gp41 membrane proximal external region (MPER), against a panel of 200 acute/early clade C HIV-1 Env pseudoviruses. A mathematical model was developed that predicted neutralization by a subset of experimentally evaluated bnAb combinations with high accuracy. Using this model, we performed a comprehensive and systematic comparison of the predicted neutralizing activity of over 1,600 possible double, triple, and quadruple bnAb combinations. The most promising bnAb combinations were identified based not only on breadth and potency of neutralization, but also other relevant measures, such as the extent of complete neutralization and instantaneous inhibitory potential (IIP). By this set of criteria, triple and quadruple combinations of bnAbs were identified that were significantly more effective than the best double combinations, and further improved the probability of having multiple bnAbs simultaneously active against a given virus, a requirement that may be critical for countering escape in vivo. These results provide a rationale for advancing bnAb combinations with the best in vitro predictors of success into clinical trials for both the prevention and treatment of HIV-1 infection.« less

  15. Molecular docking guided structure based design of symmetrical N,N'-disubstituted urea/thiourea as HIV-1 gp120-CD4 binding inhibitors.

    PubMed

    Sivan, Sree Kanth; Vangala, Radhika; Manga, Vijjulatha

    2013-08-01

    Induced fit molecular docking studies were performed on BMS-806 derivatives reported as small molecule inhibitors of HIV-1 gp120-CD4 binding. Comprehensive study of protein-ligand interactions guided in identification and design of novel symmetrical N,N'-disubstituted urea and thiourea as HIV-1 gp120-CD4 binding inhibitors. These molecules were synthesized in aqueous medium using microwave irradiation. Synthesized molecules were screened for their inhibitory ability by HIV-1 gp120-CD4 capture enzyme-linked immunosorbent assay (ELISA). Designed compounds were found to inhibit HIV-1 gp120-CD4 binding in micromolar (0.013-0.247 μM) concentrations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model.

    PubMed

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical.

  17. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model

    PubMed Central

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical. PMID:25751125

  18. Exposure of Human CD8+ T Cells to Type-2 Cytokines Impairs Division and Differentiation and Induces Limited Polarization.

    PubMed

    Fox, Annette; Harland, Kim L; Kedzierska, Katherine; Kelso, Anne

    2018-01-01

    Effector CD8 + T cells generally produce type-1 cytokines and mediators of the perforin/granzyme cytolytic pathway, yet type-2-polarized CD8 + cells (Tc2) are detected in type-2 (T2) cytokine-driven diseases such as asthma. It is unclear whether T2 cytokine exposure during activation is sufficient to polarize human CD8 + T cells. To address this question, a protocol was developed for high-efficiency activation of human CD8 + T cells in which purified single cells or populations were stimulated with plate-bound anti-CD3 and anti-CD11a mAb for up to 8 days in T2 polarizing or neutral conditions, before functional analysis. Activation of CD8 + naïve T cells (T N ) in T2 compared with neutral conditions decreased the size of single-cell clones, although early division kinetics were equivalent, indicating an effect on overall division number. Activation of T N in T2 conditions followed by brief anti-CD3 mAb restimulation favored expression of T2 cytokines, GATA3 and Eomes , and lowered expression of type-1 cytokines, Prf1 , Gzmb, T-BET, and Prdm1 . However, IL-4 was only weakly expressed, and PMA and ionomycin restimulation favored IFN-γ over IL-4 expression. Activation of T N in T2 compared with neutral conditions prevented downregulation of costimulatory (CD27, CD28) and lymph-node homing receptors (CCR7) and CD95 acquisition, which typically occur during differentiation into effector phenotypes. CD3 was rapidly and substantially induced after activation in neutral, but not T2 conditions, potentially contributing to greater division and differentiation in neutral conditions. CD8 + central memory T cells (T CM ) were less able to enter division upon reactivation in T2 compared with neutral conditions, and were more refractory to modulating IFN-γ and IL-4 production than CD8 + T N. In summary, while activation of T N in T2 conditions can generate T2 cytokine-biased cells, IL-4 expression is weak, T2 bias is lost upon strong restimulation, differentiation, and division are arrested, and reactivation of T CM is reduced in T2 conditions. Taken together, this suggests that exposure to T2 cytokines during activation may not be sufficient to generate and retain human Tc2 cells.

  19. Prediction of HIV-1 sensitivity to broadly neutralizing antibodies shows a trend towards resistance over time.

    PubMed

    Hake, Anna; Pfeifer, Nico

    2017-10-01

    Treatment with broadly neutralizing antibodies (bNAbs) has proven effective against HIV-1 infections in humanized mice, non-human primates, and humans. Due to the high mutation rate of HIV-1, resistance testing of the patient's viral strains to the bNAbs is still inevitable. So far, bNAb resistance can only be tested in expensive and time-consuming neutralization experiments. Here, we introduce well-performing computational models that predict the neutralization response of HIV-1 to bNAbs given only the envelope sequence of the virus. Using non-linear support vector machines based on a string kernel, the models learnt even the important binding sites of bNAbs with more complex epitopes, i.e., the CD4 binding site targeting bNAbs, proving thereby the biological relevance of the models. To increase the interpretability of the models, we additionally provide a new kind of motif logo for each query sequence, visualizing those residues of the test sequence that influenced the prediction outcome the most. Moreover, we predicted the neutralization sensitivity of around 34,000 HIV-1 samples from different time points to a broad range of bNAbs, enabling the first analysis of HIV resistance to bNAbs on a global scale. The analysis showed for many of the bNAbs a trend towards antibody resistance over time, which had previously only been discovered for a small non-representative subset of the global HIV-1 population.

  20. Structure-based Design of Cyclically Permuted HIV-1 gp120 Trimers That Elicit Neutralizing Antibodies*

    PubMed Central

    Kesavardhana, Sannula; Das, Raksha; Citron, Michael; Datta, Rohini; Ecto, Linda; Srilatha, Nonavinakere Seetharam; DiStefano, Daniel; Swoyer, Ryan; Joyce, Joseph G.; Dutta, Somnath; LaBranche, Celia C.; Montefiori, David C.; Flynn, Jessica A.; Varadarajan, Raghavan

    2017-01-01

    A major goal for HIV-1 vaccine development is an ability to elicit strong and durable broadly neutralizing antibody (bNAb) responses. The trimeric envelope glycoprotein (Env) spikes on HIV-1 are known to contain multiple epitopes that are susceptible to bNAbs isolated from infected individuals. Nonetheless, all trimeric and monomeric Env immunogens designed to date have failed to elicit such antibodies. We report the structure-guided design of HIV-1 cyclically permuted gp120 that forms homogeneous, stable trimers, and displays enhanced binding to multiple bNAbs, including VRC01, VRC03, VRC-PG04, PGT128, and the quaternary epitope-specific bNAbs PGT145 and PGDM1400. Constructs that were cyclically permuted in the V1 loop region and contained an N-terminal trimerization domain to stabilize V1V2-mediated quaternary interactions, showed the highest homogeneity and the best antigenic characteristics. In guinea pigs, a DNA prime-protein boost regimen with these new gp120 trimer immunogens elicited potent neutralizing antibody responses against highly sensitive Tier 1A isolates and weaker neutralizing antibody responses with an average titer of about 115 against a panel of heterologous Tier 2 isolates. A modest fraction of the Tier 2 virus neutralizing activity appeared to target the CD4 binding site on gp120. These results suggest that cyclically permuted HIV-1 gp120 trimers represent a viable platform in which further modifications may be made to eventually achieve protective bNAb responses. PMID:27879316

  1. Prediction of HIV-1 sensitivity to broadly neutralizing antibodies shows a trend towards resistance over time

    PubMed Central

    2017-01-01

    Treatment with broadly neutralizing antibodies (bNAbs) has proven effective against HIV-1 infections in humanized mice, non-human primates, and humans. Due to the high mutation rate of HIV-1, resistance testing of the patient’s viral strains to the bNAbs is still inevitable. So far, bNAb resistance can only be tested in expensive and time-consuming neutralization experiments. Here, we introduce well-performing computational models that predict the neutralization response of HIV-1 to bNAbs given only the envelope sequence of the virus. Using non-linear support vector machines based on a string kernel, the models learnt even the important binding sites of bNAbs with more complex epitopes, i.e., the CD4 binding site targeting bNAbs, proving thereby the biological relevance of the models. To increase the interpretability of the models, we additionally provide a new kind of motif logo for each query sequence, visualizing those residues of the test sequence that influenced the prediction outcome the most. Moreover, we predicted the neutralization sensitivity of around 34,000 HIV-1 samples from different time points to a broad range of bNAbs, enabling the first analysis of HIV resistance to bNAbs on a global scale. The analysis showed for many of the bNAbs a trend towards antibody resistance over time, which had previously only been discovered for a small non-representative subset of the global HIV-1 population. PMID:29065122

  2. Direct expression and validation of phage-selected peptide variants in mammalian cells.

    PubMed

    Quinlan, Brian D; Gardner, Matthew R; Joshi, Vinita R; Chiang, Jessica J; Farzan, Michael

    2013-06-28

    Phage display is a key technology for the identification and maturation of high affinity peptides, antibodies, and other proteins. However, limitations of bacterial expression restrict the range and sensitivity of assays that can be used to evaluate phage-selected variants. To address this problem, selected genes are typically transferred to mammalian expression vectors, a major rate-limiting step in the iterative improvement of peptides and proteins. Here we describe a system that combines phage display and efficient mammalian expression in a single vector, pDQ1. This system permits immediate expression of phage-selected genes as IgG1-Fc fusions in mammalian cells, facilitating the rapid, sensitive characterization of a large number of library outputs for their biochemical and functional properties. We demonstrate the utility of this system by improving the ability of a CD4-mimetic peptide to bind the HIV-1 envelope glycoprotein and neutralize HIV-1 entry. We further improved the potency of the resulting peptide, CD4mim6, by limiting its ability to induce the CD4-bound conformation of the envelope glycoprotein. Thus, CD4mim6 and its variants can be used to investigate the properties of the HIV-1 envelope glycoprotein, and pDQ1 can accelerate the discovery of new peptides and proteins through phage display.

  3. Type-specific and cross-reactive antibodies and T cell responses in norovirus VLP immunized mice are targeted both to conserved and variable domains of capsid VP1 protein.

    PubMed

    Malm, Maria; Tamminen, Kirsi; Vesikari, Timo; Blazevic, Vesna

    2016-10-01

    Norovirus (NoV)-specific antibodies, which block binding of the virus-like particles (VLPs) to the cell receptors are conformation dependent and directed towards the most exposed domain of the NoV capsid VP1 protein, the P2 domain. Limited data are available on the antibodies directed to other domains of the VP1, and even less on the NoV VP1-specific T cell epitopes. In here, BALB/c mice were immunized with six VLPs derived from NoV GII.4-1999, GII.4-2009 (New Orleans), GII.4-2012 (Sydney), GII.12, GI.1, and G1.3. Serum immunoglobulin G binding antibodies, histo-blood group antigen blocking antibodies and T cell responses using type-specific and heterologous NoV VLPs, P-dimers and 76 overlapping synthetic peptides, spanning the entire 539 amino acid sequence of GII.4 VP1, were determined. The results showed that at least half of the total antibody content is directed towards conserved S domain of the VP1. Only a small fraction (<1%) of the VP1 binding antibodies were blocking/neutralizing. With the use of matrix peptide pools and individual peptides, seven CD4 + and CD8 + T cell restricted epitopes were mapped, two located in S domain, four in P2 domain and one in P1 domain of NoV VP1. The epitopes were GII.4 strain-specific but also common GII.4 genotype-specific T cell epitopes were identified. More importantly, the results suggest a 9-amino acids long sequence ( 318 PAPLGTPDF 326 ) in P2 domain of VP1 as a universal NoV genogroup II-specific CD8 + T cell epitope. Distribution of the T cell epitopes alongside the capsid VP1 indicates the need of the complete protein for high immunogenicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A Novel Sphingomyelinase-Like Enzyme in Ixodes scapularis Tick Saliva Drives Host CD4+ T cells to Express IL-4

    PubMed Central

    Alarcon-Chaidez, F. J.; Boppana, V. D.; Hagymasi, A.T.; Adler, A. J.; Wikel, S. K.

    2009-01-01

    Tick feeding modulates host immune responses. Tick-induced skewing of host CD4+ T cells towards a Th2 cytokine profile facilitates transmission of tick-borne pathogens that would otherwise be neutralized by Th1 cytokines. Tick-derived factors that drive this Th2 response have not previously been characterized. In the current study, we examined an I. scapularis cDNA library prepared at 18-24 hours of feeding and identified and expressed a tick gene with homology to Loxosceles spider venom proteins with sphingomyelinase activity. This I. scapularis sphingomyelinase-like (IsSMase) protein is a Mg+2-dependent, neutral (pH 7.4) form of sphingomyelinase. Significantly, in an in vivo TCR transgenic adoptive transfer assay IsSMase programmed host CD4+ T cells to express the hallmark Th2 effector cytokine IL-4. IsSMase appears to directly program host CD4 T cell IL-4 expression (as opposed to its metabolic by-products) because induced IL-4 expression was not altered when enzymatic activity was neutralized. TCR transgenic CD4 T cell proliferation (CFSE-dilution) was also significantly increased by IsSMase. Furthermore, a Th2 response is superimposed onto a virally-primed Th1 response by IsSMase. Thus, IsSMase is the first identified tick molecule capable of programming host CD4+ T cells to express IL-4. PMID:19292772

  5. Platelets Toll-like receptor-4 in Crohns disease.

    PubMed

    Schmid, Werner; Novacek, Gottfried; Vogelsang, Harald; Papay, Pavol; Primas, Christian; Eser, Alexander; Panzer, Simon

    2017-02-01

    Platelets are activated in Crohn's disease (CD) and interplay with leukocytes. Engagement of Toll-like receptor-4 (TLR-4), which is expressed in human platelets, may be involved in crosstalks between platelets and leukocytes leading to their mutual activation for host defense. Human neutrophil peptides (HNPs), lipoprotein binding peptides, and sCD14 were determined by enzyme-linked immunosorbent assays in 42 patients with active CD, in 43 patients with CD in remission, and in 30 healthy individuals. Neutrophil-platelet aggregates and binding of the TLR-4 monoclonal antibody to platelets were determined by flow cytometry. Levels of HNPs were higher in patients with CD than in controls (P = 0.0003 vs. active CD and P = 0.01 vs. CD in remission). Likewise, neutrophils with adhering platelets were higher in patients with active CD than in controls (P = 0.004). Binding of the TLR-4 antibody in patients with active CD was similar to that in controls, while patients in remission had significantly higher binding capacities (P = 0.59 and P = 0.003). Incubation of plasma from patients with active disease or patients in remission with platelets from healthy controls confirmed lower binding of the TLR-4 antibody in the presence of plasma from active diseased patients compared to controls (P = 0.039), possibly due to high levels of lipopolysaccharides, as suggested by high levels of sCD14 and lipoprotein binding protein. Our study indicates involvement of platelet TLR-4 in enhancing the secretion of antimicrobial peptides from neutrophils. While platelet aggregation can be due to a variety of mechanisms in inflammatory disease, the mutual activation of platelets and neutrophils may augment host defense. © 2016 Stichting European Society for Clinical Investigation Journal Foundation.

  6. Interfacial metal and antibody recognition.

    PubMed

    Zhou, Tongqing; Hamer, Dean H; Hendrickson, Wayne A; Sattentau, Quentin J; Kwong, Peter D

    2005-10-11

    The unique ligation properties of metal ions are widely exploited by proteins, with approximately one-third of all proteins estimated to be metalloproteins. Although antibodies use various mechanisms for recognition, to our knowledge, none has ever been characterized that uses an interfacial metal. We previously described a family of CD4-reactive antibodies, the archetype being Q425. CD4:Q425 engagement does not interfere with CD4:HIV-1 gp120 envelope glycoprotein binding, but it blocks subsequent steps required for viral entry. Here, we use surface-plasmon resonance to show that Q425 requires calcium for recognition of CD4. Specifically, Q425 binding of calcium resulted in a 55,000-fold enhancement in affinity for CD4. X-ray crystallographic analyses of Q425 in the presence of Ca(2+), Ba(2+), or EDTA revealed an exposed metal-binding site, partially coordinated by five atoms contributed from four antibody complementarity-determining regions. The results suggest that Q425 recognition of CD4 involves direct ligation of antigen by the Q425-held calcium, with calcium binding each ligating atom of CD4 with approximately 1.5 kcal/mol of binding energy. This energetic contribution, which is greater than that from a typical protein atom, demonstrates how interfacial metal ligation can play a unique role in antigen recognition.

  7. Interfacial metal and antibody recognition

    PubMed Central

    Zhou, Tongqing; Hamer, Dean H.; Hendrickson, Wayne A.; Sattentau, Quentin J.; Kwong, Peter D.

    2005-01-01

    The unique ligation properties of metal ions are widely exploited by proteins, with approximately one-third of all proteins estimated to be metalloproteins. Although antibodies use various mechanisms for recognition, to our knowledge, none has ever been characterized that uses an interfacial metal. We previously described a family of CD4-reactive antibodies, the archetype being Q425. CD4:Q425 engagement does not interfere with CD4:HIV-1 gp120 envelope glycoprotein binding, but it blocks subsequent steps required for viral entry. Here, we use surface-plasmon resonance to show that Q425 requires calcium for recognition of CD4. Specifically, Q425 binding of calcium resulted in a 55,000-fold enhancement in affinity for CD4. X-ray crystallographic analyses of Q425 in the presence of Ca2+, Ba2+, or EDTA revealed an exposed metal-binding site, partially coordinated by five atoms contributed from four antibody complementarity-determining regions. The results suggest that Q425 recognition of CD4 involves direct ligation of antigen by the Q425-held calcium, with calcium binding each ligating atom of CD4 with ≈1.5 kcal/mol of binding energy. This energetic contribution, which is greater than that from a typical protein atom, demonstrates how interfacial metal ligation can play a unique role in antigen recognition. PMID:16195378

  8. Galectin-3 Shapes Antitumor Immune Responses by Suppressing CD8+ T Cells via LAG-3 and Inhibiting Expansion of Plasmacytoid Dendritic Cells.

    PubMed

    Kouo, Theodore; Huang, Lanqing; Pucsek, Alexandra B; Cao, Minwei; Solt, Sara; Armstrong, Todd; Jaffee, Elizabeth

    2015-04-01

    Galectin-3 is a 31-kDa lectin that modulates T-cell responses through several mechanisms, including apoptosis, T-cell receptor (TCR) cross-linking, and TCR downregulation. We found that patients with pancreatic ductal adenocarcinoma (PDA) who responded to a granulocyte-macrophage colony-stimulating factor-secreting allogeneic PDA vaccine developed neutralizing antibodies to galectin-3 after immunization. We show that galectin-3 binds activated antigen-committed CD8(+) T cells only in the tumor microenvironment. Galectin-3-deficient mice exhibit improved CD8(+) T-cell effector function and increased expression of several inflammatory genes. Galectin-3 binds to LAG-3, and LAG-3 expression is necessary for galectin-3-mediated suppression of CD8(+) T cells in vitro. Lastly, galectin-3-deficient mice have elevated levels of circulating plasmacytoid dendritic cells, which are superior to conventional dendritic cells in activating CD8(+) T cells. Thus, inhibiting galectin-3 in conjunction with CD8(+) T-cell-directed immunotherapies should enhance the tumor-specific immune response. ©2015 American Association for Cancer Research.

  9. Salivary anti-coxsackievirus-B4 neutralizing activity and pattern of immune parameters in patients with type 1 diabetes: a pilot study.

    PubMed

    Nekoua, Magloire Pandoua; Yessoufou, Akadiri; Alidjinou, Enagnon Kazali; Badia-Boungou, Francis; Moutairou, Kabirou; Sane, Famara; Hober, Didier

    2018-05-17

    Enteroviruses, especially coxsackieviruses B (CV-B), have been associated with the pathogenesis of type 1 diabetes (T1D). An anti-CV-B4 neutralizing activity in saliva of T1D patients was previously reported. Our aim was to study the association between the saliva anti-CV-B4 neutralizing activity and immune parameters in T1D patients in comparison with non-diabetic individuals. Saliva and blood samples were collected from 15 T1D patients and 8 controls. The anti-CV-B4 and anti-poliovirus type 1 (PV-1) activities of saliva and serum samples were determined by a plaque neutralization assay. Quantification of serum cytokines was performed by ELISA and the frequencies of lymphocyte subsets were evaluated using flow cytometry. The levels of salivary anti-CV-B4 neutralizing activity were higher in T1D patients than in controls (p = 0.02), whereas the serum levels of anti-CV-B4 neutralizing activity and the saliva and serum levels of anti-PV-1 neutralizing activity were not different. The proportions of effector CD4 + T cells and CD19 + B cells, but not those of CD4 + T cells, CD8 + T cells and Foxp3 + regulatory T cells, were higher in T1D patients than in controls (p = 0.02 and p = 0.01 respectively). Moreover, serum IFN-γ levels were lower in T1D patients compared to controls (p = 0.03) while IL-4 and IL-10 were not different. There was an association between saliva anti-CV-B4 activity, down-regulation of IFN-γ and B cell expansion in peripheral blood of T1D patients. The association between saliva anti-CV-B4 activity and disturbance of immune system in T1D patients deserves further investigation.

  10. Inhibition of CD95/CD95L (FAS/FASLG) Signaling with APG101 Prevents Invasion and Enhances Radiation Therapy for Glioblastoma.

    PubMed

    Blaes, Jonas; Thomé, Carina M; Pfenning, Philipp-Niclas; Rübmann, Petra; Sahm, Felix; Wick, Antje; Bunse, Theresa; Schmenger, Torsten; Sykora, Jaromir; von Deimling, Andreas; Wiestler, Benedikt; Merz, Christian; Jugold, Manfred; Haberkorn, Uwe; Abdollahi, Amir; Debus, Jürgen; Gieffers, Christian; Kunz, Claudia; Bendszus, Martin; Kluge, Michael; Platten, Michael; Fricke, Harald; Wick, Wolfgang; Lemke, Dieter

    2018-05-01

    CD95 (Fas/APO-1), a death receptor family member, activity has been linked to tumorigenicity in multiple cancers, including glioblastoma multiforme (GBM). A phase II clinical trial on relapsed glioblastoma patients demonstrated that targeted inhibition of CD95 signaling via the CD95 ligand (CD95L) binding and neutralizing Fc-fusion protein APG101 (asunercept) prolonged patient survival. Although CD95 signaling may be relevant for multiple aspects of tumor growth, the mechanism of action of APG101 in glioblastoma is not clear. APG101 action was examined by in vitro proliferation, apoptosis, and invasion assays with human and murine glioma and human microglial cells, as well as in vivo therapy studies with orthotopic gliomas and clinical data. APG101 inhibits CD95L-mediated invasion of glioma cells. APG101 treatment was effective in glioma-bearing mice, independently of the presence or absence of CD4 and CD8 T lymphocytes, which should be sensitive to CD95L. Combined with radiotherapy, APG101 demonstrated a reduction of tumor growth, fewer tumor satellites, reduced activity of matrix metalloproteinases (MMP) as well as prolonged survival of tumor-bearing mice compared with radiotherapy alone. Inhibiting rather than inducing CD95 activity is a break-of-paradigm therapeutic approach for malignant gliomas. Evidence, both in vitro and in vivo , is provided that CD95L-binding fusion protein treatment enhanced the efficacy of radiotherapy and reduced unwanted proinfiltrative effects by reducing metalloproteinase activity by directly affecting the tumor cells. Implications: APG101 (asunercept) successfully used in a controlled phase II glioblastoma trial (NCT01071837) acts anti-invasively by inhibiting matrix metalloproteinase signaling, resulting in additive effects together with radiotherapy and helping to further develop a treatment for this devastating disease. Mol Cancer Res; 16(5); 767-76. ©2018 AACR . ©2018 American Association for Cancer Research.

  11. Lineage-Specific Differences between the gp120 Inner Domain Layer 3 of Human Immunodeficiency Virus and That of Simian Immunodeficiency Virus

    PubMed Central

    Ding, Shilei; Medjahed, Halima; Prévost, Jérémie; Coutu, Mathieu; Xiang, Shi-Hua

    2016-01-01

    ABSTRACT Binding of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) gp120 exterior envelope glycoprotein to CD4 triggers conformational changes in gp120 that promote its interaction with one of the chemokine receptors, usually CCR5, ultimately leading to gp41-mediated virus-cell membrane fusion and entry. We previously described that topological layers (layer 1, layer 2, and layer 3) in the gp120 inner domain contribute to gp120-trimer association in the unliganded state but also help secure CD4 binding. Relative to layer 1 of HIV-1 gp120, the SIVmac239 gp120 layer 1 plays a more prominent role in maintaining gp120-trimer association but is minimally involved in promoting CD4 binding, which could be explained by the existence of a well-conserved tryptophan at position 375 (Trp 375) in HIV-2/SIVsmm. In this study, we investigated the role of SIV layer 3 in viral entry, cell-to-cell fusion, and CD4 binding. We observed that a network of interactions involving some residues of the β8-α5 region in SIVmac239 layer 3 may contribute to CD4 binding by helping shape the nearby Phe 43 cavity, which directly contacts CD4. In summary, our results suggest that layer 3 in SIV has a greater impact on CD4 binding than in HIV-1. This work defines lineage-specific differences in layer 3 from HIV-1 and that from SIV. IMPORTANCE CD4-induced conformational changes in the gp120 inner domain involve rearrangements between three topological layers. While the role of layers 1 to 3 for HIV-1 and layers 1 and 2 for SIV on gp120 transition to the CD4-bound conformation has been reported, the role of SIV layer 3 remains unknown. Here we report that SIV layer 3 has a greater impact on CD4 binding than does layer 3 in HIV-1 gp120. This work defines lineage-specific differences in layer 3 from HIV-1 and SIV. PMID:27535053

  12. Immunoglobulin Gene Insertions and Deletions in the Affinity Maturation of HIV-1 Broadly Reactive Neutralizing Antibodies

    PubMed Central

    Kepler, Thomas B.; Liao, Hua-Xin; Alam, S. Munir; Bhaskarabhatla, Rekha; Zhang, Ruijun; Stewart, Shelley; Anasti, Kara; Kelsoe, Garnett; Parks, Robert; Lloyd, Krissey E.; Stolarchuk, Christina; Pritchett, Jamie; Solomon, Erika; Friberg, Emma; Morris, Lynn; Karim, Salim S. Abdool; Cohen, Myron S.; Walter, Emmanuel; Moody, M. Anthony; Wu, Xueling; Altae-Tran, Han R.; Georgiev, Ivelin S.; Kwong, Peter D.; Boyd, Scott D.; Fire, Andrew Z.; Mascola, John R.; Haynes, Barton F.

    2014-01-01

    Summary Induction of HIV-1 broad neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development but has remained challenging partially due to unusual traits of bnAbs, including high somatic hypermutation (SHM) frequencies and in-frame insertions and deletions (indels). Here we examined the propensity and functional requirement for indels within HIV-1 bnAbs. High-throughput sequencing of the immunoglobulin (Ig) VHDJH genes in HIV-1 infected and uninfected individuals revealed that the indel frequency was elevated among HIV-1-infected subjects, with no unique properties attributable to bnAb-producing individuals. This increased indel occurrence depended only on the frequency of SHM point-mutations. Indel-encoded regions were generally proximal to antigen binding sites. Additionally, reconstruction of a HIV-1 CD4-binding site bnAb clonal lineage revealed that a large compound VHDJH indel was required for bnAb activity. Thus, vaccine development should focus on designing regimens targeted at sustained activation of bnAb lineages to achieve the required SHM and indel events. PMID:25211073

  13. STAT3-activated CD36 facilitates fatty acid uptake in chronic lymphocytic leukemia cells

    PubMed Central

    Rozovski, Uri; Harris, David M.; Li, Ping; Liu, Zhiming; Jain, Preetesh; Ferrajoli, Alessandra; Burger, Jan; Thompson, Phillip; Jain, Nitin; Wierda, William; Keating, Michael J.; Estrov, Zeev

    2018-01-01

    Although several studies established that unlike normal B cells chronic lymphocytic leukemia (CLL) cells metabolize fatty acids (FA), how CLL cells internalize FA is poorly understood. Because in various cell types CD36 facilitates FA uptake, we wondered whether a similar mechanism is operative CLL. We found that CD36 levels are higher in CLL cells than in normal B cells, and that small interfering RNA, CD36 neutralizing antibodies or sulfosuccinimidyl oleate (SSO) that inhibits CD36 significantly reduced the oxygen consumption of CLL cells incubated with FA. Because CD36 is oeverexpressed and STAT3 is constitutively activated in CLL cells, we wondered whether STAT3 induces CD36 expression. Sequence analysis identified putative STAT3 binding sites in the CD36 gene promoter. Chromatin immunoprecipitation and an electrophoretic mobility shift assay revealed that STAT3 binds to the CD36 gene promoter. A luciferase assay and STAT3-small hairpin RNA, that significantly decreased the levels of CD36 in CLL cells, established that STAT3 activates the transcription of the CD36 gene. Furthermore, SSO induced a dose-dependent apoptosis of CLL cells. Taken together, our data suggest that STAT3 activates CD36 and that CD36 facilitates FA uptake in CLL cells. Whether CD36 inhibition would provide clinical benefits in CLL remains to be determined. PMID:29765537

  14. An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4(+) T cell decline in humanized mice.

    PubMed

    Neff, Charles Preston; Zhou, Jiehua; Remling, Leila; Kuruvilla, Jes; Zhang, Jane; Li, Haitang; Smith, David D; Swiderski, Piotr; Rossi, John J; Akkina, Ramesh

    2011-01-19

    Therapeutic strategies designed to treat HIV infection with combinations of antiviral drugs have proven to be the best approach for slowing the progression to AIDS. Despite this progress, there are problems with viral drug resistance and toxicity, necessitating new approaches to combating HIV-1 infection. We have therefore developed a different combination approach for the treatment of HIV infection in which an RNA aptamer, with high binding affinity to the HIV-1 envelope (gp120) protein and virus neutralization properties, is attached to and delivers a small interfering RNA (siRNA) that triggers sequence-specific degradation of HIV RNAs. We have tested the antiviral activities of these chimeric RNAs in a humanized Rag2(-/-)γc(-/-) (RAG-hu) mouse model with multilineage human hematopoiesis. In this animal model, HIV-1 replication and CD4(+) T cell depletion mimic the situation seen in human HIV-infected patients. Our results show that treatment with either the anti-gp120 aptamer or the aptamer-siRNA chimera suppressed HIV-1 replication by several orders of magnitude and prevented the viral-induced helper CD4(+) T cell decline. In comparison to the aptamer alone, the aptamer-siRNA combination provided more extensive inhibition, resulting in a significantly longer antiviral effect that extended several weeks beyond the last injected dose. The aptamer thus acts as a broad-spectrum HIV-neutralizing agent and an siRNA delivery vehicle. The combined aptamer-siRNA agent provides an attractive, nontoxic therapeutic approach for treatment of HIV infection.

  15. Cryptic nature of a conserved, CD4-inducible V3 loop neutralization epitope in the native envelope glycoprotein oligomer of CCR5-restricted, but not CXCR4-using, primary human immunodeficiency virus type 1 strains.

    PubMed

    Lusso, Paolo; Earl, Patricia L; Sironi, Francesca; Santoro, Fabio; Ripamonti, Chiara; Scarlatti, Gabriella; Longhi, Renato; Berger, Edward A; Burastero, Samuele E

    2005-06-01

    The external subunit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env), gp120, contains conserved regions that mediate sequential interactions with two cellular receptor molecules, CD4 and a chemokine receptor, most commonly CCR5 or CXCR4. However, antibody accessibility to such regions is hindered by diverse protective mechanisms, including shielding by variable loops, conformational flexibility and extensive glycosylation. For the conserved neutralization epitopes hitherto described, antibody accessibility is reportedly unrelated to the viral coreceptor usage phenotype. Here, we characterize a novel, conserved gp120 neutralization epitope, recognized by a murine monoclonal antibody (MAb), D19, which is differentially accessible in the native HIV-1 Env according to its coreceptor specificity. The D19 epitope is contained within the third variable (V3) domain of gp120 and is distinct from those recognized by other V3-specific MAbs. To study the reactivity of MAb D19 with the native oligomeric Env, we generated a panel of PM1 cells persistently infected with diverse primary HIV-1 strains. The D19 epitope was conserved in the majority (23/29; 79.3%) of the subtype-B strains tested, as well as in selected strains from other genetic subtypes. Strikingly, in CCR5-restricted (R5) isolates, the D19 epitope was invariably cryptic, although it could be exposed by addition of soluble CD4 (sCD4); epitope masking was dependent on the native oligomeric structure of Env, since it was not observed with the corresponding monomeric gp120 molecules. By contrast, in CXCR4-using strains (X4 and R5X4), the epitope was constitutively accessible. In accordance with these results, R5 isolates were resistant to neutralization by MAb D19, becoming sensitive only upon addition of sCD4, whereas CXCR4-using isolates were neutralized regardless of the presence of sCD4. Other V3 epitopes examined did not display a similar divergence in accessibility based on coreceptor usage phenotype. These results provide the first evidence of a correlation between HIV-1 biological phenotype and neutralization sensitivity, raising the possibility that the in vivo evolution of HIV-1 coreceptor usage may be influenced by the selective pressure of specific host antibodies.

  16. Peptide P5 (residues 628–683), comprising the entire membrane proximal region of HIV-1 gp41 and its calcium-binding site, is a potent inhibitor of HIV-1 infection

    PubMed Central

    Yu, Huifeng; Tudor, Daniela; Alfsen, Annette; Labrosse, Beatrice; Clavel, François; Bomsel, Morgane

    2008-01-01

    The membrane proximal region (MPR) of the transmembrane subunit, gp41, of the HIV envelope glycoprotein plays a critical role in HIV-1 infection of CD4+ target cells and CD4-independent mucosal entry. It contains continuous epitopes recognized by neutralizing IgG antibodies 2F5, 4E10 and Z13, and is therefore considered to be a promising target for vaccine design. Moreover, some MPR-derived peptides, such as T20 (enfuvirtide), are in clinical use as HIV-1 inhibitors. We have shown that an extended MPR peptide, P5, harbouring the lectin-like domain of gp41 and a calcium-binding site, is implicated in the interaction of HIV with its mucosal receptor. We now investigate the potential antiviral activities of P5 and other such long MPR-derived peptides. Structural studies of gp41 MPR-derived peptides using circular dichroism showed that the peptides P5 (a.a.628–683), P1 (a.a.648–683), P5L (a.a.613–683) and P7 (a.a.613–746) displayed a well-defined α-helical structure. Peptides P5 inhibited HIV-1 envelope mediated cell-cell fusion and infection of peripheral blood mononuclear cells by both X4- and R5-tropic HIV-1 strains, whereas peptides P5 mutated in the calcium binding site or P1 lacked antiviral activity, when P5L blocked cell fusion in contrast to P7. Strikingly, P5 inhibited CD4-dependent infection by T20-resistant R5-tropic HIV-1 variants. Cell-cell fusion studies indicated that the anti-HIV-1 activity of P5, unlike T20, could not be abrogated in the presence of the N-terminal leucine zipper domain (LZ). These results suggested that P5 could serve as a potent fusion inhibitor. PMID:18925934

  17. Conformational Rearrangement Within the Soluble Domains of the CD4 Receptor is Ligand-Specific

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashish,F.; Juncadella, I.; Garg, R.

    2008-01-01

    Ligand binding induces shape changes within the four modular ectodomains (D1-D4) of the CD4 receptor, an important receptor in immune signaling. Small angle x-ray scattering (SAXS) on both a two-domain and a four-domain construct of the soluble CD4 (sCD4) is consistent with known crystal structures demonstrating a bilobal and a semi-extended tetralobal Z conformation in solution, respectively. Detection of conformational changes within sCD4 as a result of ligand binding was followed by SAXS on sCD4 bound to two different glycoprotein ligands: the tick saliva immunosuppressor Salp15 and the HIV-1 envelope protein gp120. Ab initio modeling of these data showed thatmore » both Salp15 and gp120 bind to the D1 domain of sCD4 and yet induce drastically different structural rearrangements. Upon binding, Salp15 primarily distorts the characteristic lobal architecture of the sCD4 without significantly altering the semi-extended shape of the sCD4 receptor. In sharp contrast, the interaction of gp120 with sCD4 induces a shape change within sCD4 that can be described as a Z-to-U bi-fold closure of the four domains across its flexible D2-D3 linker. Placement of known crystal structures within the boundaries of the SAXS-derived models suggests that the ligand-induced shape changes could be a result of conformational changes within this D2-D3 linker. Functionally, the observed shape changes in CD4 receptor causes dissociation of lymphocyte kinase from the cytoplasmic domain of Salp15-bound CD4 and facilitates an interaction between the exposed V3 loops of CD4-bound gp120 molecule to the extracellular loops of its co-receptor, a step essential for HIV-1 viral entry.« less

  18. Rational design of a conformation-switchable Ca2+- and Tb3+-binding protein without the use of multiple coupled metal-binding sites.

    PubMed

    Li, Shunyi; Yang, Wei; Maniccia, Anna W; Barrow, Doyle; Tjong, Harianto; Zhou, Huan-Xiang; Yang, Jenny J

    2008-10-01

    Ca2+, as a messenger of signal transduction, regulates numerous target molecules via Ca2+-induced conformational changes. Investigation into the determinants for Ca2+-induced conformational change is often impeded by cooperativity between multiple metal-binding sites or protein oligomerization in naturally occurring proteins. To dissect the relative contributions of key determinants for Ca2+-dependent conformational changes, we report the design of a single-site Ca2+-binding protein (CD2.trigger) created by altering charged residues at an electrostatically sensitive location on the surface of the host protein rat Cluster of Differentiation 2 (CD2).CD2.trigger binds to Tb3+ and Ca2+ with dissociation constants of 0.3 +/- 0.1 and 90 +/- 25 microM, respectively. This protein is largely unfolded in the absence of metal ions at physiological pH, but Tb3+ or Ca2+ binding results in folding of the native-like conformation. Neutralization of the charged coordination residues, either by mutation or protonation, similarly induces folding of the protein. The control of a major conformational change by a single Ca2+ ion, achieved on a protein designed without reliance on sequence similarity to known Ca2+-dependent proteins and coupled metal-binding sites, represents an important step in the design of trigger proteins.

  19. Two new 3-D cadmium bromoplumbates: the only example of heterometallic bromoplumbate based on crown [Cd(Pb4O4)Br2] clusters.

    PubMed

    Xiao, Hong; Zhou, Jian; Liu, Xing

    2018-04-03

    Two new cadmium bromoplumbates [CdPb2Br2L2]n (1, L = ethylene glycol) and [CdPb6Br6L4]n (2) have been solvothermally synthesized and structurally characterized. 1 contains 1-D neutral heterometallic chains [CdPb2Br2L2]n, which are further connected via weak Pb-Br bonds, resulting in a 3-D network structure. The 3-D framework of 2 is constructed by the interconnection of a 2-D neutral layer [CdPb6Br6L4]nvia weak Pb-Br bonds. The [CdPb6Br6L4]n layer is based on the linkages of dimeric [Pb2Br4] units and heterometallic crown [Cd(Pb4O4)Br2] clusters containing a rare eight-membered [Pb4O4] ring. Although a few heterometallic bromoplumbate clusters have been reported, they usually exhibit molecular moieties. 2 represents the only example of 3-D heterometallic bromoplumbate based on the combination of heterometallic crown [Cd(Pb4O4)Br2] clusters and dimeric [Pb2Br4] units. Their optical properties are studied and density functional theory calculations for 1 and 2 have also been performed.

  20. Foot-and-Mouth Disease Virus Can Induce a Specific and Rapid CD4+ T-Cell-Independent Neutralizing and Isotype Class-Switched Antibody Response in Naïve Cattle▿ †

    PubMed Central

    Juleff, Nicholas; Windsor, Miriam; Lefevre, Eric A.; Gubbins, Simon; Hamblin, Pip; Reid, Elizabeth; McLaughlin, Kerry; Beverley, Peter C. L.; Morrison, Ivan W.; Charleston, Bryan

    2009-01-01

    The role of T-lymphocyte subsets in recovery from foot-and-mouth disease virus (FMDV) infection in calves was investigated by administering subset-specific monoclonal antibodies. The depletion of circulating CD4+ or WC1+ γδ T cells was achieved for a period extending from before challenge to after resolution of viremia and peak clinical signs, whereas CD8+ cell depletion was only partial. The depletion of CD4+ cells was also confirmed by analysis of lymph node biopsy specimens 5 days postchallenge. Depletion with anti-WC1 and anti-CD8 antibodies had no effect on the kinetics of infection, clinical signs, and immune responses following FMDV infection. Three of the four CD4+ T-cell-depleted calves failed to generate an antibody response to the nonstructural polyprotein 3ABC but generated a neutralizing antibody response similar to that in the controls, including rapid isotype switching to immunoglobulin G antibody. We conclude that antibody responses to sites on the surface of the virus capsid are T cell independent, whereas those directed against the nonstructural proteins are T cell dependent. CD4 depletion was found to substantially inhibit antibody responses to the G-H peptide loop VP1135-156 on the viral capsid, indicating that responses to this particular site, which has a more mobile structure than other neutralizing sites on the virus capsid, are T cell dependent. The depletion of CD4+ T cells had no adverse effect on the magnitude or duration of clinical signs or clearance of virus from the circulation. Overall, we conclude that CD4+ T-cell-independent antibody responses play a major role in the resolution of foot-and-mouth disease in cattle. PMID:19176618

  1. Hints for Metal-Preference Protein Sequence Determinants: Different Metal Binding Features of the Five Tetrahymena thermophila Metallothioneins

    PubMed Central

    Espart, Anna; Marín, Maribel; Gil-Moreno, Selene; Palacios, Òscar; Amaro, Francisco; Martín-González, Ana; Gutiérrez, Juan C.; Capdevila, Mercè; Atrian, Sílvia

    2015-01-01

    The metal binding preference of metallothioneins (MTs) groups them in two extreme subsets, the Zn/Cd- and the Cu-thioneins. Ciliates harbor the largest MT gene/protein family reported so far, including 5 paralogs that exhibit relatively low sequence similarity, excepting MTT2 and MTT4. In Tetrahymena thermophila, three MTs (MTT1, MTT3 and MTT5) were considered Cd-thioneins and two (MTT2 and MTT4) Cu-thioneins, according to gene expression inducibility and phylogenetic analysis. In this study, the metal-binding abilities of the five MTT proteins were characterized, to obtain information about the folding and stability of their cognate- and non-cognate metal complexes, and to characterize the T. thermophila MT system at protein level. Hence, the five MTTs were recombinantly synthesized as Zn2+-, Cd2+- or Cu+-complexes, which were analyzed by electrospray mass spectrometry (ESI-MS), circular dichroism (CD), and UV-vis spectrophotometry. Among the Cd-thioneins, MTT1 and MTT5 were optimal for Cd2+ coordination, yielding unique Cd17- and Cd8- complexes, respectively. When binding Zn2+, they rendered a mixture of Zn-species. Only MTT5 was capable to coordinate Cu+, although yielding heteronuclear Zn-, Cu-species or highly unstable Cu-homometallic species. MTT3 exhibited poor binding abilities both for Cd2+ and for Cu+, and although not optimally, it yielded the best result when coordinating Zn2+. The two Cu-thioneins, MTT2 and MTT4 isoforms formed homometallic Cu-complexes (major Cu20-MTT) upon synthesis in Cu-supplemented hosts. Contrarily, they were unable to fold into stable Cd-complexes, while Zn-MTT species were only recovered for MTT4 (major Zn10-MTT4). Thus, the metal binding preferences of the five T. thermophila MTs correlate well with their previous classification as Cd- and Cu-thioneins, and globally, they can be classified from Zn/Cd- to Cu-thioneins according to the gradation: MTT1>MTT5>MTT3>MTT4>MTT2. The main mechanisms underlying the evolution and specialization of the MTT metal binding preferences may have been internal tandem duplications, presence of doublet and triplet Cys patterns in Zn/Cd-thioneins, and optimization of site specific amino acid determinants (Lys for Zn/Cd- and Asn for Cu-coordination). PMID:25798065

  2. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site

    PubMed Central

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J.

    2016-01-01

    ABSTRACT Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. IMPORTANCE We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. PMID:26764003

  3. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site.

    PubMed

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J; Hogle, James M

    2016-01-13

    Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Dual-Affinity Re-Targeting proteins direct T cell–mediated cytolysis of latently HIV-infected cells

    PubMed Central

    Sung, Julia A.M.; Pickeral, Joy; Liu, Liqin; Stanfield-Oakley, Sherry A.; Lam, Chia-Ying Kao; Garrido, Carolina; Pollara, Justin; LaBranche, Celia; Bonsignori, Mattia; Moody, M. Anthony; Yang, Yinhua; Parks, Robert; Archin, Nancie; Allard, Brigitte; Kirchherr, Jennifer; Kuruc, JoAnn D.; Gay, Cynthia L.; Cohen, Myron S.; Ochsenbauer, Christina; Soderberg, Kelly; Liao, Hua-Xin; Montefiori, David; Moore, Paul; Johnson, Syd; Koenig, Scott; Haynes, Barton F.; Nordstrom, Jeffrey L.; Margolis, David M.; Ferrari, Guido

    2015-01-01

    Enhancement of HIV-specific immunity is likely required to eliminate latent HIV infection. Here, we have developed an immunotherapeutic modality aimed to improve T cell–mediated clearance of HIV-1–infected cells. Specifically, we employed Dual-Affinity Re-Targeting (DART) proteins, which are bispecific, antibody-based molecules that can bind 2 distinct cell-surface molecules simultaneously. We designed DARTs with a monovalent HIV-1 envelope-binding (Env-binding) arm that was derived from broadly binding, antibody-dependent cellular cytotoxicity–mediating antibodies known to bind to HIV-infected target cells coupled to a monovalent CD3 binding arm designed to engage cytolytic effector T cells (referred to as HIVxCD3 DARTs). Thus, these DARTs redirected polyclonal T cells to specifically engage with and kill Env-expressing cells, including CD4+ T cells infected with different HIV-1 subtypes, thereby obviating the requirement for HIV-specific immunity. Using lymphocytes from patients on suppressive antiretroviral therapy (ART), we demonstrated that DARTs mediate CD8+ T cell clearance of CD4+ T cells that are superinfected with the HIV-1 strain JR-CSF or infected with autologous reservoir viruses isolated from HIV-infected–patient resting CD4+ T cells. Moreover, DARTs mediated CD8+ T cell clearance of HIV from resting CD4+ T cell cultures following induction of latent virus expression. Combined with HIV latency reversing agents, HIVxCD3 DARTs have the potential to be effective immunotherapeutic agents to clear latent HIV-1 reservoirs in HIV-infected individuals. PMID:26413868

  5. Identification of a Unique Ganglioside Binding Loop within Botulinum Neurotoxins C and D-SA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karalewitz, Andrew P.-A.; Kroken, Abby R.; Fu, Zhuji

    2010-09-22

    The botulinum neurotoxins (BoNTs) are the most potent protein toxins for humans. There are seven serotypes of BoNTs (A-G) based on a lack of cross antiserum neutralization. BoNTs utilize gangliosides as components of the host receptors for binding and entry into neurons. Members of BoNT/C and BoNT/D serotypes include mosaic toxins that are organized in D/C and C/D toxins. One D/C mosaic toxin, BoNT/D-South Africa (BoNT/D-SA), was not fully neutralized by immunization with BoNT serotype C or D, which stimulated this study. Here the crystal structures of the receptor binding domains of BoNT/C, BoNT/D, and BoNT/D-SA are presented. Biochemical andmore » cell binding studies show that BoNT/C and BoNT/D-SA possess unique mechanisms for ganglioside binding. These studies provide new information about how the BoNTs can enter host cells as well as a basis for understanding the immunological diversity of these neurotoxins.« less

  6. HIV-1 Env trimer opens through an asymmetric intermediate in which individual protomers adopt distinct conformations.

    PubMed

    Ma, Xiaochu; Lu, Maolin; Gorman, Jason; Terry, Daniel S; Hong, Xinyu; Zhou, Zhou; Zhao, Hong; Altman, Roger B; Arthos, James; Blanchard, Scott C; Kwong, Peter D; Munro, James B; Mothes, Walther

    2018-03-21

    HIV-1 entry into cells requires binding of the viral envelope glycoprotein (Env) to receptor CD4 and coreceptor. Imaging of individual Env molecules on native virions shows Env trimers to be dynamic, spontaneously transitioning between three distinct well-populated conformational states: a pre-triggered Env (State 1), a default intermediate (State 2) and a three-CD4-bound conformation (State 3), which can be stabilized by binding of CD4 and coreceptor-surrogate antibody 17b. Here, using single-molecule Fluorescence Resonance Energy Transfer (smFRET), we show the default intermediate configuration to be asymmetric, with individual protomers adopting distinct conformations. During entry, this asymmetric intermediate forms when a single CD4 molecule engages the trimer. The trimer can then transition to State 3 by binding additional CD4 molecules and coreceptor.

  7. Local Conformational Stability of HIV-1 gp120 in Unliganded and CD4-Bound States as Defined by Amide Hydrogen/Deuterium Exchange▿ †

    PubMed Central

    Kong, Leopold; Huang, Chih-chin; Coales, Stephen J.; Molnar, Kathleen S.; Skinner, Jeff; Hamuro, Yoshitomo; Kwong, Peter D.

    2010-01-01

    The binding reaction of the HIV-1 gp120 envelope glycoprotein to the CD4 receptor involves exceptional changes in enthalpy and entropy. Crystal structures of gp120 in unliganded and various ligand-bound states, meanwhile, reveal an inner domain able to fold into diverse conformations, a structurally invariant outer domain, and, in the CD4-bound state, a bridging sheet minidomain. These studies, however, provide only hints as to the flexibility of each state. Here we use amide hydrogen/deuterium exchange coupled to mass spectrometry to provide quantifications of local conformational stability for HIV-1 gp120 in unliganded and CD4-bound states. On average, unliganded core gp120 displayed >10,000-fold slower exchange of backbone-amide hydrogens than a theoretically unstructured protein of the same composition, with binding by CD4 reducing the rate of gp120 amide exchange a further 10-fold. For the structurally constant CD4, alterations in exchange correlated well with alterations in binding surface (P value = 0.0004). For the structurally variable gp120, however, reductions in flexibility extended outside the binding surface, and regions of expected high structural diversity (inner domain/bridging sheet) displayed roughly 20-fold more rapid exchange in the unliganded state than regions of low diversity (outer domain). Thus, despite an extraordinary reduction in entropy, neither unliganded gp120 nor free CD4 was substantially unstructured, suggesting that most of the diverse conformations that make up the gp120 unliganded state are reasonably ordered. The results provide a framework for understanding how local conformational stability influences entropic change, conformational diversity, and structural rearrangements in the gp120-CD4 binding reaction. PMID:20660185

  8. Cryptic Nature of a Conserved, CD4-Inducible V3 Loop Neutralization Epitope in the Native Envelope Glycoprotein Oligomer of CCR5-Restricted, but Not CXCR4-Using, Primary Human Immunodeficiency Virus Type 1 Strains

    PubMed Central

    Lusso, Paolo; Earl, Patricia L.; Sironi, Francesca; Santoro, Fabio; Ripamonti, Chiara; Scarlatti, Gabriella; Longhi, Renato; Berger, Edward A.; Burastero, Samuele E.

    2005-01-01

    The external subunit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env), gp120, contains conserved regions that mediate sequential interactions with two cellular receptor molecules, CD4 and a chemokine receptor, most commonly CCR5 or CXCR4. However, antibody accessibility to such regions is hindered by diverse protective mechanisms, including shielding by variable loops, conformational flexibility and extensive glycosylation. For the conserved neutralization epitopes hitherto described, antibody accessibility is reportedly unrelated to the viral coreceptor usage phenotype. Here, we characterize a novel, conserved gp120 neutralization epitope, recognized by a murine monoclonal antibody (MAb), D19, which is differentially accessible in the native HIV-1 Env according to its coreceptor specificity. The D19 epitope is contained within the third variable (V3) domain of gp120 and is distinct from those recognized by other V3-specific MAbs. To study the reactivity of MAb D19 with the native oligomeric Env, we generated a panel of PM1 cells persistently infected with diverse primary HIV-1 strains. The D19 epitope was conserved in the majority (23/29; 79.3%) of the subtype-B strains tested, as well as in selected strains from other genetic subtypes. Strikingly, in CCR5-restricted (R5) isolates, the D19 epitope was invariably cryptic, although it could be exposed by addition of soluble CD4 (sCD4); epitope masking was dependent on the native oligomeric structure of Env, since it was not observed with the corresponding monomeric gp120 molecules. By contrast, in CXCR4-using strains (X4 and R5X4), the epitope was constitutively accessible. In accordance with these results, R5 isolates were resistant to neutralization by MAb D19, becoming sensitive only upon addition of sCD4, whereas CXCR4-using isolates were neutralized regardless of the presence of sCD4. Other V3 epitopes examined did not display a similar divergence in accessibility based on coreceptor usage phenotype. These results provide the first evidence of a correlation between HIV-1 biological phenotype and neutralization sensitivity, raising the possibility that the in vivo evolution of HIV-1 coreceptor usage may be influenced by the selective pressure of specific host antibodies. PMID:15890935

  9. Topical interferon-gamma neutralization prevents conjunctival goblet cell loss in experimental murine dry eye.

    PubMed

    Zhang, Xiaobo; De Paiva, Cintia S; Su, Zhitao; Volpe, Eugene A; Li, De-Quan; Pflugfelder, Stephen C

    2014-01-01

    Evidence suggests that the cytokine interferon (IFN)-γ released by natural killer and CD4(+) T cells contributes to the conjunctival goblet cell (GC) loss in dry eye. The purpose of this study was to investigate if topical neutralization of IFN-γ prevents or alleviates GC loss in an experimental desiccating stress (DS) model of dry eye. In this study, we found that topical IFN-γ neutralization significantly decreased DS-induced conjunctival GC loss. This was accompanied by decreased epithelial apoptosis, and increased IL-13 and decreased FoxA2 expression in the forniceal conjunctiva. To establish that IFN-γ produced by pathogenic CD4(+) T cells contributes to DS-induced GC loss, adoptive transfer of CD4(+) T cells isolated from DS exposed donors to naïve RAG-1(-/-) recipient mice was performed. Similar to the donor mice, topical IFN-γ neutralization decreased conjunctival GC loss, suppressed apoptosis and increased IL-13 expression in adoptive transfer recipients. In summary, this study demonstrated that topical neutralization of IFN-γ prevents GC loss via modulating apoptosis and maintaining IL-13 signaling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Characterization of broadly neutralizing antibody responses to HIV-1 in a cohort of long term non-progressors.

    PubMed

    González, Nuria; McKee, Krisha; Lynch, Rebecca M; Georgiev, Ivelin S; Jimenez, Laura; Grau, Eulalia; Yuste, Eloísa; Kwong, Peter D; Mascola, John R; Alcamí, José

    2018-01-01

    Only a small fraction of HIV-1-infected patients develop broadly neutralizing antibodies (bNAbs), a process generally associated to chronic antigen stimulation. It has been described that rare aviremic HIV-1-infected patients can generate bNAbs but this issue remains controversial. To address this matter we have assessed bNAb responses in a large cohort of long-term non-progressors (LTNPs) with low or undetectable viremia. Samples from the LTNP cohort of the Spanish AIDS Research Network (87 elite and 42 viremic controllers) and a control population of 176 viremic typical-progressors (TPs) were screened for bNAbs using Env-recombinant viruses. bNAb specificities were studied by ELISA using mutated gp120, neutralization assays with mutated viruses, and peptide competition. Epitope specificities were also elucidated from the serum pattern of neutralization against a panel of diverse HIV-1 isolates. Broadly neutralizing sera were found among 9.3% LTNPs, both elite (7%) and viremic controllers (14%). Within the broadly neutralizing sera, CD4 binding site antibodies were detected by ELISA in 4/12 LTNPs (33%), and 16/33 of TPs (48%). Anti-MPER antibodies were detected in 6/12 LTNPs (50%) and 14/33 TPs (42%) whereas glycan-dependent HIV-1 bNAbs were more frequent in LTNPs (11/12, 92%) as compared to TPs (12/33, 36%). A good concordance between standard serum mapping and neutralization-based mapping was observed. LTNPs, both viremic and elite controllers, showed broad humoral immune responses against HIV-1, including activity against many major epitopes involved in bNAbs-mediated protection.

  11. Engineering antigens for in situ erythrocyte binding induces T-cell deletion.

    PubMed

    Kontos, Stephan; Kourtis, Iraklis C; Dane, Karen Y; Hubbell, Jeffrey A

    2013-01-02

    Antigens derived from apoptotic cell debris can drive clonal T-cell deletion or anergy, and antigens chemically coupled ex vivo to apoptotic cell surfaces have been shown correspondingly to induce tolerance on infusion. Reasoning that a large number of erythrocytes become apoptotic (eryptotic) and are cleared each day, we engineered two different antigen constructs to target the antigen to erythrocyte cell surfaces after i.v. injection, one using a conjugate with an erythrocyte-binding peptide and another using a fusion with an antibody fragment, both targeting the erythrocyte-specific cell surface marker glycophorin A. Here, we show that erythrocyte-binding antigen is collected much more efficiently than free antigen by splenic and hepatic immune cell populations and hepatocytes, and that it induces antigen-specific deletional responses in CD4(+) and CD8(+) T cells. We further validated T-cell deletion driven by erythrocyte-binding antigens using a transgenic islet β cell-reactive CD4(+) T-cell adoptive transfer model of autoimmune type 1 diabetes: Treatment with the peptide antigen fused to an erythrocyte-binding antibody fragment completely prevented diabetes onset induced by the activated, autoreactive CD4(+) T cells. Thus, we report a translatable modular biomolecular approach with which to engineer antigens for targeted binding to erythrocyte cell surfaces to induce antigen-specific CD4(+) and CD8(+) T-cell deletion toward exogenous antigens and autoantigens.

  12. Crystal Structure of HIV-1 Primary Receptor CD4 i Complex with a Potent Antiviral Antibody

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, M.M.; Hong, X.; Seaman, M.S.

    2010-06-18

    Ibalizumab is a humanized, anti-CD4 monoclonal antibody. It potently blocks HIV-1 infection and targets an epitope in the second domain of CD4 without interfering with immune functions mediated by interaction of CD4 with major histocompatibility complex (MHC) class II molecules. We report here the crystal structure of ibalizumab Fab fragment in complex with the first two domains (D1-D2) of CD4 at 2.2 {angstrom} resolution. Ibalizumab grips CD4 primarily by the BC-loop (residues 121125) of D2, sitting on the opposite side of gp120 and MHC-II binding sites. No major conformational change in CD4 accompanies binding to ibalizumab. Both monovalent and bivalentmore » forms of ibalizumab effectively block viral infection, suggesting that it does not need to crosslink CD4 to exert antiviral activity. While gp120-induced structural rearrangements in CD4 are probably minimal, CD4 structural rigidity is dispensable for ibalizumab inhibition. These results could guide CD4-based immunogen design and lead to a better understanding of HIV-1 entry.« less

  13. Functional Interaction of CD154 Protein with α5β1 Integrin Is Totally Independent from Its Binding to αIIbβ3 Integrin and CD40 Molecules*

    PubMed Central

    El Fakhry, Youssef; Alturaihi, Haydar; Yacoub, Daniel; Liu, Lihui; Guo, Wenyan; Leveillé, Claire; Jung, Daniel; Khzam, Lara Bou; Merhi, Yahye; Wilkins, John A.; Li, Hongmin; Mourad, Walid

    2012-01-01

    In addition to its classical CD40 receptor, CD154 also binds to αIIbβ3, α5β1, and αMβ2 integrins. Binding of CD154 to these receptors seems to play a key role in the pathogenic processes of chronic inflammation. This investigation was aimed at analyzing the functional interaction of CD154 with CD40, αIIbβ3, and α5β1 receptors. We found that the binding affinity of CD154 for αIIbβ3 is ∼4-fold higher than for α5β1. We also describe the generation of sCD154 mutants that lost their ability to bind CD40 or αIIbβ3 and show that CD154 residues involved in its binding to CD40 or αIIbβ3 are distinct from those implicated in its interaction to α5β1, suggesting that sCD154 may bind simultaneously to different receptors. Indeed, sCD154 can bind simultaneously to CD40 and α5β1 and biologically activate human monocytic U937 cells expressing both receptors. The simultaneous engagement of CD40 and α5β1 activates the mitogen-activated protein kinases, p38, and extracellular signal-related kinases 1/2 and synergizes in the release of inflammatory mediators MMP-2 and -9, suggesting a cross-talk between these receptors. PMID:22461623

  14. HIV envelope-mediated, CCR5/α4β7-dependent killing of CD4-negative γδ T cells which are lost during progression to AIDS.

    PubMed

    Li, Haishan; Pauza, C David

    2011-11-24

    HIV infects and replicates in CD4+ T cells but effects on host immunity and disease also involve depletion, hyper-activation, and modification of CD4-negative cell populations. In particular, the depletion of CD4-negative γδ T cells is common to all HIV+ individuals. We found that soluble or cell-associated envelope glycoproteins from CCR5-tropic strains of HIV could bind, activates the p38-caspase pathway, and induce the death of γδ cells. Envelope binding requires integrin α4β7 and chemokine receptor CCR5 which are at high levels and form a complex on the γδ T cell membrane. This receptor complex facilitated V3 loop binding to CCR5 in the absence of CD4-induced conformational changes. Cell death was increased by antigen stimulation after exposure to envelope glycoprotein. Direct signaling by envelope glycoprotein killed CD4-negative γδ T cells and reproduced a defect observed in all patients with HIV disease.

  15. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKKϵ-IRF3 axis activation.

    PubMed

    Tsukamoto, Hiroki; Takeuchi, Shino; Kubota, Kanae; Kobayashi, Yohei; Kozakai, Sao; Ukai, Ippo; Shichiku, Ayumi; Okubo, Misaki; Numasaki, Muneo; Kanemitsu, Yoshitomi; Matsumoto, Yotaro; Nochi, Tomonori; Watanabe, Kouichi; Aso, Hisashi; Tomioka, Yoshihisa

    2018-05-14

    Toll-like receptor 4 (TLR4) is an indispensable immune receptor for lipopolysaccharide (LPS), a major component of the Gram-negative bacterial cell wall. Following LPS stimulation, TLR4 transmits the signal from the cell surface and becomes internalized in an endosome. However, the spatial regulation of TLR4 signaling is not fully understood. Here, we investigated the mechanisms of LPS-induced TLR4 internalization and clarified the roles of the extracellular LPS-binding molecules, LPS-binding protein (LBP), and glycerophosphatidylinositol-anchored protein (CD14). LPS stimulation of CD14-expressing cells induced TLR4 internalization in the presence of serum, and an inhibitory anti-LBP mAb blocked its internalization. Addition of LBP to serum-free cultures restored LPS-induced TLR4 internalization to comparable levels of serum. The secretory form of the CD14 (sCD14) induced internalization but required a much higher concentration than LBP. An inhibitory anti-sCD14 mAb was ineffective for serum-mediated internalization. LBP lacking the domain for LPS transfer to CD14 and a CD14 mutant with reduced LPS binding both attenuated TLR4 internalization. Accordingly, LBP is an essential serum molecule for TLR4 internalization, and its LPS transfer to membrane-anchored CD14 (mCD14) is a prerequisite. LBP induced the LPS-stimulated phosphorylation of TBK1, IKKϵ, and IRF3, leading to IFN-β expression. However, LPS-stimulated late activation of NFκB or necroptosis were not affected. Collectively, our results indicate that LBP controls LPS-induced TLR4 internalization, which induces TLR adaptor molecule 1 (TRIF)-dependent activation of the TBK1-IKKϵ-IRF3-IFN-β pathway. In summary, we showed that LBP-mediated LPS transfer to mCD14 is required for serum-dependent TLR4 internalization and activation of the TRIF pathway. Copyright © 2018, The American Society for Biochemistry and Molecular Biology.

  16. Induction of human immunodeficiency virus neutralizing antibodies using fusion complexes.

    PubMed

    Zipeto, Donato; Matucci, Andrea; Ripamonti, Chiara; Scarlatti, Gabriella; Rossolillo, Paola; Turci, Marco; Sartoris, Silvia; Tridente, Giuseppe; Bertazzoni, Umberto

    2006-05-01

    Human immunodeficiency virus-1 (HIV-1) infects cells by membrane fusion that is mediated by the envelope proteins gp120/gp41 and the cellular receptors CD4 and CCR5. During this process, some conserved viral epitopes are temporarily exposed and may induce a neutralizing antibody response when fixed in the fusogenic conformation. These transient structures are conserved and may be effective antigens for use in an anti-HIV-1 vaccine. In this study we tested different conditions of preparation of fusion complexes inducing neutralizing antibodies against both R5 and X4 tropic HIV-1 strains. Cell lines expressing HIV-1 gp120/gp41 and CD4-CCR5 were prepared and conditions for producing fusion complexes were tested. Complexes produced at different temperature and fixative combinations were used to immunize mice. Results indicated that (a) fusion complexes prepared at either 21 degrees C, 30 degrees C or 37 degrees C were immunogenic and induced neutralizing antibodies against both R5 and X4 HIV-1 heterologous isolates; (b) after extensive purification of antibodies there was no cytotoxic effect; (c) complexes prepared at 37 degrees C were more immunogenic and induced higher titers of neutralizing antibodies than complexes prepared at either 21 degrees C or 30 degrees C; (d) the fixative used did not affect the titer of neutralizing antibodies except for glutaraldehyde which was ineffective; (e) the neutralizing activity was retained after CD4-CCR5 antibody removal. The production of higher titers of neutralizing antibody with fusion complexes prepared at 37 degrees C, as compared to lower temperatures, may be related to the induction of antibodies against many different conformation intermediates that subsequently act synergistically at different steps in the fusion process.

  17. Induction of Broad CD4+ and CD8+ T-Cell Responses and Cross- Neutralizing Antibodies against Hepatitis C Virus by Vaccination with Th1-Adjuvanted Polypeptides Followed by Defective Alphaviral Particles Expressing Envelope Glycoproteins gpE1 and gpE2 and Nonstructural Proteins 3, 4, and 5▿ †

    PubMed Central

    Lin, Yinling; Kwon, Taewoo; Polo, John; Zhu, Yi-Fei; Coates, Stephen; Crawford, Kevin; Dong, Christine; Wininger, Mark; Hall, John; Selby, Mark; Coit, Doris; Medina-Selby, Angelica; McCoin, Colin; Ng, Philip; Drane, Debbie; Chien, David; Han, Jang; Vajdy, Michael; Houghton, Michael

    2008-01-01

    Broad, multispecific CD4+ and CD8+ T-cell responses to the hepatitis C virus (HCV), as well as virus-cross-neutralizing antibodies, are associated with recovery from acute infection and may also be associated in chronic HCV patients with a favorable response to antiviral treatment. In order to recapitulate all of these responses in an ideal vaccine regimen, we have explored the use of recombinant HCV polypeptides combined with various Th1-type adjuvants and replication-defective alphaviral particles encoding HCV proteins in various prime/boost modalities in BALB/c mice. Defective chimeric alphaviral particles derived from the Sindbis and Venezuelan equine encephalitis viruses encoding either the HCV envelope glycoprotein gpE1/gpE2 heterodimer (E1E2) or nonstructural proteins 3, 4, and 5 (NS345) elicited strong CD8+ T-cell responses but low CD4+ T helper responses to these HCV gene products. In contrast, recombinant E1E2 glycoproteins adjuvanted with MF59 containing a CpG oligonucleotide elicited strong CD4+ T helper responses but no CD8+ T-cell responses. A recombinant NS345 polyprotein also stimulated strong CD4+ T helper responses but no CD8+ T-cell responses when adjuvanted with Iscomatrix containing CpG. Optimal elicitation of broad CD4+ and CD8+ T-cell responses to E1E2 and NS345 was obtained by first priming with Th1-adjuvanted proteins and then boosting with chimeric, defective alphaviruses expressing these HCV genes. In addition, this prime/boost regimen resulted in the induction of anti-E1E2 antibodies capable of cross-neutralizing heterologous HCV isolates in vitro. This vaccine formulation and regimen may therefore be optimal in humans for protection against this highly heterogeneous global pathogen. PMID:18508900

  18. Interactions of human hemoglobin with charged ligand-functionalized iron oxide nanoparticles and effect of counterions

    NASA Astrophysics Data System (ADS)

    Ghosh, Goutam; Panicker, Lata

    2014-12-01

    Human hemoglobin is an important metalloprotein. It has tetrameric structure with each subunit containing a `heme' group which carries oxygen and carbon dioxide in blood. In this work, we have investigated the interactions of human hemoglobin (Hb) with charged ligand-functionalized iron oxide nanoparticles and the effect of counterions, in aqueous medium. Several techniques like DLS and ζ-potential measurements, UV-vis, fluorescence, and CD spectroscopy have been used to characterize the interaction. The nanoparticle size was measured to be in the range of 20-30 nm. Our results indicated the binding of Hb with both positively as well as negatively charged ligand-functionalized iron oxide nanoparticles in neutral aqueous medium which was driven by the electrostatic and the hydrophobic interactions. The electrostatic binding interaction was not seen in phosphate buffer at pH 7.4. We have also observed that the `heme' groups of Hb remained unaffected on binding with charged nanoparticles, suggesting the utility of the charged ligand-functionalized nanoparticles in biomedical applications.

  19. Cadmium is deposited in the gut content of larvae of the beetle Tenebrio molitor and involves a Cd-binding protein of the low cysteine type.

    PubMed

    Pedersen, S A; Kristiansen, E; Andersen, R A; Zachariassen, K E

    2008-09-01

    Binding of cadmium (Cd) to metallothionein (MT) and non-MT proteins with low contents of cysteine has been observed in terrestrial arthropods. We recently isolated a Cd-binding protein with no cysteine that was induced in Cd-exposed larvae of the beetle Tenebrio molitor. In this study we have examined the molecular distribution of Cd within extracts of different tissues and compartments of Cd-exposed T. molitor larvae. A Cd-peak consistent with the low cysteine Cd-binding protein was induced within the gut content where it could be detected after 4-8 days of exposure. Examination of gut wall tissue revealed no increase in Cd-binding capacity, indicating that no accumulation of MTs was taking place in this tissue. Incorporation of Cd in the gut wall tissue stabilized after 8 days of Cd-exposure at a rather low level compared to the other organs. There was a statistical trend towards Cd being incorporated in the gut content in a manner that was disproportionally high compared to the amount of Cd in the gut wall tissue. The possible role of the low cysteine Cd-binding protein in reducing the uptake of Cd in the tissues is discussed.

  20. The Receptor-Binding Site of the Measles Virus Hemagglutinin Protein Itself Constitutes a Conserved Neutralizing Epitope

    PubMed Central

    Ohno, Shinji; Sakai, Kouji; Ito, Yuri; Fukuhara, Hideo; Komase, Katsuhiro; Brindley, Melinda A.; Rota, Paul A.; Plemper, Richard K.; Maenaka, Katsumi; Takeda, Makoto

    2013-01-01

    Here, we provide direct evidence that the receptor-binding site of measles virus (MV) hemagglutinin protein itself forms an effective conserved neutralizing epitope (CNE). Several receptor-interacting residues constitute the CNE. Thus, viral escape from neutralization has to be associated with loss of receptor-binding activity. Since interactions with both the signaling lymphocyte activation molecule (SLAM) and nectin4 are critical for MV pathogenesis, its escape, which results from loss of receptor-binding activity, should not occur in nature. PMID:23283964

  1. Human leucocyte antigen class I-redirected anti-tumour CD4+ T cells require a higher T cell receptor binding affinity for optimal activity than CD8+ T cells.

    PubMed

    Tan, M P; Dolton, G M; Gerry, A B; Brewer, J E; Bennett, A D; Pumphrey, N J; Jakobsen, B K; Sewell, A K

    2017-01-01

    CD4 + T helper cells are a valuable component of the immune response towards cancer. Unfortunately, natural tumour-specific CD4 + T cells occur in low frequency, express relatively low-affinity T cell receptors (TCRs) and show poor reactivity towards cognate antigen. In addition, the lack of human leucocyte antigen (HLA) class II expression on most cancers dictates that these cells are often unable to respond to tumour cells directly. These deficiencies can be overcome by transducing primary CD4 + T cells with tumour-specific HLA class I-restricted TCRs prior to adoptive transfer. The lack of help from the co-receptor CD8 glycoprotein in CD4 + cells might result in these cells requiring a different optimal TCR binding affinity. Here we compared primary CD4 + and CD8 + T cells expressing wild-type and a range of affinity-enhanced TCRs specific for the HLA A*0201-restricted NY-ESO-1- and gp100 tumour antigens. Our major findings are: (i) redirected primary CD4 + T cells expressing TCRs of sufficiently high affinity exhibit a wide range of effector functions, including cytotoxicity, in response to cognate peptide; and (ii) optimal TCR binding affinity is higher in CD4 + T cells than CD8 + T cells. These results indicate that the CD4 + T cell component of current adoptive therapies using TCRs optimized for CD8 + T cells is below par and that there is room for substantial improvement. © 2016 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society for Immunology.

  2. Binding of human and rat CD59 to the terminal complement complexes.

    PubMed Central

    Lehto, T; Morgan, B P; Meri, S

    1997-01-01

    CD59-antigen (protectin) is a widely distributed glycolipid-anchored inhibitor of complement lysis. CD59 interacts with complement components C8 and C9 during assembly of the membrane attack complex (MAC). To evaluate species specificity of these interactions we have in the present study examined cross-species binding of isolated human and rat CD59 to the terminal complement components C8 and C9. By using primarily soluble CD59 isolated from urine (CD59U) potentially non-specific binding interactions of the phospholipid portion of the membrane forms of CD59 could be avoided. Sucrose density gradient ultracentrifugation analysis showed that human CD59U bound to both human and rat C8 in the SC5b-8 complexes. Similar binding occurred when rat CD59U was used. The degree of binding did not significantly differ between the heterologous and homologous CD59-C8 combinations. C9 from both species inhibited the binding of CD59 to soluble SC5b-8. In ligand blotting analysis human and rat CD59U bound to human and rat C8 alpha gamma-subunit and C9. Binding of human and rat CD59U was stronger to human than rat C9. In plate binding assays the erythrocyte form of CD59 (CD59E) bound to both human and rat C8. Binding of CD59E to heterologous C9 was considerably weaker than to homologous C9. Our results imply that the reciprocal binding sites between C8 and CD59 and to a lesser degree between CD59 and C9 are conserved between human and rat. Interactions of CD59 with the terminal C components are thus species selective but not 'homologously restricted'. Images Figure 4 Figure 5 PMID:9038722

  3. Brain serotonin 4 receptor binding is inversely associated with verbal memory recall.

    PubMed

    Stenbæk, Dea S; Fisher, Patrick M; Ozenne, Brice; Andersen, Emil; Hjordt, Liv V; McMahon, Brenda; Hasselbalch, Steen G; Frokjaer, Vibe G; Knudsen, Gitte M

    2017-04-01

    We have previously identified an inverse relationship between cerebral serotonin 4 receptor (5-HT 4 R) binding and nonaffective episodic memory in healthy individuals. Here, we investigate in a novel sample if the association is related to affective components of memory, by examining the association between cerebral 5-HT 4 R binding and affective verbal memory recall. Twenty-four healthy volunteers were scanned with the 5-HT 4 R radioligand [ 11 C]SB207145 and positron emission tomography, and were tested with the Verbal Affective Memory Test-24. The association between 5-HT 4 R binding and affective verbal memory was evaluated using a linear latent variable structural equation model. We observed a significant inverse association across all regions between 5-HT 4 R binding and affective verbal memory performances for positive ( p  = 5.5 × 10 -4 ) and neutral ( p  = .004) word recall, and an inverse but nonsignificant association for negative ( p  = .07) word recall. Differences in the associations with 5-HT 4 R binding between word categories (i.e., positive, negative, and neutral) did not reach statistical significance. Our findings replicate our previous observation of a negative association between 5-HT 4 R binding and memory performance in an independent cohort and provide novel evidence linking 5-HT 4 R binding, as a biomarker for synaptic 5-HT levels, to the mnestic processing of positive and neutral word stimuli in healthy humans.

  4. Escherichia coli surface display of single-chain antibody VRC01 against HIV-1 infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lin-Xu; School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, NE 68583; Mellon, Michael

    Human immunodeficiency virus type 1 (HIV-1) transmission and infection occur mainly via the mucosal surfaces. The commensal bacteria residing in these surfaces can potentially be employed as a vehicle for delivering inhibitors to prevent HIV-1 infection. In this study, we have employed a bacteria-based strategy to display a broadly neutralizing antibody VRC01, which could potentially be used to prevent HIV-1 infection. The VRC01 antibody mimics CD4-binding to gp120 and has broadly neutralization activities against HIV-1. We have designed a construct that can express the fusion peptide of the scFv-VRC01 antibody together with the autotransporter β-barrel domain of IgAP gene frommore » Neisseria gonorrhoeae, which enabled surface display of the antibody molecule. Our results indicate that the scFv-VRC01 antibody molecule was displayed on the surface of the bacteria as demonstrated by flow cytometry and immunofluorescence microscopy. The engineered bacteria can capture HIV-1 particles via surface-binding and inhibit HIV-1 infection in cell culture. - Highlights: • Designed single-chain VRC01 antibody was demonstrated to bind HIV-1 envelope gp120. • Single-chain VRC01 antibody was successfully displayed on the surface of E. coli. • Engineered bacteria can absorb HIV-1 particles and prevent HIV-1 infection in cell culture.« less

  5. Affinity maturation in an HIV broadly neutralizing B-cell lineage through reorientation of variable domains.

    PubMed

    Fera, Daniela; Schmidt, Aaron G; Haynes, Barton F; Gao, Feng; Liao, Hua-Xin; Kepler, Thomas B; Harrison, Stephen C

    2014-07-15

    Rapidly evolving pathogens, such as human immunodeficiency and influenza viruses, escape immune defenses provided by most vaccine-induced antibodies. Proposed strategies to elicit broadly neutralizing antibodies require a deeper understanding of antibody affinity maturation and evolution of the immune response to vaccination or infection. In HIV-infected individuals, viruses and B cells evolve together, creating a virus-antibody "arms race." Analysis of samples from an individual designated CH505 has illustrated the interplay between an antibody lineage, CH103, and autologous viruses at various time points. The CH103 antibodies, relatively broad in their neutralization spectrum, interact with the CD4 binding site of gp120, with a contact dominated by CDRH3. We show by analyzing structures of progenitor and intermediate antibodies and by correlating them with measurements of binding to various gp120s that there was a shift in the relative orientation of the light- and heavy-chain variable domains during evolution of the CH103 lineage. We further show that mutations leading to this conformational shift probably occurred in response to insertions in variable loop 5 (V5) of the HIV envelope. The shift displaced the tips of the light chain away from contact with V5, making room for the inserted residues, which had allowed escape from neutralization by the progenitor antibody. These results, which document the selective mechanism underlying this example of a virus-antibody arms race, illustrate the functional significance of affinity maturation by mutation outside the complementarity determining region surface of the antibody molecule.

  6. Potent In Vivo NK Cell-Mediated Elimination of HIV-1-Infected Cells Mobilized by a gp120-Bispecific and Hexavalent Broadly Neutralizing Fusion Protein

    PubMed Central

    Bardhi, Ariola; Wu, Yanling; Chen, Weizao; Li, Wei; Zhu, Zhongyu; Zheng, Jian Hua; Wong, Hing; Jeng, Emily; Jones, Jennifer; Ochsenbauer, Christina; Kappes, John C.; Dimitrov, Dimiter S.; Ying, Tianlei

    2017-01-01

    ABSTRACT Antibodies bound to human immunodeficiency virus type 1 (HIV-1) envelope protein expressed by infected cells mobilize antibody-dependent cellular cytotoxicity (ADCC) to eliminate the HIV-1-infected cells and thereby suppress HIV-1 infection and delay disease progression. Studies treating HIV-1-infected individuals with latency reactivation agents to reduce their latent HIV-1 reservoirs indicated that their HIV-1-specific immune responses were insufficient to effectively eliminate the reactivated latent HIV-1-infected T cells. Mobilization of ADCC may facilitate elimination of reactivated latent HIV-1-infected cells to deplete the HIV-1 reservoir and contribute to a functional HIV-1 cure. The most effective antibodies for controlling and eradicating HIV-1 infection would likely have the dual capacities of potently neutralizing a broad range of HIV-1 isolates and effectively mobilizing HIV-1-specific ADCC to eliminate HIV-1-infected cells. For this purpose, we constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and simian-human immunodeficiency virus (SHIV) infection in humanized mouse and macaque models, respectively, including in vivo neutralization of HIV-1 strains resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. We developed a novel humanized mouse model to evaluate in vivo human NK cell-mediated elimination of HIV-1-infected cells by ADCC and utilized it to demonstrate that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir. IMPORTANCE Mobilization of antibody-dependent cellular cytotoxicity (ADCC) to eliminate reactivated latent HIV-1-infected cells is a strategy which may contribute to depleting the HIV-1 reservoir and achieving a functional HIV-1 cure. To more effectively mobilize ADCC, we designed and constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and SHIV infection in humanized mouse and macaque models, respectively, including in vivo neutralization of an HIV-1 strain resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. Using a novel humanized mouse model, we demonstrated that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir. PMID:28794022

  7. Potent In Vivo NK Cell-Mediated Elimination of HIV-1-Infected Cells Mobilized by a gp120-Bispecific and Hexavalent Broadly Neutralizing Fusion Protein.

    PubMed

    Bardhi, Ariola; Wu, Yanling; Chen, Weizao; Li, Wei; Zhu, Zhongyu; Zheng, Jian Hua; Wong, Hing; Jeng, Emily; Jones, Jennifer; Ochsenbauer, Christina; Kappes, John C; Dimitrov, Dimiter S; Ying, Tianlei; Goldstein, Harris

    2017-10-15

    Antibodies bound to human immunodeficiency virus type 1 (HIV-1) envelope protein expressed by infected cells mobilize antibody-dependent cellular cytotoxicity (ADCC) to eliminate the HIV-1-infected cells and thereby suppress HIV-1 infection and delay disease progression. Studies treating HIV-1-infected individuals with latency reactivation agents to reduce their latent HIV-1 reservoirs indicated that their HIV-1-specific immune responses were insufficient to effectively eliminate the reactivated latent HIV-1-infected T cells. Mobilization of ADCC may facilitate elimination of reactivated latent HIV-1-infected cells to deplete the HIV-1 reservoir and contribute to a functional HIV-1 cure. The most effective antibodies for controlling and eradicating HIV-1 infection would likely have the dual capacities of potently neutralizing a broad range of HIV-1 isolates and effectively mobilizing HIV-1-specific ADCC to eliminate HIV-1-infected cells. For this purpose, we constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and simian-human immunodeficiency virus (SHIV) infection in humanized mouse and macaque models, respectively, including in vivo neutralization of HIV-1 strains resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. We developed a novel humanized mouse model to evaluate in vivo human NK cell-mediated elimination of HIV-1-infected cells by ADCC and utilized it to demonstrate that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir. IMPORTANCE Mobilization of antibody-dependent cellular cytotoxicity (ADCC) to eliminate reactivated latent HIV-1-infected cells is a strategy which may contribute to depleting the HIV-1 reservoir and achieving a functional HIV-1 cure. To more effectively mobilize ADCC, we designed and constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and SHIV infection in humanized mouse and macaque models, respectively, including in vivo neutralization of an HIV-1 strain resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. Using a novel humanized mouse model, we demonstrated that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir. Copyright © 2017 American Society for Microbiology.

  8. Structure of a Potential Therapeutic Antibody Bound to Interleukin-16 (IL-16)

    PubMed Central

    Hall, Gareth; Cullen, Eilish; Sawmynaden, Kovilen; Arnold, Joanne; Fox, Simon; Cowan, Richard; Muskett, Frederick W.; Matthews, David; Merritt, Andrew; Kettleborough, Catherine; Cruikshank, William; Taylor, Debra; Bayliss, Richard; Carr, Mark D.

    2016-01-01

    Interleukin-16 (IL-16) is reported to be a chemoattractant cytokine and modulator of T-cell activation, and has been proposed as a ligand for the co-receptor CD4. The secreted active form of IL-16 has been detected at sites of TH1-mediated inflammation, such as those seen in autoimmune diseases, ischemic reperfusion injury (IRI), and tissue transplant rejection. Neutralization of IL-16 recruitment to its receptor, using an anti-IL16 antibody, has been shown to significantly attenuate inflammation and disease pathology in IRI, as well as in some autoimmune diseases. The 14.1 antibody is a monoclonal anti-IL-16 antibody, which when incubated with CD4+ cells is reported to cause a reduction in the TH1-type inflammatory response. Secreted IL-16 contains a characteristic PDZ domain. PDZ domains are typically characterized by a defined globular structure, along with a peptide-binding site located in a groove between the αB and βB structural elements and a highly conserved carboxylate-binding loop. In contrast to other reported PDZ domains, the solution structure previously reported for IL-16 reveals a tryptophan residue obscuring the recognition groove. We have solved the structure of the 14.1Fab fragment in complex with IL-16, revealing that binding of the antibody requires a conformational change in the IL-16 PDZ domain. This involves the rotation of the αB-helix, accompanied movement of the peptide groove obscuring tryptophan residue, and consequent opening up of the binding site for interaction. Our study reveals a surprising mechanism of action for the antibody and identifies new opportunities for the development of IL-16-targeted therapeutics, including small molecules that mimic the interaction of the antibody. PMID:27231345

  9. HIV/AIDS Vaccine Candidates Based on Replication-Competent Recombinant Poxvirus NYVAC-C-KC Expressing Trimeric gp140 and Gag-Derived Virus-Like Particles or Lacking the Viral Molecule B19 That Inhibits Type I Interferon Activate Relevant HIV-1-Specific B and T Cell Immune Functions in Nonhuman Primates

    PubMed Central

    García-Arriaza, Juan; Perdiguero, Beatriz; Heeney, Jonathan L.; Seaman, Michael S.; Montefiori, David C.; Yates, Nicole L.; Tomaras, Georgia D.; Ferrari, Guido; Foulds, Kathryn E.; Roederer, Mario; Self, Steven G.; Borate, Bhavesh; Gottardo, Raphael; Phogat, Sanjay; Tartaglia, Jim; Barnett, Susan W.; Burke, Brian; Cristillo, Anthony D.; Weiss, Deborah E.; Lee, Carter; Kibler, Karen V.; Jacobs, Bertram L.; Wagner, Ralf; Ding, Song; Pantaleo, Giuseppe

    2017-01-01

    ABSTRACT The nonreplicating attenuated poxvirus vector NYVAC expressing clade C(CN54) HIV-1 Env(gp120) and Gag-Pol-Nef antigens (NYVAC-C) showed limited immunogenicity in phase I clinical trials. To enhance the capacity of the NYVAC vector to trigger broad humoral responses and a more balanced activation of CD4+ and CD8+ T cells, here we compared the HIV-1-specific immunogenicity elicited in nonhuman primates immunized with two replicating NYVAC vectors that have been modified by the insertion of the K1L and C7L vaccinia virus host range genes and express the clade C(ZM96) trimeric HIV-1 gp140 protein or a Gag(ZM96)-Pol-Nef(CN54) polyprotein as Gag-derived virus-like particles (termed NYVAC-C-KC). Additionally, one NYVAC-C-KC vector was generated by deleting the viral gene B19R, an inhibitor of the type I interferon response (NYVAC-C-KC-ΔB19R). An immunization protocol mimicking that of the RV144 phase III clinical trial was used. Two groups of macaques received two doses of the corresponding NYVAC-C-KC vectors (weeks 0 and 4) and booster doses with NYVAC-C-KC vectors plus the clade C HIV-1 gp120 protein (weeks 12 and 24). The two replicating NYVAC-C-KC vectors induced enhanced and similar HIV-1-specific CD4+ and CD8+ T cell responses, similar levels of binding IgG antibodies, low levels of IgA antibodies, and high levels of antibody-dependent cellular cytotoxicity responses and HIV-1-neutralizing antibodies. Small differences within the NYVAC-C-KC-ΔB19R group were seen in the magnitude of CD4+ and CD8+ T cells, the induction of some cytokines, and the neutralization of some HIV-1 isolates. Thus, replication-competent NYVAC-C-KC vectors acquired relevant immunological properties as vaccine candidates against HIV/AIDS, and the viral B19 molecule exerts some control of immune functions. IMPORTANCE It is of special importance to find a safe and effective HIV/AIDS vaccine that can induce strong and broad T cell and humoral immune responses correlating with HIV-1 protection. Here we developed novel replicating poxvirus NYVAC-based HIV/AIDS vaccine candidates expressing clade C HIV-1 antigens, with one of them lacking the vaccinia virus B19 protein, an inhibitor of the type I interferon response. Immunization of nonhuman primates with these novel NYVAC-C-KC vectors and the protein component gp120 elicited high levels of T cell and humoral immune responses, with the vector containing a deletion in B19R inducing a trend toward a higher magnitude of CD4+ and CD8+ T cell responses and neutralization of some HIV-1 strains. These poxvirus vectors could be considered HIV/AIDS vaccine candidates based on their activation of potential immune correlates of protection. PMID:28179536

  10. An anti-CD30 single-chain Fv selected by phage display and fused to Pseudomonas exotoxin A (Ki-4(scFv)-ETÁ) is a potent immunotoxin against a Hodgkin-derived cell line

    PubMed Central

    Klimka, A; Barth, S; Matthey, B; Roovers, R C; Lemke, H; Hansen, H; Arends, J-W; Diehl, V; Hoogenboom, H R; Engert, A

    1999-01-01

    The human CD30 receptor is highly overexpressed on the surface of Hodgkin Reed-Sternberg cells and has been shown to be an excellent target for selective immunotherapy using monoclonal antibody-based agents such as immunotoxins. To construct a new recombinant immunotoxin for possible clinical use in patients with Hodgkin's lymphoma, we have chosen the murine anti-CD30 hybridoma Ki-4 to generate a high-affinity Ki-4 single-chain variable fragment (scFv). Hybridoma V-genes were polymerase chain reaction-amplified, assembled, cloned and expressed as a mini-library for display on filamentous phage. Functional Ki-4 scFv were obtained by selection of binding phage on the Hodgkin lymphoma-derived, CD30-expressing cell line L540Cy. The selected recombinant Ki-4 scFv was shown to specifically bind to an overlapping epitope on the CD30 antigen with binding kinetics similar to those of the original antibody. The Ki-4 scFv was subsequently fused to a deletion mutant of Pseudomonas exotoxin A (ETÁ). The resulting immunotoxin Ki-4(scFv)-ETÁ specifically binds to CD30+ L540Cy cells and inhibits the protein synthesis by 50% at a concentration (IC50) of 43 pM. This recombinant immunotoxin is a promising candidate for further clinical evaluation in patients with Hodgkin's lymphoma or other CD30+ malignancies. © 1999 Cancer Research Campaign PMID:10376974

  11. A defucosylated bispecific multivalent molecule exhibits broad HIV-1 neutralizing activity and enhanced ADCC against reactivated HIV-1 latently infected cells.

    PubMed

    Kong, Desheng; Wang, Yan; Ji, Ping; Li, Wei; Ying, Tianlei; Huang, Jinghe; Wang, Chen; Wu, Yanling; Wang, Yanping; Chen, Weizao; Hao, Yanling; Hong, Kunxue; Shao, Yiming; Dimitrov, Dimiter S; Jiang, Shibo; Ma, Liying

    2018-05-11

    Current treatments cannot completely eradicate HIV-1 owing to the presence of latently infected cells which harbor transcriptionally silent HIV-1. However, defucosylated antibodies can readily kill latently infected cells after their activation to express envelope glycoprotein (Env) through antibody-dependent cellular cytotoxicity (ADCC). We herein aimed to test a defucosylated bispecific multivalent molecule consisting of domain-antibody and single-domain CD4, LSEVh-LS-F, for its HIV-1 neutralizing activity and ADCC against the reactivated latently infected cells, compared with the non-defucosylated molecule LSEVh-LS. LSEVh-LS-F's neutralizing activity against a panel of newly characterized Chinese HIV-1 clinical isolates was assessed by using TZM-bl- and PBMC-based assays. LSEVh-LS-F-mediated ADCC in the presence of NK cells against cell lines that stably express Env proteins, HIV-1-infected cells and LRA-reactivated HIV-1 latent cells, was measured using a lactate dehydrogenase (LDH) cytotoxicity assay or flow cytometry. LSEVh-LS-F and LSEVh-LS were equally effective in neutralized infection of all HIV-1 isolates tested with IC50 and IC90 values 3∼4-fold lower than those of VRC01. LSEVh-LS-F was more effective in NK-mediated killing of HIV-1 Env-expressing cell lines, HIV-1-infected cells, latency reactivation agents-reactivated ACH2 cells, and reactivated latently infected resting CD4 T cell line as well as resting CD4 T lymphocytes isolated from patients receiving highly active anti-retroviral therapy (HAART). LSEVh-LS-F exhibits broad HIV-1 neutralizing activity and enhanced ADCC against HIV-1-infected cells, reactivated latently infected cell lines and primary CD4 T cells, thus being a promising candidate therapeutic for eradicating the HIV-1 reservoir.

  12. Structural changes in calcium-binding allergens: use of circular dichroism to study binding characteristics.

    PubMed

    Hebenstreit, D; Ferreira, F

    2005-09-01

    Several studies showed that calcium-binding proteins have a fixed place in the spectrum of allergenic substances. Often the binding of a calcium ion induces conformational changes and affects immunoglobulin E-binding to the allergen. Hence, the quantitative characterization of the binding to calcium is of importance to understand both the biologic and allergenic activity of these proteins. In the present study we describe a procedure for determining the stoichiometry and dissociation constant (K(D)) of calcium-binding allergens using circular dichroism (CD) techniques. For the experiments, we used recombinant Bet v 4, a two EF-hand allergen from birch pollen. Solutions of Bet v 4 were titrated with calcium and the change in molar ellipticity at 222 nm was monitored with a CD spectropolarimeter. The determination of the binding stoichiometry as well as of the K(D) for one EF-hand (4 microM) demonstrated the applicability of the method. CD-monitored calcium-titration of protein solutions represents a fast and easy method for determining the binding characteristics of calcium-binding allergens.

  13. Co-receptor Binding Site Antibodies Enable CD4-Mimetics to Expose Conserved Anti-cluster A ADCC Epitopes on HIV-1 Envelope Glycoproteins.

    PubMed

    Richard, Jonathan; Pacheco, Beatriz; Gohain, Neelakshi; Veillette, Maxime; Ding, Shilei; Alsahafi, Nirmin; Tolbert, William D; Prévost, Jérémie; Chapleau, Jean-Philippe; Coutu, Mathieu; Jia, Manxue; Brassard, Nathalie; Park, Jongwoo; Courter, Joel R; Melillo, Bruno; Martin, Loïc; Tremblay, Cécile; Hahn, Beatrice H; Kaufmann, Daniel E; Wu, Xueling; Smith, Amos B; Sodroski, Joseph; Pazgier, Marzena; Finzi, Andrés

    2016-10-01

    Human immunodeficiency virus type 1 (HIV-1) has evolved a sophisticated strategy to conceal conserved epitopes of its envelope glycoproteins (Env) recognized by antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies. These antibodies, which are present in the sera of most HIV-1-infected individuals, preferentially recognize Env in its CD4-bound conformation. Accordingly, recent studies showed that small CD4-mimetics (CD4mc) able to "push" Env into this conformation sensitize HIV-1-infected cells to ADCC mediated by HIV+ sera. Here we test whether CD4mc also expose epitopes recognized by anti-cluster A monoclonal antibodies such as A32, thought to be responsible for the majority of ADCC activity present in HIV+ sera and linked to decreased HIV-1 transmission in the RV144 trial. We made the surprising observation that CD4mc are unable to enhance recognition of HIV-1-infected cells by this family of antibodies in the absence of antibodies such as 17b, which binds a highly conserved CD4-induced epitope overlapping the co-receptor binding site (CoRBS). Our results indicate that CD4mc initially open the trimeric Env enough to allow the binding of CoRBS antibodies but not anti-cluster A antibodies. CoRBS antibody binding further opens the trimeric Env, allowing anti-cluster A antibody interaction and sensitization of infected cells to ADCC. Therefore, ADCC responses mediated by cluster A antibodies in HIV-positive sera involve a sequential opening of the Env trimer on the surface of HIV-1-infected cells. The understanding of the conformational changes required to expose these vulnerable Env epitopes might be important in the design of new strategies aimed at fighting HIV-1. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Spectroscopic studies of the interaction between pirimicarb and calf thymus DNA.

    PubMed

    Zhang, Guowen; Hu, Xing; Pan, Junhui

    2011-02-01

    The interaction between pirimicarb and calf thymus DNA in physiological buffer (pH 7.4) was investigated with the use of Neutral Red (NR) dye as a spectral probe by UV-vis absorption, fluorescence and circular dichroism (CD) spectroscopy, as well as viscosity measurements and DNA melting techniques. The results revealed that an intercalation binding should be the interaction mode of pirimicarb to DNA. CD spectra indicated that pirimicarb induced conformational changes of DNA. The binding constants of pirimicarb with DNA were obtained by the fluorescence quenching method. The thermodynamic parameters, enthalpy change (ΔHθ) and entropy change (ΔSθ) were calculated to be -52.13±2.04 kJ mol(-1) and -108.8±6.72 J mol(-1) K(-1) according to the van't Hoff equation, which suggested that hydrogen bonds and van der Waals forces might play a major role in the binding of pirimicarb to DNA. Further, the alternative least squares (ALS) method was applied to resolve a complex two-way array of the absorption spectra data, which provided simultaneously the concentration information for the three reaction components, pirimicarb, NR and DNA-NR. This ALS analysis indicated that the intercalation of pirimicarb into the DNA by substituting for NR in the DNA-NR complex. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Fluctuation Dynamics Analysis of gp120 Envelope Protein Reveals a Topologically Based Communication Network

    PubMed Central

    Shrivastava, Indira; LaLonde, Judith M.

    2012-01-01

    HIV infection is initiated by binding of the viral glycoprotein gp120, to the cellular receptor CD4. Upon CD4 binding, gp120 undergoes conformational change, permitting binding to the chemokine receptor. Crystal structures of gp120 ternary complex reveal the CD4 bound conformation of gp120. We report here the application of Gaussian Network Model (GNM) to the crystal structures of gp120 bound to CD4 or CD4 mimic and 17b, to study the collective motions of the gp120 core and determine the communication propensities of the residue network. The GNM fluctuation profiles identify residues in the inner domain and outer domain that may facilitate conformational change or stability, respectively. Communication propensities delineate a residue network that is topologically suited for signal propagation from the Phe43 cavity throughout the gp120 outer domain. . These results provide a new context for interpreting gp120 core envelope structure-function relationships. PMID:20718047

  16. Correspondence of Neutralizing Humoral Immunity and CD4 T Cell Responses in Long Recovered Sudan Virus Survivors

    PubMed Central

    Sobarzo, Ariel; Stonier, Spencer W.; Herbert, Andrew S.; Ochayon, David E.; Kuehne, Ana I.; Eskira, Yael; Fedida-Metula, Shlomit; Tali, Neta; Lewis, Eli C.; Egesa, Moses; Cose, Stephen; Lutwama, Julius Julian; Yavelsky, Victoria; Dye, John M.; Lobel, Leslie

    2016-01-01

    Robust humoral and cellular immunity are critical for survival in humans during an ebolavirus infection. However, the interplay between these two arms of immunity is poorly understood. To address this, we examined residual immune responses in survivors of the Sudan virus (SUDV) outbreak in Gulu, Uganda (2000–2001). Cytokine and chemokine expression levels in SUDV stimulated whole blood cultures were assessed by multiplex ELISA and flow cytometry. Antibody and corresponding neutralization titers were also determined. Flow cytometry and multiplex ELISA results demonstrated significantly higher levels of cytokine and chemokine responses in survivors with serological neutralizing activity. This correspondence was not detected in survivors with serum reactivity to SUDV but without neutralization activity. This previously undefined relationship between memory CD4 T cell responses and serological neutralizing capacity in SUDV survivors is key for understanding long lasting immunity in survivors of filovirus infections. PMID:27187443

  17. Correspondence of Neutralizing Humoral Immunity and CD4 T Cell Responses in Long Recovered Sudan Virus Survivors.

    PubMed

    Sobarzo, Ariel; Stonier, Spencer W; Herbert, Andrew S; Ochayon, David E; Kuehne, Ana I; Eskira, Yael; Fedida-Metula, Shlomit; Tali, Neta; Lewis, Eli C; Egesa, Moses; Cose, Stephen; Lutwama, Julius Julian; Yavelsky, Victoria; Dye, John M; Lobel, Leslie

    2016-05-11

    Robust humoral and cellular immunity are critical for survival in humans during an ebolavirus infection. However, the interplay between these two arms of immunity is poorly understood. To address this, we examined residual immune responses in survivors of the Sudan virus (SUDV) outbreak in Gulu, Uganda (2000-2001). Cytokine and chemokine expression levels in SUDV stimulated whole blood cultures were assessed by multiplex ELISA and flow cytometry. Antibody and corresponding neutralization titers were also determined. Flow cytometry and multiplex ELISA results demonstrated significantly higher levels of cytokine and chemokine responses in survivors with serological neutralizing activity. This correspondence was not detected in survivors with serum reactivity to SUDV but without neutralization activity. This previously undefined relationship between memory CD4 T cell responses and serological neutralizing capacity in SUDV survivors is key for understanding long lasting immunity in survivors of filovirus infections.

  18. Improvement in Thermal Stability of Sucralose by γ-Cyclodextrin Metal-Organic Frameworks.

    PubMed

    Lv, Nana; Guo, Tao; Liu, Botao; Wang, Caifen; Singh, Vikaramjeet; Xu, Xiaonan; Li, Xue; Chen, Dawei; Gref, Ruxandra; Zhang, Jiwen

    2017-02-01

    To explain thermal stability enhancement of an organic compound, sucralose, with cyclodextrin based metal organic frameworks. Micron and nanometer sized basic CD-MOFs were successfully synthesized by a modified vapor diffusion method and further neutralized with glacial acetic acid. Sucralose was loaded into CD-MOFs by incubating CD-MOFs with sucralose ethanol solutions. Thermal stabilities of sucralose-loaded basic CD-MOFs and neutralized CD-MOFs were investigated using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and high performance liquid chromatography with evaporative light-scattering detection (HPLC-ELSD). Scanning electron microscopy (SEM) and powder X-ray diffraction (PXRD) results showed that basic CD-MOFs were cubic crystals with smooth surface and uniform sizes. The basic CD-MOFs maintained their crystalline structure after neutralization. HPLC-ELSD analysis indicated that the CD-MOF crystal size had significant influence on sucralose loading (SL). The maximal SL of micron CD-MOFs (CD-MOF-Micro) was 17.5 ± 0.9% (w/w). In contrast, 27.9 ± 1.4% of sucralose could be loaded in nanometer-sized basic CD-MOFs (CD-MOF-Nano). Molecular docking modeling showed that sucralose molecules preferentially located inside the cavities of γ-CDs pairs in CD-MOFs. Raw sucralose decomposed fast at 90°C, with 86.2 ± 0.2% of the compound degraded within only 1 h. Remarkably, sucralose stability was dramatically improved after loading in neutralized CD-MOFs, with only 13.7 ± 0.7% degradation at 90°C within 24 h. CD-MOFs efficiently incorporated sucralose and maintained its integrity upon heating at elevated temperatures.

  19. Species B adenovirus serotypes 3, 7, 11 and 35 share similar binding sites on the membrane cofactor protein CD46 receptor.

    PubMed

    Fleischli, Christoph; Sirena, Dominique; Lesage, Guillaume; Havenga, Menzo J E; Cattaneo, Roberto; Greber, Urs F; Hemmi, Silvio

    2007-11-01

    We recently characterized the domains of the human cofactor protein CD46 involved in binding species B2 adenovirus (Ad) serotype 35. Here, the CD46 binding determinants are mapped for the species B1 Ad serotypes 3 and 7 and for the species B2 Ad11. Ad3, 7 and 11 bound and transduced CD46-positive rodent BHK cells at levels similar to Ad35. By using antibody-blocking experiments, hybrid CD46-CD4 receptor constructs and CD46 single point mutants, it is shown that Ad3, 7 and 11 share many of the Ad35-binding features on CD46. Both CD46 short consensus repeat domains SCR I and SCR II were necessary and sufficient for optimal binding and transgene expression, provided that they were positioned at an appropriate distance from the cell membrane. Similar to Ad35, most of the putative binding residues of Ad3, 7 and 11 were located on the same glycan-free, solvent-exposed face of the SCR I or SCR II domains, largely overlapping with the binding surface of the recently solved fiber knob Ad11-SCR I-II three-dimensional structure. Differences between species B1 and B2 Ads were documented with competition experiments based on anti-CD46 antibodies directed against epitopes flanking the putative Ad-binding sites, and with competition experiments based on soluble CD46 protein. It is concluded that the B1 and B2 species of Ad engage CD46 through similar binding surfaces.

  20. Targeting with bovine CD154 enhances humoral immune responses induced by a DNA vaccine in sheep.

    PubMed

    Manoj, Sharmila; Griebel, Philip J; Babiuk, Lorne A; van Drunen Littel-van den Hurk, Sylvia

    2003-01-15

    CD40-CD154 interactions play an important role in regulating humoral and cell-mediated immune responses. Recently, these interactions have been exploited for the development of therapeutic and preventive treatments. The objective of this study was to test the ability of bovine CD154 to target a plasmid-encoded Ag to CD40-expressing APCs. To achieve this, a plasmid coding for bovine CD154 fused to a truncated secreted form of bovine herpesvirus 1 glycoprotein D (tgD), pSLIAtgD-CD154, was constructed. The chimeric tgD-CD154 was expressed in vitro in COS-7 cells and reacted with both glycoprotein D- and CD154-specific Abs. Both tgD and tgD-CD154 were capable of binding to epithelial cells, whereas only tgD-CD154 bound to B cells. Furthermore, dual-labeling of ovine PBMCs revealed that tgD-CD154 was bound by primarily B cells. The functional integrity of the tgD-CD154 chimera was confirmed by the induction of both IL-4-dependent B cell proliferation and tgD-specific lymphoproliferative responses in vitro. Finally, sheep immunized with pSLIAtgD-CD154 developed a more rapid primary tgD-specific Ab response and a significantly stronger tgD-specific secondary response when compared with animals immunized with pSLIAtgD and control animals. Similarly, virus-neutralizing Ab titers were significantly higher after secondary immunization with pSLIAtgD-CD154. These results demonstrate that using CD154 to target plasmid-expressed Ag can significantly enhance immune responses induced by a DNA vaccine.

  1. Flow cytometric sex sorting affects CD4 membrane distribution and binding of exogenous DNA on bovine sperm cells.

    PubMed

    Domingues, William Borges; da Silveira, Tony Leandro Rezende; Komninou, Eliza Rossi; Monte, Leonardo Garcia; Remião, Mariana Härter; Dellagostin, Odir Antônio; Corcini, Carine Dahl; Varela Junior, Antônio Sergio; Seixas, Fabiana Kömmling; Collares, Tiago; Campos, Vinicius Farias

    2017-08-01

    Bovine sex-sorted sperm have been commercialized and successfully used for the production of transgenic embryos of the desired sex through the sperm-mediated gene transfer (SMGT) technique. However, sex-sorted sperm show a reduced ability to internalize exogenous DNA. The interaction between sperm cells and the exogenous DNA has been reported in other species to be a CD4-like molecule-dependent process. The flow cytometry-based sex-sorting process subjects the spermatozoa to different stresses causing changes in the cell membrane. The aim of this study was to elucidate the relationship between the redistribution of CD4-like molecules and binding of exogenous DNA to sex-sorted bovine sperm. In the first set of experiments, the membrane phospholipid disorder and the redistribution of the CD4 were evaluated. The second set of experiments was conducted to investigate the effect of CD4 redistribution on the mechanism of binding of exogenous DNA to sperm cells and the efficiency of lipofection in sex-sorted bovine sperm. Sex-sorting procedure increased the membrane phospholipid disorder and induced the redistribution of CD4-like molecules. Both X-sorted and Y-sorted sperm had decreased DNA bound to membrane in comparison with the unsorted sperm; however, the binding of the exogenous DNA was significantly increased with the addition of liposomes. Moreover, we demonstrated that the number of sperm-bound exogenous DNA was decreased when these cells were preincubated with anti-bovine CD4 monoclonal antibody, supporting our hypothesis that CD4-like molecules indeed play a crucial role in the process of exogenous DNA/bovine sperm cells interaction.

  2. Synthesis and structural characterization of dinuclear Cd2+, Hg2+ and Fe2+ complexes with neutral bi and tetradentate flexible pyrazole-based ligands

    NASA Astrophysics Data System (ADS)

    Beheshti, Azizolla; Lalegani, Arash; Behvandi, Fatemeh; Safaeiyan, Forough; Sarkarzadeh, Afsoon; Bruno, Giuseppe; Amiri Rudbari, Hadi

    2015-02-01

    Four new complexes of [Hg2Cl4(bpp)]n (1), [Hg2Cl4(tdmpp)] (2), [Cd2I4(tdmpp)] (3) and [Fe2Cl4(tdmpp)] (4) were prepared by using the neutral N-donor ligands 1,3-bis(3,5-dimethyl-1-pyrazolyl)propane (bpp) and 1,1,3,3-tetrakis(3,5-dimethyl-1-pyrazolyl)propane (tdmpp) with different flexibility and appropriate metal salts of Cd(II), Hg(II) and Fe(II) ions. These compounds were characterized by the infrared spectroscopy, elemental analysis and X-ray crystallography. Flexible ligands and non-covalent Csbnd H⋯Cl hydrogen bonds play a major role in the crystal packing of compounds 1, 2 and 4. In the two-dimensional non-covalent structure of 1, there are two distinctly different coordination modes for the mercury atoms. One mercury atom has pseudo-trigonal bipyramidal geometry and the other adopts a distorted tetrahedral environment. In the dinuclear structures of 2 and 4 the neutral molecules are linked together by the Csbnd H⋯Cl hydrogen bonds, forming an infinite one-dimensional zigzag chain structure. Compounds 2-4 are isostructural with each other.

  3. A Bivalent Heterologous DNA Virus-Like-Particle Prime-Boost Vaccine Elicits Broad Protection against both Group 1 and 2 Influenza A Viruses

    PubMed Central

    Jiang, Wenbo; Wang, Shuangshuang; Chen, Honglin; Ren, Huanhuan; Huang, Xun; Wang, Guiqin; Chen, Ling; Chen, Zhiwei

    2017-01-01

    ABSTRACT Current seasonal influenza vaccines are efficacious when vaccine strains are matched with circulating strains. However, they do not protect antigenic variants and newly emerging pandemic and outbreak strains. Thus, there is a critical need for developing so-called “universal” vaccines that protect against all influenza viruses. In the present study, we developed a bivalent heterologous DNA virus-like particle prime-boost vaccine strategy. We show that mice immunized with this vaccine were broadly protected against lethal challenge from group 1 (H1, H5, and H9) and group 2 (H3 and H7) viruses, with 94% aggregate survival. To determine the immune correlates of protection, we performed passive immunizations and in vitro assays. We show that this vaccine elicited antibody responses that bound HA from group 1 (H1, H2, H5, H6, H8, H9, H11, and H12) and group 2 (H3, H4, H7, H10, H14, and H15) and neutralized homologous and intrasubtypic H5 and H7 and heterosubtypic H1 viruses and hemagglutinin-specific CD4 and CD8 T cell responses. As a result, passive immunization with immune sera fully protected mice against H5, H7, and H1 challenge, whereas with both immune sera and T cells the mice survived heterosubtypic H3 and H9 challenge. Thus, it appears that (i) neutralizing antibodies alone fully protect against homologous and intrasubtypic H5 and H7 and (ii) neutralizing and binding antibodies are sufficient to protect against heterosubtypic H1, (iii) but against heterosubtypic H3 and H9, binding antibodies and T cells are required for complete survival. We believe that this vaccine regimen could potentially be a candidate for a “universal” influenza vaccine. IMPORTANCE Influenza virus infection is global health problem. Current seasonal influenza vaccines are efficacious only when vaccine strains are matched with circulating strains. However, these vaccines do not protect antigenic variants and newly emerging pandemic and outbreak strains. Because of this, there is an urgent need to develop so-called “universal” influenza vaccines that can protect against both current and future influenza strains. In the present study, we developed a bivalent heterologous prime-boost vaccine strategy. We show that a bivalent vaccine regimen elicited broad binding and neutralizing antibody and T cell responses that conferred broad protection against diverse challenge viruses in mice, suggesting that this bivalent prime-boost strategy could practically be a candidate for a “universal” influenza vaccine. PMID:28179535

  4. Nanostructure and force spectroscopy analysis of human peripheral blood CD4+ T cells using atomic force microscopy.

    PubMed

    Hu, Mingqian; Wang, Jiongkun; Cai, Jiye; Wu, Yangzhe; Wang, Xiaoping

    2008-09-12

    To date, nanoscale imaging of the morphological changes and adhesion force of CD4(+) T cells during in vitro activation remains largely unreported. In this study, we used atomic force microscopy (AFM) to study the morphological changes and specific binding forces in resting and activated human peripheral blood CD4(+) T cells. The AFM images revealed that the volume of activated CD4(+) T cells increased and the ultrastructure of these cells also became complex. Using a functionalized AFM tip, the strength of the specific binding force of the CD4 antigen-antibody interaction was found to be approximately three times that of the unspecific force. The adhesion forces were not randomly distributed over the surface of a single activated CD4(+) T cell, indicated that the CD4 molecules concentrated into nanodomains. The magnitude of the adhesion force of the CD4 antigen-antibody interaction did not change markedly with the activation time. Multiple bonds involved in the CD4 antigen-antibody interaction were measured at different activation times. These results suggest that the adhesion force involved in the CD4 antigen-antibody interaction is highly selective and of high affinity.

  5. Tetanus Neurotoxin Neutralizing Antibodies Screened from a Human Immune scFv Antibody Phage Display Library.

    PubMed

    Wang, Han; Yu, Rui; Fang, Ting; Yu, Ting; Chi, Xiangyang; Zhang, Xiaopeng; Liu, Shuling; Fu, Ling; Yu, Changming; Chen, Wei

    2016-09-11

    Tetanus neurotoxin (TeNT) produced by Clostridium tetani is one of the most poisonous protein substances. Neutralizing antibodies against TeNT can effectively prevent and cure toxicosis. Using purified Hc fragments of TeNT (TeNT-Hc) as an antigen, three specific neutralizing antibody clones recognizing different epitopes were selected from a human immune scFv antibody phage display library. The three antibodies (2-7G, 2-2D, and S-4-7H) can effectively inhibit the binding between TeNT-Hc and differentiated PC-12 cells in vitro. Moreover, 2-7G inhibited TeNT-Hc binding to the receptor via carbohydrate-binding sites of the W pocket while 2-2D and S-4-7H inhibited binding of the R pocket. Although no single mAb completely protected mice from the toxin, they could both prolong survival when challenged with 20 LD50s (50% of the lethal dose) of TeNT. When used together, the mAbs completely neutralized 1000 LD50s/mg Ab, indicating their high neutralizing potency in vivo. Antibodies recognizing different carbohydrate-binding pockets could have higher synergistic toxin neutralization activities than those that recognize the same pockets. These results could lead to further production of neutralizing antibody drugs against TeNT and indicate that using TeNT-Hc as an antigen for screening human antibodies for TeNT intoxication therapy from human immune antibody library was convenient and effective.

  6. TMEM126A, a CD137 ligand binding protein, couples with the TLR4 signal transduction pathway in macrophages.

    PubMed

    Kim, Eun-Cheol; Moon, Ji-Hoi; Kang, Sang W; Kwon, Byungsuk; Lee, Hyeon-Woo

    2015-04-01

    We showed previously that a novel protein, transmembrane protein 126A (TMEM126A), binds to CD137 ligand (CD137L, 4-1BBL) and couples with its reverse signals in macrophages. Here, we present data showing that TMEM126A relays TLR4 signaling. Thus, up-regulation of CD54 (ICAM-1), MHC II, CD86 and CD40 expression in response to TLR4 activation was diminished in TMEM126A-deficient macrophages. Moreover in TMEM126A-deficient RAW264.7 cells, LPS/TLR4-induced late-phase JNK/SAPK and IRF-3 phosphorylation was abolished. These findings indicate that TMEM126A contributes to the TLR4 signal up-regulating the expression of genes whose products are involved in antigen presentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. CD4/CD8/Dendritic cell complexes in the spleen: CD8+ T cells can directly bind CD4+ T cells and modulate their response

    PubMed Central

    Barinov, Aleksandr; Galgano, Alessia; Krenn, Gerald; Tanchot, Corinne; Vasseur, Florence

    2017-01-01

    CD4+ T cell help to CD8+ T cell responses requires that CD4+ and CD8+ T cells interact with the same antigen presenting dendritic cell (Ag+DC), but it remains controversial whether helper signals are delivered indirectly through a licensed DC and/or involve direct CD4+/CD8+ T cell contacts and/or the formation of ternary complexes. We here describe the first in vivo imaging of the intact spleen, aiming to evaluate the first interactions between antigen-specific CD4+, CD8+ T cells and Ag+DCs. We show that in contrast to CD4+ T cells which form transient contacts with Ag+DC, CD8+ T cells form immediate stable contacts and activate the Ag+DC, acquire fragments of the DC membranes by trogocytosis, leading to their acquisition of some of the DC properties. They express MHC class II, and become able to present the specific Marilyn peptide to naïve Marilyn CD4+ T cells, inducing their extensive division. In vivo, these CD8+ T cells form direct stable contacts with motile naïve CD4+ T cells, recruiting them to Ag+DC binding and to the formation of ternary complexes, where CD4+ and CD8+ T cells interact with the DC and with one another. The presence of CD8+ T cells during in vivo immune responses leads to the early activation and up-regulation of multiple functions by CD4+ T lymphocytes. Thus, while CD4+ T cell help is important to CD8+ T cell responses, CD8+ T cells can interact directly with naïve CD4+ T cells impacting their recruitment and differentiation. PMID:28686740

  8. Immune complexes formed following the binding of anti-platelet factor 4 (CXCL4) antibodies to CXCL4 stimulate human neutrophil activation and cell adhesion.

    PubMed

    Xiao, Zhihua; Visentin, Gian P; Dayananda, Kannayakanahalli M; Neelamegham, Sriram

    2008-08-15

    We tested the possibility that immune complexes formed following platelet factor 4 (PF4/CXCL4) binding to anti-PF4 antibody can stimulate neutrophil activation, similar to previous reports with platelets. Monoclonal Abs against PF4 and IgG from a heparin-induced thrombocytopenia (HIT) patient were applied. We observed that although PF4 or anti-PF4 antibody alone did not alter neutrophil function, costimulation with both reagents resulted in approximately 3-fold increase in cell surface Mac-1 expression, enhanced cell adhesion via L-selectin and CD18 integrins, and degranulation of secondary and tertiary granules. The level of Mac-1 up-regulation peaked at an intermediate PF4 dose, suggesting that functional response varies with antigen-antibody stoichiometry. PF4 binding to neutrophils was blocked by chondroitinase ABC. Cell activation was inhibited by both chondroitinase ABC and anti-CD32/FcgammaRII blocking mAb, IV.3. Confocal microscopy demonstrated that immune complexes colocalize with CD32a. Studies with HIT IgG demonstrated that neutrophils could be activated in the absence of exogenous heparin. These data, together, show that leukocyte surface chondroitin sulfates promote neutrophil activation by enhancing immune-complex binding to CD32a. Studies with recombinant PF4 suggest a role for arginine 49 in stabilizing PF4-chondroitin binding. Neutrophils activated via this mechanism may contribute to thrombosis and inflammation in patients mounting an immune response to PF4-heparin.

  9. Crystal structure of a 3B3 variant - A broadly neutralizing HIV-1 scFv antibody

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, K. Reed; Walsh, Scott T.R.; NCH)

    2009-12-10

    We present the crystal structure determination of an anti-HIV-1 gp120 single-chain variable fragment antibody variant, 3B3, at 2.5 {angstrom} resolution. This 3B3 variant was derived from the b12 antibody, using phage display and site-directed mutagenesis of the variable heavy chain (V{sub H}) complementary-determining regions (CDRs). 3B3 exhibits enhanced binding affinity and neutralization activity against several cross-clade primary isolates of HIV-1 by interaction with the recessed CD4-binding site on the gp120 envelope protein. Comparison with the structures of the unbound and bound forms of b12, the 3B3 structure closely resembles these structures with minimal differences with two notable exceptions. First, theremore » is a reorientation of the CDR-H3 of the V{sub H} domain where the primary sequences evolved from b12 to 3B3. The structural changes in CDR-H3 of 3B3, in light of the b12-gp120 complex structure, allow for positioning an additional Trp side chain in the binding interface with gp120. Finally, the second region of structural change involves two peptide bond flips in CDR-L3 of the variable light (VL) domain triggered by a point mutation in CDR-H3 of Q100eY resulting in changes in the intramolecular hydrogen bonding patterning between the VL and VH domains. Thus, the enhanced binding affinities and neutralization capabilities of 3B3 relative to b12 probably result from higher hydrophobic driving potential by burying more aromatic residues at the 3B3-gp120 interface and by indirect stabilization of intramolecular contacts of the core framework residues between the VL and VH domains possibly through more favorable entropic effect through the expulsion of water.« less

  10. c-Abl-Mediated Tyrosine Phosphorylation of the T-bet DNA-Binding Domain Regulates CD4+ T-Cell Differentiation and Allergic Lung Inflammation ▿

    PubMed Central

    Chen, An; Lee, Sang-Myeong; Gao, Beixue; Shannon, Stephen; Zhu, Zhou; Fang, Deyu

    2011-01-01

    The tyrosine kinase c-Abl is required for full activation of T cells, while its role in T-cell differentiation has not been characterized. We report that c-Abl deficiency skews CD4+ T cells to type 2 helper T cell (Th2) differentiation, and c-Abl−/− mice are more susceptible to allergic lung inflammation. c-Abl interacts with and phosphorylates T-bet, a Th1 lineage transcription factor. c-Abl-mediated phosphorylation enhances the transcriptional activation of T-bet. Interestingly, three tyrosine residues within the T-bet DNA-binding domain are the predominant sites of phosphorylation by c-Abl. Mutation of these tyrosine residues inhibits the promoter DNA-binding activity of T-bet. c-Abl regulates Th cell differentiation in a T-bet-dependent manner because genetic deletion of T-bet in CD4+ T cells abolishes c-Abl-deficiency-mediated enhancement of Th2 differentiation. Reintroduction of T-bet-null CD4+ T cells with wild-type T-bet, but not its tyrosine mutant, rescues gamma interferon (IFN-γ) production and inhibits Th2 cytokine production. Therefore, c-Abl catalyzes tyrosine phosphorylation of the DNA-binding domain of T-bet to regulate CD4+ T cell differentiation. PMID:21690296

  11. Efficiency of the intermolecular interaction of salicylic acid neutral form and monoanion with Cd2 + ion studied by methods of absorption and fluorescence

    NASA Astrophysics Data System (ADS)

    Lavrik, N. L.; Mulloev, N. U.

    2018-02-01

    The methods of absorption and fluorescence were used to study the efficiency of the interaction between salicylic acid derivatives SAD (neutral SA form and SA monoanion) and Cd2 + ions (in CdBr2 salt) within the range pH = 1.5 ÷ 8. The efficiency was determined from the change in both the absorption band contour and the fluorescence intensity of various SAD forms. It has been established that depending on the SAD form, the addition of CdBr2 to a starting solution leads to the formation of additional absorption for both the shorter wave lengths in the absorption spectrum of the neutral form (at pH < 3) and the longer wave lengths in the absorption spectrum for the HSal- monoanion (at pH > 4). In the fluorescence spectra, the intensity was observed to increase for the neutral SAD form (at pH < 3) and to decrease for the HSal- monoanion (at pH > 4) after addition of CdBr2. The spectral changes were interpreted in the framework of common notions about the effect of three physicochemical factors that determine the interaction between the SAD and the Cd2 + ion and affect the parameters of absorption and fluorescence spectra. These factors are: (1) the decrease in pH after addition of CdBr2 to the SAD solution, (2) the decrease in the efficiency of the H-bonding of SAD molecules to the water ones, and (3) the existence of electrostatic ion-ion interaction between the HSal- monoanion and the Cd2 + ion. The bimolecular fluorescence quenching constants Kq of HSal- monoanion fluorescence quenching by the Cd2 + ion appeared to be substantially less than those of the quenching which would follow either the dynamic (diffusion) or the concentration (static) mechanisms.

  12. Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120

    PubMed Central

    Kong, Leopold; Lee, Jeong Hyun; Doores, Katie J.; Murin, Charles D.; Julien, Jean-Philippe; McBride, Ryan; Liu, Yan; Marozsan, Andre; Cupo, Albert; Klasse, Per-Johan; Hoffenberg, Simon; Caulfield, Michael; King, C. Richter; Hua, Yuanzi; Le, Khoa M.; Khayat, Reza; Deller, Marc C.; Clayton, Thomas; Tien, Henry; Feizi, Ten; Sanders, Rogier W.; Paulson, James C.; Moore, John P.; Stanfield, Robyn L.; Burton, Dennis R.; Ward, Andrew B.; Wilson, Ian A.

    2013-01-01

    A substantial fraction of broadly neutralizing antibodies (bnAbs) in certain HIV-infected donors recognizes glycan-dependent epitopes on HIV-1 gp120. Here, we elucidate how bnAb PGT 135 recognizes its Asn332 glycan-dependent epitope from its crystal structure with gp120, CD4 and Fab 17b at 3.1 Å resolution. PGT 135 interacts with glycans at Asn332, Asn392 and Asn386, using long CDR loops H1 and H3 to penetrate the glycan shield to access the gp120 protein surface. Electron microscopy reveals PGT 135 can accommodate the conformational and chemical diversity of gp120 glycans by altering its angle of engagement. The combined structural studies of PGT 135, PGT 128 and 2G12 show this Asn332-dependent epitope is highly accessible and much more extensive than initially appreciated, allowing for multiple binding modes and varied angles of approach, thereby representing a supersite of vulnerability for antibody neutralization. PMID:23708606

  13. Synthesis of single- and double-chain fluorocarbon and hydrocarbon galactosyl amphiphiles and their anti-HIV-1 activity.

    PubMed

    Faroux-Corlay, B; Clary, L; Gadras, C; Hammache, D; Greiner, J; Santaella, C; Aubertin, A M; Vierling, P; Fantini, J

    2000-07-24

    Galactosylceramide (GalCer) is an alternative receptor allowing HIV-1 entry into CD4(-)/GalCer(+) cells. This glycosphingolipid recognizes the V3 loop of HIV gp120, which plays a key role in the fusion of the HIV envelope and cellular membrane. To inhibit HIV uptake and infection, we designed and synthesized analogs of GalCer. These amphiphiles and bolaamphiphiles consist of single and double hydrocarbon and/or fluorocarbon chain beta-linked to galactose and galactosamine. They derive from serine (GalSer), cysteine (GalCys), and ethanolamine (GalAE). The anti-HIV activity and cytotoxicity of these galactolipids were evaluated in vitro on CEM-SS (a CD4(+) cell line), HT-29, a CD4(-) cell line expressing high levels of GalCer receptor, and/or HT29 genetically modified to express CD4. GalSer and GalAE derivatives, tested in aqueous medium or as part of liposome preparation, showed moderate anti-HIV-1 activities (IC50 in the 20-220 microM range), whereas none of the GalCys derivatives was found to be active. Moreover, only some of these anti-HIV active analogs inhibited the binding of [3H]suramin (a polysulfonyl compound which displays a high affinity for the V3 loop) to SPC3, a synthetic peptide which contains the conserved GPGRAF region of the V3 loop. Our results most likely indicate that the neutralization of the virion through masking of this conserved V3 loop region is not the only mechanism involved in the HIV-1 antiviral activity of our GalCer analogs.

  14. Nanostructure and force spectroscopy analysis of human peripheral blood CD4{sup +} T cells using atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu Mingqian; Wang Jiongkun; Cai Jiye

    2008-09-12

    To date, nanoscale imaging of the morphological changes and adhesion force of CD4{sup +} T cells during in vitro activation remains largely unreported. In this study, we used atomic force microscopy (AFM) to study the morphological changes and specific binding forces in resting and activated human peripheral blood CD4{sup +} T cells. The AFM images revealed that the volume of activated CD4{sup +} T cells increased and the ultrastructure of these cells also became complex. Using a functionalized AFM tip, the strength of the specific binding force of the CD4 antigen-antibody interaction was found to be approximately three times thatmore » of the unspecific force. The adhesion forces were not randomly distributed over the surface of a single activated CD4{sup +} T cell, indicated that the CD4 molecules concentrated into nanodomains. The magnitude of the adhesion force of the CD4 antigen-antibody interaction did not change markedly with the activation time. Multiple bonds involved in the CD4 antigen-antibody interaction were measured at different activation times. These results suggest that the adhesion force involved in the CD4 antigen-antibody interaction is highly selective and of high affinity.« less

  15. Functional Mimetics of the HIV-1 CCR5 Co-Receptor Displayed on the Surface of Magnetic Liposomes.

    PubMed

    Kuzmina, Alona; Vaknin, Karin; Gdalevsky, Garik; Vyazmensky, Maria; Marks, Robert S; Taube, Ran; Engel, Stanislav

    2015-01-01

    Chemokine G protein coupled receptors, principally CCR5 or CXCR4, function as co-receptors for HIV-1 entry into CD4+ T cells. Initial binding of the viral envelope glycoprotein (Env) gp120 subunit to the host CD4 receptor induces a cascade of structural conformational changes that lead to the formation of a high-affinity co-receptor-binding site on gp120. Interaction between gp120 and the co-receptor leads to the exposure of epitopes on the viral gp41 that mediates fusion between viral and cell membranes. Soluble CD4 (sCD4) mimetics can act as an activation-based inhibitor of HIV-1 entry in vitro, as it induces similar structural changes in gp120, leading to increased virus infectivity in the short term but to virus Env inactivation in the long term. Despite promising clinical implications, sCD4 displays low efficiency in vivo, and in multiple HIV strains, it does not inhibit viral infection. This has been attributed to the slow kinetics of the sCD4-induced HIV Env inactivation and to the failure to obtain sufficient sCD4 mimetic levels in the serum. Here we present uniquely structured CCR5 co-receptor mimetics. We hypothesized that such mimetics will enhance sCD4-induced HIV Env inactivation and inhibition of HIV entry. Co-receptor mimetics were derived from CCR5 gp120-binding epitopes and functionalized with a palmitoyl group, which mediated their display on the surface of lipid-coated magnetic beads. CCR5-peptidoliposome mimetics bound to soluble gp120 and inhibited HIV-1 infectivity in a sCD4-dependent manner. We concluded that CCR5-peptidoliposomes increase the efficiency of sCD4 to inhibit HIV infection by acting as bait for sCD4-primed virus, catalyzing the premature discharge of its fusion potential.

  16. Functional Mimetics of the HIV-1 CCR5 Co-Receptor Displayed on the Surface of Magnetic Liposomes

    PubMed Central

    Kuzmina, Alona; Vaknin, Karin; Gdalevsky, Garik; Vyazmensky, Maria; Marks, Robert S.; Taube, Ran

    2015-01-01

    Chemokine G protein coupled receptors, principally CCR5 or CXCR4, function as co-receptors for HIV-1 entry into CD4+ T cells. Initial binding of the viral envelope glycoprotein (Env) gp120 subunit to the host CD4 receptor induces a cascade of structural conformational changes that lead to the formation of a high-affinity co-receptor-binding site on gp120. Interaction between gp120 and the co-receptor leads to the exposure of epitopes on the viral gp41 that mediates fusion between viral and cell membranes. Soluble CD4 (sCD4) mimetics can act as an activation-based inhibitor of HIV-1 entry in vitro, as it induces similar structural changes in gp120, leading to increased virus infectivity in the short term but to virus Env inactivation in the long term. Despite promising clinical implications, sCD4 displays low efficiency in vivo, and in multiple HIV strains, it does not inhibit viral infection. This has been attributed to the slow kinetics of the sCD4-induced HIV Env inactivation and to the failure to obtain sufficient sCD4 mimetic levels in the serum. Here we present uniquely structured CCR5 co-receptor mimetics. We hypothesized that such mimetics will enhance sCD4-induced HIV Env inactivation and inhibition of HIV entry. Co-receptor mimetics were derived from CCR5 gp120-binding epitopes and functionalized with a palmitoyl group, which mediated their display on the surface of lipid-coated magnetic beads. CCR5-peptidoliposome mimetics bound to soluble gp120 and inhibited HIV-1 infectivity in a sCD4-dependent manner. We concluded that CCR5-peptidoliposomes increase the efficiency of sCD4 to inhibit HIV infection by acting as bait for sCD4-primed virus, catalyzing the premature discharge of its fusion potential. PMID:26629902

  17. Fatty acid modulated human serum albumin binding of the β-carboline alkaloids norharmane and harmane.

    PubMed

    Domonkos, Celesztina; Fitos, Ilona; Visy, Júlia; Zsila, Ferenc

    2013-12-02

    Harmane and norharmane are representative members of the large group of natural β-carboline alkaloids featured with diverse pharmacological activities. In blood, these agents are transported by human serum albumin (HSA) which has a profound impact on the pharmacokinetic and pharmacodynamic properties of many therapeutic drugs and xenobiotics. By combination of various spectroscopic methods, the present contribution is aimed to elucidate how nonesterified fatty acids (FAs), the primary endogenous ligands of HSA, affect the binding properties of harmane and norharmane. Analysis of induced circular dichroism (CD) and fluorescence spectroscopic data indicates the inclusion of the neutral form of both molecules into the binding pocket of subdomain IIIA, which hosts two FA binding sites, too. The induced CD and UV absorption spectra of harmane and norharmane exhibit peculiar changes upon addition of FAs, suggesting the formation of ternary complexes in which the lipid ligands significantly alter the binding mode of the alkaloids via cooperative allosteric mechanism. To our knowledge, it is the first instance of the demonstration of drug-FA cobinding at site IIIA. In line with these results, molecular docking calculations showed two distinct binding positions of norharmane within subdomain IIIA. The profound increase in the affinity constants of β-carbolines estimated in the presence of FAs predicts that the unbound, pharmacologically active serum fraction of these compounds strongly depends on the actual lipid binding profile of HSA.

  18. The 17D-204 Vaccine Strain-Induced Protection against Virulent Yellow Fever Virus Is Mediated by Humoral Immunity and CD4+ but not CD8+ T Cells.

    PubMed

    Watson, Alan M; Lam, L K Metthew; Klimstra, William B; Ryman, Kate D

    2016-07-01

    A gold standard of antiviral vaccination has been the safe and effective live-attenuated 17D-based yellow fever virus (YFV) vaccines. Among more than 500 million vaccinees, only a handful of cases have been reported in which vaccinees developed a virulent wild type YFV infection. This efficacy is presumed to be the result of both neutralizing antibodies and a robust T cell response. However, the particular immune components required for protection against YFV have never been evaluated. An understanding of the immune mechanisms that underlie 17D-based vaccine efficacy is critical to the development of next-generation vaccines against flaviviruses and other pathogens. Here we have addressed this question for the first time using a murine model of disease. Similar to humans, vaccination elicited long-term protection against challenge, characterized by high neutralizing antibody titers and a robust T cell response that formed long-lived memory. Both CD4+ and CD8+ T cells were polyfunctional and cytolytic. Adoptive transfer of immune sera or CD4+ T cells provided partial protection against YFV, but complete protection was achieved by transfer of both immune sera and CD4+ T cells. Thus, robust CD4+ T cell activity may be a critical contributor to protective immunity elicited by highly effective live attenuated vaccines.

  19. The 17D-204 Vaccine Strain-Induced Protection against Virulent Yellow Fever Virus Is Mediated by Humoral Immunity and CD4+ but not CD8+ T Cells

    PubMed Central

    Lam, L. K. Metthew; Klimstra, William B.

    2016-01-01

    A gold standard of antiviral vaccination has been the safe and effective live-attenuated 17D-based yellow fever virus (YFV) vaccines. Among more than 500 million vaccinees, only a handful of cases have been reported in which vaccinees developed a virulent wild type YFV infection. This efficacy is presumed to be the result of both neutralizing antibodies and a robust T cell response. However, the particular immune components required for protection against YFV have never been evaluated. An understanding of the immune mechanisms that underlie 17D-based vaccine efficacy is critical to the development of next-generation vaccines against flaviviruses and other pathogens. Here we have addressed this question for the first time using a murine model of disease. Similar to humans, vaccination elicited long-term protection against challenge, characterized by high neutralizing antibody titers and a robust T cell response that formed long-lived memory. Both CD4+ and CD8+ T cells were polyfunctional and cytolytic. Adoptive transfer of immune sera or CD4+ T cells provided partial protection against YFV, but complete protection was achieved by transfer of both immune sera and CD4+ T cells. Thus, robust CD4+ T cell activity may be a critical contributor to protective immunity elicited by highly effective live attenuated vaccines. PMID:27463517

  20. PTGER4 Expression-Modulating Polymorphisms in the 5p13.1 Region Predispose to Crohn's Disease and Affect NF-κB and XBP1 Binding Sites

    PubMed Central

    Czamara, Darina; Pasciuto, Giulia; Diegelmann, Julia; Wetzke, Martin; Olszak, Torsten; Wolf, Christiane; Müller-Myhsok, Bertram; Balschun, Tobias; Achkar, Jean-Paul; Kamboh, M. Ilyas; Franke, Andre; Duerr, Richard H.; Brand, Stephan

    2012-01-01

    Background Genome-wide association studies identified a PTGER4 expression-modulating region on chromosome 5p13.1 as Crohn's disease (CD) susceptibility region. The study aim was to test this association in a large cohort of patients with inflammatory bowel disease (IBD) and to elucidate genotypic and phenotypic interactions with other IBD genes. Methodology/Principal Findings A total of 7073 patients and controls were genotyped: 844 CD and 471 patients with ulcerative colitis and 1488 controls were analyzed for the single nucleotide polymorphisms (SNPs) rs4495224 and rs7720838 on chromosome 5p13.1. The study included two replication cohorts of North American (CD: n = 684; controls: n = 1440) and of German origin (CD: n = 1098; controls: n = 1048). Genotype-phenotype, epistasis and transcription factor binding analyses were performed. In the discovery cohort, an association of rs4495224 (p = 4.10×10−5; 0.76 [0.67–0.87]) and of rs7720838 (p = 6.91×10−4; 0.81 [0.71–0.91]) with susceptibility to CD was demonstrated. These associations were confirmed in both replication cohorts. In silico analysis predicted rs4495224 and rs7720838 as essential parts of binding sites for the transcription factors NF-κB and XBP1 with higher binding scores for carriers of the CD risk alleles, providing an explanation of how these SNPs might contribute to increased PTGER4 expression. There was no association of the PTGER4 SNPs with IBD phenotypes. Epistasis detected between 5p13.1 and ATG16L1 for CD susceptibility in the discovery cohort (p = 5.99×10−7 for rs7720838 and rs2241880) could not be replicated in both replication cohorts arguing against a major role of this gene-gene interaction in the susceptibility to CD. Conclusions/Significance We confirmed 5p13.1 as a major CD susceptibility locus and demonstrate by in silico analysis rs4495224 and rs7720838 as part of binding sites for NF-κB and XBP1. Further functional studies are necessary to confirm the results of our in silico analysis and to analyze if changes in PTGER4 expression modulate CD susceptibility. PMID:23300802

  1. Immune complexes formed following the binding of anti–platelet factor 4 (CXCL4) antibodies to CXCL4 stimulate human neutrophil activation and cell adhesion

    PubMed Central

    Xiao, Zhihua; Visentin, Gian P.; Dayananda, Kannayakanahalli M.

    2008-01-01

    We tested the possibility that immune complexes formed following platelet factor 4 (PF4/CXCL4) binding to anti-PF4 antibody can stimulate neutrophil activation, similar to previous reports with platelets. Monoclonal Abs against PF4 and IgG from a heparin-induced thrombocytopenia (HIT) patient were applied. We observed that although PF4 or anti-PF4 antibody alone did not alter neutrophil function, costimulation with both reagents resulted in approximately 3-fold increase in cell surface Mac-1 expression, enhanced cell adhesion via L-selectin and CD18 integrins, and degranulation of secondary and tertiary granules. The level of Mac-1 up-regulation peaked at an intermediate PF4 dose, suggesting that functional response varies with antigen-antibody stoichiometry. PF4 binding to neutrophils was blocked by chondroitinase ABC. Cell activation was inhibited by both chondroitinase ABC and anti-CD32/FcγRII blocking mAb, IV.3. Confocal microscopy demonstrated that immune complexes colocalize with CD32a. Studies with HIT IgG demonstrated that neutrophils could be activated in the absence of exogenous heparin. These data, together, show that leukocyte surface chondroitin sulfates promote neutrophil activation by enhancing immune-complex binding to CD32a. Studies with recombinant PF4 suggest a role for arginine 49 in stabilizing PF4-chondroitin binding. Neutrophils activated via this mechanism may contribute to thrombosis and inflammation in patients mounting an immune response to PF4-heparin. PMID:18539895

  2. Structural flexibility at a major conserved antibody target on hepatitis C virus E2 antigen.

    PubMed

    Kong, Leopold; Lee, David E; Kadam, Rameshwar U; Liu, Tong; Giang, Erick; Nieusma, Travis; Garces, Fernando; Tzarum, Netanel; Woods, Virgil L; Ward, Andrew B; Li, Sheng; Wilson, Ian A; Law, Mansun

    2016-10-24

    Hepatitis C virus (HCV) is a major cause of liver disease, affecting over 2% of the world's population. The HCV envelope glycoproteins E1 and E2 mediate viral entry, with E2 being the main target of neutralizing antibody responses. Structural investigations of E2 have produced templates for vaccine design, including the conserved CD81 receptor-binding site (CD81bs) that is a key target of broadly neutralizing antibodies (bNAbs). Unfortunately, immunization with recombinant E2 and E1E2 rarely elicits sufficient levels of bNAbs for protection. To understand the challenges for eliciting bNAb responses against the CD81bs, we investigated the E2 CD81bs by electron microscopy (EM), hydrogen-deuterium exchange (HDX), molecular dynamics (MD), and calorimetry. By EM, we observed that HCV1, a bNAb recognizing the N-terminal region of the CD81bs, bound a soluble E2 core construct from multiple angles of approach, suggesting components of the CD81bs are flexible. HDX of multiple E2 constructs consistently indicated the entire CD81bs was flexible relative to the rest of the E2 protein, which was further confirmed by MD simulations. However, E2 has a high melting temperature of 84.8 °C, which is more akin to proteins from thermophilic organisms. Thus, recombinant E2 is a highly stable protein overall, but with an exceptionally flexible CD81bs. Such flexibility may promote induction of nonneutralizing antibodies over bNAbs to E2 CD81bs, underscoring the necessity of rigidifying this antigenic region as a target for rational vaccine design.

  3. Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Tongqing; Doria-Rose, Nicole A.; Cheng, Cheng

    While the HIV-1-glycan shield is known to shelter Env from the humoral immune response, its quantitative impact on antibody elicitation has been unclear. Here, we use targeted deglycosylation to measure the impact of the glycan shield on elicitation of antibodies against the CD4 supersite. We engineered diverse Env trimers with select glycans removed proximal to the CD4 supersite, characterized their structures and glycosylation, and immunized guinea pigs and rhesus macaques. Immunizations yielded little neutralization against wild-type viruses but potent CD4-supersite neutralization (titers 1: >1,000,000 against four-glycan-deleted autologous viruses with over 90% breadth against four-glycan-deleted heterologous strains exhibiting tier 2 neutralizationmore » character). To a first approximation, the immunogenicity of the glycan-shielded protein surface was negligible, with Env-elicited neutralization (ID50) proportional to the exponential of the protein-surface area accessible to antibody. Based on these high titers and exponential relationship, we propose site-selective deglycosylated trimers as priming immunogens to increase the frequency of site-targeting antibodies.« less

  4. Trichloroethylene-induced alterations in DNA methylation were enriched in polycomb protein binding sites in effector/memory CD4+ T cells

    PubMed Central

    Gilbert, Kathleen M.; Blossom, Sarah J.; Reisfeld, Brad; Erickson, Stephen W.; Vyas, Kanan; Maher, Mary; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A.; Bhattacharyya, Sudeepa

    2017-01-01

    Abstract Exposure to industrial solvent and water pollutant trichloroethylene (TCE) can promote autoimmunity, and expand effector/memory (CD62L) CD4+ T cells. In order to better understand etiology reduced representation bisulfite sequencing was used to study how a 40-week exposure to TCE in drinking water altered methylation of ∼337 770 CpG sites across the entire genome of effector/memory CD4+ T cells from MRL+/+ mice. Regardless of TCE exposure, 62% of CpG sites in autosomal chromosomes were hypomethylated (0–15% methylation), and 25% were hypermethylated (85–100% methylation). In contrast, only 6% of the CpGs on the X chromosome were hypomethylated, and 51% had mid-range methylation levels. In terms of TCE impact, TCE altered (≥ 10%) the methylation of 233 CpG sites in effector/memory CD4+ T cells. Approximately 31.7% of these differentially methylated sites occurred in regions known to bind one or more Polycomb group (PcG) proteins, namely Ezh2, Suz12, Mtf2 or Jarid2. In comparison, only 23.3% of CpG sites not differentially methylated by TCE were found in PcG protein binding regions. Transcriptomics revealed that TCE altered the expression of ∼560 genes in the same effector/memory CD4+ T cells. At least 80% of the immune genes altered by TCE had binding sites for PcG proteins flanking their transcription start site, or were regulated by other transcription factors that were in turn ordered by PcG proteins at their own transcription start site. Thus, PcG proteins, and the differential methylation of their binding sites, may represent a new mechanism by which TCE could alter the function of effector/memory CD4+ T cells. PMID:29129997

  5. IL-6 inhibits upregulation of membrane-bound TGF-beta 1 on CD4+ T cells and blocking IL-6 enhances oral tolerance

    PubMed Central

    Kuhn, Chantal; Rezende, Rafael Machado; M'Hamdi, Hanane; da Cunha, Andre Pires; Weiner, Howard L.

    2016-01-01

    Oral administration of antigen induces regulatory T cells that express latent membrane-bound TGF-beta (LAP) and that have been shown to play an important role in the induction of oral tolerance. We developed an in vitro model to study modulation of LAP+ on CD4+ T cells. The combination of anti-CD3 mAb, anti-CD28 mAb and recombinant IL-2 induced expression of LAP on naïve CD4+ T cells, independent of FoxP3 or exogenous TGF-β. In vitro generated CD4+LAP+FoxP3− T cells were suppressive in vitro, inhibiting proliferation of naïve CD4+ T cells and IL-17A secretion by Th17 cells. Assessing the impact of different cytokines and neutralizing antibodies against cytokines we found that LAP induction was decreased in the presence of IL-6 and IL-21, and to a lesser extent by IL-4 and TNFα. IL-6 abrogated the in vitro induction of CD4+LAP+ T cells by STAT3 dependent inhibition of Lrrc32 (GARP), the adapter protein that tethers TGF-beta to the membrane. Oral tolerance induction was enhanced in mice lacking expression of IL-6R by CD4+ T cells and by treatment of wild-type mice with neutralizing anti-IL-6 mAb. These results suggest that pro-inflammatory cytokines interfere with oral tolerance induction and that blocking the IL-6 pathway is a potential strategy for enhancing oral tolerance in the setting of autoimmune and inflammatory diseases. PMID:28039301

  6. IL-6 Inhibits Upregulation of Membrane-Bound TGF-β 1 on CD4+ T Cells and Blocking IL-6 Enhances Oral Tolerance.

    PubMed

    Kuhn, Chantal; Rezende, Rafael Machado; M'Hamdi, Hanane; da Cunha, Andre Pires; Weiner, Howard L

    2017-02-01

    Oral administration of Ag induces regulatory T cells that express latent membrane-bound TGF-β (latency-associated peptide [LAP]) and have been shown to play an important role in the induction of oral tolerance. We developed an in vitro model to study modulation of LAP + on CD4 + T cells. The combination of anti-CD3 mAb, anti-CD28 mAb, and recombinant IL-2 induced expression of LAP on naive CD4 + T cells, independent of Foxp3 or exogenous TGF-β. In vitro generated CD4 + LAP + Foxp3 - T cells were suppressive in vitro, inhibiting proliferation of naive CD4 + T cells and IL-17A secretion by Th17 cells. Assessing the impact of different cytokines and neutralizing Abs against cytokines, we found that LAP induction was decreased in the presence of IL-6 and IL-21, and to a lesser extent by IL-4 and TNF-α. IL-6 abrogated the in vitro induction of CD4 + LAP + T cells by STAT3-dependent inhibition of Lrrc32 (glycoprotein A repetitions predominant [GARP]), the adapter protein that tethers TGF-β to the membrane. Oral tolerance induction was enhanced in mice lacking expression of IL-6R by CD4 + T cells and by treatment of wild-type mice with neutralizing anti-IL-6 mAb. These results suggest that proinflammatory cytokines interfere with oral tolerance induction and that blocking the IL-6 pathway is a potential strategy for enhancing oral tolerance in the setting of autoimmune and inflammatory diseases. Copyright © 2017 by The American Association of Immunologists, Inc.

  7. Identification of a human erythroid progenitor cell population which expresses the CD34 antigen and binds the plant lectin Ulex europaeus I.

    PubMed

    Unverzagt, K L; Martinson, J; Lee, W; Stiff, P J; Williams, S; Bender, J G

    1996-01-01

    Two and three color flow cytometry of normal human bone marrow was used to identify CD34+ progenitor cells and examine their binding to the plant lectin Ulex europaeus I (Ulex). In normal bone marrow, 48.48 +/- 17.4% of the CD34+ cells bind to Ulex. Two color flow cytometry was used to sort CD34 + cells, and subsets of CD34+ cells, CD34+ Ulex+ and CD34+ Ulex-. These populations were sorted into colony assays to assess myeloid (CFU-GM) and erythroid (BFU-E) progenitors. The CD34+ Ulex+ subset was 84 +/- 14% BFU-E colonies (mean +/- S.D.) and had the highest cloning efficiency of 28 +/- 13%. Three color analysis of CD34+ Ulex+ cells showed staining with other erythroid (CD71, GlyA) antibodies and lack of stain. ing with myeloid (CD13, CD45RA) antibodies. These studies confirmed the erythroid characteristics of this subpopulation.

  8. Self-assembly behavior of β-cyclodextrin and imipramine. A Free energy perturbation study

    NASA Astrophysics Data System (ADS)

    Sun, Tingting; Shao, Xueguang; Cai, Wensheng

    2010-05-01

    The self-assembly behavior of β-cyclodextrin (β-CD) and imipramine (IMI), an antidepressant drug, was investigated by molecular dynamics simulations in the gas phase and in an aqueous solution. The binding free energies for 10 possible arrangements of β-CD/IMI complexes with stoichiometries of 1:1, 2:1, and 1:2 were determined using free energy perturbation calculations. The calculations suggest that the 2:1 inclusion mode is the most energetically favored in both phases, in good agreement with experiment. The environment and the neutral and charged IMI influence the stability of the aggregates. The electrostatic interactions constitute the main contribution to the stability. The results reported in this contribution shed new light on the mechanism of association of β-CD with IMI.

  9. PTGER4 expression-modulating polymorphisms in the 5p13.1 region predispose to Crohn's disease and affect NF-κB and XBP1 binding sites.

    PubMed

    Glas, Jürgen; Seiderer, Julia; Czamara, Darina; Pasciuto, Giulia; Diegelmann, Julia; Wetzke, Martin; Olszak, Torsten; Wolf, Christiane; Müller-Myhsok, Bertram; Balschun, Tobias; Achkar, Jean-Paul; Kamboh, M Ilyas; Franke, Andre; Duerr, Richard H; Brand, Stephan

    2012-01-01

    Genome-wide association studies identified a PTGER4 expression-modulating region on chromosome 5p13.1 as Crohn's disease (CD) susceptibility region. The study aim was to test this association in a large cohort of patients with inflammatory bowel disease (IBD) and to elucidate genotypic and phenotypic interactions with other IBD genes. A total of 7073 patients and controls were genotyped: 844 CD and 471 patients with ulcerative colitis and 1488 controls were analyzed for the single nucleotide polymorphisms (SNPs) rs4495224 and rs7720838 on chromosome 5p13.1. The study included two replication cohorts of North American (CD: n = 684; controls: n = 1440) and of German origin (CD: n = 1098; controls: n = 1048). Genotype-phenotype, epistasis and transcription factor binding analyses were performed. In the discovery cohort, an association of rs4495224 (p = 4.10×10⁻⁵; 0.76 [0.67-0.87]) and of rs7720838 (p = 6.91×10⁻⁴; 0.81 [0.71-0.91]) with susceptibility to CD was demonstrated. These associations were confirmed in both replication cohorts. In silico analysis predicted rs4495224 and rs7720838 as essential parts of binding sites for the transcription factors NF-κB and XBP1 with higher binding scores for carriers of the CD risk alleles, providing an explanation of how these SNPs might contribute to increased PTGER4 expression. There was no association of the PTGER4 SNPs with IBD phenotypes. Epistasis detected between 5p13.1 and ATG16L1 for CD susceptibility in the discovery cohort (p = 5.99×10⁻⁷ for rs7720838 and rs2241880) could not be replicated in both replication cohorts arguing against a major role of this gene-gene interaction in the susceptibility to CD. We confirmed 5p13.1 as a major CD susceptibility locus and demonstrate by in silico analysis rs4495224 and rs7720838 as part of binding sites for NF-κB and XBP1. Further functional studies are necessary to confirm the results of our in silico analysis and to analyze if changes in PTGER4 expression modulate CD susceptibility.

  10. MIF: a down-regulator of early T cell-dependent IFN-γ responses in Plasmodium chabaudi adami (DK) infected mice

    PubMed Central

    Tshikudi Malu, Diane; Bélanger, Benoit; Desautels, François; Kelendji, Karine; Dalko, Esther; Sanchez-Dardon, Jaime; Leng, Lin; Bucala, Richard; Satoskar, Abhay; Scorza, Tatiana

    2012-01-01

    Neutralization of macrophage migration inhibitory factor (MIF) increases anti-tumor cytotoxic T cell responses in vivo and IFN-γ responses in vitro, suggesting a plausible regulatory role for MIF in T cell activation. Considering that IFN-γ production by CD4+ T cells is pivotal to resolve murine malaria and that secretion of MIF is induced by Plasmodium chabaudi adami parasites, we investigated the effect of MIF deficiency on the infection with this pathogen. Infections with P.c. adami DK parasites were more efficiently controlled in MIF-neutralized and MIF-deficient (KO) BALB/c mice. The reduction in parasitemia was associated with reduced production of IL-4 by non-T/non-B cells throughout patent infection. At day 4 post-infection, higher numbers of activated CD4+ cells were measured in MIF KO mice, which secreted more IFN-γ, less IL-4 and less IL-10 than CD4+ T cells from WT mice. Enhanced IFN-γ and decreased IL-4 responses also were measured in MIF KO CD4+ T cells stimulated with or without IL-12 and anti-IL-4 blocking antibody to induce Th1 polarization. However, MIF KO CD4+ T cells efficiently acquired a Th2 phenotype when stimulated in the presence of IL-4 and anti-IL-12 antibody, indicating normal responsiveness to IL-4/STAT6 signaling. These results suggest that by promoting IL-4 responses in cells other than T/B cells during early P.c. adami infection, MIF decreases IFN-γ secretion in CD4+ T cells and in addition, has the intrinsic ability to render CD4+ T cells less capable of acquiring a robust Th1 phenotype when stimulated in the presence of IL-12. PMID:21518974

  11. T Regulatory Cell Induced Foxp3 Binds the IL2, IFNγ, and TNFα Promoters in Virus-Specific CD8+ T Cells from Feline Immunodeficiency Virus Infected Cats.

    PubMed

    Wang, Yan; Nag, Mukta; Tuohy, Joanne L; De Paris, Kristina; Fogle, Jonathan E

    2018-03-01

    Polyfunctional CD8 + T cells play a critical role in controlling viremia during AIDS lentiviral infections. However, for most HIV-infected individuals, virus-specific CD8 + T cells exhibit loss of polyfunctionality, including loss of IL2, TNFα, and IFNγ. Using the feline immunodeficiency virus (FIV) model for AIDS lentiviral persistence, our laboratory has demonstrated that FIV-activated Treg cells target CD8 + T cells, leading to a reduction in IL2 and IFNγ production. Furthermore, we have demonstrated that Treg cells induce expression of the repressive transcription factor, Foxp3, in CD8 + T cells. Based upon these findings, we asked if Treg-induced Foxp3 could bind to the IL2, TNFα, and IFNγ promoter regions in virus-specific CD8 + T cells. Following coculture with autologous Treg cells, we demonstrated decreased mRNA levels of IL2 and IFNγ at weeks 4 and 8 postinfection and decreased TNFα at week 4 postinfection in virus-specific CD8 + T cells. We also clearly demonstrated Treg cell-induced Foxp3 expression in virus-specific CD8 + T cells at weeks 1, 4, and 8 postinfection. Finally, we documented Foxp3 binding to the IL2, TNFα, and IFNγ promoters at 8 weeks and 6 months postinfection in virus-specific CD8 + T cells following Treg cell coculture. In summary, the results here clearly demonstrate that Foxp3 inhibits IL2, TNFα, and IFNγ transcription by binding to their promoter regions in lentivirus-specific CD8 + T cells. We believe this is the first description of this process during the course of AIDS lentiviral infection.

  12. The distal short consensus repeats 1 and 2 of the membrane cofactor protein CD46 and their distance from the cell membrane determine productive entry of species B adenovirus serotype 35.

    PubMed

    Fleischli, Christoph; Verhaagh, Sandra; Havenga, Menzo; Sirena, Dominique; Schaffner, Walter; Cattaneo, Roberto; Greber, Urs F; Hemmi, Silvio

    2005-08-01

    The human regulator of complement activation membrane cofactor protein (CD46) has recently been identified as an attachment receptor for most species B adenoviruses (Ads), including Ad type 3 (Ad3), Ad11, and Ad35, as well as species D Ad37. To characterize the interaction between Ad35 and CD46, hybrid receptors composed of different CD46 short consensus repeat (SCR) domains fused to immunoglobulin-like domains of CD4 and a set of 36 CD46 mutants containing semiconservative changes of single amino acids within SCR domains I and II were tested in binding and in Ad35-mediated luciferase transduction assays. In addition, anti-CD46 antibodies and soluble polypeptides constituting various CD46 domains were used in binding inhibition studies. Our data indicate that (i) CD46 SCR I or SCR II alone confers low but significant Ad35 binding; (ii) the presence of SCR I and II is required for optimal binding and transgene expression; (iii) transduction efficiencies equivalent to that of full-length CD46 are obtained if SCR I and II are at an appropriate distance from the cell membrane; (iv) ablation of the N-glycan attached to SCR I has no influence on receptor function, whereas ablation of the SCR II N-glycan results in about a two- to threefold reduction of binding and transgene expression; (v) most putative Ad35 binding residues are located on the same solvent-exposed face of the SCR I or SCR II domain, which are twisted by about 90 degrees ; and (vi) the putative Ad35 binding sites partly overlap with the measles virus binding surface.

  13. The Distal Short Consensus Repeats 1 and 2 of the Membrane Cofactor Protein CD46 and Their Distance from the Cell Membrane Determine Productive Entry of Species B Adenovirus Serotype 35

    PubMed Central

    Fleischli, Christoph; Verhaagh, Sandra; Havenga, Menzo; Sirena, Dominique; Schaffner, Walter; Cattaneo, Roberto; Greber, Urs F.; Hemmi, Silvio

    2005-01-01

    The human regulator of complement activation membrane cofactor protein (CD46) has recently been identified as an attachment receptor for most species B adenoviruses (Ads), including Ad type 3 (Ad3), Ad11, and Ad35, as well as species D Ad37. To characterize the interaction between Ad35 and CD46, hybrid receptors composed of different CD46 short consensus repeat (SCR) domains fused to immunoglobulin-like domains of CD4 and a set of 36 CD46 mutants containing semiconservative changes of single amino acids within SCR domains I and II were tested in binding and in Ad35-mediated luciferase transduction assays. In addition, anti-CD46 antibodies and soluble polypeptides constituting various CD46 domains were used in binding inhibition studies. Our data indicate that (i) CD46 SCR I or SCR II alone confers low but significant Ad35 binding; (ii) the presence of SCR I and II is required for optimal binding and transgene expression; (iii) transduction efficiencies equivalent to that of full-length CD46 are obtained if SCR I and II are at an appropriate distance from the cell membrane; (iv) ablation of the N-glycan attached to SCR I has no influence on receptor function, whereas ablation of the SCR II N-glycan results in about a two- to threefold reduction of binding and transgene expression; (v) most putative Ad35 binding residues are located on the same solvent-exposed face of the SCR I or SCR II domain, which are twisted by about 90°; and (vi) the putative Ad35 binding sites partly overlap with the measles virus binding surface. PMID:16014961

  14. Characterization of Functional Antibody and Memory B-Cell Responses to pH1N1 Monovalent Vaccine in HIV-Infected Children and Youth

    PubMed Central

    Curtis, Donna J.; Muresan, Petronella; Nachman, Sharon; Fenton, Terence; Richardson, Kelly M.; Dominguez, Teresa; Flynn, Patricia M.; Spector, Stephen A.; Cunningham, Coleen K.; Bloom, Anthony; Weinberg, Adriana

    2015-01-01

    Objectives We investigated immune determinants of antibody responses and B-cell memory to pH1N1 vaccine in HIV-infected children. Methods Ninety subjects 4 to <25 years of age received two double doses of pH1N1 vaccine. Serum and cells were frozen at baseline, after each vaccination, and at 28 weeks post-immunization. Hemagglutination inhibition (HAI) titers, avidity indices (AI), B-cell subsets, and pH1N1 IgG and IgA antigen secreting cells (ASC) were measured at baseline and after each vaccination. Neutralizing antibodies and pH1N1-specific Th1, Th2 and Tfh cytokines were measured at baseline and post-dose 1. Results At entry, 26 (29%) subjects had pH1N1 protective HAI titers (≥1:40). pH1N1-specific HAI, neutralizing titers, AI, IgG ASC, IL-2 and IL-4 increased in response to vaccination (p<0.05), but IgA ASC, IL-5, IL-13, IL-21, IFNγ and B-cell subsets did not change. Subjects with baseline HAI ≥1:40 had significantly greater increases in IgG ASC and AI after immunization compared with those with HAI <1:40. Neutralizing titers and AI after vaccination increased with older age. High pH1N1 HAI responses were associated with increased IgG ASC, IFNγ, IL-2, microneutralizion titers, and AI. Microneutralization titers after vaccination increased with high IgG ASC and IL-2 responses. IgG ASC also increased with high IFNγ responses. CD4% and viral load did not predict the immune responses post-vaccination, but the B-cell distribution did. Notably, vaccine immunogenicity increased with high CD19+CD21+CD27+% resting memory, high CD19+CD10+CD27+% immature activated, low CD19+CD21-CD27-CD20-% tissue-like, low CD19+CD21-CD27-CD20-% transitional and low CD19+CD38+HLADR+% activated B-cell subsets. Conclusions HIV-infected children on HAART mount a broad B-cell memory response to pH1N1 vaccine, which was higher for subjects with baseline HAI≥1:40 and increased with age, presumably due to prior exposure to pH1N1 or to other influenza vaccination/infection. The response to the vaccine was dependent on B-cell subset distribution, but not on CD4 counts or viral load. Trial Registration ClinicalTrials.gov NCT00992836 PMID:25785995

  15. Cooperativity of CD44 and CD49d in leukemia cell homing, migration, and survival offers a means for therapeutic attack.

    PubMed

    Singh, Vibuthi; Erb, Ulrike; Zöller, Margot

    2013-11-15

    A CD44 blockade drives leukemic cells into differentiation and apoptosis by dislodging from the osteogenic niche. Because anti-CD49d also supports hematopoietic stem cell mobilization, we sought to determine the therapeutic efficacy of a joint CD49d/CD44 blockade. To unravel the underlying mechanism, the CD49d(-) EL4 lymphoma was transfected with CD49d or point-mutated CD49d, prohibiting phosphorylation and FAK binding; additionally, a CD44(-) Jurkat subline was transfected with murine CD44, CD44 with a point mutation in the ezrin binding site, or with cytoplasmic tail-truncated CD44. Parental and transfected EL4 and Jurkat cells were evaluated for adhesion, migration, and apoptosis susceptibility in vitro and in vivo. Ligand-binding and Ab-blocking studies revealed CD44-CD49d cooperation in vitro and in vivo in adhesion, migration, and apoptosis resistance. The cooperation depends on ligand-induced proximity such that both CD44 and CD49d get access to src, FAK, and paxillin and via lck to the MAPK pathway, with the latter also supporting antiapoptotic molecule liberation. Accordingly, synergisms were only seen in leukemia cells expressing wild-type CD44 and CD49d. Anti-CD44 together with anti-CD49d efficiently dislodged EL4-CD49d/Jurkat-CD44 in bone marrow and spleen. Dislodging was accompanied by increased apoptosis susceptibility that strengthened low-dose chemotherapy, the combined treatment most strongly interfering with metastatic settlement and being partly curative. Ab treatment also promoted NK and Ab-dependent cellular cytotoxicity activation, which affected leukemia cells independent of CD44/CD49d tail mutations. Thus, mostly owing to a blockade of joint signaling, anti-CD44 and anti-CD49d hamper leukemic cell settlement and break apoptosis resistance, which strongly supports low-dose chemotherapy.

  16. Anti-CD22–chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    Haso, Waleed; Lee, Daniel W.; Shah, Nirali N.; Stetler-Stevenson, Maryalice; Yuan, Constance M.; Pastan, Ira H.; Dimitrov, Dimiter S.; Morgan, Richard A.; FitzGerald, David J.; Barrett, David M.; Wayne, Alan S.; Mackall, Crystal L.

    2013-01-01

    Immune targeting of B-cell malignancies using chimeric antigen receptors (CARs) is a promising new approach, but critical factors impacting CAR efficacy remain unclear. To test the suitability of targeting CD22 on precursor B-cell acute lymphoblastic leukemia (BCP-ALL), lymphoblasts from 111 patients with BCP-ALL were assayed for CD22 expression and all were found to be CD22-positive, with median CD22 expression levels of 3500 sites/cell. Three distinct binding domains targeting CD22 were fused to various TCR signaling domains ± an IgG heavy chain constant domain (CH2CH3) to create a series of vector constructs suitable to delineate optimal CAR configuration. CARs derived from the m971 anti-CD22 mAb, which targets a proximal CD22 epitope demonstrated superior antileukemic activity compared with those incorporating other binding domains, and addition of a 4-1BB signaling domain to CD28.CD3ζ constructs diminished potency, whereas increasing affinity of the anti-CD22 binding motif, and extending the CD22 binding domain away from the membrane via CH2CH3 had no effect. We conclude that second-generation m971 mAb-derived anti-CD22 CARs are promising novel therapeutics that should be tested in BCP-ALL. PMID:23243285

  17. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Haso, Waleed; Lee, Daniel W; Shah, Nirali N; Stetler-Stevenson, Maryalice; Yuan, Constance M; Pastan, Ira H; Dimitrov, Dimiter S; Morgan, Richard A; FitzGerald, David J; Barrett, David M; Wayne, Alan S; Mackall, Crystal L; Orentas, Rimas J

    2013-02-14

    Immune targeting of B-cell malignancies using chimeric antigen receptors (CARs) is a promising new approach, but critical factors impacting CAR efficacy remain unclear. To test the suitability of targeting CD22 on precursor B-cell acute lymphoblastic leukemia (BCP-ALL), lymphoblasts from 111 patients with BCP-ALL were assayed for CD22 expression and all were found to be CD22-positive, with median CD22 expression levels of 3500 sites/cell. Three distinct binding domains targeting CD22 were fused to various TCR signaling domains ± an IgG heavy chain constant domain (CH2CH3) to create a series of vector constructs suitable to delineate optimal CAR configuration. CARs derived from the m971 anti-CD22 mAb, which targets a proximal CD22 epitope demonstrated superior antileukemic activity compared with those incorporating other binding domains, and addition of a 4-1BB signaling domain to CD28.CD3 constructs diminished potency, whereas increasing affinity of the anti-CD22 binding motif, and extending the CD22 binding domain away from the membrane via CH2CH3 had no effect. We conclude that second-generation m971 mAb-derived anti-CD22 CARs are promising novel therapeutics that should be tested in BCP-ALL.

  18. Conformational Heterogeneity of the HIV Envelope Glycan Shield.

    PubMed

    Yang, Mingjun; Huang, Jing; Simon, Raphael; Wang, Lai-Xi; MacKerell, Alexander D

    2017-06-30

    To better understand the conformational properties of the glycan shield covering the surface of the HIV gp120/gp41 envelope (Env) trimer, and how the glycan shield impacts the accessibility of the underlying protein surface, we performed enhanced sampling molecular dynamics (MD) simulations of a model glycosylated HIV Env protein and related systems. Our simulation studies revealed a conformationally heterogeneous glycan shield with a network of glycan-glycan interactions more extensive than those observed to date. We found that partial preorganization of the glycans potentially favors binding by established broadly neutralizing antibodies; omission of several specific glycans could increase the accessibility of other glycans or regions of the protein surface to antibody or CD4 receptor binding; the number of glycans that can potentially interact with known antibodies is larger than that observed in experimental studies; and specific glycan conformations can maximize or minimize interactions with individual antibodies. More broadly, the enhanced sampling MD simulations described here provide a valuable tool to guide the engineering of specific Env glycoforms for HIV vaccine design.

  19. Relative Contribution of Cellular Complement Inhibitors CD59, CD46, and CD55 to Parainfluenza Virus 5 Inhibition of Complement-Mediated Neutralization

    PubMed Central

    Li, Yujia; Parks, Griffith D.

    2018-01-01

    The complement system is a part of the innate immune system that viruses need to face during infections. Many viruses incorporate cellular regulators of complement activation (RCA) to block complement pathways and our prior work has shown that Parainfluenza virus 5 (PIV5) incorporates CD55 and CD46 to delay complement-mediated neutralization. In this paper, we tested the role of a third individual RCA inhibitor CD59 in PIV5 interactions with complement pathways. Using a cell line engineered to express CD59, we show that small levels of functional CD59 are associated with progeny PIV5, which is capable of blocking assembly of the C5b-C9 membrane attack complex (MAC). PIV5 containing CD59 (PIV5-CD59) showed increased resistance to complement-mediated neutralization in vitro comparing to PIV5 lacking regulators. Infection of A549 cells with PIV5 and RSV upregulated CD59 expression. TGF-beta treatment of PIV5-infected cells also increased cell surface CD59 expression and progeny virions were more resistant to complement-mediated neutralization. A comparison of individual viruses containing only CD55, CD46, or CD59 showed a potency of inhibiting complement-mediated neutralization, which followed a pattern of CD55 > CD46 > CD59. PMID:29693588

  20. The IgV domain of human B7-2 (CD86) is sufficient to co-stimulate T lymphocytes and induce cytokine secretion.

    PubMed

    Rennert, P; Furlong, K; Jellis, C; Greenfield, E; Freeman, G J; Ueda, Y; Levine, B; June, C H; Gray, G S

    1997-06-01

    B7-1 (CD80) and B7-2 (CD86) are genetically and structurally related molecules expressed on antigen-presenting cells. Both bind CD28 to co-stimulate T lymphocytes, resulting in proliferation and cytokine production. The extracellular portions of B7-1 and B7-2 which bind to CD28 and CTLA-4 are related to Ig variable (V) and Ig constant (C) domain sequences. Recent reports have described splice variant forms of B7 proteins which occur in vivo and are of unknown function. Here we describe soluble recombinant forms of B7-1 and B7-2 containing either both of the Ig-like extracellular domains or the individual IgV or IgC domains coupled to an Ig Fc tail. Soluble B7-1 and B7-2 bind to CD28 and CTLA-4, and effectively co-stimulate T lymphocytes resulting in their proliferation and the secretion of cytokines. Furthermore, the IgV domain of B7-2 binds CD28 and CTLA-4, competes with B7-1 and B7-2 for binding to these receptors, and co-stimulates T lymphocytes. Cross-linked soluble B7-2v was the most potent co-stimulatory molecule tested and was active at a concentration approximately 100-fold lower than cross-linked soluble B7-1 or B7-2 proteins. When bound to tosyl-activated beads, B7-2v was capable of sustaining multiple rounds of T cell expansion. These data complement the description of naturally occurring variants to suggest that T cell co-stimulation in vivo may be regulated by soluble or truncated forms of B7 proteins.

  1. Capacity of Broadly Neutralizing Antibodies to Inhibit HIV-1 Cell-Cell Transmission Is Strain- and Epitope-Dependent

    PubMed Central

    Reh, Lucia; Magnus, Carsten; Schanz, Merle; Weber, Jacqueline; Uhr, Therese; Rusert, Peter; Trkola, Alexandra

    2015-01-01

    An increasing number of broadly neutralizing antibodies (bnAbs) are considered leads for HIV-1 vaccine development and novel therapeutics. Here, we systematically explored the capacity of bnAbs to neutralize HIV-1 prior to and post-CD4 engagement and to block HIV-1 cell-cell transmission. Cell-cell spread is known to promote a highly efficient infection with HIV-1 which can inflict dramatic losses in neutralization potency compared to free virus infection. Selection of bnAbs that are capable of suppressing HIV irrespective of the transmission mode therefore needs to be considered to ascertain their in vivo activity in therapeutic use and vaccines. Employing assay systems that allow for unambiguous discrimination between free virus and cell-cell transmission to T cells, we probed a panel of 16 bnAbs for their activity against 11 viruses from subtypes A, B and C during both transmission modes. Over a wide range of bnAb-virus combinations tested, inhibitory activity against HIV-1 cell-cell transmission was strongly decreased compared to free virus transmission. Activity loss varied considerably between virus strains and was inversely associated with neutralization of free virus spread for V1V2- and V3-directed bnAbs. In rare bnAb-virus combinations, inhibition for both transmission modes was comparable but no bnAb potently blocked cell-cell transmission across all probed virus strains. Mathematical analysis indicated an increased probability of bnAb resistance mutations to arise in cell-cell rather than free virus spread, further highlighting the need to block this pathway. Importantly, the capacity to efficiently neutralize prior to CD4 engagement correlated with the inhibition efficacy against free virus but not cell-cell transmitted virus. Pre-CD4 attachment activity proved strongest amongst CD4bs bnAbs and varied substantially for V3 and V1V2 loop bnAbs in a strain-dependent manner. In summary, bnAb activity against divergent viruses varied depending on the transmission mode and differed depending on the window of action during the entry process, underscoring that powerful combinations of bnAbs are needed for in vivo application. PMID:26158270

  2. CD studies on ribonuclease A - oligonucleotides interactions.

    PubMed Central

    White, M D; Keren-Zur, M; Lapidot, Y

    1977-01-01

    The interaction of ApU, Aps4U, Aps4Up, ApAps4Up and Gps4U with RNase A was studied by CD difference spectroscopy. The use of 4-thiouridine (s4U) containing oligonucleotides enables to distinguish between the interaction of the different components of the ligand with the enzyme. The mode of binding of the oligonucleotides to the enzyme is described. From this mode of binding it is explained why Aps4U, for example, inhibits RNase A, while s4UpA serves as a substrate. PMID:866194

  3. Effect of dim and bright light exposure on some immunological parameters measured under thermal neutral conditions.

    PubMed

    Hyun, Ki-Ja; Kondo, Masayuki; Koh, Taichin; Tokura, Hiromi; Tamotsu, Satoshi; Oishi, Tadashi

    2005-01-01

    This study assesses the effects of ambient light conditions, under a thermoneutral environment, on selected immunological parameters of 7 healthy young women (aged 19 to 22 yrs). Subjects entered the bioclimatic chamber at 11: 00 h, controlled at 26 degrees C and 60% relative humidity, a "neutral climate". They lead a well-regulated life in the climatic chamber (pre-condition) while exposed to dim (200 lux) or, on the next day, bright (5000 lux) light between 06 : 00 to 12 : 00 h. Just before the end of each period of light exposure, a blood sample was taken for later immunological assay of white blood cell count (WBC), phagocytosis, interferon-gamma (IFN-gamma), interleukin-4 (IL-4), CD69 T cells (CD69), CD4+CD25+ T cells (CD4+CD25+), and transforming growth factor-beta 1 (TGF-beta1). The results, when compared with the pre-condition, were as follows: 1) CD69 and IFN-gamma increased during normal conditions without thermal stress under dim light; 2) WBC increased and IL-4 decreased under bright light; 3) as shown by the highly significant decrease of TGF-beta1, the immune system was activated under bright light; 4) phagocytosis tended to increase under bright light exposure; 5) CD69 and IFN-gamma were significantly higher, and CD4+CD25+ tended to decrease under bright light; 6) phagocytosis tended to be lower and TGF-beta1 significantly higher under dim light, indicating a decline of immune system function. Taken together, this preliminary single time-point sampling study infers that some parameters are activated (CD69) while others are attenuated (phagocytosis, TGF-beta1) according to the environmental light intensity, dim vs. bright, in women adhering to a standardized routine in the absence of thermal stress. These findings are discussed in terms of inhibition of the sympathetic and excitation of the parasympathetic nervous system under the influence of life-style regularity and daytime bright light exposure.

  4. CD80 and CD86 IgC domains are important for quaternary structure, receptor binding and co-signaling function.

    PubMed

    Girard, Tanya; Gaucher, Denis; El-Far, Mohamed; Breton, Gaëlle; Sékaly, Rafick-Pierre

    2014-09-01

    CD86 and CD80, the ligands for the co-stimulatory molecules CD28 and CTLA-4, are members of the Ig superfamily. Their structure includes Ig variable-like (IgV) domains, Ig constant-like (IgC) domains and intracellular domains. Although crystallographic studies have clearly identified the IgV domain to be responsible for receptor interactions, earlier studies suggested that both Ig domains are required for full co-signaling function. Herein, we have used deletion and chimeric human CD80 and CD86 molecules in co-stimulation assays to study the impact of the multimeric state of IgV and IgC domains on receptor binding properties and on co-stimulatory function in a peptide-specific T cell activation model. We report for the first time the presence of CD80 dimers and CD86 monomers in living cells. Moreover, we show that the IgC domain of both molecules inhibits multimer formation and greatly affects binding to the co-receptors CD28 and CTLA-4. Finally, both IgC and intracellular domains are required for full co-signaling function. These findings reveal the distinct but complementary roles of CD80 and CD86 IgV and IgC domains in T cell activation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. High-and low-affinity binding sites for Cd on the bacterial cell walls of Bacillus subtilis and Shewanella oneidensis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, B.; Boyanov, M.; Bunker, B. A.

    2010-08-01

    Bulk Cd adsorption isotherm experiments, thermodynamic equilibrium modeling, and Cd K edge EXAFS were used to constrain the mechanisms of proton and Cd adsorption to bacterial cells of the commonly occurring Gram-positive and Gram-negative bacteria, Bacillus subtilis and Shewanella oneidensis, respectively. Potentiometric titrations were used to characterize the functional group reactivity of the S. oneidensis cells, and we model the titration data using the same type of non-electrostatic surface complexation approach as was applied to titrations of B. subtilis suspensions by Fein et al. (2005). Similar to the results for B. subtilis, the S. oneidensis cells exhibit buffering behavior frommore » approximately pH 3-9 that requires the presence of four distinct sites, with pK{sub a} values of 3.3 {+-} 0.2, 4.8 {+-} 0.2, 6.7 {+-} 0.4, and 9.4 {+-} 0.5, and site concentrations of 8.9({+-}2.6) x 10{sup -5}, 1.3({+-}0.2) x 10{sup -4}, 5.9({+-}3.3) x 10{sup -5}, and 1.1({+-}0.6) x 10{sup -4} moles/g bacteria (wet mass), respectively. The bulk Cd isotherm adsorption data for both species, conducted at pH 5.9 as a function of Cd concentration at a fixed biomass concentration, were best modeled by reactions with a Cd:site stoichiometry of 1:1. EXAFS data were collected for both bacterial species as a function of Cd concentration at pH 5.9 and 10 g/L bacteria. The EXAFS results show that the same types of binding sites are responsible for Cd sorption to both bacterial species at all Cd loadings tested (1-200 ppm). Carboxyl sites are responsible for the binding at intermediate Cd loadings. Phosphoryl ligands are more important than carboxyl ligands for Cd binding at high Cd loadings. For the lowest Cd loadings studied here, a sulfhydryl site was found to dominate the bound Cd budgets for both species, in addition to the carboxyl and phosphoryl sites that dominate the higher loadings. The EXAFS results suggest that both Gram-positive and Gram-negative bacterial cell walls have a low concentration of very high-affinity sulfhydryl sites which become masked by the more abundant carboxyl and phosphoryl sites at higher metal:bacteria ratios. This study demonstrates that metal loading plays a vital role in determining the important metal-binding reactions that occur on bacterial cell walls, and that high affinity, low-density sites can be revealed by spectroscopy of biomass samples. Such sites may control the fate and transport of metals in realistic geologic settings, where metal concentrations are low.« less

  6. Amount of cadmium associated with Cd-binding protein in roots of young plants. [Agrostis gigantea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauser, W.E.

    1986-04-01

    The partitioning of Cd between roots and shoots was determined for young plants exposed to Cd in nutrient solution. The intentionally high concentration of 3 ..mu..m Cd was used to assess the role of root Cd-binding protein (Cd-BP) in Cd detoxification. The roots of tomatoes exposed to Cd retained 60-84% of the plant Cd from day 2 through day 9 without toxicity symptoms evident. Cd-BP did not contribute to Cd retention over the initial 4 days, only 1-4% of the root Cd was in this protein fraction. Maize roots retained 59-66% of the plant Cd from day 1 through daymore » 7. The Cd-BP fraction bound 8-19% of the root Cd on day 1 and 31-55% by day 7. Cd toxicity symptoms occurred in leaves by 4 days. In the grass Agrostis gigantea the roots retained 73-85% of the seedling Cd after 1 day and for another 6 days. A high proportion of the root Cd(34-68%) was in the Cd-BP fraction after one day and continued to be so to day 7 (46-64%). No Cd toxicity symptoms were evident. Only the specific pattern of rapid, early and sustained production of Cd-BP observed in Agrostis was consistent with the putative detoxification role for Cd-BP.« less

  7. Release of soluble CD30 after allogeneic stimulation is mediated by memory T cells and regulated by IFN-γ and IL-2.

    PubMed

    Velásquez, Sonia Y; García, Luis F; Opelz, Gerhard; Alvarez, Cristiam M; Süsal, Caner

    2013-07-27

    Membrane CD30 is an important costimulatory molecule for activated T lymphocytes, and serum level of soluble CD30 (sCD30) is considered a marker for predicting outcome in kidney transplantation. We investigated the kinetics of CD30 expression on CD4 and CD8 T-cell populations and the source of sCD30 during alloimmune responses in vitro. The effect of neutralizing antibodies against interferon (IFN)-γ and other cytokines on sCD30 release and the involvement of metalloproteinases ADAM10 and ADAM17/TACE that are responsible for sCD30 shedding were also assessed. Memory phenotypes and CD30 expression on allostimulated CD3 lymphocytes were evaluated in dialysis patients and matched controls. Allogeneic stimulation resulted in conversion of naive responder cells to central memory CD4 cells (P<0.001 at 96 hr) and effector CD8 cells (P<0.01 at 120 hr), which was accompanied by increased CD30 expression. Release of sCD30 was attributed mainly to central memory cells, and neutralization of IFN-γ (P<0.001) and interleukin (IL)-2 (P<0.001) impaired the release of sCD30 during allostimulation but did not alter the levels of ADAM10 and ADAM17/TACE. CD30 expression was modulated in dialysis patients in a similar way as in healthy controls. Allostimulation results in the up-regulation of the T-cell activation marker CD30 on CD4 as well as CD8 memory T cells and increased release of sCD30 from these cells in an IFN-γ- and IL-2-dependent manner. These results may explain clinical findings on the suitability of sCD30 and IFN-γ- and IL-2-producing T cells for immune monitoring of kidney transplant recipients before and after transplantation.

  8. Potent neutralization of botulinum neurotoxin/B by synergistic action of antibodies recognizing protein and ganglioside receptor binding domain.

    PubMed

    Chen, Changchun; Wang, Shuhui; Wang, Huajing; Mao, Xiaoyan; Zhang, Tiancheng; Ji, Guanghui; Shi, Xin; Xia, Tian; Lu, Weijia; Zhang, Dapeng; Dai, Jianxin; Guo, Yajun

    2012-01-01

    Botulinum neurotoxins (BoNTs), the causative agents for life-threatening human disease botulism, have been recognized as biological warfare agents. Monoclonal antibody (mAb) therapeutics hold considerable promise as BoNT therapeutics, but the potencies of mAbs against BoNTs are usually less than that of polyclonal antibodies (or oligoclonal antibodies). The confirmation of key epitopes with development of effective mAb is urgently needed. We selected 3 neutralizing mAbs which recognize different non-overlapping epitopes of BoNT/B from a panel of neutralizing antibodies against BoNT/B. By comparing the neutralizing effects among different combination groups, we found that 8E10, response to ganglioside receptor binding site, could synergy with 5G10 and 2F4, recognizing non-overlapping epitopes within Syt II binding sites. However, the combination of 5G10 with 2F4 blocking protein receptor binding sites did not achieve synergistical effects. Moreover, we found that the binding epitope of 8E10 was conserved among BoNT A, B, E, and F, which might cross-protect the challenge of different serotypes of BoNTs in vivo. The combination of two mAbs recognizing different receptors' binding domain in BoNTs has a synergistic effect. 8E10 is a potential universal partner for the synergistical combination with other mAb against protein receptor binding domain in BoNTs of other serotypes.

  9. CdTe/CdSe quantum dots improve the binding affinities between α-amylase and polyphenols.

    PubMed

    Ni, Xiaoling

    2012-03-01

    People exposed to engineered nanomaterials have potential health risks associated. Human α-amylase is one of the key enzymes in the digestive system. There are few reports about the influence of quantum dots (QDs) on the digestive enzymes and their inhibition system. This work focused on the toxic effect of CdTe/CdSe QDs on the interactions between α-amylase and its natural inhibitors. Thirty-six dietary polyphenols, natural α-amylase inhibitors from food, were studied for their affinities for α-amylase in the absence and presence of CdTe/CdSe QDs by a fluorescence quenching method. The magnitudes of apparent binding constants of polyphenols for α-amylase were almost in the range of 10(5)-10(7) L mol(-1) in the presence of CdTe/CdSe QDs, which were higher than the magnitudes of apparent binding constants in the absence of CdTe/CdSe QDs (10(4)-10(6) L mol(-1)). CdTe/CdSe QDs obviously improved the affinities of dietary polyphenols for α-amylase up to 389.04 times. It is possible that the binding interaction between polyphenols and α-amylase in the presence of CdTe/CdSe QDs was mainly caused by electrostatic interactions. QDs significantly influence the digestive enzymes and their inhibition system. This journal is © The Royal Society of Chemistry 2012

  10. Structural and Biophysical Characterization of the Mycobacterium tuberculosis Protein Rv0577, a Protein Associated with Neutral Red Staining of Virulent Tuberculosis Strains and Homologue of the Streptomyces coelicolor Protein KbpA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchko, Garry W.; Echols, Nathaniel; Flynn, E. Megan

    The 261-residue Mycobacterium tuberculosis protein Rv0577 is a prominent antigen in tuberculosis patients, the responsible component for neutral red staining of virulent strains of M. tuberculosis, a putative component in a methylglyoxal detoxification pathway, and an agonist of toll-like receptor 2. It also has 36% sequence identity to AfsK-binding protein A (KbpA), a component in the complex secondary metabolite pathways in the Streptomycetes genus from which many commercial antibiotics are derived. To gain insight into the biological function of Rv0577 and the family of KpbA kinase regulators, the crystal structure for Rv0577 was determined to a resolution of 1.75 Åmore » (3OXH), binding properties with neutral red and deoxyadenosine (Ado) surveyed, backbone dynamics measured, and thermal stability assayed by CD spectroscopy. The protein is composed of four approximate repeats with an topology arranged radially in consecutive pairs to form two continuous eight-strand -sheets capped on both ends with an -helix. The two -sheets intersect in the center at roughly a right angle and form an asymmetric deep “saddle” on both sides of the protein, saddle one (P11 to A129) and saddle two (L143 to A258), that may serve to bind ligands. NMR chemical shift perturbation experiments show that neutral red binds to Rv0577, further cementing the role of Rv0577 in the neutral red staining of virulent strains of M. tuberculosis. Similar experiments show that adenosine also bind to Rv0577, although less tightly, with estimated dissociation constants of 4.1 ± 0.3 mM for saddle one and > 1 M for saddle two. Heteronuclear steady-state {1H}-15N NOE, T1, and T2 values were generally uniform through-out the sequence with only a few modest pockets of differences suggestive of slightly different motion in loops between -strands in saddle 1. Circular dichroism spectroscopy characterization of the thermal stability of Rv0577 indicated irreversible unfolding upon heating with an estimated melting temperature of 56 °C. While it is not known if Rv0577 has a kinase regulatory role similar to its Streptomyces homolog KbpA, protein kinase and phosphatase signaling help M. tuberculosis adapt to the hostile host environment during infections. Consequently, new anti-tuberculosis drugs targeting Rv0577 may act by interfering with multiple mechanisms; a potential signaling machinery as well as toll-like receptor 2 activation and the methylglyoxal detoxification pathway.« less

  11. Patterns of binding of aluminum-containing adjuvants to Haemophilus influenzae type b and meningococcal group C conjugate vaccines and components

    PubMed Central

    Otto, Robert B.D.; Burkin, Karena; Amir, Saba Erum; Crane, Dennis T.; Bolgiano, Barbara

    2015-01-01

    The basis of Haemophilus influenzae type b (Hib) and Neisseria meningitidis serogroup C (MenC) glycoconjugates binding to aluminum-containing adjuvants was studied. By measuring the amount of polysaccharide and protein in the non-adsorbed supernatant, the adjuvant, aluminum phosphate, AlPO4, was found to be less efficient than aluminum hydroxide, Al(OH)3 at binding to the conjugates, at concentrations relevant to licensed vaccine formulations and when equimolar. At neutral pH, binding of TT conjugates to AlPO4 was facilitated through the carrier protein, with only weak binding of AlPO4 to CRM197 being observed. There was slightly higher binding of either adjuvant to tetanus toxoid conjugates, than to CRM197 conjugates. This was verified in AlPO4 formulations containing DTwP–Hib, where the adsorption of TT-conjugated Hib was higher than CRM197-conjugated Hib. At neutral pH, the anionic Hib and MenC polysaccharides did not appreciably bind to AlPO4, but did bind to Al(OH)3, due to electrostatic interactions. Phosphate ions reduced the binding of the conjugates to the adjuvants. These patterns of adjuvant adsorption can form the basis for future formulation studies with individual and combination vaccines containing saccharide-protein conjugates. PMID:26194164

  12. Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses.

    PubMed

    Chen, Ping; Hübner, Wolfgang; Spinelli, Matthew A; Chen, Benjamin K

    2007-11-01

    Cell-free human immunodeficiency virus type 1 (HIV-1) can initiate infections, but contact between infected and uninfected T cells can enhance viral spread through intercellular structures called virological synapses (VS). The relative contribution of VS to cell-free viral transfer has not been carefully measured. Using an ultrasensitive, fluorescent virus transfer assay, we estimate that when VS between HIV-expressing Jurkat T cells and primary CD4(+) T cells are formed, cell-associated transfer of virus is 18,000-fold more efficient than uptake of cell-free virus. Furthermore, in contrast to cell-free virus uptake, the VS deposits virus rapidly into focal, trypsin-resistant compartments in target T cells. This massive virus internalization requires Env-CD4 receptor interactions but is resistant to inhibition by patient-derived neutralizing antisera that inhibit homologous cell-free virus. Deleting the Env cytoplasmic tail does not abrogate VS-mediated transfer, but it renders the VS sensitive to neutralizing antibodies, suggesting that the tail limits exposure of VS-neutralizing epitopes on the surface of infected cells. Dynamic live imaging of the VS reveals that HIV-expressing cells are polarized and make sustained, Env-dependent contacts with target cells through uropod-like structures. The polarized T-cell morphology, Env-CD4 coordinated adhesion, and viral transfer from HIV-infected to uninfected cells suggest that VS allows HIV-1 to evade antibody neutralization and to disseminate efficiently. Future studies will discern to what extent this massive viral transfer contributes to productive infection or viral dissemination through the migration of virus-carrying T cells.

  13. Extra-epitopic hepatitis C virus polymorphisms confer resistance to broadly neutralizing antibodies by modulating binding to scavenger receptor B1.

    PubMed

    El-Diwany, Ramy; Cohen, Valerie J; Mankowski, Madeleine C; Wasilewski, Lisa N; Brady, Jillian K; Snider, Anna E; Osburn, William O; Murrell, Ben; Ray, Stuart C; Bailey, Justin R

    2017-02-01

    Broadly-neutralizing monoclonal antibodies (bNAbs) may guide vaccine development for highly variable viruses including hepatitis C virus (HCV), since they target conserved viral epitopes that could serve as vaccine antigens. However, HCV resistance to bNAbs could reduce the efficacy of a vaccine. HC33.4 and AR4A are two of the most potent anti-HCV human bNAbs characterized to date, binding to highly conserved epitopes near the amino- and carboxy-terminus of HCV envelope (E2) protein, respectively. Given their distinct epitopes, it was surprising that these bNAbs showed similar neutralization profiles across a panel of natural HCV isolates, suggesting that some viral polymorphisms may confer resistance to both bNAbs. To investigate this resistance, we developed a large, diverse panel of natural HCV envelope variants and a novel computational method to identify bNAb resistance polymorphisms in envelope proteins (E1 and E2). By measuring neutralization of a panel of HCV pseudoparticles by 10 μg/mL of each bNAb, we identified E1E2 variants with resistance to one or both bNAbs, despite 100% conservation of the AR4A binding epitope across the panel. We discovered polymorphisms outside of either binding epitope that modulate resistance to both bNAbs by altering E2 binding to the HCV co-receptor, scavenger receptor B1 (SR-B1). This study is focused on a mode of neutralization escape not addressed by conventional analysis of epitope conservation, highlighting the contribution of extra-epitopic polymorphisms to bNAb resistance and presenting a novel mechanism by which HCV might persist even in the face of an antibody response targeting multiple conserved epitopes.

  14. Human mast cell neutral proteases generate modified LDL particles with increased proteoglycan binding.

    PubMed

    Maaninka, Katariina; Nguyen, Su Duy; Mäyränpää, Mikko I; Plihtari, Riia; Rajamäki, Kristiina; Lindsberg, Perttu J; Kovanen, Petri T; Öörni, Katariina

    2018-04-13

    Subendothelial interaction of LDL with extracellular matrix drives atherogenesis. This interaction can be strengthened by proteolytic modification of LDL. Mast cells (MCs) are present in atherosclerotic lesions, and upon activation, they degranulate and release a variety of neutral proteases. Here we studied the ability of MC proteases to cleave apoB-100 of LDL and affect the binding of LDL to proteoglycans. Mature human MCs were differentiated from human peripheral blood-derived CD34 + progenitors in vitro and activated with calcium ionophore to generate MC-conditioned medium. LDL was incubated in the MC-conditioned medium or with individual MC proteases, and the binding of native and modified LDL to isolated human aortic proteoglycans or to human atherosclerotic plaques ex vivo was determined. MC proteases in atherosclerotic human coronary artery lesions were detected by immunofluorescence and qPCR. Activated human MCs released the neutral proteases tryptase, chymase, carboxypeptidase A3, cathepsin G, and granzyme B. Of these, cathepsin G degraded most efficiently apoB-100, induced LDL fusion, and enhanced binding of LDL to isolated human aortic proteoglycans and human atherosclerotic lesions ex vivo. Double immunofluoresence staining of human atherosclerotic coronary arteries for tryptase and cathepsin G indicated that lesional MCs contain cathepsin G. In the lesions, expression of cathepsin G correlated with the expression of tryptase and chymase, but not with that of neutrophil proteinase 3. The present study suggests that cathepsin G in human atherosclerotic lesions is largely derived from MCs and that activated MCs may contribute to atherogenesis by enhancing LDL retention. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Selection of a novel CD19 aptamer for targeted delivery of doxorubicin to lymphoma cells.

    PubMed

    Hu, Yan; Li, Xiaoou; An, Yacong; Duan, Jinhong; Yang, Xian-Da

    2018-06-01

    CD19 is overexpressed in most human B cell malignancies and considered an important tumor marker for diagnosis and treatment. Aptamers are oligonucleotides that may potentially serve as tumor-homing ligand for targeted cancer therapy with excellent affinity and specificity. In this study, we selected a novel CD19 aptamer (LC1) that was a 59-nucleotide single strand DNA. The aptamer could bind to recombinant CD19 protein with a K d of 85.4 nM, and had minimal cross reactivity to bovine serum albumin (BSA) or ovalbumin (OVA). Moreover, the aptamer was found capable of binding with the CD19-positive lymphoma cells (Ramos and Raji), but not the CD19-negative cell lines (Jurkat and NB4). An aptamer-doxorubicin complex (Apt-Dox) was also formulated, and selectively delivered doxorubicin to CD19-positive lymphoma cells in vitro . The results indicate that aptamer LC1 can recognize CD19-positive tumor cells and may potentially function as a CD19-targeting ligand.

  16. Binding of human immunodeficiency virus type 1 gp120 to CXCR4 induces mitochondrial transmembrane depolarization and cytochrome c-mediated apoptosis independently of Fas signaling.

    PubMed

    Roggero, R; Robert-Hebmann, V; Harrington, S; Roland, J; Vergne, L; Jaleco, S; Devaux, C; Biard-Piechaczyk, M

    2001-08-01

    Apoptosis of CD4(+) T lymphocytes, induced by contact between human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (gp120) and its receptors, could contribute to the cell depletion observed in HIV-infected individuals. CXCR4 appears to play an important role in gp120-induced cell death, but the mechanisms involved in this apoptotic process remain poorly understood. To get insight into the signal transduction pathways connecting CXCR4 to apoptosis following gp120 binding, we used different cell lines expressing wild-type CXCR4 and a truncated form of CD4 that binds gp120 but lacks the ability to transduce signals. The present study demonstrates that (i) the interaction of cell-associated gp120 with CXCR4-expressing target cells triggers a rapid dissipation of the mitochondrial transmembrane potential resulting in the cytosolic release of cytochrome c from the mitochondria to cytosol, concurrent with activation of caspase-9 and -3; (ii) this apoptotic process is independent of Fas signaling; and (iii) cooperation with a CD4 signal is not required. In addition, following coculture with cells expressing gp120, a Fas-independent apoptosis involving mitochondria and caspase activation is also observed in primary umbilical cord blood CD4(+) T lymphocytes expressing high levels of CXCR4. Thus, this gp120-mediated apoptotic pathway may contribute to CD4(+) T-cell depletion in AIDS.

  17. Binding of Human Immunodeficiency Virus Type 1 gp120 to CXCR4 Induces Mitochondrial Transmembrane Depolarization and Cytochrome c-Mediated Apoptosis Independently of Fas Signaling

    PubMed Central

    Roggero, Rodolphe; Robert-Hebmann, Véronique; Harrington, Steve; Roland, Joachim; Vergne, Laurence; Jaleco, Sara; Devaux, Christian; Biard-Piechaczyk, Martine

    2001-01-01

    Apoptosis of CD4+ T lymphocytes, induced by contact between human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (gp120) and its receptors, could contribute to the cell depletion observed in HIV-infected individuals. CXCR4 appears to play an important role in gp120-induced cell death, but the mechanisms involved in this apoptotic process remain poorly understood. To get insight into the signal transduction pathways connecting CXCR4 to apoptosis following gp120 binding, we used different cell lines expressing wild-type CXCR4 and a truncated form of CD4 that binds gp120 but lacks the ability to transduce signals. The present study demonstrates that (i) the interaction of cell-associated gp120 with CXCR4-expressing target cells triggers a rapid dissipation of the mitochondrial transmembrane potential resulting in the cytosolic release of cytochrome c from the mitochondria to cytosol, concurrent with activation of caspase-9 and -3; (ii) this apoptotic process is independent of Fas signaling; and (iii) cooperation with a CD4 signal is not required. In addition, following coculture with cells expressing gp120, a Fas-independent apoptosis involving mitochondria and caspase activation is also observed in primary umbilical cord blood CD4+ T lymphocytes expressing high levels of CXCR4. Thus, this gp120-mediated apoptotic pathway may contribute to CD4+ T-cell depletion in AIDS. PMID:11462036

  18. Isolation and N-terminal sequencing of a novel cadmium-binding protein from Boletus edulis

    NASA Astrophysics Data System (ADS)

    Collin-Hansen, C.; Andersen, R. A.; Steinnes, E.

    2003-05-01

    A Cd-binding protein was isolated from the popular edible mushroom Boletus edulis, which is a hyperaccumulator of both Cd and Hg. Wild-growing samples of B. edulis were collected from soils rich in Cd. Cd radiotracer was added to the crude protein preparation obtained from ethanol precipitation of heat-treated cytosol. Proteins were then further separated in two consecutive steps; gel filtration and anion exchange chromatography. In both steps the Cd radiotracer profile showed only one distinct peak, which corresponded well with the profiles of endogenous Cd obtained by atomic absorption spectrophotometry (AAS). Concentrations of the essential elements Cu and Zn were low in the protein fractions high in Cd. N-terminal sequencing performed on the Cd-binding protein fractions revealed a protein with a novel amino acid sequence, which contained aromatic amino acids as well as proline. Both the N-terminal sequencing and spectrofluorimetric analysis with EDTA and ABD-F (4-aminosulfonyl-7-fluoro-2, 1, 3-benzoxadiazole) failed to detect cysteine in the Cd-binding fractions. These findings conclude that the novel protein does not belong to the metallothionein family. The results suggest a role for the protein in Cd transport and storage, and they are of importance in view of toxicology and food chemistry, but also for environmental protection.

  19. CD14 and CD11b mediate serum-independent binding to human monocytes of an acylpolygalactoside isolated from Klebsiella pneumoniae.

    PubMed Central

    Hmama, Z; Mey, A; Normier, G; Binz, H; Revillard, J P

    1994-01-01

    A water-soluble acylpolygalactosyl (APG) of 34 kDa was obtained from the Klebsiella pneumoniae membrane by alkaline hydrolysis and delipidation. APG comprises a poly(1,3)galactose chain, a core, and a lipid moiety made of a glucosamine disaccharide with two N-linked beta OH-myristates. The monocyte binding sites for APG were investigated by flow cytometry. Biotin-labelled APG (Biot-APG) bound to monocytes at 4 degrees C in the absence of serum, calcium, and magnesium. The binding was dose dependent, saturable, and displaced by unlabelled APG. Neither the polysaccharide chain present in APG-related molecules nor the PPi group or additional ester-linked myristates and palmitates were required for APG binding. The role of CD11b and CD14 was demonstrated by competitive inhibition with monoclonal antibodies and by the uptake of APG by these solubilized proteins. APG was rapidly internalized into monocytes at 37 degrees C while CD14 and CD11b/CD18 molecules were partially down-modulated. Lipopolysaccharides (LPS) from the same K. pneumoniae strain and from Escherichia coli and Salmonella minnesota partially competed for Biot-APG binding in the absence but not in the presence of serum. When altered by alkaline hydrolysis, those LPS became strong competitors for APG binding. It was concluded that alkaline hydrolysis of the K. pneumoniae membrane yielded molecules structurally related to LPS which bind to LPS membrane receptors in the absence of serum. Images PMID:7513300

  20. Native Human Monoclonal Antibodies with Potent Cross-Lineage Neutralization of Influenza B Viruses

    PubMed Central

    Vigil, Adam; Estélles, Angeles; Kauvar, Lawrence M.; Johnson, Scott K.

    2018-01-01

    ABSTRACT Although antibodies that effectively neutralize a broad set of influenza viruses exist in the human antibody repertoire, they are rare. We used a single-cell screening technology to identify rare monoclonal antibodies (MAbs) that recognized a broad set of influenza B viruses (IBV). The screen yielded 23 MAbs with diverse germ line origins that recognized hemagglutinins (HAs) derived from influenza strains of both the Yamagata and Victoria lineages of IBV. Of the 23 MAbs, 3 exhibited low expression in a transient-transfection system, 4 were neutralizers that bound to the HA head region, 11 were stalk-binding nonneutralizers, and 5 were stalk-binding neutralizers, with 4 of these 5 having unique antibody sequences. Of these four unique stalk-binding neutralizing MAbs, all were broadly reactive and neutralizing against a panel of multiple strains spanning both IBV lineages as well as highly effective in treating lethal IBV infections in mice at both 24 and 72 h postinfection. The MAbs in this group were thermostable and bound different epitopes in the highly conserved HA stalk region. These characteristics suggest that these MAbs are suitable for consideration as candidates for clinical studies to address their effectiveness in the treatment of IBV-infected patients. PMID:29507069

  1. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development.

    PubMed

    Taniuchi, Ichiro; Osato, Motomi; Egawa, Takeshi; Sunshine, Mary Jean; Bae, Suk Chul; Komori, Toshihisa; Ito, Yoshiaki; Littman, Dan R

    2002-11-27

    T lymphocytes differentiate in discrete stages within the thymus. Immature thymocytes lacking CD4 and CD8 coreceptors differentiate into double-positive cells (CD4(+)CD8(+)), which are selected to become either CD4(+)CD8(-)helper cells or CD4(-)CD8(+) cytotoxic cells. A stage-specific transcriptional silencer regulates expression of CD4 in both immature and CD4(-)CD8(+) thymocytes. We show here that binding sites for Runt domain transcription factors are essential for CD4 silencer function at both stages, and that different Runx family members are required to fulfill unique functions at each stage. Runx1 is required for active repression in CD4(-)CD8(-) thymocytes whereas Runx3 is required for establishing epigenetic silencing in cytotoxic lineage thymocytes. Runx3-deficient cytotoxic T cells, but not helper cells, have defective responses to antigen, suggesting that Runx proteins have critical functions in lineage specification and homeostasis of CD8-lineage T lymphocytes.

  2. HIV-Tat immunization induces cross-clade neutralizing antibodies and CD4(+) T cell increases in antiretroviral-treated South African volunteers: a randomized phase II clinical trial.

    PubMed

    Ensoli, Barbara; Nchabeleng, Maphoshane; Ensoli, Fabrizio; Tripiciano, Antonella; Bellino, Stefania; Picconi, Orietta; Sgadari, Cecilia; Longo, Olimpia; Tavoschi, Lara; Joffe, Daniel; Cafaro, Aurelio; Francavilla, Vittorio; Moretti, Sonia; Pavone Cossut, Maria Rosaria; Collacchi, Barbara; Arancio, Angela; Paniccia, Giovanni; Casabianca, Anna; Magnani, Mauro; Buttò, Stefano; Levendal, Elise; Ndimande, John Velaphi; Asia, Bennett; Pillay, Yogan; Garaci, Enrico; Monini, Paolo

    2016-06-09

    Although combined antiretroviral therapy (cART) has saved millions of lives, it is incapable of full immune reconstitution and virus eradication. The transactivator of transcription (Tat) protein is a key human immunodeficiency virus (HIV) virulence factor required for virus replication and transmission. Tat is expressed and released extracellularly by infected cells also under cART and in this form induces immune dysregulation, and promotes virus reactivation, entry and spreading. Of note, anti-Tat antibodies are rare in natural infection and, when present, correlate with asymptomatic state and reduced disease progression. This suggested that induction of anti-Tat antibodies represents a pathogenesis-driven intervention to block progression and to intensify cART. Indeed Tat-based vaccination was safe, immunogenic and capable of immune restoration in an open-label, randomized phase II clinical trial conducted in 168 cART-treated volunteers in Italy. To assess whether B-clade Tat immunization would be effective also in patients with different genetic background and infecting virus, a phase II trial was conducted in South Africa. The ISS T-003 was a 48-week randomised, double-blinded, placebo-controlled trial to evaluate immunogenicity (primary endpoint) and safety (secondary endpoint) of B-clade Tat (30 μg) given intradermally, three times at 4-week intervals, in 200 HIV-infected adults on effective cART (randomised 1:1) with CD4(+) T-cell counts ≥200 cells/µL. Study outcomes also included cross-clade anti-Tat antibodies, neutralization, CD4(+) T-cell counts and therapy compliance. Immunization was safe and well-tolerated and induced durable, high titers anti-Tat B-clade antibodies in 97 % vaccinees. Anti-Tat antibodies were cross-clade (all vaccinees tested) and neutralized Tat-mediated entry of oligomeric B-clade and C-clade envelope in dendritic cells (24 participants tested). Anti-Tat antibody titers correlated positively with neutralization. Tat vaccination increased CD4(+) T-cell numbers (all participants tested), particularly when baseline levels were still low after years of therapy, and this had a positive correlation with HIV neutralization. Finally, in cART non-compliant patients (24 participants), vaccination contained viral load rebound and maintained CD4(+) T-cell numbers over study entry levels as compared to placebo. The data indicate that Tat vaccination can restore the immune system and induces cross-clade neutralizing anti-Tat antibodies in patients with different genetic backgrounds and infecting viruses, supporting the conduct of phase III studies in South Africa. Trial registration ClinicalTrials.gov NCT01513135, 01/23/2012.

  3. CD98 at the crossroads of adaptive immunity and cancer

    PubMed Central

    Cantor, Joseph M.; Ginsberg, Mark H.

    2012-01-01

    Adaptive immunity, a vertebrate specialization, adds memory and exquisite specificity to the basic innate immune responses present in invertebrates while conserving metabolic resources. In adaptive immunity, antigenic challenge requires extremely rapid proliferation of rare antigen-specific lymphocytes to produce large, clonally expanded effector populations that neutralize pathogens. Rapid proliferation and resulting clonal expansion are dependent on CD98, a protein whose well-conserved orthologs appear restricted to vertebrates. Thus, CD98 supports lymphocyte clonal expansion to enable protective adaptive immunity, an advantage that could account for the presence of CD98 in vertebrates. CD98 supports lymphocyte clonal expansion by amplifying integrin signals that enable proliferation and prevent apoptosis. These integrin-dependent signals can also provoke cancer development and invasion, anchorage-independence and the rapid proliferation of tumor cells. CD98 is highly expressed in many cancers and contributes to formation of tumors in experimental models. Strikingly, vertebrates, which possess highly conserved CD98 proteins, CD98-binding integrins and adaptive immunity, also display propensity towards invasive and metastatic tumors. In this Commentary, we review the roles of CD98 in lymphocyte biology and cancer. We suggest that the CD98 amplification of integrin signaling in adaptive immunity provides survival benefits to vertebrates, which, in turn, bear the price of increased susceptibility to cancer. PMID:22499670

  4. HLA Class I Binding 9mer Peptides from Influenza A Virus Induce CD4+ T Cell Responses

    PubMed Central

    Wang, Mingjun; Larsen, Mette V.; Nielsen, Morten; Harndahl, Mikkel; Justesen, Sune; Dziegiel, Morten H.; Buus, Søren; Tang, Sheila T.; Lund, Ole; Claesson, Mogens H.

    2010-01-01

    Background Identification of human leukocyte antigen class I (HLA-I) restricted cytotoxic T cell (CTL) epitopes from influenza virus is of importance for the development of new effective peptide-based vaccines. Methodology/Principal Findings In the present work, bioinformatics was used to predict 9mer peptides derived from available influenza A viral proteins with binding affinity for at least one of the 12 HLA-I supertypes. The predicted peptides were then selected in a way that ensured maximal coverage of the available influenza A strains. One hundred and thirty one peptides were synthesized and their binding affinities for the HLA-I supertypes were measured in a biochemical assay. Influenza-specific T cell responses towards the peptides were quantified using IFNγ ELISPOT assays with peripheral blood mononuclear cells (PBMC) from adult healthy HLA-I typed donors as responder cells. Of the 131 peptides, 21 were found to induce T cell responses in 19 donors. In the ELISPOT assay, five peptides induced responses that could be totally blocked by the pan-specific anti-HLA-I antibody W6/32, whereas 15 peptides induced responses that could be completely blocked in the presence of the pan-specific anti-HLA class II (HLA-II) antibody IVA12. Blocking of HLA-II subtype reactivity revealed that 8 and 6 peptide responses were blocked by anti-HLA-DR and -DP antibodies, respectively. Peptide reactivity of PBMC depleted of CD4+ or CD8+ T cells prior to the ELISPOT culture revealed that effectors are either CD4+ (the majority of reactivities) or CD8+ T cells, never a mixture of these subsets. Three of the peptides, recognized by CD4+ T cells showed binding to recombinant DRA1*0101/DRB1*0401 or DRA1*0101/DRB5*0101 molecules in a recently developed biochemical assay. Conclusions/Significance HLA-I binding 9mer influenza virus-derived peptides induce in many cases CD4+ T cell responses restricted by HLA-II molecules. PMID:20479886

  5. Induced conformational change in human IL‐4 upon binding of a signal‐neutralizing DARPin

    PubMed Central

    Teplyakov, Alexey; Malia, Thomas J.; Keough, Edward; Luo, Jinquan; Sweet, Raymond; Jacobs, Steven A.; Yi, Fang; Hippensteel, Randi; O'Neil, Karyn T.

    2015-01-01

    ABSTRACT The crystal structure of DARPin 44C12V5 that neutralizes IL‐4 signaling has been determined alone and bound to human IL‐4. A significant conformational change occurs in the IL‐4 upon DARPin binding. The DARPin binds to the face of IL‐4 formed by the A and C α‐helices. The structure of the DARPin remains virtually unchanged. The conformational changes in IL‐4 include a reorientation of the C‐helix Trp91 side chain and repositioning of CD‐loop residue Leu96. Both side chains move by >9 Å, becoming buried in the central hydrophobic region of the IL‐4:DARPin interface. This hydrophobic region is surrounded by a ring of hydrophilic interactions comprised of hydrogen bonds and salt bridges and represents a classical “hotspot.” The structures also reveal how the DARPin neutralizes IL‐4 signaling. Comparing the IL‐4:DARPin complex structure with the structures of IL‐4 bound to its receptors (Hage et al., Cell 1999; 97, 271‐281; La Porte et al., Cell 2008, 132, 259‐272), it is found that the DARPin binds to the same IL‐4 face that interacts with the junction of the D1 and D2 domains of the IL‐4Rα receptors. Signaling is blocked since IL‐4 cannot bind to this receptor, which it must do first before initiating a productive receptor complex with either the IL‐13α1 or the γ c receptor. Proteins 2015; 83:1191–1197. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:25900776

  6. Quantifying CD4 receptor protein in two human CD4+ lymphocyte preparations for quantitative flow cytometry.

    PubMed

    Wang, Meiyao; Misakian, Martin; He, Hua-Jun; Bajcsy, Peter; Abbasi, Fatima; Davis, Jeffrey M; Cole, Kenneth D; Turko, Illarion V; Wang, Lili

    2014-01-01

    In our previous study that characterized different human CD4+ lymphocyte preparations, it was found that both commercially available cryopreserved peripheral blood mononuclear cells (PBMC) and a commercially available lyophilized PBMC (Cyto-Trol™) preparation fulfilled a set of criteria for serving as biological calibrators for quantitative flow cytometry. However, the biomarker CD4 protein expression level measured for T helper cells from Cyto-Trol was about 16% lower than those for cryopreserved PBMC and fresh whole blood using flow cytometry and mass cytometry. A primary reason was hypothesized to be due to steric interference in anti- CD4 antibody binding to the smaller sized lyophilized control cells. Targeted multiple reaction monitoring (MRM) mass spectrometry (MS) is used to quantify the copy number of CD4 receptor protein per CD4+ lymphocyte. Scanning electron microscopy (SEM) is utilized to assist searching the underlying reasons for the observed difference in CD4 receptor copy number per cell determined by MRM MS and CD4 expression measured previously by flow cytometry. The copy number of CD4 receptor proteins on the surface of the CD4+ lymphocyte in cryopreserved PBMCs and in lyophilized control cells is determined to be (1.45 ± 0.09) × 10(5) and (0.85 ± 0.11) × 10(5), respectively, averaged over four signature peptides using MRM MS. In comparison with cryopreserved PBMCs, there are more variations in the CD4 copy number in lyophilized control cells determined based on each signature peptide. SEM images of CD4+ lymphocytes from lyophilized control cells are very different when compared to the CD4+ T cells from whole blood and cryopreserved PBMC. Because of the lyophilization process applied to Cyto-Trol control cells, a lower CD4 density value, defined as the copy number of CD4 receptors per CD4+ lymphocyte, averaged over three different production lots is most likely explained by the loss of the CD4 receptors on damaged and/or broken microvilli where CD4 receptors reside. Steric hindrance of antibody binding and the association of CD4 receptors with other biomolecules likely contribute significantly to the nearly 50% lower CD4 receptor density value for cryopreserved PBMC determined from flow cytometry compared to the value obtained from MRM MS.

  7. The Surface Chemistry of Metal Chalcogenide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Anderson, Nicholas Charles

    The surface chemistry of metal chalcogenide nanocrystals is explored through several interrelated analytical investigations. After a brief discussion of the nanocrystal history and applications, molecular orbital theory is used to describe the electronic properties of semiconductors, and how these materials behave on the nanoscale. Quantum confinement plays a major role in dictating the optical properties of metal chalcogenide nanocrystals, however surface states also have an equally significant contribution to the electronic properties of nanocrystals due to the high surface area to volume ratio of nanoscale semiconductors. Controlling surface chemistry is essential to functionalizing these materials for biological imaging and photovoltaic device applications. To better understand the surface chemistry of semiconducting nanocrystals, three competing surface chemistry models are presented: 1.) The TOPO model, 2.) the Non-stoichiometric model, and 3.) the Neutral Fragment model. Both the non-stoichiometric and neutral fragment models accurately describe the behavior of metal chalcogenide nanocrystals. These models rely on the covalent bond classification system, which divides ligands into three classes: 1.) X-type, 1-electron donating ligands that balance charge with excess metal at the nanocrystal surface, 2.) L-type, 2-electron donors that bind metal sites, and 3.) Z-type, 2-electron acceptors that bind chalcogenide sites. Each of these ligand classes is explored in detail to better understand the surface chemistry of metal chalcogenide nanocrystals. First, chloride-terminated, tri-n-butylphosphine (Bu 3P) bound CdSe nanocrystals were prepared by cleaving carboxylate ligands from CdSe nanocrystals with chlorotrimethylsilane in Bu3P solution. 1H and 31P{1H} nuclear magnetic resonance spectra of the isolated nanocrystals allowed assignment of distinct signals from several free and bound species, including surface-bound Bu3P and [Bu3P-H]+[Cl]- ligands as well as a Bu3P complex of cadmium chloride. Nuclear magnetic resonance spectroscopy supports complete cleavage of the X-type carboxylate ligands. Combined with measurements of the Se:Cd:Cl ratio using Rutherford backscattering spectrometry, these studies support a structural model of nanocrystals where chloride ligands terminate the crystal lattice by balancing the charges of excess Cd2+ ions. The adsorption of dative phosphine ligands leads to nanocrystals who's solubility is afforded by reversibly bound and readily exchanged L-type ligands, e.g. primary amines and phosphines. The other halides (Br and I) can also be used to prepare Bu 3P-bound, halide-terminated CdSe nanocrystals, however these nanocrystals are not soluble after exchange. The change in binding affinity of Bu 3P over the halide series is briefly discussed. Next, we report a series of L-type ligand exchanges using Bu3P-bound, chloride-terminated CdSe nanocrystals with several Lewis bases, including aromatic, cyclic, and non-cyclic sulfides, and ethers; primary, secondary, and tertiary amines and phosphines; tertiary phosphine chalcogenides; primary alcohols, isocyanides, and isothiocyanides. Using 31P nuclear magnetic resonance spectroscopy, we establish a relative binding affinity for these ligands that reflects electronic considerations but is dominated primarily by steric interactions, as determined by comparing binding affinity to Tolmann cone angles. We also used chloride-terminated CdSe nanocrystals to explore the reactivity of ionic salts at nanocrystal surfaces. These salts, particularly [Bu3P-H]+[Cl]-, bind nanocrystals surfaces as L-type ligands, making them soluble in polar solvents such as acetonitrile. This information should provide insight for rational ligand design for future applications involving metal chalcogenide nanocrystals. The strongest ligand, primary n-alkylamine, rapidly displace the Bu3P from halide-terminated CdSe nanocrystals, leading to amine-bound nanocrystals with higher dative ligand coverages and greatly increased photoluminescence quantum yields. The importance of ligand coverage to both the UV-visible absorption and photoluminescence spectra are discussed. (Abstract shortened by UMI.).

  8. T-cell memory responses elicited by yellow fever vaccine are targeted to overlapping epitopes containing multiple HLA-I and -II binding motifs.

    PubMed

    de Melo, Andréa Barbosa; Nascimento, Eduardo J M; Braga-Neto, Ulisses; Dhalia, Rafael; Silva, Ana Maria; Oelke, Mathias; Schneck, Jonathan P; Sidney, John; Sette, Alessandro; Montenegro, Silvia M L; Marques, Ernesto T A

    2013-01-01

    The yellow fever vaccines (YF-17D-204 and 17DD) are considered to be among the safest vaccines and the presence of neutralizing antibodies is correlated with protection, although other immune effector mechanisms are known to be involved. T-cell responses are known to play an important role modulating antibody production and the killing of infected cells. However, little is known about the repertoire of T-cell responses elicited by the YF-17DD vaccine in humans. In this report, a library of 653 partially overlapping 15-mer peptides covering the envelope (Env) and nonstructural (NS) proteins 1 to 5 of the vaccine was utilized to perform a comprehensive analysis of the virus-specific CD4(+) and CD8(+) T-cell responses. The T-cell responses were screened ex-vivo by IFN-γ ELISPOT assays using blood samples from 220 YF-17DD vaccinees collected two months to four years after immunization. Each peptide was tested in 75 to 208 separate individuals of the cohort. The screening identified sixteen immunodominant antigens that elicited activation of circulating memory T-cells in 10% to 33% of the individuals. Biochemical in-vitro binding assays and immunogenetic and immunogenicity studies indicated that each of the sixteen immunogenic 15-mer peptides contained two or more partially overlapping epitopes that could bind with high affinity to molecules of different HLAs. The prevalence of the immunogenicity of a peptide in the cohort was correlated with the diversity of HLA-II alleles that they could bind. These findings suggest that overlapping of HLA binding motifs within a peptide enhances its T-cell immunogenicity and the prevalence of the response in the population. In summary, the results suggests that in addition to factors of the innate immunity, "promiscuous" T-cell antigens might contribute to the high efficacy of the yellow fever vaccines.

  9. T-Cell Memory Responses Elicited by Yellow Fever Vaccine are Targeted to Overlapping Epitopes Containing Multiple HLA-I and -II Binding Motifs

    PubMed Central

    de Melo, Andréa Barbosa; Nascimento, Eduardo J. M.; Braga-Neto, Ulisses; Dhalia, Rafael; Silva, Ana Maria; Oelke, Mathias; Schneck, Jonathan P.; Sidney, John; Sette, Alessandro; Montenegro, Silvia M. L.; Marques, Ernesto T. A.

    2013-01-01

    The yellow fever vaccines (YF-17D-204 and 17DD) are considered to be among the safest vaccines and the presence of neutralizing antibodies is correlated with protection, although other immune effector mechanisms are known to be involved. T-cell responses are known to play an important role modulating antibody production and the killing of infected cells. However, little is known about the repertoire of T-cell responses elicited by the YF-17DD vaccine in humans. In this report, a library of 653 partially overlapping 15-mer peptides covering the envelope (Env) and nonstructural (NS) proteins 1 to 5 of the vaccine was utilized to perform a comprehensive analysis of the virus-specific CD4+ and CD8+ T-cell responses. The T-cell responses were screened ex-vivo by IFN-γ ELISPOT assays using blood samples from 220 YF-17DD vaccinees collected two months to four years after immunization. Each peptide was tested in 75 to 208 separate individuals of the cohort. The screening identified sixteen immunodominant antigens that elicited activation of circulating memory T-cells in 10% to 33% of the individuals. Biochemical in-vitro binding assays and immunogenetic and immunogenicity studies indicated that each of the sixteen immunogenic 15-mer peptides contained two or more partially overlapping epitopes that could bind with high affinity to molecules of different HLAs. The prevalence of the immunogenicity of a peptide in the cohort was correlated with the diversity of HLA-II alleles that they could bind. These findings suggest that overlapping of HLA binding motifs within a peptide enhances its T-cell immunogenicity and the prevalence of the response in the population. In summary, the results suggests that in addition to factors of the innate immunity, “promiscuous” T-cell antigens might contribute to the high efficacy of the yellow fever vaccines. PMID:23383350

  10. Circulating CXCR5+CD4+ T cells assist in the survival and growth of primary diffuse large B cell lymphoma cells through interleukin 10 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cha, Zhanshan; Qian, Guangfang; Zang, Yan

    Diffuse large B cell lymphoma (DLBCL) is a common and aggressive cancer caused by the malignant transformation of B cells. Although it has been established that the follicular helper T (Tfh) cells play a central role in B cell development, little information is available on their involvement in DLBCL pathogenesis. We studied the role of the peripheral Tfh equivalent, the CXCR5{sup +} CD4{sup +} T cells, in DLBCL. Data showed that compared to CXCR5{sup -} CD4{sup +} T cells, CXCR5{sup +} CD4{sup +} T cells were significantly more effective at promoting the proliferation as well as inhibiting the apoptosis ofmore » primary autologous DLBCL tumor cells. Surprisingly, we found that at equal cell numbers, CXCR5{sup +} CD4{sup +} T cells in DLBCL patients secreted significantly less interleukin (IL)-21 than CXCR5{sup -} CD4{sup +} T cells, while the level of IL-10 secretion was significant elevated in the CXCR5{sup +} compartment compared to the CXCR5{sup -} compartment. Neutralization of IL-10 in the primary DLBCL-CXCR5{sup +} CD4{sup +} T cell coculture compromised the CXCR5{sup +} CD4{sup +} T cell-mediated pro-tumor effects, in a manner that was dependent on the concentration of anti-IL-10 antibodies. The CXCR5{sup +} compartment also contained significantly lower frequencies of cytotoxic CD4{sup +} T cells than the CXCR5{sup -} compartment. In conclusion, our investigations discovered a previously unknown pro-tumor role of CXCR5-expressing circulating CD4{sup +} T cells, which assisted the survival and proliferation of primary DLBCL cells through IL-10. - Highlights: • We studied the role of the peripheral Tfh in DLBCL. • Tfh were effective at promoting the proliferation of primary DLBCL tumor cells. • Tfh were effective at inhibiting the apoptosis of primary DLBCL tumor cells. • IL-10 secretion in Tfh was significant elevated in DLBCL. • Neutralization of IL-10 compromised Tfh-mediated pro-tumor effects.« less

  11. Visible-Light-Driven Valorization of Biomass Intermediates Integrated with H2 Production Catalyzed by Ultrathin Ni/CdS Nanosheets.

    PubMed

    Han, Guanqun; Jin, Yan-Huan; Burgess, R Alan; Dickenson, Nicholas E; Cao, Xiao-Ming; Sun, Yujie

    2017-11-08

    Photocatalytic upgrading of crucial biomass-derived intermediate chemicals (i.e., furfural alcohol, 5-hydroxymethylfurfural (HMF)) to value-added products (aldehydes and acids) was carried out on ultrathin CdS nanosheets (thickness ∼1 nm) decorated with nickel (Ni/CdS). More importantly, simultaneous H 2 production was realized upon visible light irradiation under ambient conditions utilizing these biomass intermediates as proton sources. The remarkable difference in the rates of transformation of furfural alcohol and HMF to their corresponding aldehydes in neutral water was observed and investigated. Aided by theoretical computation, it was rationalized that the slightly stronger binding affinity of the aldehyde group in HMF to Ni/CdS resulted in the lower transformation of HMF to 2,5-diformylfuran compared to that of furfural alcohol to furfural. Nevertheless, photocatalytic oxidation of furfural alcohol and HMF under alkaline conditions led to complete transformation to the respective carboxylates with concomitant production of H 2 .

  12. The antigenic complex in HIT binds to B cells via complement and complement receptor 2 (CD21)

    PubMed Central

    Khandelwal, Sanjay; Lee, Grace M.; Hester, C. Garren; Poncz, Mortimer; McKenzie, Steven E.; Sachais, Bruce S.; Rauova, Lubica; Kelsoe, Garnett; Cines, Douglas B.; Frank, Michael

    2016-01-01

    Heparin-induced thrombocytopenia is a prothrombotic disorder caused by antibodies to platelet factor 4 (PF4)/heparin complexes. The mechanism that incites such prevalent anti-PF4/heparin antibody production in more than 50% of patients exposed to heparin in some clinical settings is poorly understood. To investigate early events associated with antigen exposure, we first examined the interaction of PF4/heparin complexes with cells circulating in whole blood. In healthy donors, PF4/heparin complexes bind preferentially to B cells (>90% of B cells bind to PF4/heparin in vitro) relative to neutrophils, monocytes, or T cells. Binding of PF4 to B cells is heparin dependent, and PF4/heparin complexes are found on circulating B cells from some, but not all, patients receiving heparin. Given the high proportion of B cells that bind PF4/heparin, we investigated complement as a mechanism for noncognate antigen recognition. Complement is activated by PF4/heparin complexes, co-localizes with antigen on B cells from healthy donors, and is present on antigen-positive B cells in patients receiving heparin. Binding of PF4/heparin complexes to B cells is mediated through the interaction between complement and complement receptor 2 (CR2 [CD21]). To the best of our knowledge, these are the first studies to demonstrate complement activation by PF4/heparin complexes, opsonization of PF4/heparin to B cells via CD21, and the presence of complement activation fragments on circulating B cells in some patients receiving heparin. Given the critical contribution of complement to humoral immunity, our observations provide new mechanistic insights into the immunogenicity of PF4/heparin complexes. PMID:27412887

  13. p56Lck and p59Fyn Regulate CD28 Binding to Phosphatidylinositol 3-Kinase, Growth Factor Receptor-Bound Protein GRB-2, and T Cell-Specific Protein-Tyrosine Kinase ITK: Implications for T-Cell Costimulation

    NASA Astrophysics Data System (ADS)

    Raab, Monika; Cai, Yun-Cai; Bunnell, Stephen C.; Heyeck, Stephanie D.; Berg, Leslie J.; Rudd, Christopher E.

    1995-09-01

    T-cell activation requires cooperative signals generated by the T-cell antigen receptor ξ-chain complex (TCRξ-CD3) and the costimulatory antigen CD28. CD28 interacts with three intracellular proteins-phosphatidylinositol 3-kinase (PI 3-kinase), T cell-specific protein-tyrosine kinase ITK (formerly TSK or EMT), and the complex between growth factor receptor-bound protein 2 and son of sevenless guanine nucleotide exchange protein (GRB-2-SOS). PI 3-kinase and GRB-2 bind to the CD28 phosphotyrosine-based Tyr-Met-Asn-Met motif by means of intrinsic Src-homology 2 (SH2) domains. The requirement for tyrosine phosphorylation of the Tyr-Met-Asn-Met motif for SH2 domain binding implicates an intervening protein-tyrosine kinase in the recruitment of PI 3-kinase and GRB-2 by CD28. Candidate kinases include p56Lck, p59Fyn, ξ-chain-associated 70-kDa protein (ZAP-70), and ITK. In this study, we demonstrate in coexpression studies that p56Lck and p59Fyn phosphorylate CD28 primarily at Tyr-191 of the Tyr-Met-Asn-Met motif, inducing a 3- to 8-fold increase in p85 (subunit of PI 3-kinase) and GRB-2 SH2 binding to CD28. Phosphatase digestion of CD28 eliminated binding. In contrast to Src kinases, ZAP-70 and ITK failed to induce these events. Further, ITK binding to CD28 was dependent on the presence of p56Lck and is thus likely to act downstream of p56Lck/p59Fyn in a signaling cascade. p56Lck is therefore likely to be a central switch in T-cell activation, with the dual function of regulating CD28-mediated costimulation as well as TCR-CD3-CD4 signaling.

  14. Human milk galectin-3 binding protein and breast-feeding-associated HIV transmission.

    PubMed

    Chan, Christina S; Kim, Hae-Young; Autran, Chloe; Kim, Jae H; Sinkala, Moses; Kankasa, Chipepo; Mwiya, Mwiya; Thea, Donald M; Aldrovandi, Grace M; Kuhn, Louise; Bode, Lars

    2013-12-01

    Analysis of milk from 247 HIV-infected Zambian mothers showed that galectin-3 binding protein concentrations were significantly higher among HIV-infected mothers who transmitted HIV through breast-feeding (6.51 ± 2.12 μg/mL) than among nontransmitters but were also correlated with higher milk and plasma HIV RNA copies/mL and lower CD4+ cell counts. The association between galectin-3 binding protein and postnatal transmission was attenuated after adjustment for milk and plasma HIV load and CD4+ cell counts. This suggests that although milk galectin-3 binding protein is a marker of advanced maternal disease, it does not independently modify transmission risk.

  15. Syndecan-1/CD147 association is essential for cyclophilin B-induced activation of p44/42 mitogen-activated protein kinases and promotion of cell adhesion and chemotaxis.

    PubMed

    Pakula, Rachel; Melchior, Aurélie; Denys, Agnès; Vanpouille, Christophe; Mazurier, Joël; Allain, Fabrice

    2007-05-01

    Many of the biological functions attributed to cell surface proteoglycans are dependent on the interaction with extracellular mediators through their heparan sulphate (HS) moieties and the participation of their core proteins in signaling events. A class of recently identified inflammatory mediators is secreted cyclophilins, which are mostly known as cyclosporin A-binding proteins. We previously demonstrated that cyclophilin B (CyPB) triggers chemotaxis and integrin-mediated adhesion of T lymphocytes mainly of the CD4+/CD45RO+ phenotype. These activities are related to interactions with two types of binding sites, CD147 and cell surface HS. Here, we demonstrate that CyPB-mediated adhesion of CD4+/CD45RO+ T cells is related to p44/42 mitogen-activated protein kinase (MAPK) activation by a mechanism involving CD147 and HS proteoglycans (HSPG). Although HSPG core proteins are represented by syndecan-1, -2, -4, CD44v3 and betaglycan in CD4+/CD45RO+ T cells, we found that only syndecan-1 is physically associated with CD147. The intensity of the heterocomplex increased in response to CyPB, suggesting a transient enhancement and/or stabilization in the association of CD147 to syndecan-1. Pretreatment with anti-syndecan-1 antibodies or knockdown of syndecan-1 expression by RNA interference dramatically reduced CyPB-induced p44/p42 MAPK activation and consequent migration and adhesion, supporting the model in which syndecan-1 serves as a binding subunit to form the fully active receptor of CyPB. Altogether, our findings provide a novel example of a soluble mediator in which a member of the syndecan family plays a critical role in efficient interaction with signaling receptors and initiation of cellular responses.

  16. Reducing V3 Antigenicity and Immunogenicity on Soluble, Native-Like HIV-1 Env SOSIP Trimers.

    PubMed

    Ringe, Rajesh P; Ozorowski, Gabriel; Rantalainen, Kimmo; Struwe, Weston B; Matthews, Katie; Torres, Jonathan L; Yasmeen, Anila; Cottrell, Christopher A; Ketas, Thomas J; LaBranche, Celia C; Montefiori, David C; Cupo, Albert; Crispin, Max; Wilson, Ian A; Ward, Andrew B; Sanders, Rogier W; Klasse, P J; Moore, John P

    2017-08-01

    Native-like trimers of the SOSIP design are being developed as immunogens in human immunodeficiency virus type 1 (HIV-1) vaccine development programs. These trimers display the epitopes for multiple broadly neutralizing antibodies (bNAbs) but can also expose binding sites for some types of nonneutralizing antibodies (non-NAbs). Among the latter are epitopes in the gp120 V3 region that are highly immunogenic when SOSIP trimers are evaluated in animal models. It is presently uncertain whether antibodies against V3 can interfere with the induction of NAbs, but there are good arguments in favor of suppressing such "off-target" immune responses. Accordingly, we have assessed how to minimize the exposure of V3 non-NAb epitopes and thereby reduce their immunogenicity by introducing N -glycans within the V3 region of BG505 SOSIP trimers. We found that inserting glycans at positions 306 and 314 (termed M1 and M7) markedly reduced V3 antigenicity while improving the presentation of trimer apex bNAb epitopes. Both added glycans were shown to be predominantly of the Man 6 GlcNAc 2 form. The additional introduction of the E64K ground-state stabilizing substitution markedly reduced or ablated soluble CD4 (sCD4) induction of non-NAb epitopes in V3 and/or associated with the coreceptor binding site. When a V3 glycan- and E64K-modified trimer variant, BG505 SOSIP.664-E64K.M1M7, was tested in rabbits, V3 immunogenicity was eliminated while the autologous NAb response was unchanged. IMPORTANCE Trimeric proteins are being developed for future HIV-1 vaccine trials in humans, with the goal of eliciting broadly active neutralizing antibodies (NAbs) that are active against a wide variety of circulating strains. In animal models, the present generation of native-like trimer immunogens, exemplified by the BG505 SOSIP.664 construct, induces narrow-specificity antibodies against the neutralization-resistant (tier-2), sequence-matched virus and more broadly active antibodies against sequence-divergent atypically neutralization-sensitive (tier-1) viruses. A concern in the trimer immunogen design field has been whether the latter off-target antibodies might interfere with the induction of the more desired responses to tier-2 epitopes. Here, we have inserted two glycans into the dominant site for tier-1 NAbs, the gp120 V3 region, to block the induction of off-target antibodies. We characterized the new trimers, tested them as immunogens in rabbits, and found that the blocking glycans eliminated the induction of tier-1 NAbs to V3-epitopes. Copyright © 2017 Ringe et al.

  17. Reducing V3 Antigenicity and Immunogenicity on Soluble, Native-Like HIV-1 Env SOSIP Trimers

    PubMed Central

    Ringe, Rajesh P.; Ozorowski, Gabriel; Rantalainen, Kimmo; Struwe, Weston B.; Matthews, Katie; Torres, Jonathan L.; Yasmeen, Anila; Cottrell, Christopher A.; Ketas, Thomas J.; LaBranche, Celia C.; Montefiori, David C.; Cupo, Albert; Crispin, Max; Wilson, Ian A.; Ward, Andrew B.; Sanders, Rogier W.; Klasse, P. J.

    2017-01-01

    ABSTRACT Native-like trimers of the SOSIP design are being developed as immunogens in human immunodeficiency virus type 1 (HIV-1) vaccine development programs. These trimers display the epitopes for multiple broadly neutralizing antibodies (bNAbs) but can also expose binding sites for some types of nonneutralizing antibodies (non-NAbs). Among the latter are epitopes in the gp120 V3 region that are highly immunogenic when SOSIP trimers are evaluated in animal models. It is presently uncertain whether antibodies against V3 can interfere with the induction of NAbs, but there are good arguments in favor of suppressing such “off-target” immune responses. Accordingly, we have assessed how to minimize the exposure of V3 non-NAb epitopes and thereby reduce their immunogenicity by introducing N-glycans within the V3 region of BG505 SOSIP trimers. We found that inserting glycans at positions 306 and 314 (termed M1 and M7) markedly reduced V3 antigenicity while improving the presentation of trimer apex bNAb epitopes. Both added glycans were shown to be predominantly of the Man6GlcNAc2 form. The additional introduction of the E64K ground-state stabilizing substitution markedly reduced or ablated soluble CD4 (sCD4) induction of non-NAb epitopes in V3 and/or associated with the coreceptor binding site. When a V3 glycan- and E64K-modified trimer variant, BG505 SOSIP.664-E64K.M1M7, was tested in rabbits, V3 immunogenicity was eliminated while the autologous NAb response was unchanged. IMPORTANCE Trimeric proteins are being developed for future HIV-1 vaccine trials in humans, with the goal of eliciting broadly active neutralizing antibodies (NAbs) that are active against a wide variety of circulating strains. In animal models, the present generation of native-like trimer immunogens, exemplified by the BG505 SOSIP.664 construct, induces narrow-specificity antibodies against the neutralization-resistant (tier-2), sequence-matched virus and more broadly active antibodies against sequence-divergent atypically neutralization-sensitive (tier-1) viruses. A concern in the trimer immunogen design field has been whether the latter off-target antibodies might interfere with the induction of the more desired responses to tier-2 epitopes. Here, we have inserted two glycans into the dominant site for tier-1 NAbs, the gp120 V3 region, to block the induction of off-target antibodies. We characterized the new trimers, tested them as immunogens in rabbits, and found that the blocking glycans eliminated the induction of tier-1 NAbs to V3-epitopes. PMID:28539451

  18. Neutralizing Epitopes in the Membrane-Proximal External Region of HIV-1 gp41 Are Influenced by the Transmembrane Domain and the Plasma Membrane

    PubMed Central

    Montero, Marinieve; Klaric, Kristina-Ana; Donald, Jason E.; Lepik, Christa; Wu, Sampson; Tsai, Sue; Julien, Jean-Philippe; Hessell, Ann J.; Wang, Shixia; Lu, Shan; Burton, Dennis R.; Pai, Emil F.; DeGrado, William F.

    2012-01-01

    Failure to elicit broadly neutralizing (bNt) antibodies (Abs) against the membrane-proximal external region of HIV-1 gp41 (MPER) reflects the difficulty of mimicking its neutralization-competent structure (NCS). Here, we analyzed MPER antigenicity in the context of the plasma membrane and identified a role for the gp41 transmembrane domain (TM) in exposing the epitopes of three bNt monoclonal Abs (MAbs) (2F5, 4E10, and Z13e1). We transiently expressed DNA constructs encoding gp41 ectodomain fragments fused to either the TM of the platelet-derived growth factor receptor (PDGFR) or the gp41 TM and cytoplasmic tail domain (CT). Constructs encoding the MPER tethered to the gp41 TM followed by a 27-residue CT fragment (MPER-TM1) produced optimal MAb binding. Critical binding residues for the three Nt MAbs were identified using a panel of 24 MPER-TM1 mutants bearing single amino acid substitutions in the MPER; many were previously shown to affect MAb-mediated viral neutralization. Moreover, non-Nt mutants of MAbs 2F5 and 4E10 exhibited a reduction in binding to MPER-TM1 and yet maintained binding to synthetic MPER peptides, indicating that MPER-TM1 better approximates the MPER NCS than peptides. Replacement of the gp41 TM and CT of MPER-TM1 with the PDGFR TM reduced binding by MAb 4E10, but not 2F5, indicating that the gp41 TM plays a pivotal role in orienting the 4E10 epitope, and more globally, in affecting MPER exposure. PMID:22238313

  19. Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins

    PubMed Central

    de Val, Natalia; Montefiori, David; Tomaras, Georgia D.; Shen, Xiaoying; Kalyuzhniy, Oleksandr; Sanders, Rogier W.; McCoy, Laura E.; Moore, John P.; Ward, Andrew B.

    2018-01-01

    Inducing broad spectrum neutralizing antibodies against challenging pathogens such as HIV-1 is a major vaccine design goal, but may be hindered by conformational instability within viral envelope glycoproteins (Env). Chemical cross-linking is widely used for vaccine antigen stabilization, but how this process affects structure, antigenicity and immunogenicity is poorly understood and its use remains entirely empirical. We have solved the first cryo-EM structure of a cross-linked vaccine antigen. The 4.2 Å structure of HIV-1 BG505 SOSIP soluble recombinant Env in complex with a CD4 binding site-specific broadly neutralizing antibody (bNAb) Fab fragment reveals how cross-linking affects key properties of the trimer. We observed density corresponding to highly specific glutaraldehyde (GLA) cross-links between gp120 monomers at the trimer apex and between gp120 and gp41 at the trimer interface that had strikingly little impact on overall trimer conformation, but critically enhanced trimer stability and improved Env antigenicity. Cross-links were also observed within gp120 at sites associated with the N241/N289 glycan hole that locally modified trimer antigenicity. In immunogenicity studies, the neutralizing antibody response to cross-linked trimers showed modest but significantly greater breadth against a global panel of difficult-to-neutralize Tier-2 heterologous viruses. Moreover, the specificity of autologous Tier-2 neutralization was modified away from the N241/N289 glycan hole, implying a novel specificity. Finally, we have investigated for the first time T helper cell responses to next-generation soluble trimers, and report on vaccine-relevant immunodominant responses to epitopes within BG505 that are modified by cross-linking. Elucidation of the structural correlates of a cross-linked viral glycoprotein will allow more rational use of this methodology for vaccine design, and reveals a strategy with promise for eliciting neutralizing antibodies needed for an effective HIV-1 vaccine. PMID:29746590

  20. Neural abnormalities in early-onset and adolescence-onset conduct disorder.

    PubMed

    Passamonti, Luca; Fairchild, Graeme; Goodyer, Ian M; Hurford, Georgina; Hagan, Cindy C; Rowe, James B; Calder, Andrew J

    2010-07-01

    Conduct disorder (CD) is characterized by severe antisocial behavior that emerges in childhood (early-onset CD [EO-CD]) or adolescence (adolescence-onset CD [AO-CD]). Early-onset CD is proposed to have a neurodevelopmental basis, whereas AO-CD is thought to emerge owing to social mimicry of deviant peers. However, this developmental taxonomic theory is debated after reports of neuropsychological impairments in both CD subtypes. A critical, although unaddressed, issue is whether these subtypes present similar or distinct neurophysiological profiles. Hence, we investigated neurophysiological responses to emotional and neutral faces in regions associated with antisocial behavior (ie, the amygdala, ventromedial prefrontal cortex, insula, and orbitofrontal cortex) in individuals with EO-CD and AO-CD and in healthy control subjects. To investigate whether EO-CD and AO-CD subjects show neurophysiological abnormalities. Case-control study. Government research institute, university department. Seventy-five male adolescents and young adults aged 16 to 21 years, including 27 with EO-CD, 25 with AO-CD, and 23 healthy controls. Main Outcome Measure Neural activations measured by functional magnetic resonance imaging while participants viewed angry, sad, and neutral faces. Comparing angry vs neutral faces, participants with both CD subtypes displayed reduced responses in regions associated with antisocial behavior compared with controls; differences between the CD subtypes were not significant. Comparing each expression with fixation baseline revealed an abnormal (increased) amygdala response to neutral but not angry faces in both groups of CD relative to controls. For sad vs neutral faces, reduced amygdala activation was observed in EO-CD relative to AO-CD and control participants. Comparing each expression with fixation revealed hypoactive amygdala responses to sadness in individuals with EO-CD relative to AO-CD participants and controls. These findings were not accounted for by attention-deficit/hyperactivity disorder symptoms. Neurophysiological abnormalities are observed in both CD subtypes, contrary to the developmental taxonomic theory of CD. Additional amygdala hypofunction in relation to sad expressions might indicate why EO-CD is more severe and persistent than AO-CD.

  1. Patterns of binding of aluminum-containing adjuvants to Haemophilus influenzae type b and meningococcal group C conjugate vaccines and components.

    PubMed

    Otto, Robert B D; Burkin, Karena; Amir, Saba Erum; Crane, Dennis T; Bolgiano, Barbara

    2015-09-01

    The basis of Haemophilus influenzae type b (Hib) and Neisseria meningitidis serogroup C (MenC) glycoconjugates binding to aluminum-containing adjuvants was studied. By measuring the amount of polysaccharide and protein in the non-adsorbed supernatant, the adjuvant, aluminum phosphate, AlPO4, was found to be less efficient than aluminum hydroxide, Al(OH)3 at binding to the conjugates, at concentrations relevant to licensed vaccine formulations and when equimolar. At neutral pH, binding of TT conjugates to AlPO4 was facilitated through the carrier protein, with only weak binding of AlPO4 to CRM197 being observed. There was slightly higher binding of either adjuvant to tetanus toxoid conjugates, than to CRM197 conjugates. This was verified in AlPO4 formulations containing DTwP-Hib, where the adsorption of TT-conjugated Hib was higher than CRM197-conjugated Hib. At neutral pH, the anionic Hib and MenC polysaccharides did not appreciably bind to AlPO4, but did bind to Al(OH)3, due to electrostatic interactions. Phosphate ions reduced the binding of the conjugates to the adjuvants. These patterns of adjuvant adsorption can form the basis for future formulation studies with individual and combination vaccines containing saccharide-protein conjugates. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. Measurement of monomolecular binding constants of neutral phenols into the beta-cyclodextrin by continuous frontal analysis in capillary and microchip electrophoresis via a competitive assay.

    PubMed

    Le Saux, Thomas; Hisamoto, Hideaki; Terabe, Shigeru

    2006-02-03

    Measurement of binding constant by chip electrophoresis is a very promising technique for the high throughput screening of non-covalent interactions. Among the different electrophoretic methods available that yield the binding parameters, continuous frontal analysis is the most appropriate for a transposition from capillary electrophoresis (CE) to microchip electrophoresis. Implementation of this methodology in microchip was exemplified by the measurement of inclusion constants of 2-naphtalenesulfonate and neutral phenols (phenol, 4-chlorophenol and 4-nitrophenol) into beta-cyclodextrin by competitive assays. The issue of competitor choice is discussed in relation to its appropriateness for proper monitoring of the interaction.

  3. The PBX1 lupus susceptibility gene regulates CD44 expression

    PubMed Central

    Niu, Yuxin; Sengupta, Mayami; Titov, Anton A.; Choi, Seung-Chul; Morel, Laurence

    2017-01-01

    PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4+ T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and show that the lupus-associated isoform PBX1-d has unique molecular functions. PMID:28257976

  4. Thymic pathogenicity of an HIV-1 envelope is associated with increased CXCR4 binding efficiency and V5-gp41-dependent activity, but not V1/V2-associated CD4 binding efficiency and viral entry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meissner, Eric G.; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599; Coffield, Vernon M.

    2005-06-05

    We previously described a thymus-tropic HIV-1 envelope (R3A Env) from a rapid progressor obtained at the time of transmission. An HIV-1 molecular recombinant with the R3A Env supported extensive replication and pathogenesis in the thymus and did not require Nef. Another Env from the same patient did not display the same thymus-tropic pathogenesis (R3B Env). Here, we show that relative to R3B Env, R3A Env enhances viral entry of T cells, increases fusion-induced cytopathicity, and shows elevated binding efficiency for both CD4 and CXCR4, but not CCR5, in vitro. We created chimeric envelopes to determine the region(s) responsible for eachmore » in vitro phenotype and for thymic pathogenesis. Surprisingly, while V1/V2 contributed to enhanced viral entry, CD4 binding efficiency, and cytopathicity in vitro, it made no contribution to thymic pathogenesis. Rather, CXCR4 binding efficiency and V5-gp41-associated activity appear to independently contribute to thymic pathogenesis of the R3A Env. These data highlight the contribution of unique HIV pathogenic factors in the thymic microenvironment and suggest that novel mechanisms may be involved in Env pathogenic activity in vivo.« less

  5. β1,4-galactosyltransferase 1 is a novel receptor for IgA in human mesangial cells.

    PubMed

    Molyneux, Karen; Wimbury, David; Pawluczyk, Izabella; Muto, Masahiro; Bhachu, Jasraj; Mertens, Peter R; Feehally, John; Barratt, Jonathan

    2017-12-01

    IgA nephropathy is characterized by mesangial deposition of IgA, mesangial cell proliferation, and extracellular matrix production. Mesangial cells bind IgA, but the identity of all potential receptors involved remains incomplete. The transferrin receptor (CD71) acts as a mesangial cell IgA receptor and its expression is upregulated in many forms of glomerulonephritis, including IgA nephropathy. CD71 is not expressed in healthy glomeruli and blocking CD71 does not completely abrogate mesangial cell IgA binding. Previously we showed that mesangial cells express a receptor that binds the Fc portion of IgA and now report that this receptor is an isoform of β-1,4-galactosyltransferase. A human mesangial cell cDNA library was screened for IgA binding proteins and β-1,4-galactosyltransferase identified. Cell surface expression of the long isoform of β-1,4-galactosyltransferase was shown by flow cytometry and confocal microscopy and confirmed by immunoblotting. Glomerular β-1,4-galactosyltransferase expression was increased in IgA nephropathy. IgA binding and IgA-induced mesangial cell phosphorylation of spleen tyrosine kinase and IL-6 synthesis were inhibited by a panel of β-1,4-galactosyltransferase-specific antibodies, suggesting IgA binds to the catalytic domain of β-1,4-galactosyltransferase. Thus, β-1,4-galactosyltransferase is a constitutively expressed mesangial cell IgA receptor with an important role in both mesangial IgA clearance and the initial response to IgA deposition. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  6. Strength of Neisseria meningitidis binding to endothelial cells requires highly-ordered CD147/β2-adrenoceptor clusters assembled by alpha-actinin-4

    PubMed Central

    Maïssa, Nawal; Covarelli, Valentina; Janel, Sébastien; Durel, Beatrice; Simpson, Nandi; Bernard, Sandra C.; Pardo-Lopez, Liliana; Bouzinba-Ségard, Haniaa; Faure, Camille; Scott, Mark G.H.; Coureuil, Mathieu; Morand, Philippe C.; Lafont, Frank; Nassif, Xavier; Marullo, Stefano; Bourdoulous, Sandrine

    2017-01-01

    Neisseria meningitidis (meningococcus) is an invasive bacterial pathogen that colonizes human vessels, causing thrombotic lesions and meningitis. Establishment of tight interactions with endothelial cells is crucial for meningococci to resist haemodynamic forces. Two endothelial receptors, CD147 and the β2-adrenergic receptor (β2AR), are sequentially engaged by meningococci to adhere and promote signalling events leading to vascular colonization, but their spatiotemporal coordination is unknown. Here we report that CD147 and β2AR form constitutive hetero-oligomeric complexes. The scaffolding protein α-actinin-4 directly binds to the cytosolic tail of CD147 and governs the assembly of CD147–β2AR complexes in highly ordered clusters at bacterial adhesion sites. This multimolecular assembly process increases the binding strength of meningococci to endothelial cells under shear stress, and creates molecular platforms for the elongation of membrane protrusions surrounding adherent bacteria. Thus, the specific organization of cellular receptors has major impacts on host–pathogen interaction. PMID:28569760

  7. EtpE Binding to DNase X Induces Ehrlichial Entry via CD147 and hnRNP-K Recruitment, Followed by Mobilization of N-WASP and Actin.

    PubMed

    Mohan Kumar, Dipu; Lin, Mingqun; Xiong, Qingming; Webber, Mathew James; Kural, Comert; Rikihisa, Yasuko

    2015-11-03

    Obligate intracellular bacteria, such as Ehrlichia chaffeensis, perish unless they can enter eukaryotic cells. E. chaffeensis is the etiological agent of human monocytic ehrlichiosis, an emerging infectious disease. To infect cells, Ehrlichia uses the C terminus of the outer membrane invasin entry-triggering protein (EtpE) of Ehrlichia (EtpE-C), which directly binds the mammalian cell surface glycosylphosphatidyl inositol-anchored protein, DNase X. How this binding drives Ehrlichia entry is unknown. Here, using affinity pulldown of host cell lysates with recombinant EtpE-C (rEtpE-C), we identified two new human proteins that interact with EtpE-C: CD147 and heterogeneous nuclear ribonucleoprotein K (hnRNP-K). The interaction of CD147 with rEtpE-C was validated by far-Western blotting and coimmunoprecipitation of native EtpE with endogenous CD147. CD147 was ubiquitous on the cell surface and also present around foci of rEtpE-C-coated-bead entry. Functional neutralization of surface-exposed CD147 with a specific antibody inhibited Ehrlichia internalization and infection but not binding. Downregulation of CD147 by short hairpin RNA (shRNA) impaired E. chaffeensis infection. Functional ablation of cytoplasmic hnRNP-K by a nanoscale intracellular antibody markedly attenuated bacterial entry and infection but not binding. EtpE-C also interacted with neuronal Wiskott-Aldrich syndrome protein (N-WASP), which is activated by hnRNP-K. Wiskostatin, which inhibits N-WASP activation, and cytochalasin D, which inhibits actin polymerization, inhibited Ehrlichia entry. Upon incubation with host cell lysate, EtpE-C but not an EtpE N-terminal fragment stimulated in vitro actin polymerization in an N-WASP- and DNase X-dependent manner. Time-lapse video images revealed N-WASP recruitment at EtpE-C-coated bead entry foci. Thus, EtpE-C binding to DNase X drives Ehrlichia entry by engaging CD147 and hnRNP-K and activating N-WASP-dependent actin polymerization. Ehrlichia chaffeensis, an obligate intracellular bacterium, causes a blood-borne disease called human monocytic ehrlichiosis, one of the most prevalent life-threatening emerging tick-transmitted infectious diseases in the United States. The survival of Ehrlichia bacteria, and hence, their ability to cause disease, depends on their specific mode of entry into eukaryotic host cells. Understanding the mechanism by which E. chaffeensis enters cells will create new opportunities for developing effective therapies to prevent bacterial entry and disease in humans. Our findings reveal a novel cellular signaling pathway triggered by an ehrlichial surface protein called EtpE to induce its infectious entry. The results are also important from the viewpoint of human cell physiology because three EtpE-interacting human proteins, DNase X, CD147, and hnRNP-K, are hitherto unknown partners that drive the uptake of small particles, including bacteria, into human cells. Copyright © 2015 Mohan Kumar et al.

  8. [Changes of monocyte and monocyte-platelet aggregates in different subgroups of thrombotic events in patients with acute myocardial infarction during PCI].

    PubMed

    Wang, Sheng; Sun, Cuifang; Liao, Wang; Wu, Zhongwei; Wang, Yudai; Huang, Xiuxian; Lu, Sijia; Dong, Xiaoli; Shuai, Fujie; Li, Bin

    2017-07-01

    Objective To investigate the impact of thrombotic events on the alterations of monocyte and monocyte-platelet aggregates (MPAs) in patients with acute myocardial infarction (AMI) during percutaneous coronary intervention (PCI). Methods Blood was collected before PCI for flow cytometry. Monocyte subsets and MPAs were detected by four-color platform (CDl4-APC, CDl6-PE-Cy7, CD86-PE and CD41-Alexa Fluor R 488). According to the expression of the platelet surface marker CD41, the number of monocyte subsets and MPAs was analyzed using the fluorescent microspheres of absolute counting tube. The Wilcoxon rank sum test and receiver operating characteristic (ROC) curve analysis were performed. Results CD14 + CD16 ++ monocytes in intraprocedural thrombotic events (IPTE) group were significantly fewer than those in non-IPTE group, and the percentage in total mononuclear cells decreased. Compared with non-IPTE group, MPA binding ratio and monocyte subset MPA binding ratio were significantly higher in IPTE group. ROC analysis showed that MPA binding ratio and subgroup MPA binding ratio had a better predictive value for IPTE in patients with AMI. Conclusion The CD14 + CD16 ++ monocytes in IPTE group were significantly fewer than those in the non-IPTE group. MPA binding ratio and MPA binding ratio of monocyte subsets were significantly higher in the IPTE group than in the non-IPTE group, so they have a good predictive value for IPTE in patients with AMI.

  9. Prime, Shock, and Kill: Priming CD4 T Cells from HIV Patients with a BCL-2 Antagonist before HIV Reactivation Reduces HIV Reservoir Size

    PubMed Central

    Cummins, Nathan W.; Sainski, Amy M.; Dai, Haiming; Natesampillai, Sekar; Pang, Yuan-Ping; Bren, Gary D.; de Araujo Correia, Maria Cristina Miranda; Sampath, Rahul; Rizza, Stacey A.; O'Brien, Daniel; Yao, Joseph D.

    2016-01-01

    ABSTRACT Understanding how some HIV-infected cells resist the cytotoxicity of HIV replication is crucial to enabling HIV cure efforts. HIV killing of CD4 T cells that replicate HIV can involve HIV protease-mediated cleavage of procaspase 8 to generate a fragment (Casp8p41) that directly binds and activates the mitochondrial proapoptotic protein BAK. Here, we demonstrate that Casp8p41 also binds with nanomolar affinity to the antiapoptotic protein Bcl-2, which sequesters Casp8p41 and prevents apoptosis. Further, we show that central memory CD4 T cells (TCM) from HIV-infected individuals have heightened expression of BCL-2 relative to procaspase 8, possibly explaining the persistence of HIV-infected TCM despite generation of Casp8p41. Consistent with this hypothesis, the selective BCL-2 antagonist venetoclax induced minimal killing of uninfected CD4 T cells but markedly increased the death of CD4 T cells and diminished cell-associated HIV DNA when CD4 T cells from antiretroviral therapy (ART)-suppressed HIV patients were induced with αCD3/αCD28 to reactivate HIV ex vivo. Thus, priming CD4 T cells from ART suppressed HIV patients with a BCL-2 antagonist, followed by HIV reactivation, achieves reductions in cell-associated HIV DNA, whereas HIV reactivation alone does not. IMPORTANCE HIV infection is incurable due to a long-lived reservoir of HIV+ memory CD4 T cells, and no clinically relevant interventions have been identified that reduce the number of these HIV DNA-containing cells. Since postintegration HIV replication can result in HIV protease generation of Casp8p41, which activates BAK, causing infected CD4 T cell death, we sought to determine whether this occurs in memory CD4 T cells. Here, we demonstrate that memory CD4 T cells can generate Casp8p41 and yet are intrinsically resistant to death induced by diverse stimuli, including Casp8p41. Furthermore, BCL-2 expression is relatively increased in these cells and directly binds and inhibits Casp8p41's proapoptotic effects. Antagonizing BCL-2 with venetoclax derepresses this antagonism, resulting in death, preferentially in HIV DNA containing cells, since only these cells generate Casp8p41. Thus, BCL-2 antagonism is a clinically relevant intervention with the potential to reduce HIV reservoir size in patients. PMID:26842479

  10. Mechanism of human antibody-mediated neutralization of Marburg virus.

    PubMed

    Flyak, Andrew I; Ilinykh, Philipp A; Murin, Charles D; Garron, Tania; Shen, Xiaoli; Fusco, Marnie L; Hashiguchi, Takao; Bornholdt, Zachary A; Slaughter, James C; Sapparapu, Gopal; Klages, Curtis; Ksiazek, Thomas G; Ward, Andrew B; Saphire, Erica Ollmann; Bukreyev, Alexander; Crowe, James E

    2015-02-26

    The mechanisms by which neutralizing antibodies inhibit Marburg virus (MARV) are not known. We isolated a panel of neutralizing antibodies from a human MARV survivor that bind to MARV glycoprotein (GP) and compete for binding to a single major antigenic site. Remarkably, several of the antibodies also bind to Ebola virus (EBOV) GP. Single-particle EM structures of antibody-GP complexes reveal that all of the neutralizing antibodies bind to MARV GP at or near the predicted region of the receptor-binding site. The presence of the glycan cap or mucin-like domain blocks binding of neutralizing antibodies to EBOV GP, but not to MARV GP. The data suggest that MARV-neutralizing antibodies inhibit virus by binding to infectious virions at the exposed MARV receptor-binding site, revealing a mechanism of filovirus inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. CD19+CD24hiCD38hiBregs involved in downregulate helper T cells and upregulate regulatory T cells in gastric cancer

    PubMed Central

    Wang, Weiwei; Yuan, Xiangliang; Chen, Hui; Xie, Guohua; Ma, Yanhui; Zheng, Yingxia; Zhou, Yunlan; Shen, Lisong

    2015-01-01

    Regulatory B cells (Bregs) play a critical role in inflammation and autoimmune disease. We characterized the role of Bregs in the progression of gastric cancer. We detected an increase in Bregs producing IL-10 both in peripheral blood mononuclear cells (PBMCs) and in gastric tumors. Multicolor flow cytometry analysis revealed that a subset of CD19+CD24hiCD38hi B cells produces IL-10. Functional studies indicated that increased Bregs do not inhibit the proliferation of CD3+T cells or CD4+ helper T cells (Th cells). However, Bregs do suppress the secretion of IFN-γ and TNF-α by CD4+Th cells. CD19+CD24hiCD38hiBregs were also found to correlate positively with CD4+FoxP3+ regulatory T cells (Tregs). Neutralization experiments showed that Bregs convert CD4+CD25− effector T cells to CD4+FoxP3+Tregs via TGF-β1. Collectively, these findings demonstrate that increased Bregs play a immunosuppressive role in gastric cancer by inhibiting T cells cytokines as well as conversion to Tregs. These results may provide new clues about the underlying mechanisms of immune escape in gastric cancer. PMID:26378021

  12. Characterization of binding affinity of CJ-023,423 for human prostanoid EP4 receptor.

    PubMed

    Murase, Akio; Nakao, Kazunari; Takada, Junji

    2008-01-01

    In order to characterize the receptor binding pharmacology of CJ-023,423, a potent and selective EP4 antagonist, we performed a radioligand receptor binding assay under various assay conditions. An acidic (pH 6) and hypotonic buffer is a conventional, well-known buffer for prostaglandin E2 receptor binding assays. CJ-023,423 showed moderate binding affinity for human EP4 receptor under conventional buffer conditions. However, its binding affinity was greatly increased under neutral (pH 7.4) and isotonic buffer conditions. In this report, the binding mechanism between CJ-023,423 and human EP4 receptor is discussed based on the binding affinities determined under various assay conditions. Copyright 2008 S. Karger AG, Basel.

  13. Human milk glycoconjugates that inhibit pathogens.

    PubMed

    Newburg, D S

    1999-02-01

    Breast-fed infants have lower incidence of diarrhea, respiratory disease, and otitis media. The protection by human milk has long been attributed to the presence of secretory IgA. However, human milk contains large numbers and amounts of complex carbohydrates, including glycoproteins, glycolipids, glycosaminoglycans, mucins, and especially oligosaccharides. The oligosaccharides comprise the third most abundant solid constituent of human milk, and contain a myriad of structures. Complex carbohydrate moieties of glycoconjugates and oligosaccharides are synthesized by the many glycosyltransferases in the mammary gland; those with homology to cell surface glycoconjugate pathogen receptors may inhibit pathogen binding, thereby protecting the nursing infant. Several examples are reviewed: A fucosyloligosaccharide inhibits the diarrheagenic effect of stable toxin of Escherichia coli. A different fucosyloligosaccharide inhibits infection by Campylobacter jejuni. Binding of Streptococcus pneumoniae and of enteropathogenic E. coli to their respective receptors is inhibited by human milk oligosaccharides. The 46-kD glycoprotein, lactadherin, inhibits rotavirus binding and infectivity. Low levels of lactadherin in human milk are associated with a higher incidence of symptomatic rotavirus in breast-fed infants. A mannosylated glycopeptide inhibits binding by enterohemorrhagic E. coli. A glycosaminoglycan inhibits binding of gp120 to CD4, the first step in HIV infection. Human milk mucin inhibits binding by S-fimbriated E. coli. The ganglioside, GM1, reduces diarrhea production by cholera toxin and labile toxin of E. coli. The neutral glycosphingolipid, Gb3, binds to Shigatoxin. Thus, many complex carbohydrates of human milk may be novel antipathogenic agents, and the milk glycoconjugates and oligosaccharides may be a major source of protection for breastfeeding infants.

  14. Phosphatidylinositol 4,5-Bisphosphate Clusters the Cell Adhesion Molecule CD44 and Assembles a Specific CD44-Ezrin Heterocomplex, as Revealed by Small Angle Neutron Scattering

    DOE PAGES

    Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K.; ...

    2015-01-08

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin, which links the CD44 assembled receptor signaling complexes to the cytoskeletal actin and organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered and adopts an autoinhibited conformation, which prevents CD44ct from binding directly to activated Ezrin in solution. Binding to the signaling lipid phosphatidylinositol 4,5-biphosphlate (PIP2) disrupts autoinhibition in CD44ct, and activates CD44ct to associate with Ezrin.more » Further, using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific hetero-tetramer complex of CD44ct with Ezrin. This study reveals a novel autoregulation mechanism in the cytoplasmic tail of CD44 and the role of PIP2 in mediating the assembly of multimeric CD44ct-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of multimeric PIP2-CD44-Ezrin complexes.« less

  15. Exploring 3D structural influences of aliphatic and aromatic chemicals on α-cyclodextrin binding.

    PubMed

    Linden, Lukas; Goss, Kai-Uwe; Endo, Satoshi

    2016-04-15

    Binding of solutes to macromolecules is often influenced by steric effects caused by the 3D structures of both binding partners. In this study, the 1:1 α-cyclodextrin (αCD) binding constants (Ka1) for 70 organic chemicals were determined to explore the solute-structural effects on the αCD binding. Ka1 was measured using a three-part partitioning system with either a headspace or a passive sampler serving as the reference phase. The Ka1 values ranged from 1.08 to 4.97 log units. The results show that longer linear aliphatic chemicals form more stable complexes than shorter ones, and that the position of the functional group has a strong influence on Ka1, even stronger than the type of the functional group. Comparison of linear and variously branched aliphatic chemicals indicates that having a sterically unhindered alkyl chain is favorable for binding. These results suggest that only one alkyl chain can enter the binding cavity. Relatively small aromatic chemicals such as 1,3-dichlorobenzene bind to αCD well, while larger ones like tetrachlorobenzene and 3-ring aromatic chemicals show only a weak interaction with αCD, which can be explained by cavity exclusion. The findings of this study help interpret cyclodextrin binding data and facilitate the understanding of binding processes to macromolecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. pH-induced conformational change of the rotavirus VP4 spike: implications for cell entry and antibody neutralization.

    PubMed

    Pesavento, Joseph B; Crawford, Sue E; Roberts, Ed; Estes, Mary K; Prasad, B V Venkataram

    2005-07-01

    The rotavirus spike protein, VP4, is a major determinant of infectivity and neutralization. Previously, we have shown that trypsin-enhanced infectivity of rotavirus involves a transformation of the VP4 spike from a flexible to a rigid bilobed structure. Here we show that at elevated pH the spike undergoes a drastic, irreversible conformational change and becomes stunted, with a pronounced trilobed appearance. These particles with altered spikes, at a normal pH of 7.5, despite the loss of infectivity and the ability to hemagglutinate, surprisingly exhibit sialic acid (SA)-independent cell binding in contrast to the SA-dependent cell binding exhibited by native virions. Remarkably, a neutralizing monoclonal antibody that remains bound to spikes throughout the pH changes (pH 7 to 11 and back to pH 7) completely prevents this conformational change, preserving the SA-dependent cell binding and hemagglutinating functions of the virion. A hypothesis that emerges from the present study is that high-pH treatment triggers a conformational change that mimics a post-SA-attachment step to expose an epitope recognized by a downstream receptor in the rotavirus cell entry process. This process involves sequential interactions with multiple receptors, and the mechanism by which the antibody neutralizes is by preventing this conformational change.

  17. Analysis of the Human Immunodeficiency Virus Type 1 gp41 Membrane Proximal External Region Arrayed on Hepatitis B Surface Antigen Particles

    PubMed Central

    Phogat, S; K, Svehla; M, Tang; A, Spadaccini; J, Muller; J, Mascola; Berkower; R, Wyatt

    2009-01-01

    Vaccine immunogens derived from the envelope glycoproteins of the human immunodeficiency virus type 1 (HIV-1) that elicit broad neutralizing antibodies remains an elusive goal. The highly conserved 30 amino acid membrane proximal external region (MPER) of HIV gp41 contains the hydrophobic epitopes for two rare HIV-1 broad cross-reactive neutralizing antibodies, 2F5 and 4E10. Both these antibodies possess relatively hydrophobic HCDR3 loops and demonstrate enhanced binding to their epitopes in the context of the native gp160 precursor envelope glycoprotein by the intimate juxtaposition of a lipid membrane. The Hepatitis B surface antigen (HBsAg) S1 protein forms nanoparticles that can be utilized both as an immunogenic array of the MPER and to provide the lipid environment needed for enhanced 2F5 and 4E10 binding. We show that recombinant HBsAg particles with MPER (HBsAg-MPER) appended at the C-terminus of the S1 protein are recognized by 2F5 and 4E10 with high affinity compared to positioning the MPER at the N-terminus or the extracellular loop (ECL) of S1. Addition of C-terminal hydrophobic residues derived from the HIV-1 Env transmembrane region further enhances recognition of the MPER by both 2F5 and 4E10. Delipidation of the HBsAg-MPER particles decreases 2F5 and 4E10 binding and subsequent reconstitution with synthetic lipids restores optimal binding. Inoculation of the particles into small animals raised cross-reactive antibodies that recognize both the MPER and HIV-1 gp160 envelope glycoproteins expressed on the cell surface; however, no neutralizing activity could be detected. Prime:boost immunization of the HBsAg-MPER particles in sequence with HIV envelope glycoprotein proteoliposomes (Env-PLs) did not raise neutralizing antibodies that could be mapped to the MPER region. However, the Env-PLs did raise anti-Env antibodies that had the ability to neutralize selected HIV-1 isolates. The first generation HBsAg-MPER particles represent a unique means to present HIV-1 envelope glycoprotein neutralizing determinants to the immune system. PMID:18155743

  18. Cleavage-Independent HIV-1 Trimers From CHO Cell Lines Elicit Robust Autologous Tier 2 Neutralizing Antibodies

    PubMed Central

    Bale, Shridhar; Martiné, Alexandra; Wilson, Richard; Behrens, Anna-Janina; Le Fourn, Valérie; de Val, Natalia; Sharma, Shailendra K.; Tran, Karen; Torres, Jonathan L.; Girod, Pierre-Alain; Ward, Andrew B.; Crispin, Max; Wyatt, Richard T.

    2018-01-01

    Native flexibly linked (NFL) HIV-1 envelope glycoprotein (Env) trimers are cleavage-independent and display a native-like, well-folded conformation that preferentially displays broadly neutralizing determinants. The NFL platform simplifies large-scale production of Env by eliminating the need to co-transfect the precursor-cleaving protease, furin that is required by the cleavage-dependent SOSIP trimers. Here, we report the development of a CHO-M cell line that expressed BG505 NFL trimers at a high level of homogeneity and yields of ~1.8 g/l. BG505 NFL trimers purified by single-step lectin-affinity chromatography displayed a native-like closed structure, efficient recognition by trimer-preferring bNAbs, no recognition by non-neutralizing CD4 binding site-directed and V3-directed antibodies, long-term stability, and proper N-glycan processing. Following negative-selection, formulation in ISCOMATRIX adjuvant and inoculation into rabbits, the trimers rapidly elicited potent autologous tier 2 neutralizing antibodies. These antibodies targeted the N-glycan “hole” naturally present on the BG505 Env proximal to residues at positions 230, 241, and 289. The BG505 NFL trimers that did not expose V3 in vitro, elicited low-to-no tier 1 virus neutralization in vivo, indicating that they remained intact during the immunization process, not exposing V3. In addition, BG505 NFL and BG505 SOSIP trimers expressed from 293F cells, when formulated in Adjuplex adjuvant, elicited equivalent BG505 tier 2 autologous neutralizing titers. These titers were lower in potency when compared to the titers elicited by CHO-M cell derived trimers. In addition, increased neutralization of tier 1 viruses was detected. Taken together, these data indicate that both adjuvant and cell-type expression can affect the elicitation of tier 2 and tier 1 neutralizing responses in vivo.

  19. Germline-encoded neutralization of a Staphylococcus aureus virulence factor by the human antibody repertoire.

    PubMed

    Yeung, Yik Andy; Foletti, Davide; Deng, Xiaodi; Abdiche, Yasmina; Strop, Pavel; Glanville, Jacob; Pitts, Steven; Lindquist, Kevin; Sundar, Purnima D; Sirota, Marina; Hasa-Moreno, Adela; Pham, Amber; Melton Witt, Jody; Ni, Irene; Pons, Jaume; Shelton, David; Rajpal, Arvind; Chaparro-Riggers, Javier

    2016-11-18

    Staphylococcus aureus is both an important pathogen and a human commensal. To explore this ambivalent relationship between host and microbe, we analysed the memory humoral response against IsdB, a protein involved in iron acquisition, in four healthy donors. Here we show that in all donors a heavily biased use of two immunoglobulin heavy chain germlines generated high affinity (pM) antibodies that neutralize the two IsdB NEAT domains, IGHV4-39 for NEAT1 and IGHV1-69 for NEAT2. In contrast to the typical antibody/antigen interactions, the binding is primarily driven by the germline-encoded hydrophobic CDRH-2 motifs of IGHV1-69 and IGHV4-39, with a binding mechanism nearly identical for each antibody derived from different donors. Our results suggest that IGHV1-69 and IGHV4-39, while part of the adaptive immune system, may have evolved under selection pressure to encode a binding motif innately capable of recognizing and neutralizing a structurally conserved protein domain involved in pathogen iron acquisition.

  20. The Cytoplasmic Tail of the T Cell Receptor CD3 ε Subunit Contains a Phospholipid-Binding Motif that Regulates T Cell Functions1

    PubMed Central

    DeFord-Watts, Laura M.; Tassin, Tara C.; Becker, Amy M.; Medeiros, Jennifer J.; Albanesi, Joseph P.; Love, Paul E.; Wülfing, Christoph; van Oers, Nicolai S. C.

    2010-01-01

    The CD3 ε subunit of the TCR complex contains two defined signaling domains, a proline-rich sequence and an ITAM. We identified a third signaling sequence in CD3 ε, termed the basic-rich stretch (BRS). Herein, we show that the positively charged residues of the BRS enable this region of CD3 ε to complex a subset of acidic phospholipids, including PI(3)P, PI(4)P, PI(5)P, PI(3,4,5)P3, and PI(4,5)P2. Transgenic mice containing mutations of the BRS exhibited varying developmental defects, ranging from reduced thymic cellularity to a complete block in T cell development. Peripheral T cells from BRS-modified mice also exhibited several defects, including decreased TCR surface expression, reduced TCR-mediated signaling responses to agonist peptide-loaded APCs, and delayed CD3 ε localization to the immunological synapse. Overall, these findings demonstrate a functional role for the CD3 ε lipid-binding domain in T cell biology. PMID:19542373

  1. Differential cellular internalization of anti-CD19 and -CD22 immunotoxins results in different cytotoxic activity.

    PubMed

    Du, Xing; Beers, Richard; Fitzgerald, David J; Pastan, Ira

    2008-08-01

    B-cell malignancies routinely express surface antigens CD19 and CD22. Immunotoxins against both antigens have been evaluated, and the immunotoxins targeting CD22 are more active. To understand this disparity in cytotoxicity and guide the screening of therapeutic targets, we compared two immunotoxins, FMC63(Fv)-PE38-targeting CD19 and RFB4(Fv)-PE38 (BL22)-targeting CD22. Six lymphoma cell lines have 4- to 9-fold more binding sites per cell for CD19 than for CD22, but BL22 is 4- to 140-fold more active than FMC63(Fv)-PE38, although they have a similar cell binding affinity (Kd, approximately 7 nmol/L). In 1 hour, large amounts of BL22 are internalized (2- to 3-fold more than the number of CD22 molecules on the cell surface), whereas only 5.2% to 16.6% of surface-bound FMC63(Fv)-PE38 is internalized. The intracellular reservoir of CD22 decreases greatly after immunotoxin internalization, indicating that it contributes to the uptake of BL22. Treatment of cells with cycloheximide does not reduce the internalization of BL22. Both internalized immunotoxins are located in the same vesicles. Our results show that the rapid internalization of large amounts of BL22 bound to CD22 makes CD22 a better therapeutic target than CD19 for immunotoxins and probably for other immunoconjugates that act inside cells.

  2. Specific targeting to B cells by lipid-based nanoparticles conjugated with a novel CD22-ScFv.

    PubMed

    Loomis, Kristin; Smith, Brandon; Feng, Yang; Garg, Himanshu; Yavlovich, Amichai; Campbell-Massa, Ryan; Dimitrov, Dimiter S; Blumenthal, Robert; Xiao, Xiaodong; Puri, Anu

    2010-04-01

    The CD22 antigen is a viable target for therapeutic intervention for B-cell lymphomas. Several therapeutic anti-CD22 antibodies as well as an anti-CD22-based immunotoxin (HA22) are currently under investigation in clinical settings. Coupling of anti-CD22 reagents with a nano-drug delivery vehicle is projected to significantly improve treatment efficacies. Therefore, we generated a mutant of the targeting segment of HA22 (a CD22 scFv) to increase its soluble expression (mut-HA22), and conjugated it to the surface of sonicated liposomes to generate immunoliposomes (mut-HA22-liposomes). We examined liposome binding and uptake by CD22(+) B-lymphocytes (BJAB) by using calcein and/or rhodamine PE-labeled liposomes. We also tested the effect of targeting on cellular toxicity with doxorubicin-loaded liposomes. We report that: (i) Binding of mut-HA22-liposomes to BJAB cells was significantly greater than liposomes not conjugated with mut-HA22 (control liposomes), and mut-HA22-liposomes bind to and are taken in by BJAB cells in a dose and temperature-dependent manner, respectively; (ii) This binding occurred via the interaction with the cellular CD22 as pre-incubation of the cells with mut-HA22 blocked subsequent liposome binding; (iii) Intracellular localization of mut-HA22-liposomes at 37 degrees C but not at 4 degrees C indicated that our targeted liposomes were taken up through an energy dependent process via receptor-mediated endocytosis; and (iv) Mut-HA22-liposomes loaded with doxorubicin exhibited at least 2-3 fold more accumulation of doxorubicin in BJAB cells as compared to control liposomes. Moreover, these liposomes showed at least a 2-4 fold enhanced killing of BJAB or Raji cells (CD22(+)), but not SUP-T1 cells (CD22(-)). Taken together these data suggest that these 2nd-generation liposomes may serve as promising carriers for targeted drug delivery to treat patients suffering from B-cell lymphoma. Published by Elsevier Inc.

  3. The Low-Cost Compound Lignosulfonic Acid (LA) Exhibits Broad-Spectrum Anti-HIV and Anti-HSV Activity and Has Potential for Microbicidal Applications

    PubMed Central

    D’huys, Thomas; Petrova, Mariya I.; Lebeer, Sarah; Snoeck, Robert; Andrei, Graciela; Schols, Dominique

    2015-01-01

    Objectives Lignosulfonic acid (LA), a low-cost lignin-derived polyanionic macromolecule, was extensively studied for its anti-HIV and anti-HSV activity in various cellular assays, its mechanism of viral inhibition and safety profile as potential microbicide. Results LA demonstrated potent inhibitory activity of HIV replication against a wide range of R5 and X4 HIV strains and prevented the uptake of HIV by bystander CD4+ T cells from persistently infected T cells in vitro (IC50: 0.07 – 0.34 μM). LA also inhibited HSV-2 replication in vitro in different cell types (IC50: 0.42 – 1.1 μM) and in rodents in vivo. Furthermore, LA neutralized the HIV-1 and HSV-2 DC-SIGN-mediated viral transfer to CD4+ T cells (IC50: ∼1 μM). In addition, dual HIV-1/HSV-2 infection in T cells was potently blocked by LA (IC50: 0.71 μM). No antiviral activity was observed against the non-enveloped viruses Coxsackie type B4 and Reovirus type 1. LA is defined as a HIV entry inhibitor since it interfered with gp120 binding to the cell surface of T cells. Pretreatment of PBMCs with LA neither increased expression levels of cellular activation markers (CD69, CD25 and HLA-DR), nor enhanced HIV-1 replication. Furthermore, we found that LA had non-antagonistic effects with acyclovir, PRO2000 or LabyA1 (combination index (CI): 0.46 – 1.03) in its anti-HSV-2 activity and synergized with tenofovir (CI: 0.59) in its anti-HIV-1 activity. To identify mechanisms of LA resistance, we generated in vitro a mutant HIV-1 NL4.3LAresistant virus, which acquired seven mutations in the HIV-1 envelope glycoproteins: S160N, V170N, Q280H and R389T in gp120 and K77Q, N113D and H132Y in gp41. Additionally, HIV-1 NL4.3LAresistant virus showed cross-resistance with feglymycin, enfuvirtide, PRO2000 and mAb b12, four well-described HIV binding/fusion inhibitors. Importantly, LA did not affect the growth of vaginal Lactobacilli strains. Conclusion Overall, these data highlight LA as a potential and unique low-cost microbicide displaying broad anti-HIV and anti-HSV activity. PMID:26132818

  4. Generation of Affibody ligands binding interleukin-2 receptor alpha/CD25.

    PubMed

    Grönwall, Caroline; Snelders, Eveline; Palm, Anna Jarelöv; Eriksson, Fredrik; Herne, Nina; Ståhl, Stefan

    2008-06-01

    Affibody molecules specific for human IL-2Ralpha, the IL-2 (interleukin-2) receptor alpha subunit, also known as CD25, were selected by phage-display technology from a combinatorial protein library based on the 58-residue Protein A-derived Z domain. The IL-2R system plays a major role in T-cell activation and the regulation of cellular immune responses. Moreover, CD25 has been found to be overexpressed in organ rejections, a number of autoimmune diseases and T-cell malignancies. The phage-display selection using Fc-fused target protein generated 16 unique Affibody molecules targeting CD25. The two most promising binders were characterized in more detail using biosensor analysis and demonstrated strong and selective binding to CD25. Kinetic biosensor analysis revealed that the two monomeric Affibody molecules bound to CD25 with apparent affinities of 130 and 240 nM respectively. The Affibody molecules were, on biosensor analysis, found to compete for the same binding site as the natural ligand IL-2 and the IL-2 blocking monoclonal antibody 2A3. Hence the Affibody molecules were assumed to have an overlapping binding site with IL-2 and antibodies targeting the IL-2 blocking Tac epitope (for example, the monoclonal antibodies Daclizumab and Basiliximab, both of which have been approved for therapeutic use). Furthermore, immunofluorescence microscopy and flow-cytometric analysis of CD25-expressing cells demonstrated that the selected Affibody molecules bound to CD4+ CD25+ PMBCs (peripheral-blood mononuclear cells), the IL-2-dependent cell line NK92 and phytohaemagglutinin-activated PMBCs. The potential use of the CD25-binding Affibody molecules as targeting agents for medical imaging and for therapeutic applications is discussed.

  5. Enhanced Detection of Antigen-Specific CD4+ T Cells Using Altered Peptide Flanking Residue Peptide–MHC Class II Multimers

    PubMed Central

    Holland, Christopher J.; Dolton, Garry; Scurr, Martin; Ladell, Kristin; Schauenburg, Andrea J.; Miners, Kelly; Madura, Florian; Sewell, Andrew K.; Price, David A.

    2015-01-01

    Fluorochrome-conjugated peptide–MHC (pMHC) class I multimers are staple components of the immunologist’s toolbox, enabling reliable quantification and analysis of Ag-specific CD8+ T cells irrespective of functional outputs. In contrast, widespread use of the equivalent pMHC class II (pMHC-II) reagents has been hindered by intrinsically weaker TCR affinities for pMHC-II, a lack of cooperative binding between the TCR and CD4 coreceptor, and a low frequency of Ag-specific CD4+ T cell populations in the peripheral blood. In this study, we show that peptide flanking regions, extending beyond the central nonamer core of MHC-II–bound peptides, can enhance TCR–pMHC-II binding and T cell activation without loss of specificity. Consistent with these findings, pMHC-II multimers incorporating peptide flanking residue modifications proved superior for the ex vivo detection, characterization, and manipulation of Ag-specific CD4+ T cells, highlighting an unappreciated feature of TCR–pMHC-II interactions. PMID:26553072

  6. Application of poly (ethyleneimine) solution as a binding agent in DGT technique for measurement of heavy metals in water.

    PubMed

    Sui, Dian-Peng; Fan, Hong-Tao; Li, Jing; Li, You; Li, Qiong; Sun, Ting

    2013-09-30

    A 0.050 mol L(-1) solution of poly (ethyleneimine) (PEI), had been used as a novel binding agent of diffusive gradients in thin-films (DGT) technique (PEI-DGT) for measuring the concentrations of labile Cu(2+), Cd(2+) and Pb(2+) in waters. The binding capacities of the PEI-DGT for Cu(2+), Cd(2+) and Pb(2+) were 11.8, 10.2 and 10.6 μmol L(-1), respectively. The performance of PEI-DGT was independence of pH in the range of 4-8 and ionic strength in the range from 1×10(-4) to 0.1 mol L(-1) (as NaNO3). PEI-DGT could measure 104.7±5.2% of the total concentration of Cd(2+) (0.500 mg L(-1)), 95.2±4.3% of the total Cu(2+) (0.500 mg L(-1)) and 99.2±3.4% of the total Pb(2+) (0.500 mg L(-1)) in synthetic solution. Effects of the ligands on the measurement of labile metals were also investigated in synthetic solutions containing the various concentrations of EDTA and humic acid. In EDTA solution, the concentrations of labile metals measured by PEI-DGT showed good agreement with the theoretical concentrations of free metal ions. In humic acid solution, the concentrations of labile metals measured by PEI-DGT decreased with the increase of the concentrations of humic acid. Several DGT devices with various binding agents, including PEI, sodium polyacrylate and poly(4-styrenesulfonate) solution, were used for the measurement of labile fractions of Cu(2+), Cd(2+) and Pb(2+) in the spiked waters and in mine wastewaters. The results showed that the concentrations of labile metal measured by DGT devices with different binding agents could be significantly different, indicating that the labile fractions of metals were dependent on the binding strength of the binding agents with metals. By choosing binding agents, the useful information on the speciation and bioavailability of the analytes can be provided. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Phagocytosis of gram-negative bacteria by a unique CD14-dependent mechanism.

    PubMed

    Schiff, D E; Kline, L; Soldau, K; Lee, J D; Pugin, J; Tobias, P S; Ulevitch, R J

    1997-12-01

    THP-1-derived cell lines were stably transfected with constructs encoding glycophosphatidylinositol (GPI)-anchored or transmembrane forms of human CD14. CD14 expression was associated with enhanced phagocytosis of serum (heat-inactivated)-opsonized Escherichia coli (opEc). Both the GPI-anchored and transmembrane forms of CD14 supported phagocytosis of opEc equally well. Lipopolysaccharide-binding protein (LBP) played a role in CD14-dependent phagocytosis as evidenced by inhibition of CD14-dependent phagocytosis of opEc with anti-LBP monoclonal antibody (mAb) and by enhanced phagocytosis of E. coli opsonized with purified LBP. CD14-dependent phagocytosis was inhibited by a phosphatidylinositol (PI) 3-kinase inhibitor (wortmannin) and a protein tyrosine kinase inhibitor (tyrphostin 23) but not a protein kinase C inhibitor (bisindolyl-maleimide) or a divalent cation chelator (ethylenediaminetetraacetate). Anti-LBP mAb 18G4 and anti-CD14 mAb 18E12 were used to differentiate between the pathways involved in CD14-dependent phagocytosis and CD14-dependent cell activation. F(ab')2 fragments of 18G4, a mAb to LBP that does not block cell activation, inhibited ingestion of opEc by THP1-wtCD14 cells. 18E12 (an anti-CD14 mAb that does not block LPS binding to CD14 but does inhibit CD14-dependent cell activation) did not inhibit phagocytosis of LBP-opEc by THP1-wtCD14 cells. Furthermore, CD14-dependent phagocytosis was not inhibited by anti-CD18 (CR3 and CR4 beta-chain) or anti-Fcgamma receptor mAb.

  8. Colorectal mucus binds DC-SIGN and inhibits HIV-1 trans-infection of CD4+ T-lymphocytes.

    PubMed

    Stax, Martijn J; Mouser, Emily E I M; van Montfort, Thijs; Sanders, Rogier W; de Vries, Henry J C; Dekker, Henk L; Herrera, Carolina; Speijer, Dave; Pollakis, Georgios; Paxton, William A

    2015-01-01

    Bodily secretions, including breast milk and semen, contain factors that modulate HIV-1 infection. Since anal intercourse caries one of the highest risks for HIV-1 transmission, our aim was to determine whether colorectal mucus (CM) also contains factors interfering with HIV-1 infection and replication. CM from a number of individuals was collected and tested for the capacity to bind DC-SIGN and inhibit HIV-1 cis- or trans-infection of CD4+ T-lymphocytes. To this end, a DC-SIGN binding ELISA, a gp140 trimer competition ELISA and HIV-1 capture/ transfer assays were utilized. Subsequently we aimed to identify the DC-SIGN binding component through biochemical characterization and mass spectrometry analysis. CM was shown to bind DC-SIGN and competes with HIV-1 gp140 trimer for binding. Pre-incubation of Raji-DC-SIGN cells or immature dendritic cells (iDCs) with CM potently inhibits DC-SIGN mediated trans-infection of CD4+ T-lymphocytes with CCR5 and CXCR4 using HIV-1 strains, while no effect on direct infection is observed. Preliminary biochemical characterization demonstrates that the component seems to be large (>100kDa), heat and proteinase K resistant, binds in a α1-3 mannose independent manner and is highly variant between individuals. Immunoprecipitation using DC-SIGN-Fc coated agarose beads followed by mass spectrometry indicated lactoferrin (fragments) and its receptor (intelectin-1) as candidates. Using ELISA we showed that lactoferrin levels within CM correlate with DC-SIGN binding capacity. In conclusion, CM can bind the C-type lectin DC-SIGN and block HIV-1 trans-infection of both CCR5 and CXCR4 using HIV-1 strains. Furthermore, our data indicate that lactoferrin is a DC-SIGN binding component of CM. These results indicate that CM has the potential to interfere with pathogen transmission and modulate immune responses at the colorectal mucosa.

  9. Effects of natalizumab treatment on Foxp3+ T regulatory cells.

    PubMed

    Stenner, Max-Philipp; Waschbisch, Anne; Buck, Dorothea; Doerck, Sebastian; Einsele, Hermann; Toyka, Klaus V; Wiendl, Heinz

    2008-10-06

    Natalizumab, a monoclonal humanized antibody targeting the alpha-4 chain of very late activation antigen 4 (VLA-4) exerts impressive therapeutic effects in patients with relapsing-remitting multiple sclerosis. Our objective was to study impacts of Natalizumab therapy on Foxp3+ T regulatory cells (Tregs) in multiple sclerosis (MS) patients. A combined approach of in vitro and ex vivo experiments using T cells isolated from the peripheral blood of healthy donors and Natalizumab treated MS patients was chosen. We determined binding of Natalizumab and its effects on the frequency, transmigratory behaviour and suppressive function of Tregs. Binding of Natalizumab and expression of CD49d (alpha-4 chain of VLA-4) differed between non-regulatory and regulatory cells. Albeit Foxp3+ Tregs had lower levels of CD49d, Natalizumab blocked the transmigration of Foxp3+ Tregs similar to non-regulatory T cells. The frequency of peripheral blood Tregs was unaffected by Natalizumab treatment. Natalizumab does not alter the suppressive capacity of CD4+CD25(high)CD127(low)Foxp3+ Tregs under in vitro conditions. Furthermore, the impaired function of Tregs in MS patients is not restored by Natalizumab treatment. We provide a first detailed analysis of Natalizumab effects on the regulatory T cell population. Our prospective study shows that Foxp3+ Tregs express lower levels of VLA-4 and bind less Natalizumab. We further the understanding of the mechanisms of action of Natalizumab by demonstrating that unlike other immunomodulatory drugs the beneficial therapeutic effects of the monoclonal antibody are largely independent of alterations in Treg frequency or function.

  10. Effects of Natalizumab Treatment on Foxp3+ T Regulatory Cells

    PubMed Central

    Buck, Dorothea; Doerck, Sebastian; Einsele, Hermann; Toyka, Klaus V.; Wiendl, Heinz

    2008-01-01

    Background Natalizumab, a monoclonal humanized antibody targeting the alpha-4 chain of very late activation antigen 4 (VLA-4) exerts impressive therapeutic effects in patients with relapsing-remitting multiple sclerosis. Our objective was to study impacts of Natalizumab therapy on Foxp3+ T regulatory cells (Tregs) in multiple sclerosis (MS) patients. Methodology A combined approach of in vitro and ex vivo experiments using T cells isolated from the peripheral blood of healthy donors and Natalizumab treated MS patients was chosen. We determined binding of Natalizumab and its effects on the frequency, transmigratory behaviour and suppressive function of Tregs. Principal Findings Binding of Natalizumab and expression of CD49d (alpha-4 chain of VLA-4) differed between non-regulatory and regulatory cells. Albeit Foxp3+ Tregs had lower levels of CD49d, Natalizumab blocked the transmigration of Foxp3+ Tregs similar to non-regulatory T cells. The frequency of peripheral blood Tregs was unaffected by Natalizumab treatment. Natalizumab does not alter the suppressive capacity of CD4+CD25highCD127lowFoxp3+ Tregs under in vitro conditions. Furthermore, the impaired function of Tregs in MS patients is not restored by Natalizumab treatment. Conclusions We provide a first detailed analysis of Natalizumab effects on the regulatory T cell population. Our prospective study shows that Foxp3+ Tregs express lower levels of VLA-4 and bind less Natalizumab. We further the understanding of the mechanisms of action of Natalizumab by demonstrating that unlike other immunomodulatory drugs the beneficial therapeutic effects of the monoclonal antibody are largely independent of alterations in Treg frequency or function. PMID:18836525

  11. Negative Factor from SIV Binds to the Catalytic Subunit of the V-ATPase to Internalize CD4 and to Increase Viral Infectivity

    PubMed Central

    Mandic, Robert; Fackler, Oliver T.; Geyer, Matthias; Linnemann, Thomas; Zheng, Yong-Hui; Peterlin, B. Matija

    2001-01-01

    The accessory protein negative factor (Nef) from human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) is required for optimal viral infectivity and the progression to acquired immunodeficiency syndrome (AIDS). Nef interacts with the endocytic machinery, resulting in the down-regulation of cluster of differentiation antigen 4 (CD4) and major histocompatibility complex class I (MHCI) molecules on the surface of infected cells. Mutations in the C-terminal flexible loop of Nef result in a lower rate of internalization by this viral protein. However, no loop-dependent binding of Nef to adaptor protein-2 (AP-2), which is the adaptor protein complex that is required for the internalization of proteins from the plasma membrane, could be demonstrated. In this study we investigated the relevance of different motifs in Nef from SIVmac239 for its internalization, CD4 down-regulation, binding to components of the trafficking machinery, and viral infectivity. Our data suggest that the binding of Nef to the catalytic subunit H of the vacuolar membrane ATPase (V-ATPase) facilitates its internalization. This binding depends on the integrity of the whole flexible loop. Subsequent studies on Nef mutant viruses revealed that the flexible loop is essential for optimal viral infectivity. Therefore, our data demonstrate how Nef contacts the endocytic machinery in the absence of its direct binding to AP-2 and suggest an important role for subunit H of the V-ATPase in viral infectivity. PMID:11179428

  12. Structural basis for NKG2A/CD94 recognition of HLA-E

    PubMed Central

    Kaiser, Brett K.; Pizarro, Juan Carlos; Kerns, Julie; Strong, Roland K.

    2008-01-01

    The NKG2x/CD94 (x = A, C, E) natural killer-cell receptors perform an important role in immunosurveillance by binding to HLA-E complexes that exclusively present peptides derived from MHC class I leader sequences, thereby monitoring MHC class I expression. We have determined the crystal structure of the NKG2A/CD94/HLA-E complex at 4.4-Å resolution, revealing two critical aspects of this interaction. First, the C-terminal region of the peptide, which displays the most variability among class I leader sequences, interacts entirely with CD94, the invariant component of these receptors. Second, residues 167–170 of NKG2A/C account for the ≈6-fold-higher affinity of the inhibitory NKG2A/CD94 receptor compared to its activating NKG2C/CD94 counterpart. These residues do not contact HLA-E or peptide directly but instead form part of the heterodimer interface with CD94. An evolutionary analysis across primates reveals that whereas CD94 is evolving under purifying selection, both NKG2A and NKG2C are evolving under positive selection. Specifically, residues at the CD94 interface have evolved under positive selection, suggesting that the evolution of these genes is driven by an interaction with pathogen-derived ligands. Consistent with this possibility, we show that NKG2C/CD94, but not NKG2A/CD94, weakly but specifically binds to the CMV MHC-homologue UL18. Thus, the evolution of the NKG2x/CD94 family of receptors has likely been shaped both by the need to bind the invariant HLA-E ligand and the need to avoid subversion by pathogen-derived decoys. PMID:18448674

  13. Increased loss of CCR5+ CD45RA- CD4+ T cells in CD8+ lymphocyte-depleted Simian immunodeficiency virus-infected rhesus monkeys.

    PubMed

    Veazey, Ronald S; Acierno, Paula M; McEvers, Kimberly J; Baumeister, Susanne H C; Foster, Gabriel J; Rett, Melisa D; Newberg, Michael H; Kuroda, Marcelo J; Williams, Kenneth; Kim, Eun-Young; Wolinsky, Steven M; Rieber, E Peter; Piatak, Michael; Lifson, Jeffrey D; Montefiori, David C; Brown, Charles R; Hirsch, Vanessa M; Schmitz, Jörn E

    2008-06-01

    Previously we have shown that CD8(+) T cells are critical for containment of simian immunodeficiency virus (SIV) viremia and that rapid and profound depletion of CD4(+) T cells occurs in the intestinal tract of acutely infected macaques. To determine the impact of SIV-specific CD8(+) T-cell responses on the magnitude of the CD4(+) T-cell depletion, we investigated the effect of CD8(+) lymphocyte depletion during primary SIV infection on CD4(+) T-cell subsets and function in peripheral blood, lymph nodes, and intestinal tissues. In peripheral blood, CD8(+) lymphocyte-depletion changed the dynamics of CD4(+) T-cell loss, resulting in a more pronounced loss 2 weeks after infection, followed by a temporal rebound approximately 2 months after infection, when absolute numbers of CD4(+) T cells were restored to baseline levels. These CD4(+) T cells showed a markedly skewed phenotype, however, as there were decreased levels of memory cells in CD8(+) lymphocyte-depleted macaques compared to controls. In intestinal tissues and lymph nodes, we observed a significantly higher loss of CCR5(+) CD45RA(-) CD4(+) T cells in CD8(+) lymphocyte-depleted macaques than in controls, suggesting that these SIV-targeted CD4(+) T cells were eliminated more efficiently in CD8(+) lymphocyte-depleted animals. Also, CD8(+) lymphocyte depletion significantly affected the ability to generate SIV Gag-specific CD4(+) T-cell responses and neutralizing antibodies. These results reemphasize that SIV-specific CD8(+) T-cell responses are absolutely critical to initiate at least partial control of SIV infection.

  14. Lipopolysaccharides in liver injury: molecular mechanisms of Kupffer cell activation.

    PubMed

    Su, Grace L

    2002-08-01

    Endogenous gut-derived bacterial lipopolysaccharides have been implicated as important cofactors in the pathogenesis of liver injury. However, the molecular mechanisms by which lipopolysaccharides exert their effect are not entirely clear. Recent studies have pointed to proinflammatory cytokines such as tumor necrosis factor-alpha as mediators of hepatocyte injury. Within the liver, Kupffer cells are major sources of proinflammatory cytokines that are produced in response to lipopolysaccharides. This review will focus on three important molecular components of the pathway by which lipopolysaccharides activate Kupffer cells: CD14, Toll-like receptor 4, and lipopolysaccharide binding protein. Within the liver, lipopolysaccharides bind to lipopolysaccharide binding protein, which then facilitates its transfer to membrane CD14 on the surface of Kupffer cells. Signaling of lipopolysaccharide through CD14 is mediated by the downstream receptor Toll-like receptor 4 and results in activation of Kupffer cells. The role played by these molecules in liver injury will be examined.

  15. Thermodynamic effects of proline introduction on protein stability.

    PubMed

    Prajapati, Ravindra Singh; Das, Mili; Sreeramulu, Sridhar; Sirajuddin, Minhajuddin; Srinivasan, Sankaranarayanan; Krishnamurthy, Vaishnavi; Ranjani, Ranganathan; Ramakrishnan, C; Varadarajan, Raghavan

    2007-02-01

    The amino acid Pro is more rigid than other naturally occurring amino acids and, in proteins, lacks an amide hydrogen. To understand the structural and thermodynamic effects of Pro substitutions, it was introduced at 13 different positions in four different proteins, leucine-isoleucine-valine binding protein, maltose binding protein, ribose binding protein, and thioredoxin. Three of the maltose binding protein mutants were characterized by X-ray crystallography to confirm that no structural changes had occurred upon mutation. In the remaining cases, fluorescence and CD spectroscopy were used to show the absence of structural change. Stabilities of wild type and mutant proteins were characterized by chemical denaturation at neutral pH and by differential scanning calorimetry as a function of pH. The mutants did not show enhanced stability with respect to chemical denaturation at room temperature. However, 6 of the 13 single mutants showed a small but significant increase in the free energy of thermal unfolding in the range of 0.3-2.4 kcal/mol, 2 mutants showed no change, and 5 were destabilized. In five of the six cases, the stabilization was because of reduced entropy of unfolding. However, the magnitude of the reduction in entropy of unfolding was typically several fold larger than the theoretical estimate of -4 cal K(-1) mol(-1) derived from the relative areas in the Ramachandran map accessible to Pro and Ala residues, respectively. Two double mutants were constructed. In both cases, the effects of the single mutations on the free energy of thermal unfolding were nonadditive. Copyright 2006 Wiley-Liss, Inc.

  16. Focus on the therapeutic efficacy of 3BNC117 against HIV-1: In vitro studies, in vivo studies, clinical trials and challenges.

    PubMed

    Liu, Zhi-Jun; Bai, Jing; Liu, Feng-Li; Zhang, Xiang-Yang; Wang, Jing-Zhang

    2017-11-01

    3BNC117, which was discovered in 2011, is a broadly neutralizing antibody (bNAb) and specifically neutralizes the human immunodeficiency virus type-1 (HIV-1) by targeting the CD4-binding site. This is the first comprehensive review that focuses on the role of 3BNC117 in the prevention of HIV-1 and acquired immune deficiency syndrome (AIDS). Briefly, 3BNC117 neutralizes many HIV/SHIV strains in vitro, blocks HIV-1 acquisition in animal models via a pre-exposure prophylaxis, alleviates HIV-1-associated viremia via a post-exposure therapeutic effect, prevents the establishment of latent HIV-1 reservoirs, and induces both humoral and cellular anti-HIV immune responses in vivo. The outcomes of Phase I and Phase IIa clinical trials in 2015 and 2016 showed the safety, tolerability, and therapeutic efficacy of 3BNC117 in HIV-1-infected human individuals. Nevertheless, anti-3BNC117 antibodies and HIV-1 strains resistant to 3BNC117 pose clinical challenges to immunotherapy with 3BNC117, so potential strategies for optimizing the potency of 3BNC117 are suggested here. Predictably, HIV-1 prevention and AIDS treatment will benefit from combinational immunotherapies with 3BNC117 and other pharmaceuticals (bNAbs, antiretroviral medicines, viral inducers, etc.) in the near future. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Characterization of the dextran-binding domain in the glucan-binding protein C of Streptococcus mutans.

    PubMed

    Takashima, Y; Fujita, K; Ardin, A C; Nagayama, K; Nomura, R; Nakano, K; Matsumoto-Nakano, M

    2015-10-01

    Streptococcus mutans produces multiple glucan-binding proteins (Gbps), among which GbpC encoded by the gbpC gene is known to be a cell-surface-associated protein involved in dextran-induced aggregation. The purpose of the present study was to characterize the dextran-binding domain of GbpC using bioinformatics analysis and molecular techniques. Bioinformatics analysis specified five possible regions containing molecular binding sites termed GB1 through GB5. Next, truncated recombinant GbpC (rGbpC) encoding each region was produced using a protein expression vector and five deletion mutant strains were generated, termed CDGB1 through CDGB5 respectively. The dextran-binding rates of truncated rGbpC that included the GB1, GB3, GB4 and GB5 regions in the upstream sequences were higher than that of the construct containing GB2 in the downstream region. In addition, the rates of dextran-binding for strains CDGB4 and CD1, which was entire gbpC deletion mutant, were significantly lower than for the other strains, while those of all other deletion mutants were quite similar to that of the parental strain MT8148. Biofilm structures formed by CDGB4 and CD1 were not as pronounced as that of MT8148, while those formed by other strains had greater density as compared to that of CD1. Our results suggest that the dextran-binding domain may be located in the GB4 region in the interior of the gbpC gene. Bioinformatics analysis is useful for determination of functional domains in many bacterial species. © 2015 The Society for Applied Microbiology.

  18. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch.

    PubMed

    Brown, Deborah M; Dilzer, Allison M; Meents, Dana L; Swain, Susan L

    2006-09-01

    The mechanisms whereby CD4 T cells contribute to the protective response against lethal influenza infection remain poorly characterized. To define the role of CD4 cells in protection against a highly pathogenic strain of influenza, virus-specific TCR transgenic CD4 effectors were generated in vitro and transferred into mice given lethal influenza infection. Primed CD4 effectors conferred protection against lethal infection over a broad range of viral dose. The protection mediated by CD4 effectors did not require IFN-gamma or host T cells, but did result in increased anti-influenza Ab titers compared with untreated controls. Further studies indicated that CD4-mediated protection at high doses of influenza required B cells, and that passive transfer of anti-influenza immune serum was therapeutic in B cell-deficient mice, but only when CD4 effectors were present. Primed CD4 cells also acquired perforin (Pfn)-mediated cytolytic activity during effector generation, suggesting a second mechanism used by CD4 cells to confer protection. Pfn-deficient CD4 effectors were less able to promote survival in intact BALB/c mice and were unable to provide protection in B cell-deficient mice, indicating that Ab-independent protection by CD4 effectors requires Pfn. Therefore, CD4 effectors mediate protection to lethal influenza through at least two mechanisms: Pfn-mediated cytotoxicity early in the response promoted survival independently of Ab production, whereas CD4-driven B cell responses resulted in high titer Abs that neutralized remaining virus.

  19. Atomistic Description of Thiostannate-Capped CdSe Nanocrystals: Retention of Four-Coordinate SnS4 Motif and Preservation of Cd-Rich Stoichiometry

    PubMed Central

    2016-01-01

    Colloidal semiconductor nanocrystals (NCs) are widely studied as building blocks for novel solid-state materials. Inorganic surface functionalization, used to displace native organic capping ligands from NC surfaces, has been a major enabler of electronic solid-state devices based on colloidal NCs. At the same time, very little is known about the atomistic details of the organic-to-inorganic ligand exchange and binding motifs at the NC surface, severely limiting further progress in designing all-inorganic NCs and NC solids. Taking thiostannates (K4SnS4, K4Sn2S6, K6Sn2S7) as typical examples of chalcogenidometallate ligands and oleate-capped CdSe NCs as a model NC system, in this study we address these questions through the combined application of solution 1H NMR spectroscopy, solution and solid-state 119Sn NMR spectroscopy, far-infrared and X-ray absorption spectroscopies, elemental analysis, and by DFT modeling. We show that through the X-type oleate-to-thiostannate ligand exchange, CdSe NCs retain their Cd-rich stoichiometry, with a stoichiometric CdSe core and surface Cd adatoms serving as binding sites for terminal S atoms of the thiostannates ligands, leading to all-inorganic (CdSe)core[Cdm(Sn2S7)yK(6y-2m)]shell (taking Sn2S76– ligand as an example). Thiostannates SnS44– and Sn2S76– retain (distorted) tetrahedral SnS4 geometry upon binding to NC surface. At the same time, experiments and simulations point to lower stability of Sn2S64– (and SnS32–) in most solvents and its lower adaptability to the NC surface caused by rigid Sn2S2 rings. PMID:25597625

  20. Different roles of CD4, CD8 and γδ T-lymphocytes in naive and vaccinated chickens during Salmonella Enteritidis infection.

    PubMed

    Sekelova, Zuzana; Polansky, Ondrej; Stepanova, Hana; Fedr, Radek; Faldynova, Marcela; Rychlik, Ivan; Vlasatikova, Lenka

    2017-07-01

    Lymphocytes represent the key antigen-specific leukocyte subpopulation. Despite their importance in mounting an immune response, an unbiased description of proteins expressed by chicken lymphocytes has not been presented. In this study, we therefore intravenously infected chickens with Salmonella Enteritidis, sorted CD4, CD8 and γδ T-lymphocytes from the spleen by flow cytometry and determined the proteome of each population by LC-MS/MS. CD4 T-lymphocyte characteristic proteins included ubiquitin SUMO-like domain and BAR domain containing proteins. CD8 T-lymphocyte specific proteins were characterized by purine ribonucleoside triphosphate binding and were involved in cell differentiation, cell activation and regulation of programmed cell death. γδ T-lymphocyte specific proteins exhibited enrichment of small GTPase of Rab type and GTP binding. Following infection, inducible proteins in CD4 lymphocytes included ribosomal proteins and downregulated proteins localized to the lysosome. CD8 T-lymphocytes induced MCM complex proteins, proteins required for DNA replication and machinery for protein processing in the endoplasmic reticulum. Proteins inducible in γδ T-lymphocytes belonged to immune system response, oxidative phosphorylation and the spliceosome. In this study, we predicted the likely events in lymphocyte response to systemic bacterial infection and identified proteins which can be used as markers specific for each lymphocyte subpopulation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fc Gamma Receptor 3A Polymorphism and Risk for HIV-Associated Cryptococcal Disease

    PubMed Central

    Rohatgi, Soma; Gohil, Shruti; Kuniholm, Mark H.; Schultz, Hannah; Dufaud, Chad; Armour, Kathryn L.; Badri, Sheila; Mailliard, Robbie B.; Pirofski, Liise-anne

    2013-01-01

    ABSTRACT Cryptococcus neoformans is one of the most common causes of fungal disease in HIV-infected persons, but not all of those who are infected develop cryptococcal disease (CD). Although CD4+ T cell deficiency is a risk factor for HIV-associated CD, polymorphisms of phagocytic Fc gamma receptors (FCGRs) have been linked to CD risk in HIV-uninfected persons. To investigate associations between FCGR2A 131 H/R and FCGR3A 158 F/V polymorphisms and CD risk in HIV-infected persons, we performed PCR-based genotyping on banked samples from 164 men enrolled in the Multicenter AIDS Cohort Study (MACS): 55 who were HIV infected and developed CD and a matched control group of 54 who were HIV infected and 55 who were HIV uninfected. Using additive and allelic statistical models for analysis, the high-affinity FCGR3A 158V allele was significantly associated with CD status after adjusting for race/ethnicity (odds ratio [OR], 2.1; P = 0.005), as was the FCGR3A 158 VV homozygous genotype after adjusting for race/ethnicity, rate of CD4+ T cell decline, and nadir CD4+ T cell count (OR, 21; P = 0.005). No associations between CD and FCGR2A 131 H/R polymorphism were identified. In binding studies, human IgG (hIgG)-C. neoformans complexes exhibited more binding to CHO-K1 cells expressing FCGR3A 158V than to those expressing FCGR3A 158F, and in cytotoxicity assays, natural killer (NK) cells expressing FCGR3A 158V induced more C. neoformans-infected monocyte cytotoxicity than those expressing FCGR3A 158F. Together, these results show an association between the FCGR3A 158V allele and risk for HIV-associated CD and suggest that this polymorphism could promote C. neoformans pathogenesis via increased binding of C. neoformans immune complexes, resulting in increased phagocyte cargo and/or immune activation. PMID:23982074

  2. Human non-neutralizing HIV-1 envelope monoclonal antibodies limit the number of founder viruses during SHIV mucosal infection in rhesus macaques

    DOE PAGES

    Santra, Sampa; Tomaras, Georgia D.; Warrier, Ranjit; ...

    2015-08-03

    HIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4⁺ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant regionmore » of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses.« less

  3. Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques

    PubMed Central

    Liao, Hua-Xin; Pollara, Justin; Liu, Pinghuang; Alam, S. Munir; Zhang, Ruijun; Cocklin, Sarah L.; Shen, Xiaoying; Duffy, Ryan; Xia, Shi-Mao; Schutte, Robert J.; Pemble IV, Charles W.; Dennison, S. Moses; Li, Hui; Chao, Andrew; Vidnovic, Kora; Evans, Abbey; Klein, Katja; Kumar, Amit; Robinson, James; Landucci, Gary; Forthal, Donald N.; Montefiori, David C.; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Rerks-Ngarm, Supachai; Robb, Merlin L.; Michael, Nelson L.; Kim, Jerome H.; Soderberg, Kelly A.; Giorgi, Elena E.; Blair, Lily; Korber, Bette T.; Moog, Christiane; Shattock, Robin J.; Schmitz, Joern E.; Moody, M. A.; Gao, Feng; Ferrari, Guido; Shaw, George M.; Haynes, Barton F.

    2015-01-01

    HIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4+ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant region of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Thus, some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses. PMID:26237403

  4. Human non-neutralizing HIV-1 envelope monoclonal antibodies limit the number of founder viruses during SHIV mucosal infection in rhesus macaques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santra, Sampa; Tomaras, Georgia D.; Warrier, Ranjit

    HIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4⁺ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant regionmore » of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses.« less

  5. Recognition of prostate-specific antigenic peptide determinants by human CD4 and CD8 T cells.

    PubMed

    Corman, J M; Sercarz, E E; Nanda, N K

    1998-11-01

    It is now becoming accepted that one is not tolerant to all the determinants of self proteins: the T cell repertoire directed to some sequences in self proteins is intact and can be activated. When a self protein is exclusively expressed by tumour cells, the T cell repertoire directed to the particular self antigen can potentially be activated to attack the tumour: this would amount to induction of a beneficial autoimmune response. Prostate cancer offers a unique opportunity for activation of a tumour-specific immune response owing to the exclusive synthesis of prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSM) by prostatic tissue and prostate tumour cells. In this study we examine the CD4 and CD8 T cell repertoires specific for peptides of PSA and PSM in normal human male individuals, using short-term, peptide antigen-driven CD4 and CD8 T cell lines. We show that short-term, CD4 T cell lines derived from six HLA-DR4 individuals showed strong proliferative responses to six of 10 tested peptides of PSA, selected as to contain a DR4 binding motif. Short-term, CD8 T cell lines from three HLA-A1 individuals showed specific cytolytic activity for autologous targets loaded with five of five tested peptides of PSA and PSM, selected to possess an HLA-A1 binding motif. One of the peptides chosen is termed a 'dual-motif' peptide, as it encodes determinants for both CD4 and CD8 T cells. These results, indicating the existence of CD4 and CD8 T cells against determinants of the self proteins, PSA and PSM, in healthy male individuals reveal the potential of the T cell repertoire from the typical prostate cancer patient to eradicate prostate tumours upon being appropriately activated.

  6. Identification of a New Functional Domain in Angiopoietin-like 3 (ANGPTL3) and Angiopoietin-like 4 (ANGPTL4) Involved in Binding and Inhibition of Lipoprotein Lipase (LPL)S⃞

    PubMed Central

    Lee, E-Chiang; Desai, Urvi; Gololobov, Gennady; Hong, Seokjoo; Feng, Xiao; Yu, Xuan-Chuan; Gay, Jason; Wilganowski, Nat; Gao, Cuihua; Du, Ling-Ling; Chen, Joan; Hu, Yi; Zhao, Sharon; Kirkpatrick, Laura; Schneider, Matthias; Zambrowicz, Brian P.; Landes, Greg; Powell, David R.; Sonnenburg, William K.

    2009-01-01

    Angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4) are secreted proteins that regulate triglyceride (TG) metabolism in part by inhibiting lipoprotein lipase (LPL). Recently, we showed that treatment of wild-type mice with monoclonal antibody (mAb) 14D12, specific for ANGPTL4, recapitulated the Angptl4 knock-out (-/-) mouse phenotype of reduced serum TG levels. In the present study, we mapped the region of mouse ANGPTL4 recognized by mAb 14D12 to amino acids Gln29–His53, which we designate as specific epitope 1 (SE1). The 14D12 mAb prevented binding of ANGPTL4 with LPL, consistent with its ability to neutralize the LPL-inhibitory activity of ANGPTL4. Alignment of all angiopoietin family members revealed that a sequence similar to ANGPTL4 SE1 was present only in ANGPTL3, corresponding to amino acids Glu32–His55. We produced a mouse mAb against this SE1-like region in ANGPTL3. This mAb, designated 5.50.3, inhibited the binding of ANGPTL3 to LPL and neutralized ANGPTL3-mediated inhibition of LPL activity in vitro. Treatment of wild-type as well as hyperlipidemic mice with mAb 5.50.3 resulted in reduced serum TG levels, recapitulating the lipid phenotype found in Angptl3-/- mice. These results show that the SE1 region of ANGPTL3 and ANGPTL4 functions as a domain important for binding LPL and inhibiting its activity in vitro and in vivo. Moreover, these results demonstrate that therapeutic antibodies that neutralize ANGPTL4 and ANGPTL3 may be useful for treatment of some forms of hyperlipidemia. PMID:19318355

  7. HIV-1 gp120 envelope glycoprotein determinants for cytokine burst in human monocytes

    PubMed Central

    Coutu, Mathieu; Prévost, Jérémie; Brassard, Nathalie; Peres, Adam; Stegen, Camille; Madrenas, Joaquín; Kaufmann, Daniel E.; Finzi, Andrés

    2017-01-01

    The first step of HIV infection involves the interaction of the gp120 envelope glycoprotein to its receptor CD4, mainly expressed on CD4+ T cells. Besides its role on HIV-1 entry, the gp120 has been shown to be involved in the production of IL-1, IL-6, CCL20 and other innate response cytokines by bystander, uninfected CD4+ T cells and monocytes. However, the gp120 determinants involved in these functions are not completely understood. Whether signalling leading to cytokine production is due to CD4 or other receptors is still unclear. Enhanced chemokine receptor binding and subsequent clustering receptors may lead to cytokine production. By using a comprehensive panel of gp120 mutants, here we show that CD4 binding is mandatory for cytokine outburst in monocytes. Our data suggest that targeting monocytes in HIV-infected patients might decrease systemic inflammation and the potential tissue injury associated with the production of inflammatory cytokines. Understanding how gp120 mediates a cytokine burst in monocytes might help develop new approaches to improve the chronic inflammation that persists in these patients despite effective suppression of viremia by antiretroviral therapy. PMID:28346521

  8. Phosphatidylinositol 4,5-Bisphosphate Clusters the Cell Adhesion Molecule CD44 and Assembles a Specific CD44-Ezrin Heterocomplex, as Revealed by Small Angle Neutron Scattering*

    PubMed Central

    Chen, Xiaodong; Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K.; Stanley, Christopher B.; Do, Changwoo; Heller, William T.; Aggarwal, Aneel K.; Callaway, David J. E.; Bu, Zimei

    2015-01-01

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin that links the CD44 assembled receptor signaling complexes to the cytoskeletal actin network, which organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered. Upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2), CD44ct clusters into aggregates. Further, contrary to the generally accepted model, CD44ct does not bind directly to the FERM domain of Ezrin or to the full-length Ezrin but only forms a complex with FERM or with the full-length Ezrin in the presence of PIP2. Using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific heterotetramer complex of CD44ct with Ezrin. This study reveals the role of PIP2 in clustering CD44 and in assembling multimeric CD44-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of CD44 clusters and the multimeric PIP2-CD44-Ezrin complexes. PMID:25572402

  9. Phosphatidylinositol 4,5-bisphosphate clusters the cell adhesion molecule CD44 and assembles a specific CD44-Ezrin heterocomplex, as revealed by small angle neutron scattering.

    PubMed

    Chen, Xiaodong; Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K; Stanley, Christopher B; Do, Changwoo; Heller, William T; Aggarwal, Aneel K; Callaway, David J E; Bu, Zimei

    2015-03-06

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin that links the CD44 assembled receptor signaling complexes to the cytoskeletal actin network, which organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered. Upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2), CD44ct clusters into aggregates. Further, contrary to the generally accepted model, CD44ct does not bind directly to the FERM domain of Ezrin or to the full-length Ezrin but only forms a complex with FERM or with the full-length Ezrin in the presence of PIP2. Using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific heterotetramer complex of CD44ct with Ezrin. This study reveals the role of PIP2 in clustering CD44 and in assembling multimeric CD44-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of CD44 clusters and the multimeric PIP2-CD44-Ezrin complexes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Thermodynamic and spectroscopic investigations of TMPyP4 association with guanine- and cytosine-rich DNA and RNA repeats of C9orf72.

    PubMed

    Alniss, Hasan; Zamiri, Bita; Khalaj, Melisa; Pearson, Christopher E; Macgregor, Robert B

    2018-01-22

    An expansion of the hexanucleotide repeat (GGGGCC)n·(GGCCCC)n in the C9orf72 promoter has been shown to be the cause of Amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). The C9orf72 repeat can form four-stranded structures; the cationic porphyrin (TMPyP4) binds and distorts these structures. Isothermal titration calorimetry (ITC), and circular dichroism (CD) were used to study the binding of TMPyP4 to the C-rich and G-rich DNA and RNA oligos containing the hexanucleotide repeat at pH 7.5 and 0.1 M K + . The CD spectra of G-rich DNA and RNA TMPyP4 complexes showed features of antiparallel and parallel G-quadruplexes, respectively. The shoulder at 260 nm in the CD spectrum becomes more intense upon formation of complexes between TMPyP4 and the C-rich DNA. The peak at 290 nm becomes more intense in the c-rich RNA molecules, suggesting induction of an i-motif structure. The ITC data showed that TMPyP4 binds at two independent sites for all DNA and RNA molecules. For DNA, the data are consistent with TMPyP4 stacking on the terminal tetrads and intercalation. For RNA, the thermodynamics of the two binding modes are consistent with groove binding and intercalation. In both cases, intercalation is the weaker binding mode. These findings are considered with respect to the structural differences of the folded DNA and RNA molecules and the energetics of the processes that drive site-specific recognition by TMPyP4; these data will be helpful in efforts to optimize the specificity and affinity of the binding of porphyrin-like molecules. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. The PBX1 lupus susceptibility gene regulates CD44 expression.

    PubMed

    Niu, Yuxin; Sengupta, Mayami; Titov, Anton A; Choi, Seung-Chul; Morel, Laurence

    2017-05-01

    PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4 + T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and shows that the lupus-associated isoform PBX1-d has unique molecular functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Assessing Specific Oligonucleotides and Small Molecule Antibiotics for the Ability to Inhibit the CRD-BP-CD44 RNA Interaction

    PubMed Central

    Thomsen, Dana; Lee, Chow H.

    2014-01-01

    Studies on Coding Region Determinant-Binding Protein (CRD-BP) and its orthologs have confirmed their functional role in mRNA stability and localization. CRD-BP is present in extremely low levels in normal adult tissues, but it is over-expressed in many types of aggressive human cancers and in neonatal tissues. Although the exact role of CRD-BP in tumour progression is unclear, cumulative evidence suggests that its ability to physically associate with target mRNAs is an important criterion for its oncogenic role. CRD-BP has high affinity for the 3′UTR of the oncogenic CD44 mRNA and depletion of CRD-BP in cells led to destabilization of CD44 mRNA, decreased CD44 expression, reduced adhesion and disruption of invadopodia formation. Here, we further characterize the CRD-BP-CD44 RNA interaction and assess specific antisense oligonucleotides and small molecule antibiotics for their ability to inhibit the CRD-BP-CD44 RNA interaction. CRD-BP has a high affinity for binding to CD44 RNA nts 2862–3055 with a Kd of 645 nM. Out of ten antisense oligonucleotides spanning nts 2862–3055, only three antisense oligonucleotides (DD4, DD7 and DD10) were effective in competing with CRD-BP for binding to 32P-labeled CD44 RNA. The potency of DD4, DD7 and DD10 in inhibiting the CRD-BP-CD44 RNA interaction in vitro correlated with their ability to specifically reduce the steady-state level of CD44 mRNA in cells. The aminoglycoside antibiotics neomycin, paramomycin, kanamycin and streptomycin effectively inhibited the CRD-BP-CD44 RNA interaction in vitro. Assessing the potential inhibitory effect of aminoglycoside antibiotics including neomycin on the CRD-BP-CD44 mRNA interaction in cells proved difficult, likely due to their propensity to non-specifically bind nucleic acids. Our results have important implications for future studies in finding small molecules and nucleic acid-based inhibitors that interfere with protein-RNA interactions. PMID:24622399

  13. Assessing specific oligonucleotides and small molecule antibiotics for the ability to inhibit the CRD-BP-CD44 RNA interaction.

    PubMed

    King, Dustin T; Barnes, Mark; Thomsen, Dana; Lee, Chow H

    2014-01-01

    Studies on Coding Region Determinant-Binding Protein (CRD-BP) and its orthologs have confirmed their functional role in mRNA stability and localization. CRD-BP is present in extremely low levels in normal adult tissues, but it is over-expressed in many types of aggressive human cancers and in neonatal tissues. Although the exact role of CRD-BP in tumour progression is unclear, cumulative evidence suggests that its ability to physically associate with target mRNAs is an important criterion for its oncogenic role. CRD-BP has high affinity for the 3'UTR of the oncogenic CD44 mRNA and depletion of CRD-BP in cells led to destabilization of CD44 mRNA, decreased CD44 expression, reduced adhesion and disruption of invadopodia formation. Here, we further characterize the CRD-BP-CD44 RNA interaction and assess specific antisense oligonucleotides and small molecule antibiotics for their ability to inhibit the CRD-BP-CD44 RNA interaction. CRD-BP has a high affinity for binding to CD44 RNA nts 2862-3055 with a Kd of 645 nM. Out of ten antisense oligonucleotides spanning nts 2862-3055, only three antisense oligonucleotides (DD4, DD7 and DD10) were effective in competing with CRD-BP for binding to 32P-labeled CD44 RNA. The potency of DD4, DD7 and DD10 in inhibiting the CRD-BP-CD44 RNA interaction in vitro correlated with their ability to specifically reduce the steady-state level of CD44 mRNA in cells. The aminoglycoside antibiotics neomycin, paramomycin, kanamycin and streptomycin effectively inhibited the CRD-BP-CD44 RNA interaction in vitro. Assessing the potential inhibitory effect of aminoglycoside antibiotics including neomycin on the CRD-BP-CD44 mRNA interaction in cells proved difficult, likely due to their propensity to non-specifically bind nucleic acids. Our results have important implications for future studies in finding small molecules and nucleic acid-based inhibitors that interfere with protein-RNA interactions.

  14. TNF-α blockade induces IL-10 expression in human CD4+ T cells

    NASA Astrophysics Data System (ADS)

    Evans, Hayley G.; Roostalu, Urmas; Walter, Gina J.; Gullick, Nicola J.; Frederiksen, Klaus S.; Roberts, Ceri A.; Sumner, Jonathan; Baeten, Dominique L.; Gerwien, Jens G.; Cope, Andrew P.; Geissmann, Frederic; Kirkham, Bruce W.; Taams, Leonie S.

    2014-02-01

    IL-17+ CD4+ T (Th17) cells contribute to the pathogenesis of several human inflammatory diseases. Here we demonstrate that TNF inhibitor (TNFi) drugs induce the anti-inflammatory cytokine IL-10 in CD4+ T cells including IL-17+ CD4+ T cells. TNFi-mediated induction of IL-10 in IL-17+ CD4+ T cells is Treg-/Foxp3-independent, requires IL-10 and is overcome by IL-1β. TNFi-exposed IL-17+ CD4+ T cells are molecularly and functionally distinct, with a unique gene signature characterized by expression of IL10 and IKZF3 (encoding Aiolos). We show that Aiolos binds conserved regions in the IL10 locus in IL-17+ CD4+ T cells. Furthermore, IKZF3 and IL10 expression levels correlate in primary CD4+ T cells and Aiolos overexpression is sufficient to drive IL10 in these cells. Our data demonstrate that TNF-α blockade induces IL-10 in CD4+ T cells including Th17 cells and suggest a role for the transcription factor Aiolos in the regulation of IL-10 in CD4+ T cells.

  15. Regulatory T cells generated during cytomegalovirus in vitro stimulation of mononuclear cells from HIV-infected individuals on HAART correlate with decreased lymphocyte proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jesser, Renee D.; Li, Shaobing; Weinberg, Adriana

    2006-09-01

    HIV-infected patients fail to fully recover cell-mediated immunity despite HAART. To identify regulatory factors, we studied the phenotype and function of in vitro cytomegalovirus (CMV)-stimulated T cells from HAART recipients. CFSE-measured proliferation showed CD4{sup +} and CD8{sup +} cells dividing in CMV-stimulated cultures. Compared with healthy controls, CMV-stimulated lymphocytes from HAART recipients had lower {sup 3}H-thymidine incorporation; lower IFN{gamma} and TNF{alpha} production; higher CD4{sup +}CD27{sup -}CD28{sup -} and CD8{sup +}CD27{sup -}CD28{sup -} frequencies; lower CD4{sup +}CD25{sup hi}; and higher FoxP3 expression in CD8{sup +}CD25{sup hi} cells. CMV-specific proliferation correlated with higher IFN{gamma}, TNF{alpha} and IL10 levels and higher CD4{sup +}perforin{supmore » +} and CD8{sup +}perforin{sup +} frequencies. Decreased proliferation correlated with higher CD4{sup +}CD27{sup -}CD28{sup -} frequencies and TGF{beta}1 production, which also correlated with each other. Anti-TGF{beta}1 neutralizing antibodies restored CMV-specific proliferation in a dose-dependent fashion. In HIV-infected subjects, decreased proliferation correlated with higher CMV-stimulated CD8{sup +}CD25{sup hi} frequencies and their FoxP3 expression. These data indicate that FoxP3- and TGF{beta}1-expressing regulatory T cells contribute to decreased immunity in HAART recipients.« less

  16. Structural and physical properties of collagen extracted from moon jellyfish under neutral pH conditions.

    PubMed

    Miki, Ayako; Inaba, Satomi; Baba, Takayuki; Kihira, Koji; Fukada, Harumi; Oda, Masayuki

    2015-01-01

    We extracted collagen from moon jellyfish under neutral pH conditions and analyzed its amino acid composition, secondary structure, and thermal stability. The content of hydroxyproline was 4.3%, which is lower than that of other collagens. Secondary structure analysis using circular dichroism (CD) showed a typical collagen helix. The thermal stability of this collagen at pH 3.0 was lower than those from fish scale and pig skin, which also correlates closely with jellyfish collagen having lower hydroxyproline content. Because the solubility of jellyfish collagen used in this study at neutral pH was quite high, it was possible to analyze its structural and physical properties under physiological conditions. Thermodynamic analysis using CD and differential scanning calorimetry showed that the thermal stability at pH 7.5 was higher than at pH 3.0, possibly due to electrostatic interactions. During the process of unfolding, fibrillation would occur only at neutral pH.

  17. Activation‐Induced Killer Cell Immunoglobulin‐like Receptor 3DL2 Binding to HLA–B27 Licenses Pathogenic T Cell Differentiation in Spondyloarthritis

    PubMed Central

    Ridley, Anna; Hatano, Hiroko; Wong‐Baeza, Isabel; Shaw, Jacqueline; Matthews, Katherine K.; Al‐Mossawi, Hussein; Ladell, Kristin; Price, David A.; Bowness, Paul

    2016-01-01

    Objective In the spondyloarthritides (SpA), increased numbers of CD4+ T cells express killer cell immunoglobulin‐like receptor 3DL2 (KIR‐3DL2). The aim of this study was to determine the factors that induce KIR‐3DL2 expression, and to characterize the relationship between HLA–B27 and the phenotype and function of KIR‐3DL2–expressing CD4+ T cells in SpA. Methods In total, 34 B27+ patients with SpA, 28 age‐ and sex‐matched healthy controls (20 B27− and 8 B27+), and 9 patients with rheumatoid arthritis were studied. KIR-3DL2 expression and other phenotypic characteristics of peripheral blood and synovial fluid CD4+ T cells were studied by flow cytometry, quantitative polymerase chain reaction, and Western blotting. T cell receptor clonality was determined by template‐switch anchored reverse transcription–polymerase chain reaction and sequencing analysis. Cytokines were measured by enzyme‐linked immunosorbent assay. Results Cellular activation induced KIR‐3DL2 expression on both naive and effector CD4+ T cells. KIR‐3DL2 binding to B27+ cells promoted expression of KIR‐3DL2, the Th17‐specific transcription factor retinoic acid receptor–related orphan nuclear receptor γt, and the antiapoptotic factor B cell lymphoma 2. KIR‐3DL2+CD4+ T cells in patients with ankylosing spondylitis were oligoclonal and enriched for markers of T cell activation and for the gut homing receptor CCR9. In the presence of B27+ antigen‐presenting cells, KIR‐3DL2+CD4+ T cells produced less interleukin‐2 (IL‐2) but more IL‐17. This effect was blocked by HC10, an antibody that inhibits the binding of KIR‐3DL2 to B27 heavy chains. Conclusion KIR‐3DL2 binding to HLA–B27 licenses Th17 cell differentiation in SpA. These findings raise the therapeutic potential of targeting HLA–B27–KIR‐3DL2 interactions for the treatment of B27+ patients with SpA. PMID:26841353

  18. Identification and characterization of a second CD4-like gene in teleost fish.

    PubMed

    Dijkstra, Johannes Martinus; Somamoto, Tomonori; Moore, Lindsey; Hordvik, Ivar; Ototake, Mitsuru; Fischer, Uwe

    2006-02-01

    In fish, T cell subdivision is not well studied, although CD8 and CD4 homologues have been reported. This study describes a second teleost CD4-like gene, CD4-like 2 (CD4L-2). Two rainbow trout copies of this gene were found, -2a and -2b, encoding molecules sharing 81% aa identity. The 2a/2b duplication may be related to tetraploid ancestry of salmonid fishes. In the Fugu genome CD4L-2 lies head to tail with an earlier reported, very different CD4-like gene [Suetake, H., Araki, K., Suzuki, Y., 2004. Cloning, expression, and characterization of fugu CD4, the first ectothermic animal CD4. Immunogenetics 56, 368-374], which was designated CD4L-1 in the present article. The flanking genes of the Fugu CD4L-1 and CD4L-2 are reminiscent of the genes surrounding CD4 and LAG-3 in mammals. However, neither synteny nor phylogenetic analysis could decide between CD4 and LAG-3 identity for the fish CD4L genes. CD4L-1 and CD4L-2 share a tyrosine protein kinase p56(lck) binding motif in the cytoplasmic tail with CD4 but not with LAG-3. Trout CD4L-2 expression is highest in the thymus, similar to mammalian and chicken CD4, whereas Fugu CD4L-1 expression was highest in the spleen. However, CD4L-2 encodes only two IG-like domains, whereas CD4L-1, CD4 and LAG-3 encode four. The CD4-like genes 1 and 2 in fish apparently went through an evolution different from that of LAG-3 and CD4 in higher vertebrates.

  19. Induction of Heterologous Tier 2 HIV-1-Neutralizing and Cross-Reactive V1/V2-Specific Antibodies in Rabbits by Prime-Boost Immunization

    PubMed Central

    Townsley, Samantha; Mohamed, Zeinab; Guo, Wenjin; McKenna, Jennifer; Cleveland, Brad; LaBranche, Celia; Beaumont, David; Shen, Xiaoying; Yates, Nicole L.; Pinter, Abraham; Tomaras, Georgia D.; Ferrari, Guido; Montefiori, David C.

    2016-01-01

    ABSTRACT Poxvirus prime-protein boost used in the RV144 trial remains the only immunization strategy shown to elicit a modest level of protection against HIV-1 acquisition in humans. Although neutralizing antibodies (NAb) were generated, they were against sensitive viruses, not the more resistant “tier 2” isolates that dominate circulating strains. Instead, risk reduction correlated with antibodies recognizing epitopes in the V1/V2 region of HIV-1 envelope glycoprotein (Env). Here, we examined whether tier 2 virus NAb and V1/V2-specific non-NAb could be elicited by a poxvirus prime-gp120 boost strategy in a rabbit model. We studied two clade B Envs that differ in multiple parameters, including tissue origin, neutralization sensitivity, and presence of the N197 (N7) glycan that was previously shown to modulate the exposure of conserved epitopes on Env. We demonstrate that immunized rabbits generated cross-reactive neutralizing activities against >50% of the tier 2 global HIV-1 isolates tested. Some of these activities were directed against the CD4 binding site (CD4bs). These rabbits also generated antibodies that recognized protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. However, there are subtle differences in the specificities and the response rates of V1/V2-specific antibodies between animals immunized with different Envs, with or without the N7 glycan. These findings demonstrate that antibody responses that have been correlated with protection against HIV-1 acquisition in humans can be elicited in a preclinical model by a poxvirus prime-gp120 boost strategy and that improvements may be achievable by optimizing the nature of the priming and boosting immunogens. IMPORTANCE The only vaccine approach shown to elicit any protective efficacy against HIV-1 acquisition is based on a poxvirus prime-protein boost regimen (RV144 Thai trial). Reduction of risk was associated with nonneutralizing antibodies targeting the V1/V2 loops of the envelope protein gp120. However, the modest efficacy (31.2%) achieved in this trial highlights the need to examine approaches and factors that may improve vaccine-induced responses, including cross-reactive neutralizing activities. We show here that rabbits immunized with a novel recombinant vaccinia virus prime-gp120 protein boost regimen generated antibodies that recognize protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. Importantly, immunized rabbits also showed neutralizing activities against heterologous tier 2 HIV-1 isolates. These findings may inform the design of prime-boost immunization approaches and help improve the protective efficacy of candidate HIV-1 vaccines. PMID:27440894

  20. Induction of Heterologous Tier 2 HIV-1-Neutralizing and Cross-Reactive V1/V2-Specific Antibodies in Rabbits by Prime-Boost Immunization.

    PubMed

    Townsley, Samantha; Mohamed, Zeinab; Guo, Wenjin; McKenna, Jennifer; Cleveland, Brad; LaBranche, Celia; Beaumont, David; Shen, Xiaoying; Yates, Nicole L; Pinter, Abraham; Tomaras, Georgia D; Ferrari, Guido; Montefiori, David C; Hu, Shiu-Lok

    2016-10-01

    Poxvirus prime-protein boost used in the RV144 trial remains the only immunization strategy shown to elicit a modest level of protection against HIV-1 acquisition in humans. Although neutralizing antibodies (NAb) were generated, they were against sensitive viruses, not the more resistant "tier 2" isolates that dominate circulating strains. Instead, risk reduction correlated with antibodies recognizing epitopes in the V1/V2 region of HIV-1 envelope glycoprotein (Env). Here, we examined whether tier 2 virus NAb and V1/V2-specific non-NAb could be elicited by a poxvirus prime-gp120 boost strategy in a rabbit model. We studied two clade B Envs that differ in multiple parameters, including tissue origin, neutralization sensitivity, and presence of the N197 (N7) glycan that was previously shown to modulate the exposure of conserved epitopes on Env. We demonstrate that immunized rabbits generated cross-reactive neutralizing activities against >50% of the tier 2 global HIV-1 isolates tested. Some of these activities were directed against the CD4 binding site (CD4bs). These rabbits also generated antibodies that recognized protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. However, there are subtle differences in the specificities and the response rates of V1/V2-specific antibodies between animals immunized with different Envs, with or without the N7 glycan. These findings demonstrate that antibody responses that have been correlated with protection against HIV-1 acquisition in humans can be elicited in a preclinical model by a poxvirus prime-gp120 boost strategy and that improvements may be achievable by optimizing the nature of the priming and boosting immunogens. The only vaccine approach shown to elicit any protective efficacy against HIV-1 acquisition is based on a poxvirus prime-protein boost regimen (RV144 Thai trial). Reduction of risk was associated with nonneutralizing antibodies targeting the V1/V2 loops of the envelope protein gp120. However, the modest efficacy (31.2%) achieved in this trial highlights the need to examine approaches and factors that may improve vaccine-induced responses, including cross-reactive neutralizing activities. We show here that rabbits immunized with a novel recombinant vaccinia virus prime-gp120 protein boost regimen generated antibodies that recognize protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. Importantly, immunized rabbits also showed neutralizing activities against heterologous tier 2 HIV-1 isolates. These findings may inform the design of prime-boost immunization approaches and help improve the protective efficacy of candidate HIV-1 vaccines. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Interaction Mode between Inclusion Complex of Vitamin K3 with γ- Cyclodextrin and Herring-Sperm DNA.

    PubMed

    Tang, Yan; Cai, Li; Xue, Kang; Wang, Chunling; Xiong, Xiaoli

    2016-05-03

    Methods including spectroscopy, electronic chemistry and thermodynamics were used to study the inclusion effect between γ-cyclodextrin (CD) and vitamin K3(K3), as well as the interaction mode between herring-sperm DNA (hsDNA) and γ-CD-K3 inclusion complex. The results from ultraviolet spectroscopic method indicated that VK3 and γ-CD formed 1:1 inclusion complex, with the inclusion constant Kf = 1.02 × 10(4) L/mol, which is based on Benesi-Hildebrand's viewpoint. The outcomes from the probe method and Scatchard methods suggested that the interaction mode between γ-CD-K3 and DNA was a mixture mode, which included intercalation and electrostatic binding effects. The binding constants were K (θ)25°C = 2.16 × 10(4) L/mol, and K(θ)37°C = 1.06 × 10(4) L/mol. The thermodynamic functions of the interaction between γ-CD-K3 and DNA were ΔrHm(θ) = -2.74 × 10(4) J/mol, ΔrSm(θ) = 174.74 J·mol(-1)K(-1), therefore, both ΔrHm(θ) (enthalpy) and ΔrSm(θ) (entropy) worked as driven forces in this action.

  2. Quantum chemistry of the minimal CdSe clusters

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Tretiak, Sergei; Masunov, Artëm E.; Ivanov, Sergei

    2008-08-01

    Colloidal quantum dots are semiconductor nanocrystals (NCs) which have stimulated a great deal of research and have attracted technical interest in recent years due to their chemical stability and the tunability of photophysical properties. While internal structure of large quantum dots is similar to bulk, their surface structure and passivating role of capping ligands (surfactants) are not fully understood to date. We apply ab initio wavefunction methods, density functional theory, and semiempirical approaches to study the passivation effects of substituted phosphine and amine ligands on the minimal cluster Cd2Se2, which is also used to benchmark different computational methods versus high level ab initio techniques. Full geometry optimization of Cd2Se2 at different theory levels and ligand coverage is used to understand the affinities of various ligands and the impact of ligands on cluster structure. Most possible bonding patterns between ligands and surface Cd/Se atoms are considered, including a ligand coordinated to Se atoms. The degree of passivation of Cd and Se atoms (one or two ligands attached to one atom) is also studied. The results suggest that B3LYP/LANL2DZ level of theory is appropriate for the system modeling, whereas frequently used semiempirical methods (such as AM1 and PM3) produce unphysical results. The use of hydrogen atom for modeling of the cluster passivating ligands is found to yield unphysical results as well. Hence, the surface termination of II-VI semiconductor NCs with hydrogen atoms often used in computational models should probably be avoided. Basis set superposition error, zero-point energy, and thermal corrections, as well as solvent effects simulated with polarized continuum model are found to produce minor variations on the ligand binding energies. The effects of Cd-Se complex structure on both the electronic band gap (highest occupied molecular orbital-lowest unoccupied molecular orbital energy difference) and ligand binding energies are systematically examined. The role played by positive charges on ligand binding is also explored. The calculated binding energies for various ligands L are found to decrease in the order OPMe3>OPH3>NH2Me>=NH3>=NMe3>PMe3>PH3 for neutral clusters and OPMe3>OPH3>PMe3>=NMe3>=NH2Me>=NH3>PH3 and OPMe3>OPH3>NH2Me>=NMe3>=PMe3>=NH3>PH3 for single and double ligations of positively charged Cd2Se22+ cluster, respectively.

  3. Variola Virus IL-18 Binding Protein Interacts with Three Human IL-18 Residues That Are Part of a Binding Site for Human IL-18 Receptor Alpha Subunit

    PubMed Central

    Meng, Xiangzhi; Leman, Michael; Xiang, Yan

    2007-01-01

    Interleukin-18 (IL-18) plays an important role in host defense against microbial pathogens. Many poxviruses encode homologous IL-18 binding proteins (IL-18BP) that neutralize IL-18 activity. Here, we examined whether IL-18BP neutralizes IL-18 activity by binding to the same region of IL-18 where IL-18 receptor (IL-18R) binds. We introduced alanine substitutions to known receptor binding sites of human IL18, and found that only the substitution of Leu5 reduced the binding affinity of IL-18 with IL-18BP of variola virus (varvIL-18BP) by more than 4-fold. The substitutions of Lys53 and Ser55, which were not previously known to be part of the receptor binding site but that are spatially adjacent to Leu5, reduced the binding affinity to varvIL-18BP by approximately 100- and 7-fold, respectively. These two substitutions also reduced the binding affinity with human IL-18R alpha subunit (hIL-18Rα) by 4- and 2-fold, respectively. Altogether, our data shows that varvIL-18BP prevents IL-18 from binding to IL-18R by interacting with three residues that are part of the binding site for hIL-18Rα. PMID:16979683

  4. Development of Broadly Neutralizing Antibodies and Their Mapping by Monomeric gp120 in Human Immunodeficiency Virus Type 1-Infected Humans and Simian-Human Immunodeficiency Virus SHIVSF162P3N-Infected Macaques.

    PubMed

    Jia, Manxue; Lu, Hong; Markowitz, Martin; Cheng-Mayer, Cecilia; Wu, Xueling

    2016-04-01

    To improve our understanding of the similarities and differences between neutralizing antibodies elicited by simian-human immunodeficiency virus (SHIV)-infected rhesus macaques and human immunodeficiency virus type 1 (HIV-1)-infected humans, we examined the plasma of 13 viremic macaques infected with SHIVSF162P3Nand 85 HIV-1-infected humans with known times of infection. We identified 5 macaques (38%) from 1 to 2 years postinfection (p.i.) with broadly neutralizing antibodies (bnAbs) against tier 2 HIV-1. In comparison, only 2 out of 42 (5%) human plasma samples collected in a similar time frame of 1 to 3 years p.i. exhibited comparable neutralizing breadths and potencies, with the number increasing to 7 out of 21 (30%) after 3 years p.i. Plasma mapping with monomeric gp120 identified only 2 out of 9 humans and 2 out of 4 macaques that contained gp120-reactive neutralizing antibodies, indicating distinct specificities in these plasma samples, with most of them recognizing the envelope trimer (including gp41) rather than the gp120 monomer. Indeed, a total of 20 gp120-directed monoclonal antibodies (MAbs) isolated from a human subject (AD358) and a Chinese rhesus macaque (GB40) displayed no or limited neutralizing activity against tier 2 strains. These isolated MAbs, mapped to the CD4-binding site, the V3 loop, the inner domain, and the C5 region of gp120, revealed genetic similarity between the human and macaque immunoglobulin genes used to encode some V3-directed MAbs. These results also support the use of envelope trimer probes for efficient isolation of HIV-1 bnAbs. HIV-1 vaccine research can benefit from understanding the development of broadly neutralizing antibodies (bnAbs) in rhesus macaques, commonly used to assess vaccine immunogenicity and efficacy. Here, we examined 85 HIV-1-infected humans and 13 SHIVSF162P3N-infected macaques for bnAbs and found that, similar to HIV-1-infected humans, bnAbs in SHIV-infected macaques are also rare, but their development might have been faster in some of the studied macaques. Plasma mapping with monomeric gp120 indicated that most bnAbs bind to the envelope trimer rather than the gp120 monomer. In support of this, none of the isolated gp120-reactive monoclonal antibodies (MAbs) displayed the neutralization breadth observed in the corresponding plasma. However, the MAb sequences revealed similarity between human and macaque genes used to encode some V3-directed MAbs. Our study sheds light on the timing and development of bnAbs in SHIV-infected macaques in comparison to HIV-1-infected humans and highlights the use of envelope trimer probes for efficient recovery of bnAbs. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Ap4A is not an efficient Zn(II) binding agent. A concerted potentiometric, calorimetric and NMR study.

    PubMed

    Wszelaka-Rylik, Małgorzata; Witkiewicz-Kucharczyk, Aleksandra; Wójcik, Jacek; Bal, Wojciech

    2007-05-01

    Diadenosine 5',5''-P(1)P(4) tetraphosphate (Ap(4)A) has been considered as an intracellular partner for Zn(II). We applied potentiometry, ITC and NMR to study protonation equilibria of Ap(4)A and Zn(II) complexation by this dinucleotide. The values of binding constants obtained by these three techniques under various experimental conditions coherently demonstrated that Ap(4)A binds Zn(II) weakly, with an apparent binding constant of ca. 10(4) at neutral pH. Such a low stability of Zn(II) complexes with Ap(4)A excludes a possibility for interactions between these two agents in vivo.

  6. Expression and purification of soluble porcine CTLA-4 in yeast Pichia pastoris

    PubMed Central

    Peraino, Jaclyn; Zhang, Huiping; Hermanrud, Christina E.; Li, Guoying; Sachs, David H.; Huang, Christene A.; Wang, Zhirui

    2012-01-01

    Co-stimulation blockade can be used to modulate the immune response for induction of organ transplantation tolerance, treatment of autoimmune disease as well as cancer treatment. Cytotoxic T-Lymphocyte Antigen-4 (CTLA-4), also known as CD152, is an important co-stimulatory molecule which serves as a negative regulator for T cell proliferation and differentiation. CTLA-4/CD28-CD80/CD86 pathway is a critical co-stimulatory pathway for adaptive immune response. T cell activation through the T cell receptor and CD28 leads to increased expression of CTLA-4, an inhibitory receptor for CD80 and CD86. MGH MHC-defined miniature swine provide a unique large animal model useful for preclinical studies of transplantation tolerance and immune regulation. In this study, we have expressed the codon-optimized soluble porcine CTLA-4 in the yeast Pichia pastoris system. The secreted porcine CTLA-4 was captured using Ni-Sepharose 6 fast flow resin and further purified using strong anion exchange resin Poros 50HQ. Glycosylation analysis using PNGase F demonstrated the N-linked glycosylation on Pichia pastoris expressed soluble porcine CTLA-4. To improve the expression level and facilitate the downstream purification we mutated the two potential N-linked glycosylation sites with non-polarized alanines by site-directed mutagenesis. Removal of the two N-glycosylation sites significantly improved the production level from ~2 mg/L to ~8 mg/L. Biotinylated glycosylated and non-N-glycosylated soluble porcine CTLA-4 both bind to a porcine CD80-expressing B-cell lymphoma cell line (KD = 13 nM) and competitively inhibit the binding of an anti-CD80 monoclonal antibody. The availability of soluble porcine CTLA-4, especially the non-N-glycosylated CTLA-4, will provide a very valuable tool for assessing co-stimulatory blockade treatment for translational studies in the clinically relevant porcine model. PMID:22326797

  7. The Binding Site of Human Adenosine Deaminase for Cd26/Dipeptidyl Peptidase IV

    PubMed Central

    Richard, Eva; Arredondo-Vega, Francisco X.; Santisteban, Ines; Kelly, Susan J.; Patel, Dhavalkumar D.; Hershfield, Michael S.

    2000-01-01

    Human, but not murine, adenosine deaminase (ADA) forms a complex with the cell membrane protein CD26/dipeptidyl peptidase IV. CD26-bound ADA has been postulated to regulate extracellular adenosine levels and to modulate the costimulatory function of CD26 on T lymphocytes. Absence of ADA–CD26 binding has been implicated in causing severe combined immunodeficiency due to ADA deficiency. Using human–mouse ADA hybrids and ADA point mutants, we have localized the amino acids critical for CD26 binding to the helical segment 126–143. Arg142 in human ADA and Gln142 in mouse ADA largely determine the capacity to bind CD26. Recombinant human ADA bearing the R142Q mutation had normal catalytic activity per molecule, but markedly impaired binding to a CD26+ ADA-deficient human T cell line. Reduced CD26 binding was also found with ADA from red cells and T cells of a healthy individual whose only expressed ADA has the R142Q mutation. Conversely, ADA with the E217K active site mutation, the only ADA expressed by a severely immunodeficient patient, showed normal CD26 binding. These findings argue that ADA binding to CD26 is not essential for immune function in humans. PMID:11067872

  8. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4.

    PubMed

    Todaro, Matilde; Alea, Mileidys Perez; Di Stefano, Anna B; Cammareri, Patrizia; Vermeulen, Louis; Iovino, Flora; Tripodo, Claudio; Russo, Antonio; Gulotta, Gaspare; Medema, Jan Paul; Stassi, Giorgio

    2007-10-11

    A novel paradigm in tumor biology suggests that cancer growth is driven by stem-like cells within a tumor. Here, we describe the identification and characterization of such cells from colon carcinomas using the stem cell marker CD133 that accounts around 2% of the cells in human colon cancer. The CD133(+) cells grow in vitro as undifferentiated tumor spheroids, and they are both necessary and sufficient to initiate tumor growth in immunodeficient mice. Xenografts resemble the original human tumor maintaining the rare subpopulation of tumorigenic CD133(+) cells. Further analysis revealed that the CD133(+) cells produce and utilize IL-4 to protect themselves from apoptosis. Consistently, treatment with IL-4Ralpha antagonist or anti-IL-4 neutralizing antibody strongly enhances the antitumor efficacy of standard chemotherapeutic drugs through selective sensitization of CD133(+) cells. Our data suggest that colon tumor growth is dictated by stem-like cells that are treatment resistant due to the autocrine production of IL-4.

  9. Escherichia coli heat-labile enterotoxin B subunit prevents autoimmune arthritis through induction of regulatory CD4+ T cells.

    PubMed

    Luross, Jeffrey A; Heaton, Tricia; Hirst, Timothy R; Day, Michael J; Williams, Neil A

    2002-06-01

    The receptor-binding B subunit of Escherichia coli heat-labile enterotoxin (EtxB) is a highly stable, nontoxic protein that is capable of modulating immune responses. This study was conducted to determine whether mucosal administration of EtxB can block collagen-induced arthritis (CIA) and to investigate the mechanisms involved. Clinical arthritis in DBA/1 mice was monitored following mucosal administration of EtxB on 4 occasions. The dependence of disease prevention on receptor binding by EtxB and the associated alterations to the immune response to type II collagen (CII) were assessed. Adoptive transfer experiments and lymph node cell cocultures were used to investigate the underlying mechanisms. Both intranasal and intragastric delivery of EtxB were effective in preventing CIA; a 1-microg dose of EtxB was protective after intranasal administration. A non-receptor-binding mutant of EtxB failed to prevent disease. Intranasal EtxB lowered both the incidence and severity of arthritis when given either at the time of disease induction or 25 days later. EtxB markedly reduced levels of anti-CII IgG2a antibodies and interferon-gamma (IFNgamma) production while not affecting levels of IgG1, interleukin-4 (IL-4), or IL-10. Disease protection could be transferred by CD4+ T cells from treated mice, an effect that was abrogated upon depletion of the CD25+ population. In addition, CD4+CD25+ T cells from treated mice were able to suppress anti-CII IFNgamma production by CII-primed lymph node cells. Mucosal administration of EtxB can be used to prevent or treat CIA. Modulation of the anti-CII immune response by EtxB is associated with a reduction in Th1 cell reactivity without a concomitant shift toward Th2. Instead, EtxB mediates its effects through enhancing the activity of a population of CD4+ regulatory T cells.

  10. Ara h 2 peptides containing dominant CD4+ T-cell epitopes: candidates for a peanut allergy therapeutic.

    PubMed

    Prickett, Sara R; Voskamp, Astrid L; Dacumos-Hill, April; Symons, Karen; Rolland, Jennifer M; O'Hehir, Robyn E

    2011-03-01

    Peanut allergy is a life-threatening condition; there is currently no cure. Although whole allergen extracts are used for specific immunotherapy for many allergies, they can cause severe reactions, and even fatalities, in peanut allergy. This study aimed to identify short, T-cell epitope-based peptides that target allergen-specific CD4(+) T cells but do not bind IgE as candidates for safe peanut-specific immunotherapy. Multiple CD4(+) T-cell lines specific for the major peanut allergen Ara h 2 were generated from PBMCs of 16 HLA-diverse subjects with peanut allergy by using 5,6-carboxyfluorescein diacetate succinimidylester-based methodology. Proliferation and ELISPOT assays were used to identify dominant epitopes recognized by T-cell lines and to confirm recognition by peripheral blood T cells of epitope-based peptides modified for therapeutic production. HLA restriction of core epitope recognition was investigated by using anti-HLA blocking antibodies and HLA genotyping. Serum-IgE peptide-binding was assessed by dot-blot. Five dominant CD4(+) T-cell epitopes were identified in Ara h 2. In combination, these were presented by HLA-DR, HLA-DP, and HLA-DQ molecules and recognized by T cells from all 16 subjects. Three short peptide variants containing these T-cell epitopes were designed with cysteine-to-serine substitutions to facilitate stability and therapeutic production. Variant peptides showed HLA-binding degeneracy, did not bind peanut-specific serum IgE, and could directly target T(H)2-type T cells in peripheral blood of subjects with allergy. Short CD4(+) T-cell epitope-based Ara h 2 peptides were identified as novel candidates for a T-cell-targeted peanut-specific immunotherapy for an HLA-diverse population. Copyright © 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  11. Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility

    PubMed Central

    Pancera, Marie; Majeed, Shahzad; Ban, Yih-En Andrew; Chen, Lei; Huang, Chih-chin; Kong, Leopold; Stuckey, Jonathan; Zhou, Tongqing; Robinson, James E.; Schief, William R.; Sodroski, Joseph; Wyatt, Richard; Kwong, Peter D.

    2009-01-01

    The viral spike of HIV-1 is composed of three gp120 envelope glycoproteins attached noncovalently to three gp41 transmembrane molecules. Viral entry is initiated by binding to the CD4 receptor on the cell surface, which induces large conformational changes in gp120. These changes not only provide a model for receptor-triggered entry, but affect spike sensitivity to drug- and antibody-mediated neutralization. Although some of the details of the CD4-induced conformational change have been visualized by crystal structures and cryoelectron tomograms, the critical gp41-interactive region of gp120 was missing from previous atomic-level characterizations. Here we determine the crystal structure of an HIV-1 gp120 core with intact gp41-interactive region in its CD4-bound state, compare this structure to unliganded and antibody-bound forms to identify structurally invariant and plastic components, and use ligand-oriented cryoelectron tomograms to define component mobility in the viral spike context. Newly defined gp120 elements proximal to the gp41 interface complete a 7-stranded β-sandwich, which appeared invariant in conformation. Loop excursions emanating from the sandwich form three topologically separate—and structurally plastic—layers, topped off by the highly glycosylated gp120 outer domain. Crystal structures, cryoelectron tomograms, and interlayer chemistry were consistent with a mechanism in which the layers act as a shape-changing spacer, facilitating movement between outer domain and gp41-associated β-sandwich and providing for conformational diversity used in immune evasion. A “layered” gp120 architecture thus allows movement among alternative glycoprotein conformations required for virus entry and immune evasion, whereas a β-sandwich clamp maintains gp120–gp41 interaction and regulates gp41 transitions. PMID:20080564

  12. Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility.

    PubMed

    Pancera, Marie; Majeed, Shahzad; Ban, Yih-En Andrew; Chen, Lei; Huang, Chih-chin; Kong, Leopold; Kwon, Young Do; Stuckey, Jonathan; Zhou, Tongqing; Robinson, James E; Schief, William R; Sodroski, Joseph; Wyatt, Richard; Kwong, Peter D

    2010-01-19

    The viral spike of HIV-1 is composed of three gp120 envelope glycoproteins attached noncovalently to three gp41 transmembrane molecules. Viral entry is initiated by binding to the CD4 receptor on the cell surface, which induces large conformational changes in gp120. These changes not only provide a model for receptor-triggered entry, but affect spike sensitivity to drug- and antibody-mediated neutralization. Although some of the details of the CD4-induced conformational change have been visualized by crystal structures and cryoelectron tomograms, the critical gp41-interactive region of gp120 was missing from previous atomic-level characterizations. Here we determine the crystal structure of an HIV-1 gp120 core with intact gp41-interactive region in its CD4-bound state, compare this structure to unliganded and antibody-bound forms to identify structurally invariant and plastic components, and use ligand-oriented cryoelectron tomograms to define component mobility in the viral spike context. Newly defined gp120 elements proximal to the gp41 interface complete a 7-stranded beta-sandwich, which appeared invariant in conformation. Loop excursions emanating from the sandwich form three topologically separate--and structurally plastic--layers, topped off by the highly glycosylated gp120 outer domain. Crystal structures, cryoelectron tomograms, and interlayer chemistry were consistent with a mechanism in which the layers act as a shape-changing spacer, facilitating movement between outer domain and gp41-associated beta-sandwich and providing for conformational diversity used in immune evasion. A "layered" gp120 architecture thus allows movement among alternative glycoprotein conformations required for virus entry and immune evasion, whereas a beta-sandwich clamp maintains gp120-gp41 interaction and regulates gp41 transitions.

  13. Expression and structural features of endoglin (CD105), a transforming growth factor beta1 and beta3 binding protein, in human melanoma.

    PubMed Central

    Altomonte, M.; Montagner, R.; Fonsatti, E.; Colizzi, F.; Cattarossi, I.; Brasoveanu, L. I.; Nicotra, M. R.; Cattelan, A.; Natali, P. G.; Maio, M.

    1996-01-01

    Human endoglin (CD105) is a member of the transforming growth factor beta (TGF-beta) receptor family that binds TGF-beta1 and -beta3, but not TGF-beta2, on human endothelial cells. Immunohistochemical analyses demonstrated that CD105 is expressed on normal and neoplastic cells of the melanocytic lineage. The anti-CD105 MAb, MAEND3, stained 50, 25 and 34% of intradermal naevi, primary and metastatic melanomas investigated, respectively, and nine out of 12 melanoma cell lines. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that CD105 expressed by melanoma cells consists of a homodimeric protein with an apparent molecular weight of 180 and 95 kDa under non-reducing and reducing conditions. Cross-linking of 125I-labelled TGF-beta1 to melanoma cells, Mel 97, by disuccinimidyl suberate (DSS) demonstrated that CD105 expressed on pigmented cells binds TGF-beta1; the pattern of binding of TGF-beta1 to melanoma cells was found to be similar to that of human umbilical vein endothelial cells. The addition of exogenous, bioactive TGF-beta1 significantly (P<0.05) inhibited the growth of CD105-positive melanoma cells, Mel 97, but did not affect that of CD105-negative melanoma cells, F0-1. These data, altogether, demonstrate that CD105 is expressed on pigmented cells and might play a functionally relevant role in the biology of human melanoma cells by regulating their sensitivity to TGF-betas. Images Figure 1 Figure 3 Figure 4 PMID:8932339

  14. Immuno-biosensor for Detection of CD20-Positive Cells Using Surface Plasmon Resonance.

    PubMed

    Shanehbandi, Dariush; Majidi, Jafar; Kazemi, Tohid; Baradaran, Behzad; Aghebati-Maleki, Leili; Fathi, Farzaneh; Ezzati Nazhad Dolatabadi, Jafar

    2017-06-01

    Purpose: Surface plasmon resonance (SPR) sensing confers a real-time assessment of molecular interactions between biomolecules and their ligands. This approach is highly sensitive and reproducible and could be employed to confirm the successful binding of drugs to cell surface targets. The specific affinity of monoclonal antibodies (MAb) for their target antigens is being utilized for development of immuno-sensors and therapeutic agents. CD20 is a surface protein of B lymphocytes which has been widely employed for immuno-targeting of B-cell related disorders. In the present study, binding ability of an anti-CD20 MAb to surface antigens of intact target cells was investigated by SPR technique. Methods: Two distinct strategies were used for immobilization of the anti-CD20 MAb onto gold (Au) chips. MUA (11-mercaptoundecanoic acid) and Staphylococcus aureus protein A (SpA) were the two systems used for this purpose. A suspension of CD20-positive Raji cells was injected in the analyte phase and the resulting interactions were analyzed and compared to those of MOLT-4 cell line as CD20-negative control. Results: Efficient binding of anti-CD20 MAb to the surface antigens of Raji cell line was confirmed by both immobilizing methods, whereas this MAb had not a noticeable affinity to the MOLT-4 cells. Conclusion: According to the outcomes, the investigated MAb had acceptable affinity and specificity to the target antigens on the cell surface and could be utilized for immuno-detection of CD20-positive intact cells by SPR method.

  15. Immuno-biosensor for Detection of CD20-Positive Cells Using Surface Plasmon Resonance

    PubMed Central

    Shanehbandi, Dariush; Majidi, Jafar; Kazemi, Tohid; Baradaran, Behzad; Aghebati-Maleki, Leili; Fathi, Farzaneh; Ezzati Nazhad Dolatabadi, Jafar

    2017-01-01

    Purpose: Surface plasmon resonance (SPR) sensing confers a real-time assessment of molecular interactions between biomolecules and their ligands. This approach is highly sensitive and reproducible and could be employed to confirm the successful binding of drugs to cell surface targets. The specific affinity of monoclonal antibodies (MAb) for their target antigens is being utilized for development of immuno-sensors and therapeutic agents. CD20 is a surface protein of B lymphocytes which has been widely employed for immuno-targeting of B-cell related disorders. In the present study, binding ability of an anti-CD20 MAb to surface antigens of intact target cells was investigated by SPR technique. Methods: Two distinct strategies were used for immobilization of the anti-CD20 MAb onto gold (Au) chips. MUA (11-mercaptoundecanoic acid) and Staphylococcus aureus protein A (SpA) were the two systems used for this purpose. A suspension of CD20-positive Raji cells was injected in the analyte phase and the resulting interactions were analyzed and compared to those of MOLT-4 cell line as CD20-negative control. Results: Efficient binding of anti-CD20 MAb to the surface antigens of Raji cell line was confirmed by both immobilizing methods, whereas this MAb had not a noticeable affinity to the MOLT-4 cells. Conclusion: According to the outcomes, the investigated MAb had acceptable affinity and specificity to the target antigens on the cell surface and could be utilized for immuno-detection of CD20-positive intact cells by SPR method. PMID:28761820

  16. Impaired NFAT and NFκB activation are involved in suppression of CD40 ligand expression by Δ{sup 9}-tetrahydrocannabinol in human CD4{sup +} T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngaotepprutaram, Thitirat; Center for Integrative Toxicology, Michigan State University; Kaplan, Barbara L.F.

    We have previously reported that Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), the main psychoactive cannabinoid in marijuana, suppresses CD40 ligand (CD40L) expression by activated mouse CD4{sup +} T cells. CD40L is involved in pathogenesis of many autoimmune and inflammatory diseases. In the present study, we investigated the molecular mechanism of Δ{sup 9}-THC-mediated suppression of CD40L expression using peripheral blood human T cells. Pretreatment with Δ{sup 9}-THC attenuated CD40L expression in human CD4{sup +} T cells activated by anti-CD3/CD28 at both the protein and mRNA level, as determined by flow cytometry and quantitative real-time PCR, respectively. Electrophoretic mobility shift assays revealed that Δ{supmore » 9}-THC suppressed the DNA-binding activity of both NFAT and NFκB to their respective response elements within the CD40L promoter. An assessment of the effect of Δ{sup 9}-THC on proximal T cell-receptor (TCR) signaling induced by anti-CD3/CD28 showed significant impairment in the rise of intracellular calcium, but no significant effect on the phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β. Collectively, these findings identify perturbation of the calcium-NFAT and NFκB signaling cascade as a key mechanistic event by which Δ{sup 9}-THC suppresses human T cell function. - Highlights: • Δ{sup 9}-THC attenuated CD40L expression in activated human CD4+ T cells. • Δ{sup 9}-THC suppressed DNA-binding activity of NFAT and NFκB. • Δ{sup 9}-THC impaired elevation of intracellular Ca2+. • Δ{sup 9}-THC did not affect phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β.« less

  17. Antibodies with high avidity to the gp120 envelope protein in protection from simian immunodeficiency virus SIV(mac251) acquisition in an immunization regimen that mimics the RV-144 Thai trial.

    PubMed

    Pegu, Poonam; Vaccari, Monica; Gordon, Shari; Keele, Brandon F; Doster, Melvin; Guan, Yongjun; Ferrari, Guido; Pal, Ranajit; Ferrari, Maria Grazia; Whitney, Stephen; Hudacik, Lauren; Billings, Erik; Rao, Mangala; Montefiori, David; Tomaras, Georgia; Alam, S Munir; Fenizia, Claudio; Lifson, Jeffrey D; Stablein, Donald; Tartaglia, Jim; Michael, Nelson; Kim, Jerome; Venzon, David; Franchini, Genoveffa

    2013-02-01

    The recombinant canarypox vector, ALVAC-HIV, together with human immunodeficiency virus (HIV) gp120 envelope glycoprotein, has protected 31.2% of Thai individuals from HIV acquisition in the RV144 HIV vaccine trial. This outcome was unexpected, given the limited ability of the vaccine components to induce CD8(+) T-cell responses or broadly neutralizing antibodies. We vaccinated macaques with an immunization regimen intended to mimic the RV144 trial and exposed them intrarectally to a dose of the simian immunodeficiency virus SIV(mac251) that transmits few virus variants, similar to HIV transmission to humans. Vaccination induced anti-envelope antibodies in all vaccinees and CD4(+) and CD8(+) T-cell responses. Three of the 11 macaques vaccinated with ALVAC-SIV/gp120 were protected from SIV(mac251) acquisition, but the result was not significant. The remaining vaccinees were infected and progressed to disease. The magnitudes of vaccine-induced SIV(mac251)-specific T-cell responses and binding antibodies were not significantly different between protected and infected animals. However, sera from protected animals had higher avidity antibodies to gp120, recognized the variable envelope regions V1/V2, and reduced SIV(mac251) infectivity in cells that express high levels of α(4)β(7) integrins, suggesting a functional role of antibodies to V2. The current results emphasize the utility of determining the titer of repeated mucosal challenge in the preclinical evaluation of HIV vaccines.

  18. Antibodies with High Avidity to the gp120 Envelope Protein in Protection from Simian Immunodeficiency Virus SIVmac251 Acquisition in an Immunization Regimen That Mimics the RV-144 Thai Trial

    PubMed Central

    Pegu, Poonam; Vaccari, Monica; Gordon, Shari; Keele, Brandon F.; Doster, Melvin; Guan, Yongjun; Ferrari, Guido; Pal, Ranajit; Ferrari, Maria Grazia; Whitney, Stephen; Hudacik, Lauren; Billings, Erik; Rao, Mangala; Montefiori, David; Tomaras, Georgia; Alam, S. Munir; Fenizia, Claudio; Lifson, Jeffrey D.; Stablein, Donald; Tartaglia, Jim; Michael, Nelson; Kim, Jerome; Venzon, David

    2013-01-01

    The recombinant canarypox vector, ALVAC-HIV, together with human immunodeficiency virus (HIV) gp120 envelope glycoprotein, has protected 31.2% of Thai individuals from HIV acquisition in the RV144 HIV vaccine trial. This outcome was unexpected, given the limited ability of the vaccine components to induce CD8+ T-cell responses or broadly neutralizing antibodies. We vaccinated macaques with an immunization regimen intended to mimic the RV144 trial and exposed them intrarectally to a dose of the simian immunodeficiency virus SIVmac251 that transmits few virus variants, similar to HIV transmission to humans. Vaccination induced anti-envelope antibodies in all vaccinees and CD4+ and CD8+ T-cell responses. Three of the 11 macaques vaccinated with ALVAC-SIV/gp120 were protected from SIVmac251 acquisition, but the result was not significant. The remaining vaccinees were infected and progressed to disease. The magnitudes of vaccine-induced SIVmac251-specific T-cell responses and binding antibodies were not significantly different between protected and infected animals. However, sera from protected animals had higher avidity antibodies to gp120, recognized the variable envelope regions V1/V2, and reduced SIVmac251 infectivity in cells that express high levels of α4β7 integrins, suggesting a functional role of antibodies to V2. The current results emphasize the utility of determining the titer of repeated mucosal challenge in the preclinical evaluation of HIV vaccines. PMID:23175374

  19. CD44-mediated hyaluronan binding marks proliferating hematopoietic progenitor cells and promotes bone marrow engraftment

    PubMed Central

    Lee-Sayer, Sally S. M.; Dougan, Meghan N.; Cooper, Jesse; Sanderson, Leslie; Dosanjh, Manisha; Maxwell, Christopher A.

    2018-01-01

    CD44 is a widely expressed cell adhesion molecule that binds to the extracellular matrix component, hyaluronan. However, this interaction is not constitutive in most immune cells at steady state, as the ability of CD44 to engage hyaluronan is highly regulated. While activated T cells and macrophages gain the ability to bind hyaluronan by CD44, the status in other immune cells is less studied. Here we found a percentage of murine eosinophils, natural killer and natural killer T cells were capable of interacting with hyaluronan at steady state. To further investigate the consequences of hyaluronan binding by CD44 in the hematopoietic system, point mutations of CD44 that either cannot bind hyaluronan (LOF-CD44) or have an increased affinity for hyaluronan (GOF-CD44) were expressed in CD44-deficient bone marrow. Competitive bone marrow reconstitution of irradiated mice revealed an early preference for GOF-CD44 over WT-CD44 expressing cells, and for WT-CD44 over LOF-CD44 expressing cells, in the hematopoietic progenitor cell compartment. The advantage of the hyaluronan-binding cells was observed in the hematopoietic stem and progenitor populations, and was maintained throughout the immune system. Hematopoietic stem cells bound minimal hyaluronan at steady state, and this was increased when the cells were induced to proliferate whereas multipotent progenitors had an increased ability to bind hyaluronan at steady state. In vitro, the addition of hyaluronan promoted their proliferation. Thus, proliferating hematopoietic progenitors bind hyaluronan, and hyaluronan binding cells have a striking competitive advantage in bone marrow engraftment. PMID:29684048

  20. Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil.

    PubMed

    Muehe, E Marie; Adaktylou, Irini J; Obst, Martin; Zeitvogel, Fabian; Behrens, Sebastian; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2013-01-01

    Cadmium (Cd) is of environmental relevance as it enters soils via Cd-containing phosphate fertilizers and endangers human health when taken up by crops. Cd is known to associate with Fe(III) (oxyhydr)oxides in pH-neutral to slightly acidic soils, though it is not well understood how the interrelation of Fe and Cd changes under Fe(III)-reducing conditions. Therefore, we investigated how the mobility of Cd changes when a Cd-bearing soil is faced with organic carbon input and reducing conditions. Using fatty acid profiles and quantitative PCR, we found that both fermenting and Fe(III)-reducing bacteria were stimulated by organic carbon-rich conditions, leading to significant Fe(III) reduction. The reduction of Fe(III) minerals was accompanied by increasing soil pH, increasing dissolved inorganic carbon, and decreasing Cd mobility. SEM-EDX mapping of soil particles showed that a minor fraction of Cd was transferred to Ca- and S-bearing minerals, probably carbonates and sulfides. Most of the Cd, however, correlated with a secondary iron mineral phase that was formed during microbial Fe(III) mineral reduction and contained mostly Fe, suggesting an iron oxide mineral such as magnetite (Fe3O4). Our data thus provide evidence that secondary Fe(II) and Fe(II)/Fe(III) mixed minerals could be a sink for Cd in soils under reducing conditions, thus decreasing the mobility of Cd in the soil.

  1. Induction of Calcium Flux and Enhancement of Cytolytic Activity in Natural Killer Cells by Cross-Linking of the Sheep Erythrocyte Binding Protein (CD2) and the Fc-Receptor (CD16)

    DTIC Science & Technology

    1987-09-15

    lysis qs P-:asurcd by 5tCr release assay. Cell line 4 47 Is a CD3I/CD8S/CD 16: CTI, specif Ic for H-LA- B27 . Cell line 52 Is a CD3/CD4*/CD 16- HLA -Dm...Ind i-LA-Dw 1. The B- lymp1hobiastold cclIi line JH does niot express either I ILA- B27 or HLA -Dwl1. Ef fector cells were inicubated with targets at a...8217/CD3*/CD8’/CD16- pheno- measured in Quin 2/AM (Calbiochem. San Diego. CA) -loaded cells iype and is specific for HLA -1327. 0TL line 52 has a CD2ý/CD3

  2. Lipopolysaccharide modulation of a CD14-like molecule on porcine alveolar macrophages

    NASA Technical Reports Server (NTRS)

    Kielian, T. L.; Ross, C. R.; McVey, D. S.; Chapes, S. K.; Blecha, F.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Cluster of differentiation antigen 14 (CD14) functions as a receptor for lipopolysaccharide (LPS) LPS-binding protein (LBP) complexes. Because LPS has varying effects on CD14 expression in vitro, we evaluated CD14 expression in response to LPS with a fully differentiated macrophage phenotype, the alveolar macrophage. By using flow microfluorometric analysis and a radioimmunoassay with an anti-human CD14 monoclonal antibody (My4) that cross-reacts with porcine CD14, we found that macrophages stimulated with LPS for 24 h exhibited a two- to fivefold increase in CD14-like antigen compared with unstimulated cells. At low concentrations of LPS, up-regulation of the CD14-like antigen was dependent on serum; at higher concentrations of LPS, serum was not required. In the absence of serum a 10-fold higher dose of LPS (10 ng/ml) was required to increase CD14-like expression. In addition, LPS-induced CD14-like up-regulation correlated with secretion of tumor necrosis factor-alpha, regardless of serum concentration. Blockade with My4 antibody significantly inhibited LPS-induced tumor necrosis factor-alpha secretion at 1 ng/ml of LPS. However, inhibition decreased as we increased the LPS concentration, suggesting the existence of CD14-independent pathways of macrophage activation in response to LPS. Alternatively, My4 may have a lower affinity for the porcine CD14 antigen than LPS, which may have only partially blocked the LPS-LBP binding site at high concentrations of LPS. Therefore, these data suggest that LPS activation of porcine alveolar macrophages for 24 h increased CD14-like receptor expression. The degree of CD14-like up-regulation was related to LPS concentration, however, activation did not require the presence of serum at high concentrations of LPS.

  3. Addition of lysophospholipids with large head groups to cells inhibits Shiga toxin binding.

    PubMed

    Ailte, Ieva; Lingelem, Anne Berit Dyve; Kavaliauskiene, Simona; Bergan, Jonas; Kvalvaag, Audun Sverre; Myrann, Anne-Grethe; Skotland, Tore; Sandvig, Kirsten

    2016-07-26

    Shiga toxin (Stx), an AB5 toxin, binds specifically to the neutral glycosphingolipid Gb3 at the cell surface before being transported into cells. We here demonstrate that addition of conical lysophospholipids (LPLs) with large head groups inhibit Stx binding to cells whereas LPLs with small head groups do not. Lysophosphatidylinositol (LPI 18:0), the most efficient LPL with the largest head group, was selected for in-depth investigations to study how the binding of Stx is regulated. We show that the inhibition of Stx binding by LPI is reversible and possibly regulated by cholesterol since addition of methyl-β-cyclodextrin (mβCD) reversed the ability of LPI to inhibit binding. LPI-induced inhibition of Stx binding is independent of signalling and membrane turnover as it occurs in fixed cells as well as after depletion of cellular ATP. Furthermore, data obtained with fluorescent membrane dyes suggest that LPI treatment has a direct effect on plasma membrane lipid packing with shift towards a liquid disordered phase in the outer leaflet, while lysophosphoethanolamine (LPE), which has a small head group, does not. In conclusion, our data show that cellular treatment with conical LPLs with large head groups changes intrinsic properties of the plasma membrane and modulates Stx binding to Gb3.

  4. Prostaglandin E2 induces expression of P-selectin (CD62P) on cultured human umbilical vein endothelial cells and enhances endothelial binding of CD4-T-cells.

    PubMed

    Hailer, N P; Oppermann, E; Leckel, K; Cinatl, J; Markus, B H; Blaheta, R A

    2000-07-15

    Interaction of endothelial P-selectin with sialyl Lewis(x)-glycoprotein or P-selectin glycoprotein ligand (PSGL)-1 on leukocytes represents an early step in leukocyte recruitment. Redistribution of P-selectin to the endothelial cell surface occurs rapidly after challenge with several proinflammatory agents, for example, histamine, leucopterins, or lipopolysaccharide. We present evidence that prostaglandin E2 (PGE2) is an efficient inductor of surface P-selectin on cultured human umbilical vein endothelial cells (HUVEC). The increase in P-selectin-immunoreactivity coincided with redistribution of cytoplasmic P-selectin-reactive granulae to the endothelial cell surface, as visualized by confocal laser microscopic examination. CD4-T-cell adhesion to PGE2-stimulated HUVEC was also enhanced by a factor of 4, and blocking mAb directed against the binding site of P-selectin almost completely abrogated this increase in CD4-T-cell adhesion. In summary, our findings show that liberation of PGE2 is an important inductor of P-selectin surface expression on endothelial cells, resulting in enhanced recruitment of inflammatory cells.

  5. Global Shape and Ligand Binding Efficiency of the HIV-1-neutralizing Antibodies Differ from Those of Antibodies That Cannot Neutralize HIV-1*

    PubMed Central

    Solanki, Ashish K.; Rathore, Yogendra S.; Badmalia, Maulik D.; Dhoke, Reema R.; Nath, Samir K.; Nihalani, Deepak; Ashish

    2014-01-01

    Asymmetric disposition of Fab arms in the structures solved for the broadly neutralizing monoclonal antibody (nmAb) IgG1 b12 raised the question of whether the unusual shape observed for b12 is common for all IgG1 mAbs or if there is a difference in the overall shape of nmAbs versus non-nmAbs. We compared small angle x-ray scattering (SAXS) data-based models and limited proteolysis profiles of some IgG1 mAbs known to be having and lacking HIV-1 neutralizing potency. In non-nmAbs, the Fab arms were found to be symmetrically disposed in space relative to central Fc, but in most nmAbs, the Fab arms were asymmetrically disposed, as seen for IgG1 b12. The only exceptions were 2G12 and 4E10, where both Fab arms were closed above Fc, suggesting some Fab-Fc and/or Fab-Fab interaction in the nmAbs that constrained extension of the Fab-Fc linker. Interestingly, these observations were correlated with differential proteolysis profiles of the mAbs by papain. Under conditions when papain could cut both Fab arms of non-nmAbs, only one Fab arm could be removed from neutralizing ones (except for 2G12 and 4E10). Chromatography and small angle x-ray scattering results of papain-digested products revealed that 1) the Fab-Fc or Fab-Fab interactions in unliganded mAbs are retained in digested products, and 2) whereas anti-gp120 non-nmAbs could bind two gp120 molecules, nmAbs could bind only one gp120. Additional experiments showed that except for 2G12 and 4E10, unopen shapes of nmAbs remain uninfluenced by ionic strength but can be reversibly opened by low pH of buffer accompanied by loss of ligand binding ability. PMID:25331945

  6. Global Shape and Ligand Binding Efficiency of the HIV-1-neutralizing Antibodies Differ from Those of Antibodies That Cannot Neutralize HIV-1

    DOE PAGES

    Solanki, Ashish K.; Rathore, Yogendra S.; Badmalia, Maulik D.; ...

    2014-10-20

    Asymmetric disposition of Fab arms in the structures solved for the broadly neutralizing monoclonal antibody (nmAb) IgG1 b12 raised the question of whether the unusual shape observed for b12 is common for all IgG1 mAbs or if there is a difference in the overall shape of nmAbs versus non-nmAbs. In this paper, we compared small angle x-ray scattering (SAXS) data-based models and limited proteolysis profiles of some IgG1 mAbs known to be having and lacking HIV-1 neutralizing potency. In non-nmAbs, the Fab arms were found to be symmetrically disposed in space relative to central Fc, but in most nmAbs, themore » Fab arms were asymmetrically disposed, as seen for IgG1 b12. The only exceptions were 2G12 and 4E10, where both Fab arms were closed above Fc, suggesting some Fab-Fc and/or Fab-Fab interaction in the nmAbs that constrained extension of the Fab-Fc linker. Interestingly, these observations were correlated with differential proteolysis profiles of the mAbs by papain. Under conditions when papain could cut both Fab arms of non-nmAbs, only one Fab arm could be removed from neutralizing ones (except for 2G12 and 4E10). Chromatography and small angle x-ray scattering results of papain-digested products revealed that 1) the Fab-Fc or Fab-Fab interactions in unliganded mAbs are retained in digested products, and 2) whereas anti-gp120 non-nmAbs could bind two gp120 molecules, nmAbs could bind only one gp120. Finally, additional experiments showed that except for 2G12 and 4E10, unopen shapes of nmAbs remain uninfluenced by ionic strength but can be reversibly opened by low pH of buffer accompanied by loss of ligand binding ability.« less

  7. Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Zarling, Joyce M.; Moran, Patricia A.; Haffar, Omar; Sias, Joan; Richman, Douglas D.; Spina, Celsa A.; Myers, Dorothea E.; Kuebelbeck, Virginia; Ledbetter, Jeffrey A.; Uckun, Fatih M.

    1990-09-01

    FUNCTIONAL impairment and selective depletion of CD4+ T cells, the hallmark of AIDS, are at least partly caused by human immunodeficiency virus (HIV-1) type 1 binding to the CD4 molecule and infecting CD4+ cells1,2. It may, therefore, be of therapeutic value to target an antiviral agent to CD4+ cells to prevent infection and to inhibit HIV-1 production in patients' CD4+ cells which contain proviral DNA3,4. We report here that HIV-1 replication in normal primary CD4+ T cells can be inhibited by pokeweed antiviral protein, a plant protein of relative molecular mass 30,000 (ref. 5), which inhibits replication of certain plant RNA viruses6-8, and of herpes simplex virus, poliovirus and influenza virus9-11. Targeting pokeweed antiviral protein to CD4+ T cells by conjugating it to monoclonal antibodies reactive with CDS, CD7 or CD4 expressed on CD4+ cells, increased its anti-HIV potency up to 1,000-fold. HIV-1 replication is inhibited at picomolar concentrations of conjugates of pokeweed antiviral protein and monoclonal antibodies, which do not inhibit proliferation of normal CD4+ T cells or CD4-dependent responses. These conjugates inhibit HIV-1 protein synthesis and also strongly inhibit HIV-1 production in activated CD4+ T cells from infected patients.

  8. Inhibitory Phenotype of HBV-Specific CD4+ T-Cells Is Characterized by High PD-1 Expression but Absent Coregulation of Multiple Inhibitory Molecules

    PubMed Central

    Kurktschiev, Peter; Schraut, Winfried; Zachoval, Reinhart; Wendtner, Clemens; Wächtler, Martin; Spannagl, Michael; Denk, Gerald; Ulsenheimer, Axel; Bengsch, Bertram; Pircher, Hanspeter; Diepolder, Helmut M.; Grüner, Norbert H.; Jung, Maria-Christina

    2014-01-01

    Background T-cell exhaustion seems to play a critical role in CD8+ T-cell dysfunction during chronic viral infections. However, up to now little is known about the mechanisms underlying CD4+ T-cell dysfunction during chronic hepatitis B virus (CHB) infection and the role of inhibitory molecules such as programmed death 1 (PD-1) for CD4+ T-cell failure. Methods The expression of multiple inhibitory molecules such as PD-1, CTLA-4, TIM-3, CD244, KLRG1 and markers defining the grade of T-cell differentiation as CCR7, CD45RA, CD57 and CD127 were analyzed on virus-specific CD4+ T-cells from peripheral blood using a newly established DRB1*01-restricted MHC class II Tetramer. Effects of in vitro PD-L1/2 blockade were defined by investigating changes in CD4+ T-cell proliferation and cytokine production. Results CD4+ T-cell responses during chronic HBV infection was characterized by reduced Tetramer+CD4+ T-cell frequencies, effector memory phenotype, sustained PD-1 but low levels of CTLA-4, TIM-3, KLRG1 and CD244 expression. PD-1 blockade revealed individualized patterns of in vitro responsiveness with partly increased IFN-γ, IL-2 and TNF-α secretion as well as enhanced CD4+ T-cell expansion almost in treated patients with viral control. Conclusion HBV-specific CD4+ T-cells are reliably detectable during different courses of HBV infection by MHC class II Tetramer technology. CD4+ T-cell dysfunction during chronic HBV is basically linked to strong PD-1 upregulation but absent coregulation of multiple inhibitory receptors. PD-L1/2 neutralization partly leads to enhanced CD4+ T-cell functionality with heterogeneous patterns of CD4+ T-cell rejunivation. PMID:25144233

  9. Attenuation of cancer-initiating cells stemness properties by abrogating S100A4 calcium binding ability in head and neck cancers.

    PubMed

    Cheng, Li-Hao; Hung, Kai-Feng; Huang, Tung-Fu; Hsieh, Hsin-Pei; Wang, Shu-Ying; Huang, Chih-Yang; Lo, Jeng-Fan

    2016-11-29

    S100A4 is a calcium-binding protein capable of promoting epithelial-mesenchymal transition. Previously, we have demonstrated that S100A4 is required to sustain the head and neck cancer-initiating cells (HN-CICs) subpopulation. In this study, to further investigate the molecular mechanism, we established the head and neck squamous cell carcinoma (HNSCC) cell lines stably expressing mutant S100A4 proteins with defective calcium-binding sites on either N-terminal (NM) or C-terminal (CM), or a deletion of the last 15 amino-acid residues (CD). We showed that the NM, CM and CD harboring sphere cells that were enriched with HN-CICs population exhibited impaired stemness and malignant properties in vitro, as well as reduced tumor growth ability in vivo. Mechanistically, we demonstrated that mutant S100A4 proteins decreased the promoter activity of Nanog, likely through inhibition of p53. Moreover, the biophysical analyses of purified recombinant mutant S100A4 proteins suggest that both NM and CM mutant S100A4 were very similar to the WT S100A4 with subtle difference on the secondary structure, and that the CD mutant protein displayed the unexpected monomeric form in the solution phase.Taken together, our results suggest that both the calcium-binding ability and the C-terminal region of S100A4 are important for HN-CICs to sustain its stemness property and malignancy, and that the mechanism could be mediated by repressing p53 and subsequently activating the Nanog expression.

  10. Doxorubicin attached to HPMA copolymer via amide bond modifies the glycosylation pattern of EL4 cells.

    PubMed

    Kovar, Lubomir; Etrych, Tomas; Kabesova, Martina; Subr, Vladimir; Vetvicka, David; Hovorka, Ondrej; Strohalm, Jiri; Sklenar, Jan; Chytil, Petr; Ulbrich, Karel; Rihova, Blanka

    2010-08-01

    To avoid the side effects of the anti-cancer drug doxorubicin (Dox), we conjugated this drug to a N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer backbone. Dox was conjugated via an amide bond (Dox-HPMA(AM), PK1) or a hydrazone pH-sensitive bond (Dox-HPMA(HYD)). In contrast to Dox and Dox-HPMA(HYD), Dox-HPMA(AM) accumulates within the cell's intracellular membranes, including those of the Golgi complex and endoplasmic reticulum, both involved in protein glycosylation. Flow cytometry was used to determine lectin binding and cell death, immunoblot to characterize the presence of CD7, CD43, CD44, and CD45, and high-performance anion exchange chromatography with pulsed amperometric detector analysis for characterization of plasma membrane saccharide composition. Incubation of EL4 cells with Dox-HPMA(AM) conjugate, in contrast to Dox or Dox-HPMA(HYD), increased the amounts of membrane surface-associated glycoproteins, as well as saccharide moieties recognized by peanut agglutinin, Erythrina cristagalli, or galectin-1 lectins. Only Dox-HPMA(AM) increased expression of the highly glycosylated membrane glycoprotein CD43, while expression of others (CD7, CD44, and CD45) was unaffected. The binding sites for galectin-1 are present on CD43 molecule. Furthermore, we present that EL4 treated with Dox-HPMA(AM) possesses increased sensitivity to galectin-1-induced apoptosis. In this study, we demonstrate that Dox-HPMA(AM) treatment changes glycosylation of the EL4 T cell lymphoma surface and sensitizes the cells to galectin-1-induced apoptosis.

  11. Evolution of the human immunodeficiency virus type 2 envelope in the first years of infection is associated with the dynamics of the neutralizing antibody response

    DOE PAGES

    Rocha, Cheila; Calado, Rita; Borrego, Pedro; ...

    2013-10-24

    Background: therapy and the majority of HIV-2 infected individuals survive as elite controllers with normal CD4 + T cell counts and low or undetectable plasma viral load. Neutralizing antibodies (Nabs) are thought to play a central role in HIV-2 evolution and pathogenesis. However, the dynamic of the Nab response and resulting HIV-2 escape during acute infection and their impact in HIV-2 evolution and disease progression remain largely unknown. Our objective was to characterize the Nab response and the molecular and phenotypic evolution of HIV-2 in association with Nab escape in the first years of infection in two children infected atmore » birth. As a result, CD4 + T cells decreased from about 50% to below 30% in both children in the first five years of infection and the infecting R5 viruses were replaced by X4 viruses within the same period. With antiretroviral therapy, viral load in child 1 decreased to undetectable levels and CD4 + T cells recovered to normal levels, which have been sustained at least until the age of 12. In contrast, viral load increased in child 2 and she progressed to AIDS and death at age 9. Beginning in the first year of life, child 1 raised high titers of antibodies that neutralized primary R5 isolates more effectively than X4 isolates, both autologous and heterologous. Child 2 raised a weak X4-specific Nab response that decreased sharply as disease progressed. Rate of evolution, nucleotide and amino acid diversity, and positive selection, were significantly higher in the envelope of child 1 compared to child 2. Rates of R5-to-X4 tropism switch, of V1 and V3 sequence diversification, and of convergence of V3 to a β-hairpin structure were related with rate of escape from the neutralizing antibodies. Finally, our data suggests that the molecular and phenotypic evolution of the human immunodeficiency virus type 2 envelope are related with the dynamics of the neutralizing antibody response providing further support for a model in which Nabs play an important role in HIV-2 pathogenesis.« less

  12. Evolution of the human immunodeficiency virus type 2 envelope in the first years of infection is associated with the dynamics of the neutralizing antibody response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocha, Cheila; Calado, Rita; Borrego, Pedro

    Background: therapy and the majority of HIV-2 infected individuals survive as elite controllers with normal CD4 + T cell counts and low or undetectable plasma viral load. Neutralizing antibodies (Nabs) are thought to play a central role in HIV-2 evolution and pathogenesis. However, the dynamic of the Nab response and resulting HIV-2 escape during acute infection and their impact in HIV-2 evolution and disease progression remain largely unknown. Our objective was to characterize the Nab response and the molecular and phenotypic evolution of HIV-2 in association with Nab escape in the first years of infection in two children infected atmore » birth. As a result, CD4 + T cells decreased from about 50% to below 30% in both children in the first five years of infection and the infecting R5 viruses were replaced by X4 viruses within the same period. With antiretroviral therapy, viral load in child 1 decreased to undetectable levels and CD4 + T cells recovered to normal levels, which have been sustained at least until the age of 12. In contrast, viral load increased in child 2 and she progressed to AIDS and death at age 9. Beginning in the first year of life, child 1 raised high titers of antibodies that neutralized primary R5 isolates more effectively than X4 isolates, both autologous and heterologous. Child 2 raised a weak X4-specific Nab response that decreased sharply as disease progressed. Rate of evolution, nucleotide and amino acid diversity, and positive selection, were significantly higher in the envelope of child 1 compared to child 2. Rates of R5-to-X4 tropism switch, of V1 and V3 sequence diversification, and of convergence of V3 to a β-hairpin structure were related with rate of escape from the neutralizing antibodies. Finally, our data suggests that the molecular and phenotypic evolution of the human immunodeficiency virus type 2 envelope are related with the dynamics of the neutralizing antibody response providing further support for a model in which Nabs play an important role in HIV-2 pathogenesis.« less

  13. Cooperative Binding of Cyclodextrin Dimers to Isoflavone Analogues Elucidated by Free Energy Calculations.

    PubMed

    Zhang, Haiyang; Tan, Tianwei; Hetényi, Csaba; Lv, Yongqin; van der Spoel, David

    2014-04-03

    Dimerization of cyclodextrin (CD) molecules is an elementary step in the construction of CD-based nanostructured materials. Cooperative binding of CD cavities to guest molecules facilitates the dimerization process and, consequently, the overall stability and assembly of CD nanostructures. In the present study, all three dimerization modes (head-to-head, head-to-tail, and tail-to-tail) of β-CD molecules and their binding to three isoflavone drug analogues (puerarin, daidzin, and daidzein) were investigated in explicit water surrounding using molecular dynamics simulations. Total and individual contributions from the binding partners and solvent environment to the thermodynamics of these binding reactions are quantified in detail using free energy calculations. Cooperative drug binding to two CD cavities gives an enhanced binding strength for daidzin and daidzein, whereas for puerarin no obvious enhancement is observed. Head-to-head dimerization yields the most stable complexes for inclusion of the tested isoflavones (templates) and may be a promising building block for construction of template-stabilized CD nanostructures. Compared to the case of CD monomers, the desolvation of CD dimers and entropy changes upon complexation prove to be influential factors of cooperative binding. Our results shed light on key points of the design of CD-based supramolecular assemblies. We also show that structure-based calculation of binding thermodynamics can quantify stabilization caused by cooperative effects in building blocks of nanostructured materials.

  14. A novel respiratory syncytial virus (RSV) F subunit vaccine adjuvanted with GLA-SE elicits robust protective TH1-type humoral and cellular immunity in rodent models.

    PubMed

    Lambert, Stacie L; Aslam, Shahin; Stillman, Elizabeth; MacPhail, Mia; Nelson, Christine; Ro, Bodrey; Sweetwood, Rosemary; Lei, Yuk Man; Woo, Jennifer C; Tang, Roderick S

    2015-01-01

    Illness associated with Respiratory Syncytial Virus (RSV) remains an unmet medical need in both full-term infants and older adults. The fusion glycoprotein (F) of RSV, which plays a key role in RSV infection and is a target of neutralizing antibodies, is an attractive vaccine target for inducing RSV-specific immunity. BALB/c mice and cotton rats, two well-characterized rodent models of RSV infection, were used to evaluate the immunogenicity of intramuscularly administered RSV vaccine candidates consisting of purified soluble F (sF) protein formulated with TLR4 agonist glucopyranosyl lipid A (GLA), stable emulsion (SE), GLA-SE, or alum adjuvants. Protection from RSV challenge, serum RSV neutralizing responses, and anti-F IgG responses were induced by all of the tested adjuvanted RSV sF vaccine formulations. However, only RSV sF + GLA-SE induced robust F-specific TH1-biased humoral and cellular responses. In mice, these F-specific cellular responses include both CD4 and CD8 T cells, with F-specific polyfunctional CD8 T cells that traffic to the mouse lung following RSV challenge. This RSV sF + GLA-SE vaccine formulation can also induce robust RSV neutralizing titers and prime IFNγ-producing T cell responses in Sprague Dawley rats. These studies indicate that a protein subunit vaccine consisting of RSV sF + GLA-SE can induce robust neutralizing antibody and T cell responses to RSV, enhancing viral clearance via a TH1 immune-mediated mechanism. This vaccine may benefit older populations at risk for RSV disease.

  15. Functional role of human NK cell receptor 2B4 (CD244) isoforms.

    PubMed

    Mathew, Stephen O; Rao, Krithi K; Kim, Jong R; Bambard, Nowland D; Mathew, Porunelloor A

    2009-06-01

    2B4 (CD244), a member of the signaling lymphocyte-activation molecule (SLAM/CD150), is expressed on all NK cells, a subpopulation of T cells, monocytes and basophils. Human NK cells express two isoforms of 2B4, h2B4-A and h2B4-B that differ in a small portion of the extracellular domain. In the present investigation, we have studied the functions of h2B4-A and h2B4-B. Our study demonstrated that these two isoforms differ in their binding affinity for CD48, which results in differential cytotoxic activity as well as intracellular calcium release by NK cells upon target cell recognition. Analysis of the predicted 3-D structure of the two isoforms showed conformational differences that could account for their differences in binding affinity to CD48. h2B4-A was able to mediate natural cytotoxicity against CD48-expressing K562 target cells and induce intracellular calcium release, whereas h2B4-B showed no effects. NK-92MI, U937, THP-1, KU812, primary monocytes, basophils and NK cells showed expression of both h2B4-A and h2B4-B whereas YT and IL-2-activated NK cells did not show any h2B4-B expression. Stimulation of NK cells through 2B4 resulted in decreased mRNA levels of both h2B4-A and h2B4-B indicating that down-regulation of 2B4 isoforms may be an important factor in controlling NK cell activation during immune responses.

  16. HIV-1 Autologous Antibody Neutralization Associates with Mother to Child Transmission

    PubMed Central

    Baan, Elly; de Ronde, Anthony; Stax, Martijn; Sanders, Rogier W.; Luchters, Stanley; Vyankandondera, Joseph; Lange, Joep M.; Pollakis, Georgios; Paxton, William A

    2013-01-01

    The HIV-1 characteristics associated with mother to child transmission (MTCT) are still poorly understood and if known would indicate where intervention strategies should be targeted. In contrast to horizontally infected individuals, exposed infants possess inherited antibodies (Abs) from their mother with the potential to protect against infection. We investigated the HIV-1 gp160 envelope proteins from seven transmitting mothers (TM) whose children were infected either during gestation or soon after delivery and from four non-transmitting mothers (NTM) with similar viral loads and CD4 counts. Using pseudo-typed viruses we tested gp160 envelope glycoproteins for TZM-bl infectivity, CD4 and CCR5 interactions, DC-SIGN capture and transfer and neutralization with an array of common neutralizing Abs (NAbs) (2F5, 2G12, 4E10 and b12) as well as mother and infant plasma. We found no viral correlates associated with HIV-1 MTCT nor did we find differences in neutralization with the panel of NAbs. We did, however, find that TM possessed significantly higher plasma neutralization capacities than NTM (P  = 0.002). Furthermore, we found that in utero (IU) TM had a higher neutralization capacity than mothers transmitting either peri - partum (PP) or via breastfeeding (BF) (P  = 0.002). Plasma from children infected IU neutralized viruses carrying autologous gp160 viral envelopes as well as those from their corresponding mothers whilst plasma from children infected PP and/or BF demonstrated poor neutralizing capacity. Our results demonstrate heightened autologous NAb responses against gp120/gp41 can associate with a greater risk of HIV-1 MTCT and more specifically in those infants infected IU. Although the number of HIV-1 transmitting pairs is low our results indicate that autologous NAb responses in mothers and infants do not protect against MTCT and may in fact be detrimental when considering IU HIV-1 transmissions. PMID:23874931

  17. Near-Atomic Resolution Structure of a Highly Neutralizing Fab Bound to Canine Parvovirus.

    PubMed

    Organtini, Lindsey J; Lee, Hyunwook; Iketani, Sho; Huang, Kai; Ashley, Robert E; Makhov, Alexander M; Conway, James F; Parrish, Colin R; Hafenstein, Susan

    2016-11-01

    Canine parvovirus (CPV) is a highly contagious pathogen that causes severe disease in dogs and wildlife. Previously, a panel of neutralizing monoclonal antibodies (MAb) raised against CPV was characterized. An antibody fragment (Fab) of MAb E was found to neutralize the virus at low molar ratios. Using recent advances in cryo-electron microscopy (cryo-EM), we determined the structure of CPV in complex with Fab E to 4.1 Å resolution, which allowed de novo building of the Fab structure. The footprint identified was significantly different from the footprint obtained previously from models fitted into lower-resolution maps. Using single-chain variable fragments, we tested antibody residues that control capsid binding. The near-atomic structure also revealed that Fab binding had caused capsid destabilization in regions containing key residues conferring receptor binding and tropism, which suggests a mechanism for efficient virus neutralization by antibody. Furthermore, a general technical approach to solving the structures of small molecules is demonstrated, as binding the Fab to the capsid allowed us to determine the 50-kDa Fab structure by cryo-EM. Using cryo-electron microscopy and new direct electron detector technology, we have solved the 4 Å resolution structure of a Fab molecule bound to a picornavirus capsid. The Fab induced conformational changes in regions of the virus capsid that control receptor binding. The antibody footprint is markedly different from the previous one identified by using a 12 Å structure. This work emphasizes the need for a high-resolution structure to guide mutational analysis and cautions against relying on older low-resolution structures even though they were interpreted with the best methodology available at the time. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Near-Atomic Resolution Structure of a Highly Neutralizing Fab Bound to Canine Parvovirus

    PubMed Central

    Organtini, Lindsey J.; Lee, Hyunwook; Iketani, Sho; Huang, Kai; Ashley, Robert E.; Makhov, Alexander M.; Conway, James F.

    2016-01-01

    ABSTRACT Canine parvovirus (CPV) is a highly contagious pathogen that causes severe disease in dogs and wildlife. Previously, a panel of neutralizing monoclonal antibodies (MAb) raised against CPV was characterized. An antibody fragment (Fab) of MAb E was found to neutralize the virus at low molar ratios. Using recent advances in cryo-electron microscopy (cryo-EM), we determined the structure of CPV in complex with Fab E to 4.1 Å resolution, which allowed de novo building of the Fab structure. The footprint identified was significantly different from the footprint obtained previously from models fitted into lower-resolution maps. Using single-chain variable fragments, we tested antibody residues that control capsid binding. The near-atomic structure also revealed that Fab binding had caused capsid destabilization in regions containing key residues conferring receptor binding and tropism, which suggests a mechanism for efficient virus neutralization by antibody. Furthermore, a general technical approach to solving the structures of small molecules is demonstrated, as binding the Fab to the capsid allowed us to determine the 50-kDa Fab structure by cryo-EM. IMPORTANCE Using cryo-electron microscopy and new direct electron detector technology, we have solved the 4 Å resolution structure of a Fab molecule bound to a picornavirus capsid. The Fab induced conformational changes in regions of the virus capsid that control receptor binding. The antibody footprint is markedly different from the previous one identified by using a 12 Å structure. This work emphasizes the need for a high-resolution structure to guide mutational analysis and cautions against relying on older low-resolution structures even though they were interpreted with the best methodology available at the time. PMID:27535057

  19. Human Monoclonal Antibodies to a Novel Cluster of Conformational Epitopes on HCV E2 with Resistance to Neutralization Escape in a Genotype 2a Isolate

    PubMed Central

    Keck, Zhen-yong; Xia, Jinming; Wang, Yong; Wang, Wenyan; Krey, Thomas; Prentoe, Jannick; Carlsen, Thomas; Li, Angela Ying-Jian; Patel, Arvind H.; Lemon, Stanley M.; Bukh, Jens; Rey, Felix A.; Foung, Steven K. H.

    2012-01-01

    The majority of broadly neutralizing antibodies to hepatitis C virus (HCV) are against conformational epitopes on the E2 glycoprotein. Many of them recognize overlapping epitopes in a cluster, designated as antigenic domain B, that contains residues G530 and D535. To gain information on other regions that will be relevant for vaccine design, we employed yeast surface display of antibodies that bound to genotype 1a H77C E2 mutant proteins containing a substitution either at Y632A (to avoid selecting non-neutralizing antibodies) or D535A. A panel of nine human monoclonal antibodies (HMAbs) was isolated and designated as HC-84-related antibodies. Each HMAb neutralized cell culture infectious HCV (HCVcc) with genotypes 1–6 envelope proteins with varying profiles, and each inhibited E2 binding to the viral receptor CD81. Five of these antibodies neutralized representative genotypes 1–6 HCVcc. Epitope mapping identified a cluster of overlapping epitopes that included nine contact residues in two E2 regions encompassing aa418–446 and aa611–616. Effect on virus entry was measured using H77C HCV retroviral pseudoparticles, HCVpp, bearing an alanine substitution at each of the contact residues. Seven of ten mutant HCVpp showed over 90% reduction compared to wild-type HCVpp and two others showed approximately 80% reduction. Interestingly, four of these antibodies bound to a linear E2 synthetic peptide encompassing aa434–446. This region on E2 has been proposed to elicit non-neutralizing antibodies in humans that interfere with neutralizing antibodies directed at an adjacent E2 region from aa410–425. The isolation of four HC-84 HMAbs binding to the peptide, aa434–446, proves that some antibodies to this region are to highly conserved epitopes mediating broad virus neutralization. Indeed, when HCVcc were passaged in the presence of each of these antibodies, virus escape was not observed. Thus, the cluster of HC-84 epitopes, designated as antigenic domain D, is relevant for vaccine design for this highly diverse virus. PMID:22511875

  20. XAFS studies of metal-ligand interactions at organic surfaces and in solution

    NASA Astrophysics Data System (ADS)

    Boyanov, Maxim I.

    X-ray absorption fine structure spectroscopy (XAFS) was used as a structural probe to determine the mechanism of metal adsorption to organic surfaces. Two specific systems were investigated, Pb adsorption to heneicosanoic acid Langmuir monolayers (CH3(CH2)19COOH), and Cd adsorption to isolated cell walls of the Bacillus subtilis bacterium. Although the study of these systems is important for quite different reasons, the goal in both is metal binding site speciation and structural characterization of the surface complex. The adsorption of aqueous Cd to B. subtilis was studied as a function of pH by fluorescence mode bulk XAFS. Samples were prepared at six pH values in the range 3.4 to 7.8, and the bacterial functional groups responsible for the adsorption were identified under each condition. Under the experimental Cd and bacterial concentrations, the spectroscopy results indicate that Cd binds predominantly to protonated phosphoryl ligands below pH 4.4, while at higher pH adsorption to carboxyl groups becomes increasingly important. At pH 7.8 we observe the activation of an additional binding site, which we tentatively ascribe to deprotonated phosphoryl ligands. A quantitative Cd speciation diagram for the pH range is presented. Grazing-incidence Pb L3 edge XAFS was used in situ to determine the adsorption complex structure in the Pb-Langmuir monolayer study. The results indicate covalent binding of the Pb cations to the carboxyl headgroups, and the observed Pb-Pb coordination suggests that the metal is adsorbed as a hydrolysis polymer, rather than as individual Pb 2+ ions. The data suggest a bidentate binding mechanism and a one Pb atom to one carboxyl headgroup binding stoichiometry. We discuss how this adsorption model can explain the peculiarities observed with Pb in previous metal-Langmuir monolayer studies. A systematic study of the metal local environment in aqueous solutions was conducted and used in the above analyses. Perchlorate and acetate salt solutions of Cd, Pb, Mn, Cr, and Cu were characterized as standards of hydrated ions and metal-carboxyl complexes. The utility of XAFS in differentiating between the ionic, monodentate, bridging-bidentate, and bidentate metal-carboxyl complexes through C-C multiple scattering effects and XANES features is demonstrated.

  1. Midkine inhibits inducible regulatory T cell differentiation by suppressing the development of tolerogenic dendritic cells.

    PubMed

    Sonobe, Yoshifumi; Li, Hua; Jin, Shijie; Kishida, Satoshi; Kadomatsu, Kenji; Takeuchi, Hideyuki; Mizuno, Tetsuya; Suzumura, Akio

    2012-03-15

    Midkine (MK), a heparin-binding growth factor, reportedly contributes to inflammatory diseases, including Crohn's disease and rheumatoid arthritis. We previously showed that MK aggravates experimental autoimmune encephalomyelitis (EAE) by decreasing regulatory CD4(+)CD25(+)Foxp3(+) T cells (Tregs), a population that regulates the development of autoimmune responses, although the precise mechanism remains uncertain. In this article, we show that MK produced in inflammatory conditions suppresses the development of tolerogenic dendritic cells (DCregs), which drive the development of inducible Treg. MK suppressed DCreg-mediated expansion of the CD4(+)CD25(+)Foxp3(+) Treg population. DCregs expressed significantly higher levels of CD45RB and produced significantly less IL-12 compared with conventional dendritic cells. However, MK downregulated CD45RB expression and induced IL-12 production by reducing phosphorylated STAT3 levels via src homology region 2 domain-containing phosphatase-2 in DCreg. Inhibiting MK activity with anti-MK RNA aptamers, which bind to the targeted protein to suppress the function of the protein, increased the numbers of CD11c(low)CD45RB(+) dendritic cells and Tregs in the draining lymph nodes and suppressed the severity of EAE, an animal model of multiple sclerosis. Our results also demonstrated that MK was produced by inflammatory cells, in particular, CD4(+) T cells under inflammatory conditions. Taken together, these results suggest that MK aggravates EAE by suppressing DCreg development, thereby impairing the Treg population. Thus, MK is a promising therapeutic target for various autoimmune diseases.

  2. Structure of Rotavirus Outer-Layer Protein VP7 Bound with a Neutralizing Fab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Scott T.; Settembre, Ethan C.; Trask, Shane D.

    2009-06-17

    Rotavirus outer-layer protein VP7 is a principal target of protective antibodies. Removal of free calcium ions (Ca{sup 2+}) dissociates VP7 trimers into monomers, releasing VP7 from the virion, and initiates penetration-inducing conformational changes in the other outer-layer protein, VP4. We report the crystal structure at 3.4 angstrom resolution of VP7 bound with the Fab fragment of a neutralizing monoclonal antibody. The Fab binds across the outer surface of the intersubunit contact, which contains two Ca{sup 2+} sites. Mutations that escape neutralization by other antibodies suggest that the same region bears the epitopes of most neutralizing antibodies. The monovalent Fab ismore » sufficient to neutralize infectivity. We propose that neutralizing antibodies against VP7 act by stabilizing the trimer, thereby inhibiting the uncoating trigger for VP4 rearrangement. A disulfide-linked trimer is a potential subunit immunogen.« less

  3. The importance of being kinked: role of Pro residues in the selectivity of the helical antimicrobial peptide P5.

    PubMed

    Bobone, Sara; Bocchinfuso, Gianfranco; Park, Yoonkyung; Palleschi, Antonio; Hahm, Kyung-Soo; Stella, Lorenzo

    2013-12-01

    Antimicrobial peptides (AMPs) are promising compounds for developing new antibiotic drugs against drug-resistant bacteria. Many of them kill bacteria by perturbing their membranes but exhibit no significant toxicity towards eukaryotic cells. The identification of the features responsible for this selectivity is essential for their pharmacological development. AMPs exhibit few conserved features, but a statistical analysis of an AMP sequence database indicated that many α-helical AMPs surprisingly have a helix-breaking Pro residue in the middle of their sequence. To discriminate among the different possible hypotheses for the functional role of this feature, we designed an analogue of the antimicrobial peptide P5, in which the central Pro was deleted (analogue P5Del). Pro removal resulted in a dramatic increase of toxicity. This was explained by the observation that P5Del binds both charged and neutral membranes, whereas P5 has no appreciable affinity towards neutral bilayers. CD and simulative data provided a rationalization of this behavior. In solution P5, due to the presence of Pro, attains compact conformations, in which its apolar residues are partially shielded from the solvent, whereas P5Del is more helical. These structural differences reduce the hydrophobic driving force for association of P5 to neutral membranes, whereas its binding to anionic bilayers can still take place because of electrostatic attraction. After membrane binding, the Pro residue does not preclude the attainment of a membrane-active amphiphilic helical conformation. These findings shed light on the role of Pro residues in the selectivity of AMPs and provide hints for the design of new, highly selective compounds. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.

  4. Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Yiyuan; Wang, Xin Xiang; Mariuzza, Roy A

    2012-07-11

    Adaptive immunity depends on specific recognition by a T-cell receptor (TCR) of an antigenic peptide bound to a major histocompatibility complex (pMHC) molecule on an antigen-presenting cell (APC). In addition, T-cell activation generally requires binding of this same pMHC to a CD4 or CD8 coreceptor. Here, we report the structure of a complete TCR-pMHC-CD4 ternary complex involving a human autoimmune TCR, a myelin-derived self-peptide bound to HLA-DR4, and CD4. The complex resembles a pointed arch in which TCR and CD4 are each tilted ~65° relative to the T-cell membrane. By precluding direct contacts between TCR and CD4, the structure explainsmore » how TCR and CD4 on the T cell can simultaneously, yet independently, engage the same pMHC on the APC. The structure, in conjunction with previous mutagenesis data, places TCR-associated CD3εγ and CD3εδ subunits, which transmit activation signals to the T cell, inside the TCR-pMHC-CD4 arch, facing CD4. By establishing anchor points for TCR and CD4 on the T-cell membrane, the complex provides a basis for understanding how the CD4 coreceptor focuses TCR on MHC to guide TCR docking on pMHC during thymic T-cell selection.« less

  5. Cutting edge: high molecular weight hyaluronan promotes the suppressive effects of CD4+CD25+ regulatory T cells.

    PubMed

    Bollyky, Paul L; Lord, James D; Masewicz, Susan A; Evanko, Stephen P; Buckner, Jane H; Wight, Thomas N; Nepom, Gerald T

    2007-07-15

    Hyaluronan is a glycosaminoglycan present in the extracellular matrix. When hyaluronan is degraded during infection and injury, low m.w. forms are generated whose interactions influence inflammation and angiogenesis. Intact high m.w. hyaluronan, conversely, conveys anti-inflammatory signals. We demonstrate that high m.w. hyaluronan enhances human CD4(+)CD25(+) regulatory T cell functional suppression of responder cell proliferation, whereas low m.w. hyaluronan does not. High m.w. hyaluronan also up-regulates the transcription factor FOXP3 on CD4(+)CD25(+) regulatory T cells. These effects are only seen with activated CD4(+)CD25(+) regulatory T cells and are associated with the expression of CD44 isomers that more highly bind high m.w. hyaluronan. At higher concentrations, high m.w. hyaluronan also has direct suppressive effects on T cells. We propose that the state of HA in the matrix environment provides contextual cues to CD4(+)CD25(+) regulatory T cells and T cells, thereby providing a link between the innate inflammatory network and the regulation of adaptive immune responses.

  6. HBV-specific CD4+ cytotoxic T cells in hepatocellular carcinoma are less cytolytic toward tumor cells and suppress CD8+ T cell-mediated antitumor immunity.

    PubMed

    Meng, Fanzhi; Zhen, Shoumei; Song, Bin

    2017-08-01

    In East Asia and sub-Saharan Africa, chronic infection is the main cause of the development of hepatocellular carcinoma, an aggressive cancer with low survival rate. Cytotoxic T cell-based immunotherapy is a promising treatment strategy. Here, we investigated the possibility of using HBV-specific CD4 + cytotoxic T cells to eliminate tumor cells. The naturally occurring HBV-specific cytotoxic CD4 + and CD8 + T cells were identified by HBV peptide pool stimulation. We found that in HBV-induced hepatocellular carcinoma patients, the HBV-specific cytotoxic CD4 + T cells and cytotoxic CD8 + T cells were present at similar numbers. But compared to the CD8 + cytotoxic T cells, the CD4 + cytotoxic T cells secreted less cytolytic factors granzyme A (GzmA) and granzyme B (GzmB), and were less effective at eliminating tumor cells. In addition, despite being able to secrete cytolytic factors, CD4 + T cells suppressed the cytotoxicity mediated by CD8 + T cells, even when CD4 + CD25 + regulator T cells were absent. Interestingly, we found that interleukin 10 (IL-10)-secreting Tr1 cells were enriched in the cytotoxic CD4 + T cells. Neutralization of IL-10 abrogated the suppression of CD8 + T cells by CD4 + CD25 - T cells. Neither the frequency nor the absolute number of HBV-specific CD4 + cytotoxic T cells were correlated with the clinical outcome of advanced stage hepatocellular carcinoma patients. Together, this study demonstrated that in HBV-related hepatocellular carcinoma, CD4 + T cell-mediated cytotoxicity was present naturally in the host and had the potential to exert antitumor immunity, but its capacity was limited and was associated with immunoregulatory properties. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  7. Loss of RUNX1/AML1 arginine-methylation impairs in peripheral T cell homeostasis

    PubMed Central

    Mizutani, Shinsuke; Yoshida, Tatsushi; Zhao, Xinyang; Nimer, Stephen D.; Taniwaki, Masafumi; Okuda, Tsukasa

    2016-01-01

    Summary RUNX1 (previously termed AML1) is a frequent target of human leukaemia-associated gene aberrations, and it encodes the DNA-binding subunit of the Core-Binding Factor transcription factor complex. RUNX1 expression is essential for the initiation of definitive haematopoiesis, for steady-state thrombopoiesis, and for normal lymphocytes development. Recent studies revealed that protein arginine methyltransferase 1 (PRMT1), which accounts for the majority of the type I PRMT activity in cells, methylates two arginine residues in RUNX1 (R206 and R210), and these modifications inhibit corepressor-binding to RUNX1 thereby enhancing its transcriptional activity. In order to elucidate the biological significance of these methylations, we established novel knock-in mouse lines with non-methylable, double arginine-to-lysine (RTAMR-to-KTAMK) mutations in RUNX1. Homozygous Runx1KTAMK/KTAMK mice are born alive and appear normal during adulthood. However, Runx1KTAMK/KTAMK mice showed a reduction in CD3+ T lymphoid cells and a decrease in CD4+ T cells in peripheral lymphoid organs, in comparison to their wild-type littermates, leading to a reduction in the CD4+ to CD8+ T-cell ratio. These findings suggest that arginine-methylation of RUNX1 in the RTAMR-motif is dispensable for the development of definitive haematopoiesis and for steady-state platelet production, however this modification affects the role of RUNX1 in the maintenance of the peripheral CD4+ T-cell population. PMID:26010396

  8. Short- and Long-Term Clinical Outcomes in Rhesus Monkeys Inoculated with a Highly Pathogenic Chimeric Simian/Human Immunodeficiency Virus

    PubMed Central

    Endo, Yasuyuki; Igarashi, Tatsuhiko; Nishimura, Yoshiaki; Buckler, Charles; Buckler-White, Alicia; Plishka, Ronald; Dimitrov, Dimiter S.; Martin, Malcolm A.

    2000-01-01

    A highly pathogenic simian/human immunodeficiency virus (SHIV), SHIVDH12R, isolated from a rhesus macaque that had been treated with anti-human CD8 monoclonal antibody at the time of primary infection with the nonpathogenic, molecularly cloned SHIVDH12, induced marked and rapid CD4+ T cell loss in all rhesus macaques intravenously inoculated with 1.0 50% tissue culture infective dose (TCID50) to 4.1 × 105 TCID50s of virus. Animals inoculated with 650 TCID50s of SHIVDH12R or more experienced irreversible CD4+ T lymphocyte depletion and developed clinical disease requiring euthanasia between weeks 12 and 23 postinfection. In contrast, the CD4+ T-cell numbers in four of five monkeys receiving 25 TCID50s of SHIVDH12R or less stabilized at low levels, and these surviving animals produced antibodies capable of neutralizing SHIVDH12R. In the fifth monkey, no recovery from the CD4+ T cell decline occurred, and the animal had to be euthanized. Viral RNA levels, subsequent to the initial peak of infection but not at peak viremia, correlated with the virus inoculum size and the eventual clinical course. Both initial infection rate constants, k, and decay constants, d, were determined, but only the latter were statistically correlated to clinical outcome. The attenuating effects of reduced inoculum size were also observed when virus was inoculated by the mucosal route. Because the uncloned SHIVDH12R stock possessed the genetic properties of a lentivirus quasispecies, we were able to assess the evolution of the input virus swarm in animals surviving the acute infection by monitoring the emergence of neutralization escape viral variants. PMID:10888632

  9. HIV-1 V3 loop crown epitope-focused mimotope selection by patient serum from random phage display libraries: implications for the epitope structural features.

    PubMed

    Gazarian, Karlen G; Palacios-Rodríguez, Yadira; Gazarian, Tatiana G; Huerta, Leonor

    2013-06-01

    The crown region of the V3 loop in HIV-1 that contains the conserved amino acid sequence GPGR/G is known as the principal neutralizing determinant due to the extraordinary ability of antibodies to this region to neutralize the virus. To complement the existing peptide models of this epitope, we describe a family of 18 phage-displayed peptides, which include linear 12mer and constrained 7mer peptides that was selected by screening random libraries with serum from HIV-1 subtype B-infected patients. The 7mer constrained peptides presented two conserved amino acid sequences: PR-L in N-terminus and GPG in the C-terminus. On the basis of these peptides we propose a mimotope model of the V3 crown epitope in which the PR-L and GPG sequences represent the two known epitope binding sites. The GPG, has the same function as the V3 crown GPGR sequence but without the involvement of the "R" despite its being considered as the signature of the epitope in B-subtype viruses. The PR-L contains a proline not existing in the epitope that is postulated to induce kinks in the backbones of all peptides and create a spatial element mimicking the N-terminal conformationally variable binding site. Rabbit serum to these mimotopes recognized the V3 peptides and moderately decreased the fusion between HIV-1 Env- and CD4-expressing Jurkat cells. This study proposes the efficient generation by means of patient sera of V3 epitope mimics validated by interaction with the antibodies to contemporary viruses induced in patients. The serum antibody-selectable mimotopes are sources of novel information on the fine structure-function properties of HIV-1 principal neutralizing domain and candidate anti-HIV-1 immunogens. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. HIV-antibody complexes enhance production of type I interferon by plasmacytoid dendritic cells

    PubMed Central

    Veenhuis, Rebecca T.; Freeman, Zachary T.; Korleski, Jack; Cohen, Laura K.; Tomasi, Alessandra; Boesch, Austin W.; Ackerman, Margaret E.; Margolick, Joseph B.; Blankson, Joel N.; Chattergoon, Michael A.; Cox, Andrea L.

    2017-01-01

    Type I IFN production is essential for innate control of acute viral infection; however, prolonged high-level IFN production is associated with chronic immune activation in HIV-infected individuals. Although plasmacytoid DCs (pDCs) are a primary source of IFN, the mechanisms that regulate IFN levels following the acute phase are unknown. We hypothesized that HIV-specific Ab responses regulate late IFN production. We evaluated the mechanism through which HIV-activated pDCs produce IFN as well as how both monoclonal HIV-specific Abs and Abs produced in natural HIV infection modulated normal pDC sensing of HIV. We found that HIV-induced IFN production required TLR7 signaling, receptor-mediated entry, fusion, and viral uncoating, but not endocytosis or HIV life cycle stages after uncoating. Abs directed against the HIV envelope that do not interfere with CD4 binding markedly enhanced the IFN response, irrespective of their ability to neutralize CD4+ T cell infection. Ab-mediated enhancement of IFN production required Fc γ receptor engagement, bypassed fusion, and initiated signaling through both TLR7 and TLR9, which was not utilized in the absence of Ab. Polyclonal Abs isolated from HIV-infected subjects also enhanced pDC production of IFN in response to HIV. Our data provide an explanation for high levels of IFN production and immune activation in chronic HIV infection. PMID:29083319

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngu, Thanh T.; Sturzenbaum, Stephen R.; Stillman, Martin J.

    The earthworm Lumbricus rubellus has been found to inhabit cadmium-rich soils and accumulate cadmium within its tissues. Two metallothionein (MT) isoforms (1 and 2) have been identified and cloned from L. rubellus. In this study, we address the metalation status, metal coordination, and structure of recombinant MT-2 from L. rubellus using electrospray ionization mass spectrometry (ESI-MS), UV absorption, and circular dichroism (CD) spectroscopy. This is the first study to show the detailed mass and CD spectral properties for the important cadmium-containing earthworm MT. We report that the 20-cysteine L. rubellus MT-2 binds seven Cd{sup 2+} ions. UV absorption and CDmore » spectroscopy and ESI-MS pH titrations show a distinct biphasic demetalation reaction, which we propose results from the presence of two metal-thiolate binding domains. We propose stoichiometries of Cd{sub 3}Cys{sub 9} and Cd{sub 4}Cys{sub 11} based on the presence of 20 cysteines split into two isolated regions of the sequence with 11 cysteines in the N-terminal and 9 cysteines in the C-terminal. The CD spectrum reported is distinctly different from any other metallothionein known suggesting quite different binding site structure for the peptide.« less

  12. Modulation of CD4+ and CD8+ T Cell Function and Cytokine Responses in Strongyloides stercoralis Infection by Interleukin-27 (IL-27) and IL-37.

    PubMed

    Anuradha, Rajamanickam; Munisankar, Saravanan; Bhootra, Yukthi; Dolla, Chandrakumar; Kumaran, Paul; Nutman, Thomas B; Babu, Subash

    2017-11-01

    Strongyloides stercoralis infection is associated with diminished antigen-specific Th1- and Th17-associated responses and enhanced Th2-associated responses. Interleukin-27 (IL-27) and IL-37 are two known anti-inflammatory cytokines that are highly expressed in S. stercoralis infection. We therefore wanted to examine the role of IL-27 and IL-37 in regulating CD4 + and CD8 + T cell responses in S. stercoralis infection. To this end, we examined the frequency of Th1/Tc1, Th2/Tc2, Th9/Tc9, Th17/Tc17, and Th22/Tc22 cells in 15 S. stercoralis -infected individuals and 10 uninfected individuals stimulated with parasite antigen following IL-27 or IL-37 neutralization. We also examined the production of prototypical type 1, type 2, type 9, type 17, and type 22 cytokines in the whole-blood supernatants. Our data reveal that IL-27 or IL-37 neutralization resulted in significantly enhanced frequencies of Th1/Tc1, Th2/Tc2, Th17/Tc17, Th9, and Th22 cells with parasite antigen stimulation. There was no induction of any T cell response in uninfected individuals following parasite antigen stimulation and IL-27 or IL-37 neutralization. Moreover, we also observed increased production of gamma interferon (IFN-γ), IL-5, IL-9, IL-17, and IL-22 and decreased production of IL-10 following IL-27 and IL-37 neutralization and parasite antigen stimulation in whole-blood cultures. Thus, we demonstrate that IL-27 and IL-37 limit the induction of particular T cell subsets along with cytokine responses in S. stercoralis infections, which suggest the importance of IL-27 and IL-37 in immune modulation in a chronic helminth infection. Copyright © 2017 American Society for Microbiology.

  13. Time-course, negative-stain electron microscopy–based analysis for investigating protein–protein interactions at the single-molecule level

    PubMed Central

    Nogal, Bartek; Bowman, Charles A.; Ward, Andrew B.

    2017-01-01

    Several biophysical approaches are available to study protein–protein interactions. Most approaches are conducted in bulk solution, and are therefore limited to an average measurement of the ensemble of molecular interactions. Here, we show how single-particle EM can enrich our understanding of protein–protein interactions at the single-molecule level and potentially capture states that are unobservable with ensemble methods because they are below the limit of detection or not conducted on an appropriate time scale. Using the HIV-1 envelope glycoprotein (Env) and its interaction with receptor CD4-binding site neutralizing antibodies as a model system, we both corroborate ensemble kinetics-derived parameters and demonstrate how time-course EM can further dissect stoichiometric states of complexes that are not readily observable with other methods. Visualization of the kinetics and stoichiometry of Env–antibody complexes demonstrated the applicability of our approach to qualitatively and semi-quantitatively differentiate two highly similar neutralizing antibodies. Furthermore, implementation of machine-learning techniques for sorting class averages of these complexes into discrete subclasses of particles helped reduce human bias. Our data provide proof of concept that single-particle EM can be used to generate a “visual” kinetic profile that should be amenable to studying many other protein–protein interactions, is relatively simple and complementary to well-established biophysical approaches. Moreover, our method provides critical insights into broadly neutralizing antibody recognition of Env, which may inform vaccine immunogen design and immunotherapeutic development. PMID:28972148

  14. Inclusion of a universal tetanus toxoid CD4(+) T cell epitope P2 significantly enhanced the immunogenicity of recombinant rotavirus ΔVP8* subunit parenteral vaccines.

    PubMed

    Wen, Xiaobo; Wen, Ke; Cao, Dianjun; Li, Guohua; Jones, Ronald W; Li, Jianping; Szu, Shousun; Hoshino, Yasutaka; Yuan, Lijuan

    2014-07-31

    Currently available live oral rotavirus vaccines, Rotarix(®) and RotaTeq(®), are highly efficacious in developed countries. However, the immunogenicity and efficacy of such vaccines in some developing countries are low. We reported previously that bacterially-expressed rotavirus ΔVP8* subunit vaccine candidates with P[8], P[4] or P[6] specificity elicited high-titer virus neutralizing antibodies in animals immunized intramuscularly. Of note was the finding that antibodies induced with the P[8]ΔVP8* vaccine neutralized both homotypic P[8] and heterotypic P[4] rotavirus strains to high titer. To further improve its vaccine potential, a tetanus toxoid universal CD4(+) T cell epitope P2 was introduced into P[8] or P[6]ΔVP8* construct. The resulting recombinant fusion proteins expressed in Escherichia coli were of high solubility and were produced with high yield. Two doses (10 or 20 μg/dose) of the P2-P[8]ΔVP8* vaccine or P2-P[6]ΔVP8* vaccine with aluminum phosphate adjuvant elicited significantly higher geometric mean homologous neutralizing antibody titers than the vaccines without P2 in intramuscularly immunized guinea pigs. Interestingly, high levels of neutralizing antibody responses induced in guinea pigs with 3 doses of the P2-P[8]ΔVP8* vaccine persisted for at least 6 months. Furthermore, in the gnotobiotic piglet challenge study, three intramuscular doses (50 μg/dose) of the P2-P[8]ΔVP8* vaccine with aluminum phosphate adjuvant significantly delayed the onset of diarrhea and significantly reduced the duration of diarrhea and the cumulative diarrhea score after oral challenge with virulent human rotavirus Wa (G1P[8]) strain. The P2-P[8]ΔVP8* vaccine induced serum virus neutralizing antibody and VP4-specific IgG antibody production prechallenge, and primed the pigs for higher antibody and intestinal and systemic virus-specific IFN-γ producing CD4(+) T cell responses postchallenge. These two subunit vaccines could be used at a minimum singly or preferably in bivalent formulation to provide antigenic coverage of most of the G types of global importance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Establishment of HLA-DR4 Transgenic Mice for the Identification of CD4+ T Cell Epitopes of Tumor-Associated Antigens

    PubMed Central

    Harada, Kumiko; Michibata, Yayoi; Tsukamoto, Hirotake; Senju, Satoru; Tomita, Yusuke; Yuno, Akira; Hirayama, Masatoshi; Abu Sayem, Mohammad; Takeda, Naoki; Shibuya, Isao; Sogo, Shinji; Fujiki, Fumihiro; Sugiyama, Haruo; Eto, Masatoshi; Nishimura, Yasuharu

    2013-01-01

    Reports have shown that activation of tumor-specific CD4+ helper T (Th) cells is crucial for effective anti-tumor immunity and identification of Th-cell epitopes is critical for peptide vaccine-based cancer immunotherapy. Although computer algorithms are available to predict peptides with high binding affinity to a specific HLA class II molecule, the ability of those peptides to induce Th-cell responses must be evaluated. We have established HLA-DR4 (HLA-DRA*01:01/HLA-DRB1*04:05) transgenic mice (Tgm), since this HLA-DR allele is most frequent (13.6%) in Japanese population, to evaluate HLA-DR4-restricted Th-cell responses to tumor-associated antigen (TAA)-derived peptides predicted to bind to HLA-DR4. To avoid weak binding between mouse CD4 and HLA-DR4, Tgm were designed to express chimeric HLA-DR4/I-Ed, where I-Ed α1 and β1 domains were replaced with those from HLA-DR4. Th cells isolated from Tgm immunized with adjuvant and HLA-DR4-binding cytomegalovirus-derived peptide proliferated when stimulated with peptide-pulsed HLA-DR4-transduced mouse L cells, indicating chimeric HLA-DR4/I-Ed has equivalent antigen presenting capacity to HLA-DR4. Immunization with CDCA155-78 peptide, a computer algorithm-predicted HLA-DR4-binding peptide derived from TAA CDCA1, successfully induced Th-cell responses in Tgm, while immunization of HLA-DR4-binding Wilms' tumor 1 antigen-derived peptide with identical amino acid sequence to mouse ortholog failed. This was overcome by using peptide-pulsed syngeneic bone marrow-derived dendritic cells (BM-DC) followed by immunization with peptide/CFA booster. BM-DC-based immunization of KIF20A494-517 peptide from another TAA KIF20A, with an almost identical HLA-binding core amino acid sequence to mouse ortholog, successfully induced Th-cell responses in Tgm. Notably, both CDCA155-78 and KIF20A494-517 peptides induced human Th-cell responses in PBMCs from HLA-DR4-positive donors. Finally, an HLA-DR4 binding DEPDC1191-213 peptide from a new TAA DEPDC1 overexpressed in bladder cancer induced strong Th-cell responses both in Tgm and in PBMCs from an HLA-DR4-positive donor. Thus, the HLA-DR4 Tgm combined with computer algorithm was useful for preliminary screening of candidate peptides for vaccination. PMID:24386437

  16. CD4+ T-cell responses to foot-and-mouth disease virus in vaccinated cattle.

    PubMed

    Carr, B Veronica; Lefevre, Eric A; Windsor, Miriam A; Inghese, Cristina; Gubbins, Simon; Prentice, Helen; Juleff, Nicholas D; Charleston, Bryan

    2013-01-01

    We have performed a series of studies to investigate the role of CD4(+) T-cells in the immune response to foot-and-mouth disease virus (FMDV) post-vaccination. Virus neutralizing antibody titres (VNT) in cattle vaccinated with killed FMD commercial vaccine were significantly reduced and class switching delayed as a consequence of rigorous in vivo CD4(+) T-cell depletion. Further studies were performed to examine whether the magnitude of T-cell proliferative responses correlated with the antibody responses. FMD vaccination was found to induce T-cell proliferative responses, with CD4(+) T-cells responding specifically to the FMDV antigen. In addition, gamma interferon (IFN-γ) was detected in the supernatant of FMDV antigen-stimulated PBMC and purified CD4(+) T-cells from vaccinated cattle. Similarly, intracellular IFN-γ could be detected specifically in purified CD4(+) T-cells after restimulation. It was not possible to correlate in vitro proliferative responses or IFN-γ production of PBMC with VNT, probably as a consequence of the induction of T-independent and T-dependent antibody responses and antigen non-specific T-cell responses. However, our studies demonstrate the importance of stimulating CD4(+) T-cell responses for the induction of optimum antibody responses to FMD-killed vaccines.

  17. Profound CD4+/CCR5+ T cell expansion is induced by CD8+ lymphocyte depletion but does not account for accelerated SIV pathogenesis

    PubMed Central

    Okoye, Afam; Park, Haesun; Rohankhedkar, Mukta; Coyne-Johnson, Lia; Lum, Richard; Walker, Joshua M.; Planer, Shannon L.; Legasse, Alfred W.; Sylwester, Andrew W.; Piatak, Michael; Lifson, Jeffrey D.; Sodora, Donald L.; Villinger, Francois; Axthelm, Michael K.; Schmitz, Joern E.

    2009-01-01

    Depletion of CD8+ lymphocytes during acute simian immunodeficiency virus (SIV) infection of rhesus macaques (RMs) results in irreversible prolongation of peak-level viral replication and rapid disease progression, consistent with a major role for CD8+ lymphocytes in determining postacute-phase viral replication set points. However, we report that CD8+ lymphocyte depletion is also associated with a dramatic induction of proliferation among CD4+ effector memory T (TEM) cells and, to a lesser extent, transitional memory T (TTrM) cells, raising the question of whether an increased availability of optimal (activated/proliferating), CD4+/CCR5+ SIV “target” cells contributes to this accelerated pathogenesis. In keeping with this, depletion of CD8+ lymphocytes in SIV− RMs led to a sustained increase in the number of potential CD4+ SIV targets, whereas such depletion in acute SIV infection led to increased target cell consumption. However, we found that the excess CD4+ TEM cell proliferation of CD8+ lymphocyte–depleted, acutely SIV-infected RMs was completely inhibited by interleukin (IL)-15 neutralization, and that this inhibition did not abrogate the rapidly progressive infection in these RMs. Moreover, although administration of IL-15 during acute infection induced robust CD4+ TEM and TTrM cell proliferation, it did not recapitulate the viral dynamics of CD8+ lymphocyte depletion. These data suggest that CD8+ lymphocyte function has a larger impact on the outcome of acute SIV infection than the number and/or activation status of target cells available for infection and viral production. PMID:19546246

  18. Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis.

    PubMed

    Fang, Linchuan; Zhou, Chen; Cai, Peng; Chen, Wenli; Rong, Xingmin; Dai, Ke; Liang, Wei; Gu, Ji-Dong; Huang, Qiaoyun

    2011-06-15

    Cyanobacteria are promising biosorbent for heavy metals in bioremediation. Although sequestration of metals by cyanobacteria is known, the actual mechanisms and ligands involved are not very well understood. The binding characteristics of Cu(II) and Cd(II) by the cyanobacterium Spirulina platensis were investigated using a combination of chemical modifications, batch adsorption experiments, Fourier transform infrared (FTIR) spectroscopy and X-ray absorption fine structure (XAFS) spectroscopy. A significant increase in Cu(II) and Cd(II) binding was observed in the range of pH 3.5-5.0. Dramatical decrease in adsorption of Cu(II) and Cd(II) was observed after methanol esterification of the nonliving cells demonstrating that carboxyl functional groups play an important role in the binding of metals by S. platensis. The desorption rate of Cu(II) and Cd(II) from S. platensis surface was 72.7-80.7% and 53.7-58.0% by EDTA and NH(4)NO(3), respectively, indicating that ion exchange and complexation are the dominating mechanisms for Cu(II) and Cd(II) adsorption. XAFS analysis provided further evidence on the inner-sphere complexation of Cu by carboxyl ligands and showed that Cu is complexed by two 5-membered chelate rings on S. platensis surface. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. PDGF Suppresses the Sulfation of CD44v and Potentiates CD44v-Mediated Binding of Colon Carcinoma Cells to Fibrin under Flow

    PubMed Central

    Alves, Christina S.; Konstantopoulos, Konstantinos

    2012-01-01

    Fibrin(ogen) mediates sustained tumor cell adhesion and survival in the pulmonary vasculature, thereby facilitating the metastatic dissemination of tumor cells. CD44 is the major functional fibrin receptor on colon carcinoma cells. Growth factors, such as platelet-derived growth factor (PDGF), induce post-translational protein modifications, which modulate ligand binding activity. In view of the roles of PDGF, fibrin(ogen) and CD44 in cancer metastasis, we aimed to delineate the effect of PDGF on CD44-fibrin recognition. By immunoprecipitating CD44 from PDGF-treated and untreated LS174T colon carcinoma cells, which express primarily CD44v, we demonstrate that PDGF enhances the adhesion of CD44v-coated beads to immobilized fibrin. Enzymatic inhibition studies coupled with flow-based adhesion assays and autoradiography reveal that PDGF augments the binding of CD44v to fibrin by significantly attenuating the extent of CD44 sulfation primarily on chondroitin and dermatan sulfate chains. Surface plasmon resonance assays confirm that PDGF enhances the affinity of CD44v-fibrin binding by markedly reducing its dissociation rate while modestly increasing the association rate. PDGF mildly reduces the affinity of CD44v-hyaluronan binding without affecting selectin-CD44v recognition. The latter is attributed to the fact that CD44v binds to selectins via sialofucosylated O-linked residues independent of heparan, dermatan and chondroitin sulfates. Interestingly, PDGF moderately reduces the sulfation of CD44s and CD44s-fibrin recognition. Collectively, these data offer a novel perspective into the mechanism by which PGDF regulates CD44-dependent binding of metastatic colon carcinoma cells to fibrin(ogen). PMID:23056168

  20. Cooperation of Antiporter LAT2/CD98hc with Uniporter TAT1 for Renal Reabsorption of Neutral Amino Acids.

    PubMed

    Vilches, Clara; Boiadjieva-Knöpfel, Emilia; Bodoy, Susanna; Camargo, Simone; López de Heredia, Miguel; Prat, Esther; Ormazabal, Aida; Artuch, Rafael; Zorzano, Antonio; Verrey, François; Nunes, Virginia; Palacín, Manuel

    2018-04-02

    Background Reabsorption of amino acids (AAs) across the renal proximal tubule is crucial for intracellular and whole organism AA homeostasis. Although the luminal transport step is well understood, with several diseases caused by dysregulation of this process, the basolateral transport step is not understood. In humans, only cationic aminoaciduria due to malfunction of the basolateral transporter y + LAT1/CD98hc (SLC7A7/SLC3A2), which mediates the export of cationic AAs, has been described. Thus, the physiologic roles of basolateral transporters of neutral AAs, such as the antiporter LAT2/CD98hc (SLC7A8/SLC3A2), a heterodimer that exports most neutral AAs, and the uniporter TAT1 (SLC16A10), which exports only aromatic AAs, remain unclear. Functional cooperation between TAT1 and LAT2/CD98hc has been suggested by in vitro studies but has not been evaluated in vivo Methods To study the functional relationship of TAT1 and LAT2/CD98hc in vivo , we generated a double-knockout mouse model lacking TAT1 and LAT2, the catalytic subunit of LAT2/CD98hc (dKO LAT2-TAT1 mice). Results Compared with mice lacking only TAT1 or LAT2, dKO LAT2-TAT1 mice lost larger amounts of aromatic and other neutral AAs in their urine due to a tubular reabsorption defect. Notably, dKO mice also displayed decreased tubular reabsorption of cationic AAs and increased expression of y + LAT1/CD98hc. Conclusions The LAT2/CD98hc and TAT1 transporters functionally cooperate in vivo , and y + LAT1/CD98hc may compensate for the loss of LAT2/CD98hc and TAT1, functioning as a neutral AA exporter at the expense of some urinary loss of cationic AAs. Cooperative and compensatory mechanisms of AA transporters may explain the lack of basolateral neutral aminoacidurias in humans. Copyright © 2018 by the American Society of Nephrology.

  1. Mutation of CD2AP and SH3KBP1 Binding Motif in Alphavirus nsP3 Hypervariable Domain Results in Attenuated Virus.

    PubMed

    Mutso, Margit; Morro, Ainhoa Moliner; Smedberg, Cecilia; Kasvandik, Sergo; Aquilimeba, Muriel; Teppor, Mona; Tarve, Liisi; Lulla, Aleksei; Lulla, Valeria; Saul, Sirle; Thaa, Bastian; McInerney, Gerald M; Merits, Andres; Varjak, Margus

    2018-04-27

    Infection by Chikungunya virus (CHIKV) of the Old World alphaviruses (family Togaviridae) in humans can cause arthritis and arthralgia. The virus encodes four non-structural proteins (nsP) (nsP1, nsp2, nsP3 and nsP4) that act as subunits of the virus replicase. These proteins also interact with numerous host proteins and some crucial interactions are mediated by the unstructured C-terminal hypervariable domain (HVD) of nsP3. In this study, a human cell line expressing EGFP tagged with CHIKV nsP3 HVD was established. Using quantitative proteomics, it was found that CHIKV nsP3 HVD can bind cytoskeletal proteins, including CD2AP, SH3KBP1, CAPZA1, CAPZA2 and CAPZB. The interaction with CD2AP was found to be most evident; its binding site was mapped to the second SH3 ligand-like element in nsP3 HVD. Further assessment indicated that CD2AP can bind to nsP3 HVDs of many different New and Old World alphaviruses. Mutation of the short binding element hampered the ability of the virus to establish infection. The mutation also abolished ability of CD2AP to co-localise with nsP3 and replication complexes of CHIKV; the same was observed for Semliki Forest virus (SFV) harbouring a similar mutation. Similar to CD2AP, its homolog SH3KBP1 also bound the identified motif in CHIKV and SFV nsP3.

  2. Visualizing High-Efficiency HIV Transfer | Center for Cancer Research

    Cancer.gov

    The Human Immunodeficiency Virus (HIV), the causative agent of Acquired Immunodeficiency Syndrome (AIDS), infects and eventually kills CD4 receptor-expressing T cells, which are critical for proper immune system function. The gp120 protein on the surface of HIV particles is known to bind CD4 and a co-receptor, either CCR5 or CXCR4, leading to fusion of the virus and T cell

  3. A recombinant fusion protein consisting of West Nile virus envelope domain III fused in-frame with equine CD40 ligand induces antiviral immune responses in horses.

    PubMed

    Liu, Shiliang A; Haque, Muzammel; Stanfield, Brent; Andrews, Frank M; Roy, Alma A; Kousoulas, Konstantin G

    2017-01-01

    West Nile Virus (WNV) is endemic in the US and causes severe neurologic disease in horses since its introduction in 1999. There is no effective pharmaceutical treatment for WNV infection rendering vaccination as the only approach to prevention and control of disease. The purpose of this study was to evaluate a recombinant vaccine containing domain III (DIII) of the WNV envelope glycoprotein with and without a natural adjuvant equine (CD40L) in producing virus neutralizing antibodies in horses. Serum IgG1 concentration in the groups of horses vaccinated with the DIII-CD40L+TiterMax and DIII-CD40L proteins were significantly increased (p<0.05) after the second booster vaccination compared to other groups. Serum IgG4 and IgG7, IgG3 and IgG5 concentrations were not significantly increased among all groups. Western blot results showed that animals immunized with the DIII-CD40L protein (with or without TiterMax) exhibited the highest specific anti-DIII antibody activities after vaccinations. Moreover, animals immunized with the DIII-CD40L protein (with or without TiterMax) exhibited significantly stronger neutralization activity (p<0.05) compared to other groups starting at week eight. The DIII-CD40L protein (with or without TiterMax) stimulated more CD8 + T cells, but not CD4 + T cells in equine PMBCs. The results demonstrated that vaccination with recombinant WNV E DIII-CD40L protein induced superior humoral and cellular immune response in healthy horses that may be protective against WNV-associated disease in infected animals. CD40L could be utilized as a non-toxic, alternative adjuvant to boost the immunogenicity of subunit vaccines in horses. Copyright © 2016. Published by Elsevier B.V.

  4. Selective CD28 blockade attenuates CTLA-4–dependent CD8+ memory T cell effector function and prolongs graft survival

    PubMed Central

    Liu, Danya; Badell, I. Raul; Ford, Mandy L.

    2018-01-01

    Memory T cells pose a significant problem to successful therapeutic control of unwanted immune responses during autoimmunity and transplantation, as they are differentially controlled by cosignaling receptors such as CD28 and CTLA-4. Treatment with abatacept and belatacept impede CD28 signaling by binding to CD80 and CD86, but they also have the unintended consequence of blocking the ligands for CTLA-4, a process that may inadvertently boost effector responses. Here, we show that a potentially novel anti-CD28 domain antibody (dAb) that selectively blocks CD28 but preserves CTLA-4 coinhibition confers improved allograft survival in sensitized recipients as compared with CTLA-4 Ig. However, both CTLA-4 Ig and anti-CD28 dAb similarly and significantly reduced the accumulation of donor-reactive CD8+ memory T cells, demonstrating that regulation of the expansion of CD8+ memory T cell populations is controlled in part by CD28 signals and is not significantly impacted by CTLA-4. In contrast, selective CD28 blockade was superior to CTLA-4 Ig in inhibiting IFN-γ, TNF, and IL-2 production by CD8+ memory T cells, which in turn resulted in reduced recruitment of innate CD11b+ monocytes into allografts. Importantly, this superiority was CTLA-4 dependent, demonstrating that effector function of CD8+ memory T cells is regulated by the balance of CD28 and CTLA-4 signaling. PMID:29321374

  5. Virus-Like Particles Displaying Trimeric Simian Immunodeficiency Virus (SIV) Envelope gp160 Enhance the Breadth of DNA/Modified Vaccinia Virus Ankara SIV Vaccine-Induced Antibody Responses in Rhesus Macaques.

    PubMed

    Iyer, Smita S; Gangadhara, Sailaja; Victor, Blandine; Shen, Xiaoying; Chen, Xuemin; Nabi, Rafiq; Kasturi, Sudhir P; Sabula, Michael J; Labranche, Celia C; Reddy, Pradeep B J; Tomaras, Georgia D; Montefiori, David C; Moss, Bernard; Spearman, Paul; Pulendran, Bali; Kozlowski, Pamela A; Amara, Rama Rao

    2016-10-01

    The encouraging results of the RV144 vaccine trial have spurred interest in poxvirus prime-protein boost human immunodeficiency virus (HIV) vaccine modalities as a strategy to induce protective immunity. Because vaccine-induced protective immunity is critically determined by HIV envelope (Env) conformation, significant efforts are directed toward generating soluble trimeric Env immunogens that assume native structures. Using the simian immunodeficiency virus (SIV)-macaque model, we tested the immunogenicity and efficacy of sequential immunizations with DNA (D), modified vaccinia virus Ankara (MVA) (M), and protein immunogens, all expressing virus-like particles (VLPs) displaying membrane-anchored trimeric Env. A single VLP protein boost displaying trimeric gp160 adjuvanted with nanoparticle-encapsulated Toll-like receptor 4/7/8 (TLR4/7/8) agonists, administered 44 weeks after the second MVA immunization, induced up to a 3-fold increase in Env-specific IgG binding titers in serum and mucosa. Importantly, the VLP protein boost increased binding antibody against scaffolded V1V2, antibody-dependent phagocytic activity against VLP-coated beads, and antibody breadth and neutralizing antibody titers against homologous and heterologous tier 1 SIVs. Following 5 weekly intrarectal SIVmac251 challenges, two of seven DNA/MVA and VLP (DM+VLP)-vaccinated animals were completely protected compared to productive infection in all seven DM-vaccinated animals. Vaccinated animals demonstrated stronger acute viral pulldown than controls, but a trend for higher acute viremia was observed in the DM+VLP group, likely due to a slower recall of Gag-specific CD8 T cells. Our findings support immunization with VLPs containing trimeric Env as a strategy to augment protective antibody but underscore the need for optimal engagement of CD8 T cells to achieve robust early viral control. The development of an effective HIV vaccine remains a global necessity for preventing HIV infection and reducing the burden of AIDS. While this goal represents a formidable challenge, the modest efficacy of the RV144 trial indicates that multicomponent vaccination regimens that elicit both cellular and humoral immune responses can prevent HIV infection in humans. However, whether protein immunizations synergize with DNA prime-viral vector boosts to enhance cellular and humoral immune responses remains poorly understood. We addressed this question in a nonhuman primate model, and our findings show benefit for sequential protein immunization combined with a potent adjuvant in boosting antibody titers induced by a preceding DNA/MVA immunization. This promising strategy can be further developed to enhance neutralizing antibody responses and boost CD8 T cells to provide robust protection and viral control. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Binding of mitomycin C to blood proteins: A spectroscopic analysis and molecular docking

    NASA Astrophysics Data System (ADS)

    Jang, Jongchol; Liu, Hui; Chen, Wei; Zou, Guolin

    2009-06-01

    Mitomycin C (MMC) was the first recognized bioreductive alkylating agent, and has been widely used clinically for antitumor therapy. The binding of MMC to two human blood proteins, human serum albumin (HSA) and human hemoglobin (HHb), have been investigated by fluorescence quenching, synchronous fluorescence, circular dichroism (CD) spectroscopy and molecular docking methods. The fluorescence data showed that binding of MMC to proteins caused strong fluorescence quenching of proteins through a static quenching way, and each protein had only one binding site for the drug. The binding constants of MMC to HSA and HHb at 298 K were 2.71 × 10 4 and 2.56 × 10 4 L mol -1, respectively. Thermodynamic analysis suggested that both hydrophobic interaction and hydrogen bonding played major roles in the binding of MMC to HSA or HHb. The CD spectroscopy indicated that the secondary structures of the two proteins were not changed in the presence of MMC. The study of molecular docking showed that MMC was located in the entrance of site I of HSA, and in the central cavity of HHb.

  7. The effect of Berberine on the secondary structure of human serum albumin

    NASA Astrophysics Data System (ADS)

    Li, Ying; He, WenYing; Tian, Jianniao; Tang, Jianghong; Hu, Zhide; Chen, Xingguo

    2005-05-01

    The presence of several high affinity binding sites on human serum albumin (HSA) makes it a possible target for many drugs. This study is designed to examine the effect of Berberine (an ancient Chinese drug used for antimicrobial, antiplasmodial, antidiarrheal and cardiovascular) on the solution structure of HSA using fluorescence, Fourier transform infrared (FT-IR), circular dichroism (CD) spectroscopic methods. The fluorescence spectroscopic results show that the fluorescence intensity of HSA was significantly decreased in the presence of Berberine. The Scatchard's plots indicated that the binding of Berberine to HSA at 296, 303, 318 K is characterized by one binding site with the binding constant is 4.071(±0.128)×10 4, 3.741(±0.089)×10 4, 3.454(±0.110)×10 4 M -1, respectively. The protein conformation is altered (FT-IR and CD data) with reductions of α-helices from 54 to 47% for free HSA to 45-32% and with increases of turn structure5% for free HSA to 18% in the presence of Berberine. The binding process was exothermic, enthalpy driven and spontaneous, as indicated by the thermodynamic analyses, Berberine bound to HSA was mainly based on hydrophobic interaction and electrostatic interaction cannot be excluded from the binding. Furthermore, the displace experiments indicate that Berberine can bind to the subdomain IIA, that is, high affinity site (site II).

  8. Isolation and preliminary characterization of a Cd-binding protein from Tenebrio molitor (Coleoptera).

    PubMed

    Pedersen, S A; Kristiansen, E; Andersen, R A; Zachariassen, K E

    2007-04-01

    The effect of cadmium (Cd) exposure on Cd-binding ligands was investigated for the first time in a beetle (Coleoptera), using the mealworm Tenebrio molitor (L) as a model species. Exposure to Cd resulted in an approximate doubling of the Cd-binding capacity of the protein extracts from whole animals. Analysis showed that the increase was mainly explained by the induction of a Cd-binding protein of 7134.5 Da, with non-metallothionein characteristics. Amino acid analysis and de novo sequencing revealed that the protein has an unusually high content of the acidic amino acids aspartic and glutamic acid that may explain how this protein can bind Cd even without cysteine residues. Similarities in the amino acid composition suggest it to belong to a group of little studied proteins often referred to as "Cd-binding proteins without high cysteine content". This is the first report on isolation and peptide sequence determination of such a protein from a coleopteran.

  9. International network for comparison of HIV neutralization assays: the NeutNet report.

    PubMed

    Fenyö, Eva Maria; Heath, Alan; Dispinseri, Stefania; Holmes, Harvey; Lusso, Paolo; Zolla-Pazner, Susan; Donners, Helen; Heyndrickx, Leo; Alcami, Jose; Bongertz, Vera; Jassoy, Christian; Malnati, Mauro; Montefiori, David; Moog, Christiane; Morris, Lynn; Osmanov, Saladin; Polonis, Victoria; Sattentau, Quentin; Schuitemaker, Hanneke; Sutthent, Ruengpung; Wrin, Terri; Scarlatti, Gabriella

    2009-01-01

    Neutralizing antibody assessments play a central role in human immunodeficiency virus type-1 (HIV-1) vaccine development but it is unclear which assay, or combination of assays, will provide reliable measures of correlates of protection. To address this, an international collaboration (NeutNet) involving 18 independent participants was organized to compare different assays. Each laboratory evaluated four neutralizing reagents (TriMab, 447-52D, 4E10, sCD4) at a given range of concentrations against a panel of 11 viruses representing a wide range of genetic subtypes and phenotypes. A total of 16 different assays were compared. The assays utilized either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (virus infectivity assays, VI assays), or their Env-pseudotyped (gp160) derivatives produced in 293T cells (PSV assays) from molecular clones or uncloned virus. Target cells included PBMC and genetically-engineered cell lines in either a single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs that included extracellular or intracellular p24 antigen detection, RNA quantification and luciferase and beta-galactosidase reporter gene expression. PSV assays were generally more sensitive than VI assays, but there were important differences according to the virus and inhibitor used. For example, for TriMab, the mean IC50 was always lower in PSV than in VI assays. However, with 4E10 or sCD4 some viruses were neutralized with a lower IC50 in VI assays than in the PSV assays. Inter-laboratory concordance was slightly better for PSV than for VI assays with some viruses, but for other viruses agreement between laboratories was limited and depended on both the virus and the neutralizing reagent. The NeutNet project demonstrated clear differences in assay sensitivity that were dependent on both the neutralizing reagent and the virus. No single assay was capable of detecting the entire spectrum of neutralizing activities. Since it is not known which in vitro assay correlates with in vivo protection, a range of neutralization assays is recommended for vaccine evaluation.

  10. International Network for Comparison of HIV Neutralization Assays: The NeutNet Report

    PubMed Central

    Fenyö, Eva Maria; Heath, Alan; Dispinseri, Stefania; Holmes, Harvey; Lusso, Paolo; Zolla-Pazner, Susan; Donners, Helen; Heyndrickx, Leo; Alcami, Jose; Bongertz, Vera; Jassoy, Christian; Malnati, Mauro; Montefiori, David; Moog, Christiane; Morris, Lynn; Osmanov, Saladin; Polonis, Victoria; Sattentau, Quentin; Schuitemaker, Hanneke; Sutthent, Ruengpung; Wrin, Terri; Scarlatti, Gabriella

    2009-01-01

    Background Neutralizing antibody assessments play a central role in human immunodeficiency virus type-1 (HIV-1) vaccine development but it is unclear which assay, or combination of assays, will provide reliable measures of correlates of protection. To address this, an international collaboration (NeutNet) involving 18 independent participants was organized to compare different assays. Methods Each laboratory evaluated four neutralizing reagents (TriMab, 447-52D, 4E10, sCD4) at a given range of concentrations against a panel of 11 viruses representing a wide range of genetic subtypes and phenotypes. A total of 16 different assays were compared. The assays utilized either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (virus infectivity assays, VI assays), or their Env-pseudotyped (gp160) derivatives produced in 293T cells (PSV assays) from molecular clones or uncloned virus. Target cells included PBMC and genetically-engineered cell lines in either a single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs that included extracellular or intracellular p24 antigen detection, RNA quantification and luciferase and beta-galactosidase reporter gene expression. Findings PSV assays were generally more sensitive than VI assays, but there were important differences according to the virus and inhibitor used. For example, for TriMab, the mean IC50 was always lower in PSV than in VI assays. However, with 4E10 or sCD4 some viruses were neutralized with a lower IC50 in VI assays than in the PSV assays. Inter-laboratory concordance was slightly better for PSV than for VI assays with some viruses, but for other viruses agreement between laboratories was limited and depended on both the virus and the neutralizing reagent. Conclusions The NeutNet project demonstrated clear differences in assay sensitivity that were dependent on both the neutralizing reagent and the virus. No single assay was capable of detecting the entire spectrum of neutralizing activities. Since it is not known which in vitro assay correlates with in vivo protection, a range of neutralization assays is recommended for vaccine evaluation. PMID:19229336

  11. Crystallographic analysis of CD40 recognition and signaling by human TRAF2

    PubMed Central

    McWhirter, Sarah M.; Pullen, Steven S.; Holton, James M.; Crute, James J.; Kehry, Marilyn R.; Alber, Tom

    1999-01-01

    Tumor necrosis factor receptor superfamily members convey signals that promote diverse cellular responses. Receptor trimerization by extracellular ligands initiates signaling by recruiting members of the tumor necrosis factor receptor-associated factor (TRAF) family of adapter proteins to the receptor cytoplasmic domains. We report the 2.4-Å crystal structure of a 22-kDa, receptor-binding fragment of TRAF2 complexed with a functionally defined peptide from the cytoplasmic domain of the CD40 receptor. TRAF2 forms a mushroom-shaped trimer consisting of a coiled coil and a unique β-sandwich domain. Both domains mediate trimerization. The CD40 peptide binds in an extended conformation with every side chain in contact with a complementary groove on the rim of each TRAF monomer. The spacing between the CD40 binding sites on TRAF2 supports an elegant signaling mechanism in which trimeric, extracellular ligands preorganize the receptors to simultaneously recognize three sites on the TRAF trimer. PMID:10411888

  12. Scaffold attachment factor B suppresses HIV-1 infection of CD4+ cells by preventing binding of RNA polymerase II to HIV-1's long terminal repeat.

    PubMed

    Ma, Li; Sun, Li; Jin, Xia; Xiong, Si-Dong; Wang, Jian-Hua

    2018-06-10

    The 5' end of HIV-1 long terminal repeat (LTR) promoter plays an essential role in driving viral transcription and productive infection. Multiple host and viral factors regulate LTR activity and modulate HIV-1 latency. Manipulation of the HIV-1 LTR provides a potential therapeutic strategy for combating HIV-1 persistence. In this study, we identified an RNA-/DNA-binding protein, Scaffold Attachment Factor B (SAFB1) as a host-cell factor that represses HIV-1 transcription. We found that SAFB1 bound to HIV-1 5`-LTR and significantly repressed 5`-LTR-driven-viral transcription and HIV-1 infection of CD4 + T cells. Mechanistically, SAFB1-mediated repression of HIV-1 transcription and infection was independent of its RNA- and DNA-binding capacities, instead, by binding to phosphorylated RNA polymerase II (RNA pol II), SAFB1 blocked its recruitment to the HIV-1 LTR. Of note, the SAFB1-mediated repression of HIV-1 transcription from proviral DNA maintained HIV-1 latency in CD4 + T cells. In summary, our findings reveal that SAFB1 binds to HIV-1-LTR and physically interacts with phosphorylated RNA pol II, repressing HIV-1 transcription initiation and elongation. Our findings improve the understanding of host modulation of HIV-1 transcription and latency and provide a new host-cell target for improved anti-HIV-1 therapies. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The role of Sema4D/CD100 as a therapeutic target for tumor microenvironments and for autoimmune, neuroimmune and bone diseases.

    PubMed

    Wu, Mingfu; Li, Jing; Gao, Qinglei; Ye, Fei

    2016-07-01

    Semaphorin 4D (Sema4D), also known as CD100, has been implicated in physiologic roles in the immune and nervous systems. However, the interaction of Sema4D with its high affinity receptor, Plexin-B1, reveals a novel role for Sema4D produced by the tumor microenvironment in tumor angiogenesis and metastasis. The ligation of Sema4D/CD100 with CD72 on immune and inflammatory cells is known to stimulate immune responses and regulation. Because CD100 and CD72 are expressed on lung immune and nonimmune cells, as well as on mast cells, the CD100/CD72 interaction plays another important role in allergic airway inflammation and mast cell functions. A better understanding of Sema4D-mediated cell signaling in physiological and pathological processes may be crucial for crafting new Sema4D-based therapeutics for human disease and tumor microenvironments. Strategies to achieve effective management through treatment with Sema4D include special siRNAs, neutralizing antibodies and knockdown. This review focuses on the links between Sema4D and human diseases such as cancer, bone metabolism, immune responses and organ development. The current knowledge regarding the expression of Sema4D and its receptors and its functional roles is systemically reviewed to explore Sema4D as both a target and a therapeutic in human diseases.

  14. Activation-Induced Killer Cell Immunoglobulin-like Receptor 3DL2 Binding to HLA-B27 Licenses Pathogenic T Cell Differentiation in Spondyloarthritis.

    PubMed

    Ridley, Anna; Hatano, Hiroko; Wong-Baeza, Isabel; Shaw, Jacqueline; Matthews, Katherine K; Al-Mossawi, Hussein; Ladell, Kristin; Price, David A; Bowness, Paul; Kollnberger, Simon

    2016-04-01

    In the spondyloarthritides (SpA), increased numbers of CD4+ T cells express killer cell immunoglobulin-like receptor 3DL2 (KIR-3DL2). The aim of this study was to determine the factors that induce KIR-3DL2 expression, and to characterize the relationship between HLA-B27 and the phenotype and function of KIR-3DL2-expressing CD4+ T cells in SpA. In total, 34 B27+ patients with SpA, 28 age- and sex-matched healthy controls (20 B27- and 8 B27+), and 9 patients with rheumatoid arthritis were studied. KIR-3DL2 expression and other phenotypic characteristics of peripheral blood and synovial fluid CD4+ T cells were studied by flow cytometry, quantitative polymerase chain reaction, and Western blotting. T cell receptor clonality was determined by template-switch anchored reverse transcription-polymerase chain reaction and sequencing analysis. Cytokines were measured by enzyme-linked immunosorbent assay. Cellular activation induced KIR-3DL2 expression on both naive and effector CD4+ T cells. KIR-3DL2 binding to B27+ cells promoted expression of KIR-3DL2, the Th17-specific transcription factor retinoic acid receptor-related orphan nuclear receptor γt, and the antiapoptotic factor B cell lymphoma 2. KIR-3DL2+CD4+ T cells in patients with ankylosing spondylitis were oligoclonal and enriched for markers of T cell activation and for the gut homing receptor CCR9. In the presence of B27+ antigen-presenting cells, KIR-3DL2+CD4+ T cells produced less interleukin-2 (IL-2) but more IL-17. This effect was blocked by HC10, an antibody that inhibits the binding of KIR-3DL2 to B27 heavy chains. KIR-3DL2 binding to HLA-B27 licenses Th17 cell differentiation in SpA. These findings raise the therapeutic potential of targeting HLA-B27-KIR-3DL2 interactions for the treatment of B27+ patients with SpA. © 2016 The Authors. Arthritis & Rheumatology published by Wiley Periodicals, Inc. on behalf of the American College of Rheumatology.

  15. Primary fragmentation pathways of gas phase [M(uracil-H)(uracil)]+ complexes (M=Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd , Mg, Ca, Sr, Ba, and Pb): loss of uracil versus HNCO.

    PubMed

    Ali, Osama Y; Randell, Nicholas M; Fridgen, Travis D

    2012-04-23

    Complexes formed between metal dications, the conjugate base of uracil, and uracil are investigated by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Positive-ion electrospray spectra show that [M(Ura-H)(Ura)](+) (M=Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd, Mg, Ca, Sr, Ba, or Pb) is the most abundant ion even at low concentrations of uracil. SORI-CID experiments show that the main primary decomposition pathway for all [M(Ura-H)(Ura)](+) , except where M=Ca, Sr, Ba, or Pb, is the loss of HNCO. Under the same SORI-CID conditions, when M is Ca, Sr, Ba, or Pb, [M(Ura-H)(Ura)](+) are shown to lose a molecule of uracil. Similar results were observed under infrared multiple-photon dissociation excitation conditions, except that [Ca(Ura-H)(Ura)](+) was found to lose HNCO as the primary fragmentation product. The binding energies between neutral uracil and [M(Ura-H)](+) (M=Zn, Cu, Ni, Fe, Cd, Pd ,Mg, Ca, Sr Ba, or Pb) are calculated by means of electronic-structure calculations. The differences in the uracil binding energies between complexes which lose uracil and those which lose HNCO are consistent with the experimentally observed differences in fragmentation pathways. A size dependence in the binding energies suggests that the interaction between uracil and [M(Ura-H)](+) is ion-dipole complexation and the experimental evidence presented supports this. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Immune perturbations in HIV–1-infected individuals who make broadly reactive neutralizing antibodies

    PubMed Central

    Moody, M. Anthony; Pedroza-Pacheco, Isabela; Vandergrift, Nathan A.; Chui, Cecilia; Lloyd, Krissey E.; Parks, Robert; Soderberg, Kelly A.; Ogbe, Ane T.; Cohen, Myron S.; Liao, Hua-Xin; Gao, Feng; McMichael, Andrew J.; Montefiori, David C.; Verkoczy, Laurent; Kelsoe, Garnett; Huang, Jinghe; Shea, Patrick R.; Connors, Mark; Borrow, Persephone; Haynes, Barton F.

    2017-01-01

    Induction of broadly neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development. BnAbs occur in some HIV-1-infected individuals and frequently have characteristics of autoantibodies. Here we have studied cohorts of HIV-1-infected individuals that made bnAbs and compared them to those who did not do so, and determined immune traits associated with the ability to produce bnAbs. HIV-1-infected individuals with bnAbs had a higher frequency of blood autoantibodies, a lower frequency of regulatory CD4+ T cells, a higher frequency of circulating memory T follicular helper CD4+ cells and a higher T regulatory cell level of programmed cell death-1 expression compared to HIV-1-infected individuals without bnAbs. Thus, induction of HIV-1 bnAbs may require vaccination regimens that transiently mimic immunologic perturbations in HIV-1-infected individuals. PMID:28783677

  17. Immunological Characterization and Neutralizing Ability of Monoclonal Antibodies Directed Against Botulinum Neurotoxin Type H

    PubMed Central

    Fan, Yongfeng; Barash, Jason R.; Lou, Jianlong; Conrad, Fraser; Marks, James D.; Arnon, Stephen S.

    2016-01-01

    Background. Only Clostridium botulinum strain IBCA10-7060 produces the recently described novel botulinum neurotoxin type H (BoNT/H). BoNT/H (N-terminal two-thirds most homologous to BoNT/F and C-terminal one-third most homologous to BoNT/A) requires antitoxin to toxin ratios ≥1190:1 for neutralization by existing antitoxins. Hence, more potent and safer antitoxins against BoNT/H are needed. Methods. We therefore evaluated our existing monoclonal antibodies (mAbs) to BoNT/A and BoNT/F for BoNT/H binding, created yeast-displayed mutants to select for higher-affinity-binding mAbs by using flow cytometry, and evaluated the mAbs' ability to neutralize BoNT/H in the standard mouse bioassay. Results. Anti-BoNT/A HCC-binding mAbs RAZ1 and CR2 bound BoNT/H with high affinity. However, only 1 of 6 BoNT/F mAbs (4E17.2A) bound BoNT/H but with an affinity >800-fold lower (equilibrium dissociation binding constant [KD] = 7.56 × 10−8 M) than its BoNT/F affinity (KD = 9.1 × 10−11 M), indicating that the N-terminal two-thirds of BoNT/H is immunologically unique. The affinity of 4E17.2A for BoNT/H was increased >500-fold to KD = 1.48 × 10−10 M (mAb 4E17.2D). A combination of mAbs RAZ1, CR2, and 4E17.2D completely protected mice challenged with 280 mouse median lethal doses of BoNT/H at a mAb dose as low as 5 µg of total antibody. Conclusions. This 3-mAb combination potently neutralized BoNT/H and represents a potential human antitoxin that could be developed for the prevention and treatment of type H botulism. PMID:26936913

  18. Conformational heterogeneity in the C-terminal zinc fingers of human MTF-1: an NMR and zinc-binding study.

    PubMed

    Giedroc, D P; Chen, X; Pennella, M A; LiWang, A C

    2001-11-09

    The human metalloregulatory transcription factor, metal-response element (MRE)-binding transcription factor-1 (MTF-1), contains six TFIIIA-type Cys(2)-His(2) motifs, each of which was projected to form well-structured betabetaalpha domains upon Zn(II) binding. In this report, the structure and backbone dynamics of a fragment containing the unusual C-terminal fingers F4-F6 has been investigated. (15)N heteronuclear single quantum coherence (HSQC) spectra of uniformly (15)N-labeled hMTF-zf46 show that Zn(II) induces the folding of hMTF-zf46. Analysis of the secondary structure of Zn(3) hMTF-zf46 determined by (13)Calpha chemical shift indexing and the magnitude of (3)J(Halpha-HN) clearly reveal that zinc fingers F4 and F6 adopt typical betabetaalpha structures. An analysis of the heteronuclear backbone (15)N relaxation dynamics behavior is consistent with this picture and further reveals independent tumbling of the finger domains in solution. Titration of apo-MTF-zf46 with Zn(II) reveals that the F4 domain binds Zn(II) significantly more tightly than do the other two finger domains. In contrast to fingers F4 and F6, the betabetaalpha fold of finger F5 is unstable and only partially populated at substoichiometric Zn(II); a slight molar excess of zinc results in severe conformational exchange broadening of all F5 NH cross-peaks. Finally, although Cd(II) binds to apo-hMTF-zf46 as revealed by intense S(-)-->Cd(II) absorption, a non-native structure results; addition of stoichiometric Zn(II) to the Cd(II) complex results in quantitative refolding of the betabetaalpha structure in F4 and F6. The functional implications of these results are discussed.

  19. Reishi Protein LZ-8 Induces FOXP3+ Treg Expansion via a CD45-Dependent Signaling Pathway and Alleviates Acute Intestinal Inflammation in Mice

    PubMed Central

    Hsu, Hsien-Yeh; Kuan, Yen-Chou; Lin, Tung-Yi; Tsao, Shu-Ming; Hsu, Jason; Ma, Li-Juan; Sheu, Fuu

    2013-01-01

    LZ-8, an immunomodulatory protein isolated from Ganoderma lucidum (also known as Ling-Zhi or Reishi), has been shown to promote cell proliferation and IL-2 production in T cells. In this study, we show that LZ-8 induces the expansion of both murine and human CD4+ T cells into FOXP3+ regulatory T (Treg) cells. LZ-8 treatment was found to stimulate a 4-fold and a 10-fold expansion in the Treg populations of murine and human primary CD4+ T cells, respectively. In addition, the expression of CTLA-4 and IL-10 was induced in LZ-8-treated CD4+ T cells. Using neutralizing antibodies and gene-deficient T-cell lines, we also found that LZ-8 promotes Treg expansion through a CD45-mediated signaling pathway and that the CD18-dependent induction of IL-2 was involved in Treg formation and IL-10 production. The suppressive activity of LZ-8 was confirmed using a murine model of DSS-induced colitis; the disease was alleviated by the adoptive transfer of LZ-8-treated CD4+ T cells. In conclusion, a new regulatory function for LZ-8 was identified, and the molecular mechanisms underlying this function were elucidated. PMID:23864893

  20. Cadmium content of plants as affected by soil cadmium concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehoczky, E.; Szabados, I.; Marth, P.

    1996-12-31

    Pot experiments were conducted in greenhouse conditions to study the effects of increasing cadmium (Cd) levels on biomass production and Cd contents in corn, (Zea mays L.), garlic (Allium sativum L.), and spinach (Spinacia oleracea L.). Plants were grown in two soil types: Eutric cambisol soil and A gleyic luvisol soil. Spinach proved to be the most sensitive to Cd treatments as its biomass considerably decreased with the increasing Cd levels. Cadmium contents of the three crops increased with increasing levels of Cd applications. Statistical differences were observed in the Cd contents of crops depending on soil type. With themore » same Cd rates, Cd tissue concentration of test plants grown in the strongly acidic Gleyic luvisol soil were many times higher than that of plants grown in a neutral Eutric cambisol soil. 14 refs., 4 tabs.« less

  1. Crystal Structure of the Catalytic Domain of Drosophila [beta]1,4-Galactosyltransferase-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakrishnan, Boopathy; Qasba, Pradman K.

    2010-11-03

    The {beta}1,4-galactosyltransferase-7 ({beta}4Gal-T7) enzyme, one of seven members of the {beta}4Gal-T family, transfers in the presence of manganese Gal from UDP-Gal to an acceptor sugar (xylose) that is attached to a side chain hydroxyl group of Ser/Thr residues of proteoglycan proteins. It exhibits the least protein sequence similarity with the other family members, including the well studied family member {beta}4Gal-T1, which, in the presence of manganese, transfers Gal from UDP-Gal to GlcNAc. We report here the crystal structure of the catalytic domain of {beta}4Gal-T7 from Drosophila in the presence of manganese and UDP at 1.81 {angstrom} resolution. In the crystalmore » structure, a new manganese ion-binding motif (HXH) has been observed. Superposition of the crystal structures of {beta}4Gal-T7 and {beta}4Gal-T1 shows that the catalytic pocket and the substrate-binding sites in these proteins are similar. Compared with GlcNAc, xylose has a hydroxyl group (instead of an N-acetyl group) at C2 and lacks the CH{sub 2}OH group at C5; thus, these protein structures show significant differences in their acceptor-binding site. Modeling of xylose in the acceptor-binding site of the {beta}4Gal-T7 crystal structure shows that the aromatic side chain of Tyr{sup 177} interacts strongly with the C5 atom of xylose, causing steric hindrance to any additional group at C5. Because Drosophila Cd7 has a 73% protein sequence similarity to human Cd7, the present crystal structure offers a structure-based explanation for the mutations in human Cd7 that have been linked to Ehlers-Danlos syndrome.« less

  2. A Cell Line-Based Neutralization Assay for Primary Human Immunodeficiency Virus Type 1 Isolates That Use either the CCR5 or the CXCR4 Coreceptor

    PubMed Central

    Trkola, Alexandra; Matthews, Jamie; Gordon, Cynthia; Ketas, Tom; Moore, John P.

    1999-01-01

    We describe here a cell line-based assay for the evaluation of human immunodeficiency virus type 1 (HIV-1) neutralization. The assay is based on CEM.NKR cells, transfected to express the HIV-1 coreceptor CCR5 to supplement the endogenous expression of CD4 and the CXCR4 coreceptor. The resulting CEM.NKR-CCR5 cells efficiently replicate primary HIV-1 isolates of both R5 and X4 phenotypes. A comparison of the CEM.NKR-CCR5 cells with mitogen-activated peripheral blood mononuclear cells (PBMC) in neutralization assays with sera from HIV-1-infected individuals or specific anti-HIV-1 monoclonal antibodies shows that the sensitivity of HIV-1 neutralization is similar in the two cell types. The CEM.NKR-CCR5 cell assay, however, is more convenient to perform and eliminates the donor-to-donor variation in HIV-1 replication efficiency, which is one of the principal drawbacks of the PBMC-based neutralization assay. We suggest that this new assay is suitable for the general measurement of HIV-1 neutralization by antibodies. PMID:10516002

  3. Dynamic electrophoretic fingerprinting of the HIV-1 envelope glycoprotein

    PubMed Central

    2013-01-01

    Background Interactions between the HIV-1 envelope glycoprotein (Env) and its primary receptor CD4 are influenced by the physiological setting in which these events take place. In this study, we explored the surface chemistry of HIV-1 Env constructs at a range of pH and salinities relevant to mucosal and systemic compartments through electrophoretic mobility (EM) measurements. Sexual transmission events provide a more acidic environment for HIV-1 compared to dissemination and spread of infection occurring in blood or lymph node. We hypothesize functional, trimeric Env behaves differently than monomeric forms. Results The dynamic electrophoretic fingerprint of trimeric gp140 revealed a change in EM from strongly negative to strongly positive as pH increased from that of the lower female genital tract (pHx) to that of the blood (pHy). Similar findings were observed using a trimeric influenza Haemagglutinin (HA) glycoprotein, indicating that this may be a general attribute of trimeric viral envelope glycoproteins. These findings were supported by computationally modeling the surface charge of various gp120 and HA crystal structures. To identify the behavior of the infectious agent and its target cells, EM measurements were made on purified whole HIV-1 virions and primary T-lymphocytes. Viral particles had a largely negative surface charge, and lacked the regions of positivity near neutral pH that were observed with trimeric Env. T cells changed their surface chemistry as a function of activation state, becoming more negative over a wider range of pH after activation. Soluble recombinant CD4 (sCD4) was found to be positively charged under a wide range of conditions. Binding studies between sCD4 and gp140 show that the affinity of CD4-gp140 interactions depends on pH. Conclusions Taken together, these findings allow a more complete model of the electrochemical forces involved in HIV-1 Env functionality. These results indicate that the influence of the localized environment on the interactions of HIV with target cells are more pronounced than previously appreciated. There is differential chemistry of trimeric, but not monomeric, Env under conditions which mimic the mucosa compared to those found systemically. This should be taken into consideration during design of immunogens which targets virus at mucosal portals of entry. PMID:23514633

  4. Neutralization Takes Precedence Over IgG or IgA Isotype-related Functions in Mucosal HIV-1 Antibody-mediated Protection.

    PubMed

    Astronomo, Rena D; Santra, Sampa; Ballweber-Fleming, Lamar; Westerberg, Katharine G; Mach, Linh; Hensley-McBain, Tiffany; Sutherland, Laura; Mildenberg, Benjamin; Morton, Georgeanna; Yates, Nicole L; Mize, Gregory J; Pollara, Justin; Hladik, Florian; Ochsenbauer, Christina; Denny, Thomas N; Warrier, Ranjit; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayapan, Sorachai; Kaewkungwal, Jaranit; Ferrari, Guido; Shaw, George M; Xia, Shi-Mao; Liao, Hua-Xin; Montefiori, David C; Tomaras, Georgia D; Haynes, Barton F; McElrath, Juliana M

    2016-12-01

    HIV-1 infection occurs primarily through mucosal transmission. Application of biologically relevant mucosal models can advance understanding of the functional properties of antibodies that mediate HIV protection, thereby guiding antibody-based vaccine development. Here, we employed a human ex vivo vaginal HIV-1 infection model and a rhesus macaque in vivo intrarectal SHIV challenge model to probe the protective capacity of monoclonal broadly-neutralizing (bnAb) and non-neutralizing Abs (nnAbs) that were functionally modified by isotype switching. For human vaginal explants, we developed a replication-competent, secreted NanoLuc reporter virus system and showed that CD4 binding site bnAbs b12 IgG1 and CH31 IgG1 and IgA2 isoforms potently blocked HIV-1 JR-CSF and HIV-1 Bal26 infection. However, IgG1 and IgA nnAbs, either alone or together, did not inhibit infection despite the presence of FcR-expressing effector cells in the tissue. In macaques, the CH31 IgG1 and IgA2 isoforms infused before high-dose SHIV challenge were completely to partially protective, respectively, while nnAbs (CH54 IgG1 and CH38 mIgA2) were non-protective. Importantly, in both mucosal models IgG1 isotype bnAbs were more protective than the IgA2 isotypes, attributable in part to greater neutralization activity of the IgG1 variants. These findings underscore the importance of potent bnAb induction as a primary goal of HIV-1 vaccine development. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Structure-Based Design of a Soluble Prefusion-Closed HIV-1 Env Trimer with Reduced CD4 Affinity and Improved Immunogenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Gwo-Yu; Geng, Hui; Pancera, Marie

    ABSTRACT The HIV-1 envelope (Env) trimer is a target for vaccine design as well as a conformational machine that facilitates virus entry by transitioning between prefusion-closed, CD4-bound, and coreceptor-bound conformations by transitioning into a postfusion state. Vaccine designers have sought to restrict the conformation of the HIV-1 Env trimer to its prefusion-closed state as this state is recognized by most broadly neutralizing, but not nonneutralizing, antibodies. We previously identified a disulfide bond, I201C-A433C (DS), which stabilizes Env in the vaccine-desired prefusion-closed state. When placed into the context of BG505 SOSIP.664, a soluble Env trimer mimic developed by Sanders, Moore, andmore » colleagues, the engineered DS-SOSIP trimer showed reduced conformational triggering by CD4. Here, we further stabilize DS-SOSIP through a combination of structure-based design and 96-well-based expression and antigenic assessment. From 103 designs, we identified one, named DS-SOSIP.4mut, with four additional mutations at the interface of potentially mobile domains of the prefusion-closed structure. We also determined the crystal structures of DS-SOSIP.4mut at 4.1-Å resolution and of an additional DS-SOSIP.6mut variant at 4.3-Å resolution, and these confirmed the formation of engineered disulfide bonds. Notably, DS-SOSIP.4mut elicited a higher ratio of tier 2 autologous titers versus tier 1 V3-sensitive titers than BG505 SOSIP.664. DS-SOSIP.4mut also showed reduced recognition of CD4 and increased thermostability. The improved antigenicity, thermostability, and immunogenicity of DS-SOSIP.4mut suggest utility as an immunogen or a serologic probe; moreover, the specific four alterations identified here, M154, M300, M302, and L320 (4mut), can also be transferred to other HIV-1 Env trimers of interest to improve their properties. IMPORTANCEOne approach to elicit broadly neutralizing antibodies against HIV-1 is to stabilize the structurally flexible HIV-1 envelope (Env) trimer in a conformation that displays predominantly broadly neutralizing epitopes and few to no nonneutralizing epitopes. The prefusion-closed conformation of HIV-1 Env has been identified as one such preferred conformation, and a current leading vaccine candidate is the BG505 DS-SOSIP variant, comprising two disulfides and an Ile-to-Pro mutation of Env from strain BG505. Here, we introduced additional mutations to further stabilize BG505 DS-SOSIP in the vaccine-preferred prefusion-closed conformation. In guinea pigs, our best mutant, DS-SOSIP.4mut, elicited a significantly higher ratio of autologous versus V3-directed neutralizing antibody responses than the SOSIP-stabilized form. We also observed an improvement in thermostability and a reduction in CD4 affinity. With improved antigenicity, stability, and immunogenicity, DS-SOSIP.4mut-stabilized trimers may have utility as HIV-1 immunogens or in other antigen-specific contexts, such as with B-cell probes.« less

  6. Non-intercalative, deoxyribose binding of boric acid to calf thymus DNA.

    PubMed

    Ozdemir, Ayse; Gursaclı, Refiye Tekiner; Tekinay, Turgay

    2014-05-01

    The present study characterizes the effects of the boric acid binding on calf thymus DNA (ct-DNA) by spectroscopic and calorimetric methods. UV-Vis absorbance spectroscopy, circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM), isothermal titration calorimetry (ITC), and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize binding properties. Changes in the secondary structure of ct-DNA were determined by CD spectroscopy. Sizes and morphologies of boric acid-DNA complexes were determined by transmission electron microscopy (TEM). The kinetics of boric acid binding to calf thymus DNA (ct-DNA) was investigated by isothermal titration calorimetry (ITC). ITC results revealed that boric acid exhibits a moderate affinity to ct-DNA with a binding constant (K a) of 9.54 × 10(4) M(-1). FT-IR results revealed that boric acid binds to the deoxyribose sugar of DNA without disrupting the B-conformation at tested concentrations.

  7. An oral Sindbis virus replicon-based DNA vaccine containing VP2 gene of canine parvovirus delivered by Escherichia coli elicits immune responses in dogs.

    PubMed

    Dahiya, S S; Saini, M; Kumar, P; Gupta, P K

    2011-01-01

    A Sindbis virus replicon-based DNA vaccine containing VP2 gene of canine parvovirus (CPV) was delivered by Escherichia coli to elicit immune responses. The orally immunized dogs developed CPV-specific serum IgG and virus neutralizing antibody responses. The cellular immune responses analyzed using lymphocyte proliferation test and flow cytometry indicated CPV-specific sensitization of both CD3+CD4+ and CD3+CD8+ lymphocytes. This study demonstrated that the oral CPV DNA vaccine delivered by E. coli can be considered as a promising approach for vaccination of dogs against CPV.

  8. Role of the Antigen Capture Pathway in the Induction of a Neutralizing Antibody Response to Anthrax Protective Antigen.

    PubMed

    Verma, Anita; Ngundi, Miriam M; Price, Gregory A; Takeda, Kazuyo; Yu, James; Burns, Drusilla L

    2018-02-27

    Toxin neutralizing antibodies represent the major mode of protective immunity against a number of toxin-mediated bacterial diseases, including anthrax; however, the cellular mechanisms that lead to optimal neutralizing antibody responses remain ill defined. Here we show that the cellular binding pathway of anthrax protective antigen (PA), the binding component of anthrax toxin, determines the toxin neutralizing antibody response to this antigen. PA, which binds cellular receptors and efficiently enters antigen-presenting cells by receptor-mediated endocytosis, was found to elicit robust anti-PA IgG and toxin neutralizing antibody responses. In contrast, a receptor binding-deficient mutant of PA, which does not bind receptors and only inefficiently enters antigen-presenting cells by macropinocytosis, elicited very poor antibody responses. A chimeric protein consisting of the receptor binding-deficient PA mutant tethered to the binding subunit of cholera toxin, which efficiently enters cells using the cholera toxin receptor rather than the PA receptor, elicited an anti-PA IgG antibody response similar to that elicited by wild-type PA; however, the chimeric protein elicited a poor toxin neutralizing antibody response. Taken together, our results demonstrate that the antigen capture pathway can dictate the magnitudes of the total IgG and toxin neutralizing antibody responses to PA as well as the ratio of the two responses. IMPORTANCE Neutralizing antibodies provide protection against a number of toxin-mediated bacterial diseases by inhibiting toxin action. Therefore, many bacterial vaccines are designed to induce a toxin neutralizing antibody response. We have used protective antigen (PA), the binding component of anthrax toxin, as a model antigen to investigate immune mechanisms important for the induction of robust toxin neutralizing antibody responses. We found that the pathway used by antigen-presenting cells to capture PA dictates the robustness of the neutralizing antibody response to this antigen. These results provide new insights into immune mechanisms that play an important role in the induction of toxin neutralizing antibody responses and may be useful in the design of new vaccines against toxin-mediated bacterial diseases.

  9. RSV Vaccine-Enhanced Disease Is Orchestrated by the Combined Actions of Distinct CD4 T Cell Subsets

    PubMed Central

    Knudson, Cory J.; Hartwig, Stacey M.; Meyerholz, David K.; Varga, Steven M.

    2015-01-01

    There is no currently licensed vaccine for respiratory syncytial virus (RSV) despite being the leading cause of lower respiratory tract infections in children. Children previously immunized with a formalin-inactivated RSV (FI-RSV) vaccine exhibited enhanced respiratory disease following natural RSV infection. Subsequent studies in animal models have implicated roles for CD4 T cells, eosinophils and non-neutralizing antibodies in mediating enhanced respiratory disease. However, the underlying immunological mechanisms responsible for the enhanced respiratory disease and other disease manifestations associated with FI-RSV vaccine-enhanced disease remain unclear. We demonstrate for the first time that while CD4 T cells mediate all aspects of vaccine-enhanced disease, distinct CD4 T cell subsets orchestrate discrete and specific disease parameters. A Th2-biased immune response, but not eosinophils specifically, was required for airway hyperreactivity and mucus hypersecretion. In contrast, the Th1-associated cytokine TNF-α was necessary to mediate airway obstruction and weight loss. Our data demonstrate that individual disease manifestations associated with FI-RSV vaccine-enhanced disease are mediated by distinct subsets of CD4 T cells. PMID:25769044

  10. Structural Influence on the Dominance of Virus-Specific CD4 T Cell Epitopes in Zika Virus Infection.

    PubMed

    Koblischke, Maximilian; Stiasny, Karin; Aberle, Stephan W; Malafa, Stefan; Tschouchnikas, Georgios; Schwaiger, Julia; Kundi, Michael; Heinz, Franz X; Aberle, Judith H

    2018-01-01

    Zika virus (ZIKV) has recently caused explosive outbreaks in Pacific islands, South- and Central America. Like with other flaviviruses, protective immunity is strongly dependent on potently neutralizing antibodies (Abs) directed against the viral envelope protein E. Such Ab formation is promoted by CD4 T cells through direct interaction with B cells that present epitopes derived from E or other structural proteins of the virus. Here, we examined the extent and epitope dominance of CD4 T cell responses to capsid (C) and envelope proteins in Zika patients. All patients developed ZIKV-specific CD4 T cell responses, with substantial contributions of C and E. In both proteins, immunodominant epitopes clustered at sites that are structurally conserved among flaviviruses but have highly variable sequences, suggesting a strong impact of protein structural features on immunodominant CD4 T cell responses. Our data are particularly relevant for designing flavivirus vaccines and their evaluation in T cell assays and provide insights into the importance of viral protein structure for epitope selection and antigenicity.

  11. β-Cyclodextrin polymer brushes decorated magnetic colloidal nanocrystal clusters for the release of hydrophobic drugs

    NASA Astrophysics Data System (ADS)

    Lv, Shaonan; Zhao, Meiqin; Cheng, Changjing; Zhao, Zhigang

    2014-05-01

    β-Cyclodextrin (β-CD) polymer brushes decorated magnetic Fe3O4 colloidal nanocrystal clusters (Fe3O4@PG-CD) were fabricated by a combination of surface-initiated atom transfer radical polymerization on the surface of Br-anchored Fe3O4 colloidal nanocrystal clusters (Fe3O4-Br) and ring-opening reaction of epoxy groups. The resulted Fe3O4@PG-CD hybrid nanoparticles were characterized by several methods including Fourier transform infrared, transmission electron microscope, dynamic light scattering instrument, X-ray diffraction, thermogravimetric analysis, and vibrating sample magnetometer. Moreover, the potential of as-synthesized Fe3O4@PG-CD as a carrier of hydrophobic anticancer drug 5-fluorouracil (5-FU) was also investigated. The results showed that the prepared Fe3O4@PG-CD have core/shell structure and high saturated magnetism. 5-FU could be loaded into the Fe3O4@PG-CD via the formation of β-CD/5-FU inclusion complex. Furthermore, the Fe3O4@PG-CD displayed a high loading capacity and pH-dependent release behavior for 5-FU. The release behavior demonstrated a simple Fickian diffusion in the acidic environment (pH 2.0 and 4.0) but neither non-Fickian nor anomalous when neutral. The results reveal that this nanosystem seems to be a very promising vehicle for the hydrophobic drugs for pH-dependent controlled release.

  12. High susceptibility to liver injury in IL-27 p28 conditional knockout mice involves intrinsic interferon-γ dysregulation of CD4+ T cells.

    PubMed

    Zhang, Song; Liang, Ruifang; Luo, Wei; Liu, Chang; Wu, Xiaoli; Gao, Yanan; Hao, Jianlei; Cao, Guangchao; Chen, Xi; Wei, Jun; Xia, Siyuan; Li, Zheng; Wen, Ti; Wu, Yunyun; Zhou, Xinglong; Wang, Puyue; Zhao, Liqing; Wu, Zhengzhou; Xiong, Sidong; Gao, Xiaoming; Gao, Xiang; Chen, Yongyan; Ge, Qing; Tian, Zhigang; Yin, Zhinan

    2013-04-01

    Interleukin (IL)-27, a newly discovered IL-12 family cytokine, is composed of p28 and EBI3. In this study, CD11c-p28(f/f) conditional knockout mice were generated to delete p28 specifically in dendritic cells (DCs). We demonstrated that in the absence of DC-derived p28, these mice were highly susceptible to both low and higher concentrations of concanavalin A (ConA) (5 mg/kg or 10 mg/kg), with extremely early and steady high levels of interferon-γ (IFN-γ) in sera. Neutralizing IFN-γ prevented ConA-induced liver damage in these mice, indicating a critical role of IFN-γ in this pathological process. Interestingly, the main source of the increased IFN-γ in CD11c-p28(f/f) mice was CD4+ T cells, but not natural killer T (NKT) cells. Depletion of CD4+ , but not NK1.1+ , cells completely abolished liver damage, whereas transferring CD4+ T cells from CD11c-p28(f/f) mice, but not from wild-type mice or CD11c-p28(f/f) -IFN-γ(-/-) double knockout mice to CD4(-/-) mice, restored the increased liver damage. Further studies defined higher levels of IFN-γ and T-bet messenger RNA in naïve CD4+ T cells from CD11c-p28(f/f) mice, and these CD4+ T cells were highly responsive to both low and higher concentrations of anti-CD3, indicating a programmed functional alternation of CD4+ T cells. We provide a unique model for studying the pathology of CD4+ T cell-mediated liver injury and reveal a novel function of DC-derived p28 on ConA-induced fulminant hepatitis through regulation of the intrinsic ability for IFN-γ production by CD4+ T cells. Copyright © 2012 American Association for the Study of Liver Diseases.

  13. Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta.

    PubMed

    Liu, Victoria C; Wong, Larry Y; Jang, Thomas; Shah, Ali H; Park, Irwin; Yang, Ximing; Zhang, Qiang; Lonning, Scott; Teicher, Beverly A; Lee, Chung

    2007-03-01

    CD4+CD25+ T regulatory (T(reg)) cells were initially described for their ability to suppress autoimmune diseases in animal models. An emerging interest is the potential role of T(reg) cells in cancer development and progression because they have been shown to suppress antitumor immunity. In this study, CD4+CD25- T cells cultured in conditioned medium (CM) derived from tumor cells, RENCA or TRAMP-C2, possess similar characteristics as those of naturally occurring T(reg) cells, including expression of Foxp3, a crucial transcription factor of T(reg) cells, production of low levels of IL-2, high levels of IL-10 and TGF-beta, and the ability to suppress CD4+CD25- T cell proliferation. Further investigation revealed a critical role of tumor-derived TGF-beta in converting CD4+CD25- T cells into T(reg) cells because a neutralizing Ab against TGF-beta, 1D11, completely abrogated the induction of T(reg) cells. CM from a nontumorigenic cell line, NRP-152, or irradiated tumor cells did not convert CD4+CD25- T cells to T(reg) cells because they produce low levels of TGF-beta in CM. Finally, we observed a reduced tumor burden in animals receiving 1D11. The reduction in tumor burden correlated with a decrease in tumor-derived TGF-beta. Treatment of 1D11 also reduced the conversion of CD4+ T cells into T(reg) cells and subsequent T(reg) cell-mediated suppression of antitumor immunity. In summary, we have demonstrated that tumor cells directly convert CD4+CD25- T cells to T(reg) cells through production of high levels of TGF-beta, suggesting a possible mechanism through which tumor cells evade the immune system.

  14. CD86 and beta2-adrenergic receptor signaling pathways, respectively, increase Oct-2 and OCA-B Expression and binding to the 3'-IgH enhancer in B cells.

    PubMed

    Podojil, Joseph R; Kin, Nicholas W; Sanders, Virginia M

    2004-05-28

    Stimulation of CD86 (formerly known as B7-2) and/or the beta2-adrenergic receptor on a CD40 ligand/interleukin-4-activated B cell increased the rate of mature IgG1 transcription. To identify the mechanism responsible for this effect, we determined whether CD86 and/or beta2-adrenergic receptor stimulation regulated transcription factor expression and binding to the 3'-IgH enhancer in vitro and in vivo. We showed that CD86 stimulation increased the nuclear localization of NF-kappaB1 (p50) and phosphorylated RelA (p65) and increased Oct-2 expression and binding to the 3'-IgH enhancer, in a protein kinase C-dependent manner. These effects were lost when CD86-deficient or NF-kappaB1-deficient B cells were used. CD86 stimulation also increased the level of IkappaB-alpha phosphorylation but in a protein kinase C-independent manner. Beta2-adrenergic receptor stimulation increased CREB phosphorylation, OCA-B expression, and OCA-B binding to the 3'-IgH enhancer in a protein kinase A-dependent manner, an effect lost when beta2-adrenergic receptor-deficient B cells were used. Also, the beta2-adrenergic receptor-induced increase in the level of mature IgG1 transcript was lost when OCA-B-deficient B cells were used. These data are the first to show that CD86 stimulation up-regulates the expression of the transcription factor Oct-2 in a protein kinase C- and NF-kappaB1-dependent manner, and that beta2-adrenergic receptor stimulation up-regulates the expression of the coactivator OCA-B in a protein kinase A-dependent manner to cooperate with Oct-2 binding to the 3'-IgH enhancer.

  15. Freeze and Thaw of CD4+CD25+Foxp3+ Regulatory T Cells Results in Loss of CD62L Expression and a Reduced Capacity to Protect against Graft-versus-Host Disease

    PubMed Central

    Pierini, Antonio; Baker, Jeanette; Armstrong, Randall; Pan, Yuqiong; Leveson-Gower, Dennis; Negrin, Robert; Meyer, Everett

    2015-01-01

    The adoptive transfer of CD4+CD25+Foxp3+ regulatory T cells (Tregs) in murine models of allogeneic hematopoietic cell transplantation (HCT) has been shown to protect recipient mice from lethal acute graft-versus-host disease (GVHD) and this approach is being actively investigated in human clinical trials. Here, we examined the effects of cryopreservation on Tregs. We found that freeze and thaw of murine and human Tregs is associated with reduced expression of L-selectin (CD62L), which was previously established to be an important factor that contributes to the in vivo protective effects of Tregs. Frozen and thawed murine Tregs showed a reduced capacity to bind to the CD62L binding partner MADCAM1 in vitro as well as an impaired homing to secondary lymphoid organs in vivo. Upon adoptive transfer frozen and thawed Tregs failed to protect against lethal GVHD compared with fresh Tregs in a murine model of allogeneic HCT across major histocompatibility barriers. In summary, the direct administration of adoptively transferred frozen and thawed Tregs adversely affects their immunosuppressive potential which is an important factor to consider in the clinical implementation of Treg immunotherapies. PMID:26693907

  16. A Novel Respiratory Syncytial Virus (RSV) F Subunit Vaccine Adjuvanted with GLA-SE Elicits Robust Protective TH1-Type Humoral and Cellular Immunity In Rodent Models

    PubMed Central

    Lambert, Stacie L.; Aslam, Shahin; Stillman, Elizabeth; MacPhail, Mia; Nelson, Christine; Ro, Bodrey; Sweetwood, Rosemary; Lei, Yuk Man; Woo, Jennifer C.; Tang, Roderick S.

    2015-01-01

    Background Illness associated with Respiratory Syncytial Virus (RSV) remains an unmet medical need in both full-term infants and older adults. The fusion glycoprotein (F) of RSV, which plays a key role in RSV infection and is a target of neutralizing antibodies, is an attractive vaccine target for inducing RSV-specific immunity. Methodology and Principal Findings BALB/c mice and cotton rats, two well-characterized rodent models of RSV infection, were used to evaluate the immunogenicity of intramuscularly administered RSV vaccine candidates consisting of purified soluble F (sF) protein formulated with TLR4 agonist glucopyranosyl lipid A (GLA), stable emulsion (SE), GLA-SE, or alum adjuvants. Protection from RSV challenge, serum RSV neutralizing responses, and anti-F IgG responses were induced by all of the tested adjuvanted RSV sF vaccine formulations. However, only RSV sF + GLA-SE induced robust F-specific TH1-biased humoral and cellular responses. In mice, these F-specific cellular responses include both CD4 and CD8 T cells, with F-specific polyfunctional CD8 T cells that traffic to the mouse lung following RSV challenge. This RSV sF + GLA-SE vaccine formulation can also induce robust RSV neutralizing titers and prime IFNγ-producing T cell responses in Sprague Dawley rats. Conclusions/Significance These studies indicate that a protein subunit vaccine consisting of RSV sF + GLA-SE can induce robust neutralizing antibody and T cell responses to RSV, enhancing viral clearance via a TH1 immune-mediated mechanism. This vaccine may benefit older populations at risk for RSV disease. PMID:25793508

  17. Controlling and fine tuning the physical properties of two identical metal coordination sites in de novo designed three stranded coiled coil peptides.

    PubMed

    Iranzo, Olga; Chakraborty, Saumen; Hemmingsen, Lars; Pecoraro, Vincent L

    2011-01-19

    Herein we report how de novo designed peptides can be used to investigate whether the position of a metal site along a linear sequence that folds into a three-stranded α-helical coiled coil defines the physical properties of Cd(II) ions in either CdS(3) or CdS(3)O (O-being an exogenous water molecule) coordination environments. Peptides are presented that bind Cd(II) into two identical coordination sites that are located at different topological positions at the interior of these constructs. The peptide GRANDL16PenL19IL23PenL26I binds two Cd(II) as trigonal planar 3-coordinate CdS(3) structures whereas GRANDL12AL16CL26AL30C sequesters two Cd(II) as pseudotetrahedral 4-coordinate CdS(3)O structures. We demonstrate how for the first peptide, having a more rigid structure, the location of the identical binding sites along the linear sequence does not affect the physical properties of the two bound Cd(II). However, the sites are not completely independent as Cd(II) bound to one of the sites ((113)Cd NMR chemical shift of 681 ppm) is perturbed by the metalation state (apo or [Cd(pep)(Hpep)(2)](+) or [Cd(pep)(3)](-)) of the second center ((113)Cd NMR chemical shift of 686 ppm). GRANDL12AL16CL26AL30C shows a completely different behavior. The physical properties of the two bound Cd(II) ions indeed depend on the position of the metal center, having pK(a2) values for the equilibrium [Cd(pep)(Hpep)(2)](+) → [Cd(pep)(3)](-) + 2H(+) (corresponding to deprotonation and coordination of cysteine thiols) that range from 9.9 to 13.9. In addition, the L26AL30C site shows dynamic behavior, which is not observed for the L12AL16C site. These results indicate that for these systems one cannot simply assign a "4-coordinate structure" and assume certain physical properties for that site since important factors such as packing of the adjacent Leu, size of the intended cavity (endo vs exo) and location of the metal site play crucial roles in determining the final properties of the bound Cd(II).

  18. Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization.

    PubMed

    Ji, Xin; Olinger, Gene G; Aris, Sheena; Chen, Ying; Gewurz, Henry; Spear, Gregory T

    2005-09-01

    Mannose-binding lectin (MBL), a serum lectin that mediates innate immune functions including activation of the lectin complement pathway, binds to carbohydrates expressed on some viral glycoproteins. In this study, the ability of MBL to bind to virus particles pseudotyped with Ebola and Marburg envelope glycoproteins was evaluated. Virus particles bearing either Ebola (Zaire strain) or Marburg (Musoke strain) envelope glycoproteins bound at significantly higher levels to immobilized MBL compared with virus particles pseudotyped with vesicular stomatitis virus glycoprotein or with no virus glycoprotein. As observed in previous studies, Ebola-pseudotyped virus bound to cells expressing the lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin). However, pre-incubation of virus with MBL blocked DC-SIGN-mediated binding to cells, suggesting that the two lectins bind at the same or overlapping sites on the Ebola glycoprotein. Neutralization experiments showed that virus pseudotyped with Ebola or Marburg (Musoke) glycoprotein was neutralized by complement, while the Marburg (Ravn strain) glycoprotein-pseudotyped virus was less sensitive to neutralization. Neutralization was partially mediated through the lectin complement pathway, since a complement source deficient in MBL was significantly less effective at neutralizing viruses pseudotyped with filovirus glycoproteins and addition of purified MBL to the MBL-deficient complement increased neutralization. These experiments demonstrated that MBL binds to filovirus envelope glycoproteins resulting in important biological effects and suggest that MBL can interact with filoviruses during infection in humans.

  19. PGE2 contributes to TGF-β induced T regulatory cell function in human non-small cell lung cancer

    PubMed Central

    Baratelli, Felicita; Lee, Jay M; Hazra, Saswati; Lin, Ying; Walser, Tonya C; Schaue, Dorthe; Pak, Peter S; Elashoff, David; Reckamp, Karen; Zhang, Ling; Fishbein, Michael C; Sharma, Sherven; Dubinett, Steven M

    2010-01-01

    CD4+CD25bright regulatory T cells (Treg) play an important role in cancer-mediated immunosuppression. We and others have previously shown that prostaglandin E2 (PGE2) and transforming growth factor beta (TGF-β) induce CD4+CD25brightFOXP3+Treg. Based on these studies, we investigated the requirement for PGE2 in Treg induction by TGF-β. TGF-β stimulation of human CD4+ T cells induced COX-2-dependent production of PGE2. PGE2-neutralizing antibody treatment significantly reduced the suppressive function of TGF-β-induced Treg (TGF-β-Treg) in vitro. TGF-β concentration measured in the plasma of non-small cell lung cancer (NSCLC) patients directly correlated with the frequency of circulating CD4+CD25brightFOXP3+T cells. Flow cytometry analysis showed increased FOXP3 expression in circulating CD4+CD25+HLA-DR- cells of lung cancer patients compared to control subjects. Immunohistochemical analysis revealed co-expression of TGF-β, COX-2, and FOXP3 in serial sections from resected lung tumor tissues. All together these observations suggest interplay between TGF-β and COX-2 in the induction of Treg activities. Interrupting TGF-β and PGE2 signaling may be important in therapeutic interventions that aim to limit Tregfunction in lung cancer. PMID:20733946

  20. Murine T cell activation is regulated by surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warford, Jordan, E-mail: jordan.warford@dal.ca; Doucette, Carolyn D., E-mail: carolyn.doucette@dal.ca; Hoskin, David W., E-mail: d.w.hoskin@dal.ca

    2014-01-10

    Highlights: •Surfen is the first inhibitor of glycosaminoglycan function to be studied in murine T cells. •Surfen reduces T cell proliferation stimulated in vitro and in vivo. •Surfen reduces CD25 expression in T cells activated in vivo but not in vitro. •Surfen increases T cell proliferation when T cell receptor activation is bypassed. •Surfen’s effects are blocked by co-administration of heparin sulfate. -- Abstract: Surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide) binds to glycosaminoglycans (GAGs) and has been shown to influence their function, and the function of proteoglycans (complexes of GAGs linked to a core protein). T cells synthesize, secrete and express GAGs and proteoglycansmore » which are involved in several aspects of T cell function. However, there are as yet no studies on the effect of GAG-binding agents such as surfen on T cell function. In this study, surfen was found to influence murine T cell activation. Doses between 2.5 and 20 μM produced a graduated reduction in the proliferation of T cells activated with anti-CD3/CD28 antibody-coated T cell expander beads. Surfen (20 mg/kg) was also administered to mice treated with anti-CD3 antibody to activate T cells in vivo. Lymphocytes from surfen-treated mice also showed reduced proliferation and lymph node cell counts were reduced. Surfen reduced labeling with a cell viability marker (7-ADD) but to a much lower extent than its effect on proliferation. Surfen also reduced CD25 (the α-subunit of the interleukin (IL)-2 receptor) expression with no effect on CD69 expression in T cells treated in vivo but not in vitro. When receptor activation was bypassed by treating T cells in vitro with phorbyl myristate acetate (10 ng/ml) and ionomycin (100 ng/ml), surfen treatment either increased proliferation (10 μM) or had no effect (2.5, 5 and 20 μM). In vitro treatment of T cells with surfen had no effect on IL-2 or interferon-γ synthesis and did not alter proliferation of the IL-2 dependent cell line CTLL-2. The effect of surfen was antagonized dose-dependently by co-treatment with heparin sulfate. We conclude that surfen inhibits T cell proliferation in vitro and in vivo. When T cell receptor-driven activation is bypassed surfen had a neutral or stimulatory effect on T cell proliferation. The results imply that endogenous GAGs and proteoglycans play a complex role in promoting or inhibiting different aspects of T cell activation.« less

  1. Synthesis and spectroscopic studies on the new Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol with 5-aminouracil (BDF5AU) and its transition metal complexes. Influence on biologically active peptides-regulating aminopeptidases.

    PubMed

    Hueso-Ureña, Francisco; Illán-Cabeza, Nuria A; Moreno-Carretero, Miguel N; Martínez-Martos, José M; Ramírez-Expósito, María J

    2003-04-01

    The synthesis, spectroscopic (IR, 1H and 13C NMR, UV-Vis-NIR, EPR), magnetic measurements and biological studies of a number of complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Au(III) and Hg(II) of the Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol and 5-aminouracil, ((5-[[(3-[[(2,4-dioxopyrimidin-5(1H,3H)-yl)imino]methyl]-2-hydroxy-5-methylphenyl)methylene]amino]pyrimidine-2,4(1H,3H)-dione, hereafter denoted as BDF5AU) are reported. In all cases, the complexes appear to be monomeric. The deprotonated ligand in the phenolic oxygen atom shows a tridentate coordination mode through the two azomethine nitrogen atoms and the phenolic oxygen atom. The coordination of the neutral ligand takes place through the phenolic oxygen atom and one azomethine nitrogen atom and the carbonylic oxygen atom in fourth position of one uracil ring. The biological properties of some perchlorate complexes on the activity of some neutral, acid, basic and omega aminopeptidases (AP) are assayed, demonstrating a general inhibitory effect. Neutral and basic AP are mainly inhibited by Cu(II), Ni(II) and Cd(II) complexes, although tyrosyl-AP is activated by Zn(II) complex. Glutamyl-AP but not aspartyl-AP is inhibited by all the complexes assayed excepting Zn(II) complex. Finally, omega AP is inhibited by Ni(II) and Cd(II) complexes. Copyright 2003 Elsevier Science Inc.

  2. NKG2D and CD94 bind to heparin and sulfate-containing polysaccharides.

    PubMed

    Higai, Koji; Imaizumi, Yuzo; Suzuki, Chiho; Azuma, Yutaro; Matsumoto, Kojiro

    2009-09-04

    Killer lectin-like receptors NKG2D and CD94 on natural killer cells trigger cytotoxicity through binding of glycans on target cells including sialyl Lewis X antigen. We previously reported that NKG2D and CD94 recognize alpha2,3-linked NeuAc on multi-antennary N-glycans. Here we further investigated polysaccharide binding by these receptors, using glutathione-S-transferase-fused extracellular domains of NKG2D AA 73-216 (rNKG2Dlec) and CD94 AA 68-179 (rCD94lec). We found that rNKG2Dlec and rCD94lec bind in a dose-dependent manner to plates coated with heparin-conjugated bovine serum albumin (heparin-BSA). Binding to heparin-BSA was suppressed by soluble sulfate-containing polysaccharides, but minimally impacted by 2-O-, 6-O-, and 2-N-desulfated heparin. Mutagenesis revealed that (152)Y and (199)Y of NKG2D and (144)F, (160)N, and (166)C of CD94 were critical for binding to heparin-BSA. The present manuscript provides the first evidence that NKG2D and CD94 bind to heparin and sulfate-containing polysaccharides.

  3. Structural and Functional Analysis of the Human HDAC4 Catalytic Domain Reveals a Regulatory Structural Zinc-binding Domain*S⃞

    PubMed Central

    Bottomley, Matthew J.; Lo Surdo, Paola; Di Giovine, Paolo; Cirillo, Agostino; Scarpelli, Rita; Ferrigno, Federica; Jones, Philip; Neddermann, Petra; De Francesco, Raffaele; Steinkühler, Christian; Gallinari, Paola; Carfí, Andrea

    2008-01-01

    Histone deacetylases (HDACs) regulate chromatin status and gene expression, and their inhibition is of significant therapeutic interest. To date, no biological substrate for class IIa HDACs has been identified, and only low activity on acetylated lysines has been demonstrated. Here, we describe inhibitor-bound and inhibitor-free structures of the histone deacetylase-4 catalytic domain (HDAC4cd) and of an HDAC4cd active site mutant with enhanced enzymatic activity toward acetylated lysines. The structures presented, coupled with activity data, provide the molecular basis for the intrinsically low enzymatic activity of class IIa HDACs toward acetylated lysines and reveal active site features that may guide the design of class-specific inhibitors. In addition, these structures reveal a conformationally flexible structural zinc-binding domain conserved in all class IIa enzymes. Importantly, either the mutation of residues coordinating the structural zinc ion or the binding of a class IIa selective inhibitor prevented the association of HDAC4 with the N-CoR·HDAC3 repressor complex. Together, these data suggest a key role of the structural zinc-binding domain in the regulation of class IIa HDAC functions. PMID:18614528

  4. Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain.

    PubMed

    Bottomley, Matthew J; Lo Surdo, Paola; Di Giovine, Paolo; Cirillo, Agostino; Scarpelli, Rita; Ferrigno, Federica; Jones, Philip; Neddermann, Petra; De Francesco, Raffaele; Steinkühler, Christian; Gallinari, Paola; Carfí, Andrea

    2008-09-26

    Histone deacetylases (HDACs) regulate chromatin status and gene expression, and their inhibition is of significant therapeutic interest. To date, no biological substrate for class IIa HDACs has been identified, and only low activity on acetylated lysines has been demonstrated. Here, we describe inhibitor-bound and inhibitor-free structures of the histone deacetylase-4 catalytic domain (HDAC4cd) and of an HDAC4cd active site mutant with enhanced enzymatic activity toward acetylated lysines. The structures presented, coupled with activity data, provide the molecular basis for the intrinsically low enzymatic activity of class IIa HDACs toward acetylated lysines and reveal active site features that may guide the design of class-specific inhibitors. In addition, these structures reveal a conformationally flexible structural zinc-binding domain conserved in all class IIa enzymes. Importantly, either the mutation of residues coordinating the structural zinc ion or the binding of a class IIa selective inhibitor prevented the association of HDAC4 with the N-CoR.HDAC3 repressor complex. Together, these data suggest a key role of the structural zinc-binding domain in the regulation of class IIa HDAC functions.

  5. A novel antibody-dependent cellular cytotoxicity epitope in gp120 is identified by two monoclonal antibodies isolated from a long-term survivor of human immunodeficiency virus type 1 infection.

    PubMed Central

    Alsmadi, O; Herz, R; Murphy, E; Pinter, A; Tilley, S A

    1997-01-01

    Two monoclonal antibodies (MAbs), 42F and 43F, were isolated some 14 months apart from a single long-term survivor of human immunodeficiency virus type 1 (HIV-1) infection. These MAbs were found to be indistinguishable in terms of their isotypes, specificities, affinities, and biological activities. Both 42F and 43F directed substantial antibody-dependent cellular cytotoxicity (ADCC) against cells infected with four divergent lab-adapted strains of HIV-1, but no neutralizing activity against these strains was detectable. The ability of MAbs 42F and 43F, as well as that of MAbs against two other gp120 epitopes, to direct ADCC against uninfected CD4+ cells to which recombinant gp120SF2 had been adsorbed (i.e., "innocent bystanders") was demonstrated to be less efficient by at least an order of magnitude than their ability to direct ADCC against HIV-1-infected cells. Flow cytometry analyses showed that 42F and 43F also bind to native primary isolate Envs from clades B and E expressed on cell surfaces. By direct binding and competition assays, it was demonstrated that the 42F/43F epitope lies in a domain of gp120 outside the previously described CD4-binding site and V3 loop ADCC epitope clusters. Immunoblot analysis revealed that the 42F/43F epitope is not dependent on disulfide bonds or N-linked glycans in gp120. Epitope mapping of 42F and 43F by binding to linear peptides demonstrated specificity of these MAbs for a sequence of 10 amino acids in the C5 domain comprising residues 491 to 500 (Los Alamos National Laboratory numbering for the HXB2 strain). Thus, 42F and 43F define a new ADCC epitope in gp120. Because of the relative conservation of this epitope and the fact that it appears to have been significantly immunogenic in the individual from which these MAbs were derived, it may prove to be a useful component of HIV vaccines. Furthermore, these MAbs may be used as tools to probe the potential importance of ADCC as an antiviral activity in HIV-1 infection. PMID:8995609

  6. Escape from neutralization by the respiratory syncytial virus-specific neutralizing monoclonal antibody palivizumab is driven by changes in on-rate of binding to the fusion protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, John T.; Keefer, Christopher J.; Slaughter, James C.

    2014-04-15

    The role of binding kinetics in determining neutralizing potency for antiviral antibodies is poorly understood. While it is believed that increased steady-state affinity correlates positively with increased virus-neutralizing activity, the relationship between association or dissociation rate and neutralization potency is unclear. We investigated the effect of naturally-occurring antibody resistance mutations in the RSV F protein on the kinetics of binding to palivizumab. Escape from palivizumab-mediated neutralization of RSV occurred with reduced association rate (K{sub on}) for binding to RSV F protein, while alteration of dissociation rate (K{sub off}) did not significantly affect neutralizing activity. Interestingly, linkage of reduced K{sub on}more » with reduced potency mirrored the effect of increased K{sub on} found in a high-affinity enhanced potency palivizumab variant (motavizumab). These data suggest that association rate is the dominant factor driving neutralization potency for antibodies to RSV F protein antigenic site A and determines the potency of antibody somatic variants or efficiency of escape of viral glycoprotein variants. - Highlights: • The relationship of affinity to neutralization for virus antibodies is uncertain. • Palivizumab binds to RSV escape mutant fusion proteins, but with reduced affinity. • Association rate (K{sub on}) correlated well with the potency of neutralization.« less

  7. NOD2 Down-Regulates Colonic Inflammation by IRF4-Mediated Inhibition of K63-Linked Polyubiquitination of RICK and TRAF6

    PubMed Central

    Watanabe, Tomohiro; Asano, Naoki; Meng, Guangxun; Yamashita, Kouhei; Arai, Yasuyuki; Sakurai, Toshiharu; Kudo, Masatoshi; Fuss, Ivan J; Kitani, Atsushi; Shimosegawa, Tooru; Chiba, Tsutomu; Strober, Warren

    2014-01-01

    It is well established that polymorphisms of the nucleotide-binding oligomerization domain 2 (NOD2) gene, a major risk factor in Crohn's disease (CD), lead to loss of NOD2 function. However, a molecular explanation of how such loss of function leads to increased susceptibility to CD has remained unclear. In a previous study exploring this question we reported that activation of NOD2 in human dendritic cells by its ligand, muramyl dipeptide (MDP) negatively regulates Toll-like receptor (TLR)-mediated inflammatory responses. Here we show that NOD2 activation results in increased interferon regulatory factor 4 (IRF4) expression and binding to TNF receptor associated factor 6 (TRAF6) and receptor interacting serine-threonine kinase (RICK). We then show that such binding leads to IRF4-mediated inhibition of Lys63-linked polyubiquitination of TRAF6 and RICK and thus to down-regulation of NF-κB activation. Finally, we demonstrate that protection of mice from the development of experimental colitis by MDP or IRF4 administration is accompanied by similar IRF4-mediated effects on polyubiquitination of TRAF6 and RICK in colonic lamina propria mononuclear cells. These findings thus define a mechanism of NOD2-mediated regulation of innate immune responses to intestinal microflora that could explain the relation of NOD2 polymorphisms and resultant NOD2 dysfunction to CD. PMID:24670424

  8. Foxp3+ T cells inhibit antitumor immune memory modulated by mTOR inhibition.

    PubMed

    Wang, Yanping; Sparwasser, Tim; Figlin, Robert; Kim, Hyung L

    2014-04-15

    Inhibition of mTOR signaling enhances antitumor memory lymphocytes. However, pharmacologic mTOR inhibition also enhances regulatory T-cell (Treg) activity. To counter this effect, Treg control was added to mTOR inhibition in preclinical models. Tregs were controlled with CD4-depleting antibodies because CD4 depletion has high translational potential and already has a well-established safety profile in patients. The antitumor activity of the combination therapy was CD8 dependent and controlled growth of syngeneic tumors even when an adoptive immunotherapy was not used. Lymphocytes resulting from the combination therapy could be transferred into naïve mice to inhibit aggressive growth of lung metastases. The combination therapy enhanced CD8 memory formation as determined by memory markers and functional studies of immune recall. Removal of FoxP3-expressing T lymphocytes was the mechanism underlying immunologic memory formation following CD4 depletion. This was confirmed using transgenic DEREG (depletion of regulatory T cells) mice to specifically remove Foxp3(+) T cells. It was further confirmed with reciprocal studies where stimulation of immunologic memory because of CD4 depletion was completely neutralized by adoptively transferring tumor-specific Foxp3(+) T cells. Also contributing to tumor control, Tregs that eventually recovered following CD4 depletion were less immunosuppressive. These results provide a rationale for further study of mTOR inhibition and CD4 depletion in patients. ©2014 AACR.

  9. Three holes bound to a double acceptor - Be(+) in germanium

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Mcmurray, R. E., Jr.; Falicov, L. M.; Haegel, N. M.; Hansen, W. L.

    1983-01-01

    A double acceptor binding three holes has been observed for the first time with photoconductive far-infrared spectroscopy in beryllium-doped germanium single crystals. This new center, Be(+), has a hole binding energy of about 5 meV and is only present when free holes are generated by ionization of either neutral shallow acceptors or neutral Be double acceptors. The Be(+) center thermally ionizes above 4 K. It disappears at a uniaxial stress higher than about a billion dyn/sq cm parallel to (111) as a result of the lifting of the valence-band degeneracy.

  10. Empty conformers of HLA-B preferentially bind CD8 and regulate CD8+ T cell function.

    PubMed

    Geng, Jie; Altman, John D; Krishnakumar, Sujatha; Raghavan, Malini

    2018-05-09

    When complexed with antigenic peptides, human leukocyte antigen (HLA) class I (HLA-I) molecules initiate CD8 + T cell responses via interaction with the T cell receptor (TCR) and co-receptor CD8. Peptides are generally critical for the stable cell surface expression of HLA-I molecules. However, for HLA-I alleles such as HLA-B*35:01, peptide-deficient (empty) heterodimers are thermostable and detectable on the cell surface. Additionally, peptide-deficient HLA-B*35:01 tetramers preferentially bind CD8 and to a majority of blood-derived CD8 + T cells via a CD8-dependent binding mode. Further functional studies reveal that peptide-deficient conformers of HLA-B*35:01 do not directly activate CD8 + T cells, but accumulate at the immunological synapse in antigen-induced responses, and enhance cognate peptide-induced cell adhesion and CD8 + T cell activation. Together, these findings indicate that HLA-I peptide occupancy influences CD8 binding affinity, and reveal a new set of regulators of CD8 + T cell activation, mediated by the binding of empty HLA-I to CD8. © 2018, Geng et al.

  11. 17D yellow fever vaccine elicits comparable long-term immune responses in healthy individuals and immune-compromised patients.

    PubMed

    Wieten, R W; Goorhuis, A; Jonker, E F F; de Bree, G J; de Visser, A W; van Genderen, P J J; Remmerswaal, E B M; Ten Berge, I J M; Visser, L G; Grobusch, M P; van Leeuwen, E M M

    2016-06-01

    The 17D live attenuated yellow fever (YF) vaccine is contra-indicated in immune-compromised individuals and may elicit a suboptimal immunologic response. The aim of this study is to assess whether long-term immune responses against the YF vaccine are impaired in immune-compromised patients. Fifteen patients using different immunosuppressive drugs and 30 healthy individuals vaccinated 0-22 years ago were included. The serological response was measured using the plaque reduction neutralization test (PRNT). CD8(+) and CD4(+) T-cell responses were measured following proliferation and re-stimulation with YFV peptide pools. Phenotypic characteristics and cytokine responses of CD8(+) T-cells were determined using class I tetramers. The geometric mean titre of neutralizing antibodies was not different between the groups (p = 0.77). The presence of YFV-specific CD4(+) and CD8(+) T-cell did not differ between patients and healthy individuals (15/15, 100.0% vs. 29/30, 96.7%, p = 0.475). Time since vaccination correlated negatively with the number of YFV-specific CD8(+) T-cells (r = -0.66, p = 0.0045). Percentages of early-differentiated memory cells increased (r = 0.67, p = 0.017) over time. These results imply that YF vaccination is effective despite certain immunosuppressive drug regimens. An early-differentiated memory-like phenotype persisted, which is associated with effective expansion upon re-encounter with antigen, suggesting a potent memory T-cell pool remains. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  12. Structural Basis for Recognition of Human Enterovirus 71 by a Bivalent Broadly Neutralizing Monoclonal Antibody

    PubMed Central

    Ku, Zhiqiang; Zuo, Teng; Kong, Liangliang; Zhang, Chao; Shi, Jinping; Liu, Qingwei; Chen, Tan; Zhang, Yingyi; Jiang, Wen; Zhang, Linqi; Huang, Zhong; Cong, Yao

    2016-01-01

    Enterovirus 71 (EV71) is the main pathogen responsible for hand, foot and mouth disease with severe neurological complications and even death in young children. We have recently identified a highly potent anti-EV71 neutralizing monoclonal antibody, termed D5. Here we investigated the structural basis for recognition of EV71 by the antibody D5. Four three-dimensional structures of EV71 particles in complex with IgG or Fab of D5 were reconstructed by cryo-electron microscopy (cryo-EM) single particle analysis all at subnanometer resolutions. The most critical EV71 mature virion-Fab structure was resolved to a resolution of 4.8 Å, which is rare in cryo-EM studies of virus-antibody complex so far. The structures reveal a bivalent binding pattern of D5 antibody across the icosahedral 2-fold axis on mature virion, suggesting that D5 binding may rigidify virions to prevent their conformational changes required for subsequent RNA release. Moreover, we also identified that the complementary determining region 3 (CDR3) of D5 heavy chain directly interacts with the extremely conserved VP1 GH-loop of EV71, which was validated by biochemical and virological assays. We further showed that D5 is indeed able to neutralize a variety of EV71 genotypes and strains. Moreover, D5 could potently confer protection in a mouse model of EV71 infection. Since the conserved VP1 GH-loop is involved in EV71 binding with its uncoating receptor, the scavenger receptor class B, member 2 (SCARB2), the broadly neutralizing ability of D5 might attribute to its inhibition of EV71 from binding SCARB2. Altogether, our results elucidate the structural basis for the binding and neutralization of EV71 by the broadly neutralizing antibody D5, thereby enhancing our understanding of antibody-based protection against EV71 infection. PMID:26938634

  13. Expression Profiles of Ligands for Activating Natural Killer Cell Receptors on HIV Infected and Uninfected CD4⁺ T Cells.

    PubMed

    Tremblay-McLean, Alexandra; Bruneau, Julie; Lebouché, Bertrand; Lisovsky, Irene; Song, Rujun; Bernard, Nicole F

    2017-10-12

    Natural Killer (NK) cell responses to HIV-infected CD4 T cells (iCD4) depend on the integration of signals received through inhibitory (iNKR) and activating NK receptors (aNKR). iCD4 activate NK cells to inhibit HIV replication. HIV infection-dependent changes in the human leukocyte antigen (HLA) ligands for iNKR on iCD4 are well documented. By contrast, less is known regarding the HIV infection related changes in ligands for aNKR on iCD4. We examined the aNKR ligand profiles HIV p24⁺ HIV iCD4s that maintained cell surface CD4 (iCD4⁺), did not maintain CD4 (iCD4 - ) and uninfected CD4 (unCD4) T cells for expression of unique long (UL)-16 binding proteins-1 (ULBP-1), ULBP-2/5/6, ULBP-3, major histocompatibility complex (MHC) class 1-related (MIC)-A, MIC-B, CD48, CD80, CD86, CD112, CD155, Intercellular adhesion molecule (ICAM)-1, ICAM-2, HLA-E, HLA-F, HLA-A2, HLA-C, and the ligands to NKp30, NKp44, NKp46, and killer immunoglobulin-like receptor 3DS1 (KIR3DS1) by flow cytometry on CD4 T cells from 17 HIV-1 seronegative donors activated and infected with HIV. iCD4⁺ cells had higher expression of aNKR ligands than did unCD4. However, the expression of aNKR ligands on iCD4 where CD4 was downregulated (iCD4 - ) was similar to (ULBP-1, ULBP-2/5/6, ULBP-3, MIC-A, CD48, CD80, CD86 and CD155) or significantly lower than (MIC-B, CD112 and ICAM-2) what was observed on unCD4. Thus, HIV infection can be associated with increased expression of aNKR ligands or either baseline or lower than baseline levels of aNKR ligands, concomitantly with the HIV-mediated downregulation of cell surface CD4 on infected cells.

  14. Profound CD4+/CCR5+ T cell expansion is induced by CD8+ lymphocyte depletion but does not account for accelerated SIV pathogenesis.

    PubMed

    Okoye, Afam; Park, Haesun; Rohankhedkar, Mukta; Coyne-Johnson, Lia; Lum, Richard; Walker, Joshua M; Planer, Shannon L; Legasse, Alfred W; Sylwester, Andrew W; Piatak, Michael; Lifson, Jeffrey D; Sodora, Donald L; Villinger, Francois; Axthelm, Michael K; Schmitz, Joern E; Picker, Louis J

    2009-07-06

    Depletion of CD8(+) lymphocytes during acute simian immunodeficiency virus (SIV) infection of rhesus macaques (RMs) results in irreversible prolongation of peak-level viral replication and rapid disease progression, consistent with a major role for CD8(+) lymphocytes in determining postacute-phase viral replication set points. However, we report that CD8(+) lymphocyte depletion is also associated with a dramatic induction of proliferation among CD4(+) effector memory T (T(EM)) cells and, to a lesser extent, transitional memory T (T(TrM)) cells, raising the question of whether an increased availability of optimal (activated/proliferating), CD4(+)/CCR5(+) SIV "target" cells contributes to this accelerated pathogenesis. In keeping with this, depletion of CD8(+) lymphocytes in SIV(-) RMs led to a sustained increase in the number of potential CD4(+) SIV targets, whereas such depletion in acute SIV infection led to increased target cell consumption. However, we found that the excess CD4(+) T(EM) cell proliferation of CD8(+) lymphocyte-depleted, acutely SIV-infected RMs was completely inhibited by interleukin (IL)-15 neutralization, and that this inhibition did not abrogate the rapidly progressive infection in these RMs. Moreover, although administration of IL-15 during acute infection induced robust CD4(+) T(EM) and T(TrM) cell proliferation, it did not recapitulate the viral dynamics of CD8(+) lymphocyte depletion. These data suggest that CD8(+) lymphocyte function has a larger impact on the outcome of acute SIV infection than the number and/or activation status of target cells available for infection and viral production.

  15. CD44v10, osteopontin and lymphoma growth retardation by a CD44v10-specific antibody.

    PubMed

    Megaptche, Amelie Pajip; Erb, Ulrike; Büchler, Markus Wolfgang; Zöller, Margot

    2014-09-01

    Blockade of CD44 is considered a therapeutic option for the elimination of leukemia-initiating cells. However, the application of anti-panCD44 can be burdened by severe side effects. We determined whether these side effects could be avoided by replacing anti-panCD44 with CD44 variant isoform (CD44v)-specific antibodies in CD44v-positive hematological malignancies using the EL4 thymoma and CD44v10-transfected EL4 (EL4-v10) as models. Subcutaneous growth of EL4 and EL4-v10 was equally well inhibited by the anti-panCD44 and anti-CD44v10 antibodies, respectively. Ex vivo analysis indicated that natural killer cytotoxicity and antibody-dependent cellular cytotoxicity were the main effector mechanisms. Under local inflammation, the efficacy of anti-CD44v10 prolonged the survival time twofold compared with untreated, EL4-v10 tumor-bearing mice, and this was due to inflammation-induced expression of osteopontin (OPN). A high level of OPN in EL4-v10 tumors supported leukocyte recruitment and tumor-infiltrating T-cell activation. Taken together, in hematological malignancies expressing CD44v, anti-panCD44 can be replaced by CD44v-specific antibodies without a loss in efficacy. Furthermore, CD44v10-specific antibodies appear particularly advantageous in cutaneous leukemia therapy, as CD44v10 binding of OPN drives leukocyte recruitment and activation.

  16. Development of an anti-ferret CD4 monoclonal antibody for the characterisation of ferret T lymphocytes.

    PubMed

    Layton, Daniel S; Xiao, Xiaowen; Bentley, John D; Lu, Louis; Stewart, Cameron R; Bean, Andrew G D; Adams, Timothy E

    2017-05-01

    The ferret is an established animal model for a number of human respiratory viral infections, such as influenza virus and more recently, Ebola virus. However, a paucity of immunological reagents has hampered the study of cellular immune responses. Here we describe the development and characterisation of a novel monoclonal antibody (mAb) against the ferret CD4 antigen and the characterisation of ferret CD4 T lymphocytes. Recombinant production and purification of the ferret CD4 ectodomain soluble protein allowed hybridoma generation and the generation of a mAb (FeCD4) showing strong binding to ferret CD4 protein and lymphoid cells by flow cytometry. FeCD4 bound to its cognate antigen post-fixation with paraformaldehyde (PFA) which is routinely used to inactivate highly pathogenic viruses. We have also used FeCD4 in conjunction with other immune cell markers to characterise ferret T cells in both primary and secondary lymphoid organs. In summary, we have developed an important reagent for the study of cellular immunological responses in the ferret model of infectious disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. LAG-3 Represents a Marker of CD4+ T Cells with Regulatory Activity in Patients with Bone Fracture.

    PubMed

    Wang, Jun; Ti, Yunfan; Wang, Yicun; Guo, Guodong; Jiang, Hui; Chang, Menghan; Qian, Hongbo; Zhao, Jianning; Sun, Guojing

    2018-04-19

    The lymphocyte activation gene 3 (LAG-3) is a CD4 homolog with binding affinity to MHC class II molecules. It is thought that LAG-3 exerts a bimodal function, such that co-ligation of LAG-3 and CD3 could deliver an inhibitory signal in conventional T cells, whereas, on regulatory T cells, LAG-3 expression could promote their inhibitory function. In this study, we investigated the role of LAG-3 expression on CD4 + T cells in patients with long bone fracture. We found that LAG-3 + cells represented approximately 13% of peripheral blood CD4 + T cells on average. Compared to LAG-3 - CD4 + T cells, LAG-3 + CD4 + T cells presented significantly higher Foxp3 and CTLA-4 expression. Directly ex vivo or with TCR stimulation, LAG-3 + CD4 + T cells expressed significantly higher levels of IL-10 and TGF-β than LAG-3 - CD4 + T cells. Interestingly, blocking the LAG-3-MHC class II interaction actually increased the IL-10 expression by LAG-3 + CD4 + T cells. The frequency of LAG-3 + CD4 + T cell was positively correlated with restoration of healthy bone function in long bone fracture patients. These results together suggested that LAG-3 is a marker of CD4 + T cells with regulatory function; at the same time, LAG-3 might have limited the full suppressive potential of Treg cells.

  18. Human amniotic epithelial cells inhibit CD4+ T cell activation in acute kidney injury patients by influencing the miR-101-c-Rel-IL-2 pathway.

    PubMed

    Liu, Junfeng; Hua, Rong; Gong, Zhangbin; Shang, Bin; Huang, Yongyi; Guo, Lihe; Liu, Te; Xue, Jun

    2017-01-01

    In the pathogenesis of acute kidney injury (AKI), the release of multiple interleukins can lead to increased kidney damage. Human amniotic epithelial cells (HuAECs) can inhibit immune cell activation in vivo and in vitro. We hypothesized that HuAECs could weaken patient-derived peripheral blood CD4+ T-cell activation and decreasing the ability of these cells to express and release IL-2. -Cell proliferation assay revealed that under the same culture conditions, activated AKI patient-derived CD4+ T cells had a significantly reduced proliferation rate when were co-cultured with HuAECs. And the level of IL-2 released was also significantly reduced. Western blot and qRT-PCR assays showed that the expression of c-Rel in the CD4+ T cells was also significantly reduced. However, the expression level of endogenous miR-101 in the CD4+ T cells co-cultured with HuAECs was significantly increased. Luciferase reporter assay results suggested that miR-101 could bind to a specific site in the c-Rel 3' UTR and induce the post-transcriptional silencing of c-Rel. Subsequently, we over-expressed miR-101 in AKI patient-derived CD4+ T cells. The qRT-PCR and western blot assay results revealed that the expression of endogenous c-Rel was significantly reduced, while the ELISA results indicated that the level of IL-2 released was also significantly decreased. Finally, ChIP-PCR assay results showed that the miR-101-overexpressing CD4+ T-cell group and the HuAEC co-culture CD4+ T-cell group exhibited significantly decreased binding capacities between the 'c-Rel-NFκB' complex and the IL-2 gene promoter, and the transcriptional activity of IL-2 was also significantly decreased. Therefore, we confirmed that HuAECs can stimulate miR-101 expression in AKI patient-derived peripheral blood CD4+ T cells, thus inhibiting the expression of the miR-101 target gene c-Rel and leading to a reduction in IL-2 expression and release. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A novel CD44-binding peptide from the pro-matrix metalloproteinase-9 hemopexin domain impairs adhesion and migration of chronic lymphocytic leukemia (CLL) cells.

    PubMed

    Ugarte-Berzal, Estefanía; Bailón, Elvira; Amigo-Jiménez, Irene; Albar, Juan Pablo; García-Marco, José A; García-Pardo, Angeles

    2014-05-30

    (pro)MMP-9 binds to CLL cells through the PEX9 domain and contributes to CLL progression. To biochemically characterize this interaction and identify potential therapeutic targets, we prepared GST-PEX9 forms containing structural blades B1B2 or B3B4. We recently described a sequence in blade B4 (P3 sequence) that bound α4β1 integrin and partially impaired cell adhesion and migration. We have now studied the possible contribution of the B1B2 region to cell interaction with PEX9. CLL cells bound to GST-B1B2 and CD44 was the primary receptor. GST-B1B2 inhibited CLL cell migration as effectively as GST-B3B4. Overlapping synthetic peptides spanning the B1B2 region identified the sequence FDAIAEIGNQLYLFKDGKYW, present in B1 and contained in peptide P6, as the most effective site. P6 inhibited cell adhesion to PEX9 in a dose-dependent manner and with an IC50 value of 90 μM. P6 also inhibited cell adhesion to hyaluronan but had no effect on adhesion to VCAM-1 (α4β1 integrin ligand), confirming its specific interaction with CD44. Spatial localization analyses mapped P6 to the central cavity of PEX9, in close proximity to the previously identified P3 sequence. Both P6 and P3 equally impaired cell adhesion to (pro)MMP-9. Moreover, P6 synergistically cooperated with P3, resulting in complete inhibition of CLL cell binding to PEX9, chemotaxis, and transendothelial migration. Thus, P6 is a novel sequence in PEX9 involved in cell-PEX9/(pro)MMP-9 binding by interacting with CD44. Targeting both sites, P6 and P3, should efficiently prevent (pro)MMP-9 binding to CLL cells and its pathological consequences. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Targeted DNA demethylation in human cells by fusion of a plant 5-methylcytosine DNA glycosylase to a sequence-specific DNA binding domain

    PubMed Central

    Parrilla-Doblas, Jara Teresa; Ariza, Rafael R.; Roldán-Arjona, Teresa

    2017-01-01

    ABSTRACT DNA methylation is a crucial epigenetic mark associated to gene silencing, and its targeted removal is a major goal of epigenetic editing. In animal cells, DNA demethylation involves iterative 5mC oxidation by TET enzymes followed by replication-dependent dilution and/or replication-independent DNA repair of its oxidized derivatives. In contrast, plants use specific DNA glycosylases that directly excise 5mC and initiate its substitution for unmethylated C in a base excision repair process. In this work, we have fused the catalytic domain of Arabidopsis ROS1 5mC DNA glycosylase (ROS1_CD) to the DNA binding domain of yeast GAL4 (GBD). We show that the resultant GBD-ROS1_CD fusion protein binds specifically a GBD-targeted DNA sequence in vitro. We also found that transient in vivo expression of GBD-ROS1_CD in human cells specifically reactivates transcription of a methylation-silenced reporter gene, and that such reactivation requires both ROS1_CD catalytic activity and GBD binding capacity. Finally, we show that reactivation induced by GBD-ROS1_CD is accompanied by decreased methylation levels at several CpG sites of the targeted promoter. All together, these results show that plant 5mC DNA glycosylases can be used for targeted active DNA demethylation in human cells. PMID:28277978

  1. Biophysical Mechanisms of Endotoxin Neutralization by Cationic Amphiphilic Peptides

    PubMed Central

    Kaconis, Yani; Kowalski, Ina; Howe, Jörg; Brauser, Annemarie; Richter, Walter; Razquin-Olazarán, Iosu; Iñigo-Pestaña, Melania; Garidel, Patrick; Rössle, Manfred; Martinez de Tejada, Guillermo; Gutsmann, Thomas; Brandenburg, Klaus

    2011-01-01

    Bacterial endotoxins (lipopolysaccharides (LPS)) are strong elicitors of the human immune system by interacting with serum and membrane proteins such as lipopolysaccharide-binding protein (LBP) and CD14 with high specificity. At LPS concentrations as low as 0.3 ng/ml, such interactions may lead to severe pathophysiological effects, including sepsis and septic shock. One approach to inhibit an uncontrolled inflammatory reaction is the use of appropriate polycationic and amphiphilic antimicrobial peptides, here called synthetic anti-LPS peptides (SALPs). We designed various SALP structures and investigated their ability to inhibit LPS-induced cytokine secretion in vitro, their protective effect in a mouse model of sepsis, and their cytotoxicity in physiological human cells. Using a variety of biophysical techniques, we investigated selected SALPs with considerable differences in their biological responses to characterize and understand the mechanism of LPS inactivation by SALPs. Our investigations show that neutralization of LPS by peptides is associated with a fluidization of the LPS acyl chains, a strong exothermic Coulomb interaction between the two compounds, and a drastic change of the LPS aggregate type from cubic into multilamellar, with an increase in the aggregate sizes, inhibiting the binding of LBP and other mammalian proteins to the endotoxin. At the same time, peptide binding to phospholipids of human origin (e.g., phosphatidylcholine) does not cause essential structural changes, such as changes in membrane fluidity and bilayer structure. The absence of cytotoxicity is explained by the high specificity of the interaction of the peptides with LPS. PMID:21641310

  2. A multi-spectroscopic and molecular docking approach to investigate the interaction of antiviral drug oseltamivir with ct-DNA.

    PubMed

    Moghadam, Neda Hosseinpour; Salehzadeh, Sadegh; Shahabadi, Nahid; Golbedaghi, Reza

    2017-07-03

    The possible interaction between the antiviral drug oseltamivir and calf thymus DNA at physiological pH was studied by spectrophotometry, competitive spectrofluorimetry, differential pulse voltammogram (DPV), circular dichroism spectroscopy (CD), viscosity measurements, salt effect, and computational studies. Intercalation of oseltamivir between the base pairs of DNA was shown by a sharp increase in specific viscosity of DNA and a decrease of the peak current and a positive shift in differential pulse voltammogram. Competitive fluorescence experiments were performed using neutral red (NR) as a probe for the intercalation binding mode. The studies showed that oseltamivir is able to release the NR.

  3. Enhanced sunlight-driven photocatalytic performance of Bi-doped CdMoO4 benefited from efficient separation of photogenerated charge pairs

    NASA Astrophysics Data System (ADS)

    Huang, Jiao; Liu, Huanhuan; Zhong, Junbo; Yang, Qi; Chen, Jiufu; Li, Jianzhang; Ma, Dongmei; duan, Ran

    2018-06-01

    In this paper, to further boost the photocatalytic performance of CdMoO4, Bi3+ was successfully doped into CdMoO4 by a facile microwave hydrothermal method. The Bi-doped CdMoO4 photocatalysts prepared were characterized by Brunauer-Emmett-Teller (BET) method, X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), electron spin-resonance (ESR) and surface photovoltage spectroscopy (SPS). The results exhibit that doping Bi3+ into CdMoO4 remarkably boosts the separation rate of photoinduced charge pairs and the specific surface area, decrease the crystal size, narrows the band gap of the CdMoO4 and induces the binding energy shift of Cd, all these advantageous factors result in the promoted photocatalytic performance of CdMoO4. Using rhodamine B (RhB) as model toxic pollutant, the photocatalytic activities of the photocatalysts were evaluated under a 500 W Xe lamp irradiation. When the molar ratio of Bi/Cd is 0.2%, Bi-CdMoO4 prepared displays the best photocatalytic performance, the photocatalytic performance of the 0.2% sample is more than twice of that of the reference CdMoO4.

  4. Sugar beet factory lime affects the mobilization of Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn under dynamic redox conditions in a contaminated floodplain soil.

    PubMed

    Shaheen, Sabry M; Rinklebe, Jörg

    2017-01-15

    The impact of sugar beet factory lime (SBFL) on the release dynamics and mobilization of toxic metals (TMs) under dynamic redox conditions in floodplain soils has not been studied up to date. Therefore, the aim of this study was to verify the scientific hypothesis that SBFL is able to immobilize Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, and Zn under different redox potentials (E H ) in a contaminated floodplain soil. For this purpose, the non-treated contaminated soil (CS) and the same soil treated with SBFL (CS+SBFL) were flooded in the laboratory using a highly sophisticated automated biogeochemical microcosm apparatus. The experiment was conducted stepwise from reducing (-13 mV) to oxidizing (+519 mV) soil conditions. Soil pH decreased under oxic conditions in CS (from 6.9 to 4.0) and in CS+SBFL (from 7.5 to 4.4). The mobilization of Cu, Cr, Pb, and Fe were lower in CS+SBFL than in CS under both reducing/neutral and oxic/acidic conditions. Those results demonstrate that SBFL is able to decrease concentrations of these elements under a wide range of redox and pH conditions. The mobilization of Cd, Co, Mn, Mo, Ni, and Zn were higher in CS+SBFL than in CS under reducing/neutral conditions; however, these concentrations showed an opposite behavior under oxic/acidic conditions and were lower in CS+SBFL than in CS. We conclude that SBFL immobilized Cu, Cr, Pb, and Fe under dynamic redox conditions and immobilized Cd, Co, Mn, Mo, Ni, and Zn under oxic acidic conditions; however, the latter elements were mobilized under reducing neutral conditions in the studied soil. Therefore, the addition of SBFL to acid floodplain soils contaminated with TMs might be an important alternative for ameliorating these soils with view to a sustainable management of these soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Specificity and 6-Month Durability of Immune Responses Induced by DNA and Recombinant Modified Vaccinia Ankara Vaccines Expressing HIV-1 Virus-Like Particles

    PubMed Central

    Goepfert, Paul A.; Elizaga, Marnie L.; Seaton, Kelly; Tomaras, Georgia D.; Montefiori, David C.; Sato, Alicia; Hural, John; DeRosa, Stephen C.; Kalams, Spyros A.; McElrath, M. Juliana; Keefer, Michael C.; Baden, Lindsey R.; Lama, Javier R.; Sanchez, Jorge; Mulligan, Mark J.; Buchbinder, Susan P.; Hammer, Scott M.; Koblin, Beryl A.; Pensiero, Michael; Butler, Chris; Moss, Bernard; Robinson, Harriet L.; Donastorg, Yeycy; Qin, Li; Lawrence, Dale; Cardinali, Massimo; Bae, Jin; Holt, Renée; Redinger, Huguette; Johannessen, Jan; Broder, Gail; Moody-White, Jerri; McKay, Butch; Calazans, Gabriela; Bentley, Carter; Kakinami, Lisa; Skibinski, Katie; Estep, Scharla; Tseng, Jenny; Swenson, Molly; Madenwald, Tamra; Overton, Edgar Turner; Edupuganti, Srilatha; Rouphael, Nadine; Whitaker, Jennifer; Hay, C Mhorag; Bunce, Catherine A; Gonzales, Pedro; Hurtado, Juan Carlos; Dolin, Raphael; Mayer, Ken; Walsh, Steven; Johnson, Jennifer

    2014-01-01

    Background. Clade B DNA and recombinant modified vaccinia Ankara (MVA) vaccines producing virus-like particles displaying trimeric membrane-bound envelope glycoprotein (Env) were tested in a phase 2a trial in human immunodeficiency virus (HIV)–uninfected adults for safety, immunogenicity, and 6-month durability of immune responses. Methods. A total of 299 individuals received 2 doses of JS7 DNA vaccine and 2 doses of MVA/HIV62B at 0, 2, 4, and 6 months, respectively (the DDMM regimen); 3 doses of MVA/HIV62B at 0, 2, and 6 months (the MMM regimen); or placebo injections. Results. At peak response, 93.2% of the DDMM group and 98.4% of the MMM group had binding antibodies for Env. These binding antibodies were more frequent and of higher magnitude for the transmembrane subunit (gp41) than the receptor-binding subunit (gp120) of Env. For both regimens, response rates were higher for CD4+ T cells (66.4% in the DDMM group and 43.1% in the MMM group) than for CD8+ T cells (21.8% in the DDMM group and 14.9% in the MMM group). Responding CD4+ and CD8+ T cells were biased toward Gag, and >70% produced 2 or 3 of the 4 cytokines evaluated (ie, interferon γ, interleukin 2, tumor necrosis factor α, and granzyme B). Six months after vaccination, the magnitudes of antibodies and T-cell responses had decreased by <3-fold. Conclusions. DDMM and MMM vaccinations with virus-like particle–expressing immunogens elicited durable antibody and T-cell responses. PMID:24403557

  6. Comparative evaluation of the chiral recognition potential of single-isomer sulfated beta-cyclodextrin synthesis intermediates in non-aqueous capillary electrophoresis.

    PubMed

    Fejős, Ida; Varga, Erzsébet; Benkovics, Gábor; Darcsi, András; Malanga, Milo; Fenyvesi, Éva; Sohajda, Tamás; Szente, Lajos; Béni, Szabolcs

    2016-10-07

    The enantioselectivity of neutral single-isomer synthetic precursors of sulfated-β-cyclodextrins was studied. Four neutral single-isomer cyclodextrins substituted on the secondary side with acetyl and/or methyl functional groups, heptakis(2-O-methyl-3,6-dihydroxy)-β-cyclodextrin (HM-β-CD), heptakis(2,3-di-O-acetyl-6-hydroxy)-β-cyclodextrin (HDA-β-CD), heptakis(2,3-di-O-methyl-6-hydroxy)-β-cyclodextrin (HDM-β-CD), heptakis(2-O-methyl-3-O-acetyl-6-hydroxy)-β-cyclodextrin (HMA-β-CD), and their sulfated analogs the negatively charged heptakis(2,3-di-O-methyl-6-sulfato)-β-cyclodextrin (HDMS-β-CD) and heptakis(2,3-di-O-acetyl-6-sulfato)-β-cyclodextrin (HDAS-β-CD) were investigated by non-aqueous capillary electrophoresis in the view of enantiodiscrimination for various drugs and related pharmaceutical compounds. The focus of the present work was on the chiral selectivity studies of the neutral derivatives, which are the synthesis intermediates of the sulfated products. The chiral recognition experiments proved that among the neutral compounds the HMA-β-CD shows remarkable enantioselectivity towards chiral guests in non-aqueous capillary electrophoresis, while HM-β-CD, HDA-β-CD and HDM-β-CD failed to resolve any of the 25 studied racemates under the applied experimental conditions. In order to get deeper insight into the molecular interactions between the studied single-isomer cyclodextrin and chiral fluoroquinolones (ofloxacin, gatifloxacin and lomefloxacin) and β-blockers (propranolol), 1 H and ROESY NMR experiments were performed. The 2-O-methylation in combination with the 3-O-acetylation of the host was evidenced to exclusively carry the essential spatial arrangement for chiral recognition. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Human Immunodeficiency Virus Type 1 Primary Isolate Neutralization Resistance Is Associated with the Syncytium-Inducing Phenotype and Lower CD4 Cell Counts in Subtype CRF01_AE-Infected Patients

    PubMed Central

    Polonis, Victoria R.; Souza, Mark S. de; Darden, Janice M.; Chantakulkij, Somsak; Chuenchitra, Thippawan; Nitayaphan, Sorachai; Brown, Arthur E.; Robb, Merlin L.; Birx, Deborah L.

    2003-01-01

    A number of human immunodeficiency virus type 1 (HIV-1) non-B-subtype products have been developed for present or future vaccine trials; in Thailand, several studies using subtype B and/or CRF01_AE vaccines have been conducted. To better characterize the biologic properties of these subtypes, 70 HIV-1 subtype B and E isolates were phenotyped as syncytium-inducing (SI) or non-syncytium-inducing (NSI) isolates and assessed for sensitivity to neutralizing antibody (NAb). A significantly higher number of NSI subtype E viruses were neutralization sensitive than SI subtype E viruses (P = 0.009), while no association between viral phenotype and sensitivity to NAb was observed for subtype B (P = 0.856), suggesting a difference in the neutralization patterns of subtypes B and E. Strikingly, concurrent CD4 T-cell numbers were significantly lower for subtype E-infected patients whose isolates were more resistant to NAb, both for the overall study group (P < 0.001) as well as for the 22 patients with NSI isolates (P = 0.013). Characterization of the evolution of biologic properties of both B and non-B HIV-1 subtypes will provide a clearer understanding of the repertoire of antibodies that must be elicited for a vaccine to be effective against all phenotypes and subtypes. PMID:12857927

  8. CD44 and TLR4 mediate hyaluronic acid regulation of Lgr5+ stem cell proliferation, crypt fission, and intestinal growth in postnatal and adult mice.

    PubMed

    Riehl, Terrence E; Santhanam, Srikanth; Foster, Lynne; Ciorba, Matthew; Stenson, William F

    2015-12-01

    Hyaluronic acid, a glycosaminoglycan in the extracellular matrix, binds to CD44 and Toll-like receptor 4 (TLR4). We previously addressed the role of hyaluronic acid in small intestinal and colonic growth in mice. We addressed the role of exogenous hyaluronic acid by giving hyaluronic acid intraperitoneally and the role of endogenous hyaluronic acid by giving PEP-1, a peptide that blocks hyaluronic acid binding to its receptors. Exogenous hyaluronic acid increased epithelial proliferation but had no effect on intestinal length. PEP-1 resulted in a shortened small intestine and colon and diminished epithelial proliferation. In the current study, we sought to determine whether the effects of hyaluronic acid on growth were mediated by signaling through CD44 or TLR4 by giving exogenous hyaluronic acid or PEP-1 twice a week from 3-8 wk of age to wild-type, CD44(-/-), and TLR4(-/-) mice. These studies demonstrated that signaling through both CD44 and TLR4 were important in mediating the effects of hyaluronic acid on growth in the small intestine and colon. Extending our studies to early postnatal life, we assessed the effects of exogenous hyaluronic acid and PEP-1 on Lgr5(+) stem cell proliferation and crypt fission. Administration of PEP-1 to Lgr5(+) reporter mice from postnatal day 7 to day 14 decreased Lgr5(+) cell proliferation and decreased crypt fission. These studies indicate that endogenous hyaluronic acid increases Lgr5(+) stem cell proliferation, crypt fission, and intestinal lengthening and that these effects are dependent on signaling through CD44 and TLR4. Copyright © 2015 the American Physiological Society.

  9. Acid-base-controlled stereoselective metalation of overhanging carboxylic acid porphyrins: consequences for the formation of heterobimetallic complexes.

    PubMed

    Le Gac, Stéphane; Najjari, Btissam; Dorcet, Vincent; Roisnel, Thierry; Fusaro, Luca; Luhmer, Michel; Furet, Eric; Halet, Jean-François; Boitrel, Bernard

    2013-08-12

    Overhanging carboxylic acid porphyrins have revealed promising ditopic ligands offering a new entry in the field of supramolecular coordination chemistry of porphyrinoids. Notably, the adjunction of a so-called hanging-atop (HAT) Pb(II) cation to regular Pb(II) porphyrin complexes allowed a stereoselective incorporation of the N-core bound cation, and an allosterically controlled Newton's cradle-like motion of the two Pb(II) ions also emerged from such bimetallic complexes. In this contribution, we have extended this work to other ligands and metal ions, aiming at understanding the parameters that control the HAT Pb(II) coordination. The nature of the N-core bound metal ion (Zn(II), Cd(II)), the influence of the deprotonation state of the overhanging COOH group and the presence of a neutral ligand on the opposite side (exogenous or intramolecular), have been examined through (1)H NMR spectroscopic experiments with the help of radiocrystallographic structures and DFT calculations. Single and bis-strap ligands have been considered. They all incorporate a COOH group hung over the N-core on one side. For the bis-strap ligands, either an ester or an amide group has been introduced on the other side. In the presence of a base, the mononuclear Zn(II) or Cd(II) complexes incorporate the carbonyl of the overhanging carboxylate as apical ligand, decreasing its availability for the binding of a HAT Pb(II). An allosteric effector (e.g., 4-dimethylaminopyridine (DMAP), in the case of a single-strap ligand) or an intramolecular ligand (e.g., an amide group), strong enough to compete with the carbonyl of the hung COO(-), is required to switch the N-core bound cation to the opposite side with concomitant release of the COO(-), thereby allowing HAT Pb(II) complexation. In the absence of a base, Zn(II) or Cd(II) binds preferentially the carbonyl of the intramolecular ester or amide groups in apical position rather than that of the COOH. This better preorganization, with the overhanging COOH fully available, is responsible for a stronger binding of the HAT Pb(II). Thus, either allosteric or acid-base control is achieved through stereoselective metalation of Zn(II) or Cd(II). In the latter case, according to the deprotonation state of the COOH group, the best electron-donating ligand is located on one or the other side of the porphyrin (COO(-)>CONHR>COOR>COOH): the lower affinity of COOH for Zn(II) and Cd(II), the higher for a HAT Pb(II). These insights provide new opportunities for the elaboration of innovative bimetallic molecular switches. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Functional Elements on SIRPα IgV domain Mediate Cell Surface Binding to CD47

    PubMed Central

    Liu, Yuan; Tong, Qiao; Zhou, Yubin; Lee, Hsiau-Wei; Yang, Jenny J.; Bühring, Hans-Jörg; Chen, Yi-Tien; Ha, Binh; Chen, Celia X-J.; Zen, Ke

    2007-01-01

    Summary SIRPα and SIRPβ1, the two major isoforms of the signal regulatory protein (SIRP) family, are co-expressed in human leukocytes but mediate distinct extracellular binding interactions and divergent cell signaling responses. Previous studies have demonstrated that binding of SIRPα with CD47, another important cell surface molecule, through the extracellular IgV domain regulates important leukocyte functions including macrophage recognition, leukocyte adhesion and transmigration. Although SIRPβ1 shares highly homologous extracellular IgV structure with SIRPα, it does not bind to CD47. In this study, we defined key amino acid residues exclusively expressing in the IgV domain of SIRPα, but not SIRPβ1, which determine the extracellular binding interaction of SIRPα to CD47. These key residues include Gln67, a small hydrophobic amino acid (Ala or Val) at the 57th position and Met102. We found that Gln67 and Ala/Val57 are critical. Mutation of either of these residues abates SIRPα directly binding to CD47. Functional cell adhesion and leukocyte transmigration assays further demonstrated central roles of Gln67 and Ala/Val57 in SIRPα extracellular binding mediated cell interactions and cell migration. Another SIRPα-specific residue, Met102, appears to assist SIRPα IgV binding through Gln67 and Ala/Val57. An essential role of these amino acids in SIRPα binding to CD47 was further confirmed by introducing these residues into the SIRPβ1 IgV domain, which dramatically converts SIRPβ1 into a CD47-binding molecule. Our results thus revealed the molecular basis by which SIRPα selectively binds to CD47 and shed new light into the structural mechanisms of SIRP isoform mediated distinctive extracellular interactions and cellular responses. PMID:17070842

  11. Functional elements on SIRPalpha IgV domain mediate cell surface binding to CD47.

    PubMed

    Liu, Yuan; Tong, Qiao; Zhou, Yubin; Lee, Hsiau-Wei; Yang, Jenny J; Bühring, Hans-Jörg; Chen, Yi-Tien; Ha, Binh; Chen, Celia X-J; Yang, Yang; Zen, Ke

    2007-01-19

    SIRPalpha and SIRPbeta1, the two major isoforms of the signal regulatory protein (SIRP) family, are co-expressed in human leukocytes but mediate distinct extracellular binding interactions and divergent cell signaling responses. Previous studies have demonstrated that binding of SIRPalpha with CD47, another important cell surface molecule, through the extracellular IgV domain regulates important leukocyte functions including macrophage recognition, leukocyte adhesion and transmigration. Although SIRPbeta1 shares highly homologous extracellular IgV structure with SIRPalpha, it does not bind to CD47. Here, we defined key amino acid residues exclusively expressing in the IgV domain of SIRPalpha, but not SIRPbeta1, which determine the extracellular binding interaction of SIRPalpha to CD47. These key residues include Gln67, a small hydrophobic amino acid (Ala or Val) at the 57th position and Met102. We found that Gln67 and Ala/Val57 are critical. Mutation of either of these residues abates SIRPalpha directly binding to CD47. Functional cell adhesion and leukocyte transmigration assays further demonstrated central roles of Gln67 and Ala/Val57 in SIRPalpha extracellular binding mediated cell interactions and cell migration. Another SIRPalpha-specific residue, Met102, appears to assist SIRPalpha IgV binding through Gln67 and Ala/Val57. An essential role of these amino acid residues in SIRPalpha binding to CD47 was further confirmed by introducing these residues into the SIRPbeta1 IgV domain, which dramatically converts SIRPbeta1 into a CD47-binding molecule. Our results thus revealed the molecular basis by which SIRPalpha binds to CD47 and shed new light into the structural mechanisms of SIRP isoform mediated distinctive extracellular interactions and cellular responses.

  12. Characterization of human monoclonal antibodies that neutralize multiple poliovirus serotypes.

    PubMed

    Puligedda, Rama Devudu; Kouiavskaia, Diana; Al-Saleem, Fetweh H; Kattala, Chandana Devi; Nabi, Usman; Yaqoob, Hamid; Bhagavathula, V Sandeep; Sharma, Rashmi; Chumakov, Konstantin; Dessain, Scott K

    2017-10-04

    Following the eradication of wild poliovirus (PV), achieving and maintaining a polio-free status will require eliminating potentially pathogenic PV strains derived from the oral attenuated vaccine. For this purpose, a combination of non-cross-resistant drugs, such as small molecules and neutralizing monoclonal antibodies (mAbs), may be ideal. We previously isolated chimpanzee and human mAbs capable of neutralizing multiple PV types (cross-neutralization). Here, we describe three additional human mAbs that neutralize types 1 and 2 PV and one mAb that neutralizes all three types. Most bind conformational epitopes and have unusually long heavy chain complementarity determining 3 domains (HC CDR3). We assessed the ability of the mAbs to neutralize A12 escape mutant PV strains, and found that the neutralizing activities of the mAbs were disrupted by different amino acid substitutions. Competitive binding studies further suggested that the specific mAb:PV interactions that enable cross-neutralization differ among mAbs and serotypes. All of the cloned mAbs bind PV in the vicinity of the "canyon", a circular depression around the 5-fold axis of symmetry through which PV recognizes its cellular receptor. We were unable to generate escape mutants to two of the mAbs, suggesting that their epitopes are important for the PV life cycle. These data indicate that PV cross-neutralization involves binding to highly conserved structures within the canyon that binds to the cellular receptor. These may be facilitated by the long HC CDR3 domains, which may adopt alternative binding configurations. We propose that the human and chimpanzee mAbs described here could have potential as anti-PV therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults.

    PubMed

    Ledgerwood, J E; Coates, E E; Yamshchikov, G; Saunders, J G; Holman, L; Enama, M E; DeZure, A; Lynch, R M; Gordon, I; Plummer, S; Hendel, C S; Pegu, A; Conan-Cibotti, M; Sitar, S; Bailer, R T; Narpala, S; McDermott, A; Louder, M; O'Dell, S; Mohan, S; Pandey, J P; Schwartz, R M; Hu, Z; Koup, R A; Capparelli, E; Mascola, J R; Graham, B S

    2015-12-01

    VRC-HIVMAB060-00-AB (VRC01) is a broadly neutralizing HIV-1 monoclonal antibody (mAb) isolated from the B cells of an HIV-infected patient. It is directed against the HIV-1 CD4 binding site and is capable of potently neutralizing the majority of diverse HIV-1 strains. This Phase I dose-escalation study in healthy adults was conducted at the National Institutes of Health (NIH) Clinical Center (Bethesda, MD, USA). Primary objectives were the safety, tolerability and pharmacokinetics (PK) of VRC01 intravenous (i.v.) infusion at 5, 20 or 40 mg/kg, given either once (20 mg/kg) or twice 28 days apart (all doses), and of subcutaneous (s.c.) delivery at 5 mg/kg compared to s.c. placebo given twice, 28 days apart. Cumulatively, 28 subjects received 43 VRC01 and nine received placebo administrations. There were no serious adverse events or dose-limiting toxicities. Mean 28-day serum trough concentrations after the first infusion were 35 and 57 μg/ml for groups infused with 20 mg/kg (n = 8) and 40 mg/kg (n = 5) doses, respectively. Mean 28-day trough concentrations after the second infusion were 56 and 89 μg/ml for the same two doses. Over the 5-40 mg/kg i.v. dose range (n = 18), the clearance was 0.016 l/h and terminal half-life was 15 days. After infusion VRC01 retained expected neutralizing activity in serum, and anti-VRC01 antibody responses were not detected. The human monoclonal antibody (mAb) VRC01 was well tolerated when delivered i.v. or s.c. The mAb demonstrated expected half-life and pharmacokinetics for a human immunoglobulin G. The safety and PK results support and inform VRC01 dosing schedules for planning HIV-1 prevention efficacy studies. © 2015 British Society for Immunology.

  14. CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca2+ signaling

    PubMed Central

    Müller, Jennifer; Obermeier, Ingrid; Wöhner, Miriam; Brandl, Carolin; Mrotzek, Sarah; Angermüller, Sieglinde; Maity, Palash C.; Reth, Michael; Nitschke, Lars

    2013-01-01

    A high proportion of human B cells carry B-cell receptors (BCRs) that are autoreactive. Inhibitory receptors such as CD22 can downmodulate autoreactive BCR responses. With its extracellular domain, CD22 binds to sialic acids in α2,6 linkages in cis, on the surface of the same B cell or in trans, on other cells. Sialic acids are self ligands, as they are abundant in vertebrates, but are usually not expressed by pathogens. We show that cis-ligand binding of CD22 is crucial for the regulation of B-cell Ca2+ signaling by controlling the CD22 association to the BCR. Mice with a mutated CD22 ligand-binding domain of CD22 showed strongly reduced Ca2+ signaling. In contrast, mice with mutated CD22 immunoreceptor tyrosine-based inhibition motifs have increased B-cell Ca2+ responses, increased B-cell turnover, and impaired survival of the B cells. Thus, the CD22 ligand-binding domain has a crucial function in regulating BCR signaling, which is relevant for controlling autoimmunity. PMID:23836650

  15. CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca2+ signaling.

    PubMed

    Müller, Jennifer; Obermeier, Ingrid; Wöhner, Miriam; Brandl, Carolin; Mrotzek, Sarah; Angermüller, Sieglinde; Maity, Palash C; Reth, Michael; Nitschke, Lars

    2013-07-23

    A high proportion of human B cells carry B-cell receptors (BCRs) that are autoreactive. Inhibitory receptors such as CD22 can downmodulate autoreactive BCR responses. With its extracellular domain, CD22 binds to sialic acids in α2,6 linkages in cis, on the surface of the same B cell or in trans, on other cells. Sialic acids are self ligands, as they are abundant in vertebrates, but are usually not expressed by pathogens. We show that cis-ligand binding of CD22 is crucial for the regulation of B-cell Ca(2+) signaling by controlling the CD22 association to the BCR. Mice with a mutated CD22 ligand-binding domain of CD22 showed strongly reduced Ca(2+) signaling. In contrast, mice with mutated CD22 immunoreceptor tyrosine-based inhibition motifs have increased B-cell Ca(2+) responses, increased B-cell turnover, and impaired survival of the B cells. Thus, the CD22 ligand-binding domain has a crucial function in regulating BCR signaling, which is relevant for controlling autoimmunity.

  16. Immunohistochemical localization of fatty acid transporters and MCT1 in the sebaceous glands of mouse skin.

    PubMed

    Zheng, Miao; Lee, Shinhye; Tsuzuki, Satoshi; Inoue, Kazuo; Masuda, Daisaku; Yamashita, Shizuya; Iwanaga, Toshihiko

    2016-01-01

    The sebaceous glands secrete sebum to protect the epidermis and hairs by the oily products. The glands express several transporters and binding proteins for the production of fatty acids and uptake of their sources. The present immunohistochemical study examined the expression and localization of CD36, MCT1, FATP4, and E-FABP in the sebaceous glands, including the meibomian and preputial glands of mice. CD36 and MCT1 in sebaceous glands were largely co-localized along the plasma membrane of secretory cells, while they were separately expressed in the glandular portion of meibomian and preputial glands. Immunoreactivities for FATP4 and E-FABP appeared diffusely in the cytoplasm of secretory cells. Genetic deletion of CD36 did not affect the immunolocalization of the three other molecules. The sebaceous glands were judged to be useful for analyzing the functions and relation of fatty acid transporters and binding proteins.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Gen; Kobayashi, Takeshi; Takeda, Yoshie

    Highlights: • Proteoglycan from salmon nasal cartridge (SNC-PG) promoted wound healing in fibroblast monolayers. • SNC-PG stimulated both cell proliferation and cell migration. • Interaction between chondroitin sulfate-units and CD44 is responsible for the effect. - Abstract: Proteoglycans (PGs) are involved in various cellular functions including cell growth, adhesion, and differentiation; however, their physiological roles are not fully understood. In this study, we examined the effect of PG purified from salmon nasal cartilage (SNC-PG) on wound closure using tissue-cultured cell monolayers, an in vitro wound-healing assay. The results indicated that SNC-PG significantly promoted wound closure in NIH/3T3 cell monolayers bymore » stimulating both cell proliferation and cell migration. SNC-PG was effective in concentrations from 0.1 to 10 μg/ml, but showed much less effect at higher concentrations (100–1000 μg/ml). The effect of SNC-PG was abolished by chondroitinase ABC, indicating that chondroitin sulfates (CSs), a major component of glycosaminoglycans (GAGs) in SNC-PG, are crucial for the SNC-PG effect. Furthermore, chondroitin 6-sulfate (C-6-S), a major CS of SNC-PG GAGs, could partially reproduce the SNC-PG effect and partially inhibit the binding of SNC-PG to cells, suggesting that SNC-PG exerts its effect through an interaction between the GAGs in SNC-PG and the cell surface. Neutralization by anti-CD44 antibodies or CD44 knockdown abolished SNC-PG binding to the cells and the SNC-PG effect on wound closure. These results suggest that interactions between CS-rich GAG-chains of SNC-PG and CD44 on the cell surface are responsible for the SNC-PG effect on wound closure.« less

  18. CD4/CD8 Ratio Predicts Yellow Fever Vaccine-Induced Antibody Titers in Virologically Suppressed HIV-Infected Patients.

    PubMed

    Avelino-Silva, Vivian Iida; Miyaji, Karina Takesaki; Mathias, Augusto; Costa, Dayane Alves; de Carvalho Dias, Juliana Zanatta; Lima, Sheila Barbosa; Simoes, Marisol; Freire, Marcos S; Caiaffa-Filho, Helio H; Hong, Marisa A; Lopes, Marta H; Sartori, Ana M; Kallas, Esper G

    2016-02-01

    Yellow fever vaccine (YFV) induces weaker immune responses in HIV-infected individuals. However, little is known about YFV responses among antiretroviral-treated patients and potential immunological predictors of YFV response in this population. We enrolled 34 antiretroviral therapy (ART)-treated HIV-infected and 58 HIV-uninfected adults who received a single YFV dose to evaluate antibody levels and predictors of immunity, focusing on CD4(+) T-cell count, CD4(+)/CD8(+) ratio, and Human Pegivirus (GBV-C) viremia. Participants with other immunosuppressive conditions were excluded. Median time since YFV was nonsignificantly shorter in HIV-infected participants than in HIV-uninfected participants (42 and 69 months, respectively, P = 0.16). Mean neutralizing antibody (NAb) titers was lower in HIV-infected participants than HIV-uninfected participants (3.3 vs. 3.6 log10mIU/mL, P = 0.044), a difference that remained significant after adjustment for age, sex, and time since vaccination (P = 0.024). In HIV-infected participants, lower NAb titers were associated with longer time since YFV (rho: -0.38, P = 0.027) and lower CD4(+)/CD8(+) ratio (rho: 0.42, P = 0.014), but not CD4(+) T-cell count (P = 0.52). None of these factors were associated with NAb titers in HIV-uninfected participant. GBV-C viremia was not associated with difference in NAb titers overall or among HIV-infected participants. ART-treated HIV-infected individuals seem to have impaired and/or less durable responses to YFV than HIV-uninfected individuals, which were associated with lower CD4(+)/CD8(+) ratio, but not with CD4(+) T-cell count. These results supports the notion that low CD4(+)/CD8(+) ratio, a marker linked to persistent immune activation, is a better indicator of functional immune disturbance than CD4(+) T-cell count in patients with successful ART.

  19. Investigation of the interaction between naringin and human serum albumin

    NASA Astrophysics Data System (ADS)

    Zhang, Yaheng; Li, Ying; Dong, Lijun; Li, Jiazhong; He, Wenying; Chen, Xingguo; Hu, Zhide

    2008-03-01

    The interaction between naringin and human serum albumin (HSA) has been thoroughly studied by fluorescence quenching technique in combination with UV absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy and molecular modeling method. Under the simulative physiological conditions, fluorescence data revealed the presence of the binding site on HSA and its binding constants ( K) are 1.62 × 10 4, 1.68 × 10 4, 1.72 × 10 4, and 1.79 × 10 4 M -1 at 289, 296, 303, and 310 K, respectively. The alterations of protein secondary structure in the presence of naringin aqueous solution were qualitative and quantitative calculated by the evidence from CD and FT-IR spectroscopes. In addition, according to the Van't Hoff equation, the thermodynamic functions standard enthalpy (Δ H0) and standard entropy (Δ S0) for the reaction were calculated to be 3.45 kJ mol -1 and 92.52 J mol -1 K -1. These results indicated that naringin binds to HSA mainly by a hydrophobic interaction. Furthermore, the displacement experiments confirmed that naringin could bind to the site I of HSA, which was also in agreement with the result of the molecular modeling study.

  20. Regulation of lung branching morphogenesis by bombesin-like peptides and neutral endopeptidase.

    PubMed

    Aguayo, S M; Schuyler, W E; Murtagh, J J; Roman, J

    1994-06-01

    The expression of bombesin-like peptides (BLPs) by pulmonary neuroendocrine cells is transiently upregulated during lung development. A functional role for BLPs is supported by their ability to stimulate lung growth and maturation both in vitro and in vivo during the late stages of lung development. In addition, the cell membrane-associated enzyme CD10/neutral endopeptidase 24.11 (CD10/NEP), which inactivates BLPs and other regulatory peptides, is also expressed by developing lungs and modulates the stimulatory effects of BLPs on lung growth and maturation. We hypothesized that, in addition to expressing BLPs and CD10/NEP, embryonic lungs must express BLP receptors, and that BLPs may also regulate processes that occur during early lung development such as branching morphogenesis. Using reverse transcriptase-polymerase chain reaction and oligonucleotide primers designed for amplifying a BLP receptor originally isolated from Swiss 3T3 mouse fibroblasts, we found that embryonic mouse lungs express a similar BLP receptor mRNA during the pseudoglandular stage of lung development when branching morphogenesis take place. Subsequently, we evaluated the effects of ligands for this BLP receptor using embryonic mouse lungs in an in vitro model of lung branching morphogenesis. We found that, in comparison with control lungs, treatment with bombesin (1 to 100 nM) resulted in a modest increase in clefts or branching points. In contrast, embryonic mouse lungs treated with the BLP analog [Leu13-psi(CH2NH)Leu14]bombesin (1 microM), which also binds to this BLP receptor but has predominantly antagonistic effects, demonstrated fewer branching points.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Identity of a peptide domain of human C9 that is bound by the cell-surface complement inhibitor, CD59.

    PubMed

    Chang, C P; Hüsler, T; Zhao, J; Wiedmer, T; Sims, P J

    1994-10-21

    The CD59 antigen is a plasma membrane glycoprotein that serves as an inhibitor of the C5b-9 complex of complement. This inhibitory activity appears related to the capacity of CD59 to bind with high affinity to sites that are nascently exposed in the alpha-chain subunit of human C8, as well as within the C9b domain (amino acid residues 245-538) of human C9, during assembly of the C5b-9 complex on the target membrane (Ninomiya, H., and Sims, P. J. (1992) J. Biol. Chem. 267, 13675-13680). The CD59 binding site in C9 was first investigated by N-terminal sequencing of CD59-binding peptides generated by limited digest of the isolated C9b domain. These experiments revealed a 17-kDa fragment (starting at C9 residue Thr-320) that retained affinity for CD59, suggesting the possibility for localizing the CD59 binding site by mapping with small C9-derived peptides. Peptides spanning the entire C9b sequence were expressed in Escherichia coli and then probed with CD59. CD59 bound specifically to all peptides starting N-terminal to C9 residue 359 with C termini extending beyond residue 411. Little to no CD59 binding was observed for various C9-derived peptides that started C-terminal to residue 359 or that were truncated N-terminal to residue 411. Affinity-purified antibody against C9 residues 320-411 inhibited CD59 binding to C9 by > 50% and completely inhibited its binding to the isolated C9b domain. Little to no specific binding of CD59 was detected for peptides restricted to the putative hinge domain within C9b (residues 245-271). These results indicate that a CD59 binding site is located between residues 320 and 411 of the C9 polypeptide and suggest that the affinity of this site is principally determined by residues 359-411.

  2. Differential clinical efficacy of anti-CD4 monoclonal antibodies in rat adjuvant arthritis is paralleled by differential influence on NF-κB binding activity and TNF-α secretion of T cells

    PubMed Central

    Pohlers, Dirk; Schmidt-Weber, Carsten B; Franch, Angels; Kuhlmann, Jürgen; Bräuer, Rolf; Emmrich, Frank; Kinne, Raimund W

    2002-01-01

    The aim of this study was to analyze the differential effects of three anti-CD4 monoclonal antibodies (mAbs) (with distinct epitope specifities) in the treatment of rat adjuvant arthritis (AA) and on T-cell function and signal transduction. Rat AA was preventively treated by intraperitoneal injection of the anti-CD4 mAbs W3/25, OX35, and RIB5/2 (on days -1, 0, 3, and 6, i.e. 1 day before AA induction, on the day of induction [day 0], and thereafter). The effects on T-cell reactivity in vivo (delayed-type hypersensitivity), ex vivo (ConA-induced proliferation), and in vitro (mixed lymphocyte culture) were assessed. The in vitro effects of anti-CD4 preincubation on T-cell receptor (TCR)/CD3-induced cytokine production and signal transduction were also analyzed. While preventive treatment with OX35 and W3/25 significantly ameliorated AA from the onset, treatment with RIB5/2 even accelerated the onset of AA by approximately 2 days (day 10), and ameliorated the arthritis only in the late phase (day 27). Differential clinical effects at the onset of AA were paralleled by a differential influence of the mAbs on T-cell functions, i.e. in comparison with OX35 and W3/25, the 'accelerating' mAb RIB5/2 failed to increase the delayed-type hypersentivity (DTH) to Mycobacterium tuberculosis, increased the in vitro tumor necrosis factor (TNF)-α secretion, and more strongly induced NF-κB binding activity after anti-CD4 preincubation and subsequent TCR/CD3-stimulation. Depending on their epitope specificity, different anti-CD4 mAbs differentially influence individual proinflammatory functions of T cells. This fine regulation may explain the differential efficacy in the treatment of AA and may contribute to the understanding of such treatments in other immunopathologies. PMID:12010568

  3. CD3-T cell receptor modulation is selectively induced in CD8 but not CD4 lymphocytes cultured in agar.

    PubMed Central

    Oudrhiri, N; Farcet, J P; Gourdin, M F; M'Bemba, E; Gaulard, P; Katz, A; Divine, M; Galazka, A; Reyes, F

    1990-01-01

    The CD3-T cell receptor (TcR) complex is central to the immune response. Upon binding by specific ligands, internalized CD3-TcR molecules increase, and either T cell response or unresponsiveness may ensue depending on the triggering conditions. Using semi-solid agar culture, we have shown previously that quiescent CD4 but not CD8 lymphocytes generate clonal colonies under phytohaemagglutinin stimulation. Here we have demonstrated that the agar induces selective CD3-TcR modulation in the CD8 and not in the CD4 subset. CD8 lymphocytes preactivated in liquid culture and recultured in agar with exogenous recombinant interleukin-2 generate colonies with a modulated CD3-TcR surface expression. The peptides composing the CD3-TcR complex are synthesized in CD8 colonies as well as in CD4; however, the CD3 gamma chain is phosphorylated at a higher level in CD8 colonies. A component of the agar polymer, absent in agarose, appears to be the ligand that induces differential CD3-TcR modulation in the CD8 subset. In contrast to agar culture, CD8 colonies can be derived from quiescent CD8 lymphocytes in agarose. These CD8 colonies express unmodulated CD-TcR. CD3-TcR modulation with anti-CD3 monoclonal antibody prior to culturing in agarose inhibits the colony formation. We conclude that given triggering conditions can result in both CD3-TcR modulation and inhibition of the proliferative response selectively in the CD8 lymphocyte subset and not in the CD4. Images Fig. 3 Fig. 4 Fig. 5 PMID:2146997

  4. A High Content Drug Screen Identifies Ursolic Acid as an Inhibitor of Amyloid β Protein Interactions with Its Receptor CD36*

    PubMed Central

    Wilkinson, Kim; Boyd, Justin D.; Glicksman, Marcie; Moore, Kathryn J.; El Khoury, Joseph

    2011-01-01

    A pathological hallmark of Alzheimer disease (AD) is deposition of amyloid β (Aβ) in the brain. Aβ binds to microglia via a receptor complex that includes CD36 leading to production of proinflammatory cytokines and neurotoxic reactive oxygen species and subsequent neurodegeneration. Interruption of Aβ binding to CD36 is a potential therapeutic strategy for AD. To identify pharmacologic inhibitors of Aβ binding to CD36, we developed a 384-well plate assay for binding of fluorescently labeled Aβ to Chinese hamster ovary cells stably expressing human CD36 (CHO-CD36) and screened an Food and Drug Administration-approved compound library. The assay was optimized based on the cells' tolerance to dimethyl sulfoxide, Aβ concentration, time required for Aβ binding, reproducibility, and signal-to-background ratio. Using this assay, we identified four compounds as potential inhibitors of Aβ binding to CD36. These compounds were ursolic acid, ellipticine, zoxazolamine, and homomoschatoline. Of these compounds, only ursolic acid, a naturally occurring pentacyclic triterpenoid, successfully inhibited binding of Aβ to CHO-CD36 cells in a dose-dependent manner. The ursolic acid effect reached a plateau at ∼20 μm, with a maximal inhibition of 64%. Ursolic acid also blocked binding of Aβ to microglial cells and subsequent ROS production. Our data indicate that cell-based high-content screening of small molecule libraries for their ability to block binding of Aβ to its receptors is a useful tool to identify novel inhibitors of receptors involved in AD pathogenesis. Our data also suggest that ursolic acid is a potential therapeutic agent for AD via its ability to block Aβ-CD36 interactions. PMID:21835916

  5. Characterization studies on cadmium-mycophosphatin from the mushroom Agaricus macrosporus.

    PubMed Central

    Meisch, H U; Schmitt, J A

    1986-01-01

    A low molecular weight Cd-binding phosphoglycoprotein, cadmium-mycophosphatin, has been isolated from the mushroom Agaricus macrosporus. This protein has a molecular weight of 12,000 dalton and contains no sulfur but a high amount of acid amino acids (Glu, Asp), and carbohydrates (glucose, galactose). Cadmium-mycophosphatin has an isoelectric point less than pH 2, binds cadmium with a dissociation constant of KD = 1.59 X 10 M (pKD = 6.8) and is saturated with 13.5 mole Cd/mole, all Cd-binding sites being equivalent. It is suggested that Cd is bound by phosphoserine groups, similar relations being known from calcium-binding proteins in animals. From A. macrosporus four other low-molecular weight glycoproteins have been isolated which contain sulfur and bind cadmium and copper. The biological significance of these Cd-binding proteins is discussed. PMID:3709455

  6. Structural analysis of a novel rabbit monoclonal antibody R53 targeting an epitope in HIV-1 gp120 C4 region critical for receptor and co-receptor binding

    DOE PAGES

    Pan, Ruimin; Chen, Yuxin; Vaine, Michael; ...

    2015-07-15

    The fourth conserved region (C4) in the HIV-1 envelope glycoprotein (Env) gp120 is a structural element that is important for its function, as it binds to both the receptor CD4 and the co-receptor CCR5/CXCR4. It has long been known that this region is highly immunogenic and that it harbors B-cell as well as T-cell epitopes. It is the target of a number of antibodies in animal studies, which are called CD4-blockers. However, the mechanism by which the virus shields itself from such antibody responses is not known. Here, we determined the crystal structure of R53 in complex with its epitopemore » peptide using a novel anti-C4 rabbit monoclonal antibody R53. Our data show that although the epitope of R53 covers a highly conserved sequence 433AMYAPPI 439, it is not available in the gp120 trimer and in the CD4-bound conformation. Our results suggest a masking mechanism to explain how HIV-1 protects this critical region from the human immune system.« less

  7. Structural analysis of a novel rabbit monoclonal antibody R53 targeting an epitope in HIV-1 gp120 C4 region critical for receptor and co-receptor binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Ruimin; Chen, Yuxin; Vaine, Michael

    The fourth conserved region (C4) in the HIV-1 envelope glycoprotein (Env) gp120 is a structural element that is important for its function, as it binds to both the receptor CD4 and the co-receptor CCR5/CXCR4. It has long been known that this region is highly immunogenic and that it harbors B-cell as well as T-cell epitopes. It is the target of a number of antibodies in animal studies, which are called CD4-blockers. However, the mechanism by which the virus shields itself from such antibody responses is not known. Here, we determined the crystal structure of R53 in complex with its epitopemore » peptide using a novel anti-C4 rabbit monoclonal antibody R53. Our data show that although the epitope of R53 covers a highly conserved sequence 433AMYAPPI 439, it is not available in the gp120 trimer and in the CD4-bound conformation. Our results suggest a masking mechanism to explain how HIV-1 protects this critical region from the human immune system.« less

  8. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells.

    PubMed

    Veiseh, Mandana; Leith, Sean J; Tolg, Cornelia; Elhayek, Sallie S; Bahrami, S Bahram; Collis, Lisa; Hamilton, Sara; McCarthy, James B; Bissell, Mina J; Turley, Eva

    2015-01-01

    The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies.

  9. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells

    PubMed Central

    Veiseh, Mandana; Leith, Sean J.; Tolg, Cornelia; Elhayek, Sallie S.; Bahrami, S. Bahram; Collis, Lisa; Hamilton, Sara; McCarthy, James B.; Bissell, Mina J.; Turley, Eva

    2015-01-01

    The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies. PMID:26528478

  10. Interleukin-7 negatively regulates the development of mature T cells in fetal thymus organ cultures.

    PubMed

    DeLuca, Dominick; Clark, Dawn R

    2002-05-01

    We added antibody specific for interleukin-7 (IL-7) to chimeric fetal thymus organ cultures (FTOC) to investigate the involvement of this cytokine at distinct stages of T cell development. We report that the neutralization of IL-7 early in fetal T cell development results in a decrease in the production of mature CD4 or CD8 ('single positive', SP) or CD4/8 negative ('double negative', DN) T cell phenotypes, as defined by their expression of CD3. This loss of T cell development was not complete, but it did include the development of gammadelta T cells. However, if IL-7 was neutralized at later stages of FTOC, the production of CD4/8 positive ('double positive', DP) T cells was increased, and if the addition of the antibody was delayed further, the production of mature SP T cells was increased. This last result could be extended to both alphabeta and gammadelta T cells. These data suggested that IL-7 played a negative regulatory role in the development of progressively mature T cells. Tissue sections of FTOC showed that IL-7 was expressed in the subcapsular region of the tissue where immature T cells reside. However, IL-7 was not detected in the medullary region where mature T cells are located. These data suggest that IL-7 not only supports the development of immature fetal T cells, but it may inhibit the development of mature T cells. The production of mature fetal T cells may, therefore, be delayed until their precursors enter the medullary microenvironment, where IL-7 production is low. In this way, T cells may be prevented from maturing until negative selection or anergy events eliminate or inactivate autoreactive clones.

  11. Predicted structure of MIF/CD74 and RTL1000/CD74 complexes.

    PubMed

    Meza-Romero, Roberto; Benedek, Gil; Leng, Lin; Bucala, Richard; Vandenbark, Arthur A

    2016-04-01

    Macrophage migration inhibitory factor (MIF) is a key cytokine in autoimmune and inflammatory diseases that attracts and then retains activated immune cells from the periphery to the tissues. MIF exists as a homotrimer and its effects are mediated through its primary receptor, CD74 (the class II invariant chain that exhibits a highly structured trimerization domain), present on class II expressing cells. Although a number of binding residues have been identified between MIF and CD74 trimers, their spatial orientation has not been established. Using a docking program in silico, we have modeled binding interactions between CD74 and MIF as well as CD74 and a competitive MIF inhibitor, RTL1000, a partial MHC class II construct that is currently in clinical trials for multiple sclerosis. These analyses revealed 3 binding sites on the MIF trimer that each were predicted to bind one CD74 trimer through interactions with two distinct 5 amino acid determinants. Surprisingly, predicted binding of one CD74 trimer to a single RTL1000 antagonist utilized the same two 5 residue determinants, providing strong suggestive evidence in support of the MIF binding regions on CD74. Taken together, our structural modeling predicts a new MIF(CD74)3 dodecamer that may provide the basis for increased MIF potency and the requirement for ~3-fold excess RTL1000 to achieve full antagonism.

  12. The CD44-initiated pathway of T-cell extravasation uses VLA-4 but not LFA-1 for firm adhesion

    PubMed Central

    Siegelman, Mark H.; Stanescu, Diana; Estess, Pila

    2000-01-01

    Leukocytes extravasate from the blood in response to physiologic or pathologic demands by means of complementary ligand interactions between leukocytes and endothelial cells. The multistep model of leukocyte extravasation involves an initial transient interaction (“rolling” adhesion), followed by secondary (firm) adhesion. We recently showed that binding of CD44 on activated T lymphocytes to endothelial hyaluronan (HA) mediates a primary adhesive interaction under shear stress, permitting extravasation at sites of inflammation. The mechanism for subsequent firm adhesion has not been elucidated. Here we demonstrate that the integrin VLA-4 is used in secondary adhesion after CD44-mediated primary adhesion of human and mouse T cells in vitro, and by mouse T cells in an in vivo model. We show that clonal cell lines and polyclonally activated normal T cells roll under physiologic shear forces on hyaluronate and require VCAM-1, but not ICAM-1, as ligand for subsequent firm adhesion. This firm adhesion is also VLA-4 dependent, as shown by antibody inhibition. Moreover, in vivo short-term homing experiments in a model dependent on CD44 and HA demonstrate that superantigen-activated T cells require VLA-4, but not LFA-1, for entry into an inflamed peritoneal site. Thus, extravasation of activated T cells initiated by CD44 binding to HA depends upon VLA-4–mediated firm adhesion, which may explain the frequent association of these adhesion receptors with diverse chronic inflammatory processes. PMID:10712440

  13. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Son; CSIRO Australian Animal Health Laboratory, Victoria 3220; Tabarin, Thibault

    Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the ‘lynchpin’ for size expansion is highly specific. We demonstratemore » that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection. - Highlights: • Cell free viruses are able to receive external trigger that leads to apparent size expansion. • Virus envelope and CD4 receptor engagement is the lynchpin of virus size expansion. • Internal capsid organisation can influence receptor mediated virus size expansion. • Pre-existing virus-associated lipid membrane in cell free virus can accommodate the receptor mediated virus size expansion.« less

  14. CD40 engagement on dendritic cells induces cyclooxygenase-2 and EP2 receptor via p38 and ERK MAPKs.

    PubMed

    Harizi, Hedi; Limem, Ilef; Gualde, Norbert

    2011-02-01

    We have previously reported that cyclooxygenase (COX)-2-derived prostaglandin (PG)E2 critically regulates dendritic cell (DC) inflammatory phenotype and function through EP2/EP4 receptor subtypes. As genes activated by CD40 engagement are directly relevant to inflammation, we examined the effects of CD40 activation on inflammatory PGs in murine bone marrow-derived DC (mBM-DC). We showed for the first time that activation of mBM-DC with agonist anti-CD40 monoclonal antibody (anti-CD40 mAb) dose dependently induces the synthesis of significant amounts of PGE2 via inducible expression of COX-2 enzyme, as NS-398, a COX-2-selective inhibitor reduces this upregulation. In contrast to lipopolysaccharide, which upregulates mBM-DC surface levels of EP2 and EP4 receptors, CD40 crosslinking on mBM-DC increases EP2, but not EP4, receptor expression. Flow cytometry analysis and radioligand-binding assay showed that EP2 was the major EP receptor subtype, which binds to PGE2 at the surface of anti-CD40-activated mBM-DC. Upregulation of COX-2 and EP2 levels by CD40 engagement was accompanied by dose-dependent phosphorylation of p38 and ERK1/2 mitogen-activated protein kinase (MAPK) and was abrogated by inhibitors of both pathways. Collectively, we demonstrated that CD40 engagement on mBM-DC upregulates COX-2 and EP2 receptor expression through activation of p38 and ERK1/2 MAPK signaling. Triggering the PGE2/EP2 pathway by anti-CD40 mAb resulted on the induction of Th2 immune response. Thus, CD40-induced production of PGE2 by mBM-DC could represent a negative feedback mechanism involving EP2 receptor and limiting the propagation of Th1 responses. Blocking CD40 pathway may represent a novel therapeutic pathway of inhibiting COX-2-derived prostanoids in chronically inflamed tissues (that is, arthritis).

  15. Direct binding of F actin to the cytoplasmic domain of the alpha 2 integrin chain in vitro

    NASA Technical Reports Server (NTRS)

    Kieffer, J. D.; Plopper, G.; Ingber, D. E.; Hartwig, J. H.; Kupper, T. S.

    1995-01-01

    The transmembrane integrins have been shown to interact with the cytoskeleton via noncovalent binding between cytoplasmic domains (CDs) of integrin beta chains and various actin binding proteins within the focal adhesion complex. Direct or indirect integrin alpha chain CD binding to the actin cytoskeleton has not been reported. We show here that actin, as an abundant constituent of focal adhesion complex proteins isolated from fibroblasts, binds strongly and specifically to alpha 2 CD, but not to alpha 1 CD peptide. Similar specific binding to alpha 2 CD peptide was seen for highly purified F actin, free of putative actin-binding proteins. The bound complex of actin and peptide was visualized directly by coprecipitation, and actin binding was abrogated by removal of a five amino acid sequence from the alpha 2 CD peptide. Our findings may explain the earlier observation that, while integrins alpha 2 beta 1 and alpha 1 beta 1 both bind to collagen, only alpha 2 beta 1 can mediate contraction of extracellular collagen matrices.

  16. Time-course, negative-stain electron microscopy-based analysis for investigating protein-protein interactions at the single-molecule level.

    PubMed

    Nogal, Bartek; Bowman, Charles A; Ward, Andrew B

    2017-11-24

    Several biophysical approaches are available to study protein-protein interactions. Most approaches are conducted in bulk solution, and are therefore limited to an average measurement of the ensemble of molecular interactions. Here, we show how single-particle EM can enrich our understanding of protein-protein interactions at the single-molecule level and potentially capture states that are unobservable with ensemble methods because they are below the limit of detection or not conducted on an appropriate time scale. Using the HIV-1 envelope glycoprotein (Env) and its interaction with receptor CD4-binding site neutralizing antibodies as a model system, we both corroborate ensemble kinetics-derived parameters and demonstrate how time-course EM can further dissect stoichiometric states of complexes that are not readily observable with other methods. Visualization of the kinetics and stoichiometry of Env-antibody complexes demonstrated the applicability of our approach to qualitatively and semi-quantitatively differentiate two highly similar neutralizing antibodies. Furthermore, implementation of machine-learning techniques for sorting class averages of these complexes into discrete subclasses of particles helped reduce human bias. Our data provide proof of concept that single-particle EM can be used to generate a "visual" kinetic profile that should be amenable to studying many other protein-protein interactions, is relatively simple and complementary to well-established biophysical approaches. Moreover, our method provides critical insights into broadly neutralizing antibody recognition of Env, which may inform vaccine immunogen design and immunotherapeutic development. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Molecular-Level Insight into the Differential Oxidase and Oxygenase Reactivities of de Novo Due Ferri Proteins

    DOE PAGES

    Snyder, Rae Ana; Butch, Susan E.; Reig, Amanda J.; ...

    2015-06-19

    Using the single-chain due ferri (DFsc) peptide scaffold, the differential oxidase and oxygenase reactivities of two 4A → 4G variants, one with two histidines at the diiron center (G4DFsc) and the other with three histidines (3His-G4DFsc(Mut3)), are explored. By controlling the reaction conditions, the active form responsible for 4-aminophenol (4-AP) oxidase activity in both G4DFsc and 3His-G4DFsc(Mut3) is determined to be the substrate-bound biferrous site. Using circular dichroism (CD), magnetic CD (MCD), and variable-temperature, variable-field (VTVH) MCD spectroscopies, 4-AP is found to bind directly to the biferrous sites of the DF proteins. In G4DFsc, 4-AP increases the coordination of themore » biferrous site, while in 3His-G4DFsc(Mut3), the coordination number remains the same and the substrate likely replaces the additional bound histidine. This substrate binding enables a two-electron process where 4-AP is oxidized to benzoquinone imine and O 2 is reduced to H 2O 2. In contrast, only the biferrous 3His variant is found to be active in the oxygenation of p-anisidine to 4-nitroso-methoxybenzene. From CD, MCD, and VTVH MCD, p-anisidine addition is found to minimally perturb the biferrous centers of both G4DFsc and 3His-G4DFsc(Mut3), indicating that this substrate binds near the biferrous site. Lastly, in 3His-G4DFsc(Mut3), the coordinative saturation of one iron leads to the two-electron reduction of O 2 at the second iron to generate an end-on hydroperoxo-Fe(III) active oxygenating species.« less

  18. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor.

    PubMed

    Sood, Chetan; Marin, Mariana; Mason, Caleb S; Melikyan, Gregory B

    2016-01-01

    HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles). Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.

  19. Metal binding characterization and conformational studies using Raman microscopy of resin-bound poly(aspartic acid).

    PubMed

    Stair, Jacqueline L; Holcombe, James A

    2007-03-01

    The metal binding capacities, conditional stability constants, and secondary structure of immobilized polyaspartic acid (PLAsp) (n = 6, 20, and 30) on TentaGel resin were determined when binding Mg2+, Co2+, Cd2+, and Ni2+. Metal binding to the synthesized peptides was evaluated using breakthrough curves from a packed microcolumn and flame atomic absorption spectrophotometry (FAAS) detection. The metal capacities reached values of 590, 2160, and 3710 mumol of metal/g of resin for the 6-mer, 20-mer, and 30-mer, respectively, and this resulted in 2-3 residues per metal for all peptides and metals tested. Surprisingly, the concentrated environment of the resin along with the spatial distribution of attachment groups allowed for most residues to participate in metal binding regardless of the peptide length. Conditional stability constants calculated using single metal binding isotherms indicated that binding strength decreased as the chain length increased on the resin. Raman microscopy on single beads was used to determine PLAsp secondary structure, and all peptides were of a mixed conformation (i.e., beta-sheets, alpha-helices, random chain, etc.) during neutral conditioning and metal binding. Uniquely, the longer 20-mer and 30-mer peptides showed a distinct change from a mixed conformation to beta-sheets and alpha-helices during metal release with acid. This study confirms that metal release by longer immobilized peptides is often assisted by a conformational change, which easily spoils the binding cavity, while shorter peptides may release metal primarily by H+ displacement.

  20. Distribution of cyclophilin B-binding sites in the subsets of human peripheral blood lymphocytes.

    PubMed

    Denys, A; Allain, F; Foxwell, B; Spik, G

    1997-08-01

    Cyclophilin B (CyPB) is a cyclosporin A (CsA)-binding protein, mainly associated with the secretory pathway and released in biological fluids. We have recently demonstrated that both free CyPB and CyPB-CsA complex specifically bind to peripheral blood T lymphocytes and are internalized. These results suggest that CyPB might promote the targeting of the drug into sensitive cells. Peripheral blood lymphocytes are subdivided in several populations according to their biological functions and sensitivity to CsA. We have investigated the binding of CyPB to these different subsets using a CyPB derivatized by fluorescein through its single cysteine which retains its binding properties. We have confirmed that only T cells were involved in the interaction with CyPB. The ligand binding was found to be heterogeneously distributed on the different T-cell subsets and surface-bound CyPB was mainly associated with the CD4-positive cells. No significant difference was noted between the CD45RA and CD45RO subsets, demonstrating that CyPB-binding sites were equally distributed between native and memory T cells. CD3 stimulation of T lymphocytes led to a decrease in the CyPB-binding capacity, that may be explained by a down-regulation of the CyPB-receptor expression upon T-cell activation. Finally, we demonstrated that CyPB-receptor-positive cells, isolated on CyPB sulphydryl-coupled affinity matrices, are more sensitive to CyPB-complexed CsA than mixed peripheral blood lymphocytes, suggesting that CyPB potentiates CsA activity through the binding of the complex. Taken together, our results demonstrate that CyPB-binding sites are mainly associated with resting cells of the helper T lymphocyte, and that CyPB might modulate the distribution of CsA through the drug targeting to sensitive cells.

Top