Sample records for neutrino mass constraint

  1. Observational constraints on varying neutrino-mass cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Chao-Qiang; Lee, Chung-Chi; Myrzakulov, R.

    We consider generic models of quintessence and we investigate the influence of massive neutrino matter with field-dependent masses on the matter power spectrum. In case of minimally coupled neutrino matter, we examine the effect in tracker models with inverse power-law and double exponential potentials. We present detailed investigations for the scaling field with a steep exponential potential, non-minimally coupled to massive neutrino matter, and we derive constraints on field-dependent neutrino masses from the observational data.

  2. Finding Mass Constraints Through Third Neutrino Mass Eigenstate Decay

    NASA Astrophysics Data System (ADS)

    Gangolli, Nakul; de Gouvêa, André; Kelly, Kevin

    2018-01-01

    In this paper we aim to constrain the decay parameter for the third neutrino mass utilizing already accepted constraints on the other mixing parameters from the Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS). The main purpose of this project is to determine the parameters that will allow the Jiangmen Underground Neutrino Observatory (JUNO) to observe a decay parameter with some statistical significance. Another goal is to determine the parameters that JUNO could detect in the case that the third neutrino mass is lighter than the first two neutrino species. We also replicate the results that were found in the JUNO Conceptual Design Report (CDR). By utilizing Χ2-squared analysis constraints have been put on the mixing angles, mass squared differences, and the third neutrino decay parameter. These statistical tests take into account background noise and normalization corrections and thus the finalized bounds are a good approximation for the true bounds that JUNO can detect. If the decay parameter is not included in our models, the 99% confidence interval lies within The bounds 0s to 2.80x10-12s. However, if we account for a decay parameter of 3x10-5 ev2, then 99% confidence interval lies within 8.73x10-12s to 8.73x10-11s.

  3. Deconstructing the neutrino mass constraint from galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Boyle, Aoife; Komatsu, Eiichiro

    2018-03-01

    The total mass of neutrinos can be constrained in a number of ways using galaxy redshift surveys. Massive neutrinos modify the expansion rate of the Universe, which can be measured using baryon acoustic oscillations (BAOs) or the Alcock-Paczynski (AP) test. Massive neutrinos also change the structure growth rate and the amplitude of the matter power spectrum, which can be measured using redshift-space distortions (RSD). We use the Fisher matrix formalism to disentangle these information sources, to provide projected neutrino mass constraints from each of these probes alone and to determine how sensitive each is to the assumed cosmological model. We isolate the distinctive effect of neutrino free-streaming on the matter power spectrum and structure growth rate as a signal unique to massive neutrinos that can provide the most robust constraints, which are relatively insensitive to extensions to the cosmological model beyond ΛCDM . We also provide forecasted constraints using all of the information contained in the observed galaxy power spectrum combined, and show that these maximally optimistic constraints are primarily limited by the accuracy to which the optical depth of the cosmic microwave background, τ, is known.

  4. Astrophysical and cosmological constraints to neutrino properties

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Schramm, David N.; Turner, Michael S.

    1989-01-01

    The astrophysical and cosmological constraints on neutrino properties (masses, lifetimes, numbers of flavors, etc.) are reviewed. The freeze out of neutrinos in the early Universe are discussed and then the cosmological limits on masses for stable neutrinos are derived. The freeze out argument coupled with observational limits is then used to constrain decaying neutrinos as well. The limits to neutrino properties which follow from SN1987A are then reviewed. The constraint from the big bang nucleosynthesis on the number of neutrino flavors is also considered. Astrophysical constraints on neutrino-mixing as well as future observations of relevance to neutrino physics are briefly discussed.

  5. Changing the Bayesian prior: Absolute neutrino mass constraints in nonlocal gravity*

    NASA Astrophysics Data System (ADS)

    Dirian, Yves

    2017-10-01

    Prior change is discussed in observational constraints studies of nonlocally modified gravity, where a model characterized by a modification of the form ˜m2R □-2R to the Einstein-Hilbert action was compared against the base Λ CDM one in a Bayesian way. It was found that the competing modified gravity model is significantly disfavored (at 22 ∶1 in terms of betting-odds) against Λ CDM given CMB +SNIa +BAO data, because of a tension appearing in the H0- ΩM plane. We identify the underlying mechanism generating such a tension and show that it is mostly caused by the late-time, quite smooth, phantom nature of the effective dark energy described by the nonlocal model. We find that the tension is resolved by considering an extension of the initial baseline, consisting in allowing the absolute mass of three degenerated massive neutrino species ∑mν/3 to take values within a prior interval consistent with existing data. As a net effect, the absolute neutrino mass is inferred to be nonvanishing at 2 σ level, best-fitting at ∑mν≈0.21 eV , and the Bayesian tension disappears rendering the nonlocal gravity model statistically equivalent to Λ CDM , given recent CMB +SNIa +BAO data. We also discuss constraints from growth rate measurements f σ8, whose fit is found to be improved by a larger massive neutrino fraction as well. The ν -extended nonlocal model also prefers a higher value of H0 than Λ CDM , therefore in better agreement with local measurements. Our study provides one more example suggesting that the neutrino density fraction Ων is partially degenerated with the nature of the dark energy. This emphasizes the importance of cosmological and terrestrial neutrino research and, as a massive neutrino background impacts structure formation observables non-negligibly, proves to be especially relevant for future galaxy surveys.

  6. Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV

    NASA Astrophysics Data System (ADS)

    Abe, K.; Bronner, C.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kato, Y.; Kishimoto, Y.; Marti, Ll.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Nakayama, S.; Okajima, Y.; Orii, A.; Pronost, G.; Sekiya, H.; Shiozawa, M.; Sonoda, Y.; Takeda, A.; Takenaka, A.; Tanaka, H.; Tasaka, S.; Tomura, T.; Akutsu, R.; Irvine, T.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Nishimura, Y.; Okumura, K.; Richard, E.; Tsui, K. M.; Labarga, L.; Fernandez, P.; Blaszczyk, F. d. M.; Gustafson, J.; Kachulis, C.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Tobayama, S.; Goldhaber, M.; Carminati, G.; Elnimr, M.; Kropp, W. R.; Mine, S.; Locke, S.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Weatherly, P.; Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Hong, N.; Kim, J. Y.; Lim, I. T.; Park, R. G.; Akiri, T.; Himmel, A.; Li, Z.; O'Sullivan, E.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Nakamura, T.; Jang, J. S.; Choi, K.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Amey, J.; Litchfield, R. P.; Ma, W. Y.; Uchida, Y.; Wascko, M. O.; Cao, S.; Friend, M.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Abe, KE.; Hasegawa, M.; Suzuki, A. T.; Takeuchi, Y.; Yano, T.; Hayashino, T.; Hirota, S.; Huang, K.; Ieki, K.; Jiang, M.; Kikawa, T.; Nakamura, KE.; Nakaya, T.; Patel, N. D.; Suzuki, K.; Takahashi, S.; Wendell, R. A.; Anthony, L. H. V.; McCauley, N.; Pritchard, A.; Fukuda, Y.; Itow, Y.; Mitsuka, G.; Murase, M.; Muto, F.; Suzuki, T.; Mijakowski, P.; Frankiewicz, K.; Hignight, J.; Imber, J.; Jung, C. K.; Li, X.; Palomino, J. L.; Santucci, G.; Vilela, C.; Wilking, M. J.; Yanagisawa, C.; Ito, S.; Fukuda, D.; Ishino, H.; Kayano, T.; Kibayashi, A.; Koshio, Y.; Mori, T.; Nagata, H.; Sakuda, M.; Xu, C.; Kuno, Y.; Wark, D.; Di Lodovico, F.; Richards, B.; Tacik, R.; Kim, S. B.; Cole, A.; Thompson, L.; Okazawa, H.; Choi, Y.; Ito, K.; Nishijima, K.; Koshiba, M.; Totsuka, Y.; Suda, Y.; Yokoyama, M.; Calland, R. G.; Hartz, M.; Martens, K.; Quilain, B.; Simpson, C.; Suzuki, Y.; Vagins, M. R.; Hamabe, D.; Kuze, M.; Yoshida, T.; Ishitsuka, M.; Martin, J. F.; Nantais, C. M.; de Perio, P.; Tanaka, H. A.; Konaka, A.; Chen, S.; Wan, L.; Zhang, Y.; Wilkes, R. J.; Minamino, A.; Super-Kamiokande Collaboration

    2018-04-01

    An analysis of atmospheric neutrino data from all four run periods of Super-Kamiokande optimized for sensitivity to the neutrino mass hierarchy is presented. Confidence intervals for Δ m322 , sin2θ23, sin2θ13 and δC P are presented for normal neutrino mass hierarchy and inverted neutrino mass hierarchy hypotheses, based on atmospheric neutrino data alone. Additional constraints from reactor data on θ13 and from published binned T2K data on muon neutrino disappearance and electron neutrino appearance are added to the atmospheric neutrino fit to give enhanced constraints on the above parameters. Over the range of parameters allowed at 90% confidence level, the normal mass hierarchy is favored by between 91.9% and 94.5% based on the combined Super-Kamiokande plus T2K result.

  7. Neutrino Masses and Mixings and Astrophysics

    NASA Astrophysics Data System (ADS)

    Fuller, George M.

    1998-10-01

    Here we discuss the implications of light neutrino masses and neutrino flavor/type mixing for dark matter, big bang nucleosynthesis, and models of heavy element nucleosynthesis in super novae. We will also argue the other way and discuss possible constraints on neutrino physics from these astrophysical considerations.

  8. Upper bound on neutrino mass based on T2K neutrino timing measurements

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haegel, L.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, R. A.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; King, S.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Koga, T.; Kolaceke, A.; Konaka, A.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Riccio, C.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaker, F.; Shaw, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2016-01-01

    The Tokai to Kamioka (T2K) long-baseline neutrino experiment consists of a muon neutrino beam, produced at the J-PARC accelerator, a near detector complex and a large 295-km-distant far detector. The present work utilizes the T2K event timing measurements at the near and far detectors to study neutrino time of flight as a function of derived neutrino energy. Under the assumption of a relativistic relation between energy and time of flight, constraints on the neutrino rest mass can be derived. The sub-GeV neutrino beam in conjunction with timing precision of order tens of ns provide sensitivity to neutrino mass in the few MeV /c2 range. We study the distribution of relative arrival times of muon and electron neutrino candidate events at the T2K far detector as a function of neutrino energy. The 90% C.L. upper limit on the mixture of neutrino mass eigenstates represented in the data sample is found to be mν2<5.6 MeV2/c4 .

  9. Neutrino constraints: what large-scale structure and CMB data are telling us?

    NASA Astrophysics Data System (ADS)

    Costanzi, Matteo; Sartoris, Barbara; Viel, Matteo; Borgani, Stefano

    2014-10-01

    We discuss the reliability of neutrino mass constraints, either active or sterile, from the combination of different low redshift Universe probes with measurements of CMB anisotropies. In our analyses we consider WMAP 9-year or Planck Cosmic Microwave Background (CMB) data in combination with Baryonic Acoustic Oscillations (BAO) measurements from BOSS DR11, galaxy shear measurements from CFHTLenS, SDSS Ly α forest constraints and galaxy cluster mass function from Chandra observations. At odds with recent similar studies, to avoid model dependence of the constraints we perform a full likelihood analysis for all the datasets employed. As for the cluster data analysis we rely on to the most recent calibration of massive neutrino effects in the halo mass function and we explore the impact of the uncertainty in the mass bias and re-calibration of the halo mass function due to baryonic feedback processes on cosmological parameters. We find that none of the low redshift probes alone provide evidence for massive neutrino in combination with CMB measurements, while a larger than 2σ detection of non zero neutrino mass, either active or sterile, is achieved combining cluster or shear data with CMB and BAO measurements. Yet, the significance of the detection exceeds 3σ if we combine all four datasets. For a three active neutrino scenario, from the joint analysis of CMB, BAO, shear and cluster data including the uncertainty in the mass bias we obtain ∑ mν =0.29+0.18-0.21 eV and ∑ mν =0.22+0.17-0.18 eV 95%CL) using WMAP9 or Planck as CMB dataset, respectively. The preference for massive neutrino is even larger in the sterile neutrino scenario, for which we get mseff=0.44+0.28-0.26 eV and Δ Neff=0.78+0.60-0.59 95%CL) from the joint analysis of Planck, BAO, shear and cluster datasets. For this data combination the vanilla ΛCDM model is rejected at more than 3σ and a sterile neutrino mass as motivated by accelerator anomaly is within the 2σ errors. Conversely, the Ly

  10. Neutrino mass priors for cosmology from random matrices

    NASA Astrophysics Data System (ADS)

    Long, Andrew J.; Raveri, Marco; Hu, Wayne; Dodelson, Scott

    2018-02-01

    Cosmological measurements of structure are placing increasingly strong constraints on the sum of the neutrino masses, Σ mν, through Bayesian inference. Because these constraints depend on the choice for the prior probability π (Σ mν), we argue that this prior should be motivated by fundamental physical principles rather than the ad hoc choices that are common in the literature. The first step in this direction is to specify the prior directly at the level of the neutrino mass matrix Mν, since this is the parameter appearing in the Lagrangian of the particle physics theory. Thus by specifying a probability distribution over Mν, and by including the known squared mass splittings, we predict a theoretical probability distribution over Σ mν that we interpret as a Bayesian prior probability π (Σ mν). Assuming a basis-invariant probability distribution on Mν, also known as the anarchy hypothesis, we find that π (Σ mν) peaks close to the smallest Σ mν allowed by the measured mass splittings, roughly 0.06 eV (0.1 eV) for normal (inverted) ordering, due to the phenomenon of eigenvalue repulsion in random matrices. We consider three models for neutrino mass generation: Dirac, Majorana, and Majorana via the seesaw mechanism; differences in the predicted priors π (Σ mν) allow for the possibility of having indications about the physical origin of neutrino masses once sufficient experimental sensitivity is achieved. We present fitting functions for π (Σ mν), which provide a simple means for applying these priors to cosmological constraints on the neutrino masses or marginalizing over their impact on other cosmological parameters.

  11. Neutrino mass in flavor dependent gauged lepton model

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2018-03-01

    We study a neutrino model introducing an additional nontrivial gauged lepton symmetry where the neutrino masses are induced at two-loop level, while the first and second charged-leptons of the standard model are done at one-loop level. As a result of the model structure, we can predict one massless active neutrino, and there is a dark matter candidate. Then we discuss the neutrino mass matrix, muon anomalous magnetic moment, lepton flavor violations, oblique parameters, and relic density of dark matter, taking into account the experimental constraints.

  12. Neutrino mass priors for cosmology from random matrices

    DOE PAGES

    Long, Andrew J.; Raveri, Marco; Hu, Wayne; ...

    2018-02-13

    Cosmological measurements of structure are placing increasingly strong constraints on the sum of the neutrino masses, Σm ν, through Bayesian inference. Because these constraints depend on the choice for the prior probability π(Σm ν), we argue that this prior should be motivated by fundamental physical principles rather than the ad hoc choices that are common in the literature. The first step in this direction is to specify the prior directly at the level of the neutrino mass matrix M ν, since this is the parameter appearing in the Lagrangian of the particle physics theory. Thus by specifying a probability distribution overmore » M ν, and by including the known squared mass splittings, we predict a theoretical probability distribution over Σm ν that we interpret as a Bayesian prior probability π(Σm ν). Assuming a basis-invariant probability distribution on M ν, also known as the anarchy hypothesis, we find that π(Σm ν) peaks close to the smallest Σm ν allowed by the measured mass splittings, roughly 0.06 eV (0.1 eV) for normal (inverted) ordering, due to the phenomenon of eigenvalue repulsion in random matrices. We consider three models for neutrino mass generation: Dirac, Majorana, and Majorana via the seesaw mechanism; differences in the predicted priors π(Σm ν) allow for the possibility of having indications about the physical origin of neutrino masses once sufficient experimental sensitivity is achieved. In conclusion, we present fitting functions for π(Σm ν), which provide a simple means for applying these priors to cosmological constraints on the neutrino masses or marginalizing over their impact on other cosmological parameters.« less

  13. Neutrino mass priors for cosmology from random matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Andrew J.; Raveri, Marco; Hu, Wayne

    Cosmological measurements of structure are placing increasingly strong constraints on the sum of the neutrino masses, Σm ν, through Bayesian inference. Because these constraints depend on the choice for the prior probability π(Σm ν), we argue that this prior should be motivated by fundamental physical principles rather than the ad hoc choices that are common in the literature. The first step in this direction is to specify the prior directly at the level of the neutrino mass matrix M ν, since this is the parameter appearing in the Lagrangian of the particle physics theory. Thus by specifying a probability distribution overmore » M ν, and by including the known squared mass splittings, we predict a theoretical probability distribution over Σm ν that we interpret as a Bayesian prior probability π(Σm ν). Assuming a basis-invariant probability distribution on M ν, also known as the anarchy hypothesis, we find that π(Σm ν) peaks close to the smallest Σm ν allowed by the measured mass splittings, roughly 0.06 eV (0.1 eV) for normal (inverted) ordering, due to the phenomenon of eigenvalue repulsion in random matrices. We consider three models for neutrino mass generation: Dirac, Majorana, and Majorana via the seesaw mechanism; differences in the predicted priors π(Σm ν) allow for the possibility of having indications about the physical origin of neutrino masses once sufficient experimental sensitivity is achieved. In conclusion, we present fitting functions for π(Σm ν), which provide a simple means for applying these priors to cosmological constraints on the neutrino masses or marginalizing over their impact on other cosmological parameters.« less

  14. Neutrino constraints: what large-scale structure and CMB data are telling us?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costanzi, Matteo; Sartoris, Barbara; Borgani, Stefano

    We discuss the reliability of neutrino mass constraints, either active or sterile, from the combination of different low redshift Universe probes with measurements of CMB anisotropies. In our analyses we consider WMAP 9-year or Planck Cosmic Microwave Background (CMB) data in combination with Baryonic Acoustic Oscillations (BAO) measurements from BOSS DR11, galaxy shear measurements from CFHTLenS, SDSS Ly α forest constraints and galaxy cluster mass function from Chandra observations. At odds with recent similar studies, to avoid model dependence of the constraints we perform a full likelihood analysis for all the datasets employed. As for the cluster data analysis wemore » rely on to the most recent calibration of massive neutrino effects in the halo mass function and we explore the impact of the uncertainty in the mass bias and re-calibration of the halo mass function due to baryonic feedback processes on cosmological parameters. We find that none of the low redshift probes alone provide evidence for massive neutrino in combination with CMB measurements, while a larger than 2σ detection of non zero neutrino mass, either active or sterile, is achieved combining cluster or shear data with CMB and BAO measurements. Yet, the significance of the detection exceeds 3σ if we combine all four datasets. For a three active neutrino scenario, from the joint analysis of CMB, BAO, shear and cluster data including the uncertainty in the mass bias we obtain ∑ m{sub ν} =0.29{sup +0.18}{sub -0.21} eV and ∑ m{sub ν} =0.22{sup +0.17}{sub -0.18} eV 95%CL) using WMAP9 or Planck as CMB dataset, respectively. The preference for massive neutrino is even larger in the sterile neutrino scenario, for which we get m{sub s}{sup eff}=0.44{sup +0.28}{sub -0.26} eV and Δ N{sub eff}=0.78{sup +0.60}{sub -0.59} 95%CL) from the joint analysis of Planck, BAO, shear and cluster datasets. For this data combination the vanilla ΛCDM model is rejected at more than 3σ and a sterile

  15. Clockwork for neutrino masses and lepton flavor violation

    NASA Astrophysics Data System (ADS)

    Ibarra, Alejandro; Kushwaha, Ashwani; Vempati, Sudhir K.

    2018-05-01

    We investigate the generation of small neutrino masses in a clockwork framework which includes Dirac mass terms as well as Majorana mass terms for the new fermions. We derive analytic formulas for the masses of the new particles and for their Yukawa couplings to the lepton doublets, in the scenario where the clockwork parameters are universal. When the universal Majorana mass vanishes, the zero mode of the clockwork sector forms a Dirac pair with the active neutrino, with a mass which is in agreement with oscillations experiments for a sufficiently large number of clockwork gears. On the other hand, when it does not vanish, neutrino masses are generated via the seesaw mechanism. In this case, and due to the fact that the effective Yukawa couplings of the higher modes can be sizable, neutrino masses can only be suppressed by postulating a large Majorana mass scale. Finally, we discuss the constraints on the mass scale of the clockwork fermions from the non-observation of the rare leptonic decay μ → eγ.

  16. Pair Production Constraints on Superluminal Neutrinos Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.; /SLAC; Gardner, Susan

    2012-02-16

    We revisit the pair creation constraint on superluminal neutrinos considered by Cohen and Glashow in order to clarify which types of superluminal models are constrained. We show that a model in which the superluminal neutrino is effectively light-like can evade the Cohen-Glashow constraint. In summary, any model for which the CG pair production process operates is excluded because such timelike neutrinos would not be detected by OPERA or other experiments. However, a superluminal neutrino which is effectively lightlike with fixed p{sup 2} can evade the Cohen-Glashow constraint because of energy-momentum conservation. The coincidence involved in explaining the SN1987A constraint certainlymore » makes such a picture improbable - but it is still intrinsically possible. The lightlike model is appealing in that it does not violate Lorentz symmetry in particle interactions, although one would expect Hughes-Drever tests to turn up a violation eventually. Other evasions of the CG constraints are also possible; perhaps, e.g., the neutrino takes a 'short cut' through extra dimensions or suffers anomalous acceleration in matter. Irrespective of the OPERA result, Lorentz-violating interactions remain possible, and ongoing experimental investigation of such possibilities should continue.« less

  17. Objective Bayesian analysis of neutrino masses and hierarchy

    NASA Astrophysics Data System (ADS)

    Heavens, Alan F.; Sellentin, Elena

    2018-04-01

    Given the precision of current neutrino data, priors still impact noticeably the constraints on neutrino masses and their hierarchy. To avoid our understanding of neutrinos being driven by prior assumptions, we construct a prior that is mathematically minimally informative. Using the constructed uninformative prior, we find that the normal hierarchy is favoured but with inconclusive posterior odds of 5.1:1. Better data is hence needed before the neutrino masses and their hierarchy can be well constrained. We find that the next decade of cosmological data should provide conclusive evidence if the normal hierarchy with negligible minimum mass is correct, and if the uncertainty in the sum of neutrino masses drops below 0.025 eV. On the other hand, if neutrinos obey the inverted hierarchy, achieving strong evidence will be difficult with the same uncertainties. Our uninformative prior was constructed from principles of the Objective Bayesian approach. The prior is called a reference prior and is minimally informative in the specific sense that the information gain after collection of data is maximised. The prior is computed for the combination of neutrino oscillation data and cosmological data and still applies if the data improve.

  18. Astrophysical constraints on resonantly produced sterile neutrino dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Aurel, E-mail: aurel@physik.uzh.ch

    2016-04-01

    Resonantly produced sterile neutrinos are considered an attractive dark matter (DM) candidate only requiring a minimal, well motivated extension to the standard model of particle physics. With a particle mass restricted to the keV range, sterile neutrinos are furthermore a prime candidate for warm DM, characterised by suppressed matter perturbations at the smallest observable scales. In this paper we take a critical look at the validity of the resonant scenario in the context of constraints from structure formation. We compare predicted and observed number of Milky-Way satellites and we introduce a new method to generalise existing Lyman-α limits based onmore » thermal relic warm DM to the case of resonant sterile neutrino DM . The tightest limits come from the Lyman-α analysis, excluding the entire parameter space (at 2-σ confidence level) still allowed by X-ray observations. Constraints from Milky-Way satellite counts are less stringent, leaving room for resonant sterile neutrino DM most notably around the suggested line signal at 7.1 keV.« less

  19. Constraints on decay plus oscillation solutions of the solar neutrino problem

    NASA Astrophysics Data System (ADS)

    Joshipura, Anjan S.; Massó, Eduard; Mohanty, Subhendra

    2002-12-01

    We examine the constraints on the nonradiative decay of neutrinos from the observations of solar neutrino experiments. The standard oscillation hypothesis among three neutrinos solves the solar and atmospheric neutrino problems. The decay of a massive neutrino mixed with the electron neutrino results in the depletion of the solar neutrino flux. We introduce neutrino decay in the oscillation hypothesis and demand that decay does not spoil the successful explanation of solar and atmospheric observations. We obtain a lower bound on the ratio of the lifetime over the mass of ν2, τ2/m2>22.7 s/MeV for the Mikheyev-Smirnov-Wolfenstein solution of the solar neutrino problem and τ2/m2>27.8 s/MeV for the vacuum oscillation solution (at 99% C.L.).

  20. Neutrino masses, neutrino oscillations, and cosmological implications

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1982-01-01

    Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.

  1. Supernova constraints on neutrino oscillation and EoS for proto-neutron star

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Mathews, G. J.; Nakamura, K.; Shibagaki, S.; Suzuki, T.

    2014-05-01

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We here discuss how to determine the neutrino temperatures and propose a method to determine still unknown neutrino oscillation parameters, mass hierarchy and θ13, simultaneously. Combining the recent experimental constraints on θ13 with isotopic ratios of the light elements discovered in presolar grains from the Murchison meteorite, we show that our method suggests at a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  2. Supernova constraints on massive (pseudo)scalar coupling to neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heurtier, Lucien; Zhang, Yongchao, E-mail: lucien.heurtier@ulb.ac.be, E-mail: yongchao.zhang@ulb.ac.be

    2017-02-01

    In this paper we derive constraints on the emission of a massive (pseudo)scalar S from annihilation of neutrinos in the core of supernovae through the dimension-4 coupling νν S , as well as the effective dimension-5 operator 1/Λ(νν)( SS ). While most of earlier studies have focused on massless or ultralight scalars, our analysis involves scalar with masses of order eV–GeV which can be copiously produced during (the explosion of supernovae, whose core temperature is) generally of order T ∼ O O (10) MeV. From the luminosity and deleptonization arguments regarding the observation of SN1987A, we exclude a large rangemore » of couplings 10{sup −12} ∼< | g {sub αβ}|∼< 10{sup −5} for the dimension-4 case, depending on the neutrino flavours involved and the scalar mass. In the case of dimension-5 operator, for a scalar mass from MeV to 100 MeV the coupling h {sub αβ} get constrained from 10{sup −6} to 10{sup −2}, with the cutoff scale explicitly set Λ = 1 TeV. We finally show that if the neutrino burst of a nearby supernova explosion is detected by Super-Kamiokande and IceCube, the constraints will be largely reinforced.« less

  3. Supernova constraints on neutrino oscillation and EoS for proto-neutron star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.

    2014-05-02

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We here discuss how to determine the neutrino temperatures and propose a method to determine still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. Combining the recent experimental constraints on θ{sub 13} with isotopic ratios of the light elements discovered in presolar grains from the Murchison meteorite, we show that our methodmore » suggests at a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.« less

  4. Neutrino mass and dark energy from weak lensing.

    PubMed

    Abazajian, Kevork N; Dodelson, Scott

    2003-07-25

    Weak gravitational lensing of background galaxies by intervening matter directly probes the mass distribution in the Universe. This distribution is sensitive to both the dark energy and neutrino mass. We examine the potential of lensing experiments to measure features of both simultaneously. Focusing on the radial information contained in a future deep 4000 deg(2) survey, we find that the expected (1-sigma) error on a neutrino mass is 0.1 eV, if the dark-energy parameters are allowed to vary. The constraints on dark-energy parameters are similarly restrictive, with errors on w of 0.09.

  5. Constraints from primordial nucleosynthesis on the mass of the tau neutrino

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Turner, Michael S.; Chakravorty, A.; Schramm, David N.

    1991-01-01

    It is shown that primordial nucleosynthesis excludes a tau-neutrino mass from 0.3 to 25 MeV (Dirac) and 0.5 to 25 MeV (Majorana) provided that its lifetime is not less than about 1 sec, and from 0.3 to 30 MeV (Dirac) and 0.5 to 32 MeV (Majorana) for a lifetime of not less than about 1000 sec. A modest improvement in the laboratory mass limit - from 35 to 25 MeV - would imply that the tau-neutrino mass must be less than 0.5 MeV (provided the lifetime is not less than about 1 sec).

  6. Constraints on Non-flat Cosmologies with Massive Neutrinos after Planck 2015

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Ratra, Bharat; Biesiada, Marek; Li, Song; Zhu, Zong-Hong

    2016-10-01

    We investigate two dark energy cosmological models (I.e., the ΛCDM and ϕCDM models) with massive neutrinos assuming two different neutrino mass hierarchies in both the spatially flat and non-flat scenarios, where in the ϕCDM model the scalar field possesses an inverse power-law potential, V(ϕ) ∝ ϕ -α (α > 0). Cosmic microwave background data from Planck 2015, baryon acoustic oscillation data from 6dFGS, SDSS-MGS, BOSS-LOWZ and BOSS CMASS-DR11, the joint light-curve analysis compilation of SNe Ia apparent magnitude observations, and the Hubble Space Telescope H 0 prior, are jointly employed to constrain the model parameters. We first determine constraints assuming three species of degenerate massive neutrinos. In the spatially flat (non-flat) ΛCDM model, the sum of neutrino masses is bounded as Σm ν < 0.165(0.299) eV at 95% confidence level (CL). Correspondingly, in the flat (non-flat) ϕCDM model, we find Σm ν < 0.164(0.301) eV at 95% CL. The inclusion of spatial curvature as a free parameter results in a significant broadening of confidence regions for Σm ν and other parameters. In the scenario where the total neutrino mass is dominated by the heaviest neutrino mass eigenstate, we obtain similar conclusions to those obtained in the degenerate neutrino mass scenario. In addition, the results show that the bounds on Σm ν based on two different neutrino mass hierarchies have insignificant differences in the spatially flat case for both the ΛCDM and ϕCDM models; however, the corresponding differences are larger in the non-flat case.

  7. Bounds on neutrino mass in viscous cosmology

    NASA Astrophysics Data System (ADS)

    Anand, Sampurn; Chaubal, Prakrut; Mazumdar, Arindam; Mohanty, Subhendra; Parashari, Priyank

    2018-05-01

    Effective field theoretic description of dark matter fluid on large scales predicts viscosity of the order 10‑6 H0 MP2. Recently, it has been shown that the same magnitude of viscosity can resolve the discordance between large scale structure observations and Planck CMB data in the σ8-Ωm0 and H0-Ωm0 parameters space. On the other hand, massive neutrinos suppresses the matter power spectrum on the small length scales similar to the viscosities. Therefore, it is expected that the viscous dark matter setup along with massive neutrinos can provide stringent constraint on neutrino mass. In this article, we show that the inclusion of effective viscosity, which arises from summing over non linear perturbations at small length scales, indeed severely constrains the cosmological bound on neutrino masses. Under a joint analysis of Planck CMB and different large scale observation data, we find that upper bound on the sum of the neutrino masses, at 2-σ level, decreases respectively from ∑ mν <= 0.396 eV (for normal hierarchy) and ∑ mν <= 0.378 eV (for inverted hierarchy) to ∑ mν <= 0.267 eV (for normal hierarchy) and ∑ mν <= 0.146 eV (for inverted hierarchy).

  8. DESI and other Dark Energy experiments in the era of neutrino mass measurements

    DOE PAGES

    Font-Ribera, Andreu; McDonald, Patrick; Mostek, Nick; ...

    2014-05-19

    Here we present Fisher matrix projections for future cosmological parameter measurements, including neutrino masses, Dark Energy, curvature, modified gravity, the inflationary perturbation spectrum, non-Gaussianity, and dark radiation. We focus on DESI and generally redshift surveys (BOSS, HETDEX, eBOSS, Euclid, and WFIRST), but also include CMB (Planck) and weak gravitational lensing (DES and LSST) constraints. The goal is to present a consistent set of projections, for concrete experiments, which are otherwise scattered throughout many papers and proposals. We include neutrino mass as a free parameter in most projections, as it will inevitably be relevant $-$ DESI and other experiments can measuremore » the sum of neutrino masses to ~ 0.02 eV or better, while the minimum possible sum is 0.06 eV. We note that constraints on Dark Energy are significantly degraded by the presence of neutrino mass uncertainty, especially when using galaxy clustering only as a probe of the BAO distance scale (because this introduces additional uncertainty in the background evolution after the CMB epoch). Using broadband galaxy power becomes relatively more powerful, and bigger gains are achieved by combining lensing survey constraints with redshift survey constraints. Finally, we do not try to be especially innovative, e.g., with complex treatments of potential systematic errors $-$ these projections are intended as a straightforward baseline for comparison to more detailed analyses.« less

  9. Late time neutrino masses, the LSND experiment, and the cosmic microwave background.

    PubMed

    Chacko, Z; Hall, Lawrence J; Oliver, Steven J; Perelstein, Maxim

    2005-03-25

    Models with low-scale breaking of global symmetries in the neutrino sector provide an alternative to the seesaw mechanism for understanding why neutrinos are light. Such models can easily incorporate light sterile neutrinos required by the Liquid Scintillator Neutrino Detector experiment. Furthermore, the constraints on the sterile neutrino properties from nucleosynthesis and large-scale structure can be removed due to the nonconventional cosmological evolution of neutrino masses and densities. We present explicit, fully realistic supersymmetric models, and discuss the characteristic signatures predicted in the angular distributions of the cosmic microwave background.

  10. Neutrino mass sum-rule

    NASA Astrophysics Data System (ADS)

    Damanik, Asan

    2018-03-01

    Neutrino mass sum-rele is a very important research subject from theoretical side because neutrino oscillation experiment only gave us two squared-mass differences and three mixing angles. We review neutrino mass sum-rule in literature that have been reported by many authors and discuss its phenomenological implications.

  11. The Higgs seesaw induced neutrino masses and dark matter

    DOE PAGES

    Cai, Yi; Chao, Wei

    2015-08-12

    In this study we propose a possible explanation of the active neutrino Majorana masses with the TeV scale new physics which also provide a dark matter candidate. We extend the Standard Model (SM) with a local U(1)' symmetry and introduce a seesaw relation for the vacuum expectation values (VEVs) of the exotic scalar singlets, which break the U(1)' spontaneously. The larger VEV is responsible for generating the Dirac mass term of the heavy neutrinos, while the smaller for the Majorana mass term. As a result active neutrino masses are generated via the modified inverse seesaw mechanism. The lightest of themore » new fermion singlets, which are introduced to cancel the U(1)' anomalies, can be a stable particle with ultra flavor symmetry and thus a plausible dark matter candidate. We explore the parameter space with constraints from the dark matter relic abundance and dark matter direct detection.« less

  12. Effects of neutrino mass hierarchies on dynamical dark energy models

    NASA Astrophysics Data System (ADS)

    Yang, Weiqiang; Nunes, Rafael C.; Pan, Supriya; Mota, David F.

    2017-05-01

    We investigate how three different possibilities of neutrino mass hierarchies, namely normal, inverted, and degenerate, can affect the observational constraints on three well-known dynamical dark energy models, namely the Chevallier-Polarski-Linder, logarithmic, and the Jassal-Bagla-Padmanabhan parametrizations. In order to impose the observational constraints on the models, we performed a robust analysis using Planck 2015 temperature and polarization data, supernovae type Ia from the joint light curve analysis, baryon acoustic oscillation distance measurements, redshift space distortion characterized by f (z )σ8(z ) data, weak gravitational lensing data from the Canada-France-Hawaii Telescope Lensing Survey, and cosmic chronometer data plus the local value of the Hubble parameter. We find that different neutrino mass hierarchies return similar fits on almost all model parameters and mildly change the dynamical dark energy properties.

  13. Absolute neutrino mass measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments inmore » Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.« less

  14. Constraining neutrino mass from neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Goswami, Srubabati; Mitra, Manimala; Rodejohann, Werner

    2013-11-01

    We study the implications of the recent results on neutrinoless double beta decay (0νββ) from GERDA-I (Ge76) and KamLAND-Zen+EXO-200 (Xe136) and the upper limit on the sum of light neutrino masses from Planck. We show that the upper limits on the effective neutrino mass from Xe136 are stronger than those from Ge76 for most of the recent calculations of the nuclear matrix elements (NMEs). We also analyze the compatibility of these limits with the claimed observation in Ge76 and show that while the updated claim value is still compatible with the recent GERDA limit as well as the individual Xe136 limits for a few NME calculations, it is inconsistent with the combined Xe136 limit for all but one NME. Imposing the most stringent limit from Planck, we find that the canonical light neutrino contribution cannot saturate the current limit, irrespective of the NME uncertainties. Saturation can be reached by inclusion of the right-handed (RH) neutrino contributions in TeV-scale left-right symmetric models with type-II seesaw. This imposes a lower limit on the lightest neutrino mass. Using the 0νββ bounds, we also derive correlated constraints in the RH sector, complimentary to those from direct searches at the LHC.

  15. Leptogenesis constraints on the mass of right-handed gauge bosons

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Lee, Chang-Hun; Mohapatra, R. N.

    2014-11-01

    We discuss leptogenesis constraints on the mass of the right-handed W boson (WR ) in a TeV-scale left-right seesaw model for neutrino masses. For generic Dirac mass of the neutrinos, i.e. with all Yukawa couplings ≲1 0-5.5 , it has been pointed out that successful leptogenesis requires a lower bound of 18 TeV on the WR mass, pushing it beyond the reach of the LHC. Such TeV-scale left-right seesaw model must, however, be parity asymmetric for type-I seesaw to give the observed neutrino masses. This class of models can accommodate larger Yukawa couplings, which give simultaneous fits to charged-lepton and neutrino masses, by invoking either cancellations or specific symmetry textures for Dirac (MD) and Majorana (MN) masses in the seesaw formula. We show that in this case the leptogenesis bound on MWRcan be substantially weaker, i.e. MW R≳3 TeV for MN≲MW R. This happens due to considerable reduction of the dilution effects from WR-mediated decays and scatterings, while the washout effects due to inverse decays are under control for certain parameter ranges of the Yukawa couplings. We also show that this model is consistent with all other low-energy constraints, such as lepton flavor violation and neutrinoless double beta decay. Thus, a discovery of the right-handed gauge bosons alone at the LHC will not falsify leptogenesis as the mechanism behind the matter-antimatter asymmetry in our Universe.

  16. Strong thermal leptogenesis and the absolute neutrino mass scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bari, Pasquale Di; King, Sophie E.; Fiorentin, Michele Re, E-mail: pdb1d08@soton.ac.uk, E-mail: sk1806@soton.ac.uk, E-mail: m.re-fiorentin@soton.ac.uk

    We show that successful strong thermal leptogenesis, where the final asymmetry is independent of the initial conditions and in particular a large pre-existing asymmetry is efficiently washed-out, favours values of the lightest neutrino mass m{sub 1}∼>10 meV for normal ordering (NO) and m{sub 1}∼>3 meV for inverted ordering (IO) for models with orthogonal matrix entries respecting |Ω{sub ij}{sup 2}|∼<2. We show analytically why lower values of m{sub 1} require a higher level of fine tuning in the seesaw formula and/or in the flavoured decay parameters (in the electronic for NO, in the muonic for IO). We also show how this constraint existsmore » thanks to the measured values of the neutrino mixing angles and could be tightened by a future determination of the Dirac phase. Our analysis also allows us to place a more stringent constraint for a specific model or class of models, such as SO(10)-inspired models, and shows that some models cannot realise strong thermal leptogenesis for any value of m{sub 1}. A scatter plot analysis fully supports the analytical results. We also briefly discuss the interplay with absolute neutrino mass scale experiments concluding that they will be able in the coming years to either corner strong thermal leptogenesis or find positive signals pointing to a non-vanishing m{sub 1}. Since the constraint is much stronger for NO than for IO, it is very important that new data from planned neutrino oscillation experiments will be able to solve the ambiguity.« less

  17. Constraints and tests of the OPERA superluminal neutrinos.

    PubMed

    Bi, Xiao-Jun; Yin, Peng-Fei; Yu, Zhao-Huan; Yuan, Qiang

    2011-12-09

    The superluminal neutrinos detected by OPERA indicate Lorentz invariance violation (LIV) of the neutrino sector at the order of 10(-5). We study the implications of the result in this work. We find that such a large LIV implied by OPERA data will make the neutrino production process π → μ + ν(μ) kinematically forbidden for a neutrino energy greater than about 5 GeV. The OPERA detection of neutrinos at 40 GeV can constrain the LIV parameter to be smaller than 3×10(-7). Furthermore, the neutrino decay in the LIV framework will modify the neutrino spectrum greatly. The atmospheric neutrino spectrum measured by the IceCube Collaboration can constrain the LIV parameter to the level of 10(-12). The future detection of astrophysical neutrinos of galactic sources is expected to be able to give an even stronger constraint on the LIV parameter of neutrinos.

  18. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: signs of neutrino mass in current cosmological data sets

    NASA Astrophysics Data System (ADS)

    Beutler, Florian; Saito, Shun; Brownstein, Joel R.; Chuang, Chia-Hsun; Cuesta, Antonio J.; Percival, Will J.; Ross, Ashley J.; Ross, Nicholas P.; Schneider, Donald P.; Samushia, Lado; Sánchez, Ariel G.; Seo, Hee-Jong; Tinker, Jeremy L.; Wagner, Christian; Weaver, Benjamin A.

    2014-11-01

    We investigate the cosmological implications of the latest growth of structure measurement from the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS Data Release 11 with particular focus on the sum of the neutrino masses, ∑mν. We examine the robustness of the cosmological constraints from the baryon acoustic oscillation (BAO) scale, the Alcock-Paczynski effect and redshift-space distortions (DV/rs, FAP, fσ8) of Beutler et al., when introducing a neutrino mass in the power spectrum template. We then discuss how the neutrino mass relaxes discrepancies between the cosmic microwave background (CMB) and other low-redshift measurements within Λ cold dark matter. Combining our cosmological constraints with 9-year Wilkinson Microwave Anisotropy Probe (WMAP9) yields ∑mν = 0.36 ± 0.14 eV (68 per cent c.l.), which represents a 2.6σ preference for non-zero neutrino mass. The significance can be increased to 3.3σ when including weak lensing results and other BAO constraints, yielding ∑mν = 0.35 ± 0.10 eV (68 per cent c.l.). However, combining CMASS with Planck data reduces the preference for neutrino mass to ˜2σ. When removing the CMB lensing effect in the Planck temperature power spectrum (by marginalizing over AL), we see shifts of ˜1σ in σ8 and Ωm, which have a significant effect on the neutrino mass constraints. In the case of CMASS plus Planck without the AL lensing signal, we find a preference for a neutrino mass of ∑mν = 0.34 ± 0.14 eV (68 per cent c.l.), in excellent agreement with the WMAP9+CMASS value. The constraint can be tightened to 3.4σ yielding ∑mν = 0.36 ± 0.10 eV (68 per cent c.l.) when weak lensing data and other BAO constraints are included.

  19. Constraints and Tests of the OPERA Superluminal Neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi Xiaojun; Yin Pengfei; Yu Zhaohuan

    The superluminal neutrinos detected by OPERA indicate Lorentz invariance violation (LIV) of the neutrino sector at the order of 10{sup -5}. We study the implications of the result in this work. We find that such a large LIV implied by OPERA data will make the neutrino production process {pi}{yields}{mu}+{nu}{sub {mu}} kinematically forbidden for a neutrino energy greater than about 5 GeV. The OPERA detection of neutrinos at 40 GeV can constrain the LIV parameter to be smaller than 3x10{sup -7}. Furthermore, the neutrino decay in the LIV framework will modify the neutrino spectrum greatly. The atmospheric neutrino spectrum measured bymore » the IceCube Collaboration can constrain the LIV parameter to the level of 10{sup -12}. The future detection of astrophysical neutrinos of galactic sources is expected to be able to give an even stronger constraint on the LIV parameter of neutrinos.« less

  20. The not-so-sterile 4th neutrino: constraints on new gauge interactions from neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Kopp, Joachim; Welter, Johannes

    2014-12-01

    Sterile neutrino models with new gauge interactions in the sterile sector are phenomenologically interesting since they can lead to novel effects in neutrino oscillation experiments, in cosmology and in dark matter detectors, possibly even explaining some of the observed anomalies in these experiments. Here, we use data from neutrino oscillation experiments, in particular from MiniBooNE, MINOS and solar neutrino experiments, to constrain such models. We focus in particular on the case where the sterile sector gauge boson A ' couples also to Standard Model particles (for instance to the baryon number current) and thus induces a large Mikheyev-Smirnov-Wolfenstein potential. For eV-scale sterile neutrinos, we obtain strong constraints especially from MINOS, which restricts the strength of the new interaction to be less than ˜ 10 times that of the Standard Model weak interaction unless active-sterile neutrino mixing is very small (sin2 θ 24 ≲ 10-3). This rules out gauge forces large enough to affect short-baseline experiments like MiniBooNE and it imposes nontrivial constraints on signals from sterile neutrino scattering in dark matter experiments.

  1. COHERENT constraints to conventional and exotic neutrino physics

    NASA Astrophysics Data System (ADS)

    Papoulias, D. K.; Kosmas, T. S.

    2018-02-01

    The process of neutral-current coherent elastic neutrino-nucleus scattering, consistent with the Standard Model (SM) expectation, has been recently measured by the COHERENT experiment at the Spallation Neutron Source. On the basis of the observed signal and our nuclear calculations for the relevant Cs and I isotopes, the extracted constraints on both conventional and exotic neutrino physics are updated. The present study concentrates on various SM extensions involving vector and tensor nonstandard interactions as well as neutrino electromagnetic properties, with an emphasis on the neutrino magnetic moment and the neutrino charge radius. Furthermore, models addressing a light sterile neutrino state and scenarios with new propagator fields—such as vector Z' and scalar bosons—are examined, and the corresponding regions excluded by the COHERENT experiment are presented.

  2. From Atmospheric Neutrinos to the Neutrino Mass Hierarchy

    NASA Astrophysics Data System (ADS)

    Kappes, A.

    2015-08-01

    After a brief introduction to neutrino oscillation, the article discusses how proposed detectors like PINGU and ORCA can use atmospheric neutrinos in the GeV range to determine the neutrino mass hierarchy, one of the crucial unknowns in the neutrino sector of particle physics, and what uncertainties on external input parameters have to be taken into account.

  3. Constraints on texture zero and cofactor zero models for neutrino mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whisnant, K.; Liao, Jiajun; Marfatia, D.

    2014-06-24

    Imposing a texture or cofactor zero on the neutrino mass matrix reduces the number of independent parameters from nine to seven. Since five parameters have been measured, only two independent parameters would remain in such models. We find the allowed regions for single texture zero and single cofactor zero models. We also find strong similarities between single texture zero models with one mass hierarchy and single cofactor zero models with the opposite mass hierarchy. We show that this correspondence can be generalized to texture-zero and cofactor-zero models with the same homogeneous costraints on the elements and cofactors.

  4. Constraints on flavor-dependent long range forces from solar neutrinos and KamLAND

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Abhijit; Dighe, Amol; Joshipura, Anjan S.

    2007-05-01

    Flavor-dependent long range (LR) leptonic forces, like those mediated by the Le-Lμ or Le-Lτ gauge bosons, constitute a minimal extension of the standard model that preserves its renormalizability. We study the impact of such interactions on the solar neutrino oscillations when the interaction range RLR is much larger than the Earth-Sun distance. The LR potential can dominate over the standard charged current potential inside the Sun in spite of strong constraints on the coupling α of the LR force coming from the atmospheric neutrino data and laboratory search for new forces. We demonstrate that the solar and atmospheric neutrino mass scales do not get trivially decoupled even if θ13 is vanishingly small. In addition, for α≳10-52 and normal hierarchy, resonant enhancement of θ13 results in nontrivial energy dependent effects on the νe survival probability. We perform a complete three generation analysis, and obtain constraints on α through a global fit to the solar neutrino and KamLAND data. We get the 3σ limits αeμ<3.4×10-53 and αeτ<2.5×10-53 when RLR is much smaller than our distance from the galactic center. With larger RLR, the collective LR potential due to all the electrons in the galaxy becomes significant and the constraints on α become stronger by up to two orders of magnitude.

  5. Cosmological constraints from galaxy clustering in the presence of massive neutrinos

    NASA Astrophysics Data System (ADS)

    Zennaro, M.; Bel, J.; Dossett, J.; Carbone, C.; Guzzo, L.

    2018-06-01

    The clustering ratio is defined as the ratio between the correlation function and the variance of the smoothed overdensity field. In Λ cold dark matter (ΛCDM) cosmologies without massive neutrinos, it has already been proven to be independent of bias and redshift space distortions on a range of linear scales. It therefore can provide us with a direct comparison of predictions (for matter in real space) against measurements (from galaxies in redshift space). In this paper we first extend the applicability of such properties to cosmologies that account for massive neutrinos, by performing tests against simulated data. We then investigate the constraining power of the clustering ratio on cosmological parameters such as the total neutrino mass and the equation of state of dark energy. We analyse the joint posterior distribution of the parameters that satisfy both measurements of the galaxy clustering ratio in the SDSS-DR12, and the angular power spectra of cosmic microwave background temperature and polarization anisotropies measured by the Planck satellite. We find the clustering ratio to be very sensitive to the CDM density parameter, but less sensitive to the total neutrino mass. We also forecast the constraining power the clustering ratio will achieve, predicting the amplitude of its errors with a Euclid-like galaxy survey. First we compute parameter forecasts using the Planck covariance matrix alone, then we add information from the clustering ratio. We find a significant improvement on the constraint of all considered parameters, and in particular an improvement of 40 per cent for the CDM density and 14 per cent for the total neutrino mass.

  6. Neutrino mass matrices with two vanishing cofactors and Fritzsch texture for charged lepton mass matrix

    NASA Astrophysics Data System (ADS)

    Wang, Weijian; Guo, Shu-Yuan; Wang, Zhi-Gang

    2016-04-01

    In this paper, we study the cofactor 2 zero neutrino mass matrices with the Fritzsch-type structure in charged lepton mass matrix (CLMM). In the numerical analysis, we perform a scan over the parameter space of all the 15 possible patterns to get a large sample of viable scattering points. Among the 15 possible patterns, three of them can accommodate the latest lepton mixing and neutrino mass data. We compare the predictions of the allowed patterns with their counterparts with diagonal CLMM. In this case, the severe cosmology bound on the neutrino mass set a strong constraint on the parameter space, rendering two patterns only marginally allowed. The Fritzsch-type CLMM will have impact on the viable parameter space and give rise to different phenomenological predictions. Each allowed pattern predicts the strong correlations between physical variables, which is essential for model selection and can be probed in future experiments. It is found that under the no-diagonal CLMM, the cofactor zeros structure in neutrino mass matrix is unstable as the running of renormalization group (RG) from seesaw scale to the electroweak scale. A way out of the problem is to propose the flavor symmetry under the models with a TeV seesaw scale. The inverse seesaw model and a loop-induced model are given as two examples.

  7. Neutrino mass as the probe of intermediate mass scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senjanovic, G.

    1980-01-01

    A discussion of the calculability of neutrino mass is presented. The possibility of neutrinos being either Dirac or Majorana particles is analyzed in detail. Arguments are offered in favor of the Majorana case: the smallness of neutrino mass is linked to the maximality of parity violation in weak interactions. It is shown how the measured value of neutrino mass would probe the existence of an intermediate mass scale, presumably in the TeV region, at which parity is supposed to become a good symmetry. Experimental consequences of the proposed scheme are discussed, in particular the neutrino-less double ..beta.. decay, where observationmore » would provide a crucial test of the model, and rare muon decays such as ..mu.. ..-->.. e..gamma.. and ..mu.. ..-->.. ee anti e. Finally, the embedding of this model in an O(10) grand unified theory is analyzed, with the emphasis on the implications for intermediate mass scales that it offers. It is concluded that the proposed scheme provides a distinct and testable alternative for understanding the smallness of neutrino mass. 4 figures.« less

  8. Tomographic Constraints on High-Energy Neutrinos of Hadronuclear Origin

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Tamborra, Irene; Zandanel, Fabio

    2015-11-01

    Mounting evidence suggests that the TeV-PeV neutrino flux detected by the IceCube telescope has mainly an extragalactic origin. If such neutrinos are primarily produced by a single class of astrophysical sources via hadronuclear (p p ) interactions, a similar flux of gamma-ray photons is expected. For the first time, we employ tomographic constraints to pinpoint the origin of the IceCube neutrino events by analyzing recent measurements of the cross correlation between the distribution of GeV gamma rays, detected by the Fermi satellite, and several galaxy catalogs in different redshift ranges. We find that the corresponding bounds on the neutrino luminosity density are up to 1 order of magnitude tighter than those obtained by using only the spectrum of the gamma-ray background, especially for sources with mild redshift evolution. In particular, our method excludes any hadronuclear source with a spectrum softer than E-2.1 as a main component of the neutrino background, if its evolution is slower than (1 +z )3. Starburst galaxies, if able to accelerate and confine cosmic rays efficiently, satisfy both spectral and tomographic constraints.

  9. Tomographic Constraints on High-Energy Neutrinos of Hadronuclear Origin.

    PubMed

    Ando, Shin'ichiro; Tamborra, Irene; Zandanel, Fabio

    2015-11-27

    Mounting evidence suggests that the TeV-PeV neutrino flux detected by the IceCube telescope has mainly an extragalactic origin. If such neutrinos are primarily produced by a single class of astrophysical sources via hadronuclear (pp) interactions, a similar flux of gamma-ray photons is expected. For the first time, we employ tomographic constraints to pinpoint the origin of the IceCube neutrino events by analyzing recent measurements of the cross correlation between the distribution of GeV gamma rays, detected by the Fermi satellite, and several galaxy catalogs in different redshift ranges. We find that the corresponding bounds on the neutrino luminosity density are up to 1 order of magnitude tighter than those obtained by using only the spectrum of the gamma-ray background, especially for sources with mild redshift evolution. In particular, our method excludes any hadronuclear source with a spectrum softer than E^{-2.1} as a main component of the neutrino background, if its evolution is slower than (1+z)^{3}. Starburst galaxies, if able to accelerate and confine cosmic rays efficiently, satisfy both spectral and tomographic constraints.

  10. Review of Neutrino Mass Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giuliani, A.; INFN-Milano, Via Valleggio 11, I-22100 Como

    2006-02-08

    After a brief summary of the recent achievements of neutrino physics, the concept of neutrino mass scale is clarified. The methods for the determination of the neutrino mass values are summarized and critically compared, in particular in the different and complementary contexts of cosmology, double and single beta decay. The attention is then focussed on the laboratory approaches to investigate neutrino mass. The role of neutrinoless double beta decay is explained and a short review of the present and most promising future experiments in this field is given. Single beta decay sensitivity is discussed, with brief descriptions of the KATRINmore » tritium experiment and of the recently proposed MARE rhenium project.« less

  11. Limits on the Majorana Neutrino Mass in the 0.1 eV Range

    NASA Astrophysics Data System (ADS)

    Baudis, L.; Dietz, A.; Heusser, G.; Klapdor-Kleingrothaus, H. V.; Krivosheina, I. V.; Kolb, St.; Majorovits, B.; Melnikov, V. F.; Päs, H.; Schwamm, F.; Strecker, H.; Alexeev, V.; Balysh, A.; Bakalyarov, A.; Belyaev, S. T.; Lebedev, V. I.; Zhukov, S.

    1999-07-01

    The Heidelberg-Moscow experiment gives the most stringent limit on the Majorana neutrino mass. After 24 kg yr of data with pulse shape measurements, we set a lower limit on the half-life of the 0νββ decay in 76Ge of T0ν1/2>=5.7×1025 yr at 90% C.L. (after PDG98 [C. Caso et al., Eur. Phys. J. C3, 1 (1998]), the sensitivity of the experiment being T0ν1/2>=1.6×1025 yr at 90% C.L. We thus exclude an effective Majorana neutrino mass greater than 0.2 eV (0.39 eV sensitivity), using the matrix elements of A. Staudt, K. Muto, and H. V. Klapdor-Kleingrothaus, Europhys. Lett. 13, 31 (1990). This limit sets strong constraints on degenerate neutrino mass models.

  12. Constraints on the neutrino flux in NOvA using the near detector data

    DOE PAGES

    Maan, Kuldeep K.

    2016-12-19

    NOvA, a long-baseline neutrino oscillation experiment at Fermilab, is designed to measure electron-neutrino appearance and muon-neutrino disappearance in the NuMI beam. NOvA comprises of two finely segmented liquid scintillator detectors at 14 mrad off-axis in the NuMI beam. An accurate prediction of the neutrino flux is needed for precision oscillation and cross-section measurements. Data from the hadron-production experiments and, importantly, from the NOvA Near Detector provide powerful constraints on the muon-neutrino and electron-neutrino fluxes. In particular, the measurement of the neutrino-electron elastic scattering provides an in situ constraint on the absolute flux. Lastly, this poster presents the data-driven predictions ofmore » the NOvA muonneutrino and electron-neutrino flux, and outlines future improvements in the flux determination.« less

  13. Neutrino mass hierarchy and three-flavor spectral splits of supernova neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Basudeb; Mirizzi, Alessandro; Tomas, Ricard

    2010-05-01

    It was recently realized that three-flavor effects could peculiarly modify the development of spectral splits induced by collective oscillations, for supernova neutrinos emitted during the cooling phase of a protoneutron star. We systematically explore this case, explaining how the impact of these three-flavor effects depends on the ordering of the neutrino masses. In inverted mass hierarchy, the solar mass splitting gives rise to instabilities in regions of the (anti)neutrino energy spectra that were otherwise stable under the leading two-flavor evolution governed by the atmospheric mass splitting and by the 1-3 mixing angle. As a consequence, the high-energy spectral splits foundmore » in the electron (anti)neutrino spectra disappear, and are transferred to other flavors. Imperfect adiabaticity leads to smearing of spectral swap features. In normal mass hierarchy, the three-flavor and the two-flavor instabilities act in the same region of the neutrino energy spectrum, leading to only minor departures from the two-flavor treatment.« less

  14. Constraints on secret neutrino interactions after Planck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forastieri, Francesco; Lattanzi, Massimiliano; Natoli, Paolo, E-mail: francesco.forastieri@unife.it, E-mail: lattanzi@fe.infn.it, E-mail: natoli@fe.infn.it

    Neutrino interactions beyond the standard model of particle physics may affect the cosmological evolution and can be constrained through observations. We consider the possibility that neutrinos possess secret scalar or pseudoscalar interactions mediated by the Nambu-Goldstone boson of a still unknown spontaneously broken global U(1) symmetry, as in, e.g., Majoron models. In such scenarios, neutrinos still decouple at T≅ 1 MeV, but become tightly coupled again (''recouple'') at later stages of the cosmological evolution. We use available observations of the cosmic microwave background (CMB) anisotropies, including Planck 2013 and the joint BICEP2/Planck 2015 data, to derive constraints on the quantity γ{submore » νν}{sup 4}, parameterizing the neutrino collision rate due to scalar or pseudoscalar interactions. We consider both a minimal extension of the standard ΛCDM model, and more complicated scenarios with extra relativistic degrees of freedom or non-vanishing tensor amplitude. For a wide range of dataset and model combinations, we find a typical constraint γ{sub νν}{sup 4} ∼< 0.9× 10{sup −27} (95% C.L.), implying an upper limit on the redshift z{sub νrec} of neutrino recoupling 0∼< 850, leaving open the possibility that the latter occured well before hydrogen recombination. In the framework of Majoron models, the upper limit on γ{sub νν} roughly translates on a constraint g ∼< 8.2× 10{sup −7} on the Majoron-neutrino coupling constant g. In general, the data show a weak (∼ 1σ) but intriguing preference for non-zero values of γ{sub νν}{sup 4}, with best fits in the range γ{sub νν}{sup 4} = (0.15–0.35)× 10{sup −27}, depending on the particular dataset. This is more evident when either high-resolution CMB observations from the ACT and SPT experiments are included, or the possibility of non-vanishing tensor modes is considered. In particular, for the minimal model ΛCDM+γ{sub νν} and including the Planck 2013

  15. Predictive models of radiative neutrino masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julio, J., E-mail: julio@lipi.go.id

    2016-06-21

    We discuss two models of radiative neutrino mass generation. The first model features one–loop Zee model with Z{sub 4} symmetry. The second model is the two–loop neutrino mass model with singly- and doubly-charged scalars. These two models fit neutrino oscillation data well and predict some interesting rates for lepton flavor violation processes.

  16. Hierarchical majorana neutrinos from democratic mass matrices

    NASA Astrophysics Data System (ADS)

    Yang, Masaki J. S.

    2016-09-01

    In this paper, we obtain the light neutrino masses and mixings consistent with the experiments, in the democratic texture approach. The essential ansatz is that νRi are assumed to transform as ;right-handed fields; 2R +1R under the S3L ×S3R symmetry. The symmetry breaking terms are assumed to be diagonal and hierarchical. This setup only allows the normal hierarchy of the neutrino mass, and excludes both of inverted hierarchical and degenerated neutrinos. Although the neutrino sector has nine free parameters, several predictions are obtained at the leading order. When we neglect the smallest parameters ζν and ζR, all components of the mixing matrix UPMNS are expressed by the masses of light neutrinos and charged leptons. From the consistency between predicted and observed UPMNS, we obtain the lightest neutrino masses m1 = (1.1 → 1.4) meV, and the effective mass for the double beta decay 〈mee 〉 ≃ 4.5 meV.

  17. Constraining dynamical neutrino mass generation with cosmological data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koksbang, S.M.; Hannestad, S., E-mail: koksbang@phys.au.dk, E-mail: sth@phys.au.dk

    We study models in which neutrino masses are generated dynamically at cosmologically late times. Our study is purely phenomenological and parameterized in terms of three effective parameters characterizing the redshift of mass generation, the width of the transition region, and the present day neutrino mass. We also study the possibility that neutrinos become strongly self-interacting at the time where the mass is generated. We find that in a number of cases, models with large present day neutrino masses are allowed by current CMB, BAO and supernova data. The increase in the allowed mass range makes it possible that a non-zeromore » neutrino mass could be measured in direct detection experiments such as KATRIN. Intriguingly we also find that there are allowed models in which neutrinos become strongly self-interacting around the epoch of recombination.« less

  18. Neutrino masses in the minimal gauged (B -L ) supersymmetry

    NASA Astrophysics Data System (ADS)

    Yan, Yu-Li; Feng, Tai-Fu; Yang, Jin-Lei; Zhang, Hai-Bin; Zhao, Shu-Min; Zhu, Rong-Fei

    2018-03-01

    We present the radiative corrections to neutrino masses in a minimal supersymmetric extension of the standard model with local U (1 )B -L symmetry. At tree level, three tiny active neutrinos and two nearly massless sterile neutrinos can be obtained through the seesaw mechanism. Considering the one-loop corrections to the neutrino masses, the numerical results indicate that two sterile neutrinos obtain KeV masses and the small active-sterile neutrino mixing angles. The lighter sterile neutrino is a very interesting dark matter candidate in cosmology. Meanwhile, the active neutrinos mixing angles and mass squared differences agree with present experimental data.

  19. Neutrino masses from neutral top partners

    NASA Astrophysics Data System (ADS)

    Batell, Brian; McCullough, Matthew

    2015-10-01

    We present theories of "natural neutrinos" in which neutral fermionic top partner fields are simultaneously the right-handed neutrinos (RHN), linking seemingly disparate aspects of the Standard Model structure: (a) The RHN top partners are responsible for the observed small neutrino masses, (b) they help ameliorate the tuning in the weak scale and address the little hierarchy problem, and (c) the factor of 3 arising from Nc in the top-loop Higgs mass corrections is countered by a factor of 3 from the number of vectorlike generations of RHN. The RHN top partners may arise in pseudo-Nambu-Goldstone-Boson Higgs models such as the twin Higgs, as well as more general composite, little, and orbifold Higgs scenarios, and three simple example models are presented. This framework firmly predicts a TeV-scale seesaw, as the RHN masses are bounded to be below the TeV scale by naturalness. The generation of light neutrino masses relies on a collective breaking of the lepton number, allowing for comparatively large neutrino Yukawa couplings and a rich associated phenomenology. The structure of the neutrino mass mechanism realizes in certain limits the inverse or linear classes of seesaw. Natural neutrino models are testable at a variety of current and future experiments, particularly in tests of lepton universality, searches for lepton flavor violation, and precision electroweak and Higgs coupling measurements possible at high energy e+e- and hadron colliders.

  20. Neutrino mass from cosmology: impact of high-accuracy measurement of the Hubble constant

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Toyokazu; Ichikawa, Kazuhide; Takahashi, Tomo; Greenhill, Lincoln

    2010-03-01

    Non-zero neutrino mass would affect the evolution of the Universe in observable ways, and a strong constraint on the mass can be achieved using combinations of cosmological data sets. We focus on the power spectrum of cosmic microwave background (CMB) anisotropies, the Hubble constant H0, and the length scale for baryon acoustic oscillations (BAO) to investigate the constraint on the neutrino mass, mν. We analyze data from multiple existing CMB studies (WMAP5, ACBAR, CBI, BOOMERANG, and QUAD), recent measurement of H0 (SHOES), with about two times lower uncertainty (5 %) than previous estimates, and recent treatments of BAO from the Sloan Digital Sky Survey (SDSS). We obtained an upper limit of mν < 0.2eV (95 % C.L.), for a flat ΛCDM model. This is a 40 % reduction in the limit derived from previous H0 estimates and one-third lower than can be achieved with extant CMB and BAO data. We also analyze the impact of smaller uncertainty on measurements of H0 as may be anticipated in the near term, in combination with CMB data from the Planck mission, and BAO data from the SDSS/BOSS program. We demonstrate the possibility of a 5σ detection for a fiducial neutrino mass of 0.1 eV or a 95 % upper limit of 0.04 eV for a fiducial of mν = 0 eV. These constraints are about 50 % better than those achieved without external constraint. We further investigate the impact on modeling where the dark-energy equation of state is constant but not necessarily -1, or where a non-flat universe is allowed. In these cases, the next-generation accuracies of Planck, BOSS, and 1 % measurement of H0 would all be required to obtain the limit mν < 0.05-0.06 eV (95 % C.L.) for the fiducial of mν = 0 eV. The independence of systematics argues for pursuit of both BAO and H0 measurements.

  1. Sterile neutrinos and B-L symmetry

    NASA Astrophysics Data System (ADS)

    Fileviez Pérez, Pavel; Murgui, Clara

    2018-02-01

    We revisit the relation between the neutrino masses and the spontaneous breaking of the B-L gauge symmetry. We discuss the main scenarios for Dirac and Majorana neutrinos and point out two simple mechanisms for neutrino masses. In this context the neutrino masses can be generated either at tree level or at quantum level and one predicts the existence of very light sterile neutrinos with masses below the eV scale. The predictions for lepton number violating processes such as μ → e and μ → eγ are discussed in detail. The impact from the cosmological constraints on the effective number of relativistic degree of freedom is investigated.

  2. Radiative neutrino masses from order-4 CP symmetry

    NASA Astrophysics Data System (ADS)

    Ivanov, Igor P.

    2018-02-01

    Generalized CP symmetry of order 4 (CP4) is surprisingly powerful in shaping scalar and quark sectors of multi-Higgs models. Here, we extend this framework to the neutrino sector. We build two simple Majorana neutrino mass models with unbroken CP4, which are analogous to Ma's scotogenic model. Both models use three Higgs doublets and two or three right-handed (RH) neutrinos. The minimal CP4 symmetric scotogenic model uses only two RH neutrinos, leads to three non-zero light neutrino masses, and contains a built-in mechanism to further suppress them via phase alignment. With three RH neutrinos, one generates a type I seesaw mass matrix of rank 1, which is then corrected by the same scotogenic mechanism, naturally leading to two neutrino mass scales with mild hierarchy. These minimal CP4-based constructions emerge as a primer for introducing additional symmetry structures and exploring their phenomenological consequences.

  3. Radiative neutrino mass and Majorana dark matter within an inert Higgs doublet model

    NASA Astrophysics Data System (ADS)

    Ahriche, Amine; Jueid, Adil; Nasri, Salah

    2018-05-01

    We consider an extension of the standard model (SM) with an inert Higgs doublet and three Majorana singlet fermions to address both origin and the smallness of neutrino masses and dark matter (DM) problems. In this setup, the lightest Majorana singlet fermion plays the role of DM candidate and the model parameter space can be accommodated to avoid different experimental constraints such as lepton flavor violating processes and electroweak precision tests. The neutrino mass is generated at one-loop level a la Scotogenic model and its smallness is ensured by the degeneracy between the C P -odd and C P -even scalar members of the inert doublet. Interesting signatures at both leptonic and hadronic colliders are discussed.

  4. The Mainz Neutrino Mass Experiment - New Results and Perspectives

    NASA Astrophysics Data System (ADS)

    Bonn, J.; Bornschein, B.; Bornschein, L.; Fickinger, L.; Flatt, B.; Kraus, Ch.; Otten, E. W.; Schall, J. P.; Ulrich, H.; Weinheimer, Ch.; Kazachenko, O.; Kovalik, A.

    2002-12-01

    Non-zero neutrino masses, strongly favoured by the recent atmospheric and solar neutrino experiments, have strong consequences for particle physics as well as for astrophysics and cosmology. The investigation of the tritium β spectrum near its endpoint measures the mass of the "electron neutrino m(νe)" (m2 (ν e ) = Σ |Uei |2 mi2 with neutrino mixing matrix U and neutrino mass eigenstates mi) and is the most sensitive of these so-called direct methods providing information complementary to the searches for neutrinoless double β decay. Tritium β decay is the ideal method to distinguish between hierarchical and degenerate neutrino mass models. Furthermore, neutrino masses up to about 1 eV/c2 are especially interesting for cosmology because of their contribution to the missing dark matter in the universe...

  5. Observational constraints on secret neutrino interactions from big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Huang, Guo-yuan; Ohlsson, Tommy; Zhou, Shun

    2018-04-01

    We investigate possible interactions between neutrinos and massive scalar bosons via gϕν ¯ν ϕ (or massive vector bosons via gVν ¯γμν Vμ) and explore the allowed parameter space of the coupling constant gϕ (or gV) and the scalar (or vector) boson mass mϕ (or mV) by requiring that these secret neutrino interactions (SNIs) should not spoil the success of big bang nucleosynthesis (BBN). Incorporating the SNIs into the evolution of the early Universe in the BBN era, we numerically solve the Boltzmann equations and compare the predictions for the abundances of light elements with observations. It turns out that the constraint on gϕ and mϕ in the scalar-boson case is rather weak, due to a small number of degrees of freedom (d.o.f.). However, in the vector-boson case, the most stringent bound on the coupling gV≲6 ×10-10 at 95% confidence level is obtained for mV≃1 MeV , while the bound becomes much weaker gV≲8 ×10-6 for smaller masses mV≲10-4 MeV . Moreover, we discuss in some detail how the SNIs affect the cosmological evolution and the abundances of the lightest elements.

  6. Supernova signatures of neutrino mass ordering

    NASA Astrophysics Data System (ADS)

    Scholberg, Kate

    2018-01-01

    A suite of detectors around the world is poised to measure the flavor-energy-time evolution of the ten-second burst of neutrinos from a core-collapse supernova occurring in the Milky Way or nearby. Next-generation detectors to be built in the next decade will have enhanced flavor sensitivity and statistics. Not only will the observation of this burst allow us to peer inside the dense matter of the extreme event and learn about the collapse processes and the birth of the remnant, but the neutrinos will bring information about neutrino properties themselves. This review surveys some of the physical signatures that the currently-unknown neutrino mass pattern will imprint on the observed neutrino events at Earth, emphasizing the most robust and least model-dependent signatures of mass ordering.

  7. Resolving neutrino mass hierarchy from supernova (anti)neutrino-nucleus reactions

    NASA Astrophysics Data System (ADS)

    Vale, Deni; Paar, Nils

    2015-10-01

    Recently a hybrid method has been introduced to determine neutrino mass hierarchy by simultaneous measurements of detector responses induced by antineutrino and neutrino fluxes from accretion and cooling phase of type II supernova. The (anti)neutrino-nucleus cross sections for 12C, 16O, 56Fe and 208Pb are calculated in the framework of relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons in mineral oil and water, p (v¯e,e+)n are obtained using heavy-baryon chiral perturbation theory. The simulations of (anti)neutrino fluxes emitted from a proto-neutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside star. It is shown that simultaneous use of ve/v¯e detectors with different target material allow to determine the neutrino mass hierarchy from the ratios of ve/v¯e induced particle emissions. The hybrid method favors detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil and water is more appropriate.

  8. Another look at the impact of an eV-mass sterile neutrino on the effective neutrino mass of neutrinoless double-beta decays

    NASA Astrophysics Data System (ADS)

    Liu, Jun-Hao; Zhou, Shun

    2018-01-01

    The possible existence of an eV-mass sterile neutrino, slightly mixing with ordinary active neutrinos, is not yet excluded by neutrino oscillation experiments. Assuming neutrinos to be Majorana particles, we explore the impact of such a sterile neutrino on the effective neutrino mass of neutrinoless double-beta decays 〈m〉ee‧≡ m 1|V e1|2eiρ + m 2|V e2|2 + m 3|V e3|2eiσ + m 4|V e4|2eiω, where mi and Vei (for i = 1, 2, 3, 4) denote respectively the absolute masses and the first-row elements of the 4 × 4 neutrino flavor mixing matrix V, for which a full parametrization involves three Majorana-type CP-violating phases {ρ,σ,ω}. A zero effective neutrino mass |〈m〉ee‧| = 0 is possible, no matter whether three active neutrinos take the normal or inverted mass ordering, and its implications for the parameter space are examined in great detail. In particular, given the best-fit values of m4 ≈ 1.3eV and |Ve4|2 ≈ 0.019 from the latest global analysis of neutrino oscillation data, a three-dimensional view of |〈m〉ee‧| in the (mlightest,ρ)-plane is presented and further compared with that of the counterpart |〈m〉ee| in the absence of any sterile neutrino.

  9. Dark matter, baryogenesis and neutrino oscillations from right-handed neutrinos

    NASA Astrophysics Data System (ADS)

    Canetti, Laurent; Drewes, Marco; Frossard, Tibor; Shaposhnikov, Mikhail

    2013-05-01

    We show that, leaving aside accelerated cosmic expansion, all experimental data in high energy physics that are commonly agreed to require physics beyond the Standard Model can be explained when completing the model by three right-handed neutrinos that can be searched for using present-day experimental techniques. The model that realizes this scenario is known as the Neutrino Minimal Standard Model (νMSM). In this article we give a comprehensive summary of all known constraints in the νMSM, along with a pedagogical introduction to the model. We present the first complete quantitative study of the parameter space of the model where no physics beyond the νMSM is needed to simultaneously explain neutrino oscillations, dark matter, and the baryon asymmetry of the Universe. The key new point of our analysis is leptogenesis after sphaleron freeze-out, which leads to resonant dark matter production, thus evading the constraints on sterile neutrino dark matter from structure formation and x-ray searches. This requires one to track the time evolution of left- and right-handed neutrino abundances from hot big bang initial conditions down to temperatures below the QCD scale. We find that the interplay of resonant amplifications, CP-violating flavor oscillations, scatterings, and decays leads to a number of previously unknown constraints on the sterile neutrino properties. We furthermore reanalyze bounds from past collider experiments and big bang nucleosynthesis in the face of recent evidence for a nonzero neutrino mixing angle θ13. We combine all our results with existing constraints on dark matter properties from astrophysics and cosmology. Our results provide a guideline for future experimental searches for sterile neutrinos. A summary of the constraints on sterile neutrino masses and mixings has appeared in Canetti et al. [Phys. Rev. Lett. 110, 061801 (2013)PRLTAO0031-9007]. In this article we provide all details of our calculations and give constraints on other model

  10. Constraints on the sum of neutrino masses using cosmological data including the latest extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample

    NASA Astrophysics Data System (ADS)

    Wang, Sai; Wang, Yi-Fan; Xia, Dong-Mei

    2018-05-01

    We investigate the constraints on the sum of neutrino masses ({{Σ }}{m}ν ) using the most recent cosmological data, which combines the distance measurement from baryonic acoustic oscillation in the extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample with the power spectra of temperature and polarization anisotropies in the cosmic microwave background from the Planck 2015 data release. We also use other low-redshift observations, including the baryonic acoustic oscillation at relatively low redshifts, Type Ia supernovae, and the local measurement of the Hubble constant. In the standard cosmological constant Λ cold dark matter plus massive neutrino model, we obtain the 95% upper limit to be {{Σ }}{m}ν < 0.129{eV} for the degenerate mass hierarchy, {{Σ }}{m}ν < 0.159{eV} for the normal mass hierarchy, and {{Σ }}{m}ν < 0.189{eV} for the inverted mass hierarchy. Based on Bayesian evidence, we find that the degenerate hierarchy is positively supported, and the current data combination cannot distinguish between normal and inverted hierarchies. Assuming the degenerate mass hierarchy, we extend our study to non-standard cosmological models including generic dark energy, spatial curvature, and extra relativistic degrees of freedom, but find these models are not favored by the data. SW is Supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region, China (14301214), DMX is Supported by the National Natural Science Foundation of China (11505018) and the Chongqing Science and Technology Plan Project (Cstc2015jvyj40031)

  11. Probing neutrino coupling to a light scalar with coherent neutrino scattering

    NASA Astrophysics Data System (ADS)

    Farzan, Yasaman; Lindner, Manfred; Rodejohann, Werner; Xu, Xun-Jie

    2018-05-01

    Large neutrino event numbers in future experiments measuring coherent elastic neutrino nucleus scattering allow precision measurements of standard and new physics. We analyze the current and prospective limits of a light scalar particle coupling to neutrinos and quarks, using COHERENT and CONUS as examples. Both lepton number conserving and violating interactions are considered. It is shown that current (future) experiments can probe for scalar masses of a few MeV couplings down to the level of 10-4 (10-6). Scalars with masses around the neutrino energy allow to determine their mass via a characteristic spectrum shape distortion. Our present and future limits are compared with constraints from supernova evolution, Big Bang nucleosynthesis and neutrinoless double beta decay. We also outline UV-complete underlying models that include a light scalar with coupling to quarks for both lepton number violating and conserving coupling to neutrinos.

  12. Neutrino masses and their ordering: global data, priors and models

    NASA Astrophysics Data System (ADS)

    Gariazzo, S.; Archidiacono, M.; de Salas, P. F.; Mena, O.; Ternes, C. A.; Tórtola, M.

    2018-03-01

    We present a full Bayesian analysis of the combination of current neutrino oscillation, neutrinoless double beta decay and Cosmic Microwave Background observations. Our major goal is to carefully investigate the possibility to single out one neutrino mass ordering, namely Normal Ordering or Inverted Ordering, with current data. Two possible parametrizations (three neutrino masses versus the lightest neutrino mass plus the two oscillation mass splittings) and priors (linear versus logarithmic) are exhaustively examined. We find that the preference for NO is only driven by neutrino oscillation data. Moreover, the values of the Bayes factor indicate that the evidence for NO is strong only when the scan is performed over the three neutrino masses with logarithmic priors; for every other combination of parameterization and prior, the preference for NO is only weak. As a by-product of our Bayesian analyses, we are able to (a) compare the Bayesian bounds on the neutrino mixing parameters to those obtained by means of frequentist approaches, finding a very good agreement; (b) determine that the lightest neutrino mass plus the two mass splittings parametrization, motivated by the physical observables, is strongly preferred over the three neutrino mass eigenstates scan and (c) find that logarithmic priors guarantee a weakly-to-moderately more efficient sampling of the parameter space. These results establish the optimal strategy to successfully explore the neutrino parameter space, based on the use of the oscillation mass splittings and a logarithmic prior on the lightest neutrino mass, when combining neutrino oscillation data with cosmology and neutrinoless double beta decay. We also show that the limits on the total neutrino mass ∑ mν can change dramatically when moving from one prior to the other. These results have profound implications for future studies on the neutrino mass ordering, as they crucially state the need for self-consistent analyses which explore the

  13. Cosmological constraints on neutrinos with Planck data

    NASA Astrophysics Data System (ADS)

    Spinelli, M.

    2015-07-01

    Neutrinos take part in the dance of the evolving Universe influencing its history from leptogenesis, to Big Bang nucleosynthesis, until late time structure formation. This makes cosmology, and in particular one of its primary observables the Cosmic Microwave Background (CMB), an unusual but valuable tool for testing Neutrino Physics. The best measurement to date of full-sky CMB anisotropies comes from the Planck satellite launched in 2009 by the European Space Agency (ESA) and successful follower of COBE and WMAP. Testing Planck data against precise theoretical predictions allow us to shed light on various interesting open questions such as the value of the absolute scale of neutrino masses or their energy density. We revise here the results concerning neutrinos obtained by the Planck Collaboration in the 2013 data release.

  14. Cosmological constraints on neutrinos with Planck data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spinelli, M.

    2015-07-15

    Neutrinos take part in the dance of the evolving Universe influencing its history from leptogenesis, to Big Bang nucleosynthesis, until late time structure formation. This makes cosmology, and in particular one of its primary observables the Cosmic Microwave Background (CMB), an unusual but valuable tool for testing Neutrino Physics. The best measurement to date of full-sky CMB anisotropies comes from the Planck satellite launched in 2009 by the European Space Agency (ESA) and successful follower of COBE and WMAP. Testing Planck data against precise theoretical predictions allow us to shed light on various interesting open questions such as the valuemore » of the absolute scale of neutrino masses or their energy density. We revise here the results concerning neutrinos obtained by the Planck Collaboration in the 2013 data release.« less

  15. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    NASA Astrophysics Data System (ADS)

    Vale, D.; Rauscher, T.; Paar, N.

    2016-02-01

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for 56Fe and 208Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(bar nue,e+)n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of νe- and bar nue-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.

  16. Generalized mass ordering degeneracy in neutrino oscillation experiments

    DOE PAGES

    Coloma, Pilar; Schwetz, Thomas

    2016-09-07

    Here, we consider the impact of neutral-current (NC) nonstandard neutrino interactions (NSI) on the determination of the neutrino mass ordering. We show that in the presence of NSI there is an exact degeneracy which makes it impossible to determine the neutrino mass ordering and the octant of the solar mixing angle θ 12 at oscillation experiments. The degeneracy holds at the probability level and for arbitrary matter density profiles, and hence solar, atmospheric, reactor, and accelerator neutrino experiments are affected simultaneously. The degeneracy requires order-1 corrections from NSI to the NC electron neutrino-quark interaction and can be tested in electronmore » neutrino NC scattering experiments.« less

  17. Leptoquark mechanism of neutrino masses within the grand unification framework

    NASA Astrophysics Data System (ADS)

    Doršner, Ilja; Fajfer, Svjetlana; Košnik, Nejc

    2017-06-01

    We demonstrate the viability of the one-loop neutrino mass mechanism within the framework of grand unification when the loop particles comprise scalar leptoquarks (LQs) and quarks of the matching electric charge. This mechanism can be implemented in both supersymmetric and non-supersymmetric models and requires the presence of at least one LQ pair. The appropriate pairs for the neutrino mass generation via the up-type and down-type quark loops are S_3-R_2 and S_{1, 3}-\\tilde{R}_2, respectively. We consider two distinct regimes for the LQ masses in our analysis. The first regime calls for very heavy LQs in the loop. It can be naturally realized with the S_{1, 3}-\\tilde{R}_2 scenarios when the LQ masses are roughly between 10^{12} and 5 × 10^{13} GeV. These lower and upper bounds originate from experimental limits on partial proton decay lifetimes and perturbativity constraints, respectively. Second regime corresponds to the collider accessible LQs in the neutrino mass loop. That option is viable for the S_3-\\tilde{R}_2 scenario in the models of unification that we discuss. If one furthermore assumes the presence of the type II see-saw mechanism there is an additional contribution from the S_3-R_2 scenario that needs to be taken into account beside the type II see-saw contribution itself. We provide a complete list of renormalizable operators that yield necessary mixing of all aforementioned LQ pairs using the language of SU(5). We furthermore discuss several possible embeddings of this mechanism in SU(5) and SO(10) gauge groups.

  18. REVIEWS OF TOPICAL PROBLEMS: The nature of neutrino mass and the phenomenon of neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Gershtein, Semen S.; Kuznetsov, E. P.; Ryabov, Vladimir A.

    1997-08-01

    Various aspects of the neutrino mass problem are discussed in the light of existing model predictions and extensive experimental data. Generation mechanisms are considered and possible gauge-theory neutrino mass hierarchies, in particular the most popular 'flipped see-saw' models, are discussed. Based on the currently available astrophysical data on the integral density of matter in the Universe and on the spectral anisotropy of the relic cosmic radiation, the cosmological implications of a non-zero neutrino mass are described in detail. Results from various mass-measuring methods are presented. Considerable attention is given to heavy neutrino oscillations. Oscillation mechanisms both in vacuum and in matter are considered in detail. Experiments on oscillations at low and high energies and new generation large-flight-base facilities are described. The present state of research into oscillations of solar and atmospheric neutrinos is reviewed.

  19. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Kwang-Chang; Leung Center for Cosmology and Particle Astrophysics; Lee, Fei-Fan

    2016-07-22

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(ν-bar)+p→ν(ν-bar)+p, and inverse beta decays (IBD), ν-bar{sub e}+p→n+e{sup +}, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of ν-bar{sub e} flux with the ν-bar{sub x} (x=μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more highmore » energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.« less

  20. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Lai, Kwang-Chang; Lee, Fei-Fan; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi

    2016-07-01

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(bar nu) + p → ν(bar nu) + p, and inverse beta decays (IBD), bar nue + p → n + e+, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of bar nue flux with the bar nux (x = μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.

  1. Measuring neutrino mass imprinted on the anisotropic galaxy clustering

    NASA Astrophysics Data System (ADS)

    Oh, Minji; Song, Yong-Seon

    2017-04-01

    The anisotropic galaxy clustering of large scale structure observed by the Baryon Oscillation Spectroscopic Survey Data Release 11 is analyzed to probe the sum of neutrino masses in the small mν lesssim 1 eV limit in which the early broadband shape determined before the last scattering surface is immune from the variation of mν. The signature of mν is imprinted on the altered shape of the power spectrum at later epoch, which provides an opportunity to access the non-trivial mν through the measured anisotropic correlation function in redshift space (hereafter RSD instead of Redshift Space Distortion). The non-linear RSD corrections with massive neutrinos in the quasi linear regime are approximately estimated using one-loop order terms. We suggest an approach to probe mν simultaneously with all other distance measures and coherent growth functions, exploiting this deformation of the early broadband shape of the spectrum at later epoch. If the origin of cosmic acceleration is unknown, mν is poorly determined after marginalizing over all other observables. However, we find that the measured distances and coherent growth functions are minimally affected by the presence of mild neutrino mass. Although the standard model of cosmic acceleration is assumed to be the cosmological constant, the constraint on mν is little improved. Interestingly, the measured Cosmic Microwave Background (hereafter CMB) distance to the last scattering surface sharply slices the degeneracy between the matter content and mν, and the mν is observed to be mν = 0.19+0.28-0.17 eV which is different from massless neutrino at 68% confidence.

  2. Constraints from Ly-α forests on non-thermal dark matter including resonantly-produced sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Baur, Julien; Palanque-Delabrouille, Nathalie; Yèche, Christophe; Boyarsky, Alexey; Ruchayskiy, Oleg; Armengaud, Éric; Lesgourgues, Julien

    2017-12-01

    We use the large BOSS DR9 sample of quasar spectra to constrain two cases of non-thermal dark matter models: cold-plus-warm dark matter (C+WDM) where the warm component is a thermal relic, and sterile neutrinos resonantly produced in the presence of a lepton asymmetry (RPSN). We establish constraints on the thermal relic mass mx and its relative abundance Fwdm=Ωwdm/Ωdm using a suite of cosmological hydrodynamical simulations in 28 C+WDM configurations. We find that the 3σ bounds in the mx - Fwdm parameter space approximately follow Fwdm ~ 0.35 (keV/mx)-1.37 from BOSS data alone. We also establish constraints on sterile neutrino mass and mixing angle by further producing the non-linear flux power spectrum of 8 RPSN models, where the input linear power spectrum is computed directly from the particles distribution functions. We find values of lepton asymmetries for which sterile neutrinos as light as ~ 6.5 keV (resp. 3.5 keV) are consistent with BOSS data at the 2σ (resp. 3σ) level. These limits tighten by close to a factor of 2 for values of lepton asymmetries departing from those yielding the coolest distribution functions. Our Lyman-α forest bounds can be additionally strengthened if we include higher-resolution data from XQ-100, HIRES and MIKE that allow us to probe smaller scales. At these scales, the measured flux power spectrum exhibits a suppression that can be due to Doppler broadening, IGM pressure smoothing or free-streaming of WDM particles. In order to distinguish between these mechanisms, thermal history at redshifts z >= 5 should be determined. In the current work, we show that if one extrapolates temperatures from lower redshifts via broken power laws in T0 and γ, then our 3σ C+WDM {bounds strengthen to Fwdm ~ 0.20 (keV/mx)-1.37, and the lightest resonantly-produced sterile neutrinos consistent with our extended data set have masses of ~ 7.0 keV at the 3σ level. In particular, using dedicated hydrodynamical simulations, we show that} a

  3. Effect of neutrino rest mass on ionization equilibrium freeze-out

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grohs, Evan Bradley; Fuller, George M.; Kishimoto, Chad T.

    2015-12-23

    We show how small neutrino rest masses can increase the expansion rate near the photon decoupling epoch in the early Universe, causing an earlier, higher temperature freeze-out for ionization equilibrium compared to the massless neutrino case. This yields a larger free-electron fraction, thereby affecting the photon diffusion length differently than the sound horizon at photon decoupling. This neutrino-mass and recombination effect depends strongly on the neutrino rest masses. Ultimately, though below current sensitivity, this effect could be probed by next-generation cosmic microwave background experiments, giving another observational handle on neutrino rest mass.

  4. Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yèche, Christophe; Palanque-Delabrouille, Nathalie; Baur, Julien

    We present constraints on masses of active and sterile neutrinos in the context of the ΛCDMν and ΛWDM models, respectively. We use the one-dimensional Lyα-forest power spectrum from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS-III) measured by Palanque-Delabrouille et al. [1], and from the VLT/XSHOOTER legacy survey (XQ-100). In this paper, we present our own measurement of the publicly released XQ-100 quasar spectra, focusing in particular on an improved determination of the spectrograph resolution that allows us to push to smaller scales than the public release and reach k -modes of 0.070 s km{supmore » −1}. We compare the obtained 1D Lyα flux power spectrum to the one measured by Irsic et al. [2] to k -modes of 0.057 s km{sup −1}. Fitting Lyα data alone leads to cosmological parameters in excellent agreement with the values derived independently from Planck 2015 Cosmic Microwave Background (CMB) data. Combining BOSS and XQ-100 Lyα power spectra, we constrain the sum of neutrino masses to ∑ m {sub ν} < 0.8 eV (95% C.L.) including all identified sources of systematic uncertainties. With the addition of CMB data, this bound is tightened to ∑ m {sub ν} < 0.14 eV (95% C.L.). With their sensitivity to small scales, Lyα data are ideal to constrain ΛWDM models. Using XQ-100 alone, we issue lower bounds on pure dark matter particles: m {sub X} ∼> 2.08 : keV (95% C.L.) for early decoupled thermal relics, and m {sub s} ∼> 10.2 : keV (95% C.L.) for non-resonantly produced right-handed neutrinos. Combining the 1D Lyα-forest power spectrum measured by BOSS and XQ-100, we improve the two bounds to m {sub X} ∼> 4.17 : keV and m {sub s} ∼> 25.0 : keV (95% C.L.), slightly more constraining than what was achieved in Baur et al. 2015 [3] with BOSS data alone. The 3 σ bound shows a more significant improvement, increasing from m {sub X} ∼> 2.74 : keV for BOSS alone to m {sub X} ∼> 3.10 : keV for the

  5. Constraining neutrino masses, the cosmological constant and BSM physics from the weak gravity conjecture

    NASA Astrophysics Data System (ADS)

    Ibáñez, Luis E.; Martín-Lozano, Víctor; Valenzuela, Irene

    2017-11-01

    It is known that there are AdS vacua obtained from compactifying the SM to 2 or 3 dimensions. The existence of such vacua depends on the value of neutrino masses through the Casimir effect. Using the Weak Gravity Conjecture, it has been recently argued by Ooguri and Vafa that such vacua are incompatible with the SM embedding into a consistent theory of quantum gravity. We study the limits obtained for both the cosmological constant Λ4 and neutrino masses from the absence of such dangerous 3D and 2D SM AdS vacua. One interesting implication is that Λ4 is bounded to be larger than a scale of order m ν 4 , as observed experimentally. Interestingly, this is the first argument implying a non-vanishing Λ4 only on the basis of particle physics, with no cosmological input. Conversely, the observed Λ4 implies strong constraints on neutrino masses in the SM and also for some BSM extensions including extra Weyl or Dirac spinors, gravitinos and axions. The upper bounds obtained for neutrino masses imply (for fixed neutrino Yukawa and Λ4) the existence of upper bounds on the EW scale. In the case of massive Majorana neutrinos with a see-saw mechanism associated to a large scale M ≃ 1010 - 14 GeV and Y ν1 ≃ 10-3, one obtains that the EW scale cannot exceed M EW ≲ 102 - 104 GeV. From this point of view, the delicate fine-tuning required to get a small EW scale would be a mirage, since parameters yielding higher EW scales would be in the swampland and would not count as possible consistent theories. This would bring a new perspective into the issue of the EW hierarchy.

  6. A comprehensive study of neutrino spin-flavour conversion in supernovae and the neutrino mass hierarchy

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-10-01

    Resonant spin-flavour (RSF) conversions of supernova neutrinos, which are induced by the interaction between the nonzero neutrino magnetic moment and supernova magnetic fields, are studied for both normal and inverted mass hierarchy. As the case for the pure matter-induced neutrino oscillation (Mikheyev–Smirnov–Wolfenstein (MSW) effect), we find that the RSF transitions are strongly dependent on the neutrino mass hierarchy as well as the value of θ13. Flavour conversions are solved numerically for various neutrino parameter sets, with the presupernova profile calculated by Woosley and Weaver. In particular, it is very interesting that the RSF-induced νe→bar nue transition occurs if the following conditions are all satisfied: the value of μνB (μν is the neutrino magnetic moment and B is the magnetic field strength) is sufficiently strong, the neutrino mass hierarchy is inverted, and the value of θ13 is large enough to induce adiabatic MSW resonance. In this case, the strong peak due to the original νe emitted from the neutronization burst would exist in the time profile of the neutrino events detected at the Super-Kamiokande detector. If this peak were observed in reality, it would provide fruitful information on the neutrino properties. On the other hand, the characteristics of the neutrino spectra are also different between the neutrino models, but we find that there remains degeneracy among several models. Dependence on presupernova models is also discussed.

  7. Neutrino masses and mixing from S4 flavor twisting

    NASA Astrophysics Data System (ADS)

    Ishimori, Hajime; Shimizu, Yusuke; Tanimoto, Morimitsu; Watanabe, Atsushi

    2011-02-01

    We discuss a neutrino mass model based on the S4 discrete symmetry where the symmetry breaking is triggered by the boundary conditions of the bulk right-handed neutrino in the fifth spacial dimension. The three generations of the left-handed lepton doublets and the right-handed neutrinos are assigned to be the triplets of S4. The magnitudes of the lepton mixing angles, especially the reactor angle, are related to the neutrino mass patterns, and the model will be tested in future neutrino experiments, e.g., an early discovery of the reactor angle favors the normal hierarchy. For the inverted hierarchy, the lepton mixing is predicted to be almost the tribimaximal mixing. The size of the extra dimension has a connection to the possible mass spectrum; a small (large) volume corresponds to the normal (inverted) mass hierarchy.

  8. A colored KNT neutrino model

    DOE PAGES

    Nomura, Takaaki; Okada, Hiroshi; Okada, Nobuchika

    2016-09-22

    Here, we propose a radiative seesaw model at the three-loop level, in which quarks, leptons, leptoquark bosons, and a Majorana fermion of dark matter candidate are involved in the neutrino loop. When analyzing neutrino oscillation data includes all possible constraints such as flavor changing neutral currents, lepton flavor violations, upper/lower bound on the mass of leptoquark from the collider physics, and the measured relic density of the dark matter, we show the allowed region to satisfy all the data/constraints.

  9. Forbidden unique beta-decays and neutrino mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvornický, Rastislav; Šimkovic, Fedor

    2013-12-30

    The measurement of the electron spectrum in beta-decays provides a robust direct determination of the values of neutrino masses. The planned rhenium beta-decay experiment, called the “Microcalorimeter Arrays for a Rhenium Experiment” (MARE), might probe the absolute mass scale of neutrinos with the same sensitivity as the Karlsruhe tritium neutrino mass (KATRIN) experiment, which is expected to collect data in a near future. In this contribution we discuss the spectrum of emitted electrons close to the end point in the case of the first unique forbidden beta-decay of {sup 79}Se, {sup 107}Pd and {sup 187}Re. It is found that themore » p{sub 3/2}-wave emission dominates over the s{sub 1/2}-wave. It is shown that the Kurie plot near the end point is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed beta-decay of {sup 3}H.« less

  10. Physical effects involved in the measurements of neutrino masses with future cosmological data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archidiacono, Maria; Brinckmann, Thejs; Lesgourgues, Julien

    Future Cosmic Microwave Background experiments together with upcoming galaxy and 21-cm surveys will provide extremely accurate measurements of different cosmological observables located at different epochs of the cosmic history. The new data will be able to constrain the neutrino mass sum with the best precision ever. In order to exploit the complementarity of the different redshift probes, a deep understanding of the physical effects driving the impact of massive neutrinos on CMB and large scale structures is required. The goal of this work is to describe these effects, assuming a summed neutrino mass close to its minimum allowed value. Wemore » find that parameter degeneracies can be removed by appropriate combinations, leading to robust and model independent constraints. A joint forecast of the sensitivity of Euclid and DESI surveys together with a CORE-like CMB experiment leads to a 1σ uncertainty of 14 meV on the summed neutrino mass. Finally the degeneracy between M {sub ν} and the optical depth at reionization τ{sub reio}, originating in the combination of CMB and low redshift galaxy probes, might be broken by future 21-cm surveys, thus further decreasing the uncertainty on M {sub ν}. For instance, an independent determination of the optical depth with an accuracy of σ(τ{sub reio})=0.001 (which might be achievable, although this is subject to astrophysical uncertainties) would decrease the uncertainty down to σ( M {sub ν})=12 meV.« less

  11. Neutrino mass implications for muon decay parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erwin, Rebecca J.; Kile, Jennifer; Ramsey-Musolf, Michael J.

    2007-02-01

    We use the scale of neutrino mass and naturalness considerations to obtain model-independent expectations for the magnitude of possible contributions to muon decay Michel parameters from new physics above the electroweak symmetry-breaking scale. Focusing on Dirac neutrinos, we obtain a complete basis of dimension four and dimension six effective operators that are invariant under the gauge symmetry of the standard model and that contribute to both muon decay and neutrino mass. We show that - in the absence of fine tuning - the most stringent neutrino-mass naturalness bounds on chirality-changing vector operators relevant to muon decay arise from one-loop operatormore » mixing. The bounds we obtain on their contributions to the Michel parameters are 2 orders of magnitude stronger than bounds previously obtained in the literature. In addition, we analyze the implications of one-loop matching considerations and find that the expectations for the size of various scalar and tensor contributions to the Michel parameters are considerably smaller than derived from previous estimates of two-loop operator mixing. We also show, however, that there exist gauge-invariant operators that generate scalar and tensor contributions to muon decay but whose flavor structure allows them to evade neutrino-mass naturalness bounds. We discuss the implications of our analysis for the interpretation of muon-decay experiments.« less

  12. Sterile neutrino searches via displaced vertices at LHCb

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Cazzato, Eros; Fischer, Oliver

    2017-11-01

    We explore the sensitivity of displaced vertex searches at LHCb for testing sterile neutrino extensions of the Standard Model towards explaining the observed neutrino masses. We derive estimates for the constraints on sterile neutrino parameters from a recently published displaced vertex search at LHCb based on run 1 data. They yield the currently most stringent limit on active-sterile neutrino mixing in the sterile neutrino mass range between 4.5 GeV and 10 GeV. Furthermore, we present forecasts for the sensitivities that could be obtained from the run 2 data and also for the high-luminosity phase of the LHC.

  13. Explaining dark matter and neutrino mass in the light of TYPE-II seesaw model

    NASA Astrophysics Data System (ADS)

    Biswas, Anirban; Shaw, Avirup

    2018-02-01

    With the motivation of simultaneously explaining dark matter and neutrino masses, mixing angles, we have invoked the Type-II seesaw model extended by an extra SU(2) doublet Φ. Moreover, we have imposed a Z2 parity on Φ which remains unbroken as the vacuum expectation value of Φ is zero. Consequently, the lightest neutral component of Φ becomes naturally stable and can be a viable dark matter candidate. On the other hand, light Majorana masses for neutrinos have been generated following usual Type-II seesaw mechanism. Further in this framework, for the first time we have derived the full set of vacuum stability and unitarity conditions, which must be satisfied to obtain a stable vacuum as well as to preserve the unitarity of the model respectively. Thereafter, we have performed extensive phenomenological studies of both dark matter and neutrino sectors considering all possible theoretical and current experimental constraints. Finally, we have also discussed a qualitative collider signatures of dark matter and associated odd particles at the 13 TeV Large Hadron Collider.

  14. Constraints and consequences of reducing small scale structure via large dark matter-neutrino interactions

    DOE PAGES

    Bertoni, Bridget; Ipek, Seyda; McKeen, David; ...

    2015-04-30

    Here, cold dark matter explains a wide range of data on cosmological scales. However, there has been a steady accumulation of evidence for discrepancies between simulations and observations at scales smaller than galaxy clusters. One promising way to affect structure formation on small scales is a relatively strong coupling of dark matter to neutrinos. We construct an experimentally viable, simple, renormalizable model with new interactions between neutrinos and dark matter and provide the first discussion of how these new dark matter-neutrino interactions affect neutrino phenomenology. We show that addressing the small scale structure problems requires asymmetric dark matter with amore » mass that is tens of MeV. Generating a sufficiently large dark matter-neutrino coupling requires a new heavy neutrino with a mass around 100 MeV. The heavy neutrino is mostly sterile but has a substantial τ neutrino component, while the three nearly massless neutrinos are partly sterile. This model can be tested by future astrophysical, particle physics, and neutrino oscillation data. Promising signatures of this model include alterations to the neutrino energy spectrum and flavor content observed from a future nearby supernova, anomalous matter effects in neutrino oscillations, and a component of the τ neutrino with mass around 100 MeV.« less

  15. Universality of Planck's constant and a constraint from the absence of ℏ-induced neutrino mixing

    NASA Astrophysics Data System (ADS)

    Llanes-Estrada, Felipe J.

    2014-03-01

    You have probably often set ℏ = 1 but for what particle? I revisit here the possibility of a non-universal Planck-constant. Anomaly cancellation suggests that all particles in the same family perceive the same ℏ at fixed charges e, gw, gs; the difference between the muon's and the electron's (and thus the first and second families) can be tightly constrained by the muon's anomalous magnetic moment, but constraints are weaker for the third family. Neutrino mixing could have proceeded a priori not only by the Lagrangian neutrino mass-term, but also by the kinetic term if Planck's constant was not equal for all three species. An experimental constraint follows as such contributions, characterized by oscillations proportional to the energy, as opposed to the inverse energy, have been generically analyzed in the past. This provides at the same time support for gauge invariance. On the other hand if ℏ differs among particles while fixing the fine structure constants αem, αs, etc. instead of the charges, it affects the muonic atom puzzle without much constrain from g - 2 . Based on arXiv:1312.3566. Supported by spanish grants FPA2011-27853-C02-01 and CPAN.

  16. Signature of heavy sterile neutrinos at CEPC

    NASA Astrophysics Data System (ADS)

    Liao, Wei; Wu, Xiao-Hong

    2018-03-01

    We study the production of heavy sterile neutrino N , e+e-→N ν (ν ¯), at the Circular Electron Positron Collider (CEPC) and its l j j signal in its decay to three charged fermions. We study background events for this process which are mainly events coming from W pair production. We study the production of a single heavy sterile neutrino and the sensitivity of CEPC to the mixing of the sterile neutrino with active neutrinos. We study the production of two degenerate heavy sterile neutrinos in a low energy seesaw model by taking into account the constraints on mixings of sterile neutrinos from the neutrinoless double β decay experiment and the masses and mixings of active neutrinos. We show that CEPC under proposal has a good sensitivity to the mixing of sterile neutrinos with active neutrinos for a mass of a sterile neutrino around 100 GeV.

  17. Constraints on cosmic ray and PeV neutrino production in blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, B. Theodore; Li, Zhuo, E-mail: zhangbing91@pku.edu.cn, E-mail: zhuo.li@pku.edu.cn

    2017-03-01

    IceCube has detected a cumulative flux of PeV neutrinos, which origin is unknown. Blazars, active galactic nuclei with relativistic jets pointing to us, are long and widely expected to be one of the strong candidates of high energy neutrino sources. The neutrino production depends strongly on the cosmic ray power of blazar jets, which is largely unknown. The recent null results in stacking searches of neutrinos for several blazar samples by IceCube put upper limits on the neutrino fluxes from these blazars. Here we compute the cosmic ray power and PeV neutrino flux of Fermi-LAT blazars, and find that themore » upper limits for known blazar sources give stringent constraint on the cosmic ray loading factor of blazar jets (i.e., the ratio of the cosmic ray to bolometric radiation luminosity of blazar jets), ξ{sub cr} ∼< (2–10)ζ{sup −1} (with ζ ∼< 1 the remained fraction of cosmic ray energy when propagate into the blazar broad line region) for flat cosmic ray spectrum, and that the cumulative PeV neutrino flux contributed by all-sky blazars is a fraction ∼< (10–50)% of the IceCube detected flux.« less

  18. Pathways to naturally small Dirac neutrino masses

    DOE PAGES

    Ma, Ernest; Popov, Oleg

    2016-11-18

    If neutrinos are truly Dirac fermions, the smallness of their masses may still be natural if certain symmetries exist beyond those of the standard model of quarks and leptons. We perform a systematic study of how this may occur at tree level and in one loop. As a result, we also propose a scotogenic version of the left-right gauge model with naturally small Dirac neutrino masses in one loop.

  19. A novel approach to quantifying the sensitivity of current and future cosmological datasets to the neutrino mass ordering through Bayesian hierarchical modeling

    NASA Astrophysics Data System (ADS)

    Gerbino, Martina; Lattanzi, Massimiliano; Mena, Olga; Freese, Katherine

    2017-12-01

    We present a novel approach to derive constraints on neutrino masses, as well as on other cosmological parameters, from cosmological data, while taking into account our ignorance of the neutrino mass ordering. We derive constraints from a combination of current as well as future cosmological datasets on the total neutrino mass Mν and on the mass fractions fν,i =mi /Mν (where the index i = 1 , 2 , 3 indicates the three mass eigenstates) carried by each of the mass eigenstates mi, after marginalizing over the (unknown) neutrino mass ordering, either normal ordering (NH) or inverted ordering (IH). The bounds on all the cosmological parameters, including those on the total neutrino mass, take therefore into account the uncertainty related to our ignorance of the mass hierarchy that is actually realized in nature. This novel approach is carried out in the framework of Bayesian analysis of a typical hierarchical problem, where the distribution of the parameters of the model depends on further parameters, the hyperparameters. In this context, the choice of the neutrino mass ordering is modeled via the discrete hyperparameterhtype, which we introduce in the usual Markov chain analysis. The preference from cosmological data for either the NH or the IH scenarios is then simply encoded in the posterior distribution of the hyperparameter itself. Current cosmic microwave background (CMB) measurements assign equal odds to the two hierarchies, and are thus unable to distinguish between them. However, after the addition of baryon acoustic oscillation (BAO) measurements, a weak preference for the normal hierarchical scenario appears, with odds of 4 : 3 from Planck temperature and large-scale polarization in combination with BAO (3 : 2 if small-scale polarization is also included). Concerning next-generation cosmological experiments, forecasts suggest that the combination of upcoming CMB (COrE) and BAO surveys (DESI) may determine the neutrino mass hierarchy at a high statistical

  20. Evaluation of the Majorana phases of a general Majorana neutrino mass matrix: Testability of hierarchical flavour models

    NASA Astrophysics Data System (ADS)

    Samanta, Rome; Chakraborty, Mainak; Ghosal, Ambar

    2016-03-01

    We evaluate the Majorana phases for a general 3 × 3 complex symmetric neutrino mass matrix on the basis of Mohapatra-Rodejohann's phase convention using the three rephasing invariant quantities I12, I13 and I23 proposed by Sarkar and Singh. We find them interesting as they allow us to evaluate each Majorana phase in a model independent way even if one eigenvalue is zero. Utilizing the solution of a general complex symmetric mass matrix for eigenvalues and mixing angles we determine the Majorana phases for both the hierarchies, normal and inverted, taking into account the constraints from neutrino oscillation global fit data as well as bound on the sum of the three light neutrino masses (Σimi) and the neutrinoless double beta decay (ββ0ν) parameter |m11 |. This methodology of finding the Majorana phases is applied thereafter in some predictive models for both the hierarchical cases (normal and inverted) to evaluate the corresponding Majorana phases and it is shown that all the sub cases presented in inverted hierarchy section can be realized in a model with texture zeros and scaling ansatz within the framework of inverse seesaw although one of the sub cases following the normal hierarchy is yet to be established. Except the case of quasi degenerate neutrinos, the methodology obtained in this work is able to evaluate the corresponding Majorana phases, given any model of neutrino masses.

  1. Structure of right-handed neutrino mass matrix

    NASA Astrophysics Data System (ADS)

    Koide, Yoshio

    2017-11-01

    Recently, Nishiura and the author proposed a unified quark-lepton mass matrix model under a family symmetry U (3 )×U (3 )' . The model can give excellent parameter fitting to the observed quark and neutrino data. The model has a reasonable basis as far as the quark sector, but, in the neutrino sector, the form of the right-handed neutrino mass matrix MR does not have a theoretical basis; that is, it was nothing but a phenomenological assumption. In this paper, it is pointed out that the form of MR is originated in the structure of Majorana mass matrix (4 ×4 matrix) for the left-handed fields ((νL)i,(νRc)i,(NL)α,(NRc)α) where νi (i =1 , 2, 3) and Nα (α =1 , 2, 3) are U(3)-family and U(3 ) ' -family triplets, respectively.

  2. Trinification, the hierarchy problem, and inverse seesaw neutrino masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauet, Christophe; Paes, Heinrich; Wiesenfeldt, Soeren

    2011-05-01

    In minimal trinification models light neutrino masses can be generated via a radiative seesaw mechanism, where the masses of the right-handed neutrinos originate from loops involving Higgs and fermion fields at the unification scale. This mechanism is absent in models aiming at solving or ameliorating the hierarchy problem, such as low-energy supersymmetry, since the large seesaw scale disappears. In this case, neutrino masses need to be generated via a TeV-scale mechanism. In this paper, we investigate an inverse seesaw mechanism and discuss some phenomenological consequences.

  3. Distinguishing neutrino mass hierarchies using dark matter annihilation signals at IceCube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allahverdi, Rouzbeh; Knockel, Bradley; Dutta, Bhaskar

    2015-12-01

    We explore the possibility of distinguishing neutrino mass hierarchies through the neutrino signal from dark matter annihilation at neutrino telescopes. We consider a simple extension of the standard model where the neutrino masses and mixing angles are obtained via the type-II seesaw mechanism as an explicit example. We show that future extensions of IceCube neutrino telescope may detect the neutrino signal from DM annihilation at the Galactic Center and inside the Sun, and differentiate between the normal and inverted mass hierarchies, in this model.

  4. Cosmology and the neutrino mass ordering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannestad, Steen; Schwetz, Thomas, E-mail: sth@phys.au.dk, E-mail: schwetz@kit.edu

    We propose a simple method to quantify a possible exclusion of the inverted neutrino mass ordering from cosmological bounds on the sum of the neutrino masses. The method is based on Bayesian inference and allows for a calculation of the posterior odds of normal versus inverted ordering. We apply the method for a specific set of current data from Planck CMB data and large-scale structure surveys, providing an upper bound on the sum of neutrino masses of 0.14 eV at 95% CL. With this analysis we obtain posterior odds for normal versus inverted ordering of about 2:1. If cosmological datamore » is combined with data from oscillation experiments the odds reduce to about 3:2. For an exclusion of the inverted ordering from cosmology at more than 95% CL, an accuracy of better than 0.02 eV is needed for the sum. We demonstrate that such a value could be reached with planned observations of large scale structure by analysing artificial mock data for a EUCLID-like survey.« less

  5. Linking axionlike dark matter to neutrino masses

    NASA Astrophysics Data System (ADS)

    Carvajal, C. D. R.; Sánchez-Vega, B. L.; Zapata, O.

    2017-12-01

    We present a framework linking axionlike particles (ALPs) to neutrino masses through the minimal inverse seesaw (ISS) mechanism in order to explain the dark matter (DM) puzzle. Specifically, we explore three minimal ISS cases where mass scales are generated through gravity-induced operators involving a scalar field hosting ALPs. In all of these cases, we find gravity-stable models that provide the observed DM relic density and, simultaneously, are consistent with the phenomenology of neutrinos and ALPs. Remarkably, in one of the ISS cases, the DM can be made of ALPs and sterile neutrinos. Furthermore, other considered ISS cases have ALPs with parameters that are within the reach of proposed ALP experiments.

  6. Seesaw roadmap to neutrino mass and dark matter

    NASA Astrophysics Data System (ADS)

    Centelles Chuliá, Salvador; Srivastava, Rahul; Valle, José W. F.

    2018-06-01

    We describe the many pathways to generate Majorana and Dirac neutrino mass through generalized dimension-5 operators a la Weinberg. The presence of new scalars beyond the Standard Model Higgs doublet implies new possible field contractions, which are required in the case of Dirac neutrinos. We also notice that, in the Dirac neutrino case, the extra symmetries needed to ensure the Dirac nature of neutrinos can also be made responsible for stability of dark matter.

  7. Cosmology based on f(R) gravity admits 1 eV sterile neutrinos.

    PubMed

    Motohashi, Hayato; Starobinsky, Alexei A; Yokoyama, Jun'ichi

    2013-03-22

    It is shown that the tension between recent neutrino oscillation experiments, favoring sterile neutrinos with masses of the order of 1 eV, and cosmological data which impose stringent constraints on neutrino masses from the free streaming suppression of density fluctuations, can be resolved in models of the present accelerated expansion of the Universe based on f(R) gravity.

  8. Search for sterile neutrino oscillations in muon neutrino disappearance at MINOS/MINOS+

    NASA Astrophysics Data System (ADS)

    Todd, Jacob; Minos+ Collaboration

    2017-01-01

    A wide variety of neutrino oscillation phenomena are well-described by the standard three-flavour neutrino model, but some anomalies exist. The LSND and MiniBooNE experiments have measured electron antineutrino appearance in excess of standard oscillation predictions, which points to the possibility of a sterile neutrino with higher mass than the presently known states. MINOS, a two-detector, long-baseline neutrino oscillation experiment, was optimized for the measurement of muon neutrino disappearance in the NuMI neutrino beam. A sterile neutrino responsible for the LSND and MiniBooNE excesses would cause distortions in the charged current and neutral current MINOS spectra, which permits the search for sterile neutrinos at MINOS. In close collaboration with the Daya Bay reactor neutrino experiment, MINOS has placed strong constraints on the sterile neutrino parameter space for a model with one additional sterile neutrino. Further, the extension of data collection with MINOS+, which samples the NuMI beam in a medium energy configuration, markedly increases the sensitivity of the combined MINOS and MINOS+ sample to a 3+1-flavour sterile neutrino model.

  9. Probing Majorana neutrino textures at DUNE

    NASA Astrophysics Data System (ADS)

    Bora, Kalpana; Borah, Debasish; Dutta, Debajyoti

    2017-10-01

    We study the possibility of probing different texture zero neutrino mass matrices at the long baseline neutrino experiment DUNE, particularly focusing on its sensitivity to the octant of atmospheric mixing angle θ23 and leptonic Dirac C P phase δcp. Assuming a diagonal charged lepton basis and Majorana nature of light neutrinos, we first classify the possible light neutrino mass matrices with one and two texture zeros and then numerically evaluate the parameter space which satisfies the texture zero conditions. Apart from using the latest global fit 3 σ values of neutrino oscillation parameters, we also use the latest bound on the sum of absolute neutrino masses (∑i |mi|) from the Planck mission data and the updated bound on effective neutrino mass Me e from neutrinoless double beta decay (0 ν β β ) experiments to find the allowed Majorana texture zero mass matrices. For the allowed texture zero mass matrices from all these constraints, we then feed the corresponding light neutrino parameter values satisfying the texture zero conditions into the numerical analysis in order to study the capability of DUNE to allow or exclude them once it starts taking data. We find that DUNE will be able to exclude some of these texture zero mass matrices which restrict (θ23-δcp) to a very specific range of values, depending on the values of the parameters that nature has chosen.

  10. Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background

    NASA Astrophysics Data System (ADS)

    Jeong, Yu Seon; Palomares-Ruiz, Sergio; Hall Reno, Mary; Sarcevic, Ina

    2018-06-01

    Sterile neutrinos with mass in the eV-scale and large mixings of order θ0simeq 0.1 could explain some anomalies found in short-baseline neutrino oscillation data. Here, we revisit a neutrino portal scenario in which eV-scale sterile neutrinos have self-interactions via a new gauge vector boson phi. Their production in the early Universe via mixing with active neutrinos can be suppressed by the induced effective potential in the sterile sector. We study how different cosmological observations can constrain this model, in terms of the mass of the new gauge boson, Mphi, and its coupling to sterile neutrinos, gs. Then, we explore how to probe part of the allowed parameter space of this particular model with future observations of the diffuse supernova neutrino background by the Hyper-Kamiokande and DUNE detectors. For Mphi ~ 5‑10 keV and gs ~ 10‑4‑10‑2, as allowed by cosmological constraints, we find that interactions of diffuse supernova neutrinos with relic sterile neutrinos on their way to the Earth would result in significant dips in the neutrino spectrum which would produce unique features in the event spectra observed in these detectors.

  11. Gravitational leptogenesis, reheating, and models of neutrino mass

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Long, Andrew J.; Sfakianakis, Evangelos I.

    2018-02-01

    Gravitational leptogenesis refers to a class of baryogenesis models in which the matter-antimatter asymmetry of the Universe arises through the standard model lepton-number gravitational anomaly. In these models chiral gravitational waves source a lepton asymmetry in standard model neutrinos during the inflationary epoch. We point out that gravitational leptogenesis can be successful in either the Dirac or Majorana neutrino mass scenario. In the Dirac mass scenario, gravitational leptogenesis predicts a relic abundance of sterile neutrinos that remain out of equilibrium, and the lepton asymmetry carried by the standard model sector is unchanged. In the Majorana mass scenario, the neutrinos participate in lepton-number-violating interactions that threaten to wash out the lepton asymmetry during postinflationary reheating. However, we show that a complete (exponential) washout of the lepton asymmetry is prevented if the lepton-number-violating interactions go out of equilibrium before all of the standard model Yukawa interactions come into equilibrium. The baryon and lepton asymmetries carried by right-chiral quarks and leptons are sequestered from the lepton-number violation, and the washout processes only suppress the predicted baryon asymmetry by a factor of ɛw .o .=±O (0.1 ). The sign of ɛw .o . depends on the model parameters in such a way that a future measurement of the primordial gravitational wave chirality would constrain the scale of lepton-number violation (heavy Majorana neutrino mass).

  12. Heavy neutrino mixing and single production at linear collider

    NASA Astrophysics Data System (ADS)

    Gluza, J.; Maalampi, J.; Raidal, M.; Zrałek, M.

    1997-02-01

    We study the single production of heavy neutrinos via the processes e- e+ -> νN and e- γ -> W- N at future linear colliders. As a base of our considerations we take a wide class of models, both with vanishing and non-vanishing left-handed Majorana neutrino mass matrix mL. We perform a model independent analyses of the existing experimental data and find connections between the characteristic of heavy neutrinos (masses, mixings, CP eigenvalues) and the mL parameters. We show that with the present experimental constraints heavy neutrino masses almost up to the collision energy can be tested in the future experiments.

  13. Cosmology in Mirror Twin Higgs and neutrino masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacko, Zackaria; Craig, Nathaniel; Fox, Patrick J.

    We explore a simple solution to the cosmological challenges of the original Mirror Twin Higgs (MTH) model that leads to interesting implications for experiment. We consider theories in which both the standard model and mirror neutrinos acquire masses through the familiar seesaw mechanism, but with a low right-handed neutrino mass scale of order a few GeV. In thesemore » $$\

  14. Cosmology in Mirror Twin Higgs and neutrino masses

    DOE PAGES

    Chacko, Zackaria; Craig, Nathaniel; Fox, Patrick J.; ...

    2017-07-06

    We explore a simple solution to the cosmological challenges of the original Mirror Twin Higgs (MTH) model that leads to interesting implications for experiment. We consider theories in which both the standard model and mirror neutrinos acquire masses through the familiar seesaw mechanism, but with a low right-handed neutrino mass scale of order a few GeV. In thesemore » $$\

  15. Unifying leptogenesis, dark matter and high-energy neutrinos with right-handed neutrino mixing via Higgs portal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bari, Pasquale Di; Ludl, Patrick Otto; Palomares-Ruiz, Sergio

    2016-11-21

    We revisit a model in which neutrino masses and mixing are described by a two right-handed (RH) neutrino seesaw scenario, implying a strictly hierarchical light neutrino spectrum. A third decoupled RH neutrino, N{sub DM} with mass M{sub DM}, plays the role of cold dark matter (DM) and is produced by the mixing with a source RH neutrino, N{sub S} with mass M{sub S}, induced by Higgs portal interactions. The same interactions are also responsible for N{sub DM} decays. We discuss in detail the constraints coming from DM abundance and stability conditions showing that in the hierarchical case, for M{sub DM}≫M{submore » S}, there is an allowed window on M{sub DM} values necessarily implying a contribution, from DM decays, to the high-energy neutrino flux recently detected by IceCube. We also show how the model can explain the matter-antimatter asymmetry of the Universe via leptogenesis in the quasi-degenerate limit. In this case, the DM mass should be within the range 300 GeV ≲M{sub S}« less

  16. Updated constraints on the light-neutrino exchange mechanisms of the 0νββ-decay

    NASA Astrophysics Data System (ADS)

    Štefánik, Dušan; Dvornický, Rastislav; Šimkovic, Fedor

    2015-10-01

    The neutrinoless double-beta (0νββ) decay associated with light neutrino exchange mechanisms, which are due to both left-handed V-A and right-handed V+A leptonic and hadronic currents, is discussed by using the recent progress achieved by the GERDA, EXO and KamlandZen experiments. The upper limits for effective neutrino mass mββ and the parameters <λ> and <η> characterizing the right handed current mechanisms are deduced from the data on the 0νββ-decay of 76Ge and 136Xe using nuclear matrix elements calculated within the nuclear shell model and quasiparticle random phase approximation and phase-space factors calculated with exact Dirac wave functions with finite nuclear size and electron screening. The careful analysis of upper constraints on effective lepton number violating parameters assumes a competition of the above mechanisms and arbitrary values of involved CP violating phases.

  17. The CMB neutrino mass/vacuum energy degeneracy: a simple derivation of the degeneracy slopes

    NASA Astrophysics Data System (ADS)

    Sutherland, Will

    2018-06-01

    It is well known that estimating cosmological parameters from cosmic microwave background (CMB) data alone results in a significant degeneracy between the total neutrino mass and several other cosmological parameters, especially the Hubble constant H0 and the matter density parameter Ωm. Adding low-redshift measurements such as baryon acoustic oscillations (BAOs) breaks this degeneracy and greatly improves the constraints on neutrino mass. The sensitivity is surprisingly high, for example, adding the ˜1 percent measurement of the BAO ratio rs/DV from the BOSS survey leads to a limit Σ mν < 0.19 eV, equivalent to Ων < 0.0045 at 95 per cent confidence. For the case of Σ mν < 0.6 eV, the CMB degeneracy with neutrino mass almost follows a track of constant sound horizon angle (Howlett et al. 2012). For a ΛCDM + mν model, we use simple but quite accurate analytic approximations to derive the slope of this track, giving dimensionless multipliers between the neutrino to matter ratio (xν ≡ ων/ωcb) and the shifts in other cosmological parameters. The resulting multipliers are substantially larger than 1: conserving the CMB sound horizon angle requires parameter shifts δln H0 ≈ -2 δxν, δln Ωm ≈ +5 δxν, δln ωΛ ≈ -6.2 δxν, and most notably δωΛ ≈ -14 δων. These multipliers give an intuitive derivation of the degeneracy direction, which agrees well with the numerical likelihood results from the Planck team.

  18. Cosmology in Mirror Twin Higgs and neutrino masses

    NASA Astrophysics Data System (ADS)

    Chacko, Zackaria; Craig, Nathaniel; Fox, Patrick J.; Harnik, Roni

    2017-07-01

    We explore a simple solution to the cosmological challenges of the original Mirror Twin Higgs (MTH) model that leads to interesting implications for experiment. We consider theories in which both the standard model and mirror neutrinos acquire masses through the familiar seesaw mechanism, but with a low right-handed neutrino mass scale of order a few GeV. In these νMTH models, the right-handed neutrinos leave the thermal bath while still relativistic. As the universe expands, these particles eventually become nonrelativistic, and come to dominate the energy density of the universe before decaying. Decays to standard model states are preferred, with the result that the visible sector is left at a higher temperature than the twin sector. Consequently the contribution of the twin sector to the radiation density in the early universe is suppressed, allowing the current bounds on this scenario to be satisfied. However, the energy density in twin radiation remains large enough to be discovered in future cosmic microwave background experiments. In addition, the twin neutrinos are significantly heavier than their standard model counterparts, resulting in a sizable contribution to the overall mass density in neutrinos that can be detected in upcoming experiments designed to probe the large scale structure of the universe.

  19. Constraints on the neutrino parameters by future cosmological 21 cm line and precise CMB polarization observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, Yoshihiko; Kohri, Kazunori; Hazumi, Masashi, E-mail: oyamayo@icrr.u-tokyo.ac.jp, E-mail: kohri@post.kek.jp, E-mail: masashi.hazumi@kek.jp

    2016-02-01

    Observations of the 21 cm line radiation coming from the epoch of reionization have a great capacity to study the cosmological growth of the Universe. Besides, CMB polarization produced by gravitational lensing has a large amount of information about the growth of matter fluctuations at late time. In this paper, we investigate their sensitivities to the impact of neutrino property on the growth of density fluctuations, such as the total neutrino mass, the effective number of neutrino species (extra radiation), and the neutrino mass hierarchy. We show that by combining a precise CMB polarization observation such as Simons Array withmore » a 21 cm line observation such as Square kilometer Array (SKA) phase 1 and a baryon acoustic oscillation observation (Dark Energy Spectroscopic Instrument:DESI) we can measure effects of non-zero neutrino mass on the growth of density fluctuation if the total neutrino mass is larger than 0.1 eV. Additionally, the combinations can strongly improve errors of the bounds on the effective number of neutrino species σ (N{sub ν}) ∼ 0.06−0.09 at 95 % C.L.. Finally, by using SKA phase 2, we can determine the neutrino mass hierarchy at 95 % C.L. if the total neutrino mass is similar to or smaller than 0.1 eV.« less

  20. Neutrino masses from a pseudo-Dirac bino

    DOE PAGES

    Coloma, Pilar; Ipek, Seyda

    2016-09-09

    We show that, in U(1) R-symmetric supersymmetric models, the bino and its Dirac partner (the singlino) can play the role of right-handed neutrinos and generate the neutrino masses and mixing, without the need for traditional bilinear or trilinear R-parity violating operators. The two particles form a pseudo-Dirac pair, the “bi νo.” An inverse seesaw texture is generated for the neutrino-biνo sector, and the lightest neutrino is predicted to be massless. Lastly, unlike in most models with heavy right-handed neutrinos, the bi νo can be sizably produced at the LHC through its interactions with colored particles, while respecting low energy constraintsmore » from neutrinoless double-beta decay and charged lepton flavor violation.« less

  1. Constraints on Galactic Neutrino Emission with Seven Years of IceCube Data

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalacynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration

    2017-11-01

    The origins of high-energy astrophysical neutrinos remain a mystery despite extensive searches for their sources. We present constraints from seven years of IceCube Neutrino Observatory muon data on the neutrino flux coming from the Galactic plane. This flux is expected from cosmic-ray interactions with the interstellar medium or near localized sources. Two methods were developed to test for a spatially extended flux from the entire plane, both of which are maximum likelihood fits but with different signal and background modeling techniques. We consider three templates for Galactic neutrino emission based primarily on gamma-ray observations and models that cover a wide range of possibilities. Based on these templates and in the benchmark case of an unbroken {E}-2.5 power-law energy spectrum, we set 90% confidence level upper limits, constraining the possible Galactic contribution to the diffuse neutrino flux to be relatively small, less than 14% of the flux reported in Aartsen et al. above 1 TeV. A stacking method is also used to test catalogs of known high-energy Galactic gamma-ray sources.

  2. The neutrino mass hierarchy measurement with a neutrino telescope in the Mediterranean Sea: A feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsirigotis, A. G.; Collaboration: KM3NeT Collaboration

    With the measurement of a non zero value of the θ{sub 13} neutrino mixing parameter, interest in neutrinos as source of the baryon asymmetry of the universe has increased. Among the measurements of a rich and varied program in near future neutrino physics is the determination of the mass hierarchy. We present the status of a study of the feasibility of using a densely instrumented undersea neutrino detector to determine the mass hierarchy, utilizing the Mikheyev-Smirnov-Wolfenstein (MSW) effect on atmospheric neutrino oscillations. The detector will use technology developed for KM3NeT. We present the systematic studies of the optimization of amore » detector in the required 5–10 GeV energy regime. These studies include new tracking and interaction identification algorithms as well as geometrical optimizations of the detector.« less

  3. Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon decoupling epochs

    DOE PAGES

    Grohs, E.; Fuller, George M.; Kishimoto, Chad T.; ...

    2015-05-11

    In this study, we show that a self-consistent and coupled treatment of the weak decoupling, big bang nucleosynthesis, and photon decoupling epochs can be used to provide new insights and constraints on neutrino sector physics from high-precision measurements of light element abundances and Cosmic Microwave Background observables. Implications of beyond-standard-model physics in cosmology, especially within the neutrino sector, are assessed by comparing predictions against five observables: the baryon energy density, helium abundance, deuterium abundance, effective number of neutrinos, and sum of the light neutrino mass eigenstates. We give examples for constraints on dark radiation, neutrino rest mass, lepton numbers, andmore » scenarios for light and heavy sterile neutrinos.« less

  4. Neutrinos and the age of the universe

    NASA Technical Reports Server (NTRS)

    Symbalisty, E. M. D.; Yang, J.; Schramm, D. N.

    1980-01-01

    The age of the universe should be calculable by independent methods with similar results. Previous calculations using nucleochronometers, globular clusters and dynamical measurements coupled with Friedmann models and nucleosynthesis constraints have given different values of the age. A consistent age is reported, whose implications for the constituent mass density are very interesting and are affected by the existence of a third neutrino flavor, and by allowing the possibility that neutrinos may have a non-zero rest mass.

  5. Discriminating Majorana neutrino textures in light of the baryon asymmetry

    NASA Astrophysics Data System (ADS)

    Borah, Manikanta; Borah, Debasish; Das, Mrinal Kumar

    2015-06-01

    We study all possible texture zeros in the Majorana neutrino mass matrix which are allowed from neutrino oscillation as well as cosmology data when the charged lepton mass matrix is assumed to take the diagonal form. In the case of one-zero texture, we write down the Majorana phases which are assumed to be equal and the lightest neutrino mass as a function of the Dirac C P phase. In the case of two-zero texture, we numerically evaluate all the three C P phases and lightest neutrino mass by solving four real constraint equations. We then constrain texture zero mass matrices from the requirement of producing correct baryon asymmetry through the mechanism of leptogenesis by assuming the Dirac neutrino mass matrix to be diagonal. Adopting a type I seesaw framework, we consider the C P -violating out of equilibrium decay of the lightest right-handed neutrino as the source of lepton asymmetry. Apart from discriminating between the texture zero mass matrices and light neutrino mass hierarchy, we also constrain the Dirac and Majorana C P phases so that the observed baryon asymmetry can be produced. In two-zero texture, we further constrain the diagonal form of the Dirac neutrino mass matrix from the requirement of producing correct baryon asymmetry.

  6. New leptogenesis scenario parametrized by Dirac neutrino mass matrix

    NASA Astrophysics Data System (ADS)

    Gu, Pei-Hong

    2017-10-01

    In an S U (3 )c×S U (2 )L×S U (2 )R×U (1 )B -L left-right symmetric framework, we present a new leptogenesis scenario parametrized by the Dirac neutrino mass matrix. Benefiting from the parity symmetry motivated to solve the strong C P problem, the dimensionless couplings of the mirror fields are identified with those of the ordinary fields. In particular, the mirror Dirac neutrinos have a heavy mass matrix proportional to the light mass matrix of the ordinary Dirac neutrinos. Through the S U (2 )R gauge interactions, the mirror neutrinos can decay to generate a lepton asymmetry in the mirror muons and an opposite lepton asymmetry in the mirror electrons. Before the S U (2 )L sphaleron processes stop working, the mirror muons can efficiently decay into the ordinary right-handed leptons with a dark matter scalar, and hence the mirror muon asymmetry can be partially converted to a desired baryon asymmetry.

  7. Baryon asymmetry via leptogenesis in a neutrino mass model with complex scaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samanta, Rome; Ghosal, Ambar; Chakraborty, Mainak

    Baryogenesis via leptogenesis is investigated in a specific model of light neutrino masses and mixing angles. The latter was proposed on the basis of an assumed complex-extended scaling property of the neutrino Majorana mass matrix M {sub ν}, derived with a type-1 seesaw from a Dirac mass matrix m {sub D} and a heavy singlet neutrino Majorana mass matrix M {sub R} . One of its important features, highlighted here, is that there is a common source of the origin of a nonzero θ{sub 13} and the CP violating lepton asymmetry through the imaginary part of m {sub D} .more » The model predicted CP violation to be maximal for the Dirac type and vanishing for the Majorana type. We assume strongly hierarchical mass eigenvalues for M {sub R} . The leptonic CP asymmetry parameter ε{sup α}{sub 1} mm with lepton flavor α, originating from the decays of the lightest of the heavy neutrinos N {sub 1} (of mass M {sub 1}) at a temperature T ∼ M {sub 1}, is what matters here with the lepton asymmetries, originating from the decays of N {sub 2,3}, being washed out. The light leptonic and heavy neutrino number densities (normalized to the entropy density) are evolved via Boltzmann equations down to electroweak temperatures to yield a baryon asymmetry through sphaleronic transitions. The effects of flavored vs. unflavored leptogenesis in the three mass regimes (1) M {sub 1} < 10{sup 9} GeV, (2) 10{sup 9} GeV < M {sub 1} < 10{sup 12} GeV and (3) M {sub 1} > 10{sup 12} GeV are numerically worked out for both a normal and an inverted mass ordering of the light neutrinos. Corresponding results on the baryon asymmetry of the universe are obtained, displayed and discussed. For values close to the best-fit points of the input neutrino mass and mixing parameters, obtained from neutrino oscillation experiments, successful baryogenesis is achieved for the mass regime (2) and a normal mass ordering of the light neutrinos with a nonzero θ{sub 13} playing a crucial role. However, the other

  8. ORCA: measuring the neutrino mass hierarchy with atmospheric neutrinos in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Van Elewyck, Véronique; KM3NeT Collaboration

    2015-04-01

    Since the measurement of the mixing angle θ13, the determination of the neutrino mass hierarchy has become a central challenge of neutrino physics. Recent studies have pointed out that it could reveal itself in the atmospheric neutrino sector, where oscillations are affected by Earth matter effects. This contribution reports on the ORCA feasibility study for such a measurement with an underwater Cherenkov detector based on the technology developed for the KM3NeT neutrino telescope. The baseline performances are discussed for a reference detector with 50 instrumented lines. Preliminary projections, based on the muon channel only, indicate that a 3 — 5σ significance measurement is within reach of a detector with an exposure of the order of 20 Mton years. Further improvement is expected to come from the electron channel, which is currently under study.

  9. Search for sterile neutrinos in muon neutrino disappearance mode at FNAL

    NASA Astrophysics Data System (ADS)

    Anokhina, A.; Bagulya, A.; Benettoni, M.; Bernardini, P.; Brugnera, R.; Calabrese, M.; Cecchetti, A.; Cecchini, S.; Chernyavskiy, M.; Dal Corso, F.; Dalkarov, O.; Del Prete, A.; De Robertis, G.; De Serio, M.; Di Ferdinando, D.; Dusini, S.; Dzhatdoev, T.; Fini, R. A.; Fiore, G.; Garfagnini, A.; Guerzoni, M.; Klicek, B.; Kose, U.; Jakovcic, K.; Laurenti, G.; Lippi, I.; Loddo, F.; Longhin, A.; Malenica, M.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marsella, G.; Mauri, N.; Medinaceli, E.; Mingazheva, R.; Morgunova, O.; Muciaccia, M. T.; Nessi, M.; Orecchini, D.; Paoloni, A.; Papadia, G.; Paparella, L.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Polukhina, N.; Pozzato, M.; Roda, M.; Roganova, T.; Rosa, G.; Sahnoun, Z.; Shchedrina, T.; Simone, S.; Sirignano, C.; Sirri, G.; Spurio, M.; Stanco, L.; Starkov, N.; Stipcevic, M.; Surdo, A.; Tenti, M.; Togo, V.; Vladymyrov, M.

    2017-01-01

    The NESSiE Collaboration has been setup to undertake a conclusive experiment to clarify the muon-neutrino disappearance measurements at short baselines in order to put severe constraints to models with more than the three-standard neutrinos. To this aim the current FNAL-Booster neutrino beam for a Short-Baseline experiment was carefully evaluated by considering the use of magnetic spectrometers at two sites, near and far ones. The detector locations were studied, together with the achievable performances of two OPERA-like spectrometers. The study was constrained by the availability of existing hardware and a time-schedule compatible with the undergoing project of multi-site Liquid-Argon detectors at FNAL. The settled physics case and the kind of proposed experiment on the Booster neutrino beam would definitively clarify the existing tension between the ν _{μ } disappearance and the ν e appearance/disappearance at the eV mass scale. In the context of neutrino oscillations the measurement of ν _{μ } disappearance is a robust and fast approach to either reject or discover new neutrino states at the eV mass scale. We discuss an experimental program able to extend by more than one order of magnitude (for neutrino disappearance) and by almost one order of magnitude (for antineutrino disappearance) the present range of sensitivity for the mixing angle between standard and sterile neutrinos. These extensions are larger than those achieved in any other proposal presented so far.

  10. Neutrino Masses, Cosmological Bound and Four Zero Yukawa Textures

    NASA Astrophysics Data System (ADS)

    Adhikary, Biswajit; Ghosal, Ambar; Roy, Probir

    Four zero neutrino Yukawa textures in a specified weak basis, combined with μτ symmetry and type-I seesaw, yield a highly constrained and predictive scheme. Two alternately viable 3×3 light neutrino Majorana mass matrices mνA/mνB result with inverted/normal mass ordering. Neutrino masses, Majorana in character and predicted within definite ranges with laboratory and cosmological inputs, will have their sum probed cosmologically. The rate for 0νββ decay, though generally below the reach of planned experiments, could approach it in some parameter region. Departure from μτ symmetry due to RG evolution from a high scale and consequent CP violation, with a Jarlskog invariant whose magnitude could almost reach 6×10-3, are explored.

  11. Indirect detection of neutrino portal dark matter

    NASA Astrophysics Data System (ADS)

    Batell, Brian; Han, Tao; Shams Es Haghi, Barmak

    2018-05-01

    We investigate the feasibility of the indirect detection of dark matter in a simple model using the neutrino portal. The model is very economical, with right-handed neutrinos generating neutrino masses through the type-I seesaw mechanism and simultaneously mediating interactions with dark matter. Given the small neutrino Yukawa couplings expected in a type-I seesaw, direct detection and accelerator probes of dark matter in this scenario are challenging. However, dark matter can efficiently annihilate to right-handed neutrinos, which then decay via active-sterile mixing through the weak interactions, leading to a variety of indirect astronomical signatures. We derive the existing constraints on this scenario from Planck cosmic microwave background measurements, Fermi dwarf spheroidal galaxy and Galactic center gamma-ray observations, and AMS-02 antiproton observations, and we also discuss the future prospects of Fermi and the Cherenkov Telescope Array. Thermal annihilation rates are already being probed for dark matter lighter than about 50 GeV, and this can be extended to dark matter masses of 100 GeV and beyond in the future. This scenario can also provide a dark matter interpretation of the Fermi Galactic center gamma-ray excess, and we confront this interpretation with other indirect constraints. Finally we discuss some of the exciting implications of extensions of the minimal model with large neutrino Yukawa couplings and Higgs portal couplings.

  12. Two-loop neutrino model with exotic leptons

    NASA Astrophysics Data System (ADS)

    Okada, Hiroshi; Orikasa, Yuta

    2016-01-01

    We propose a two-loop induced neutrino mass model, in which we show some bench mark points to satisfy the observed neutrino oscillation, the constraints of lepton flavor violations, and the relic density in the coannihilation system satisfying the current upper bound on the spin independent scattering cross section with nuclei. We also discuss new sources of muon anomalous magnetic moments.

  13. Shedding light on neutrino masses with dark forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batell, Brian; Pospelov, Maxim; Shuve, Brian

    Heavy right-handed neutrinos, N , provide the simplest explanation for the origin of light neutrino masses and mixings. If M N is at or below the weak scale, direct experimental discovery of these states is possible at accelerator experiments such as the LHC or new dedicated beam dump experiments; in these experiments, N decays after traversing a macroscopic distance from the collision point. The experimental sensitivity to right-handed neutrinos is significantly enhanced if there is a new “dark” gauge force connecting them to the Standard Model (SM), and detection of N can be the primary discovery mode for the newmore » dark force itself. We take the well-motivated example of a B – L gauge symmetry and analyze the sensitivity to displaced decays of N produced via the new gauge interaction in two experiments: the LHC and the proposed SHiP beam dump experiment. In the most favorable case in which the mediator can be produced on-shell and decays to right handed neutrinos (pp → X + V B–L → X + N N ), the sensitivity reach is controlled by the square of the B – L gauge coupling. Here, we demonstrate that these experiments could access neutrino parameters responsible for the observed SM neutrino masses and mixings in the most straightforward implementation of the see-saw mechanism.« less

  14. Shedding light on neutrino masses with dark forces

    DOE PAGES

    Batell, Brian; Pospelov, Maxim; Shuve, Brian

    2016-08-08

    Heavy right-handed neutrinos, N , provide the simplest explanation for the origin of light neutrino masses and mixings. If M N is at or below the weak scale, direct experimental discovery of these states is possible at accelerator experiments such as the LHC or new dedicated beam dump experiments; in these experiments, N decays after traversing a macroscopic distance from the collision point. The experimental sensitivity to right-handed neutrinos is significantly enhanced if there is a new “dark” gauge force connecting them to the Standard Model (SM), and detection of N can be the primary discovery mode for the newmore » dark force itself. We take the well-motivated example of a B – L gauge symmetry and analyze the sensitivity to displaced decays of N produced via the new gauge interaction in two experiments: the LHC and the proposed SHiP beam dump experiment. In the most favorable case in which the mediator can be produced on-shell and decays to right handed neutrinos (pp → X + V B–L → X + N N ), the sensitivity reach is controlled by the square of the B – L gauge coupling. Here, we demonstrate that these experiments could access neutrino parameters responsible for the observed SM neutrino masses and mixings in the most straightforward implementation of the see-saw mechanism.« less

  15. Impact of Neutrinos on Dark Matter Halo Environment

    NASA Astrophysics Data System (ADS)

    Court, Travis; Villaescusa-Navarro, Francisco

    2018-01-01

    The spatial clustering of galaxies is commonly used to infer the shape of the matter power spectrum and therefore to place constraints on the value of the cosmological parameters. In order to extract the maximum information from galaxy surveys it is required to provide accurate theoretical predictions. The first step to model galaxy clustering is to understand the spatial distribution of the structures where they reside: dark matter halos. I will show that the clustering of halos does not depend only on mass, but on other quantities like local matter overdensity. I will point out that halo clustering is also sensitive to the local overdensity of the cosmic neutrino background. I will show that splitting halos according to neutrino overdensity induces a very large scale-dependence bias, an effect that may lead to a new technique to constraint the sum of the neutrino masses.

  16. Cosmic microwave background constraints on secret interactions among sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Forastieri, Francesco; Lattanzi, Massimiliano; Mangano, Gianpiero; Mirizzi, Alessandro; Natoli, Paolo; Saviano, Ninetta

    2017-07-01

    Secret contact interactions among eV sterile neutrinos, mediated by a massive gauge boson X (with MX ll MW), and characterized by a gauge coupling gX, have been proposed as a mean to reconcile cosmological observations and short-baseline laboratory anomalies. We constrain this scenario using the latest Planck data on Cosmic Microwave Background anisotropies, and measurements of baryon acoustic oscillations (BAO). We consistently include the effect of secret interactions on cosmological perturbations, namely the increased density and pressure fluctuations in the neutrino fluid, and still find a severe tension between the secret interaction framework and cosmology. In fact, taking into account neutrino scattering via secret interactions, we derive our own mass bound on sterile neutrinos and find (at 95 % CL) ms < 0.82 eV or ms < 0.29 eV from Planck alone or in combination with BAO, respectively. These limits confirm the discrepancy with the laboratory anomalies. Moreover, we constrain, in the limit of contact interaction, the effective strength GX to be < 2.8 (2.0) × 1010 GF from Planck (Planck+BAO). This result, together with the mass bound, strongly disfavours the region with MX ~ 0.1 MeV and relatively large coupling gX~ 10-1, previously indicated as a possible solution to the small scale dark matter problem.

  17. REVIEWS OF TOPICAL PROBLEMS: The neutrino mass in elementary-particle physics and in big bang cosmology

    NASA Astrophysics Data System (ADS)

    Zel'dovich, Ya B.; Khlopov, M. Yu

    1981-09-01

    Some theoretical aspects of a nonzero value for the neutrino rest mass and its possible implications for physics are discussed. The nature of the neutrino mass is analyzed, as well as the physical consequences that may derive from the existence of new helicity states for the neutrino or from lepton charge nonconservation if the mass is of Dirac or Majorana character, respectively. Massive neutrinos are examined in the context of grand unified theories combining the weak, strong, and electromagnetic interactions. Searches for neutrino-mass effects in β decay and for neutrino oscillations are reviewed. Several astrophysical effects of the neutrino mass are described: solar-neutrino oscillations, the decay of primordial neutrinos, the feasibility of detecting massive primordial neutrinos experimentally. The predictions of big bang theory regarding the neutrino number density in the universe are analyzed, and a discussion is given of the influence neutrino oscillations might have on the neutrino density and on cosmological nucleosynthesis.

  18. Testing for new physics: neutrinos and the primordial power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canac, Nicolas; Abazajian, Kevork N.; Aslanyan, Grigor

    2016-09-01

    We test the sensitivity of neutrino parameter constraints from combinations of CMB and LSS data sets to the assumed form of the primordial power spectrum (PPS) using Bayesian model selection. Significantly, none of the tested combinations, including recent high-precision local measurements of H{sub 0} and cluster abundances, indicate a signal for massive neutrinos or extra relativistic degrees of freedom. For PPS models with a large, but fixed number of degrees of freedom, neutrino parameter constraints do not change significantly if the location of any features in the PPS are allowed to vary, although neutrino constraints are more sensitive to PPSmore » features if they are known a priori to exist at fixed intervals in log k . Although there is no support for a non-standard neutrino sector from constraints on both neutrino mass and relativistic energy density, we see surprisingly strong evidence for features in the PPS when it is constrained with data from Planck 2015, SZ cluster counts, and recent high-precision local measurements of H{sub 0}. Conversely combining Planck with matter power spectrum and BAO measurements yields a much weaker constraint. Given that this result is sensitive to the choice of data this tension between SZ cluster counts, Planck and H{sub 0} measurements is likely an indication of unmodeled systematic bias that mimics PPS features, rather than new physics in the PPS or neutrino sector.« less

  19. Radiative model of neutrino mass with neutrino interacting MeV dark matter

    DOE PAGES

    Arhrib, Abdesslam; Bohm, Celine; Ma, Ernest; ...

    2016-04-26

    We consider the radiative generation of neutrino mass through the interactions of neutrinos with MeV dark matter. We construct a realistic renormalizable model with one scalar doublet (in additional to the standard model doublet) and one complex singlet together with three light singlet Majorana fermions, all transforming under a dark U(1)(D) symmetry which breaks softly to Z(2). We study in detail the scalar sector which supports this specific scenario and its rich phenomenology.

  20. Sterile neutrinos with secret interactions—lasting friendship with cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Xiaoyong; Dasgupta, Basudeb; Kopp, Joachim, E-mail: xchu@ictp.it, E-mail: bdasgupta@theory.tifr.res.in, E-mail: jkopp@uni-mainz.de

    Sterile neutrinos with mass ≅ 1 eV and order 10% mixing with active neutrinos have been proposed as a solution to anomalies in neutrino oscillation data, but are tightly constrained by cosmological limits. It was recently shown that these constraints are avoided if sterile neutrinos couple to a new MeV-scale gauge boson A'. However, even this scenario is restricted by structure formation constraints when A'-mediated collisional processes lead to efficient active-to-sterile neutrino conversion after neutrinos have decoupled. In view of this, we reevaluate in this paper the viability of sterile neutrinos with such ''secret'' interactions. We carefully dissect their evolution inmore » the early Universe, including the various production channels and the expected modifications to large scale structure formation. We argue that there are two regions in parameter space—one at very small A' coupling, one at relatively large A' coupling—where all constraints from big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and large scale structure (LSS) data are satisfied. Interestingly, the large A' coupling region is precisely the region that was previously shown to have potentially important consequences for the small scale structure of dark matter halos if the A' boson couples also to the dark matter in the Universe.« less

  1. Supernova neutrinos and explosive nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Mathews, G. J.; Nakamura, K.; Shibagaki, S.; Suzuki, T.

    2014-05-01

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes 7Li, 11B, 92Nb, 138La and 180Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ13, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements 11B and 7Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ13, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  2. Neutrino masses, scale-dependent growth, and redshift-space distortions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernández, Oscar F., E-mail: oscarh@physics.mcgill.ca

    2017-06-01

    Massive neutrinos leave a unique signature in the large scale clustering of matter. We investigate the wavenumber dependence of the growth factor arising from neutrino masses and use a Fisher analysis to determine the aspects of a galaxy survey needed to measure this scale dependence.

  3. Cosmological and supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

    2014-06-01

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  4. Revisiting cosmological bounds on sterile neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincent, Aaron C.; Martínez, Enrique Fernández; Hernández, Pilar

    2015-04-01

    We employ state-of-the art cosmological observables including supernova surveys and BAO information to provide constraints on the mass and mixing angle of a non-resonantly produced sterile neutrino species, showing that cosmology can effectively rule out sterile neutrinos which decay between BBN and the present day. The decoupling of an additional heavy neutrino species can modify the time dependence of the Universe's expansion between BBN and recombination and, in extreme cases, lead to an additional matter-dominated period; while this could naively lead to a younger Universe with a larger Hubble parameter, it could later be compensated by the extra radiation expectedmore » in the form of neutrinos from sterile decay. However, recombination-era observables including the Cosmic Microwave Background (CMB), the shift parameter R{sub CMB} and the sound horizon r{sub s} from Baryon Acoustic Oscillations (BAO) severely constrain this scenario. We self-consistently include the full time-evolution of the coupled sterile neutrino and standard model sectors in an MCMC, showing that if decay occurs after BBN, the sterile neutrino is essentially bounded by the constraint sin{sup 2}θ ∼< 0.026 (m{sub s}/eV){sup −2}.« less

  5. Can neutrino mass be deduced from beta particle spectrum?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semkow, T.M.

    1993-12-31

    With 17-keV neutrino faith being uncertain, it is important to examine the effects of detector resolution and response on the detection limits of massive neutrino. The authors use Fermi theory and generate by Monte Carlo up to 5-10{sup 9} {beta}{sup {minus}} decay events from {sup 35}S. The {beta}{sup {minus}} spectra are then resolved by {chi}{sup 2} minimization. We show that given high statistics and accurate knowledge of the response function it should be possible to detect neutrino mass with a proportional detector, particularly with the gas-scintillation proportional detector, in addition to semiconductor, in addition to semiconductor detectors. This paper presentsmore » a design of double-chamber Xe gas-scintillation proportional detector in which the backscattering effects are suppressed. However, even the slight uncertainties in the response functions as well as {approximately} 10{sup {minus}3} relative energy nonlinearities in the {beta}{sup {minus}} spectrum may create an artificial effect of neutrino mass.« less

  6. Status of the neutrino mass experiment KATRIN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornschein, L.; Bornschein, B.; Sturm, M.

    The most sensitive way to determine the neutrino mass scale without further assumptions is to measure the shape of a tritium beta spectrum near its kinematic end-point. Tritium is the nucleus of choice because of its low endpoint energy, superallowed decay and simple atomic structure. Within an international collaboration the Karlsruhe Tritium Neutrino experiment (KATRIN) is currently being built up at KIT. KATRIN will allow a model-independent measurement of the neutrino mass scale with an expected sensitivity of 0.2 eV/c{sup 2} (90% CL). KATRIN will use a source of ultrapure molecular tritium. This contribution presents the status of the KATRINmore » experiment, thereby focusing on its Calibration and Monitoring System (CMS), which is the last component being subject to research/development. After a brief overview of the KATRIN experiment in Section II the CMS is introduced in Section III. In Section IV the Beta Induced X-Ray Spectroscopy (BIXS) as method of choice to monitor the tritium activity of the KATRIN source is described and first results are presented.« less

  7. Phenomenology of the Higgs sector of a Dimension-7 Neutrino Mass Generation Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Tathagata; Jana, Sudip; Nandi, S.

    In this paper, we revisit the dimension-7 neutrino mass generation mechanism based on the addition of an isospinmore » $3/2$ scalar quadruplet and two vector-like iso-triplet leptons to the standard model. We discuss the LHC phenomenology of the charged scalars of this model, complemented by the electroweak precision and lepton flavor violation constraints. We pay particular attention to the triply charged and doubly charged components. We focus on the same-sign-tri-lepton signatures originating from the triply-charged scalars and find a discovery reach of 600 - 950 GeV at 3 ab$$^{-1}$$ of integrated luminosity at the LHC. On the other hand, doubly charged Higgs has been an object of collider searches for a long time, and we show how the present bounds on its mass depend on the particle spectrum of the theory. Strong constraint on the model parameter space can arise from the measured decay rate of the Standard Model Higgs to a pair of photons as well.« less

  8. ORCA: measuring the neutrino mass hierarchy with an underwater Cherenkov detector

    NASA Astrophysics Data System (ADS)

    Hofestädt, Jannik; KM3NeT Collaboration

    2016-04-01

    It has recently been suggested that the neutrino mass hierarchy can be determined from the oscillation pattern of atmospheric neutrinos passing through the Earth in the energy regime of about 3-20 GeV. In this paper we present the status of a feasibility study for 'Oscillation Research with Cosmics in the Abyss' (ORCA) to evaluate the potential of a megaton-scale underwater Cherenkov detector to determine the mass hierarchy employing the deep-sea neutrino telescope technology developed for the KM3NeT project.

  9. Cosmic microwave background constraints on secret interactions among sterile neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forastieri, Francesco; Natoli, Paolo; Lattanzi, Massimiliano

    Secret contact interactions among eV sterile neutrinos, mediated by a massive gauge boson X (with M {sub X} || M {sub W} ), and characterized by a gauge coupling g {sub X} , have been proposed as a mean to reconcile cosmological observations and short-baseline laboratory anomalies. We constrain this scenario using the latest Planck data on Cosmic Microwave Background anisotropies, and measurements of baryon acoustic oscillations (BAO). We consistently include the effect of secret interactions on cosmological perturbations, namely the increased density and pressure fluctuations in the neutrino fluid, and still find a severe tension between the secret interactionmore » framework and cosmology. In fact, taking into account neutrino scattering via secret interactions, we derive our own mass bound on sterile neutrinos and find (at 95 % CL) m {sub s} < 0.82 eV or m {sub s} < 0.29 eV from Planck alone or in combination with BAO, respectively. These limits confirm the discrepancy with the laboratory anomalies. Moreover, we constrain, in the limit of contact interaction, the effective strength G {sub X} to be < 2.8 (2.0) × 10{sup 10} G {sub F} from Planck (Planck+BAO). This result, together with the mass bound, strongly disfavours the region with M {sub X} ∼ 0.1 MeV and relatively large coupling g {sub X} {sub ∼} 10{sup −1}, previously indicated as a possible solution to the small scale dark matter problem.« less

  10. Increasing Neff with particles in thermal equilibrium with neutrinos

    NASA Astrophysics Data System (ADS)

    hm, Céline Bœ; Dolan, Matthew J.; McCabe, Christopher

    2012-12-01

    Recent work on increasing the effective number of neutrino species (Neff) in the early universe has focussed on introducing extra relativistic species ('dark radiation'). We draw attention to another possibility: a new particle of mass lesssim10 MeV that remains in thermal equilibrium with neutrinos until it becomes non-relativistic increases the neutrino temperature relative to the photons. We demonstrate that this leads to a value of Neff that is greater than three and that Neff at CMB formation is larger than at BBN. We investigate the constraints on such particles from the primordial abundance of helium and deuterium created during BBN and from the CMB power spectrum measured by ACT and SPT and find that they are presently relatively unconstrained. We forecast the sensitivity of the Planck satellite to this scenario: in addition to dramatically improving constraints on the particle mass, in some regions of parameter space it can discriminate between the new particle being a real or complex scalar.

  11. Acquiring information about neutrino parameters by detecting supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2010-08-01

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle θ13, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about θ13 and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.

  12. Flavored leptogenesis with quasidegenerate neutrinos in a broken cyclic symmetric model

    NASA Astrophysics Data System (ADS)

    Adhikary, Biswajit; Chakraborty, Mainak; Ghosal, Ambar

    2016-06-01

    Cyclic symmetry in the neutrino sector with the type-I seesaw mechanism in the mass basis of charged leptons and right chiral neutrinos (Ni R, i =e , μ , τ ) generates a twofold degenerate light neutrino and a threefold degenerate heavy neutrino mass spectrum. Consequently, such a scheme produces vanishing one light neutrino mass squared difference and lepton asymmetry. To circumvent such an unphysical outcome, we break cyclic symmetry in the diagonal right chiral neutrino mass term by a small breaking parameter. Nonzero mass squared differences and mixing angles are generated with the help of the small breaking parameter. The smallness of the breaking parameter opens up the possibility of resonant leptogenesis. Assuming complex Yukawa couplings, we derive generalized expressions with flavor-dependent C P asymmetry parameters (ɛiα ) which are valid for the quasidegenerate as well as hierarchical mass spectrum of right-handed neutrinos. Thereafter, we set up the chain of coupled Boltzmann equations (which are flavor dependent too) which have to be solved in order to get the final lepton asymmetries. Depending upon the temperature regime, the C P asymmetries and the Boltzmann equations may also be flavor independent. As our goal is to study the enhancement of C P asymmetry due to the quasidegeneracy of right-handed neutrinos, we select only the lowest allowed (by neutrino oscillation data) value of the breaking parameter (and other corresponding Lagrangian parameters) and estimate the baryon asymmetry parameter YB. The experimental constraint of YB introduces a bound on right-handed neutrino mass which remained unrestricted by neutrino oscillation data.

  13. CLFV and the origin of neutrino masses

    NASA Astrophysics Data System (ADS)

    Hambye, Thomas

    2014-03-01

    The neutrino oscillations constitute the unique absolute guarantee we have at the moment that charged lepton flavor violation (CLFV) processes do exist. Even if the associated rates are in general expected very suppressed, it turns out that this is not always necessarily the case. In the framework of the three basic seesaw models, we review the possibilities of having observable rates. Each seesaw case presenting a quite different CLFV pattern, we show how these observable rates could allow us to distinguish these various possible neutrino mass origins.

  14. Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8

    NASA Astrophysics Data System (ADS)

    Ashtari Esfahani, Ali; Asner, David M.; Böser, Sebastian; Cervantes, Raphael; Claessens, Christine; de Viveiros, Luiz; Doe, Peter J.; Doeleman, Shepard; Fernandes, Justin L.; Fertl, Martin; Finn, Erin C.; Formaggio, Joseph A.; Furse, Daniel; Guigue, Mathieu; Heeger, Karsten M.; Jones, A. Mark; Kazkaz, Kareem; Kofron, Jared A.; Lamb, Callum; LaRoque, Benjamin H.; Machado, Eric; McBride, Elizabeth L.; Miller, Michael L.; Monreal, Benjamin; Mohanmurthy, Prajwal; Nikkel, James A.; Oblath, Noah S.; Pettus, Walter C.; Hamish Robertson, R. G.; Rosenberg, Leslie J.; Rybka, Gray; Rysewyk, Devyn; Saldaña, Luis; Slocum, Penny L.; Sternberg, Matthew G.; Tedeschi, Jonathan R.; Thümmler, Thomas; VanDevender, Brent A.; E Vertatschitsch, Laura; Wachtendonk, Megan; Weintroub, Jonathan; Woods, Natasha L.; Young, André; Zayas, Evan M.

    2017-05-01

    The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron radiation emission spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range with { O }({eV}) resolution. A lower bound of m({ν }e)≳ 9(0.1) {meV} is set by observations of neutrino oscillations, while the KATRIN experiment—the current-generation tritium beta-decay experiment that is based on magnetic adiabatic collimation with an electrostatic (MAC-E) filter—will achieve a sensitivity of m({ν }e)≲ 0.2 {eV}. The CRES technique aims to avoid the difficulties in scaling up a MAC-E filter-based experiment to achieve a lower mass sensitivity. In this paper we review the current status of the CRES technique and describe Project 8, a phased absolute neutrino mass experiment that has the potential to reach sensitivities down to m({ν }e)≲ 40 {meV} using an atomic tritium source.

  15. Correction to Neutrino Mass Square Difference in the Co-Bimaximal Mixings due to Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Koranga, Bipin Singh; Narayan, Mohan

    2017-11-01

    We consider non-renormalizable interaction term as a perturbation of the neutrino mass matrix. We assume that the neutrino masses and mixing arise through physics at a scale intermediate between Planck scale and the electroweak breaking scale. We also assume that, just above the electroweak breaking scale, neutrino masses are nearly degenerate and their mixing is Co-bimaximal mixing by assumming mixing angle θ _{13}≠ 0=10°,θ _{23}={π/4}, tanθ _{12}2= {1-3sinθ _{13}2}/{2}=34° and Dirac phase δ =± π/2. Quantum gravity (Planck scale effects) lead to an effective S U(2) L × U(1) invariant dimension-5 Lagrangian involving neutrino and Higgs fields. On symmetry breaking, this operator gives rise to correction to the above masses and mixing. The gravitational interaction M X = M p l , we find that for degenerate neutrino mass spectrum, the considered perturbation term change the {Δ }_{21}^' } by 12% and {Δ }_{31}^' } mass square difference is unchanged above GUT scale. The nature of gravitational interaction demands that the element of this perturbation matrix should be independent of flavor indices. In this paper, we study the quantum gravity effects on neutrino mass square difference, namely modified dispersion relation for neutrino mass square differences.

  16. Prediction on neutrino Dirac and Majorana phases and absolute mass scale from the CKM matrix

    NASA Astrophysics Data System (ADS)

    Haba, Naoyuki; Yamada, Toshifumi

    2018-03-01

    In the type-I seesaw model, the lepton-flavor-mixing matrix (Pontecorvo-Maki-Nakagawa-Sakata matrix) and the quark-flavor-mixing matrix [Cabibbo-Kobayashi-Maskawa (CKM) matrix] may be connected implicitly through a relation between the neutrino Dirac Yukawa coupling YD and the quark Yukawa couplings. In this paper, we study whether YD can satisfy—in the flavor basis where the charged lepton Yukawa and right-handed neutrino Majorana mass matrices are diagonal—the relation YD∝diag (yd,ys,yb)VCKMT or YD∝diag (yu,yc,yt)VCKM* without contradicting the current experimental data on quarks and neutrino oscillations. We search for sets of values of the neutrino Dirac C P phase δC P, Majorana phases α2 , α3 , and the lightest active neutrino mass that satisfy either of the above relations, with the normal or inverted hierarchy of neutrino masses. In performing the search, we consider renormalization group evolutions of the quark masses and CKM matrix and the propagation of their experimental errors along the evolutions. We find that only the former relation YD∝diag (yd,ys,yb)VCKMT with the normal neutrino mass hierarchy holds, based on which we make predictions for δC P, α2, α3, and the lightest active neutrino mass.

  17. Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esfahani, Ali Ashtari; Asner, David M.; Böser, Sebastian

    The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron radiation emission spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range withmore » $${ \\mathcal O }(\\mathrm{eV})$$ resolution. A lower bound of $$m({\

  18. Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8

    DOE PAGES

    Esfahani, Ali Ashtari; Asner, David M.; Böser, Sebastian; ...

    2017-03-30

    The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron radiation emission spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range withmore » $${ \\mathcal O }(\\mathrm{eV})$$ resolution. A lower bound of $$m({\

  19. Correlation mass method for analysis of neutrinos from supernova 1987A

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee; Chan, Kwing L.; Kondo, Yoji

    1988-01-01

    Application of a time-energy correlation method to the Kamiokande II (KII) observations of neutrinos apparently emitted from supernova 1987A has yielded a neutrino rest mass of 3.6 eV. A Monte Carlo analysis shows a reconfirming probabilty distribution for the neutrino rest mass peaked at 2.8, and dropping to 50 percent of the peak at 1.4 and 4.8 eV. Although the KII data indicate a very short time scale of emission, over an extended period on the order of 10 sec, both data from the Irvine-Michigan-Brookhaven experiment and the KII data show a tendency for the more energetic neutrinos to be emitted earlier at the source, suggesting the possibility of cooling.

  20. Can sterile neutrinos be ruled out as warm dark matter candidates?

    PubMed

    Viel, Matteo; Lesgourgues, Julien; Haehnelt, Martin G; Matarrese, Sabino; Riotto, Antonio

    2006-08-18

    We present constraints on the mass of warm dark matter (WDM) particles from a combined analysis of the matter power spectrum inferred from the Sloan Digital Sky Survey Lyman-alpha flux power spectrum at 2.2neutrinos and mWDM greater than or similar to 2 keV (2sigma) for early decoupled thermal relics. If we combine this bound with the constraint derived from x-ray flux observations of the Coma cluster, we find that the allowed sterile neutrino mass is approximately 10 keV (in the standard production scenario). Adding constraints based on x-ray fluxes from the Andromeda galaxy, we find that dark matter particles cannot be sterile neutrinos, unless they are produced by a nonstandard mechanism (resonant oscillations, coupling with the inflation) or get diluted by a large entropy release.

  1. Neutrino mass ordering and μ-τ reflection symmetry breaking

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-zhong; Zhu, Jing-yu

    2017-12-01

    If the neutrino mass spectrum turns out to be m 3masses of fundamental fermions with the same electrical charges are in order. In this case the columns of the 3×3 lepton flavor mixing matrix U should be reordered accordingly, and the resulting pattern U‧ may involve one or two large mixing angles in the standard parametrization or its variations. Since the Majorana neutrino mass matrix remains unchanged in such a mass relabeling, a possible μ-τ reflection symmetry is respected in this connection and its breaking effects are model-independently constrained at the 3σ level by using current experimental data. Supported by National Natural Science Foundation of China (11135009, 11375207)

  2. Nuclear weak interactions, supernova nucleosynthesis and neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Kajino, Toshitaka

    2013-07-01

    We study the nuclear weak response in light-to-heavy mass nuclei and calculate neutrino-nucleus cross sections. We apply these cross sections to the explosive nucleosynthesis in core-collapse supernovae and find that several isotopes of rare elements 7Li, 11B, 138La, 180Ta and several others are predominantly produced by the neutrino-process nucleosynthesis. We discuss how to determine the suitable neutrino spectra of three different flavors and their anti-particles in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. Light-mass nuclei like 7Li and 11B, which are produced in outer He-layer, are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect, while heavy-mass nuclei like 138La, 180Ta and r-process elements, which are produced in the inner O-Ne-Mg layer or the atmosphere of proto-neutron star, are likely to be free from the MSW effect. Using such a different nature of the neutrino-process nucleosynthesis, we study the neutrino oscillation effects on their abundances, and propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy, simultaneously. There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced neutrino-process 11B and 7Li encapsulated in the grains. Combining the recent experimental constraints on θ13, we show that although the uncertainties are still large, our method hints at a marginal preference for an inverted neutrino mass hierarchy for the first time.

  3. Insights into neutrino decoupling gleaned from considerations of the role of electron mass

    NASA Astrophysics Data System (ADS)

    Grohs, E.; Fuller, George M.

    2017-10-01

    We present calculations showing how electron rest mass influences entropy flow, neutrino decoupling, and Big Bang Nucleosynthesis (BBN) in the early universe. To elucidate this physics and especially the sensitivity of BBN and related epochs to electron mass, we consider a parameter space of rest mass values larger and smaller than the accepted vacuum value. Electromagnetic equilibrium, coupled with the high entropy of the early universe, guarantees that significant numbers of electron-positron pairs are present, and dominate over the number of ionization electrons to temperatures much lower than the vacuum electron rest mass. Scattering between the electrons-positrons and the neutrinos largely controls the flow of entropy from the plasma into the neutrino seas. Moreover, the number density of electron-positron-pair targets can be exponentially sensitive to the effective in-medium electron mass. This entropy flow influences the phasing of scale factor and temperature, the charged current weak-interaction-determined neutron-to-proton ratio, and the spectral distortions in the relic neutrino energy spectra. Our calculations show the sensitivity of the physics of this epoch to three separate effects: finite electron mass, finite-temperature quantum electrodynamic (QED) effects on the plasma equation of state, and Boltzmann neutrino energy transport. The ratio of neutrino to plasma-component energy scales manifests in Cosmic Microwave Background (CMB) observables, namely the baryon density and the radiation energy density, along with the primordial helium and deuterium abundances. Our results demonstrate how the treatment of in-medium electron mass (i.e., QED effects) could translate into an important source of uncertainty in extracting neutrino and beyond-standard-model physics limits from future high-precision CMB data.

  4. Unique forbidden beta decays and neutrino mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvornický, Rastislav, E-mail: dvornicky@dnp.fmph.uniba.sk; Comenius University, Mlynská dolina F1, SK-842 48 Bratislava; Šimkovic, Fedor

    The measurement of the electron energy spectrum in single β decays close to the endpoint provides a direct determination of the neutrino masses. The most sensitive experiments use β decays with low Q value, e.g. KATRIN (tritium) and MARE (rhenium). We present the theoretical spectral shape of electrons emitted in the first, second, and fourth unique forbidden β decays. Our findings show that the Kurie functions for these unique forbidden β transitions are linear in the limit of massless neutrinos like the Kurie function of the allowed β decay of tritium.

  5. Sterile neutrinos with secret interactions — lasting friendship with cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Xiaoyong; Dasgupta, Basudeb; Kopp, Joachim

    Sterile neutrinos with mass ≃1 eV and order 10% mixing with active neutrinos have been proposed as a solution to anomalies in neutrino oscillation data, but are tightly constrained by cosmological limits. It was recently shown that these constraints are avoided if sterile neutrinos couple to a new MeV-scale gauge boson A{sup ′}. However, even this scenario is restricted by structure formation constraints when A{sup ′}-mediated collisional processes lead to efficient active-to-sterile neutrino conversion after neutrinos have decoupled. In view of this, we reevaluate in this paper the viability of sterile neutrinos with such “secret” interactions. We carefully dissect theirmore » evolution in the early Universe, including the various production channels and the expected modifications to large scale structure formation. We argue that there are two regions in parameter space — one at very small A{sup ′} coupling, one at relatively large A{sup ′} coupling — where all constraints from big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and large scale structure (LSS) data are satisfied. Interestingly, the large A{sup ′} coupling region is precisely the region that was previously shown to have potentially important consequences for the small scale structure of dark matter halos if the A{sup ′} boson couples also to the dark matter in the Universe.« less

  6. Atmospheric neutrinos and discovery of neutrino oscillations

    PubMed Central

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations. PMID:20431258

  7. Cosmological lepton asymmetry, primordial nucleosynthesis and sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Abazajian, Kevork; Bell, Nicole F.; Fuller, George M.; Wong, Yvonne Y. Y.

    2005-09-01

    We study post weak decoupling coherent active-sterile and active-active matter-enhanced neutrino flavor transformation in the early Universe. We show that flavor conversion efficiency at Mikheyev-Smirnov-Wolfenstein resonances is likely to be high (adiabatic evolution) for relevant neutrino parameters and energies. However, we point out that these resonances cannot sweep smoothly and continuously with the expansion of the Universe. We show how neutrino flavor conversion in this way can leave both the active and sterile neutrinos with nonthermal energy spectra, and how, in turn, these distorted energy spectra can affect the neutron-to-proton ratio, primordial nucleosynthesis, and cosmological mass/closure constraints on sterile neutrinos. We demonstrate that the existence of a light sterile neutrino which mixes with active neutrinos can change fundamentally the relationship between the cosmological lepton numbers and the primordial nucleosynthesis He4 yield.

  8. Hadron collider tests of neutrino mass-generating mechanisms

    NASA Astrophysics Data System (ADS)

    Ruiz, Richard Efrain

    The Standard Model of particle physics (SM) is presently the best description of nature at small distances and high energies. However, with tiny but nonzero neutrino masses, a Higgs boson mass unstable under radiative corrections, and little guidance on understanding the hierarchy of fermion masses, the SM remains an unsatisfactory description of nature. Well-motivated scenarios that resolve these issues exist but also predict extended gauge (e.g., Left-Right Symmetric Models), scalar (e.g., Supersymmetry), and/or fermion sectors (e.g., Seesaw Models). Hence, discovering such new states would have far-reaching implications. After reviewing basic tenets of the SM and collider physics, several beyond the SM (BSM) scenarios that alleviate these shortcomings are investigated. Emphasis is placed on the production of a heavy Majorana neutrinos at hadron colliders in the context of low-energy, effective theories that simultaneously explain the origin of neutrino masses and their smallness compared to other elementary fermions, the so-called Seesaw Mechanisms. As probes of new physics, rare top quark decays to Higgs bosons in the context of the SM, the Types I and II Two Higgs Doublet Model (2HDM), and the semi-model independent framework of Effective Field Theory (EFT) have also been investigated. Observation prospects and discovery potentials of these models at current and future collider experiments are quantified.

  9. Lepton jets and low-mass sterile neutrinos at hadron colliders

    NASA Astrophysics Data System (ADS)

    Dube, Sourabh; Gadkari, Divya; Thalapillil, Arun M.

    2017-09-01

    Sterile neutrinos, if they exist, are potential harbingers for physics beyond the Standard Model. They have the capacity to shed light on our flavor sector, grand unification frameworks, dark matter sector and origins of baryon antibaryon asymmetry. There have been a few seminal studies that have broached the subject of sterile neutrinos with low, electroweak-scale masses (i.e. ΛQCD≪mNR≪mW± ) and investigated their reach at hadron colliders using lepton jets. These preliminary studies nevertheless assume background-free scenarios after certain selection criteria which are overly optimistic and untenable in realistic situations. These lead to incorrect projections. The unique signal topology and challenging hadronic environment also make this mass-scale regime ripe for a careful investigation. With the above motivations, we attempt to perform the first systematic study of low, electroweak-scale, right-handed neutrinos at hadron colliders, in this unique signal topology. There are currently no active searches at hadron colliders for sterile neutrino states in this mass range, and we frame the study in the context of the 13 TeV high-luminosity Large Hadron Collider and the proposed FCC-hh/SppC 100 TeV p p -collider.

  10. Neutrino catalyzed diphoton excess

    DOE PAGES

    Chao, Wei

    2016-08-16

    In this paper we explain the 750 GeV diphoton resonance observed at the run-2 LHC as a scalar singlet S, that plays a key role in generating tiny but nonzero Majorana neutrino masses. The model contains four electroweak singlets: two leptoquarks, a singly charged scalar and a neutral scalar S. Majorana neutrino masses might be generated at the two-loop level as S gets nonzero vacuum expectation value. S can be produced at the LHC through the gluon fusion and decays into diphoton with charged scalars running in the loop. The model fits perfectly with a narrow width of the resonance.more » Finally, constraints on the model are investigated, which shows a negligible mixing between the resonance and the standard model Higgs boson.« less

  11. Strong Bayesian evidence for the normal neutrino hierarchy

    NASA Astrophysics Data System (ADS)

    Simpson, Fergus; Jimenez, Raul; Pena-Garay, Carlos; Verde, Licia

    2017-06-01

    The configuration of the three neutrino masses can take two forms, known as the normal and inverted hierarchies. We compute the Bayesian evidence associated with these two hierarchies. Previous studies found a mild preference for the normal hierarchy, and this was driven by the asymmetric manner in which cosmological data has confined the available parameter space. Here we identify the presence of a second asymmetry, which is imposed by data from neutrino oscillations. By combining constraints on the squared-mass splittings [1] with the limit on the sum of neutrino masses of Σmν < 0.13 eV [2], and using a minimally informative prior on the masses, we infer odds of 42:1 in favour of the normal hierarchy, which is classified as "strong" in the Jeffreys' scale. We explore how these odds may evolve in light of higher precision cosmological data, and discuss the implications of this finding with regards to the nature of neutrinos. Finally the individual masses are inferred to be m1=3.80+26.2-3.73meV; m2=8.8+18-1.2meV; m3=50.4+5.8-1.2meV (95% credible intervals).

  12. Neutrino-electron scattering: general constraints on Z ' and dark photon models

    NASA Astrophysics Data System (ADS)

    Lindner, Manfred; Queiroz, Farinaldo S.; Rodejohann, Werner; Xu, Xun-Jie

    2018-05-01

    We study the framework of U(1) X models with kinetic mixing and/or mass mixing terms. We give general and exact analytic formulas of fermion gauge interactions and the cross sections of neutrino-electron scattering in such models. Then we derive limits on a variety of U(1) X models that induce new physics contributions to neutrino-electron scattering, taking into account interference between the new physics and Standard Model contributions. Data from TEXONO, CHARM-II and GEMMA are analyzed and shown to be complementary to each other to provide the most restrictive bounds on masses of the new vector bosons. In particular, we demonstrate the validity of our results to dark photon-like as well as light Z ' models.

  13. Sensitivity and systematics of calorimetric neutrino mass experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nucciotti, A.; Cremonesi, O.; Ferri, E.

    2009-12-16

    A large calorimetric neutrino mass experiment using thermal detectors is expected to play a crucial role in the challenge for directly assessing the neutrino mass. We discuss and compare here two approaches for the estimation of the experimental sensitivity of such an experiment. The first method uses an analytic formulation and allows to obtain readily a close estimate over a wide range of experimental configurations. The second method is based on a Montecarlo technique and is more precise and reliable. The Montecarlo approach is then exploited to study some sources of systematic uncertainties peculiar to calorimetric experiments. Finally, the toolsmore » are applied to investigate the optimal experimental configuration of the MARE project.« less

  14. Experimental Constraints on Neutrino Spectra Following Fission

    NASA Astrophysics Data System (ADS)

    Napolitano, Jim; Daya Bay Collaboration

    2016-09-01

    We discuss new initiatives to constrain predictions of fission neutrino spectra from nuclear reactors. These predictions are germane to the understanding of reactor flux anomalies; are needed to reduce systematic uncertainty in neutrino oscillation spectra; and inform searches for the diffuse supernova neutrino background. The initiatives include a search for very high- Q beta decay components to the neutrino spectrum from the Daya Bay power plant; plans for a measurement of the β- spectrum from 252Cf fission products; and precision measurements of the 235U fission neutrino spectrum from PROSPECT and other very short baseline reactor experiments.

  15. Calculation of the decay rate of tachyonic neutrinos against charged-lepton-pair and neutrino-pair Cerenkov radiation

    NASA Astrophysics Data System (ADS)

    Jentschura, Ulrich D.; Nándori, István; Ehrlich, Robert

    2017-10-01

    We consider in detail the calculation of the decay rate of high-energy superluminal neutrinos against (charged) lepton pair Cerenkov radiation, and neutrino pair Cerenkov radiation, i.e., against the decay channels ν \\to ν {e}+ {e}- and ν \\to ν \\overline{ν } ν . Under the hypothesis of a tachyonic nature of neutrinos, these decay channels put constraints on the lifetime of high-energy neutrinos for terrestrial experiments as well as on cosmic scales. For the oncoming neutrino, we use the Lorentz-covariant tachyonic relation {E}ν =\\sqrt{{p}2-{m}ν 2}, where m ν is the tachyonic mass parameter. We derive both threshold conditions as well as on decay and energy loss rates, using the plane-wave fundamental bispinor solutions of the tachyonic Dirac equation. Various intricacies of rest frame versus lab frame calculations are highlighted. The results are compared to the observations of high-energy IceCube neutrinos of cosmological origin.

  16. Supernova nucleosynthesis and the physics of neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Kajino, Toshitaka

    2012-11-01

    We studied the explosive nucleosynthesis in core-collapse supernovae and found that several isotopes of rare elements like 7Li, 11B, 138La, 180Ta and others are predominantly produced by the neutrino interactions with several abundant nuclei. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here first study how to know the suitable average neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the neutrino oscillation effects on their abundances, and propose a new novel method to determine the neutrino oscillation parameters, θ13 and mass hierarchy, simultaneously. There is recent evidence that some SiC X grains from the Murchison meteorite may contain supernova-produced neutrino-process 11B and 7Li encapsulated in the grains. Combining the recent experimental constraints on θ13, we show that although the uncertainties are still large, our method hints at a marginal preference for an inverted neutrino mass hierarchy for the first time.

  17. Neutrino masses in the Lee-Wick standard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa, Jose Ramon; Grinstein, Benjamin; O'Connell, Donal

    2008-04-15

    Recently, an extension of the standard model based on ideas of Lee and Wick has been discussed. This theory is free of quadratic divergences and hence has a Higgs mass that is stable against radiative corrections. Here, we address the question of whether or not it is possible to couple very heavy particles, with masses much greater than the weak scale, to the Lee-Wick standard model degrees of freedom and still preserve the stability of the weak scale. We show that in the LW-standard model the familiar seesaw mechanism for generating neutrino masses preserves the solution to the hierarchy puzzlemore » provided by the higher derivative terms. The very heavy right-handed neutrinos do not destabilize the Higgs mass. We give an example of new heavy degrees of freedom that would destabilize the hierarchy, and discuss a general mechanism for coupling other heavy degrees of freedom to the Higgs doublet while preserving the hierarchy.« less

  18. Unveiling ν secrets with cosmological data: Neutrino masses and mass hierarchy

    NASA Astrophysics Data System (ADS)

    Vagnozzi, Sunny; Giusarma, Elena; Mena, Olga; Freese, Katherine; Gerbino, Martina; Ho, Shirley; Lattanzi, Massimiliano

    2017-12-01

    Using some of the latest cosmological data sets publicly available, we derive the strongest bounds in the literature on the sum of the three active neutrino masses, Mν, within the assumption of a background flat Λ CDM cosmology. In the most conservative scheme, combining Planck cosmic microwave background temperature anisotropies and baryon acoustic oscillations (BAO) data, as well as the up-to-date constraint on the optical depth to reionization (τ ), the tightest 95% confidence level upper bound we find is Mν<0.151 eV . The addition of Planck high-ℓ polarization data, which, however, might still be contaminated by systematics, further tightens the bound to Mν<0.118 eV . A proper model comparison treatment shows that the two aforementioned combinations disfavor the inverted hierarchy at ˜64 % C .L . and ˜71 % C .L . , respectively. In addition, we compare the constraining power of measurements of the full-shape galaxy power spectrum versus the BAO signature, from the BOSS survey. Even though the latest BOSS full-shape measurements cover a larger volume and benefit from smaller error bars compared to previous similar measurements, the analysis method commonly adopted results in their constraining power still being less powerful than that of the extracted BAO signal. Our work uses only cosmological data; imposing the constraint Mν>0.06 eV from oscillations data would raise the quoted upper bounds by O (0.1 σ ) and would not affect our conclusions.

  19. Neutrino Mass Bounds from 0{nu}{beta}{beta} Decays and Large Scale Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keum, Y.-Y.; Department of Physics, National Taiwan University, Taipei, Taiwan 10672; Ichiki, K.

    2008-05-21

    We investigate the way how the total mass sum of neutrinos can be constrained from the neutrinoless double beta decay and cosmological probes with cosmic microwave background (WMAP 3-year results), large scale structures including 2dFGRS and SDSS data sets. First we discuss, in brief, on the current status of neutrino mass bounds from neutrino beta decays and cosmic constrain within the flat {lambda}CMD model. In addition, we explore the interacting neutrino dark-energy model, where the evolution of neutrino masses is determined by quintessence scalar filed, which is responsable for cosmic acceleration today. Assuming the flatness of the universe, the constraintmore » we can derive from the current observation is {sigma}m{sub {nu}}<0.87 eV at the 95% confidence level, which is consistent with {sigma}m{sub {nu}}<0.68 eV in the flat {lambda}CDM model.« less

  20. Texture one zero Dirac neutrino mass matrix with vanishing determinant or trace condition

    NASA Astrophysics Data System (ADS)

    Singh, Madan

    2018-06-01

    In the light of non-zero and relatively large value of rector mixing angle (θ13), we have performed a detailed analysis of texture one zero neutrino mass matrix Mν in the scenario of vanishing determinant/trace conditions, assuming the Dirac nature of neutrinos. In both the scenarios, normal mass ordering is ruled out for all the six possibilities of Mν, however for inverted mass ordering, only two are found to be viable with the current neutrino oscillation data at 3σ confidence level. Numerical and some approximate analytical results are presented.

  1. Determining neutrino mass from the cosmic microwave background alone.

    PubMed

    Kaplinghat, Manoj; Knox, Lloyd; Song, Yong-Seon

    2003-12-12

    Distortions of cosmic microwave background temperature and polarization maps caused by gravitational lensing, observable with high angular resolution and high sensitivity, can be used to measure the neutrino mass. Assuming two massless species and one with mass m(nu), we forecast sigma(m(nu))=0.15 eV from the Planck satellite and sigma(m(nu))=0.04 eV from observations with twice the angular resolution and approximately 20 times the sensitivity. A detection is likely at this higher sensitivity since the observation of atmospheric neutrino oscillations requires Deltam(2)(nu) greater, similar (0.04 eV)(2).

  2. Much Ado About (Almost!) Nothing: The Experimental Study of Neutrino Masses and Mixing

    NASA Astrophysics Data System (ADS)

    Messier, Mark

    2009-11-01

    Neutrinos have been described by their discoverer Frederick Reines as ``the most tiny quantity of reality ever imagined by a human being.'' Yet these particles which verge on nothingness have had an enormous influence on the past and future evolution of the universe and are the subject of an increasingly active program of experimental physics. In this talk I will review some of the basic properties of neutrinos and summarize the recent results on neutrino masses and mixing from studies of neutrinos produced in the Sun, cosmic rays, reactors, and accelerators including searches for zero neutrino double beta decay. Looking ahead, I will outline the future course of experiments in the U.S., Asia, and Europe which will address the questions of the fundamental character of the neutrino, the hierarchy of their masses, and their matter anti-matter symmetries.

  3. Constraints on large extra dimensions from the MINOS experiment

    NASA Astrophysics Data System (ADS)

    Adamson, P.; Anghel, I.; Aurisano, A.; Barr, G.; Bishai, M.; Blake, A.; Bock, G. J.; Bogert, D.; Cao, S. V.; Carroll, T. J.; Castromonte, C. M.; Chen, R.; Childress, S.; Coelho, J. A. B.; Corwin, L.; Cronin-Hennessy, D.; de Jong, J. K.; de Rijck, S.; Devan, A. V.; Devenish, N. E.; Diwan, M. V.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Flanagan, W.; Frohne, M. V.; Gabrielyan, M.; Gallagher, H. R.; Germani, S.; Gomes, R. A.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grzelak, K.; Habig, A.; Hahn, S. R.; Hartnell, J.; Hatcher, R.; Holin, A.; Huang, J.; Hylen, J.; Irwin, G. M.; Isvan, Z.; James, C.; Jensen, D.; Kafka, T.; Kasahara, S. M. S.; Koizumi, G.; Kordosky, M.; Kreymer, A.; Lang, K.; Ling, J.; Litchfield, P. J.; Lucas, P.; Mann, W. A.; Marshak, M. L.; Mayer, N.; McGivern, C.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Miller, W. H.; Mishra, S. R.; Moed Sher, S.; Moore, C. D.; Mualem, L.; Musser, J.; Naples, D.; Nelson, J. K.; Newman, H. B.; Nichol, R. J.; Nowak, J. A.; O'Connor, J.; Orchanian, M.; Pahlka, R. B.; Paley, J.; Patterson, R. B.; Pawloski, G.; Perch, A.; Pfützner, M. M.; Phan, D. D.; Phan-Budd, S.; Plunkett, R. K.; Poonthottathil, N.; Qiu, X.; Radovic, A.; Rebel, B.; Rosenfeld, C.; Rubin, H. A.; Sail, P.; Sanchez, M. C.; Schneps, J.; Schreckenberger, A.; Schreiner, P.; Sharma, R.; Sousa, A.; Tagg, N.; Talaga, R. L.; Thomas, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Todd, J.; Tognini, S. C.; Toner, R.; Torretta, D.; Tzanakos, G.; Urheim, J.; Vahle, P.; Viren, B.; Weber, A.; Webb, R. C.; White, C.; Whitehead, L.; Whitehead, L. H.; Wojcicki, S. G.; Zwaska, R.; Minos Collaboration

    2016-12-01

    We report new constraints on the size of large extra dimensions from data collected by the MINOS experiment between 2005 and 2012. Our analysis employs a model in which sterile neutrinos arise as Kaluza-Klein states in large extra dimensions and thus modify the neutrino oscillation probabilities due to mixing between active and sterile neutrino states. Using Fermilab's Neutrinos at the Main Injector beam exposure of 10.56 ×1 020 protons on target, we combine muon neutrino charged current and neutral current data sets from the Near and Far Detectors and observe no evidence for deviations from standard three-flavor neutrino oscillations. The ratios of reconstructed energy spectra in the two detectors constrain the size of large extra dimensions to be smaller than 0.45 μ m at 90% C.L. in the limit of a vanishing lightest active neutrino mass. Stronger limits are obtained for nonvanishing masses.

  4. PQ-symmetry for a small Dirac neutrino mass, dark radiation and cosmic neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Wan-Il, E-mail: wipark@kias.re.kr

    2014-06-01

    We propose a supersymmetric scenario in which the small Yukawa couplings for the Dirac neutrino mass term are generated by the spontaneous-breaking of Pecci-Quinn symmetry. In this scenario, a right amount of dark matter relic density can be obtained by either right-handed sneutrino or axino LSP, and a sizable amount of axion dark radiation can be obtained. Interestingly, the decay of right-handed sneutrino NLSP to axino LSP is delayed to around the present epoch, and can leave an observable cosmological background of neutrinos at the energy scale of O(10−100) GeV.

  5. Neutrinos

    Science.gov Websites

    Neutrinos What are they? Neutrinos are members of the Standard Model, belonging to a class of the mass could be and the mass differences between flavors of neutrinos, although there are many current experiments designed to probe this question. The difficulty lies in the fact that neutrinos are

  6. Connecting Dirac and Majorana neutrino mass matrices in the minimal left-right symmetric model.

    PubMed

    Nemevšek, Miha; Senjanović, Goran; Tello, Vladimir

    2013-04-12

    Probing the origin of neutrino mass by disentangling the seesaw mechanism is one of the central issues of particle physics. We address it in the minimal left-right symmetric model and show how the knowledge of light and heavy neutrino masses and mixings suffices to determine their Dirac Yukawa couplings. This in turn allows one to make predictions for a number of high and low energy phenomena, such as decays of heavy neutrinos, neutrinoless double beta decay, electric dipole moments of charged leptons, and neutrino transition moments. We also discuss a way of reconstructing the neutrino Dirac Yukawa couplings at colliders such as the LHC.

  7. Leptogenesis constraints on B - L breaking Higgs boson in TeV scale seesaw models

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Mohapatra, Rabindra N.; Zhang, Yongchao

    2018-03-01

    In the type-I seesaw mechanism for neutrino masses, there exists a B - L symmetry, whose breaking leads to the lepton number violating mass of the heavy Majorana neutrinos. This would imply the existence of a new neutral scalar associated with the B - L symmetry breaking, analogous to the Higgs boson of the Standard Model. If in such models, the heavy neutrino decays are also responsible for the observed baryon asymmetry of the universe via the leptogenesis mechanism, the new seesaw scalar interactions with the heavy neutrinos will induce additional dilution terms for the heavy neutrino and lepton number densities. We make a detailed study of this dilution effect on the lepton asymmetry in three generic classes of seesaw models with TeV-scale B - L symmetry breaking, namely, in an effective theory framework and in scenarios with global or local U(1) B- L symmetry. We find that requiring successful leptogenesis imposes stringent constraints on the mass and couplings of the new scalar in all three cases, especially when it is lighter than the heavy neutrinos. We also discuss the implications of these new constraints and prospects of testing leptogenesis in presence of seesaw scalars at colliders.

  8. Constraining neutrino properties with a Euclid-like galaxy cluster survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerbolini, M. Costanzi Alunno; Sartoris, B.; Borgani, S.

    2013-06-01

    We perform a forecast analysis on how well a Euclid-like photometric galaxy cluster survey will constrain the total neutrino mass and effective number of neutrino species. We base our analysis on the Monte Carlo Markov Chains technique by combining information from cluster number counts and cluster power spectrum. We find that combining cluster data with Cosmic Microwave Background (CMB) measurements from Planck improves by more than an order of magnitude the constraint on neutrino masses compared to each probe used independently. For the ΛCDM+m{sub ν} model the 2σ upper limit on total neutrino mass shifts from Σm{sub ν} < 0.35more » eV using cluster data alone to Σm{sub ν} < 0.031 eV when combined with Planck data. When a non-standard scenario with N{sub eff}≠3.046 number of neutrino species is considered, we estimate an upper limit of N{sub eff} < 3.14 (95%CL), while the bounds on neutrino mass are relaxed to Σm{sub ν} < 0.040 eV. This accuracy would be sufficient for a 2σ detection of neutrino mass even in the minimal normal hierarchy scenario (Σm{sub ν} ≅ 0.05 eV). In addition to the extended ΛCDM+m{sub ν}+N{sub eff} model we also consider scenarios with a constant dark energy equation of state and a non-vanishing curvature. When these models are considered the error on Σm{sub ν} is only slightly affected, while there is a larger impact of the order of ∼ 15% and ∼ 20% respectively on the 2σ error bar of N{sub eff} with respect to the standard case. To assess the effect of an uncertain knowledge of the relation between cluster mass and optical richness, we also treat the ΛCDM+m{sub ν}+N{sub eff} case with free nuisance parameters, which parameterize the uncertainties on the cluster mass determination. Adopting the over-conservative assumption of no prior knowledge on the nuisance parameter the loss of information from cluster number counts leads to a large degradation of neutrino constraints. In particular, the upper bounds for

  9. Dark Coulomb binding of heavy neutrinos of fourth family

    NASA Astrophysics Data System (ADS)

    Belotsky, K. M.; Esipova, E. A.; Khlopov, M. Yu.; Laletin, M. N.

    2015-11-01

    Direct dark matter searches put severe constraints on the weakly interacting massive particles (WIMPs). These constraints cause serious troubles for the model of stable neutrino of fourth generation with mass around 50GeV. Though the calculations of primordial abundance of these particles make them in the charge symmetric case a sparse subdominant component of the modern dark matter, their presence in the universe would exceed the current upper limits by several orders of the magnitude. However, if quarks and leptons of fourth generation possess their own Coulomb-like y-interaction, recombination of pairs of heavy neutrinos and antineutrinos and their annihilation in the “neutrinium” atoms can play important role in their cosmological evolution, reducing their modern abundance far below the experimental upper limits. The model of stable fourth generation assumes that the dominant part of dark matter is explained by excessive Ū antiquarks, forming (ŪŪŪ)-- charged clusters, bound with primordial helium in nuclear-interacting O-helium (OHe) dark atoms. The y charge conservation implies generation of the same excess of fourth generation neutrinos, potentially dangerous WIMP component of this scenario. We show that due to y-interaction recombination of fourth neutrinos with OHe hides these WIMPs from direct WIMP searches, leaving the negligible fraction of free neutrinos, what makes their existence compatible with the experimental constraints.

  10. Coherent Active-Sterile Neutrino Flavor Transformation in the Early Universe

    NASA Astrophysics Data System (ADS)

    Kishimoto, Chad T.; Fuller, George M.; Smith, Christel J.

    2006-10-01

    We solve the problem of coherent Mikheyev-Smirnov-Wolfenstein resonant active-to-sterile neutrino flavor conversion driven by an initial lepton number in the early Universe. We find incomplete destruction of the lepton number in this process and a sterile neutrino energy distribution with a distinctive cusp and high energy tail. These features imply alteration of the nonzero lepton number primordial nucleosynthesis paradigm when there exist sterile neutrinos with rest masses ms˜1eV. This could result in better light element probes of (constraints on) these particles.

  11. Coherent active-sterile neutrino flavor transformation in the early universe.

    PubMed

    Kishimoto, Chad T; Fuller, George M; Smith, Christel J

    2006-10-06

    We solve the problem of coherent Mikheyev-Smirnov-Wolfenstein resonant active-to-sterile neutrino flavor conversion driven by an initial lepton number in the early Universe. We find incomplete destruction of the lepton number in this process and a sterile neutrino energy distribution with a distinctive cusp and high energy tail. These features imply alteration of the nonzero lepton number primordial nucleosynthesis paradigm when there exist sterile neutrinos with rest masses m(s) approximately 1 eV. This could result in better light element probes of (constraints on) these particles.

  12. The case for mixed dark matter from sterile neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lello, Louis; Boyanovsky, Daniel, E-mail: lal81@pitt.edu, E-mail: boyan@pitt.edu

    2016-06-01

    Sterile neutrinos are SU(2) singlets that mix with active neutrinos via a mass matrix, its diagonalization leads to mass eigenstates that couple via standard model vertices. We study the cosmological production of heavy neutrinos via standard model charged and neutral current vertices under a minimal set of assumptions: i) the mass basis contains a hierarchy of heavy neutrinos , ii) these have very small mixing angles with the active (flavor) neutrinos, iii) standard model particles, including light (active-like) neutrinos are in thermal equilibrium. If kinematically allowed, the same weak interaction processes that produce active-like neutrinos also produce the heavier species.more » We introduce the quantum kinetic equations that describe their production, freeze out and decay and discuss the various processes that lead to their production in a wide range of temperatures assessing their feasibility as dark matter candidates. The final distribution function at freeze-out is a mixture of the result of the various production processes. We identify processes in which finite temperature collective excitations may lead to the production of the heavy species. As a specific example, we consider the production of heavy neutrinos in the mass range M {sub h} ∼< 140 MeV from pion decay shortly after the QCD crossover including finite temperature corrections to the pion form factors and mass. We consider the different decay channels that allow for the production of heavy neutrinos showing that their frozen distribution functions exhibit effects from ''kinematic entanglement'' and argue for their viability as mixed dark matter candidates. We discuss abundance, phase space density and stability constraints and argue that heavy neutrinos with lifetime τ> 1/ H {sub 0} freeze out of local thermal equilibrium, and conjecture that those with lifetimes τ || 1/ H {sub 0} may undergo cascade decay into lighter DM candidates and/or inject non-LTE neutrinos into the cosmic neutrino

  13. Constraints on large extra dimensions from the MINOS Experiment

    DOE PAGES

    Adamson, P.

    2016-12-16

    We report new constraints on the size of large extra dimensions from data collected by the MINOS experiment between 2005 and 2012. Our analysis employs a model in which sterile neutrinos arise as Kaluza-Klein states in large extra dimensions and thus modify the neutrino oscillation probabilities due to mixing between active and sterile neutrino states. Using Fermilab’s Neutrinos at the Main Injector beam exposure of 10.56 ×10 20 protons on target, we combine muon neutrino charged current and neutral current data sets from the Near and Far Detectors and observe no evidence for deviations from standard three-flavor neutrino oscillations. Themore » ratios of reconstructed energy spectra in the two detectors constrain the size of large extra dimensions to be smaller than 0.45 μm at 90% C.L. in the limit of a vanishing lightest active neutrino mass. Finally, stronger limits are obtained for nonvanishing masses.« less

  14. Dark matter stability and one-loop neutrino mass generation based on Peccei-Quinn symmetry

    NASA Astrophysics Data System (ADS)

    Suematsu, Daijiro

    2018-01-01

    We propose a model which is a simple extension of the KSVZ invisible axion model with an inert doublet scalar. Peccei-Quinn symmetry forbids tree-level neutrino mass generation and its remnant Z_2 symmetry guarantees dark matter stability. The neutrino masses are generated by one-loop effects as a result of the breaking of Peccei-Quinn symmetry through a nonrenormalizable interaction. Although the low energy effective model coincides with an original scotogenic model which contains right-handed neutrinos with large masses, it is free from the strong CP problem.

  15. Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10 PeV with IceCube

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Mohrmann, L.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2016-12-01

    We report constraints on the sources of ultrahigh-energy cosmic rays (UHECRs) above 1 09 GeV , based on an analysis of seven years of IceCube data. This analysis efficiently selects very high- energy neutrino-induced events which have deposited energies from 5 ×1 05 GeV to above 1 011 GeV . Two neutrino-induced events with an estimated deposited energy of (2.6 ±0.3 )×1 06 GeV , the highest neutrino energy observed so far, and (7.7 ±2.0 )×1 05 GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6 σ . The hypothesis that the observed events are of cosmogenic origin is also rejected at >99 % CL because of the limited deposited energy and the nonobservation of events at higher energy, while their observation is consistent with an astrophysical origin. Our limits on cosmogenic neutrino fluxes disfavor the UHECR sources having a cosmological evolution stronger than the star formation rate, e.g., active galactic nuclei and γ -ray bursts, assuming proton-dominated UHECRs. Constraints on UHECR sources including mixed and heavy UHECR compositions are obtained for models of neutrino production within UHECR sources. Our limit disfavors a significant part of parameter space for active galactic nuclei and new-born pulsar models. These limits on the ultrahigh-energy neutrino flux models are the most stringent to date.

  16. HOW FAR AWAY ARE THE SOURCES OF ICECUBE NEUTRINOS? CONSTRAINTS FROM THE DIFFUSE TERAELECTRONVOLT GAMMA-RAY BACKGROUND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Xiao-Chuan; Liu, Ruo-Yu; Wang, Xiang-Yu, E-mail: xywang@nju.edu.cn

    The nearly isotropic distribution of teraelectronvolt to petaelectronvolt neutrinos recently detected by the IceCube Collaboration suggests that they come from sources at a distance beyond our Galaxy, but how far away they are is largely unknown because of a lack of any associations with known sources. In this paper, we propose that the cumulative TeV gamma-ray emission accompanying the production of neutrinos can be used to constrain the distance of these neutrino sources, since the opacity of TeV gamma rays due to absorption by the extragalactic background light depends on the distance these TeV gamma rays have traveled. As themore » diffuse extragalactic TeV background measured by Fermi is much weaker than the expected cumulative flux associated with IceCube neutrinos, the majority of IceCube neutrinos, if their sources are transparent to TeV gamma rays, must come from distances larger than the horizon of TeV gamma rays. We find that above 80% of the IceCube neutrinos should come from sources at redshift z > 0.5. Thus, the chance of finding nearby sources correlated with IceCube neutrinos would be small. We also find that, to explain the flux of neutrinos under the TeV gamma-ray emission constraint, the redshift evolution of neutrino source density must be at least as fast as the cosmic star formation rate.« less

  17. Lepton-number-charged scalars and neutrino beamstrahlung

    NASA Astrophysics Data System (ADS)

    Berryman, Jeffrey M.; de Gouvêa, André; Kelly, Kevin J.; Zhang, Yue

    2018-04-01

    Experimentally, baryon number minus lepton number, B -L , appears to be a good global symmetry of nature. We explore the consequences of the existence of gauge-singlet scalar fields charged under B -L -dubbed lepton-number-charged scalars (LeNCSs)—and postulate that these couple to the standard model degrees of freedom in such a way that B -L is conserved even at the nonrenormalizable level. In this framework, neutrinos are Dirac fermions. Including only the lowest mass-dimension effective operators, some of the LeNCSs couple predominantly to neutrinos and may be produced in terrestrial neutrino experiments. We examine several existing constraints from particle physics, astrophysics, and cosmology to the existence of a LeNCS carrying B -L charge equal to two, and discuss the emission of LeNCSs via "neutrino beamstrahlung," which occurs every once in a while when neutrinos scatter off of ordinary matter. We identify regions of the parameter space where existing and future neutrino experiments, including the Deep Underground Neutrino Experiment, are at the frontier of searches for such new phenomena.

  18. Correlation Between the Effective Neutrino Number and Curvature

    NASA Astrophysics Data System (ADS)

    Smith, Aaron; Archidiacono, M.; Cooray, A.; De Bernardis, F.; Melchiorri, A.; Smidt, J.

    2012-01-01

    Cosmological data seems to favor models with more than three neutrinos. This poster focuses on recent discussion regarding additional sterile neutrinos and neutrino mass constraints in cosmology. We present a theoretical argument for correlation between the number of effective neutrinos and the curvature of the universe. This naturally arises from simple considerations of distance measurements. For example, with the degree of damping prior to recombination fixed by observation, we find that if we allow for an open universe then the angular diameter distance increases. To counterbalance this effect the sound horizon distance must increase as well which corresponds to decreasing the effective neutrino number. This qualitative argument is confirmed by statistical analysis with CosmoMC adapted to include CMB anisotropy measurements from a variety of experiments. This research was supported by Asantha Cooray at the University of California, Irvine.

  19. Renormalization-group equations of neutrino masses and flavor mixing parameters in matter

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-zhong; Zhou, Shun; Zhou, Ye-Ling

    2018-05-01

    We borrow the general idea of renormalization-group equations (RGEs) to understand how neutrino masses and flavor mixing parameters evolve when neutrinos propagate in a medium, highlighting a meaningful possibility that the genuine flavor quantities in vacuum can be extrapolated from their matter-corrected counterparts to be measured in some realistic neutrino oscillation experiments. Taking the matter parameter a≡ 2√{2}{G}F{N}_eE to be an arbitrary scale-like variable with N e being the net electron number density and E being the neutrino beam energy, we derive a complete set of differential equations for the effective neutrino mixing matrix V and the effective neutrino masses {\\tilde{m}}_i (for i = 1 , 2 , 3). Given the standard parametrization of V , the RGEs for {{\\tilde{θ}}_{12}, {\\tilde{θ}}_{13}, {\\tilde{θ}}_{23}, \\tilde{δ}} in matter are formulated for the first time. We demonstrate some useful differential invariants which retain the same form from vacuum to matter, including the well-known Naumov and Toshev relations. The RGEs of the partial μ- τ asymmetries, the off-diagonal asymmetries and the sides of unitarity triangles of V are also obtained as a by-product.

  20. From the trees to the forest: a review of radiative neutrino mass models

    NASA Astrophysics Data System (ADS)

    Cai, Yi; Herrero García, Juan; Schmidt, Michael A.; Vicente, Avelino; Volkas, Raymond R.

    2017-12-01

    A plausible explanation for the lightness of neutrino masses is that neutrinos are massless at tree level, with their mass (typically Majorana) being generated radiatively at one or more loops. The new couplings, together with the suppression coming from the loop factors, imply that the new degrees of freedom cannot be too heavy (they are typically at the TeV scale). Therefore, in these models there are no large mass hierarchies and they can be tested using different searches, making their detailed phenomenological study very appealing. In particular, the new particles can be searched for at colliders and generically induce signals in lepton-flavor and lepton-number violating processes (in the case of Majorana neutrinos), which are not independent from reproducing correctly the neutrino masses and mixings. The main focus of the review is on Majorana neutrinos. We order the allowed theory space from three different perspectives: (i) using an effective operator approach to lepton number violation, (ii) by the number of loops at which the Weinberg operator is generated, (iii) within a given loop order, by the possible irreducible topologies. We also discuss in more detail some popular radiative models which involve qualitatively different features, revisiting their most important phenomenological implications. Finally, we list some promising avenues to pursue.

  1. Dark matter and neutrino masses from a scale-invariant multi-Higgs portal

    NASA Astrophysics Data System (ADS)

    Karam, Alexandros; Tamvakis, Kyriakos

    2015-10-01

    We consider a classically scale invariant version of the Standard Model, extended by an extra dark S U (2 )X gauge group. Apart from the dark gauge bosons and a dark scalar doublet which is coupled to the Standard Model Higgs through a portal coupling, we incorporate right-handed neutrinos and an additional real singlet scalar field. After symmetry breaking à la Coleman-Weinberg, we examine the multi-Higgs sector and impose theoretical and experimental constraints. In addition, by computing the dark matter relic abundance and the spin-independent scattering cross section off a nucleon we determine the viable dark matter mass range in accordance with present limits. The model can be tested in the near future by collider experiments and direct detection searches such as XENON 1T.

  2. Atmospheric neutrinos and proton decay in Super-Kamiokande and Hyper-Kamiokande

    NASA Astrophysics Data System (ADS)

    Li, Zepeng; Super-Kamiokande Collaboration; Hyper-Kamiokande Collaboration

    2017-06-01

    Super-Kamiokande is a 50 kton water Cherenkov detector, which has been in operation since 1996. Super-Kamiokande atmospheric neutrino data have a preference for the normal neutrino mass hierarchy (Δχ2 = χNH2- χIH2 = - 4.3) when the constraints from reactor neutrino experiments are included. The search for tau neutrino appearance from neutrino oscillations has resulted in a 4.6σ exclusion of the hypothesis of no tau appearance. Hyper-Kamiokande is a proposed next-generation water Cherenkov detector, which will be a natural extension of Super-Kamiokande. The proposed experiment will have two cylindrical tanks containing 520 kton of water in total. Hyper-K will search for CP violation using the neutrino beam from J-PARC, and will have a broad physics program including studies of atmospheric neutrinos, supernova burst neutrinos, geo-neutrinos and searches for proton decay.

  3. From high-scale leptogenesis to low-scale one-loop neutrino mass generation

    NASA Astrophysics Data System (ADS)

    Zhou, Hang; Gu, Pei-Hong

    2018-02-01

    We show that a high-scale leptogenesis can be consistent with a low-scale one-loop neutrino mass generation. Our models are based on the SU(3)c × SU(2)L × U(1)Y × U(1) B - L gauge groups. Except a complex singlet scalar for the U(1) B - L symmetry breaking, the other new scalars and fermions (one scalar doublet, two or more real scalar singlets/triplets and three right-handed neutrinos) are odd under an unbroken Z2 discrete symmetry. The real scalar decays can produce an asymmetry stored in the new scalar doublet which subsequently decays into the standard model lepton doublets and the right-handed neutrinos. The lepton asymmetry in the standard model leptons then can be partially converted to a baryon asymmetry by the sphaleron processes. By integrating out the heavy scalar singlets/triplets, we can realize an effective theory to radiatively generate the small neutrino masses at the TeV scale. Furthermore, the lightest right-handed neutrino can serve as a dark matter candidate.

  4. Fully constrained Majorana neutrino mass matrices using \\varvec{Σ(72× 3)}

    NASA Astrophysics Data System (ADS)

    Krishnan, R.; Harrison, P. F.; Scott, W. G.

    2018-01-01

    In 2002, two neutrino mixing ansatze having trimaximally mixed middle (ν _2) columns, namely tri-chi-maximal mixing ( {T}χ {M}) and tri-phi-maximal mixing ( {T}φ {M}), were proposed. In 2012, it was shown that {T}χ {M} with χ =± π /16 as well as {T}φ {M} with φ = ± π /16 leads to the solution, sin ^2 θ _{13} = 2/3 sin ^2 π /16, consistent with the latest measurements of the reactor mixing angle, θ _{13}. To obtain {T}χ {M}_{(χ =± π /16)} and {T}φ {M}_{(φ =± π /16)}, the type I see-saw framework with fully constrained Majorana neutrino mass matrices was utilised. These mass matrices also resulted in the neutrino mass ratios, m_1:m_2:m_3=( 2+√{2}) /1+√{2(2+√{2)}}:1:( 2+√{2}) /-1+√{2(2+√{2)}}. In this paper we construct a flavour model based on the discrete group Σ (72× 3) and obtain the aforementioned results. A Majorana neutrino mass matrix (a symmetric 3× 3 matrix with six complex degrees of freedom) is conveniently mapped into a flavon field transforming as the complex six-dimensional representation of Σ (72× 3). Specific vacuum alignments of the flavons are used to arrive at the desired mass matrices.

  5. Neutrino mass with large S U (2 )L multiplet fields

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2017-11-01

    We propose an extension of the standard model introducing large S U (2 )L multiplet fields which are quartet and septet scalars and quintet Majorana fermions. These multiplets can induce the neutrino masses via interactions with the S U (2 ) doublet leptons. We then find the neutrino masses are suppressed by a small vacuum expectation value of the quartet/septet and an inverse of the quintet fermion mass, relaxing the Yukawa hierarchies among the standard model fermions. We also discuss collider physics at the Large Hadron Collider, considering the production of charged particles in these multiplets, and due to the effects of violating the custodial symmetry, some specific signatures can be found. Then, we discuss the detectability of these signals.

  6. Mass hierarchy and C P -phase sensitivity of ORCA using the Fermilab neutrino beam

    NASA Astrophysics Data System (ADS)

    Rahaman, Ushak; Razzaque, Soebur

    2017-10-01

    We explore neutrino mass hierarchy determination and C P -phase measurement using the multimegaton water Cherenkov detector KM3NeT-Oscillation Research with Cosmics in the Abyss in the Mediterranean sea receiving neutrino beam from the Fermilab Long Baseline Neutrino Facility over a 6900 km baseline. We find that with the proposed beam luminosity of 1.2 ×1021 proton on target per year, it will be possible to determine mass hierarchy at ≳4 σ confidence level within 1 year in the neutrino mode alone. A combined 1 year in neutrino and 1 year in antineutrino mode can determine hierarchy at ≳6 σ confidence level. We also find that a nonzero C P phase can be detected with up to ˜1.8 σ significance after 10 years of data taking. We explore degeneracy of neutrino oscillation parameters and uncertainties in detection efficiencies affecting the results.

  7. Fermion Universality Manifesting Itself in the Dirac Component of Neutrino Mass Matrix

    NASA Astrophysics Data System (ADS)

    Krolikowski, Wojciech

    2002-02-01

    An effective texture is presented for six Majorana conventional neutrinos (three active and three sterile), based on a 6× 6 neutrino mixing matrix whose 3× 3 active--active component arises from the popular bimaximal mixing matrix of active neutrinos ν e, ν μ , ν τ by three small rotations in the 14, 25, 36 planes of ν 1 , ν 2 , ν 3 and ν 4 , ν5, ν 6 neutrino mass states. The Dirac component (i.e. , 3 × 3 active-sterile component) of the resulting 6 × 6 neutrino mass matrix is conjectured to get a structure similar to the charged-lepton and quark 3 × 3 mass matrices, after the bimaximal mixing, specific for neutrinos, is transformed out unitarily from the neutrino mass matrix. The charged-lepton and quark mass matrices are taken in a universal form constructed previously by the author with a conside- rable phenomenological success. Then, for the option of m21 ≃ m22 ≃ m23 ≫ m24 ≃ m25 ≃ m26 ≃ 0, the proposed texture predicts oscillations of solar ν e's with Δ m2sol ≡ Δ m221 ˜ (1.1 to 1.2) × 10-5 eV2, not inconsistent with the LMA solar solution, if the SuperKamiokande value Δ m2atm ≡ Δ m232 ˜ (3 to 3.5) × 10-3eV2 for oscillations of atmospheric ν μ 's is taken as an input. Here, sin2 2θ sol ˜ 1 and sin2 2 θ atm ˜ 1. The texture predicts also an LSND effect with sin2 2θ LSND (1.4 to 1.9)× 10-11 (eV/m1)4 and Δ m2LSND ≡ Δ m225 ˜ m21 + (1.1 to 1.2) 10-5 eV}2. Unfortunately, the Chooz experiment imposes on the LSND effect (in our texture) a very small upper bound sin2 2θ LSND ≲ 1.3 × 10-3, which corresponds to the lower limit m1 ≳ (1.0 to 1.1)× 10-2 eV.

  8. GUT and flavor models for neutrino masses and mixing

    NASA Astrophysics Data System (ADS)

    Meloni, Davide

    2017-10-01

    In the recent years experiments have established the existence of neutrino oscillations and most of the oscillation parameters have been measured with a good accuracy. However, in spite of many interesting ideas, no real illumination was sparked on the problem of flavor in the lepton sector. In this review, we discuss the state of the art of models for neutrino masses and mixings formulated in the context of flavor symmetries, with particular emphasis on the role played by grand unified gauge groups.

  9. Probing the coupling of heavy dark matter to nucleons by detecting neutrino signature from the Earth's core

    NASA Astrophysics Data System (ADS)

    Lin, Guey-Lin; Lin, Yen-Hsun; Lee, Fei-Fan

    2015-02-01

    We argue that the detection of the neutrino signature from the Earth's core can effectively probe the coupling of heavy dark matter (mχ>104 GeV ) to nucleons. We first note that direct searches for dark matter (DM) in such a mass range provide much less stringent constraint than the constraint provided by such searches for mχ˜100 GeV . Furthermore, the energies of neutrinos arising from DM annihilation inside the Sun cannot exceed a few TeVs at the Sun's surface due to the attenuation effect. Therefore, the sensitivity to the heavy DM coupling is lost. Finally, the detection of the neutrino signature from the Galactic halo can only probe DM annihilation cross sections. We present neutrino event rates in IceCube and KM3NeT arising from the neutrino flux produced by annihilation of Earth-captured DM heavier than 104 GeV . The IceCube and KM3NeT sensitivities to spin-independent DM-proton scattering cross section σχ p in this mass range are presented for both isospin-symmetric and isospin-violating cases.

  10. Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10 PeV with IceCube.

    PubMed

    Aartsen, M G; Abraham, K; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Andeen, K; Anderson, T; Ansseau, I; Anton, G; Archinger, M; Argüelles, C; Auffenberg, J; Axani, S; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Becker Tjus, J; Becker, K-H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blot, S; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H-P; Burgman, A; Carver, T; Casier, M; Cheung, E; Chirkin, D; Christov, A; Clark, K; Classen, L; Coenders, S; Collin, G H; Conrad, J M; Cowen, D F; Cross, R; Day, M; de André, J P A M; De Clercq, C; Del Pino Rosendo, E; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; Díaz-Vélez, J C; di Lorenzo, V; Dujmovic, H; Dumm, J P; Dunkman, M; Eberhardt, B; Ehrhardt, T; Eichmann, B; Eller, P; Euler, S; Evenson, P A; Fahey, S; Fazely, A R; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Flis, S; Fösig, C-C; Franckowiak, A; Friedman, E; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Ghorbani, K; Giang, W; Gladstone, L; Glagla, M; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Grant, D; Griffith, Z; Haack, C; Haj Ismail, A; Hallgren, A; Halzen, F; Hansen, E; Hansmann, B; Hansmann, T; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfel, K; Hoshina, K; Huang, F; Huber, M; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jeong, M; Jero, K; Jones, B J P; Jurkovic, M; Kappes, A; Karg, T; Karle, A; Katz, U; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kim, M; Kintscher, T; Kiryluk, J; Kittler, T; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, M; Krückl, G; Krüger, C; Kunnen, J; Kunwar, S; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lauber, F; Lennarz, D; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lu, L; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Mancina, S; Mandelartz, M; Maruyama, R; Mase, K; Maunu, R; McNally, F; Meagher, K; Medici, M; Meier, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Mohrmann, L; Montaruli, T; Moulai, M; Nahnhauer, R; Naumann, U; Neer, G; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke Pollmann, A; Olivas, A; O'Murchadha, A; Palczewski, T; Pandya, H; Pankova, D V; Penek, Ö; Pepper, J A; Pérez de Los Heros, C; Pieloth, D; Pinat, E; Price, P B; Przybylski, G T; Quinnan, M; Raab, C; Rädel, L; Rameez, M; Rawlins, K; Reimann, R; Relethford, B; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Rysewyk, D; Sabbatini, L; Sanchez Herrera, S E; Sandrock, A; Sandroos, J; Sarkar, S; Satalecka, K; Schimp, M; Schlunder, P; Schmidt, T; Schoenen, S; Schöneberg, S; Schumacher, L; Seckel, D; Seunarine, S; Soldin, D; Song, M; Spiczak, G M; Spiering, C; Stahlberg, M; Stanev, T; Stasik, A; Steuer, A; Stezelberger, T; Stokstad, R G; Stößl, A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Tatar, J; Tenholt, F; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tosi, D; Tselengidou, M; Turcati, A; Unger, E; Usner, M; Vandenbroucke, J; van Eijndhoven, N; Vanheule, S; van Rossem, M; van Santen, J; Veenkamp, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallace, A; Wallraff, M; Wandkowsky, N; Weaver, Ch; Weiss, M J; Wendt, C; Westerhoff, S; Whelan, B J; Wickmann, S; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wills, L; Wolf, M; Wood, T R; Woolsey, E; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zoll, M

    2016-12-09

    We report constraints on the sources of ultrahigh-energy cosmic rays (UHECRs) above 10^{9}  GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high- energy neutrino-induced events which have deposited energies from 5×10^{5}  GeV to above 10^{11}  GeV. Two neutrino-induced events with an estimated deposited energy of (2.6±0.3)×10^{6}  GeV, the highest neutrino energy observed so far, and (7.7±2.0)×10^{5}  GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6σ. The hypothesis that the observed events are of cosmogenic origin is also rejected at >99% CL because of the limited deposited energy and the nonobservation of events at higher energy, while their observation is consistent with an astrophysical origin. Our limits on cosmogenic neutrino fluxes disfavor the UHECR sources having a cosmological evolution stronger than the star formation rate, e.g., active galactic nuclei and γ-ray bursts, assuming proton-dominated UHECRs. Constraints on UHECR sources including mixed and heavy UHECR compositions are obtained for models of neutrino production within UHECR sources. Our limit disfavors a significant part of parameter space for active galactic nuclei and new-born pulsar models. These limits on the ultrahigh-energy neutrino flux models are the most stringent to date.

  11. Dark matter and neutrino mass from the smallest non-Abelian chiral dark sector

    NASA Astrophysics Data System (ADS)

    Berryman, Jeffrey M.; de Gouvêa, André; Kelly, Kevin J.; Zhang, Yue

    2017-10-01

    All pieces of concrete evidence for phenomena outside the standard model (SM)—neutrino masses and dark matter—are consistent with the existence of new degrees of freedom that interact very weakly, if at all, with those in the SM. We propose that these new degrees of freedom organize themselves into a simple dark sector, a chiral S U (3 )×S U (2 ) gauge theory with the smallest nontrivial fermion content. Similar to the SM, the dark S U (2 ) is spontaneously broken while the dark S U (3 ) confines at low energies. At the renormalizable level, the dark sector contains massless fermions—dark leptons—and stable massive particles—dark protons. We find that dark protons with masses between 10 and 100 TeV satisfy all current cosmological and astrophysical observations concerning dark matter even if dark protons are a symmetric thermal relic. The dark leptons play the role of right-handed neutrinos and allow simple realizations of the seesaw mechanism or the possibility that neutrinos are Dirac fermions. In the latter case, neutrino masses are also parametrically different from charged-fermion masses and the lightest neutrino is predicted to be massless. Since the new "neutrino" and "dark-matter" degrees of freedom interact with one another, these two new-physics phenomena are intertwined. Dark leptons play a nontrivial role in early Universe cosmology while indirect searches for dark matter involve, decisively, dark-matter annihilations into dark leptons. These, in turn, may lead to observable signatures at high-energy neutrino and gamma-ray observatories, especially once one accounts for the potential Sommerfeld enhancement of the annihilation cross section, derived from the low-energy dark-sector effective theory, a possibility we explore quantitatively in some detail.

  12. Is it possible to explain neutrino masses with scalar dark matter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boehm, Celine; Farzan, Yasaman; Hambye, Thomas

    2008-02-15

    We present a scenario in which a remarkably simple relation linking dark matter properties and neutrino masses naturally emerges. This framework points towards a low energy theory where the neutrino mass originates from the existence of a light scalar dark matter particle in the keV-MeV mass range. We discuss different ways to constrain and test this scenario by means of astrophysical and cosmological observations as well as laboratory experiments. Finally, we point out that one interesting aspect is that the implied mass range is compatible with the one required for the explanation of the mysterious emission of 511 keV photonsmore » from the center of our galaxy in terms of dark matter annihilation into e{sup +}e{sup -} pairs.« less

  13. Sterile neutrinos with non-standard secret interactions imprints on Cosmic Microwave Background anisotropies

    NASA Astrophysics Data System (ADS)

    Forastieri, F.

    2017-05-01

    Short baseline laboratory (SBL) anomalies have shown preference for light sterile neutrinos with eV masses. These particles, if confirmed, would be produced in the early universe and would add their contribution to the relativistic energy density basically increasing the effective number of extra relativistic species (N eff). It has been shown that when the matter potential produced by the sterile interactions becomes smaller than the vacuum oscillation frequency, sterile neutrinos are plentifully produced by the scattering effects in the sterile neutrino sector. This behaviour, however, leads to a ΔN eff ≃ 1 which is in tension at 3 - 5σ with the actual constraints given by the latest Cosmic Microwave Background radiation (CMB) observations. In order to avoid the thermalization of eV sterile neutrinos in the early universe, secret interactions between the sterile and active sectors mediated by a massive vector boson (MX < MW ) have been proposed. In particular, interactions mediated by a gauge boson having MX < 10 MeV would suppress the sterile neutrino production for T > 0.1 eV and seem to save the cosmological constraints coming from big-bang nucleosynthesis (BBN) and mass bounds. In this framework, cosmological observations represent a powerful tool to constrain neutrino physics complementary to laboratory experiments. In particular, observations of the CMB have the potential to constrain the properties of relic neutrinos, as well as of additional light relic particles in the universe. In this work we present the effects of the strength of the interaction on the neutrino fluid perturbations and on the CMB anisotropies power spectrum.

  14. Baryon asymmetry from leptogenesis with four zero neutrino Yukawa textures

    NASA Astrophysics Data System (ADS)

    Adhikary, Biswajit; Ghosal, Ambar; Roy, Probir

    2011-01-01

    The generation of the right amount of baryon asymmetry η of the Universe from supersymmetric leptogenesis is studied within the type-I seesaw framework with three heavy singlet Majorana neutrinos Ni (i = 1,2,3) and their superpartners. We assume the occurrence of four zeroes in the neutrino Yukawa coupling matrix Yν, taken to be μτ symmetric, in the weak basis where Ni (with real masses Mi > 0) and the charged leptons lα (α = e,μ,τ) are mass diagonal. The quadrant of the single nontrivial phase, allowed in the corresponding light neutrino mass matrix mν, gets fixed and additional constraints ensue from the requirement of matching η with its observed value. Special attention is paid to flavor effects in the washout of the lepton asymmetry. We also comment on the role of small departures from high scale μτ symmetry due to RG evolution.

  15. Neutrino trident production: a powerful probe of new physics with neutrino beams.

    PubMed

    Altmannshofer, Wolfgang; Gori, Stefania; Pospelov, Maxim; Yavin, Itay

    2014-08-29

    The production of a μ+ μ- pair from the scattering of a muon neutrino off the Coulomb field of a nucleus, known as neutrino trident production, is a subweak process that has been observed in only a couple of experiments. As such, we show that it constitutes an exquisitely sensitive probe in the search for new neutral currents among leptons, putting the strongest constraints on well-motivated and well-hidden extensions of the standard model gauge group, including the one coupled to the difference of the lepton number between the muon and tau flavor, Lμ-Lτ. The new gauge boson Z', increases the rate of neutrino trident production by inducing additional (μγαμ)(νγ(α)ν) interactions, which interfere constructively with the standard model contribution. Existing experimental results put significant restrictions on the parameter space of any model coupled to muon number Lμ, and disfavor a putative resolution to the muon g-2 discrepancy via the loop of Z' for any mass mZ'≳400  MeV. The reach to the models' parameter space can be widened with future searches of the trident production at high-intensity neutrino facilities such as the LBNE.

  16. Search for sterile neutrinos in gallium experiments with artificial neutrino sources

    NASA Astrophysics Data System (ADS)

    Gavrin, V. N.; Cleveland, B. T.; Gorbachev, V. V.; Ibragimova, T. V.; Kalikhov, A. V.; Kozlova, Yu. P.; Mirmov, I. N.; Shikhin, A. A.; Veretenkin, E. P.

    2017-11-01

    The possibility of the BEST experiment on electron neutrino disappearance with intense artificial sources of electron neutrino 51Cr is considered. BEST has the great potential to search for transitions of active neutrinos to sterile states with Δ m 2 ˜ 1 eV2 and to set the limits on short baseline electron neutrino disappearance oscillation parameters. The possibility of the further constraints the oscillation parameters region with using 65Zn source is discussed.

  17. Cosmology favoring extra radiation and sub-eV mass sterile neutrinos as an option.

    PubMed

    Hamann, Jan; Hannestad, Steen; Raffelt, Georg G; Tamborra, Irene; Wong, Yvonne Y Y

    2010-10-29

    Precision cosmology and big-bang nucleosynthesis mildly favor extra radiation in the Universe beyond photons and ordinary neutrinos, lending support to the existence of low-mass sterile neutrinos. We use the WMAP 7-year data, small-scale cosmic microwave background observations from ACBAR, BICEP, and QuAD, the SDSS 7th data release, and measurement of the Hubble parameter from HST observations to derive credible regions for the assumed common mass scale m{s} and effective number N{s} of thermally excited sterile neutrino states. Our results are compatible with the existence of one or perhaps two sterile neutrinos, as suggested by LSND and MiniBooNE, if m{s} is in the sub-eV range.

  18. Lepton-number-charged scalars and neutrino beamstrahlung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berryman, Jeffrey M.; de Gouvea, Andre; Kelly, Kevin J.

    Experimentally, baryon number minus lepton number, $B-L$, appears to be a good global symmetry of nature. We explore the consequences of the existence of gauge-singlet scalar fields charged under $B-L$ $-$dubbed lepton-number-charged scalars, LeNCS $-$and postulate that these couple to the standard model degrees of freedom in such a way that $B-L$ is conserved even at the non-renormalizable level. In this framework, neutrinos are Dirac fermions. Including only the lowest mass-dimension effective operators, some of the LeNCS couple predominantly to neutrinos and may be produced in terrestrial neutrino experiments. We examine several existing constraints from particle physics, astrophysics, and cosmologymore » to the existence of a LeNCS carrying $B-L$ charge equal to two, and discuss the emission of LeNCS's via "neutrino beamstrahlung," which occurs every once in a while when neutrinos scatter off of ordinary matter. In conclusion, we identify regions of the parameter space where existing and future neutrino experiments, including the Deep Underground Neutrino Experiment, are at the frontier of searches for such new phenomena.« less

  19. Lepton-number-charged scalars and neutrino beamstrahlung

    DOE PAGES

    Berryman, Jeffrey M.; de Gouvea, Andre; Kelly, Kevin J.; ...

    2018-04-23

    Experimentally, baryon number minus lepton number, $B-L$, appears to be a good global symmetry of nature. We explore the consequences of the existence of gauge-singlet scalar fields charged under $B-L$ $-$dubbed lepton-number-charged scalars, LeNCS $-$and postulate that these couple to the standard model degrees of freedom in such a way that $B-L$ is conserved even at the non-renormalizable level. In this framework, neutrinos are Dirac fermions. Including only the lowest mass-dimension effective operators, some of the LeNCS couple predominantly to neutrinos and may be produced in terrestrial neutrino experiments. We examine several existing constraints from particle physics, astrophysics, and cosmologymore » to the existence of a LeNCS carrying $B-L$ charge equal to two, and discuss the emission of LeNCS's via "neutrino beamstrahlung," which occurs every once in a while when neutrinos scatter off of ordinary matter. In conclusion, we identify regions of the parameter space where existing and future neutrino experiments, including the Deep Underground Neutrino Experiment, are at the frontier of searches for such new phenomena.« less

  20. Impact of heavy sterile neutrinos on the triple Higgs coupling

    NASA Astrophysics Data System (ADS)

    Baglio, J.; Weiland, C.

    2017-07-01

    New physics beyond the Standard Model is required to give mass to the light neutrinos. One of the simplest ideas is to introduce new heavy, gauge singlet fermions that play the role of right-handed neutrinos in a seesaw mechanism. They could have large Yukawa couplings to the Higgs boson, affecting the Higgs couplings and in particular the triple Higgs coupling $\\lambda_{HHH}^{}$, the measure of which is one of the major goals of the LHC and of future colliders. We present a study of the impact of these heavy neutrinos on $\\lambda_{HHH}^{}$ at the one-loop level, first in a simplified 3+1 model with one heavy Dirac neutrino and then in the inverse seesaw model. Taking into account all possible experimental constraints, we find that sizeable deviations of the order of 35% are possible, large enough to be detected at future colliders, making the triple Higgs coupling a new, viable observable to constrain neutrino mass models. The effects are generic and are expected in any new physics model including TeV-scale fermions with large Yukawa couplings to the Higgs boson, such as those using the neutrino portal.

  1. Generalized one-loop neutrino mass model with charged particles

    NASA Astrophysics Data System (ADS)

    Cheung, Kingman; Okada, Hiroshi

    2018-04-01

    We propose a radiative neutrino-mass model by introducing 3 generations of fermion pairs E-(N +1 )/2E+(N +1 )/2 and a couple of multicharged bosonic doublet fields ΦN /2,ΦN /2 +1, where N =1 , 3, 5, 7, 9. We show that the models can satisfy the neutrino masses and oscillation data, and are consistent with lepton-flavor violations, the muon anomalous magnetic moment, the oblique parameters, and the beta function of the U (1 )Y hypercharge gauge coupling. We also discuss the collider signals for various N , namely, multicharged leptons in the final state from the Drell-Yan production of E-(N +1 )/2E+(N +1 )/2. In general, the larger the N the more charged leptons will appear in the final state.

  2. /(3+1)-spectrum of neutrino masses: a chance for LSND?

    NASA Astrophysics Data System (ADS)

    Peres, O. L. G.; Smirnov, A. Y.

    2001-04-01

    If active to active neutrino transitions are dominant modes of the atmospheric (νμ-->ντ) and the solar neutrino oscillations (νe-->νμ/ντ), as is indicated by recent data, the favoured scheme which accommodates the LSND result - the so-called /(2+2)-scheme - should be discarded. We introduce the parameters ηsatm and ηssun which quantify an involvement of the sterile component in the solar and atmospheric neutrino oscillations. The /(2+2)-scheme predicts ηsatm+ηssun=1 and the experimental proof of deviation from this equality will discriminate the scheme. In this connection the /(3+1)-scheme is revisited in which the fourth (predominantly sterile) neutrino is isolated from a block of three flavour neutrinos by the mass gap Δm2LSND~(0.4-10) eV2. We find that in the /(3+1)-scheme the LSND result can be reconciled with existing bounds on νe- and νμ-disappearance at 95-99% C.L. The generic prediction of the scheme is the νe- and νμ-disappearance probabilities at the level of present experimental bounds. The possibility to strengthen the bound on νμ-disappearance in the KEK - front detector experiment is studied. We consider phenomenology of the /(3+1)-scheme, in particular, its implications for the atmospheric neutrinos, neutrinoless double beta decay searches, supernova neutrinos and primordial nucleosynthesis.

  3. Cosmology Favoring Extra Radiation and Sub-eV Mass Sterile Neutrinos as an Option

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, Jan; Hannestad, Steen; Raffelt, Georg G.

    2010-10-29

    Precision cosmology and big-bang nucleosynthesis mildly favor extra radiation in the Universe beyond photons and ordinary neutrinos, lending support to the existence of low-mass sterile neutrinos. We use the WMAP 7-year data, small-scale cosmic microwave background observations from ACBAR, BICEP, and QuAD, the SDSS 7th data release, and measurement of the Hubble parameter from HST observations to derive credible regions for the assumed common mass scale m{sub s} and effective number N{sub s} of thermally excited sterile neutrino states. Our results are compatible with the existence of one or perhaps two sterile neutrinos, as suggested by LSND and MiniBooNE, ifmore » m{sub s} is in the sub-eV range.« less

  4. Fermionic dark matter and neutrino masses in a B - L model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sánchez-Vega, B. L.; Schmitz, E. R.

    2015-09-01

    In this work we present a common framework for neutrino masses and dark matter. Specifically, we work with a local B - L extension of the standard model which has three right-handed neutrinos, n(Ri), and some extra scalars, Phi, phi(i), besides the standard model fields. The n(Ri)'s have nonstandard B - L quantum numbers and thus these couple to different scalars. This model has the attractive property that an almost automatic Z(2) symmetry acting only on a fermionic field, n(R3), is present. Taking advantage of this Z(2) symmetry, we study both the neutrino mass generation via a natural seesaw mechanismmore » at low energy and the possibility of n(R3) being a dark matter candidate. For this last purpose, we study its relic abundance and its compatibility with the current direct detection experiments.« less

  5. Limiting neutrino magnetic moments with Borexino Phase-II solar neutrino data

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Altenmüller, K.; Appel, S.; Atroshchenko, V.; Bagdasarian, Z.; Basilico, D.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Caprioli, S.; Carlini, M.; Cavalcante, P.; Chepurnov, A.; Choi, K.; Collica, L.; D'Angelo, D.; Davini, S.; Derbin, A.; Ding, X. F.; Di Ludovico, A.; Di Noto, L.; Drachnev, I.; Fomenko, K.; Formozov, A.; Franco, D.; Froborg, F.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goretti, A.; Gromov, M.; Guffanti, D.; Hagner, C.; Houdy, T.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jany, A.; Jeschke, D.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Lukyanchenko, L.; Machulin, I.; Manuzio, G.; Marcocci, S.; Martyn, J.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Muratova, V.; Neumair, B.; Oberauer, L.; Opitz, B.; Orekhov, V.; Ortica, F.; Pallavicini, M.; Papp, L.; Penek, Ã.-.; Pilipenko, N.; Pocar, A.; Porcelli, A.; Ranucci, G.; Razeto, A.; Re, A.; Redchuk, M.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stokes, L. F. F.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vishneva, A.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.; Borexino Collaboration

    2017-11-01

    A search for the solar neutrino effective magnetic moment has been performed using data from 1291.5 days exposure during the second phase of the Borexino experiment. No significant deviations from the expected shape of the electron recoil spectrum from solar neutrinos have been found, and a new upper limit on the effective neutrino magnetic moment of μνeff<2.8×10 -11 μB at 90% C.L. has been set using constraints on the sum of the solar neutrino fluxes implied by the radiochemical gallium experiments. Using the limit for the effective neutrino moment, new limits for the magnetic moments of the neutrino flavor states, and for the elements of the neutrino magnetic moments matrix for Dirac and Majorana neutrinos, are derived.

  6. Improving the neutrino mass hierarchy identification with inelasticity measurement in PINGU and ORCA

    NASA Astrophysics Data System (ADS)

    Ribordy, Mathieu; Smirnov, A. Yu.

    2013-06-01

    Multimegaton scale in under-ice and underwater detectors of atmospheric neutrinos with a few GeV energy threshold (PINGU, ORCA) open up new possibilities in the determination of neutrino properties, and in particular the neutrino mass hierarchy. With a dense array of optical modules it will be possible to determine the inelasticity, y, of the charged current νμ events in addition to the neutrino energy Eν and the muon zenith angle θμ. The discovery potential of the detectors will substantially increase with the measurement of y. It will enable (i) a partial separation of the neutrino and antineutrino signals, (ii) a better reconstruction of the neutrino direction, (iii) the reduction of the neutrino parameters degeneracy, (iv) a better control of systematic uncertainties, and (v) a better identification of the νμ events. It will improve the sensitivity to the CP-violation phase. The three-dimensional (Eν,θμ,y), νμ oscillograms with the kinematical as well as the experimental smearing are computed. We present the asymmetry distributions in the Eν-θμ plane for different intervals of y and study their properties. We show that the inelasticity information reduces the effect of degeneracy of parameters by 30%. With the inelasticity, the total significance of establishing mass hierarchy may increase by (20-50)%, thus effectively increasing the volume of the detector by a factor of 1.5-2.

  7. Connecting Majorana phases to the geometric parameters of the Majorana unitarity triangle in a neutrino mass matrix model

    NASA Astrophysics Data System (ADS)

    Verma, Surender; Bhardwaj, Shankita

    2018-05-01

    We have investigated a possible connection between the Majorana phases and geometric parameters of Majorana unitarity triangle (MT) in two-texture zero neutrino mass matrix. Such analytical relations can, also, be obtained for other theoretical models viz. hybrid textures, neutrino mass matrix with vanishing minors and have profound implications for geometric description of C P violation. As an example, we have considered the two-texture zero neutrino mass model to obtain a relation between Majorana phases and MT parameters that may be probed in various lepton number violating processes. In particular, we find that Majorana phases depend on only one of the three interior angles of the MT in each class of two-texture zero neutrino mass matrix. We have also constructed the MT for class A , B , and C neutrino mass matrices. Nonvanishing areas and nontrivial orientations of these Majorana unitarity triangles indicate nonzero C P violation as a generic feature of this class of mass models.

  8. Neutrino mass model with S3 symmetry and seesaw interplay

    NASA Astrophysics Data System (ADS)

    Pramanick, Soumita; Raychaudhuri, Amitava

    2016-12-01

    We develop a seesaw model for neutrino masses and mixing with an S3×Z3 symmetry. It involves an interplay of type-I and type-II seesaw contributions of which the former is subdominant. The S3×Z3 quantum numbers of the fermion and scalar fields are chosen such that the type-II seesaw generates a mass matrix which incorporates the atmospheric mass splitting and sets θ23=π /4 . The solar splitting and θ13 are absent, while the third mixing angle can achieve any value, θ120. Specific choices of θ120 are of interest, e.g., 35.3° (tribimaximal), 45.0° (bimaximal), 31.7° (golden ratio), and 0° (no solar mixing). The role of the type-I seesaw is to nudge all the above into the range indicated by the data. The model results in novel interrelationships between these quantities due to their common origin, making it readily falsifiable. For example, normal (inverted) ordering is associated with θ23 in the first (second) octant. C P violation is controlled by phases in the right-handed neutrino Majorana mass matrix, Mν R . In their absence, only normal ordering is admissible. When Mν R is complex, the Dirac C P phase, δ , can be large, i.e., ˜±π /2 , and inverted ordering is also allowed. The preliminary results from T2K and NOVA which favor normal ordering and δ ˜-π /2 are indicative, in this model, of a lightest neutrino mass of 0.05 eV or more.

  9. On the Effective Mass of the Electron Neutrino in Beta Decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farzan, Yasaman

    2002-12-20

    In the presence of mixing between massive neutrino states, the distortion of the electron spectrum in beta decay is, in general, a function of several masses and mixing angles. For 3{nu}-schemes which describe the solar and atmospheric neutrino data, this distortion can be described by a single effective mass, under certain conditions. In the literature, two different definitions for the effective mass have been suggested. We show that for quasi-degenerate mass schemes (with an overall mass scale m and splitting {Delta}m{sup 2}) the two definitions coincide up to ({Delta}m{sup 2}){sup 2}/m{sup 4} corrections. We consider the impact of different effectivemore » masses on the integral energy spectrum. We show that the spectrum with a single mass can be used also to fit the data in the case of 4{nu}-schemes motivated, in particular, by the LSND results. In this case the accuracy of the mass determination turns out to be better than (10-15)%.« less

  10. Neutrino masses, dark matter and leptogenesis with U(1) B - L gauge symmetry

    NASA Astrophysics Data System (ADS)

    Geng, Chao-Qiang; Okada, Hiroshi

    2018-06-01

    We propose a model with an U(1) B - L gauge symmetry, in which small neutrino masses, dark matter and the matter-antimatter asymmetry in the Universe can be simultaneously explained. In particular, the neutrino masses are generated radiatively, while the matter-antimatter asymmetry is led by the leptogenesis mechanism, at TeV scale. We also explore allowed regions of the model parameters and discuss some phenomenological effects, including lepton flavor violating processes.

  11. Neutrino mass, dark matter, and Baryon asymmetry via TeV-scale physics without fine-tuning.

    PubMed

    Aoki, Mayumi; Kanemura, Shinya; Seto, Osamu

    2009-02-06

    We propose an extended version of the standard model, in which neutrino oscillation, dark matter, and the baryon asymmetry of the Universe can be simultaneously explained by the TeV-scale physics without assuming a large hierarchy among the mass scales. Tiny neutrino masses are generated at the three-loop level due to the exact Z2 symmetry, by which the stability of the dark matter candidate is guaranteed. The extra Higgs doublet is required not only for the tiny neutrino masses but also for successful electroweak baryogenesis. The model provides discriminative predictions especially in Higgs phenomenology, so that it is testable at current and future collider experiments.

  12. A search for muon neutrino to electron neutrino oscillation mediated by sterile neutrinos in MINOS+

    NASA Astrophysics Data System (ADS)

    Germani, Stefano; Schreckenberger, Adam P.

    2017-09-01

    The MINOS experiment made precision measurements of the neutrino oscillation parameters that are governed by the atmospheric mass-squared splitting. These measurements were made with data that were collected while the NuMI muon neutrino beam operated in a low energy mode that peaks around 3 GeV. Today the NuMI beam is running with a higher energy mode that produces a neutrino energy spectrum that peaks around 7 GeV, allowing the MINOS+ experiment to probe neutrino oscillation phenomena that could potentially be governed by a fourth mass-squared splitting. If observed, the presence of a fourth mass-squared splitting would be compelling evidence for a sterile neutrino state. In this analysis, we will present the results of a search for νµ → νe oscillation mediated by sterile neutrinos in MINOS+. The results will be contrasted against the measurements made by the LSND experiment.

  13. Neutrino and C P -even Higgs boson masses in a nonuniversal U (1 )' extension

    NASA Astrophysics Data System (ADS)

    Mantilla, S. F.; Martinez, R.; Ochoa, F.

    2017-05-01

    We propose a new anomaly-free and family nonuniversal U (1 )' extension of the standard model with the addition of two scalar singlets and a new scalar doublet. The quark sector is extended by adding three exotic quark singlets, while the lepton sector includes two exotic charged lepton singlets, three right-handed neutrinos, and three sterile Majorana leptons to obtain the fermionic mass spectrum of the standard model. The lepton sector also reproduces the elements of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix and the squared-mass differences data from neutrino oscillation experiments. Also, analytical relations of the PMNS matrix are derived via the inverse seesaw mechanism, and numerical predictions of the parameters in both normal and inverse order scheme for the mass of the phenomenological neutrinos are obtained. We employed a simple seesawlike method to obtain analytical mass eigenstates of the C P -even 3 ×3 mass matrix of the scalar sector.

  14. Curtailing the dark side in non-standard neutrino interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coloma, Pilar; Denton, Peter B.; Gonzalez-Garcia, Maria C.

    In presence of non-standard neutrino interactions the neutrino flavor evolution equation is affected by a degeneracy which leads to the so-called LMA-Dark solution. It requires a solar mixing angle in the second octant and implies an ambiguity in the neutrino mass ordering. Non-oscillation experiments are required to break this degeneracy. We perform a combined analysis of data from oscillation experiments with the neutrino scattering experiments CHARM and NuTeV. We find that the degeneracy can be lifted if the non-standard neutrino interactions take place with down quarks, but it remains for up quarks. However, CHARM and NuTeV constraints apply only ifmore » the new interactions take place through mediators not much lighter than the electroweak scale. For light mediators we consider the possibility to resolve the degeneracy by using data from future coherent neutrino-nucleus scattering experiments. Here we find that, for an experiment using a stopped-pion neutrino source, the LMA-Dark degeneracy will either be resolved, or the presence of new interactions in the neutrino sector will be established with high significance.« less

  15. Curtailing the dark side in non-standard neutrino interactions

    DOE PAGES

    Coloma, Pilar; Denton, Peter B.; Gonzalez-Garcia, Maria C.; ...

    2017-04-20

    In presence of non-standard neutrino interactions the neutrino flavor evolution equation is affected by a degeneracy which leads to the so-called LMA-Dark solution. It requires a solar mixing angle in the second octant and implies an ambiguity in the neutrino mass ordering. Non-oscillation experiments are required to break this degeneracy. We perform a combined analysis of data from oscillation experiments with the neutrino scattering experiments CHARM and NuTeV. We find that the degeneracy can be lifted if the non-standard neutrino interactions take place with down quarks, but it remains for up quarks. However, CHARM and NuTeV constraints apply only ifmore » the new interactions take place through mediators not much lighter than the electroweak scale. For light mediators we consider the possibility to resolve the degeneracy by using data from future coherent neutrino-nucleus scattering experiments. Here we find that, for an experiment using a stopped-pion neutrino source, the LMA-Dark degeneracy will either be resolved, or the presence of new interactions in the neutrino sector will be established with high significance.« less

  16. Seeking sterile neutrinos in Finslerian cosmology

    NASA Astrophysics Data System (ADS)

    Wang, Deng; Meng, Xin-He

    2017-11-01

    For the first time, to search for sterile neutrinos in the framework of Finler geometry, we constrain four cosmological models using the most stringent constraint we can provide so far. We find that the Finslerian massless sterile neutrino model can, respectively, give a better cosmological fit to data and alleviate the current H_0 tension more effectively than the other three models. For the Finslerian massless sterile neutrino model, we obtain the constraint N_eff=3.237^{+0.092}_{-0.185}, which is consistent with Δ N_eff > 0 at the 1.03σ confidence level (CL). This gives a very weak hint of massless sterile neutrinos and may imply the non-existence of massless sterile neutrinos in the Finslerian cosmological setting. For the Finslerian massive sterile neutrino model, we obtain the constraints N_eff=3.143^{+0.064}_{-0.066}, which favors Δ N_eff > 0 at the 1.47σ CL, and m_{ν , sterile}^eff < 0.121 eV at the 2σ CL which is much tighter than the Planck results. This very tight restriction appears to indicate the massive sterile neutrinos are also non-existent in the Finslerian scenarios. Consequently, one may conclude that the sterile neutrinos are possibly non-existent in the Finslerian universe. Our results are compatible with the recent results of the neutrino oscillation experiments implemented by the Daya Bay and MINOS collaborations and the cosmic ray one carried out by the IceCube collaboration.

  17. Neutrino mixing and big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Bell, Nicole

    2003-04-01

    We analyse active-active neutrino mixing in the early universe and show that transformation of neutrino-antineutrino asymmetries between flavours is unavoidable when neutrino mixing angles are large. This process is a standard Mikheyev-Smirnov-Wolfenstein flavour transformation, modified by the synchronisation of momentum states which results from neutrino-neutrino forward scattering. The new constraints placed on neutrino asymmetries eliminate the possibility of degenerate big bang nucleosynthesis.Implications of active-sterile neutrino mixing will also be reviewed.

  18. Pseudoscalar—sterile neutrino interactions: reconciling the cosmos with neutrino oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archidiacono, Maria; Gariazzo, Stefano; Giunti, Carlo

    2016-08-01

    The Short BaseLine (SBL) neutrino oscillation anomalies hint at the presence of a sterile neutrino with a mass of around 1 eV. However, such a neutrino is incompatible with cosmological data, in particular observations of the Cosmic Microwave Background (CMB) anisotropies. However, this conclusion can change by invoking new physics. One possibility is to introduce a secret interaction in the sterile neutrino sector mediated by a light pseudoscalar. In this pseudoscalar model, CMB data prefer a sterile neutrino mass that is fully compatible with the mass ranges suggested by SBL anomalies. In addition, this model predicts a value of themore » Hubble parameter which is completely consistent with local measurements.« less

  19. Final scientific and technical report: New experiments to measure the neutrino mass scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monreal, Benjamin

    In this work, we made material progress towards future measurements of the mass of the neutrino. The neutrino is a fundamental particle, first observed in the 1950s and subjected to particularly intense study over the past 20 years. It is now known to have some, non-zero mass, but we are in an unusual situation of knowing the mass exists but not knowing what value it takes. The mass may be determined by precise measurements of certain radioactive decay distributions, particularly the beta decay of tritium. The KATRIN experiment is an international project which is nearing the beginning of a tritiummore » measurement campaign using a large electrostatic spectrumeter. This research included participation in KATRIN, including construction and delivery of a key calibration subsystem, the ``Rear Section''. To obtain sensitivity beyond KATRIN's, new techniques are required; this work included R&D on a new technique we call CRES (Cyclotron Resonance Electron Spectroscopy) which has promise to enable even more sensitive tritium decay measurements. We successfully carried out CRES spectroscopy in a model system in 2014, making an important step towards the design of a next-generation tritium experiment with new neutrino mass measurement abilities.« less

  20. Mass relation for neutrinos

    PubMed

    Babu; Barr

    2000-08-07

    A generalization of the well-known Georgi-Jarlskog relation (m(&mgr;)/m(tau)) = 3(m(s)/m(b)) to neutrinos is found in the context of SO(10). This new relation is (m(nu(&mgr;))/m(nu(tau))) = 16(m(c)/m(t)), which is consistent with present data, assuming the Mikheyev-Smirnov-Wolfenstein solution to the solar neutrino problem.

  1. Discovering intermediate mass sterile neutrinos through τ-→π-μ-e+ν (or ν ¯ ) decay

    NASA Astrophysics Data System (ADS)

    Kim, C. S.; López Castro, G.; Sahoo, Dibyakrupa

    2017-10-01

    Distinguishing the Dirac and Majorana nature of neutrinos remains one of the most important tasks in neutrino physics. By assuming that the τ-→π-μ-e+ν (or ν ¯ ) decay is resonantly enhanced by the exchange of an intermediate mass sterile neutrino N , we show that the energy spectrum of emitted pions and muons can be used to easily distinguish between the Dirac and Majorana nature of N . This method takes advantage of the fact that the flavor of light neutrinos is not identified in the tau decay under consideration. We find that it is particularly advantageous, because of no competing background events, to search for N in the mass range me+mμ≤mN≤mμ+mπ, where mX denotes the mass of particle X ∈{e ,μ ,π ,N }.

  2. MeV-scale sterile neutrino decays at the Fermilab Short-Baseline Neutrino program

    NASA Astrophysics Data System (ADS)

    Ballett, Peter; Pascoli, Silvia; Ross-Lonergan, Mark

    2017-04-01

    Nearly-sterile neutrinos with masses in the MeV range and below would be produced in the beam of the Short-Baseline Neutrino (SBN) program at Fermilab. In this article, we study the potential for SBN to discover these particles through their subsequent decays in its detectors. We discuss the decays which will be visible at SBN in a minimal and non-minimal extension of the Standard Model, and perform simulations to compute the parameter space constraints which could be placed in the absence of a signal. We demonstrate that the SBN programme can extend existing bounds on well constrained channels such as N → ν l + l - and N → l ± π ∓ while, thanks to the strong particle identification capabilities of liquid-Argon technology, also place bounds on often neglected channels such as N → νγ and N → νπ 0. Furthermore, we consider the phenomenological impact of improved event timing information at the three detectors. As well as considering its role in background reduction, we note that if the light-detection systems in SBND and ICARUS can achieve nanosecond timing resolution, the effect of finite sterile neutrino mass could be directly observable, providing a smoking-gun signature for this class of models. We stress throughout that the search for heavy nearly-sterile neutrinos is a complementary new physics analysis to the search for eV-scale oscillations, and would extend the BSM programme of SBN while requiring no beam or detector modifications.

  3. New U(1) gauge model of radiative lepton masses with sterile neutrino and dark matter

    DOE PAGES

    Adhikari, Rathin; Borah, Debasish; Ma, Ernest

    2016-02-23

    Here, an anomaly-free U(1) gauge extension of the standard model (SM) is presented. Only one Higgs doublet with a nonzero vacuum expectation is required as in the SM. New fermions and scalars as well as all SM particles transform nontrivially under this U(1), resulting in a model of three active neutrinos and one sterile neutrino, all acquiring radiative masses. Charged-lepton masses are also radiative as well as the mixing between active and sterile neutrinos. At the same time, a residual Z 2 symmetry of the U(1) gauge symmetry remains exact, allowing for the existence of dark matter.

  4. Oscillation properties of active and sterile neutrinos and neutrino anomalies at short distances

    NASA Astrophysics Data System (ADS)

    Khruschov, V. V.; Fomichev, S. V.; Titov, O. A.

    2016-09-01

    A generalized phenomenological (3 + 2 + 1) model featuring three active and three sterile neutrinos that is intended for calculating oscillation properties of neutrinos for the case of a normal activeneutrino mass hierarchy and a large splitting between the mass of one sterile neutrino and the masses of the other two sterile neutrinos is considered. A new parametrization and a specific form of the general mixing matrix are proposed for active and sterile neutrinos with allowance for possible CP violation in the lepton sector, and test values are chosen for the neutrino masses and mixing parameters. The probabilities for the transitions between different neutrino flavors are calculated, and graphs representing the probabilities for the disappearance of muon neutrinos/antineutrinos and the appearance of electron neutrinos/antineutrinos in a beam of muon neutrinos/antineutrinos versus the distance from the neutrino source for various values of admissible model parameters at neutrino energies not higher than 50 MeV, as well as versus the ratio of this distance to the neutrino energy, are plotted. It is shown that the short-distance accelerator anomaly in neutrino data (LNSD anomaly) can be explained in the case of a specific mixing matrix for active and sterile neutrinos (which belongs to the a 2 type) at the chosen parameter values. The same applies to the short-distance reactor and gallium anomalies. The theoretical results obtained in the present study can be used to interpret and predict the results of ground-based neutrino experiments aimed at searches for sterile neutrinos, as well as to analyze some astrophysical observational data.

  5. Hiding an elephant: heavy sterile neutrino with large mixing angle does not contradict cosmology

    NASA Astrophysics Data System (ADS)

    Bezrukov, F.; Chudaykin, A.; Gorbunov, D.

    2017-06-01

    We study a model of a keV-scale sterile neutrino with a relatively large mixing with the Standard Model sector. Usual considerations predict active generation of such particles in the early Universe, which leads to constraints from the total Dark Matter density and absence of X-ray signal from sterile neutrino decay. These bounds together may deem any attempt of creation of the keV scale sterile neutrino in the laboratory unfeasible. We argue that for models with a hidden sector coupled to the sterile neutrino these bounds can be evaded, opening new perspectives for the direct studies at neutrino experiments such as Troitsk ν-mass and KATRIN. We estimate the generation of sterile neutrinos in scenarios with the hidden sector dynamics keeping the sterile neutrinos either massless or superheavy in the early Universe. In both cases the generation by oscillations from active neutrinos in plasma is suppressed.

  6. Oscillation properties of active and sterile neutrinos and neutrino anomalies at short distances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khruschov, V. V., E-mail: khruschov-vv@nrcki.ru; Fomichev, S. V., E-mail: fomichev-sv@nrcki.ru; Titov, O. A., E-mail: titov-oa@nrcki.ru

    2016-09-15

    A generalized phenomenological (3 + 2 + 1) model featuring three active and three sterile neutrinos that is intended for calculating oscillation properties of neutrinos for the case of a normal active neutrino mass hierarchy and a large splitting between the mass of one sterile neutrino and the masses of the other two sterile neutrinos is considered. A new parametrization and a specific form of the general mixing matrix are proposed for active and sterile neutrinos with allowance for possible CP violation in the lepton sector, and test values are chosen for the neutrino masses and mixing parameters. The probabilitiesmore » for the transitions between different neutrino flavors are calculated, and graphs representing the probabilities for the disappearance of muon neutrinos/antineutrinos and the appearance of electron neutrinos/antineutrinos in a beam of muon neutrinos/antineutrinos versus the distance from the neutrino source for various values of admissible model parameters at neutrino energies not higher than 50 MeV, as well as versus the ratio of this distance to the neutrino energy, are plotted. It is shown that the short-distance accelerator anomaly in neutrino data (LNSD anomaly) can be explained in the case of a specific mixing matrix for active and sterile neutrinos (which belongs to the a{sub 2} type) at the chosen parameter values. The same applies to the short-distance reactor and gallium anomalies. The theoretical results obtained in the present study can be used to interpret and predict the results of ground-based neutrino experiments aimed at searches for sterile neutrinos, as well as to analyze some astrophysical observational data.« less

  7. Limiting Superluminal Electron and Neutrino Velocities Using the 2010 Crab Nebula Flare and the IceCube PeV Neutrino Events

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2014-01-01

    The observation of two PetaelectronVolt (PeV)-scale neutrino events reported by Ice Cube allows one to place constraints on Lorentz invariance violation (LIV) in the neutrino sector. After first arguing that at least one of the PetaelectronVolt IceCube events was of extragalactic origin, I derive an upper limit for the difference between putative superluminal neutrino and electron velocities of less than or equal to approximately 5.6 x 10(exp -19) in units where c = 1, confirming that the observed PetaelectronVolt neutrinos could have reached Earth from extragalactic sources. I further derive a new constraint on the superluminal electron velocity, obtained from the observation of synchrotron radiation from the Crab Nebula flare of September, 2010. The inference that the greater than 1 GigaelectronVolt gamma-rays from synchrotron emission in the flare were produced by electrons of energy up to approx. 5.1 PetaelectronVolt indicates the nonoccurrence of vacuum Cerenkov radiation by these electrons. This implies a new, strong constraint on superluminal electron velocities delta(sub e) less than or equal to approximately 5 x 10(exp -21). It immediately follows that one then obtains an upper limit on the superluminal neutrino velocity alone of delta(sub v) less than or equal to approximately 5.6 x 10(exp -19), many orders of magnitude better than the time-of-flight constraint from the SN1987A neutrino burst. However, if the electrons are subluminal the constraint on the absolute value of delta(sub e) less than or equal to approximately 8 x 10(exp -17), obtained from the Crab Nebula gamma-ray spectrum, places a weaker constraint on superluminal neutrino velocity of delta(sub v) less than or equal to approximately 8 x 10(exp -17).

  8. Constraining neutrino masses with the integrated-Sachs-Wolfe-galaxy correlation function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesgourgues, Julien; Valkenburg, Wessel; Gaztanaga, Enrique

    2008-03-15

    Temperature anisotropies in the cosmic microwave background (CMB) are affected by the late integrated Sachs-Wolfe (lISW) effect caused by any time variation of the gravitational potential on linear scales. Dark energy is not the only source of lISW, since massive neutrinos induce a small decay of the potential on small scales during both matter and dark energy domination. In this work, we study the prospect of using the cross correlation between CMB and galaxy-density maps as a tool for constraining the neutrino mass. On the one hand massive neutrinos reduce the cross-correlation spectrum because free-streaming slows down structure formation; onmore » the other hand, they enhance it through their change in the effective linear growth. We show that in the observable range of scales and redshifts, the first effect dominates, but the second one is not negligible. We carry out an error forecast analysis by fitting some mock data inspired by the Planck satellite, Dark Energy Survey (DES) and Large Synoptic Survey Telescope (LSST). The inclusion of the cross correlation data from Planck and LSST increases the sensitivity to the neutrino mass m{sub {nu}} by 38% (and to the dark energy equation of state w by 83%) with respect to Planck alone. The correlation between Planck and DES brings a far less significant improvement. This method is not potentially as good for detecting m{sub {nu}} as the measurement of galaxy, cluster, or cosmic shear power spectra, but since it is independent and affected by different systematics, it remains potentially interesting if the total neutrino mass is of the order of 0.2 eV; if instead it is close to the lower bound from atmospheric oscillations, m{sub {nu}}{approx}0.05 eV, we do not expect the ISW-galaxy correlation to be ever sensitive to m{sub {nu}}.« less

  9. Effect of collisions on neutrino flavor inhomogeneity in a dense neutrino gas

    DOE PAGES

    Cirigliano, Vincenzo; Paris, Mark W.; Shalgar, Shashank

    2017-09-25

    We investigate the stability, with respect to spatial inhomogeneity, of a two-dimensional dense neutrino gas. The system exhibits growth of seed inhomogeneity due to nonlinear coherent neutrino self-interactions. In the absence of incoherent collisional effects, we also observe a dependence of this instability growth rate on the neutrino mass spectrum: the normal neutrino mass hierarchy exhibits spatial instability over a larger range of neutrino number density compared to that of the inverted case. Furthermore, we consider the effect of elastic incoherent collisions of the neutrinos with a static background of heavy, nucleon-like scatterers. At small scales, the growth of flavormore » instability can be suppressed by collisions. At large length scales we find, perhaps surprisingly, that for inverted neutrino mass hierarchy incoherent collisions fail to suppress flavor instabilities, independent of the coupling strength.« less

  10. Minimal model linking two great mysteries: Neutrino mass and dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farzan, Yasaman

    2009-10-01

    We present an economic model that establishes a link between neutrino masses and properties of the dark matter candidate. The particle content of the model can be divided into two groups: light particles with masses lighter than the electroweak scale and heavy particles. The light particles, which also include the dark matter candidate, are predicted to show up in the low energy experiments such as (K{yields}l+missing energy), making the model testable. The heavy sector can show up at the LHC and may give rise to Br(l{sub i}{yields}l{sub j}{gamma}) close to the present bounds. In principle, the new couplings of themore » model can independently be derived from the data from the LHC and from the information on neutrino masses and lepton flavor violating rare decays, providing the possibility of an intensive cross-check of the model.« less

  11. Physics of neutrino flavor transformation through matter-neutrino resonances

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Ru; Duan, Huaiyu; Qian, Yong-Zhong

    2016-01-01

    In astrophysical environments such as core-collapse supernovae and neutron star-neutron star or neutron star-black hole mergers where dense neutrino media are present, matter-neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino-electron and neutrino-neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev-Smirnov-Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  12. Absolute mass of neutrinos and the first unique forbidden {beta} decay of {sup 187}Re

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvornicky, Rastislav; Simkovic, Fedor; Bogoliubov Laboratory of Theoretical Physics, JINR Dubna, 141980 Dubna, Moscow region

    2011-04-15

    The planned rhenium {beta}-decay experiment, called the ''Microcalorimeter Arrays for a Rhenium Experiment'' (MARE), might probe the absolute mass scale of neutrinos with the same sensitivity as the Karlsruhe tritium neutrino mass (KATRIN) experiment, which will take commissioning data in 2011 and will proceed for 5 years. We present the energy distribution of emitted electrons for the first unique forbidden {beta} decay of {sup 187}Re. It is found that the p-wave emission of electron dominates over the s wave. By assuming mixing of three neutrinos, the Kurie function for the rhenium {beta} decay is derived. It is shown that themore » Kurie plot near the end point is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed {beta} decay of {sup 3}H.« less

  13. Generalized ℤ 2 × ℤ 2 in scaling neutrino Majorana mass matrix and baryogenesis via flavored leptogenesis

    NASA Astrophysics Data System (ADS)

    Sinha, Roopam; Samanta, Rome; Ghosal, Ambar

    2017-12-01

    We investigate the consequences of a generalized ℤ 2 × ℤ 2 symmetry on a scaling neutrino Majorana mass matrix. It enables us to determine definite analytical relations between the mixing angles θ 12 and θ 13, maximal CP violation for the Dirac type and vanishing for the Majorana type. Beside the other testable predictions on the low energy neutrino parameters such as ββ 0ν decay matrix element | M ee | and the light neutrino masses m 1,2,3, the model also has intriguing consequences from the perspective of leptogenesis. With the assumption that the required CP violation for leptogenesis is created by the decay of lightest ( N 1) of the heavy Majorana neutrinos, only τ -flavored leptogenesis scenario is found to be allowed in this model. For a normal (inverted) ordering of light neutrino masses, θ 23 is found be less (greater) than its maximal value, for the final baryon asymmetry Y B to be in the observed range. Besides, an upper and a lower bound on the mass of N 1 have also been estimated. Effect of the heavier neutrinos N 2,3 on final Y B has been worked out subsequently. The predictions of this model will be tested in the experiments such as nEXO, LEGEND, GERDA-II, T2K, NO νA, DUNE etc.

  14. Forecasting neutrino masses from combining KATRIN and the CMB observations: Frequentist and Bayesian analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Host, Ole; Lahav, Ofer; Abdalla, Filipe B.

    We present a showcase for deriving bounds on the neutrino masses from laboratory experiments and cosmological observations. We compare the frequentist and Bayesian bounds on the effective electron neutrino mass m{sub {beta}} which the KATRIN neutrino mass experiment is expected to obtain, using both an analytical likelihood function and Monte Carlo simulations of KATRIN. Assuming a uniform prior in m{sub {beta}}, we find that a null result yields an upper bound of about 0.17 eV at 90% confidence in the Bayesian analysis, to be compared with the frequentist KATRIN reference value of 0.20 eV. This is a significant difference whenmore » judged relative to the systematic and statistical uncertainties of the experiment. On the other hand, an input m{sub {beta}}=0.35 eV, which is the KATRIN 5{sigma} detection threshold, would be detected at virtually the same level. Finally, we combine the simulated KATRIN results with cosmological data in the form of present (post-WMAP) and future (simulated Planck) observations. If an input of m{sub {beta}}=0.2 eV is assumed in our simulations, KATRIN alone excludes a zero neutrino mass at 2.2{sigma}. Adding Planck data increases the probability of detection to a median 2.7{sigma}. The analysis highlights the importance of combining cosmological and laboratory data on an equal footing.« less

  15. Hiding an elephant: heavy sterile neutrino with large mixing angle does not contradict cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezrukov, F.; Chudaykin, A.; Gorbunov, D., E-mail: Fedor.Bezrukov@manchester.ac.uk, E-mail: chudy@ms2.inr.ac.ru, E-mail: gorby@ms2.inr.ac.ru

    We study a model of a keV-scale sterile neutrino with a relatively large mixing with the Standard Model sector. Usual considerations predict active generation of such particles in the early Universe, which leads to constraints from the total Dark Matter density and absence of X-ray signal from sterile neutrino decay. These bounds together may deem any attempt of creation of the keV scale sterile neutrino in the laboratory unfeasible. We argue that for models with a hidden sector coupled to the sterile neutrino these bounds can be evaded, opening new perspectives for the direct studies at neutrino experiments such asmore » Troitsk ν-mass and KATRIN. We estimate the generation of sterile neutrinos in scenarios with the hidden sector dynamics keeping the sterile neutrinos either massless or superheavy in the early Universe. In both cases the generation by oscillations from active neutrinos in plasma is suppressed.« less

  16. Quasi-Dirac neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Anamiati, Gaetana; Fonseca, Renato M.; Hirsch, Martin

    2018-05-01

    Dirac neutrino masses require two distinct neutral Weyl spinors per generation, with a special arrangement of masses and interactions with charged leptons. Once this arrangement is perturbed, lepton number is no longer conserved and neutrinos become Majorana particles. If these lepton number violating perturbations are small compared to the Dirac mass terms, neutrinos are quasi-Dirac particles. Alternatively, this scenario can be characterized by the existence of pairs of neutrinos with almost degenerate masses, and a lepton mixing matrix which has 12 angles and 12 phases. In this work we discuss the phenomenology of quasi-Dirac neutrino oscillations and derive limits on the relevant parameter space from various experiments. In one parameter perturbations of the Dirac limit, very stringent bounds can be derived on the mass splittings between the almost degenerate pairs of neutrinos. However, we also demonstrate that with suitable changes to the lepton mixing matrix, limits on such mass splittings are much weaker, or even completely absent. Finally, we consider the possibility that the mass splittings are too small to be measured and discuss bounds on the new, nonstandard lepton mixing angles from current experiments for this case.

  17. Dark radiation sterile neutrino candidates after Planck data

    NASA Astrophysics Data System (ADS)

    Di Valentino, Eleonora; Melchiorri, Alessandro; Mena, Olga

    2013-11-01

    Recent Cosmic Microwave Background (CMB) results from the Planck satellite, combined with previous CMB data and Hubble constant measurements from the Hubble Space Telescope, provide a constraint on the effective number of relativistic degrees of freedom 3.62+0.50-0.48 at 95% CL. New Planck data provide a unique opportunity to place limits on models containing relativistic species at the decoupling epoch. We present here the bounds on sterile neutrino models combining Planck data with galaxy clustering information. Assuming Neff active plus sterile massive neutrino species, in the case of a Planck+WP+HighL+HST analysis we find mν, sterileeff < 0.36 eV and 3.14 < Neff < 4.15 at 95% CL, while using Planck+WP+HighL data in combination with the full shape of the galaxy power spectrum from the Baryon Oscillation Spectroscopic Survey BOSS Data Relase 9 measurements, we find that 3.30 < Neff < 4.43 and mν, sterileeff < 0.33 eV both at 95% CL with the three active neutrinos having the minimum mass allowed in the normal hierarchy scheme, i.e. ∑mν ~ 0.06 eV. These values compromise the viability of the (3+2) massive sterile neutrino models for the parameter region indicated by global fits of neutrino oscillation data. Within the (3+1) massive sterile neutrino scenario, we find mν, sterileeff < 0.34 eV at 95% CL. While the existence of one extra sterile massive neutrino state is compatible with current oscillation data, the values for the sterile neutrino mass preferred by oscillation analyses are significantly higher than the current cosmological bound. We review as well the bounds on extended dark sectors with additional light species based on the latest Planck CMB observations.

  18. Generic Friedberg-Lee symmetry of Dirac neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo Shu; Xing Zhizhong; Li Xin

    2008-12-01

    We write out the generic Dirac neutrino mass operator which possesses the Friedberg-Lee symmetry and find that its corresponding neutrino mass matrix is asymmetric. Following a simple way to break the Friedberg-Lee symmetry, we calculate the neutrino mass eigenvalues and show that the resultant neutrino mixing pattern is nearly tri-bimaximal. Imposing the Hermitian condition on the neutrino mass matrix, we also show that the simplified ansatz is consistent with current experimental data and favors the normal neutrino mass hierarchy.

  19. A White Paper on keV sterile neutrino Dark Matter

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Agostini, M.; Ky, N. Anh; Araki, T.; Archidiacono, M.; Bahr, M.; Baur, J.; Behrens, J.; Bezrukov, F.; Bhupal Dev, P. S.; Borah, D.; Boyarsky, A.; de Gouvea, A.; Pires, C. A. de S.; de Vega, H. J.; Dias, A. G.; Di Bari, P.; Djurcic, Z.; Dolde, K.; Dorrer, H.; Durero, M.; Dragoun, O.; Drewes, M.; Drexlin, G.; Düllmann, Ch. E.; Eberhardt, K.; Eliseev, S.; Enss, C.; Evans, N. W.; Faessler, A.; Filianin, P.; Fischer, V.; Fleischmann, A.; Formaggio, J. A.; Franse, J.; Fraenkle, F. M.; Frenk, C. S.; Fuller, G.; Gastaldo, L.; Garzilli, A.; Giunti, C.; Glück, F.; Goodman, M. C.; Gonzalez-Garcia, M. C.; Gorbunov, D.; Hamann, J.; Hannen, V.; Hannestad, S.; Hansen, S. H.; Hassel, C.; Heeck, J.; Hofmann, F.; Houdy, T.; Huber, A.; Iakubovskyi, D.; Ianni, A.; Ibarra, A.; Jacobsson, R.; Jeltema, T.; Jochum, J.; Kempf, S.; Kieck, T.; Korzeczek, M.; Kornoukhov, V.; Lachenmaier, T.; Laine, M.; Langacker, P.; Lasserre, T.; Lesgourgues, J.; Lhuillier, D.; Li, Y. F.; Liao, W.; Long, A. W.; Maltoni, M.; Mangano, G.; Mavromatos, N. E.; Menci, N.; Merle, A.; Mertens, S.; Mirizzi, A.; Monreal, B.; Nozik, A.; Neronov, A.; Niro, V.; Novikov, Y.; Oberauer, L.; Otten, E.; Palanque-Delabrouille, N.; Pallavicini, M.; Pantuev, V. S.; Papastergis, E.; Parke, S.; Pascoli, S.; Pastor, S.; Patwardhan, A.; Pilaftsis, A.; Radford, D. C.; Ranitzsch, P. C.-O.; Rest, O.; Robinson, D. J.; Rodrigues da Silva, P. S.; Ruchayskiy, O.; Sanchez, N. G.; Sasaki, M.; Saviano, N.; Schneider, A.; Schneider, F.; Schwetz, T.; Schönert, S.; Scholl, S.; Shankar, F.; Shrock, R.; Steinbrink, N.; Strigari, L.; Suekane, F.; Suerfu, B.; Takahashi, R.; Van, N. Thi Hong; Tkachev, I.; Totzauer, M.; Tsai, Y.; Tully, C. G.; Valerius, K.; Valle, J. W. F.; Venos, D.; Viel, M.; Vivier, M.; Wang, M. Y.; Weinheimer, C.; Wendt, K.; Winslow, L.; Wolf, J.; Wurm, M.; Xing, Z.; Zhou, S.; Zuber, K.

    2017-01-01

    We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved—cosmology, astrophysics, nuclear, and particle physics—in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.

  20. Study of electroweak vacuum stability from extended Higgs portal of dark matter and neutrinos

    NASA Astrophysics Data System (ADS)

    Ghosh, Purusottam; Saha, Abhijit Kumar; Sil, Arunansu

    2018-04-01

    We investigate the electroweak vacuum stability in an extended version of the Standard Model that incorporates two additional singlet scalar fields and three right-handed neutrinos. One of these extra scalars plays the role of dark matter, while the other scalar not only helps make the electroweak vacuum stable but also opens up the low-mass window of the scalar singlet dark matter (<500 GeV ). We consider the effect of large neutrino Yukawa coupling on the running of Higgs quartic coupling. We have analyzed the constraints on the model and identified the range of parameter space that is consistent with the neutrino mass, appropriate relic density, and direct search limits from the latest XENON 1T preliminary result as well as realized the stability of the electroweak vacuum up to the Planck scale.

  1. A radiative neutrino mass model in light of DAMPE excess with hidden gauged U(1) symmetry

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi; Wu, Peiwen

    2018-05-01

    We propose a one-loop induced neutrino mass model with hidden U(1) gauge symmetry, in which we successfully involve a bosonic dark matter (DM) candidate propagating inside a loop diagram in neutrino mass generation to explain the e+e‑ excess recently reported by the DArk Matter Particle Explorer (DAMPE) experiment. In our scenario dark matter annihilates into four leptons through Z' boson as DM DM → Z' Z' (Z' → l+ l‑) and Z' decays into leptons via one-loop effect. We then investigate branching ratios of Z' taking into account lepton flavor violations and neutrino oscillation data.

  2. Constraining astrophysical neutrino flavor composition from leptonic unitarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xun-Jie; He, Hong-Jian; Rodejohann, Werner, E-mail: xunjie.xu@gmail.com, E-mail: hjhe@tsinghua.edu.cn, E-mail: werner.rodejohann@mpi-hd.mpg.de

    2014-12-01

    The recent IceCube observation of ultra-high-energy astrophysical neutrinos has begun the era of neutrino astronomy. In this work, using the unitarity of leptonic mixing matrix, we derive nontrivial unitarity constraints on the flavor composition of astrophysical neutrinos detected by IceCube. Applying leptonic unitarity triangles, we deduce these unitarity bounds from geometrical conditions, such as triangular inequalities. These new bounds generally hold for three flavor neutrinos, and are independent of any experimental input or the pattern of lepton mixing. We apply our unitarity bounds to derive general constraints on the flavor compositions for three types of astrophysical neutrino sources (and theirmore » general mixture), and compare them with the IceCube measurements. Furthermore, we prove that for any sources without ν{sub τ} neutrinos, a detected ν{sub μ} flux ratio < 1/4 will require the initial flavor composition with more ν{sub e} neutrinos than ν{sub μ} neutrinos.« less

  3. Matter-neutrino resonance in a multiangle neutrino bulb model

    NASA Astrophysics Data System (ADS)

    Vlasenko, Alexey; McLaughlin, G. C.

    2018-04-01

    Simulations of neutrino flavor evolution in compact merger environments have shown that neutrino flavor, and hence nucleosynthesis, can be strongly affected by the presence of matter-neutrino resonances (MNRs), where there is a cancelation between the matter and the neutrino potential. Simulations performed thus far follow flavor evolution along a single neutrino trajectory, but self-consistency requires all trajectories to be treated simultaneously, and it has not been known whether MNR phenomena would still occur in multiangle models. In this paper, we present the first fully multi-angle calculations of MNR. We find that familiar MNR phenomena, where neutrinos transform to a greater extent than anti-neutrinos and a feedback mechanism maintains the cancellation between the matter and neutrino potential, still occurs for a subset of angular bins, although the flavor transformation is not as efficient as in the single-angle case. In addition, we find other types of flavor transformation that are not seen in single-angle simulations. These flavor transformation phenomena appear to be robust and are present for a wide range of model parameters, as long as an MNR is present. Although computational constraints currently limit us to models with spherical symmetry, our results suggest that the presence of an MNR generally leads to large-scale neutrino flavor evolution in multiangle systems.

  4. KM3NeT - ORCA: measuring the neutrino mass ordering in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Kouchner, Antoine

    2016-05-01

    ORCA (Oscillations Research with Cosmics in the Abyss) is the low-energy branch of KM3NeT, the underwater Cherenkov neutrino detector in the Mediterranean. Its primary goal is to resolve the long-standing unsolved question of the neutrino mass ordering by measuring matter oscillation effects in atmospheric neutrinos. To be deployed at the French KM3NeT site, ORCA’s multi-PMT optical modules will exploit the excellent optical properties of deep seawater to reconstruct cascade and track events with a few GeV of energy. This contribution reviews the methods and technology, and discusses the current expected performances.

  5. Measurement of neutrino flux from neutrino-electron elastic scattering

    DOE PAGES

    Park, J.; Aliaga, L.; Altinok, O.; ...

    2016-06-10

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based ν μ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI ν μ fluxmore » from 9% to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.« less

  6. Measurement of neutrino flux from neutrino-electron elastic scattering

    NASA Astrophysics Data System (ADS)

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration

    2016-06-01

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  7. Thermal dark matter through the Dirac neutrino portal

    NASA Astrophysics Data System (ADS)

    Batell, Brian; Han, Tao; McKeen, David; Haghi, Barmak Shams Es

    2018-04-01

    We study a simple model of thermal dark matter annihilating to standard model neutrinos via the neutrino portal. A (pseudo-)Dirac sterile neutrino serves as a mediator between the visible and the dark sectors, while an approximate lepton number symmetry allows for a large neutrino Yukawa coupling and, in turn, efficient dark matter annihilation. The dark sector consists of two particles, a Dirac fermion and complex scalar, charged under a symmetry that ensures the stability of the dark matter. A generic prediction of the model is a sterile neutrino with a large active-sterile mixing angle that decays primarily invisibly. We derive existing constraints and future projections from direct detection experiments, colliders, rare meson and tau decays, electroweak precision tests, and small scale structure observations. Along with these phenomenological tests, we investigate the consequences of perturbativity and scalar mass fine tuning on the model parameter space. A simple, conservative scheme to confront the various tests with the thermal relic target is outlined, and we demonstrate that much of the cosmologically-motivated parameter space is already constrained. We also identify new probes of this scenario such as multibody kaon decays and Drell-Yan production of W bosons at the LHC.

  8. Production of heavy sterile neutrinos from vector boson decay at electroweak temperatures

    NASA Astrophysics Data System (ADS)

    Lello, Louis; Boyanovsky, Daniel; Pisarski, Robert D.

    2017-02-01

    In the standard model extended with a seesaw mass matrix, we study the production of sterile neutrinos from the decay of vector bosons at temperatures near the masses of the electroweak bosons. We derive a general quantum kinetic equation for the production of sterile neutrinos and their effective mixing angles, which is applicable over a wide range of temperature, to all orders in interactions of the standard model and to leading order in a small mixing angle for the neutrinos. We emphasize the relation between the production rate and Landau damping at one-loop order and show that production rates and effective mixing angles depend sensitively upon the neutrino's helicity. Sterile neutrinos with positive helicity interact more weakly with the medium than those with negative helicity, and their effective mixing angle is not modified significantly. Negative helicity states couple more strongly to the vector bosons, but their mixing angle is strongly suppressed by the medium. Consequently, if the mass of the sterile neutrino is ≲8.35 MeV , there are fewer states with negative helicity produced than those with positive helicity. There is an Mikheyev-Smirnov-Wolfenstein-type resonance in the absence of lepton asymmetry, but due to screening by the damping rate, the production rate is not enhanced. Sterile neutrinos with negative helicity freeze out at Tf-≃5 GeV , whereas positive helicity neutrinos freeze out at Tf+≃8 GeV , with both distributions far from thermal. As the temperature decreases, due to competition between a decreasing production rate and an increasing mixing angle, the distribution function for states with negative helicity is broader in momentum and hotter than that for those with positive helicity. Sterile neutrinos produced via vector boson decay do not satisfy the abundance, lifetime, and cosmological constraints to be the sole dark matter component in the Universe. Massive sterile neutrinos produced via vector boson decay might solve the 7Li

  9. Fermion masses in SO(10)

    NASA Astrophysics Data System (ADS)

    Jungman, Gerard

    1992-11-01

    Yukawa-coupling-constant unification together with the known fermion masses is used to constrain SO(10) models. We consider the case of one (heavy) generation, with the tree-level relation mb=mτ, calculating the limits on the intermediate scales due to the known limits on fermion masses. This analysis extends previous analyses which addressed only the simplest symmetry-breaking schemes. In the case where the low-energy model is the standard model with one Higgs doublet, there are very strong constraints due to the known limits on the top-quark mass and the τ-neutrino mass. The two-Higgs-doublet case is less constrained, though we can make progress in constraining this model also. We identify those parameters to which the viability of the model is most sensitive. We also discuss the ``triviality'' bounds on mt obtained from the analysis of the Yukawa renormalization-group equations. Finally we address the role of a speculative constraint on the τ-neutrino mass, arising from the cosmological implications of anomalous B+L violation in the early Universe.

  10. Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy.

    PubMed

    Stadnik, Yevgeny V

    2018-06-01

    The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1/r^{5} potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s-wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.

  11. Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stadnik, Yevgeny V.

    2018-06-01

    The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1 /r5 potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s -wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.

  12. Neutrino oscillation studies with reactors

    PubMed Central

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos. PMID:25913819

  13. Neutrino oscillation studies with reactors

    DOE PAGES

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ 13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  14. Neutrino oscillation studies with reactors.

    PubMed

    Vogel, P; Wen, L J; Zhang, C

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  15. Higgs Production Through Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Cazzato, Eros; Fischer, Oliver

    In scenarios with sterile (right-handed) neutrinos with an approximate "lepton-numberlike" symmetry, the heavy neutrinos (the mass eigenstates) can have masses around the electroweak scale and couple to the Higgs boson with, in principle, unsuppressed Yukawa couplings, while the smallness of the light neutrinos' masses is guaranteed by the approximate symmetry. The on-shell production of the heavy neutrinos at lepton colliders, together with their subsequent decays into a light neutrino and a Higgs boson, constitutes a resonant contribution to the Higgs production mechanism. This resonant mono-Higgs production mechanism can contribute significantly to the mono-Higgs observables at future lepton colliders. A dedicated search for the heavy neutrinos in this channel exhibits sensitivities for the electron neutrino Yukawa coupling as small as ˜ 5 × 10-3. Furthermore, the sensitivity is enhanced for higher center-of-mass energies, when identical integrated luminosities are considered.

  16. Sterile neutrino dark matter production

    NASA Astrophysics Data System (ADS)

    Gorbunov, Dmitry

    2017-10-01

    Sterile neutrinos provide active neutrinos with masses and mixing, and hence is one of the well-motivated candidate for dark matter. We discuss the sterile neutrino production mechanisms operating in the early Universe and show that additional scalar coupled to sterile neutrino can significantly change the situation, making moderate sterile-neutrino mixing and small sterile neutrino masses consistent with current cosmological and astrophysical bounds. Further searches for a narrow line in galactic X-rays and even direct searches for keV-scale sterile neutrinos in particle physics experiments can probe the suggested setup.

  17. Neutrino footprint in large scale structure

    NASA Astrophysics Data System (ADS)

    Garay, Carlos Peña; Verde, Licia; Jimenez, Raul

    2017-03-01

    Recent constrains on the sum of neutrino masses inferred by analyzing cosmological data, show that detecting a non-zero neutrino mass is within reach of forthcoming cosmological surveys. Such a measurement will imply a direct determination of the absolute neutrino mass scale. Physically, the measurement relies on constraining the shape of the matter power spectrum below the neutrino free streaming scale: massive neutrinos erase power at these scales. However, detection of a lack of small-scale power from cosmological data could also be due to a host of other effects. It is therefore of paramount importance to validate neutrinos as the source of power suppression at small scales. We show that, independent on hierarchy, neutrinos always show a footprint on large, linear scales; the exact location and properties are fully specified by the measured power suppression (an astrophysical measurement) and atmospheric neutrinos mass splitting (a neutrino oscillation experiment measurement). This feature cannot be easily mimicked by systematic uncertainties in the cosmological data analysis or modifications in the cosmological model. Therefore the measurement of such a feature, up to 1% relative change in the power spectrum for extreme differences in the mass eigenstates mass ratios, is a smoking gun for confirming the determination of the absolute neutrino mass scale from cosmological observations. It also demonstrates the synergy between astrophysics and particle physics experiments.

  18. Neutrino Physics at Drexel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, Charles; Dolinski, Michelle; Neilson, Russell

    Our primary goal is to improve the understanding of the properties and interactions of neutrinos. We are pursuing this by means of the DUNE long-baseline and PROSPECT short-baseline neutrino experiments. For DUNE, a neutrino beam from Fermilab will be detected at the SURF facility in South Dakota, with the aim of determining the neutrino mass hierarchy (the mass ordering of neutrino flavors), and a measurement or limit on CP-violation via neutrinos. Our near-term experimental goal is to improve the characterization of the neutrino beam by measurements of muons produced as a byproduct of neutrino beam generation, to quantify the beammore » composition and flux. The short-range neutrino program has the aim of using the HFIR reactor at Oak Ridge as a neutrino source, with a detector placed nearby to find if there are short-distance oscillations to sterile neutrino flavors, and to resolve the 'reactor neutrino spectral anomaly' which has shown up as an unexplained 'bump' in the neutrino energy spectrum in recent experiments.« less

  19. Right-handed neutrino dark matter in left-right symmetric models

    NASA Astrophysics Data System (ADS)

    Bhupal Dev, P. S.; Mohapatra, Rabindra N.; Zhang, Yongchao

    2017-07-01

    We show that in a class of non-supersymmetric left-right extensions of the Standard Model (SM), the lightest right-handed neutrino (RHN) is naturally stable and can therefore play the role of thermal Dark Matter (DM) in the Universe for a wide mass range from TeV to PeV. Our model is based on the gauge group SU(3) c × SU(2) L × SU(2) R × U(1) YL × U(1) YR in which a heavy copy of the SM fermions are introduced and the stability of the RHN DM is guaranteed by an automatic Z 2 symmetry present in the leptonic sector. The active neutrino masses in the model arise from the type-II seesaw mechanism. We find a lower bound on the RHN DM mass of order TeV from relic density constraints, as well as an unitarity upper bound in the multi-TeV to PeV scale, depending on the entropy dilution factor. The RHN DM could be made long-lived by soft-breaking of the Z 2 symmetry and provides a concrete example of decaying DM interpretation of the PeV neutrinos observed at IceCube.

  20. Black holes at neutrino telescopes

    NASA Astrophysics Data System (ADS)

    Kowalski, M.; Ringwald, A.; Tu, H.

    2002-03-01

    In scenarios with extra dimensions and TeV-scale quantum gravity, black holes are expected to be produced in the collision of light particles at center-of-mass energies above the fundamental Planck scale with small impact parameters. Black hole production and evaporation may thus be studied in detail at the Large Hadron Collider (LHC). But even before the LHC starts operating, neutrino telescopes such as AMANDA/IceCube, ANTARES, Baikal, and RICE have an opportunity to search for black hole signatures. Black hole production in the scattering of ultrahigh energy cosmic neutrinos on nucleons in the ice or water may initiate cascades and through-going muons with distinct characteristics above the Standard Model rate. In this Letter, we investigate the sensitivity of neutrino telescopes to black hole production and compare it to the one expected at the Pierre Auger Observatory, an air shower array currently under construction, and at the LHC. We find that, already with the currently available data, AMANDA and RICE should be able to place sensible constraints in black hole production parameter space, which are competitive with the present ones from the air shower facilities Fly's Eye and AGASA. In the optimistic case that a ultrahigh energy cosmic neutrino flux significantly higher than the one expected from cosmic ray interactions with the cosmic microwave background radiation is realized in nature, one even has discovery potential for black holes at neutrino telescopes beyond the reach of LHC.

  1. Production of heavy sterile neutrinos from vector boson decay at electroweak temperatures

    DOE PAGES

    Lello, Louis; Boyanovsky, Daniel; Pisarski, Robert D.

    2017-02-22

    Here, in the standard model extended with a seesaw mass matrix, we study the production of sterile neutrinos from the decay of vector bosons at temperatures near the masses of the electroweak bosons. We derive a general quantum kinetic equation for the production of sterile neutrinos and their effective mixing angles, which is applicable over a wide range of temperature, to all orders in interactions of the standard model and to leading order in a small mixing angle for the neutrinos. We emphasize the relation between the production rate and Landau damping at one-loop order and show that production rates and effective mixing angles depend sensitively upon the neutrino’s helicity. Sterile neutrinos with positive helicity interact more weakly with the medium than those with negative helicity, and their effective mixing angle is not modified significantly. Negative helicity states couple more strongly to the vector bosons, but their mixing angle is strongly suppressed by the medium. Consequently, if the mass of the sterile neutrino is ≲ 8.35 MeV , there are fewer states with negative helicity produced than those with positive helicity. There is an Mikheyev-Smirnov-Wolfenstein-type resonance in the absence of lepton asymmetry, but due to screening by the damping rate, the production rate is not enhanced. Sterile neutrinos with negative helicity freeze out at Tmore » $$-\\atop{f}$$ ≃ 5 GeV , whereas positive helicity neutrinos freeze out at T$$+\\atop{f}$$≃ 8 GeV , with both distributions far from thermal. As the temperature decreases, due to competition between a decreasing production rate and an increasing mixing angle, the distribution function for states with negative helicity is broader in momentum and hotter than that for those with positive helicity. Sterile neutrinos produced via vector boson decay do not satisfy the abundance, lifetime, and cosmological constraints to be the sole dark matter component in the Universe. Massive sterile neutrinos

  2. Physics of neutrino flavor transformation through matter–neutrino resonances

    DOE PAGES

    Wu, Meng -Ru; Duan, Huaiyu; Qian, Yong -Zhong

    2015-11-17

    In astrophysical environments such as core-collapse supernovae and neutron star–neutron star or neutron star–black hole mergers where dense neutrino media are present, matter–neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino–electron and neutrino–neutrino for-ward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev–Smirnov–Wolfenstein mecha-nism. As a result, we find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absentmore » for the inverted hierarchy.« less

  3. Gravitationally confined relativistic neutrinos

    NASA Astrophysics Data System (ADS)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  4. Particle-physics constraints from the globular cluster M5: neutrino dipole moments

    NASA Astrophysics Data System (ADS)

    Viaux, N.; Catelan, M.; Stetson, P. B.; Raffelt, G. G.; Redondo, J.; Valcarce, A. A. R.; Weiss, A.

    2013-10-01

    Stellar evolution is modified if energy is lost in a "dark channel" similar to neutrino emission. Comparing modified stellar evolution sequences with observations provides some of the most restrictive limits on axions and other hypothetical low-mass particles and on non-standard neutrino properties. In particular, a putative neutrino magnetic dipole moment μν enhances the plasmon decay process, postpones helium ignition in low-mass stars, and therefore extends the red giant branch (RGB) in globular clusters (GCs). The brightness of the tip of the RGB (TRGB) remains the most sensitive probe for μν and we revisit this argument from a modern perspective. Based on a large set of archival observations, we provide high-precision photometry for the Galactic GC M5 (NGC 5904) and carefully determine its TRGB position. On the theoretical side, we add the extra plasmon decay rate brought about by μν to the Princeton-Goddard-PUC (PGPUC) stellar evolution code. Different sources of uncertainty are critically examined. The main source of systematic uncertainty is the bolometric correction and the main statistical uncertainty derives from the distance modulus based on main-sequence fitting. (Other measures of distance, e.g., the brightness of RR Lyrae stars, are influenced by the energy loss that we wish to constrain.) The statistical uncertainty of the TRGB position relative to the brightest RGB star is less important because the RGB is well populated. We infer an absolute I-band brightness of MI = -4.17 ± 0.13 mag for the TRGB compared with the theoretical prediction of - 3.99 ± 0.07 mag, in reasonable agreement with each other. A significant brightness increase caused by neutrino dipole moments is constrained such that μν < 2.6 × 10-12 μB (68% CL), where μB ≡ e/2me is the Bohr magneton, and μν < 4.5 × 10-12 μB (95% CL). In these results, statistical and systematic errors have been combined in quadrature. The photometric catalog is only available at the CDS

  5. Supernova Neutrino-Process and Implication in Neutrino Oscillation

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Fujiya, W.; Mathews, G. J.; Yoshida, T.; Shaku, K.; Nakamura, K.; Hayakawa, T.

    2012-08-01

    We studied the supernova nucleosynthesis induced by neutrino interactions and found that several isotopes of rare elements like 7Li, 11B, 138La, 180Ta and many others are predominantly produced by the neutrino-process in core-collapse supernovae. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy simultaneously from the supernova neutrino-process, combined with the r-process for heavy-element synthsis and the Galactic chemical evolution on light nuclei.

  6. A White Paper on keV sterile neutrino Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, R.; Agostini, M.; Ky, N. Anh

    We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved—cosmology, astrophysics, nuclear, and particle physics—in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arisingmore » from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.« less

  7. A White Paper on keV sterile neutrino Dark Matter

    DOE PAGES

    Adhikari, R.

    2017-01-13

    Here, we present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. First, we review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterilemore » neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. Our paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.« less

  8. DEMNUni: massive neutrinos and the bispectrum of large scale structures

    NASA Astrophysics Data System (ADS)

    Ruggeri, Rossana; Castorina, Emanuele; Carbone, Carmelita; Sefusatti, Emiliano

    2018-03-01

    The main effect of massive neutrinos on the large-scale structure consists in a few percent suppression of matter perturbations on all scales below their free-streaming scale. Such effect is of particular importance as it allows to constraint the value of the sum of neutrino masses from measurements of the galaxy power spectrum. In this work, we present the first measurements of the next higher-order correlation function, the bispectrum, from N-body simulations that include massive neutrinos as particles. This is the simplest statistics characterising the non-Gaussian properties of the matter and dark matter halos distributions. We investigate, in the first place, the suppression due to massive neutrinos on the matter bispectrum, comparing our measurements with the simplest perturbation theory predictions, finding the approximation of neutrinos contributing at quadratic order in perturbation theory to provide a good fit to the measurements in the simulations. On the other hand, as expected, a linear approximation for neutrino perturbations would lead to Script O(fν) errors on the total matter bispectrum at large scales. We then attempt an extension of previous results on the universality of linear halo bias in neutrino cosmologies, to non-linear and non-local corrections finding consistent results with the power spectrum analysis.

  9. A White Paper on keV sterile neutrino Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, R.

    Here, we present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. First, we review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterilemore » neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. Our paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.« less

  10. Observing Muon Neutrino to Electron Neutrino Oscillations in the NOνA Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xin, Tian

    2016-01-01

    Neutrino oscillations offers an insight on new physics beyond the Standard Model. The three mixing angles (θ12, θ13 and θ23) and the two mass splittings (Δm2 and Αm2 ) have been measured by different neutrino oscillation experiments. Some other parameters including the mass ordering of different neutrino mass eigenstates and the CP violation phase are still unknown. NOνA is a long-baseline accelerator neutrino experiment, using neutrinos from the NuMI beam at Fermilab. The experiment is equipped with two functionally identical detectors about 810 kilometers apart and 14 mrad off the beam axis. In this configuration, the muon neutrinos from themore » NuMI beam reach the disappearance maximum in the far detector and a small fraction of that oscillates into electron neutrinos. The sensitivity to the mass ordering and CP viola- tion phase determination is greately enhanced. This thesis presents the νeappearance analysis using the neutrino data collected with the NOνA experiment between February 2014 and May 2015, which corresponds to 3.45 ×1020 protons-on-target (POT). The νe appearance analysis is performed by comparing the observed νe CC-like events to the estimated background at the far detector. The total background is predicted to be 0.95 events with 0.89 originated from beam events and 0.06 from cosmic ray events. The beam background is obtained by extrapolating near detector data through different oscillation channels, while the cosmic ray background is calculated based on out-of-time NuMI trigger data. A total of 6 electron neutrino candidates are observed in the end at the far detector which represents 3.3 σ excess over the predicted background. The NOνA result disfavors inverted mass hierarchy for δcp ϵ [0, 0.6π] at 90% C.L.« less

  11. Higgs production through sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Cazzato, Eros; Fischer, Oliver

    2016-10-01

    In scenarios with sterile (right-handed) neutrinos with an approximate “lepton-number-like” symmetry, the heavy neutrinos (the mass eigenstates) can have masses around the electroweak scale and couple to the Higgs boson with, in principle, unsuppressed Yukawa couplings, while the smallness of the light neutrinos’ masses is guaranteed by the approximate symmetry. The on-shell production of the heavy neutrinos at lepton colliders, together with their subsequent decays into a light neutrino and a Higgs boson, constitutes a resonant contribution to the Higgs production mechanism. This resonant mono-Higgs production mechanism can contribute significantly to the mono-Higgs observables at future lepton colliders. A dedicated search for the heavy neutrinos in this channel exhibits sensitivities for the electron neutrino Yukawa coupling as small as ˜ 5 × 10-3. Furthermore, the sensitivity is enhanced for higher center-of-mass energies, when identical integrated luminosities are considered.

  12. Detection prospects for high energy neutrino sources from the anisotropic matter distribution in the local Universe

    NASA Astrophysics Data System (ADS)

    Mertsch, Philipp; Rameez, Mohamed; Tamborra, Irene

    2017-03-01

    Constraints on the number and luminosity of the sources of the cosmic neutrinos detected by IceCube have been set by targeted searches for point sources. We set complementary constraints by using the 2MASS Redshift Survey (2MRS) catalogue, which maps the matter distribution of the local Universe. Assuming that the distribution of the neutrino sources follows that of matter, we look for correlations between ``warm'' spots on the IceCube skymap and the 2MRS matter distribution. Through Monte Carlo simulations of the expected number of neutrino multiplets and careful modelling of the detector performance (including that of IceCube-Gen2), we demonstrate that sources with local density exceeding 10-6 Mpc-3 and neutrino luminosity Lν lesssim 1042 erg s-1 (1041 erg s-1) will be efficiently revealed by our method using IceCube (IceCube-Gen2). At low luminosities such as will be probed by IceCube-Gen2, the sensitivity of this analysis is superior to requiring statistically significant direct observation of a point source.

  13. Neutrino Oscillations and the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wark, David

    2001-04-01

    When the existence of the neutrino was almost apologetically first proposed by Wolfgang Pauli it was intended to explain the mysterious apparent absence of energy and momentum in beta decay. 70 years later the neutrino has indeed solved that mystery, but it has generated still more of its own. Are neutrinos massive? Is it possible to create a neutrino with its spin in the same direction as its momentum? What fraction of the mass of the Universe is made up of neutrinos? Are the flavour labels which we put on neutrinos, like electron and muon, really fixed or can they change? Why does no experiment see the predicted flux of neutrinos from the Sun? Why do there appear to be roughly equal numbers of muon and electron neutrinos created in our atmosphere, rather than the 2:1 ratio we would expect? Many of these questions were coupled when Bruno Pontecorvo first suggested that the shortfall in solar neutrino measurements were caused by neutrino oscillations - neutrinos spontaneously changing flavour as they travel from the Sun. 30 years later we still await definitive proof of that conjecture, and providing that proof is the reason for the Sudbury Neutrino Observatory. The talk will discuss the current state of neutrino oscillations studies, and show how the unique capabilities of the Sudbury Neutrino Observatory can provide definitive proof of whether neutrino oscillations are the long-sought answer to the solar neutrino problem.

  14. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Stephen James

    2011-05-01

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, andmore » MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting Δm 23 2 = (2.32 -0.08 +0.12) x 10 -3 eV 2/c 4 and the mixing angle sin 2(2θ 32) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2σ and the neutrino quantum decoherence hypothesis is disfavored at 9.0σ.« less

  15. Constraints on small-scale primordial power by annihilation signals from extragalactic dark matter minihalos

    NASA Astrophysics Data System (ADS)

    Nakama, Tomohiro; Suyama, Teruaki; Kohri, Kazunori; Hiroshima, Nagisa

    2018-01-01

    We revisit constraints on small-scale primordial power from annihilation signals from dark matter minihalos. Using gamma rays and neutrinos from extragalactic minihalos and assuming the delta-function primordial spectrum, we show the dependence of the constraints on annihilation modes, the mass of dark matter, and the annihilation cross section. We report conservative constraints by assuming minihalos are fully destructed when becoming part of halos originating from the standard almost-scale invariant primordial spectrum and optimistic constraints by neglecting destruction.

  16. The NESSiE way to searches for sterile neutrinos at FNAL

    NASA Astrophysics Data System (ADS)

    Stanco, L.; NESSiE Collaboration

    2016-04-01

    Neutrino physics is nowadays receiving more and more attention as a possible source of information for the long-standing problem of new physics beyond the Standard Model. The recent measurement of the mixing angle θ13 in the standard mixing oscillation scenario encourages us to pursue the still missing results on leptonic CP violation and absolute neutrino masses. However, puzzling measurements exist that deserve an exhaustive evaluation. The NESSiE Collaboration has been setup to undertake conclusive experiments to clarify the muon-neutrino disappearance measurements at small L/E, which will be able to put severe constraints to models with more than the three-standard neutrinos, or even to robustly measure the presence of a new kind of neutrino oscillation for the first time. To this aim the use of the current FNAL-Booster neutrino beam for a Short-Baseline experiment has been carefully evaluated. Its recent proposal refers to the use of magnetic spectrometers at two different sites, Near and Far ones. Their positions have been extensively studied, together with the possible performances of two OPERA-like spectrometers. The proposal is constrained by availability of existing hardware and a time-schedule compatible with the undergoing project of a multi-site Liquid-Argon detectors at FNAL. The experiment to be possibly setup at Booster will allow to definitively clarify the current νμ disappearance tension with νe appearance and disappearance at the eV mass scale.

  17. Probing the neutrino mass ordering with KM3NeT-ORCA: analysis and perspectives

    NASA Astrophysics Data System (ADS)

    Capozzi, Francesco; Lisi, Eligio; Marrone, Antonio

    2018-02-01

    The discrimination of the two possible options for the neutrino mass ordering (normal or inverted) is a major goal for current and future neutrino oscillation experiments. Such a goal might be reached by observing high-statistics energy-angle spectra of events induced by atmospheric neutrinos and antineutrinos propagating in the Earth matter. Large volume water-Cherenkov detectors envisaged to this purpose include the so-called KM3NeT-ORCA project (in seawater) and the IceCube-PINGU project (in ice). Building upon a previous work focused on PINGU, we study in detail the effects of various systematic uncertainties on the ORCA sensitivity to the mass ordering, for the reference configuration with 9 m vertical spacing. We point out the need to control spectral shape uncertainties at the percent level, the effects of better priors on the {θ }23 mixing parameter, and the benefits of an improved flavor identification in reconstructed ORCA events.

  18. Neutrino phenomenology

    DOE PAGES

    Coloma, Pilar

    2016-11-21

    Neutrino oscillations have demonstrated that neutrinos have mass and, by now, oscillation experiments have been able to determine most of the parameters in the leptonic mixing matrix with a very good accuracy. Nevertheless, there are still many open questions in the neutrino sector. As a result, I will briefly discuss some of these questions, pointing out possible experimental avenues to address them.

  19. Reionization in sterile neutrino cosmologies

    NASA Astrophysics Data System (ADS)

    Bose, Sownak; Frenk, Carlos S.; Hou, Jun; Lacey, Cedric G.; Lovell, Mark R.

    2016-12-01

    We investigate the process of reionization in a model in which the dark matter is a warm elementary particle such as a sterile neutrino. We focus on models that are consistent with the dark matter decay interpretation of the recently detected line at 3.5 keV in the X-ray spectra of galaxies and clusters. In warm dark matter models, the primordial spectrum of density perturbations has a cut-off on the scale of dwarf galaxies. Structure formation therefore begins later than in the standard cold dark matter (CDM) model and very few objects form below the cut-off mass scale. To calculate the number of ionizing photons, we use the Durham semi-analytic model of galaxy formation, GALFORM. We find that even the most extreme 7 keV sterile neutrino we consider is able to reionize the Universe early enough to be compatible with the bounds on the epoch of reionization from Planck. This, perhaps surprising, result arises from the rapid build-up of high redshift galaxies in the sterile neutrino models which is also reflected in a faster evolution of their far-UV luminosity function between 10 > z > 7 than in CDM. The dominant sources of ionizing photons are systematically more massive in the sterile neutrino models than in CDM. As a consistency check on the models, we calculate the present-day luminosity function of satellites of Milky Way-like galaxies. When the satellites recently discovered in the Dark Energy Survey are taken into account, strong constraints are placed on viable sterile neutrino models.

  20. Prospects for discovering a neutrino line induced by dark matter annihilation

    NASA Astrophysics Data System (ADS)

    El Aisati, Chaimae; Garcia-Cely, Camilo; Hambye, Thomas; Vanderheyden, Laurent

    2017-10-01

    In the near future, neutrino telescopes are expected to improve their sensitivity to the flux of monochromatic neutrinos produced by dark matter (DM) in our galaxy. This is illustrated by a new limit on the corresponding cross section that we derive from public IceCube data. In this context, we study which DM models could produce an observable flux of monochromatic neutrinos from DM annihilations. To this end, we proceed in two steps. First, within a set of simple and minimal assumptions concerning the properties of the DM particle, we determine the models that could give rise to a significant annihilation into monochromatic neutrinos at the freeze-out epoch. The list of models turns out to be very limited as a result of various constraints, in particular direct detection and neutrino masses at loop level. Given the fact that, even if largely improved, the sensitivities will be far from reaching the thermal annihilation cross section soon, a signal could only be observed if the annihilation into neutrinos today is boosted with respect to the freeze-out epoch. This is why, in a second step, we analyze the possibility of having such a large enhancement from the Sommerfeld effect. For each scenario, we also compute the cross sections into other annihilation products and confront our results with experimental constraints. We find that, within our simple and minimal assumptions, the expectation to observe monochromatic neutrinos is only possible in very specific scenarios. Some will be confirmed or excluded in the near future because they predict signals slightly below the current experimental sensitivities. We also discuss how these prospects change by relaxing our assumptions as well as by considering other types of sharp spectral features. For the latter, we consider boxed-shaped and bremsstrahlung spectra and provide the corresponding limits from IceCube data.

  1. Prospects for discovering a neutrino line induced by dark matter annihilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aisati, Chaimae El; Garcia-Cely, Camilo; Hambye, Thomas

    In the near future, neutrino telescopes are expected to improve their sensitivity to the flux of monochromatic neutrinos produced by dark matter (DM) in our galaxy. This is illustrated by a new limit on the corresponding cross section that we derive from public IceCube data. In this context, we study which DM models could produce an observable flux of monochromatic neutrinos from DM annihilations. To this end, we proceed in two steps. First, within a set of simple and minimal assumptions concerning the properties of the DM particle, we determine the models that could give rise to a significant annihilationmore » into monochromatic neutrinos at the freeze-out epoch. The list of models turns out to be very limited as a result of various constraints, in particular direct detection and neutrino masses at loop level. Given the fact that, even if largely improved, the sensitivities will be far from reaching the thermal annihilation cross section soon, a signal could only be observed if the annihilation into neutrinos today is boosted with respect to the freeze-out epoch. This is why, in a second step, we analyze the possibility of having such a large enhancement from the Sommerfeld effect. For each scenario, we also compute the cross sections into other annihilation products and confront our results with experimental constraints. We find that, within our simple and minimal assumptions, the expectation to observe monochromatic neutrinos is only possible in very specific scenarios. Some will be confirmed or excluded in the near future because they predict signals slightly below the current experimental sensitivities. We also discuss how these prospects change by relaxing our assumptions as well as by considering other types of sharp spectral features. For the latter, we consider boxed-shaped and bremsstrahlung spectra and provide the corresponding limits from IceCube data.« less

  2. Primordial nucleosynthesis and neutrino physics

    NASA Astrophysics Data System (ADS)

    Smith, Christel Johanna

    We study primordial nucleosynthesis abundance yields for assumed ranges of cosmological lepton numbers, sterile neutrino mass-squared differences and active-sterile vacuum mixing angles. We fix the baryon-to-photon ratio at the value derived from the cosmic microwave background (CMB) data and then calculate the deviation of the 2 H, 4 He, and 7 Li abundance yields from those expected in the zero lepton number(s), no-new-neutrino-physics case. We conclude that high precision (< 5% error) measurements of the primordial 2 H abundance from, e.g., QSO absorption line observations coupled with high precision (< 1% error) baryon density measurements from the CMB could have the power to either: (1) reveal or rule out the existence of a light sterile neutrino if the sign of the cosmological lepton number is known; or (2) place strong constraints on lepton numbers, sterile neutrino mixing properties and resonance sweep physics. Similar conclusions would hold if the primordial 4 He abundance could be determined to better than 10%. We have performed new Big Bang Nucleosynthesis calculations which employ arbitrarily-specified, time-dependent neutrino and antineutrino distribution functions for each of up to four neutrino flavors. We self-consistently couple these distributions to the thermodynamics, the expansion rate and scale factor-time/temperature relationship, as well as to all relevant weak, electromagnetic, and strong nuclear reaction processes in the early universe. With this approach, we can treat any scenario in which neutrino or antineutrino spectral distortion might arise. These scenarios might include, for example, decaying particles, active-sterile neutrino oscillations, and active-active neutrino oscillations in the presence of significant lepton numbers. Our calculations allow lepton numbers and sterile neutrinos to be constrained with observationally-determined primordial helium and deuterium abundances. We have modified a standard BBN code to perform these

  3. Grand unification and low scale implications: D2 parity for unification and neutrino masses

    NASA Astrophysics Data System (ADS)

    Tavartkiladze, Zurab

    2014-06-01

    The Grand Unified SU(5)-SU(5)' model, augmented with D2 Parity, is considered. The latter play crucial role for phenomenology. The model has several novel properties and gives interesting phenomenological implications. The charged leptons together with right handed (or sterile) neutrinos emerge es composite states. Within considered scenario, we study the charged fermion and neutrino mass generation. Moreover, we show that the model gives successful gauge coupling unification.

  4. Neutrino Oscillations Physics

    NASA Astrophysics Data System (ADS)

    Fogli, Gianluigi

    2005-06-01

    We review the status of the neutrino oscillations physics, with a particular emphasis on the present knowledge of the neutrino mass-mixing parameters. We consider first the νμ → ντ flavor transitions of atmospheric neutrinos. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at ±1σ (and NDF = 1) as: Δm2 = (2.6 ± 0.4) × 10-3 eV2 and sin 2 2θ = 1.00{ - 0.05}{ + 0.00} . Such indications, presently dominated by SK, could be strengthened by further K2K data. Then we point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, in particular the KamLAND data, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. Finally, we perform an updated analysis of two-family active oscillations of solar and reactor neutrinos in the standard MSW case.

  5. Charged lepton flavor violation in a class of radiative neutrino mass generation models

    NASA Astrophysics Data System (ADS)

    Chowdhury, Talal Ahmed; Nasri, Salah

    2018-04-01

    We investigate the charged lepton flavor violating processes μ →e γ , μ →e e e ¯, and μ -e conversion in nuclei for a class of three-loop radiative neutrino mass generation models with electroweak multiplets of increasing order. We find that, because of certain cancellations among various one-loop diagrams which give the dipole and nondipole contributions in an effective μ e γ vertex and a Z-penguin contribution in an effective μ e Z vertex, the flavor violating processes μ →e γ and μ -e conversion in nuclei become highly suppressed compared to μ →e e e ¯ process. Therefore, the observation of such a pattern in LFV processes may reveal the radiative mechanism behind neutrino mass generation.

  6. Quasielastic charged-current neutrino scattering in the scaling model with relativistic effective mass

    NASA Astrophysics Data System (ADS)

    Ruiz Simo, I.; Martinez-Consentino, V. L.; Amaro, J. E.; Ruiz Arriola, E.

    2018-06-01

    We use a recent scaling analysis of the quasielastic electron scattering data from C 12 to predict the quasielastic charge-changing neutrino scattering cross sections within an uncertainty band. We use a scaling function extracted from a selection of the (e ,e') cross section data, and an effective nucleon mass inspired by the relativistic mean-field model of nuclear matter. The corresponding superscaling analysis with relativistic effective mass (SuSAM*) describes a large amount of the electron data lying inside a phenomenological quasielastic band. The effective mass incorporates the enhancement of the transverse current produced by the relativistic mean field. The scaling function incorporates nuclear effects beyond the impulse approximation, in particular meson-exchange currents and short-range correlations producing tails in the scaling function. Besides its simplicity, this model describes the neutrino data as reasonably well as other more sophisticated nuclear models.

  7. Search for muon neutrino disappearance due to sterile neutrino oscillations with the MINOS/MINOS+ experiment

    NASA Astrophysics Data System (ADS)

    Todd, J.; Chen, R.; Huang, J.; ">MINOS, neutrino oscillations have successfully explained a wide range of neutrino oscillation data. However, anomalous results, such as the electron antineutrino appearance excesses seen by LSND and MiniBooNE, can be explained by the addition of a sterile neutrino at a larger mass scale than the existing three neutrino mass states. MINOS is a two-detector, long-baseline neutrino oscillation experiment optimized to measure muon neutrino disappearance in the NuMI neutrino beam. MINOS+ is the continuation of the MINOS experiment with the NuMI beam in a medium energy configuration. In the model with one sterile neutrino flavor added to the three active neutrino flavors, a sterile neutrino causing electron antineutrino appearance at LSND and MiniBooNE would also cause muon neutrino disappearance at MINOS. The sterile neutrino signature would be seen as modulations at high energy in the charged-current muon neutrino spectrum and a depletion of events in the neutral current spectrum. These proceedings show new results from fitting neutral-current and charged-current energy spectra from MINOS and MINOS+ data to a neutrino oscillation model assuming one sterile neutrino.

  8. Constraints on high-energy neutrino emission from SN 2008D

    NASA Astrophysics Data System (ADS)

    IceCube Collaboration; Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Ben Zvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; De Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Gro, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hül, J. P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K. H.; Kappes A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J. H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lehmann, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Singh, K.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.

    2011-03-01

    SN 2008D, a core collapse supernova at a distance of 27 Mpc, was serendipitously discovered by the Swift satellite through an associated X-ray flash. Core collapse supernovae have been observed in association with long gamma-ray bursts and X-ray flashes and a physical connection is widely assumed. This connection could imply that some core collapse supernovae possess mildly relativistic jets in which high-energy neutrinos are produced through proton-proton collisions. The predicted neutrino spectra would be detectable by Cherenkov neutrino detectors like IceCube. A search for a neutrino signal in temporal and spatial correlation with the observed X-ray flash of SN 2008D was conducted using data taken in 2007-2008 with 22 strings of the IceCube detector. Events were selected based on a boosted decision tree classifier trained with simulated signal and experimental background data. The classifier was optimized to the position and a "soft jet" neutrino spectrum assumed for SN 2008D. Using three search windows placed around the X-ray peak, emission time scales from 100-10 000 s were probed. No events passing the cuts were observed in agreement with the signal expectation of 0.13 events. Upper limits on the muon neutrino flux from core collapse supernovae were derived for different emission time scales and the principal model parameters were constrained. While no meaningful limits can be given in the case of an isotropic neutrino emission, the parameter space for a jetted emission can be constrained. Future analyses with the full 86 string IceCube detector could detect up to ~100 events for a core-collapse supernova at 10 Mpc according to the soft jet model.

  9. Neutrino Oscillations and Neutrino Masses

    NASA Astrophysics Data System (ADS)

    Fritzsch, Harald

    In 1914 James Chadwick discovered that energy and momentum were not conserved in the beta decay of atomic nuclei. For the next 16 years this phenomenon was not understood. In 1930 Wolfgang Pauli suggested in a letter to the participants of a conference in Tuebingen, that in the beta decays not only an electron was emitted, but also a neutral particle, which could not be observed. The energy and momentum of this particle would be the observed missing energy and momentum. Enrico Fermi proposed a name for this hypothetical particle: neutrino...

  10. Combined Analysis of Neutrino and Antineutrino Oscillations at T2K

    NASA Astrophysics Data System (ADS)

    Abe, K.; Amey, J.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Ariga, A.; Autiero, D.; Ban, S.; Barbi, M.; Barker, G. J.; Barr, G.; Barry, C.; Bartet-Friburg, P.; Batkiewicz, M.; Berardi, V.; Berkman, S.; Bhadra, S.; Bienstock, S.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buizza Avanzini, M.; Calland, R. G.; Campbell, T.; Cao, S.; Cartwright, S. L.; Catanesi, M. G.; Cervera, A.; Checchia, C.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Collazuol, G.; Coplowe, D.; Cudd, A.; Dabrowska, A.; De Rosa, G.; Dealtry, T.; Denner, P. F.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duffy, K. E.; Dumarchez, J.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, D.; Fukuda, Y.; Galymov, V.; Garcia, A.; Giganti, C.; Gizzarelli, F.; Golan, T.; Gonin, M.; Hadley, D. R.; Haegel, L.; Haigh, M. D.; Hansen, D.; Harada, J.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Helmer, R. L.; Hillairet, A.; Hiraki, T.; Hiramoto, A.; Hirota, S.; Hogan, M.; Holeczek, J.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ikeda, M.; Imber, J.; Insler, J.; Intonti, R. A.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Izmaylov, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Karlen, D.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kim, H.; Kim, J.; King, S.; Kisiel, J.; Knight, A.; Knox, A.; Kobayashi, T.; Koch, L.; Koga, T.; Konaka, A.; Kondo, K.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kowalik, K.; Kropp, W.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Lamoureux, M.; Larkin, E.; Lasorak, P.; Laveder, M.; Lawe, M.; Licciardi, M.; Lindner, T.; Liptak, Z. J.; Litchfield, R. P.; Li, X.; Longhin, A.; Lopez, J. P.; Lou, T.; Ludovici, L.; Lu, X.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Ma, W. Y.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakamura, K. D.; Nakanishi, Y.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Novella, P.; Nowak, J.; O'Keeffe, H. M.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Patel, N. D.; Paudyal, P.; Pavin, M.; Payne, D.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pickering, L.; Pinzon Guerra, E. S.; Pistillo, C.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radermacher, T.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A.; Redij, A.; Reinherz-Aronis, E.; Riccio, C.; Rodrigues, P. A.; Rondio, E.; Rossi, B.; Roth, S.; Rubbia, A.; Rychter, A.; Sakashita, K.; Sánchez, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Shirahige, T.; Short, S.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Steinmann, J.; Stewart, T.; Stowell, P.; Suda, Y.; Suvorov, S.; Suzuki, A.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Terhorst, D.; Terri, R.; Thakore, T.; Thompson, L. F.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vagins, M.; Vallari, Z.; Vasseur, G.; Vladisavljevic, T.; Wachala, T.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Wilson, J. R.; Wilson, R. J.; Wret, C.; Yamada, Y.; Yamamoto, K.; Yamamoto, M.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2017-04-01

    T2K reports its first results in the search for C P violation in neutrino oscillations using appearance and disappearance channels for neutrino- and antineutrino-mode beams. The data include all runs from January 2010 to May 2016 and comprise 7.482 ×1 020 protons on target in neutrino mode, which yielded in the far detector 32 e -like and 135 μ -like events, and 7.471 ×1 020 protons on target in antineutrino mode, which yielded 4 e -like and 66 μ -like events. Reactor measurements of sin22 θ13 have been used as an additional constraint. The one-dimensional confidence interval at 90% for the phase δC P spans the range (-3.13 , -0.39 ) for normal mass ordering. The C P conservation hypothesis (δC P=0 , π ) is excluded at 90% C.L.

  11. Simulating the cold dark matter-neutrino dipole with TianNu

    DOE PAGES

    Inman, Derek; Yu, Hao-Ran; Zhu, Hong-Ming; ...

    2017-04-20

    Measurements of neutrino mass in cosmological observations rely on two-point statistics that are hindered by significant degeneracies with the optical depth and galaxy bias. The relative velocity effect between cold dark matter and neutrinos induces a large scale dipole in the matter density field and may be able to provide orthogonal constraints to standard techniques. In this paper, we numerically investigate this dipole in the TianNu simulation, which contains cold dark matter and 50 meV neutrinos. We first compute the dipole using a new linear response technique where we treat the displacement caused by the relative velocity as a phasemore » in Fourier space and then integrate the matter power spectrum over redshift. Then, we compute the dipole numerically in real space using the simulation density and velocity fields. We find excellent agreement between the linear response and N-body methods. Finally, utilizing the dipole as an observational tool requires two tracers of the matter distribution that are differently biased with respect to the neutrino density.« less

  12. Sterile neutrinos as the origin of dark and baryonic matter.

    PubMed

    Canetti, Laurent; Drewes, Marco; Shaposhnikov, Mikhail

    2013-02-08

    We demonstrate for the first time that three sterile neutrinos alone can simultaneously explain neutrino oscillations, the observed dark matter, and the baryon asymmetry of the Universe without new physics above the Fermi scale. The key new point of our analysis is leptogenesis after sphaleron freeze-out, which leads to resonant dark matter production, evading thus the constraints on sterile neutrino dark matter from structure formation and x-ray searches. We identify the range of sterile neutrino properties that is consistent with all known constraints. We find a domain of parameters where the new particles can be found with present day experimental techniques, using upgrades to existing experimental facilities.

  13. Experimental Neutrino Physics: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  14. Measurement of Neutrino Oscillation Parameters from Muon Neutrino Disappearance with an Off-Axis Beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Frank, E.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Joo, K. K.; Jung, C. K.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kim, S. B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Licciardi, C.; Lim, I. T.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, G. D.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Pac, M. Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Taylor, I. J.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2013-11-01

    The T2K Collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.01×1020 protons on target. In the absence of neutrino oscillations, 205±17 (syst) events are expected to be detected while only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum, assuming three neutrino flavors and normal mass hierarchy yields a best-fit mixing angle sin⁡2(θ23)=0.514±0.082 and mass splitting |Δm322|=2.44-0.15+0.17×10-3eV2/c4. Our result corresponds to the maximal oscillation disappearance probability.

  15. Detection prospects for high energy neutrino sources from the anisotropic matter distribution in the local Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mertsch, Philipp; Rameez, Mohamed; Tamborra, Irene, E-mail: mertsch@nbi.ku.dk, E-mail: mohamed.rameez@nbi.ku.dk, E-mail: tamborra@nbi.ku.dk

    Constraints on the number and luminosity of the sources of the cosmic neutrinos detected by IceCube have been set by targeted searches for point sources. We set complementary constraints by using the 2MASS Redshift Survey (2MRS) catalogue, which maps the matter distribution of the local Universe. Assuming that the distribution of the neutrino sources follows that of matter, we look for correlations between ''warm'' spots on the IceCube skymap and the 2MRS matter distribution. Through Monte Carlo simulations of the expected number of neutrino multiplets and careful modelling of the detector performance (including that of IceCube-Gen2), we demonstrate that sourcesmore » with local density exceeding 10{sup −6} Mpc{sup −3} and neutrino luminosity L {sub ν} ∼< 10{sup 42} erg s{sup −1} (10{sup 41} erg s{sup −1}) will be efficiently revealed by our method using IceCube (IceCube-Gen2). At low luminosities such as will be probed by IceCube-Gen2, the sensitivity of this analysis is superior to requiring statistically significant direct observation of a point source.« less

  16. Neutrino experiments

    DOE PAGES

    Lesko, K. T.

    2004-02-24

    This review examines a wide variety of experiments investigating neutrino interactions and neutrino properties from a variety of neutrino sources. We have witnessed remarkable progress in the past two years in settling long standing problems in neutrino physics and uncovering the first evidence for physics beyond the Standard Model in nearly 30 years. Here this paper briefly reviews this recent progress in the field of neutrino physics and highlights several significant experimental arenas and topics for the coming decade of particular interest. These highlighted experiments include the precision determination of oscillation parameters including θ 13, θ 12, Δm 12 2more » and Δm 23 2 as well as a number of fundamental properties are likely to be probed included nature of the neutrino (Majorana versus Dirac), the number of neutrino families and the neutrino’s absolute mass.« less

  17. Implications of Higgs Universality for neutrinos

    NASA Astrophysics Data System (ADS)

    Stephenson, Gerard; Goldman, T.

    2017-09-01

    Higgs Universality means that the right-chiral Weyl spinors of each charge type couple universally to the Higgs doublet-left-chiral Weyl spinor weak singlets for quarks in the current basis,so the quark mass matrices are of the pairing form. We have shown that the known quark masses and weak current mixing can be recovered by invoking perturbative BSM corrections. The application to the charged leptons is immediate. Assuming the charged fermion-like mass terms for the neutrinos have a similar structure, but that Majorana mass terms for the sterile right-chiral spinors (which qualify as dark matter) must also be included, we show that the ratios of the resulting sterile neutrino masses vary as the square of the ratios of the charged fermion masses. The results are consistent with short-baseline neutrino oscillation experiments. Using that scale, we predict sterile neutrinos at masses of several keV/c2 and some tens of MeV /c2 , which may decay to a photon and a lighter neutrino.

  18. Radiative decay of keV-mass sterile neutrino in magnetized electron plasma

    NASA Astrophysics Data System (ADS)

    Dobrynina, Alexandra; Mikheev, Nicolay; Raffelt, Georg

    2017-10-01

    The radiative decay of sterile neutrinos with typical masses of 10 keV is investigated in the presence of an external magnetic field and degenerate electron plasma. Full account is taken of the modified photon dispersion relation relative to vacuum. The limiting cases of relativistic and nonrelativistic plasma are analyzed. The decay rate calculated in a strongly magnetized plasma, as a function of the electron number density, is compared with the unmagnetized plasma limit. It is found that the presence of the strong magnetic field in the electron plasma suppresses the catalyzing influence of the plasma by itself on the sterile-neutrino decay rate.

  19. Measuring mass of neutrinos with {beta}-decays of tritium and rhenium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvornicky, R.; Simkovic, F.; Bogolyubov Laboratory of Theoretical Physics, JINR, Dubna

    2009-11-09

    Already long time ago the shape of the electron spectrum in {beta}-decays of {sup 3}H and {sup 187}Re has been recognized as an important tool for understanding of neutrino masses. The sensitivity of KATRIN (in preparation, tritium {beta}-decay) and the MARE (under consideration, {sup 187}Re{beta}-decay) experiments to neutrino mass will reach the sub eV domain. In view of this experimental progress there is a request for a highly accurate theoretical description of the electron endpoint spectra. By taking the advantage of the elementary particle treatment of {sup 3}H and {sup 3}He the relativistic form for {beta}-decay endpoint spectrum of tritiummore » is obtained by taking into account also the effect of nuclear recoil. Further, the currently unknown shape of the electron spectrum for the {beta}-decay of {sup 187}Re is presented. It is found that the first forbidden {sup 187}Re(5/2{sup +}){yields}{sup 187}Os(1/2{sup -}){beta}-decay transition is accompanied with emission of mostly p{sub 3/2}-state electrons.« less

  20. Long-Baseline Neutrino Experiments

    DOE PAGES

    Diwan, M. V.; Galymov, V.; Qian, X.; ...

    2016-10-19

    We review long-baseline neutrino experiments in which neutrinos are detected after traversing macroscopic distances. Over such distances neutrinos have been found to oscillate among flavor states. Experiments with solar, atmospheric, reactor, and accelerator neutrinos have resulted in a coherent picture of neutrino masses and mixing of the three known flavor states. We will summarize the current best knowledge of neutrino parameters and phenomenology with our focus on the evolution of the experimental technique. We will proceed from the rst evidence produced by astrophysical neutrino sources to the current open questions and the goals of future research

  1. Towards Limits on Neutrino Mixing Parameters from Nucleosynthesis in the Big Bang and Supernovae

    NASA Astrophysics Data System (ADS)

    Cardall, Christian Young

    1997-11-01

    Astrophysical environments can often provide stricter limits on neutrino mass and mixing parameters than terrestrial experiments. However, before firm limits can be found, there must be confidence in the understanding of the astrophysical environment being used to make these limits. In this dissertation, progress towards limits on neutrino mixing parameters from big bang nucleosynthesis and supernova r-process nucleosynthesis is sought. By way of assessment of current knowledge of neutrino oscillation parameters, we examine the potential for a 'natural' three-neutrino mixing scheme (one without sterile neutrinos) to satisfy available data and astrophysical arguments. A small parameter space currently exists for a natural three-neutrino oscillation solution meeting known constraints. If such a solution is ruled out, and current hints about neutrino oscillations are confirmed, mixing between active and sterile neutrinos will probably be required. Because mixing between active and sterile neutrinos with parameters appropriate for the atmospheric or solar neutrino problems increases the primordial 4He abundance, big bang nucleosynthesis considerations can place limits on such mixing. In the present work the overall consistency of standard big bang nucleosynthesis is discussed in light of recent discordant determinations of the primordial deuterium abundance. Cosmological considerations favor a larger baryon density, which supports the lower reported value of D/H. Studies of limits on active-sterile neutrino mixing derived from big bang nucleosynthesis considerations are here extended to consider the dependance of these constraints on the primordial deuterium abundance. If the neutrino-heated ejecta in the post-core-bounce supernova environment is the site of r-process nucleosynthesis, limits can be placed on mixing between νe, and νsbμ, or νsbτ. Refined limits will require a better understanding of this r-process environment, since current supernova models do not

  2. The μ- τ reflection symmetry of Dirac neutrinos and its breaking effect via quantum corrections

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-zhong; Zhang, Di; Zhu, Jing-yu

    2017-11-01

    Given the Dirac neutrino mass term, we explore the constraint conditions which allow the corresponding mass matrix to be invariant under the μ- τ reflection transformation, leading us to the phenomenologically favored predictions θ 23 = π/4 and δ = 3 π/2 in the standard parametrization of the 3 × 3 lepton flavor mixing matrix. If such a flavor symmetry is realized at a superhigh energy scale Λ μτ , we investigate how it is spontaneously broken via the one-loop renormalization-group equations (RGEs) running from Λ μτ down to the Fermi scale ΛF. Such quantum corrections to the neutrino masses and flavor mixing parameters are derived, and an analytical link is established between the Jarlskog invariants of CP violation at Λ μτ and ΛF. Some numerical examples are also presented in both the minimal supersymmetric standard model and the type-II two-Higgs-doublet model, to illustrate how the octant of θ 23, the quadrant of δ and the neutrino mass ordering are correlated with one another as a result of the RGE-induced μ-τ reflection symmetry breaking effects.

  3. Simulating nonlinear neutrino flavor evolution

    NASA Astrophysics Data System (ADS)

    Duan, H.; Fuller, G. M.; Carlson, J.

    2008-10-01

    We discuss a new kind of astrophysical transport problem: the coherent evolution of neutrino flavor in core collapse supernovae. Solution of this problem requires a numerical approach which can simulate accurately the quantum mechanical coupling of intersecting neutrino trajectories and the associated nonlinearity which characterizes neutrino flavor conversion. We describe here the two codes developed to attack this problem. We also describe the surprising phenomena revealed by these numerical calculations. Chief among these is that the nonlinearities in the problem can engineer neutrino flavor transformation which is dramatically different to that in standard Mikheyev Smirnov Wolfenstein treatments. This happens even though the neutrino mass-squared differences are measured to be small, and even when neutrino self-coupling is sub-dominant. Our numerical work has revealed potential signatures which, if detected in the neutrino burst from a Galactic core collapse event, could reveal heretofore unmeasurable properties of the neutrinos, such as the mass hierarchy and vacuum mixing angle θ13.

  4. Evidence for massive neutrinos from cosmic microwave background and lensing observations.

    PubMed

    Battye, Richard A; Moss, Adam

    2014-02-07

    We discuss whether massive neutrinos (either active or sterile) can reconcile some of the tensions within cosmological data that have been brought into focus by the recently released Planck data. We point out that a discrepancy is present when comparing the primary CMB and lensing measurements both from the CMB and galaxy lensing data using CFHTLenS, similar to that which arises when comparing CMB measurements and SZ cluster counts. A consistent picture emerges and including a prior for the cluster constraints and BAOs we find that for an active neutrino model with three degenerate neutrinos, ∑m(ν)=(0.320±0.081)  eV, whereas for a sterile neutrino, in addition to 3 neutrinos with a standard hierarchy and ∑m(ν)=0.06  eV, m(ν,sterile)(eff)=(0.450±0.124)  eV and ΔN(eff)=0.45±0.23. In both cases there is a significant detection of modification to the neutrino sector from the standard model and in the case of the sterile neutrino it is possible to reconcile the BAO and local H0 measurements. However, a caveat to our result is some internal tension between the CMB and lensing and cluster observations, and the masses are in excess of those estimated from the shape of the matter power spectrum from galaxy surveys.

  5. The Contribution from Neutrino Yukawa Couplings to Lepton Electric Dipole Moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farzan, Y

    2004-05-24

    To explain the observed neutrino masses through the seesaw mechanism, a supersymmetric generalization of the Standard Model should include heavy right-handed neutrino supermultiplets. Then the neutrino Yukawa couplings can induce CP violation in the lepton sector. In this paper, we compute the contribution of these CP violating terms to lepton electric dipole moments. We introduce a new formalism that makes use of supersymmetry to expose the GIM cancellations. In the region of small tan {beta}, we find a different result from that given previously by Ellis, Hisano, Raidal, and Shimizu. We confirm the structure found by this group, but withmore » a much smaller overall coefficient. In the region of large tan {beta}, we recompute the leading term that has been identified by Masina and confirm her result up to minor factors. We discuss the implications of these results for constraints on the Y{sub v}.« less

  6. Combined Analysis of Neutrino and Antineutrino Oscillations at T2K.

    PubMed

    Abe, K; Amey, J; Andreopoulos, C; Antonova, M; Aoki, S; Ariga, A; Autiero, D; Ban, S; Barbi, M; Barker, G J; Barr, G; Barry, C; Bartet-Friburg, P; Batkiewicz, M; Berardi, V; Berkman, S; Bhadra, S; Bienstock, S; Blondel, A; Bolognesi, S; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buizza Avanzini, M; Calland, R G; Campbell, T; Cao, S; Cartwright, S L; Catanesi, M G; Cervera, A; Checchia, C; Cherdack, D; Chikuma, N; Christodoulou, G; Clifton, A; Coleman, J; Collazuol, G; Coplowe, D; Cudd, A; Dabrowska, A; De Rosa, G; Dealtry, T; Denner, P F; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Dolan, S; Drapier, O; Duffy, K E; Dumarchez, J; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Feusels, T; Finch, A J; Fiorentini, G A; Friend, M; Fujii, Y; Fukuda, D; Fukuda, Y; Galymov, V; Garcia, A; Giganti, C; Gizzarelli, F; Golan, T; Gonin, M; Hadley, D R; Haegel, L; Haigh, M D; Hansen, D; Harada, J; Hartz, M; Hasegawa, T; Hastings, N C; Hayashino, T; Hayato, Y; Helmer, R L; Hillairet, A; Hiraki, T; Hiramoto, A; Hirota, S; Hogan, M; Holeczek, J; Hosomi, F; Huang, K; Ichikawa, A K; Ikeda, M; Imber, J; Insler, J; Intonti, R A; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Izmaylov, A; Jamieson, B; Jiang, M; Johnson, S; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Karlen, D; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kim, H; Kim, J; King, S; Kisiel, J; Knight, A; Knox, A; Kobayashi, T; Koch, L; Koga, T; Konaka, A; Kondo, K; Kormos, L L; Korzenev, A; Koshio, Y; Kowalik, K; Kropp, W; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Lamoureux, M; Larkin, E; Lasorak, P; Laveder, M; Lawe, M; Licciardi, M; Lindner, T; Liptak, Z J; Litchfield, R P; Li, X; Longhin, A; Lopez, J P; Lou, T; Ludovici, L; Lu, X; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Martin, J F; Martins, P; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Ma, W Y; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Mefodiev, A; Metelko, C; Mezzetto, M; Mijakowski, P; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K G; Nakamura, K; Nakamura, K D; Nakanishi, Y; Nakayama, S; Nakaya, T; Nakayoshi, K; Nantais, C; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; Novella, P; Nowak, J; O'Keeffe, H M; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Ovsyannikova, T; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Patel, N D; Paudyal, P; Pavin, M; Payne, D; Perkin, J D; Petrov, Y; Pickard, L; Pickering, L; Pinzon Guerra, E S; Pistillo, C; Popov, B; Posiadala-Zezula, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radermacher, T; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A; Redij, A; Reinherz-Aronis, E; Riccio, C; Rodrigues, P A; Rondio, E; Rossi, B; Roth, S; Rubbia, A; Rychter, A; Sakashita, K; Sánchez, F; Scantamburlo, E; Scholberg, K; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shah, R; Shaikhiev, A; Shaker, F; Shaw, D; Shiozawa, M; Shirahige, T; Short, S; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Steinmann, J; Stewart, T; Stowell, P; Suda, Y; Suvorov, S; Suzuki, A; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Terhorst, D; Terri, R; Thakore, T; Thompson, L F; Tobayama, S; Toki, W; Tomura, T; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vagins, M; Vallari, Z; Vasseur, G; Vladisavljevic, T; Wachala, T; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Wilson, J R; Wilson, R J; Wret, C; Yamada, Y; Yamamoto, K; Yamamoto, M; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yoshida, K; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2017-04-14

    T2K reports its first results in the search for CP violation in neutrino oscillations using appearance and disappearance channels for neutrino- and antineutrino-mode beams. The data include all runs from January 2010 to May 2016 and comprise 7.482×10^{20} protons on target in neutrino mode, which yielded in the far detector 32 e-like and 135  μ-like events, and 7.471×10^{20} protons on target in antineutrino mode, which yielded 4 e-like and 66  μ-like events. Reactor measurements of sin^{2}2θ_{13} have been used as an additional constraint. The one-dimensional confidence interval at 90% for the phase δ_{CP} spans the range (-3.13, -0.39) for normal mass ordering. The CP conservation hypothesis (δ_{CP}=0, π) is excluded at 90% C.L.

  7. Contribution from neutrino Yukawa couplings to lepton electric dipole moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farzan, Yasaman; Scuola Internazionale di Studi Avanzati; Peskin, Michael E.

    2004-11-01

    To explain the observed neutrino masses through the seesaw mechanism, a supersymmetric generalization of the standard model should include heavy right-handed neutrino supermultiplets. Then the neutrino Yukawa couplings can induce CP violation in the lepton sector. In this paper, we compute the contribution of these CP violating terms to lepton electric dipole moments. We introduce a new formalism that makes use of supersymmetry to expose the Glashow-Iliopoulos-Maiani cancellations. In the region of small tan{beta}, we find a different result from that given previously by Ellis, Hisano, Raidal, and Shimizu. We confirm the structure found by this group, but with amore » much smaller overall coefficient. In the region of large tan{beta}, we recompute the leading term that has been identified by Masina and confirm her result up to minor factors. We discuss the implications of these results for constraints on the Y{sub {nu}}.« less

  8. Experimental Neutrino Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkes, Richard Jeffrey

    The University of Washington (UW) HEP neutrino group performed experimental research on the physics of neutrinos, using the capabilities offered by the T2K Experiment and the Super-Kamiokande Neutrino Observatory. The UW group included senior investigator R. J. Wilkes, two PhD students, four MS degree students, and a research engineer, all of whom are members of the international scientific collaborations for T2K and Super-Kamiokande. During the period of support, within T2K we pursued new precision studies sensitive to new physics, going beyond the limits of current measurements of the fundamental neutrino oscillation parameters (mass differences and mixing angles). We began effortsmore » to measure (or significantly determine the absence of) 1 the CP-violating phase parameter δCP and determine the neutrino mass hierarchy. Using the Super-Kamiokande (SK) detector we pursued newly increased precision in measurement of neutrino oscillation parameters with atmospheric neutrinos, and extended the current reach in searches for proton decay, in addition to running the most sensitive supernova watch instrument [Scholberg 2012], performing other astrophysical neutrino studies, and analyzing beam-induced events from T2K. Overall, the research addressed central questions in the field of particle physics. It included the training of graduate students (both PhD and professional MS degree students), and postdoctoral researchers. Undergraduate students also participated as laboratory assistants.« less

  9. Anatomy of a cosmic-ray neutrino source and the Cygnus X-3 system

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Harding, A. K.; Barnard, J. J.

    1985-01-01

    The effects of an intense beam of ultra-high energy cosmic rays from a compact object in the Cygnus X-3 binary system hitting the companion star, and of the subsequent production of secondary neutrinos, are examined. A maximum allowable beam luminosity of about 10 to the 42nd erg/s is found for a system containing a 1-10 solar mass main sequence target star. The proton beam must heat a relatively small area of the target star to satisfy observational constraints on the resulting stellar wind. With such a model, the neutrino to gamma-ray flux ratio of about 1000 can result from a combination of gamma-ray absorption and a large neutrino to gamma-ray duty cycle ratio. It is found that the high density of the atmosphere resulting from compression by the beam leads to pion cascading and a neutrino spectrum peaking at 1-10 GeV energies.

  10. Experimental Neutrino Physics and Astrophysics with the IMB-3 Detector

    NASA Astrophysics Data System (ADS)

    Casper, David William

    1990-01-01

    simultaneous signals in a least one other detector, confirm transport of energy by neutrinos, a lynchpin of stellar collapse models. Prompt arrival of neutrinos from ~ 50 kiloparsec distant places many constraints on the properties of neutrinos which rival those from terrestrial experimentation. Some solutions to the missing mass or "dark matter" problem result in high-energy neutrino production within the Sun. A model of dark matter capture and annihilation in the Sun predicts the resulting neutrino fluxes at Earth. No evidence of the phenomenon is observed, but for canonical values of dark matter density and velocity in the solar system, greater exposure will be required to verify or exclude the expected signal.

  11. The Deep Underground Neutrino Experiment: The precision era of neutrino physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, E.

    The last decade was remarkable for neutrino physics. In particular, the phenomenon of neutrino flavor oscillations has been firmly established by a series of independent measurements. All parameters of the neutrino mixing are now known, and we have the elements to plan a judicious exploration of new scenarios that are opened by these recent advances. With precise measurements, we can test the three-neutrino paradigm, neutrino mass hierarchy, and charge conjugation parity (CP) asymmetry in the lepton sector. The future long-baseline experiments are considered to be a fundamental tool to deepen our knowledge of electroweak interactions. The Deep Underground Neutrino Experimentmore » (DUNE) will detect a broadband neutrino beam from Fermilab in an underground massive liquid argon time-projection chamber at an L/E of about 103 km GeV-1 to reach good sensitivity for CP-phase measurements and the determination of the mass hierarchy. The dimensions and the depth of the far detector also create an excellent opportunity to look for rare signals like proton decay to study violation of the baryonic number, as well as supernova neutrino bursts, broadening the scope of the experiment to astrophysics and associated impacts in cosmology. In this paper, we discuss the physics motivations and the main experimental features of the DUNE project required to reach its scientific goals.« less

  12. Cosmology based on f(R) gravity with O(1) eV sterile neutrino

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chudaykin, Anton S.; Gorbunov, Dmitry S.; Starobinsky, Alexei A.

    2015-05-01

    We address the cosmological role of an additional O(1) eV sterile neutrino in modified gravity models. We confront the present cosmological data with predictions of the FLRW cosmological model based on a variant of f(R) modified gravity proposed by one of the authors previously. This viable cosmological model which deviation from general relativity with a cosmological constant Λ decreases as R{sup −2n} for large, but not too large values of the Ricci scalar R (while no Λ is introduced by hand at small R) provides an alternative explanation of present dark energy and the accelerated expansion of the Universe (themore » case n=2 is considered in the paper). Various up-to-date cosmological data sets exploited include measurements of the cosmic microwave background (CMB) anisotropy, the CMB lensing potential, the baryon acoustic oscillations (BAO), the cluster mass function and the Hubble constant. We find that the CMB+BAO constraints strongly restrict the sum of neutrino masses from above. This excludes values of the model parameter λ∼ 1 for which distinctive cosmological features of the model are mostly pronounced as compared to the ΛCDM model, since then free streaming damping of perturbations due to neutrino rest masses is not sufficient to compensate their extra growth occurring in f(R) modified gravity. Thus, in the gravity sector we obtain λ>8.2 (2σ) with the account of systematic uncertainties in galaxy cluster mass function measurements and λ>9.4 (2σ) without them. At the same time in the latter case we find for the sterile neutrino mass 0.47 eV < m{sub ν, sterile} < 1 eV (2σ) assuming that the sterile neutrinos are thermalized and the active neutrinos are massless, not significantly larger than in the standard ΛCDM with the same data set: 0.45 eV < m{sub ν, sterile} < 0.92 eV (2σ). However, a possible discovery of a sterile neutrino with the mass m{sub ν, sterile} ≈ 1.5 eV motivated by various anomalies in neutrino

  13. Recent Ultra High Energy neutrino bounds and multimessenger observations with the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Zas, Enrique

    2018-01-01

    The overall picture of the highest energy particles produced in the Universe is changing because of measurements made with the Pierre Auger Observatory. Composition studies of cosmic rays point towards an unexpected mixed composition of intermediate mass nuclei, more isotropic than anticipated, which is reshaping the future of the field and underlining the priority to understand composition at the highest energies. The Observatory is competitive in the search for neutrinos of all flavors above about 100 PeV by looking for very inclined showers produced deep in the atmosphere by neutrinos interacting either in the atmosphere or in the Earth's crust. It covers a large field of view between -85° and 60° declination in equatorial coordinates. Neutrinos are expected because of the existence of ultra high energy cosmic rays. They provide valuable complementary information, their fluxes being sensitive to the primary cosmic ray masses and their directions reflecting the source positions. We report the results of the neutrino search providing competitive bounds to neutrino production and strong constraints to a number of production models including cosmogenic neutrinos due to ultra high energy protons. We also report on two recent contributions of the Observatory to multimessenger studies by searching for correlations of neutrinos both with cosmic rays and with gravitational waves. The correlations of the directions of the highest energy astrophysical neutrinos discovered with IceCube with the highest energy cosmic rays detected with the Auger Observatory and the Telescope Array revealed an excess that is not statistically significant and is being monitored. The targeted search for neutrinos correlated with the discovery of the gravitational wave events GW150914 and GW151226 with advanced LIGO has led to the first bounds on the energy emitted by black hole mergers in Ultra-High Energy Neutrinos.

  14. Simulation of coherent nonlinear neutrino flavor transformation in the supernova environment: Correlated neutrino trajectories

    NASA Astrophysics Data System (ADS)

    Duan, Huaiyu; Fuller, George M.; Carlson, J.; Qian, Yong-Zhong

    2006-11-01

    We present results of large-scale numerical simulations of the evolution of neutrino and antineutrino flavors in the region above the late-time post-supernova-explosion proto-neutron star. Our calculations are the first to allow explicit flavor evolution histories on different neutrino trajectories and to self-consistently couple flavor development on these trajectories through forward scattering-induced quantum coupling. Employing the atmospheric-scale neutrino mass-squared difference (|δm2|≃3×10-3eV2) and values of θ13 allowed by current bounds, we find transformation of neutrino and antineutrino flavors over broad ranges of energy and luminosity in roughly the “bi-polar” collective mode. We find that this large-scale flavor conversion, largely driven by the flavor off-diagonal neutrino-neutrino forward scattering potential, sets in much closer to the proto-neutron star than simple estimates based on flavor-diagonal potentials and Mikheyev-Smirnov-Wolfenstein evolution would indicate. In turn, this suggests that models of r-process nucleosynthesis sited in the neutrino-driven wind could be affected substantially by active-active neutrino flavor mixing, even with the small measured neutrino mass-squared differences.

  15. Probing Neutrino Hierarchy and Chirality via Wakes.

    PubMed

    Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Inman, Derek

    2016-04-08

    The relic neutrinos are expected to acquire a bulk relative velocity with respect to the dark matter at low redshifts, and neutrino wakes are expected to develop downstream of the dark matter halos. We propose a method of measuring the neutrino mass based on this mechanism. This neutrino wake will cause a dipole distortion of the galaxy-galaxy lensing pattern. This effect could be detected by combining upcoming lensing surveys with a low redshift galaxy survey or a 21 cm intensity mapping survey, which can map the neutrino flow field. The data obtained with LSST and Euclid should enable us to make a positive detection if the three neutrino masses are quasidegenerate with each neutrino mass of ∼0.1  eV, and a future high precision 21 cm lensing survey would allow the normal hierarchy and inverted hierarchy cases to be distinguished, and even the right-handed Dirac neutrinos may be detectable.

  16. A New Neutrino Oscillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parke, Stephen J.; /Fermilab

    2011-07-01

    Starting in the late 1960s, neutrino detectors began to see signs that neutrinos, now known to come in the flavors electron ({nu}{sub e}), muon ({nu}{sub {mu}}), and tau ({nu}{sub {tau}}), could transform from one flavor to another. The findings implied that neutrinos must have mass, since massless particles travel at the speed of light and their clocks, so to speak, don't tick, thus they cannot change. What has since been discovered is that neutrinos oscillate at two distinct scales, 500 km/GeV and 15,000 km/GeV, which are defined by the baseline (L) of the experiment (the distance the neutrino travels) dividedmore » by the neutrino energy (E). Neutrinos of one flavor can oscillate into neutrinos of another flavor at both L/E scales, but the amplitude of these oscillations is different for the two scales and depends on the initial and final flavor of the neutrinos. The neutrino states that propogate unchanged in time, the mass eigenstates {nu}1, {nu}2, {nu}3, are quantum mechanical mixtures of the electron, muon, and tau neutrino flavors, and the fraction of each flavor in a given mass eigenstate is controlled by three mixing angles and a complex phase. Two of these mixing angles are known with reasonable precision. An upper bound exists for the third angle, called {theta}{sub 13}, which controls the size of the muon neutrino to electron neutrino oscillation at an L/E of 500 km/GeV. The phase is completely unknown. The existence of this phase has important implications for the asymmetry between matter and antimatter we observe in the universe today. Experiments around the world have steadily assembled this picture of neutrino oscillation, but evidence of muon neutrino to electron neutrino oscillation at 500 km/GeV has remained elusive. Now, a paper from the T2K (Tokai to Kamioka) experiment in Japan, reports the first possible observation of muon neutrinos oscillating into electron neutrinos at 500 km/GeV. They see 6 candidate signal events, above an expected

  17. Neutrinos as the messengers of CPT violation

    NASA Astrophysics Data System (ADS)

    Borissov, Liubomir Anguelov

    CPT violation has the potential to explain all three existing neutrino oscillation signals without enlarging the neutrino sector. CPT violation in the Dirac mass terms of the three neutrino flavors preserves Lorentz invariance, but generates in dependent masses for neutrinos and antineutrinos. This specific signature can be motivated by braneworld scenarios with extra dimensions, where neutrinos are the natural messengers for Standard Model physics of CPT violation in the bulk. A simple model of maximal CPT violation is sufficient to explain the exisiting neutrino data, while accommodating the recent results from the KamLAND experiment and making dramatic predictions for the ongoing MiniBooNE experiment. In addition, the model fits the existing SuperKamiokande data, at least as well as the standard atmospheric neutrino oscillation models. Another attractive feature of the presented model is that it provides a new promising mechanism for baryogenesis, which obviates two of the three Sakharov conditions necessary to generate the baryon asymmetry of the universe. CPT-violating scenarios can give new insights about the possible nature of neutrinos. Majorana neutrino masses are still allowed, but in general, there are no longer Majorana neutrinos in the conventional sense. However, CPT-violating models still have interesting consequences for neutrinoless double beta decay. Compared to the usual case, while the larger mass scale (from LSND) may appear, a greater degree of suppression can also occur.

  18. Radiative decay lifetime of neutrinos and the evolution of the universe after the recombination era

    NASA Astrophysics Data System (ADS)

    Rephaeli, Yoel; Szalay, Alexander S.

    1981-10-01

    If the radiative decay lifetime τ of massive neutrinos is less than 1025 s, but exceeding present constraints, the epoch of neutral hydrogen in the history of the universe could have been short or altogether absent. Erasure of small scale fluctuations in the cosmic microwave background radiation and other consequences of such lifetimes are discussed. From observations of neutral hydrogen in the nearby galaxy M 31 a lower limit τ >= 1024 s is obtained (for neutrino masses in the range 30 eV <= m <= 150 eV). Permanent address: Department of Atomic Physics, R. Eotvos University, 1088 Budapest, Hungary.

  19. Neutrino Physics at Fermilab

    ScienceCinema

    Saoulidou, Niki

    2017-12-09

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  20. Features of neutrino mixing

    NASA Astrophysics Data System (ADS)

    Chiu, S. H.; Kuo, T. K.

    2018-03-01

    The elements (squared) of the neutrino mixing matrix are found to satisfy, as functions of the induced mass, a set of differential equations. They show clearly the dominance of pole terms when the neutrino masses "cross." Using the known vacuum mixing parameters as initial conditions, it is found that these equations have very good approximate solutions, for all values of the induced mass. The results are applicable to long baseline experiments.

  1. Constraint on reconstructed f(R) gravity models from gravitational waves

    NASA Astrophysics Data System (ADS)

    Lee, Seokcheon

    2018-06-01

    The gravitational wave (GW) detection of a binary neutron star inspiral made by the Advanced LIGO and Advanced Virgo paves the unprecedented way for multi-messenger observations. The propagation speed of this GW can be scrutinized by comparing the arrival times between GW and neutrinos or photons. It provides the constraint on the mass of the graviton. f(R) gravity theories have the habitual non-zero mass gravitons in addition to usual massless ones. Previously, we show that the model independent f(R) gravity theories can be constructed from the both background evolution and the matter growth with one undetermined parameter. We show that this parameter can be constrained from the graviton mass bound obtained from GW detection. Thus, the GW detection provides the invaluable constraint on the validity of f(R) gravity theories.

  2. Gamma rays from dark matter annihilation in three-loop radiative neutrino mass generation models

    NASA Astrophysics Data System (ADS)

    Chowdhury, Talal Ahmed; Nasri, Salah

    2018-07-01

    We present the Sommerfeld enhanced Dark Matter (DM) annihilation into gamma ray for a class of three-loop radiative neutrino mass models with large electroweak multiplets where the DM mass is in O(TeV) range. We show that in this model, the DM annihilation rate becomes more prominent for larger multiplets and it is already within the reach of currently operating Imaging Atmospheric Cherenkov telescopes (IACTs), High Energy Stereoscopic System (H.E.S.S.). Furthermore, Cherenkov Telescope Array (CTA), which will begin operating in 2030, will improve this sensitivity by a factor of O (10) and may exclude a large portion of parameter space of this radiative neutrino mass model with larger electroweak multiplet. This implies that the only viable option is the model with lowest electroweak multiplets i.e. singlets of SU(2)L where the DM annihilation rate is not Sommerfeld enhanced and hence it is not yet constrained by the indirect detection limits from H.E.S.S. or future CTA.

  3. Subdominant Dark Matter sterile neutrino resonant production in the light of PLANCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popa, L.A.; Tonoiu, D., E-mail: lpopa@spacescience.ro, E-mail: tonoiud@spacescience.ro

    2015-09-01

    Few independent detections of a weak X-ray line at an energy of ∼ 3.5 keV seen toward a number of astrophysical sites have been reported. If this signal will be confirmed to be the signature of decaying DM sterile neutrino with a mass of ∼ 7.1 keV, then the cosmological observables should be consistent with its properties. In this paper we make a coupled treatment of the weak decoupling, primordial nucleosynthesis and photon decoupling epochs in the sterile neutrino resonant production scenario, including the extra radiation energy density via N{sub eff}. We compute the radiation and matter perturbations including the full resonancemore » sweep solution for ν{sub α}/ν-bar {sub α} → ν{sub s} flavor conversion in the expanding Universe.We show that the cosmological measurements are in agreement with subdominant Dark Matter sterile neutrino resonant production with following parameters (errors at 95% CL): mass m{sub ν{sub s}}=6.08 ± 3.22 keV, mixing angle sin{sup 2} 2θ < 5.61 × 10{sup −10}, lepton number per flavor L{sub 4} = 1.23 ± 0.04 (L{sub 4} ≡ 10{sup 4} L{sub ν{sub a}}) and sterile neutrino mass fraction f{sub ν{sub s}}< 0.078.Our results are in good agreement with the sterile neutrino resonant production parameters inferred in ref. [1] from the linear large scale structure constraints to produce full Dark Matter density.« less

  4. DEEP UNDERGROUND NEUTRINO EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Robert J.

    2016-03-03

    The Deep Underground Neutrino Experiment (DUNE) collaboration will perform an experiment centered on accelerator-based long-baseline neutrino studies along with nucleon decay and topics in neutrino astrophysics. It will consist of a modular 40-kt (fiducial) mass liquid argon TPC detector located deep underground at the Sanford Underground Research Facility in South Dakota and a high-resolution near detector at Fermilab in Illinois. This conguration provides a 1300-km baseline in a megawatt-scale neutrino beam provided by the Fermilab- hosted international Long-Baseline Neutrino Facility.

  5. Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen

    NASA Astrophysics Data System (ADS)

    Gando, A.; Gando, Y.; Hachiya, T.; Hayashi, A.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Karino, Y.; Koga, M.; Matsuda, S.; Mitsui, T.; Nakamura, K.; Obara, S.; Oura, T.; Ozaki, H.; Shimizu, I.; Shirahata, Y.; Shirai, J.; Suzuki, A.; Takai, T.; Tamae, K.; Teraoka, Y.; Ueshima, K.; Watanabe, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Fushimi, K.; Banks, T. I.; Berger, B. E.; Fujikawa, B. K.; O'Donnell, T.; Winslow, L. A.; Efremenko, Y.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.; KamLAND-Zen Collaboration

    2016-08-01

    We present an improved search for neutrinoless double-beta (0 ν β β ) decay of 136Xe in the KamLAND-Zen experiment. Owing to purification of the xenon-loaded liquid scintillator, we achieved a significant reduction of the Agm110 contaminant identified in previous searches. Combining the results from the first and second phase, we obtain a lower limit for the 0 ν β β decay half-life of T1/2 0 ν>1.07 ×1 026 yr at 90% C.L., an almost sixfold improvement over previous limits. Using commonly adopted nuclear matrix element calculations, the corresponding upper limits on the effective Majorana neutrino mass are in the range 61-165 meV. For the most optimistic nuclear matrix elements, this limit reaches the bottom of the quasidegenerate neutrino mass region.

  6. Searching for sterile neutrinos in dynamical dark energy cosmologies

    NASA Astrophysics Data System (ADS)

    Feng, Lu; Zhang, Jing-Fei; Zhang, Xin

    2018-05-01

    We investigate how the dark energy properties change the cosmological limits on sterile neutrino parameters by using recent cosmological observations. We consider the simplest dynamical dark energy models, the wCDM model and the holographic dark energy (HDE) model, to make an analysis. The cosmological observations used in this work include the Planck 2015 CMB temperature and polarization data, the baryon acoustic oscillation data, the type Ia supernova data, the Hubble constant direct measurement data, and the Planck CMB lensing data. We find that, m v,terile ff < 0.2675 eV and Ne f f < 3.5718 for ACDM cosmology, m v,terile ff < 0.5313 eV and Ne f f < 3.5008 for wCDM cosmology, and raffterile < 0.1989 eV and Ne f f < 3.6701 for HDE cosmology, from the constraints of the combination of these data. Thus, without the addition of measurements of growth of structure, only upper limits on both m v,terile ff and Ne f f can be derived, indicating that no evidence of the existence of a sterile neutrino species with eV-scale mass is found in this analysis. Moreover, compared to the ACDM model, in the wCDM model the limit on m v,terile ff becomes much looser, but in the HDE model the limit becomes much tighter. Therefore, the dark energy properties could significantly influence the constraint limits of sterile neutrino parameters.

  7. Thermalizing Sterile Neutrino Dark Matter.

    PubMed

    Hansen, Rasmus S L; Vogl, Stefan

    2017-12-22

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  8. Thermalizing Sterile Neutrino Dark Matter

    NASA Astrophysics Data System (ADS)

    Hansen, Rasmus S. L.; Vogl, Stefan

    2017-12-01

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  9. Neutrino oscillations and Non-Standard Interactions

    NASA Astrophysics Data System (ADS)

    Farzan, Yasaman; Tórtola, Mariam

    2018-02-01

    Current neutrino experiments are measuring the neutrino mixing parameters with an unprecedented accuracy. The upcoming generation of neutrino experiments will be sensitive to subdominant oscillation effects that can give information on the yet-unknown neutrino parameters: the Dirac CP-violating phase, the mass ordering and the octant of θ_{23}. Determining the exact values of neutrino mass and mixing parameters is crucial to test neutrino models and flavor symmetries designed to predict these neutrino parameters. In the first part of this review, we summarize the current status of the neutrino oscillation parameter determination. We consider the most recent data from all solar experiments and the atmospheric data from Super-Kamiokande, IceCube and ANTARES. We also implement the data from the reactor neutrino experiments KamLAND, Daya Bay, RENO and Double Chooz as well as the long baseline neutrino data from MINOS, T2K and NOvA. If in addition to the standard interactions, neutrinos have subdominant yet-unknown Non-Standard Interactions (NSI) with matter fields, extracting the values of these parameters will suffer from new degeneracies and ambiguities. We review such effects and formulate the conditions on the NSI parameters under which the precision measurement of neutrino oscillation parameters can be distorted. Like standard weak interactions, the non-standard interaction can be categorized into two groups: Charged Current (CC) NSI and Neutral Current (NC) NSI. Our focus will be mainly on neutral current NSI because it is possible to build a class of models that give rise to sizeable NC NSI with discernible effects on neutrino oscillation. These models are based on new U(1) gauge symmetry with a gauge boson of mass ≲ 10 MeV. The UV complete model should be of course electroweak invariant which in general implies that along with neutrinos, charged fermions also acquire new interactions on which there are strong bounds. We enumerate the bounds that already

  10. Axion-assisted production of sterile neutrino dark matter

    DOE PAGES

    Berlin, Asher; Hooper, Dan

    2017-04-12

    Sterile neutrinos can be generated in the early universe through oscillations with active neutrinos and represent a popular and well-studied candidate for our Universe’s dark matter. Stringent constraints from X-ray and gamma-ray line searches, however, have excluded the simplest of such models. Here in this paper, we propose a novel alternative to the standard scenario in which the mixing angle between the sterile and active neutrinos is a dynamical quantity, induced through interactions with a light axionlike field. As the energy density of the axionlike particles is diluted by Hubble expansion, the degree of mixing is reduced at late times,more » suppressing the decay rate and easily alleviating any tension with X-ray or gamma-ray constraints. Lastly, we present a simple model which illustrates the phenomenology of this scenario, and also describe a framework in which the QCD axion is responsible for the production of sterile neutrinos in the early universe.« less

  11. Axion-assisted production of sterile neutrino dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlin, Asher; Hooper, Dan

    2017-04-12

    Sterile neutrinos can be generated in the early universe through oscillations with active neutrinos and represent a popular and well-studied candidate for our universe's dark matter. Stringent constraints from X-ray and gamma-ray line searches, however, have excluded the simplest of such models. In this letter, we propose a novel alternative to the standard scenario in which the mixing angle between the sterile and active neutrinos is a dynamical quantity, induced through interactions with a light axion-like field. As the energy density of the axion-like particles is diluted by Hubble expansion, the degree of mixing is reduced at late times, suppressingmore » the decay rate and easily alleviating any tension with X-ray or gamma-ray constraints. We present a simple model which illustrates the phenomenology of this scenario, and also describe a framework in which the QCD axion is responsible for the production of sterile neutrinos in the early universe.« less

  12. Axion-assisted production of sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Berlin, Asher; Hooper, Dan

    2017-04-01

    Sterile neutrinos can be generated in the early universe through oscillations with active neutrinos and represent a popular and well-studied candidate for our Universe's dark matter. Stringent constraints from X-ray and gamma-ray line searches, however, have excluded the simplest of such models. In this paper, we propose a novel alternative to the standard scenario in which the mixing angle between the sterile and active neutrinos is a dynamical quantity, induced through interactions with a light axionlike field. As the energy density of the axionlike particles is diluted by Hubble expansion, the degree of mixing is reduced at late times, suppressing the decay rate and easily alleviating any tension with X-ray or gamma-ray constraints. We present a simple model which illustrates the phenomenology of this scenario, and also describe a framework in which the QCD axion is responsible for the production of sterile neutrinos in the early universe.

  13. Non-unitarity, sterile neutrinos, and non-standard neutrino interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blennow, Mattias; Coloma, Pilar; Fernandez-Martinez, Enrique

    The simplest Standard Model extension to explain neutrino masses involves the addition of right-handed neutrinos. At some level, this extension will impact neutrino oscillation searches. In this work we explore the differences and similarities between the case in which these neutrinos are kinematically accessible (sterile neutrinos) or not (mixing matrix non-unitarity). We clarify apparent inconsistencies in the present literature when using different parametrizations to describe these effects and recast both limits in the popular neutrino non-standard interaction (NSI) formalism. We find that, in the limit in which sterile oscillations are averaged out at the near detector, their effects at themore » far detector coincide with non-unitarity at leading order, even in presence of a matter potential. We also summarize the present bounds existing in both limits and compare them with the expected sensitivities of near future facilities taking the DUNE proposal as a benchmark. We conclude that non-unitarity effects are too constrained to impact present or near future neutrino oscillation facilities but that sterile neutrinos can play an important role at long baseline experiments. As a result, the role of the near detector is also discussed in detail.« less

  14. Non-unitarity, sterile neutrinos, and non-standard neutrino interactions

    DOE PAGES

    Blennow, Mattias; Coloma, Pilar; Fernandez-Martinez, Enrique; ...

    2017-04-27

    The simplest Standard Model extension to explain neutrino masses involves the addition of right-handed neutrinos. At some level, this extension will impact neutrino oscillation searches. In this work we explore the differences and similarities between the case in which these neutrinos are kinematically accessible (sterile neutrinos) or not (mixing matrix non-unitarity). We clarify apparent inconsistencies in the present literature when using different parametrizations to describe these effects and recast both limits in the popular neutrino non-standard interaction (NSI) formalism. We find that, in the limit in which sterile oscillations are averaged out at the near detector, their effects at themore » far detector coincide with non-unitarity at leading order, even in presence of a matter potential. We also summarize the present bounds existing in both limits and compare them with the expected sensitivities of near future facilities taking the DUNE proposal as a benchmark. We conclude that non-unitarity effects are too constrained to impact present or near future neutrino oscillation facilities but that sterile neutrinos can play an important role at long baseline experiments. As a result, the role of the near detector is also discussed in detail.« less

  15. Accelerator-based Neutrino Physics at Fermilab

    NASA Astrophysics Data System (ADS)

    Dukes, Edmond

    2008-10-01

    The discovery of neutrino mass has excited great interest in elucidating the properties of neutrinos and their role in nature. Experiments around the world take advantage of solar, atmospheric, reactor, and accelerator sources of neutrinos. Accelerator-based sources are particularly convenient since their parameters can be tuned to optimize the measurement in question. At Fermilab an extensive neutrino program includes the MiniBooNE, SciBooNE, and MINOS experiments. Two major new experiments, MINERvA and NOvA, are being constructed, plans for a high-intensity neutrino source to DUSEL are underway, and an R&D effort towards a large liquid argon detector is being pursued. The NOvA experiment intends to search for electron neutrino appearance using a massive surface detector 811 km from Fermilab. In addition to measuring the last unknown mixing angle, theta(13), NOvA has the possibility of seeing matter-antimatter asymmetries in neutrinos and resolving the ordering of the neutrino mass states.

  16. Toroidal magnetized iron neutrino detector for a neutrino factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bross, A.; Wands, R.; Bayes, R.

    2013-08-01

    A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mass. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this report, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of largemore » $$\\theta_{13}$$. The response and performance using the 10 GeV neutrino factory configuration are presented. It is shown that this setup has equivalent $$\\delta_{CP}$$ reach to a MIND with a dipole field and is sensitive to the discovery of CP violation over 85% of the values of $$\\delta_{CP}$$.« less

  17. Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen.

    PubMed

    Gando, A; Gando, Y; Hachiya, T; Hayashi, A; Hayashida, S; Ikeda, H; Inoue, K; Ishidoshiro, K; Karino, Y; Koga, M; Matsuda, S; Mitsui, T; Nakamura, K; Obara, S; Oura, T; Ozaki, H; Shimizu, I; Shirahata, Y; Shirai, J; Suzuki, A; Takai, T; Tamae, K; Teraoka, Y; Ueshima, K; Watanabe, H; Kozlov, A; Takemoto, Y; Yoshida, S; Fushimi, K; Banks, T I; Berger, B E; Fujikawa, B K; O'Donnell, T; Winslow, L A; Efremenko, Y; Karwowski, H J; Markoff, D M; Tornow, W; Detwiler, J A; Enomoto, S; Decowski, M P

    2016-08-19

    We present an improved search for neutrinoless double-beta (0νββ) decay of ^{136}Xe in the KamLAND-Zen experiment. Owing to purification of the xenon-loaded liquid scintillator, we achieved a significant reduction of the ^{110m}Ag contaminant identified in previous searches. Combining the results from the first and second phase, we obtain a lower limit for the 0νββ decay half-life of T_{1/2}^{0ν}>1.07×10^{26}  yr at 90% C.L., an almost sixfold improvement over previous limits. Using commonly adopted nuclear matrix element calculations, the corresponding upper limits on the effective Majorana neutrino mass are in the range 61-165 meV. For the most optimistic nuclear matrix elements, this limit reaches the bottom of the quasidegenerate neutrino mass region.

  18. Testing constrained sequential dominance models of neutrinos

    NASA Astrophysics Data System (ADS)

    Björkeroth, Fredrik; King, Stephen F.

    2015-12-01

    Constrained sequential dominance (CSD) is a natural framework for implementing the see-saw mechanism of neutrino masses which allows the mixing angles and phases to be accurately predicted in terms of relatively few input parameters. We analyze a class of CSD(n) models where, in the flavour basis, two right-handed neutrinos are dominantly responsible for the ‘atmospheric’ and ‘solar’ neutrino masses with Yukawa couplings to ({ν }e,{ν }μ ,{ν }τ ) proportional to (0,1,1) and (1,n,n-2), respectively, where n is a positive integer. These coupling patterns may arise in indirect family symmetry models based on A 4. With two right-handed neutrinos, using a χ 2 test, we find a good agreement with data for CSD(3) and CSD(4) where the entire Pontecorvo-Maki-Nakagawa-Sakata mixing matrix is controlled by a single phase η, which takes simple values, leading to accurate predictions for mixing angles and the magnitude of the oscillation phase | {δ }{CP}| . We carefully study the perturbing effect of a third ‘decoupled’ right-handed neutrino, leading to a bound on the lightest physical neutrino mass {m}1{{≲ }}1 meV for the viable cases, corresponding to a normal neutrino mass hierarchy. We also discuss a direct link between the oscillation phase {δ }{CP} and leptogenesis in CSD(n) due to the same see-saw phase η appearing in both the neutrino mass matrix and leptogenesis.

  19. Neutrino Oscillations:. a Phenomenological Approach

    NASA Astrophysics Data System (ADS)

    Fogli, G. L.; Lisi, E.; Marrone, A.; Palazzo, A.; Rotunno, A. M.; Montanino, D.

    We review the status of the neutrino oscillations physics, with a particular emphasis on the present knowledge of the neutrino mass-mixing parameters. We consider first the νμ → ντ flavor transitions of atmospheric neutrinos. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at ±1σ (and NDF = 1) as: Δm2 = (2.6 ± 0.4) × 10-3 eV2 and sin 2 2θ = 1.00{ - 0.05}{ + 0.00} . Such indications, presently dominated by SK, could be strengthened by further K2K data. Then we point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, in particular the KamLAND data, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. Finally, we perform an updated analysis of two-family active oscillations of solar and reactor neutrinos in the standard MSW case.

  20. Extraterrestrial high energy neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1979-01-01

    Using the most recent cosmic ray spectra up to 2x10 to the 20th power eV, production spectra of high energy neutrinos from cosmic ray interactions with interstellar gas and extragalactic interactions of ultrahigh energy cosmic rays with 3K universal background photons are presented and discussed. Estimates of the fluxes from cosmic diffuse sources and the nearby quasar 3C273 are made using the generic relationship between secondary neutrinos and gammas and using recent gamma ray satellite data. These gamma ray data provide important upper limits on cosmological neutrinos. Quantitative estimates of the observability of high energy neutrinos from the inner galaxy and 3C273 above atmospheric background for a DUMAND type detector are discussed in the context of the Weinberg-Salam model with sq sin theta omega = 0.2 and including the atmospheric background from the decay of charmed mesons. Constraints on cosmological high energy neutrino production models are also discussed. It appears that important high energy neutrino astronomy may be possible with DUMAND, but very long observing times are required.

  1. Relativistic N-body simulations with massive neutrinos

    NASA Astrophysics Data System (ADS)

    Adamek, Julian; Durrer, Ruth; Kunz, Martin

    2017-11-01

    Some of the dark matter in the Universe is made up of massive neutrinos. Their impact on the formation of large scale structure can be used to determine their absolute mass scale from cosmology, but to this end accurate numerical simulations have to be developed. Due to their relativistic nature, neutrinos pose additional challenges when one tries to include them in N-body simulations that are traditionally based on Newtonian physics. Here we present the first numerical study of massive neutrinos that uses a fully relativistic approach. Our N-body code, gevolution, is based on a weak-field formulation of general relativity that naturally provides a self-consistent framework for relativistic particle species. This allows us to model neutrinos from first principles, without invoking any ad-hoc recipes. Our simulation suite comprises some of the largest neutrino simulations performed to date. We study the effect of massive neutrinos on the nonlinear power spectra and the halo mass function, focusing on the interesting mass range between 0.06 eV and 0.3 eV and including a case for an inverted mass hierarchy.

  2. Sterile neutrinos in cosmology

    NASA Astrophysics Data System (ADS)

    Abazajian, Kevork N.

    2017-11-01

    Sterile neutrinos are natural extensions to the standard model of particle physics in neutrino mass generation mechanisms. If they are relatively light, less than approximately 10 keV, they can alter cosmology significantly, from the early Universe to the matter and radiation energy density today. Here, we review the cosmological role such light sterile neutrinos can play from the early Universe, including production of keV-scale sterile neutrinos as dark matter candidates, and dynamics of light eV-scale sterile neutrinos during the weakly-coupled active neutrino era. We review proposed signatures of light sterile neutrinos in cosmic microwave background and large scale structure data. We also discuss keV-scale sterile neutrino dark matter decay signatures in X-ray observations, including recent candidate ∼3.5 keV X-ray line detections consistent with the decay of a ∼7 keV sterile neutrino dark matter particle.

  3. First Evidence of pep Solar Neutrinos by Direct Detection in Borexino

    NASA Astrophysics Data System (ADS)

    Bellini, G.; Benziger, J.; Bick, D.; Bonetti, S.; Bonfini, G.; Bravo, D.; Buizza Avanzini, M.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Carraro, C.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Etenko, A.; Fomenko, K.; Franco, D.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Grandi, L.; Guardincerri, E.; Hardy, S.; Ianni, Aldo; Ianni, Andrea; Korablev, D.; Korga, G.; Koshio, Y.; Kryn, D.; Laubenstein, M.; Lewke, T.; Litvinovich, E.; Loer, B.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Meindl, Q.; Meroni, E.; Miramonti, L.; Misiaszek, M.; Montanari, D.; Mosteiro, P.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Perasso, L.; Perasso, S.; Pocar, A.; Quirk, J.; Raghavan, R. S.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Sabelnikov, A.; Saldanha, R.; Salvo, C.; Schönert, S.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Vignaud, D.; Vogelaar, R. B.; von Feilitzsch, F.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Xu, J.; Zaimidoroga, O.; Zavatarelli, S.; Zuzel, G.

    2012-02-01

    We observed, for the first time, solar neutrinos in the 1.0-1.5 MeV energy range. We determined the rate of pep solar neutrino interactions in Borexino to be 3.1±0.6stat±0.3systcounts/(day·100ton). Assuming the pep neutrino flux predicted by the standard solar model, we obtained a constraint on the CNO solar neutrino interaction rate of <7.9counts/(day·100ton) (95% C.L.). The absence of the solar neutrino signal is disfavored at 99.97% C.L., while the absence of the pep signal is disfavored at 98% C.L. The necessary sensitivity was achieved by adopting data analysis techniques for the rejection of cosmogenic C11, the dominant background in the 1-2 MeV region. Assuming the Mikheyev-Smirnov-Wolfenstein large mixing angle solution to solar neutrino oscillations, these values correspond to solar neutrino fluxes of (1.6±0.3)×108cm-2s-1 and <7.7×108cm-2s-1 (95% C.L.), respectively, in agreement with both the high and low metallicity standard solar models. These results represent the first direct evidence of the pep neutrino signal and the strongest constraint of the CNO solar neutrino flux to date.

  4. Physics prospects of future neutrino oscillation experiments in Asia

    NASA Astrophysics Data System (ADS)

    Hagiwara, Kaoru

    2004-12-01

    The three neutrino model has 9 physical parameters, 3 neutrino masses, 3 mixing angles and 3 CP violating phases. Among them, neutrino oscillation experiments can probe 6 neutrino parameters: 2 mass squared differences, 3 mixing angles, and 1 CP phase. The experiments performed so far determined the magnitudes of the two mass squared differences, the sign of the smaller mass squared difference, the magnitudes of two of the three mixing angles, and the upper bound on the third mixing angle. The sign of the larger mass squared difference (the neutrino mass hierarchy pattern), the magnitude of the third mixing angle and the CP violating phase, and a two-fold ambiguity in the mixing angle that dictates the atmospheric neutrino oscillation should be determined by future oscillation experiments. In this talk, I introduce a few ideas of future long baseline neutrino oscillation experiments which make use of the super neutrino beams from J-PARC (Japan Proton Accelerator Research Complex) in Tokai village. We examine the potential of HyperKamiokande (HK), the proposed 1 Mega-ton water Čerenkov detector, and then study the fate and possible detection of the off-axis beam from J-PARC in Korea, which is available free throughout the period of the T2K (Tokai-to-SuperKamiokande) and the possible T-to-HK projects. Although the CP violating phase can be measured accurately by studying ν→ν and ν→ν oscillations at HK, there appear multiple solution ambiguities which can be solved only by determining the neutrino mass hierarchy and the twofold ambiguity in the mixing angle. We show that very long baseline experiments with higher energy beams from J-PARC and a possible huge Water Čerenkov Calorimeter detector proposed in Beijing can resolve the neutrino mass hierarchy. If such a detector can be built in China, future experiments with a muon storage ring neutrino factory at J-PARC will be able to lift all the degeneracies in the three neutrino model parameters.

  5. BEAMING NEUTRINOS AND ANTI-NEUTRINOS ACROSS THE EARTH TO DISENTANGLE NEUTRINO MIXING PARAMETERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fargion, Daniele; D'Armiento, Daniele; Paggi, Paolo

    2012-10-10

    A result from MINOS seemed to indicate that the mass splitting and mixing angle of anti-neutrinos is different from that of neutrinos, suggesting a charge-parity-time (CPT) violation in the lepton sector. However, more recent MINOS data reduced the {nu}{sub {mu}}-{nu}-bar{sub {mu}} differences leading to a narrow discrepancy nearly compatible with no CPT violation. However, the last few years of OPERA activity on the appearance of a tau lepton (one unique event) still has not been probed and more tools may be required to disentangle a list of parameters ({mu}-{tau} flavor mixing, tau appearance, any eventual CPT violation, {theta}{sub 13} anglemore » value, and any hierarchy neutrino mass). Atmospheric anisotropy in muon neutrino spectra in the DeepCore, at ten to tens of GeV (unpublished), can hardly reveal asymmetry in the eventual {nu}{sub {mu}}-{nu}-bar{sub {mu}} oscillation parameters. Here we considered how the longest baseline neutrino oscillation available, crossing most of Earth's diameter, may improve the measurement and at best disentangle any hypothetical CPT violation occurring between the earliest (2010) and the present (2012) MINOS bounds (with 6{sigma} a year), while testing {tau} and even the appearance of {tau}-bar at the highest rate. The {nu}{sub {mu}} and {nu}-bar{sub {mu}} disappearance correlated with the tau appearance is considered for those events at the largest distances. We thus propose a beam of {nu}{sub {mu}} and {nu}-bar{sub {mu}} crossing through the Earth, within an OPERA-like experiment from CERN (or Fermilab), in the direction of the IceCube-DeepCore {nu} detector at the South Pole. The ideal energy lies at 21 GeV to test the disappearance or (for any tiny CPT violation) the partial {nu}-bar{sub {mu}} appearance. Such a tuned detection experiment may lead to a strong signature of {tau} or {tau}-bar generation even within its neutral current noise background events: nearly one {tau}-bar or two {tau} a day. The tau appearance

  6. MassiveNuS: cosmological massive neutrino simulations

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Bird, Simeon; Zorrilla Matilla, José Manuel; Hill, J. Colin; Haiman, Zoltán; Madhavacheril, Mathew S.; Petri, Andrea; Spergel, David N.

    2018-03-01

    The non-zero mass of neutrinos suppresses the growth of cosmic structure on small scales. Since the level of suppression depends on the sum of the masses of the three active neutrino species, the evolution of large-scale structure is a promising tool to constrain the total mass of neutrinos and possibly shed light on the mass hierarchy. In this work, we investigate these effects via a large suite of N-body simulations that include massive neutrinos using an analytic linear-response approximation: the Cosmological Massive Neutrino Simulations (MassiveNuS). The simulations include the effects of radiation on the background expansion, as well as the clustering of neutrinos in response to the nonlinear dark matter evolution. We allow three cosmological parameters to vary: the neutrino mass sum Mν in the range of 0–0.6 eV, the total matter density Ωm, and the primordial power spectrum amplitude As. The rms density fluctuation in spheres of 8 comoving Mpc/h (σ8) is a derived parameter as a result. Our data products include N-body snapshots, halo catalogues, merger trees, ray-traced galaxy lensing convergence maps for four source redshift planes between zs=1–2.5, and ray-traced cosmic microwave background lensing convergence maps. We describe the simulation procedures and code validation in this paper. The data are publicly available at http://columbialensing.org.

  7. Search for electroweak-scale right-handed neutrinos and mirror charged leptons through like-sign dilepton signals

    NASA Astrophysics Data System (ADS)

    Chakdar, Shreyashi; Ghosh, K.; Hoang, V.; Hung, P. Q.; Nandi, S.

    2017-01-01

    The existence of tiny neutrino masses at a scale more than a million times smaller than the lightest charged fermion mass, namely the electron, and their mixings cannot be explained within the framework of the exceptionally successful standard model (SM). Several mechanisms were proposed to explain the tiny neutrino masses, most prominent among which is the so-called seesaw mechanism. Many models were built around this concept, one of which is the electroweak (EW)-scale νR model. In this model, right-handed neutrinos are fertile and their masses are connected to the electroweak scale ΛEW˜246 GeV . It is these two features that make the search for right-handed neutrinos at colliders such as the LHC feasible. The EW-scale νR model has new quarks and leptons of opposite chirality at the electroweak scale [for the same SM gauge symmetry S U (2 )W×U (1 )Y] compared to what we have for the standard model. With suitable modification of the Higgs sector, the EW-scale νR model satisfies the electroweak precision test and, also the constraints coming from the observed 125-GeV Higgs scalar. Since in this model, the mirror fermions are required to be in the EW scale, these can be produced at the LHC giving final states with a very low background from the SM. One such final state is the same sign dileptons with large missing pT for the events. In this work, we explore the constraint provided by the 8 TeV data, and prospect of observing this signal in the 13 TeV runs at the LHC. Additional signals will be the presence of displaced vertices depending on the smallness of the Yukawa couplings of the mirror leptons with the ordinary leptons and the singlet Higgs present in the model. Of particular importance to the EW-scale νR model is the production of νR which will be a direct test of the seesaw mechanism at collider energies.

  8. Particle physics on ice: constraints on neutrino interactions far above the weak scale.

    PubMed

    Anchordoqui, Luis A; Feng, Jonathan L; Goldberg, Haim

    2006-01-20

    Ultrahigh energy cosmic rays and neutrinos probe energies far above the weak scale. Their usefulness might appear to be limited by astrophysical uncertainties; however, by simultaneously considering up- and down-going events, one may disentangle particle physics from astrophysics. We show that present data from the AMANDA experiment in the South Pole ice already imply an upper bound on neutrino cross sections at energy scales that will likely never be probed at man-made accelerators. The existing data also place an upper limit on the neutrino flux valid for any neutrino cross section. In the future, similar analyses of IceCube data will constrain neutrino properties and fluxes at the theta(10%) level.

  9. Sterile Neutrino Search with MINOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devan, Alena V.

    2015-08-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact asmore » a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm 2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, m s 2 ~ 1 eV 2. The results of the 2013 sterile neutrino search are presented here.« less

  10. Neutrino-Driven Explosions

    NASA Astrophysics Data System (ADS)

    Janka, Hans-Thomas

    The question why and how core-collapse supernovae (SNe) explode is one of the central and most long-standing riddles of stellar astrophysics. Solving this problem is crucial for deciphering the supernova (SN) phenomenon; for predicting its observable signals such as light curves and spectra, nucleosynthesis yields, neutrinos, and gravitational waves; for defining the role of SNe in the dynamical and chemo-dynamical evolution of galaxies; and for explaining the birth conditions and properties of neutron stars (NSs) and stellar-mass black holes. Since the formation of such compact remnants releases over hundred times more energy in neutrinos than the kinetic energy of the SN explosion, neutrinos can be the decisive agents for powering the SN outburst. According to the standard paradigm of the neutrino-driven mechanism, the energy transfer by the intense neutrino flux to the medium behind the stagnating core bounce shock, assisted by violent hydrodynamic mass motions (sometimes subsumed by the term "turbulence"), revives the outward shock motion and thus initiates the SN explosion. Because of the weak coupling of neutrinos in the region of this energy deposition, detailed, multidimensional hydrodynamic models including neutrino transport and a wide variety of physics are needed to assess the viability of the mechanism. Owing to advanced numerical codes and increasing supercomputer power, considerable progress has been achieved in our understanding of the physical processes that have to act in concert for the success of neutrino-driven explosions. First studies begin to reveal observational implications and avenues to test the theoretical picture by data from individual SNe and SN remnants but also from population-integrated observables. While models will be further refined, a real breakthrough is expected through the next galactic core-collapse SN, when neutrinos and gravitational waves can be used to probe the conditions deep inside the dying star.

  11. Solar neutrinos and the MSW effect for three-neutrino mixing

    NASA Technical Reports Server (NTRS)

    Shi, X.; Schramm, David N.

    1991-01-01

    Researchers considered three-neutrino Mikheyev-Smirnov-Wolfenstein (MSW) mixing, assuming m sub 3 is much greater than m sub 2 is greater than m sub 1 as expected from theoretical consideration if neutrinos have mass. They calculated the corresponding mixing parameter space allowed by the Cl-37 and Kamiokande 2 experiments. They also calculated the expected depletion for the Ga-71 experiment. They explored a range of theoretical uncertainty due to possible astrophysical effects by varying the B-8 neutrino flux and redoing the MSW mixing calculation.

  12. Neutrinos in the holographic dark energy model: constraints from latest measurements of expansion history and growth of structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jing-Fei; Zhao, Ming-Ming; Li, Yun-He

    The model of holographic dark energy (HDE) with massive neutrinos and/or dark radiation is investigated in detail. The background and perturbation evolutions in the HDE model are calculated. We employ the PPF approach to overcome the gravity instability difficulty (perturbation divergence of dark energy) led by the equation-of-state parameter w evolving across the phantom divide w=−1 in the HDE model with c<1. We thus derive the evolutions of density perturbations of various components and metric fluctuations in the HDE model. The impacts of massive neutrino and dark radiation on the CMB anisotropy power spectrum and the matter power spectrum inmore » the HDE scenario are discussed. Furthermore, we constrain the models of HDE with massive neutrinos and/or dark radiation by using the latest measurements of expansion history and growth of structure, including the Planck CMB temperature data, the baryon acoustic oscillation data, the JLA supernova data, the Hubble constant direct measurement, the cosmic shear data of weak lensing, the Planck CMB lensing data, and the redshift space distortions data. We find that ∑ m{sub ν}<0.186 eV (95% CL) and N{sub eff}=3.75{sup +0.28}{sub −0.32} in the HDE model from the constraints of these data.« less

  13. Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen

    DOE PAGES

    Gando, A.; Gando, Y.; Hachiya, T.; ...

    2016-08-16

    Here, we present an improved search for neutrinoless double-beta (0νββ) decay of Xe 136 in the KamLAND-Zen experiment. Owing to purification of the xenon-loaded liquid scintillator, we achieved a significant reduction of the Ag 110m contaminant identified in previous searches. Combining the results from the first and second phase, we obtain a lower limit for the 0νββ decay half-life of Tmore » $$0v\\atop{1/2}$$ > 1.07×10 26 yr at 90% C.L., an almost sixfold improvement over previous limits. Using commonly adopted nuclear matrix element calculations, the corresponding upper limits on the effective Majorana neutrino mass are in the range 61-165 meV. Finally, for the most optimistic nuclear matrix elements, this limit reaches the bottom of the quasidegenerate neutrino mass region.« less

  14. Dirac neutrinos and SN 1987A

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1991-01-01

    Previous work has shown that the cooling of SN 1987A excludes a Dirac-neutrino mass greater than theta(20 keV) for nu(sub e), nu(sub mu), or nu(sub tau). The emission of wrong-helicity, Dirac neutrinos from SN 1987A, is re-examined. It is concluded that the effect of a Dirac neutrino on the cooling of SN 1987A has been underestimated due to neutrino degeneracy and additional emission processes. The limit that follows from the cooling of SN 1987A is believed to be greater (probably much greater) than 10 keV. This result is significant in light of the recent evidence for a 17 keV mass eigenstate that mixes with the electron neutrino.

  15. Neutrino Analysis of the 2010 September Crab Nebula Flare and Time-integrated Constraints on Neutrino Emission from the Crab Using IceCube

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Demirörs, L.; Denger, T.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Gora, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hajismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Stür, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.

    2012-01-01

    We present the results of a search for high-energy muon neutrinos with the IceCube detector in coincidence with the Crab Nebula flare reported on 2010 September by various experiments. Due to the unusual flaring state of the otherwise steady source we performed a prompt analysis of the 79-string configuration data to search for neutrinos that might be emitted along with the observed γ-rays. We performed two different and complementary data selections of neutrino events in the time window of 10 days around the flare. One event selection is optimized for discovery of E -2 ν neutrino spectrum typical of first-order Fermi acceleration. A similar event selection has also been applied to the 40-string data to derive the time-integrated limits to the neutrino emission from the Crab. The other event selection was optimized for discovery of neutrino spectra with softer spectral index and TeV energy cutoffs as observed for various Galactic sources in γ-rays. The 90% confidence level (CL) best upper limits on the Crab flux during the 10 day flare are 4.73 × 10-11 cm-2 s-1 TeV-1 for an E -2 ν neutrino spectrum and 2.50 × 10-10 cm-2 s-1 TeV-1 for a softer neutrino spectra of E -2.7 ν, as indicated by Fermi measurements during the flare. In this paper, we also illustrate the impact of the time-integrated limit on the Crab neutrino steady emission. The limit obtained using 375.5 days of the 40-string configuration is compared to existing models of neutrino production from the Crab and its impact on astrophysical parameters is discussed. The most optimistic predictions of some models are already rejected by the IceCube neutrino telescope with more than 90% CL.

  16. Status of the KATRIN experiment and prospects to search for keV-mass sterile neutrinos in tritium β-decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mertens, Susanne

    In this contribution the current status and future perspectives of the Karlsruhe Tritium Neutrino (KATRIN) Experiment are presented. The prime goal of this single β-decay experiment is to probe the absolute neutrino mass scale with a sensitivity of 200 meV (90% CL). We discuss first results of the recent main spectrometer commissioning measurements, successfully verifying the spectrometer’s basic vacuum, transmission and background properties. We also discuss the prospects of making use of the KATRIN tritium source, to search for sterile neutrinos in the multi-keV mass range constituting a classical candidate for Warm Dark Matter. Due to the very high sourcemore » luminosity, a statistical sensitivity down to active-sterile mixing angles of sin² θ < 1 · 10⁻⁷ (90% CL) could be reached.« less

  17. Status of the KATRIN experiment and prospects to search for keV-mass sterile neutrinos in tritium β-decay

    DOE PAGES

    Mertens, Susanne

    2015-03-24

    In this contribution the current status and future perspectives of the Karlsruhe Tritium Neutrino (KATRIN) Experiment are presented. The prime goal of this single β-decay experiment is to probe the absolute neutrino mass scale with a sensitivity of 200 meV (90% CL). We discuss first results of the recent main spectrometer commissioning measurements, successfully verifying the spectrometer’s basic vacuum, transmission and background properties. We also discuss the prospects of making use of the KATRIN tritium source, to search for sterile neutrinos in the multi-keV mass range constituting a classical candidate for Warm Dark Matter. Due to the very high sourcemore » luminosity, a statistical sensitivity down to active-sterile mixing angles of sin² θ < 1 · 10⁻⁷ (90% CL) could be reached.« less

  18. What Can We Learn By Observing Supernova Neutrinos?

    NASA Astrophysics Data System (ADS)

    Beacom, John

    1999-10-01

    A core-collapse supernova emits of the order of 10^58 neutrinos of all flavors over about 10 seconds, with an average energy of about 11 MeV for ν_e, 16 MeV for barν_e, and 25 MeV for ν_μ, ν_τ, barν_μ, and barν_τ. The present and near-term solar neutrino detectors can readily observe a supernova anywhere in our Galaxy. The expected supernova rate in our Galaxy is about 3 per century. What can we learn by observing the neutrinos from the next Galactic supernova? Besides the nuclear and astrophysical aspects of the collapse mechanism, there will be an unprecedented opportunity to measure neutrino properties, in particular their masses. The ν_μ and ν_τ masses can be measured by time-of-flight relative to the νe and barνe neutrinos, with a nearly model-independent sensitivity down to about 30 eV. If the time development of the supernova neutrino luminosities were better known from theory, this could be reduced to 10 eV or less. In either case, it will be essential to map out the neutrino energy spectra by measuring the signals on several different nuclear targets. Direct information on the absolute scale of the neutrino masses is especially crucial now since the apparently positive signals from neutrino oscillation experiments indicate nonzero differences in neutrino masses, with no information on the overall scale.

  19. Fermion masses and mixings and dark matter constraints in a model with radiative seesaw mechanism

    NASA Astrophysics Data System (ADS)

    Bernal, Nicolás; Cárcamo Hernández, A. E.; de Medeiros Varzielas, Ivo; Kovalenko, Sergey

    2018-05-01

    We formulate a predictive model of fermion masses and mixings based on a Δ(27) family symmetry. In the quark sector the model leads to the viable mixing inspired texture where the Cabibbo angle comes from the down quark sector and the other angles come from both up and down quark sectors. In the lepton sector the model generates a predictive structure for charged leptons and, after radiative seesaw, an effective neutrino mass matrix with only one real and one complex parameter. We carry out a detailed analysis of the predictions in the lepton sector, where the model is only viable for inverted neutrino mass hierarchy, predicting a strict correlation between θ 23 and θ 13. We show a benchmark point that leads to the best-fit values of θ 12, θ 13, predicting a specific sin2 θ 23 ≃ 0.51 (within the 3 σ range), a leptonic CP-violating Dirac phase δ ≃ 281.6° and for neutrinoless double-beta decay m ee ≃ 41.3 meV. We turn then to an analysis of the dark matter candidates in the model, which are stabilized by an unbroken ℤ2 symmetry. We discuss the possibility of scalar dark matter, which can generate the observed abundance through the Higgs portal by the standard WIMP mechanism. An interesting possibility arises if the lightest heavy Majorana neutrino is the lightest ℤ2-odd particle. The model can produce a viable fermionic dark matter candidate, but only as a feebly interacting massive particle (FIMP), with the smallness of the coupling to the visible sector protected by a symmetry and directly related to the smallness of the light neutrino masses.

  20. A search for muon neutrino to electron neutrino oscillations at Δm 2 > 0.1 eV 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Ryan Benton

    2007-11-01

    The evidence is compelling that neutrinos undergo flavor change as they propagate. In recent years, experiments have observed this phenomenon of neutrino oscillations using disparate neutrino sources: the sun, fission reactors, accelerators, and secondary cosmic rays. The standard model of particle physics needs only simple extensions - neutrino masses and mixing - to accommodate all neutrino oscillation results to date, save one. The 3.8σ-significantmore » $$\\bar{v}$$ e excess reported by the LSND collaboration is consistent with $$\\bar{v}$$ μ →$$\\bar{v}$$ e oscillations with a mass-squared splitting of Δm 2 ~ 1 eV 2. This signal, which has not been independently verified, is inconsistent with other oscillation evidence unless more daring standard model extensions (e.g. sterile neutrinos) are considered.« less

  1. Propagation and Detection of Neutrinos from Distant Objects

    NASA Astrophysics Data System (ADS)

    Bottino, A.; Kim, C. W.; Kim, Jewan; Lam, W. P.

    We discuss how an initial composition of wave packets representing the neutrinos, emitted by distant objects such as supernovae, is modified as the neutrinos travel a long distance to the earth and how these modifications affect the detection of such neutrinos. In particular, observed neutrino masses are shown to depend on the mass square difference of the i-th and j-th flavors i.e., mi2 - mj2, L (the distance traveled), and a resolution time of the detector as well as on how neutrinos emerge from the star.

  2. New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A. F.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; Gaggero, D.; Grasso, D.; ANTARES Collaboration

    2017-09-01

    The flux of very high-energy neutrinos produced in our Galaxy by the interaction of accelerated cosmic rays with the interstellar medium is not yet determined. The characterization of this flux will shed light on Galactic accelerator features, gas distribution morphology and Galactic cosmic ray transport. The central Galactic plane can be the site of an enhanced neutrino production, thus leading to anisotropies in the extraterrestrial neutrino signal as measured by the IceCube Collaboration. The ANTARES neutrino telescope, located in the Mediterranean Sea, offers a favorable view of this part of the sky, thereby allowing for a contribution to the determination of this flux. The expected diffuse Galactic neutrino emission can be obtained, linking a model of generation and propagation of cosmic rays with the morphology of the gas distribution in the Milky Way. In this paper, the so-called "gamma model" introduced recently to explain the high-energy gamma-ray diffuse Galactic emission is assumed as reference. The neutrino flux predicted by the "gamma model" depends on the assumed primary cosmic ray spectrum cutoff. Considering a radially dependent diffusion coefficient, this proposed scenario is able to account for the local cosmic ray measurements, as well as for the Galactic gamma-ray observations. Nine years of ANTARES data are used in this work to search for a possible Galactic contribution according to this scenario. All flavor neutrino interactions are considered. No excess of events is observed, and an upper limit is set on the neutrino flux of 1.1 (1.2) times the prediction of the "gamma model," assuming the primary cosmic ray spectrum cutoff at 5 (50) PeV. This limit excludes the diffuse Galactic neutrino emission as the major cause of the "spectral anomaly" between the two hemispheres measured by IceCube.

  3. First evidence of pep solar neutrinos by direct detection in Borexino.

    PubMed

    Bellini, G; Benziger, J; Bick, D; Bonetti, S; Bonfini, G; Bravo, D; Buizza Avanzini, M; Caccianiga, B; Cadonati, L; Calaprice, F; Carraro, C; Cavalcante, P; Chavarria, A; Chepurnov, A; D'Angelo, D; Davini, S; Derbin, A; Etenko, A; Fomenko, K; Franco, D; Galbiati, C; Gazzana, S; Ghiano, C; Giammarchi, M; Goeger-Neff, M; Goretti, A; Grandi, L; Guardincerri, E; Hardy, S; Ianni, Aldo; Ianni, Andrea; Korablev, D; Korga, G; Koshio, Y; Kryn, D; Laubenstein, M; Lewke, T; Litvinovich, E; Loer, B; Lombardi, F; Lombardi, P; Ludhova, L; Machulin, I; Manecki, S; Maneschg, W; Manuzio, G; Meindl, Q; Meroni, E; Miramonti, L; Misiaszek, M; Montanari, D; Mosteiro, P; Muratova, V; Oberauer, L; Obolensky, M; Ortica, F; Otis, K; Pallavicini, M; Papp, L; Perasso, L; Perasso, S; Pocar, A; Quirk, J; Raghavan, R S; Ranucci, G; Razeto, A; Re, A; Romani, A; Sabelnikov, A; Saldanha, R; Salvo, C; Schönert, S; Simgen, H; Skorokhvatov, M; Smirnov, O; Sotnikov, A; Sukhotin, S; Suvorov, Y; Tartaglia, R; Testera, G; Vignaud, D; Vogelaar, R B; von Feilitzsch, F; Winter, J; Wojcik, M; Wright, A; Wurm, M; Xu, J; Zaimidoroga, O; Zavatarelli, S; Zuzel, G

    2012-02-03

    We observed, for the first time, solar neutrinos in the 1.0-1.5 MeV energy range. We determined the rate of pep solar neutrino interactions in Borexino to be 3.1±0.6{stat}±0.3{syst}  counts/(day·100  ton). Assuming the pep neutrino flux predicted by the standard solar model, we obtained a constraint on the CNO solar neutrino interaction rate of <7.9  counts/(day·100  ton) (95% C.L.). The absence of the solar neutrino signal is disfavored at 99.97% C.L., while the absence of the pep signal is disfavored at 98% C.L. The necessary sensitivity was achieved by adopting data analysis techniques for the rejection of cosmogenic {11}C, the dominant background in the 1-2 MeV region. Assuming the Mikheyev-Smirnov-Wolfenstein large mixing angle solution to solar neutrino oscillations, these values correspond to solar neutrino fluxes of (1.6±0.3)×10{8}  cm{-2} s^{-1} and <7.7×10{8}  cm{-2} s{-1} (95% C.L.), respectively, in agreement with both the high and low metallicity standard solar models. These results represent the first direct evidence of the pep neutrino signal and the strongest constraint of the CNO solar neutrino flux to date.

  4. Neutrino-oscillation search with cosmic-ray neutrinos

    NASA Astrophysics Data System (ADS)

    Ayres, D. S.; Cortez, B.; Gaisser, T. K.; Mann, A. K.; Shrock, R. E.; Sulak, L. R.

    1984-03-01

    A sensitive search for neutrino oscillations involving νe, νμ, and ντ may be provided by measurements of the ratio of the total interaction rates of upward- and downward-going cosmic-ray neutrinos within a massive (~10 kton) detector. Assuming mixing between all pairs of νe, νμ, and ντ, the experiment is capable of observing time-averaged probabilities t and t of magnitude set by mixing strengths corresponding to, e.g., the d- to s-quark mixing strength, and of reaching the limit Δm2ij≡|mi2-mj2|~10-4 eV2, where mi, and mj are neutrino mass eigenstates, and Peτ and Pμτ are the probabilities for νe and νμ, respectively, to oscillate into ντ after traversing a distance L~ diameter of the Earth. Possible ambiguities may be resolved through comparison of the ratios NeNμ for the upward- and downward-going neutrinos.

  5. Neutrino Mass Generation at TeV Scale and New Physics Signatures from Charged Higgs at the LHC for Photon Initiated Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Kirtiman; Homi Bhabha National Institute, Mumbai; Jana, Sudip

    We consider the collider phenomenology of a simple extension of the Standard Model (SM), which consists of an EW isospinmore » $3/2$ scalar, $$\\Delta$$ and a pair of EW isospin $1$ vector like fermions, $$\\Sigma$$ and $$\\bar{\\Sigma}$$, responsible for generating tiny neutrino mass via the effective dimension seven operator. This scalar quadruplet with hypercharge Y = 3 has a plethora of implications at the collider experiments. Its signatures at TeV scale colliders are expected to be seen, if the quadruplet masses are not too far above the electroweak symmetry breaking scale. In this article, we study the phenomenology of multi-charged quadruplet scalars. In particular, we study the multi-lepton signatures at the Large Hadron Collider (LHC) experiment, arising from the production and decays of triply and doubly charged scalars. We studied Drell-Yan (DY) pair production as well as pair production of the charged scalars via photon-photon fusion. For doubly and triply charged scalars, photon fusion contributes significantly for large scalar masses. We also studied LHC constraints on the masses of doubly charged scalars in this model. We derive a lower mass limit of 725 GeV on doubly charged quadruplet scalar.« less

  6. Neutrino Mass Generation at TeV Scale and New Physics Signatures from Charged Higgs at the LHC for Photon Initiated Processes

    DOE PAGES

    Ghosh, Kirtiman; Homi Bhabha National Institute, Mumbai; Jana, Sudip; ...

    2018-03-29

    We consider the collider phenomenology of a simple extension of the Standard Model (SM), which consists of an EW isospinmore » $3/2$ scalar, $$\\Delta$$ and a pair of EW isospin $1$ vector like fermions, $$\\Sigma$$ and $$\\bar{\\Sigma}$$, responsible for generating tiny neutrino mass via the effective dimension seven operator. This scalar quadruplet with hypercharge Y = 3 has a plethora of implications at the collider experiments. Its signatures at TeV scale colliders are expected to be seen, if the quadruplet masses are not too far above the electroweak symmetry breaking scale. In this article, we study the phenomenology of multi-charged quadruplet scalars. In particular, we study the multi-lepton signatures at the Large Hadron Collider (LHC) experiment, arising from the production and decays of triply and doubly charged scalars. We studied Drell-Yan (DY) pair production as well as pair production of the charged scalars via photon-photon fusion. For doubly and triply charged scalars, photon fusion contributes significantly for large scalar masses. We also studied LHC constraints on the masses of doubly charged scalars in this model. We derive a lower mass limit of 725 GeV on doubly charged quadruplet scalar.« less

  7. Overview and Status of Experimental Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Stancu, Ion

    2002-10-01

    Seventy years after the existence of the neutrino has been postulated by Wolfgang Pauli, these elusive particles remain surrounded by mystery. One of the most fundamental questions about neutrinos is whether they have an identically vanishing mass, as assumed by the Standard Model, or not. Direct measurements have proven to be extremely difficult to perform, and have yielded so far only upper limits. However, if neutrino flavour oscillations do happen, this would automatically imply that at least one of the three neutrinos (the electron, muon or tau neutrino) must have a non-zero mass. The present experimental data indicate that both the solar and atmospheric neutrino deficits can be explained by the phenomenon of neutrino oscillations, while the positive signal reported by the accelerator-based LSND experiment remains to be verified by an independent measurement (MiniBooNE). This talk reviews the current status of the neutrino oscillations experiments, experiments which are quite likely to produce results with significant consequences for both the Standard Model and Cosmology.

  8. Dark matter searches for monoenergetic neutrinos arising from stopped meson decay in the Sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rott, Carsten; In, Seongjin; Kumar, Jason

    Dark matter can be gravitationally captured by the Sun after scattering off solar nuclei. Annihilations of the dark matter trapped and accumulated in the centre of the Sun could result in one of the most detectable and recognizable signals for dark matter. Searches for high-energy neutrinos produced in the decay of annihilation products have yielded extremely competitive constraints on the spin-dependent scattering cross sections of dark matter with nuclei. Recently, the low energy neutrino signal arising from dark-matter annihilation to quarks which then hadronize and shower has been suggested as a competitive and complementary search strategy. These high-multiplicity hadronic showersmore » give rise to a large amount of pions which will come to rest in the Sun and decay, leading to a unique sub-GeV neutrino signal. We here improve on previous works by considering the monoenergetic neutrino signal arising from both pion and kaon decay. We consider searches at liquid scintillation, liquid argon, and water Cherenkov detectors and find very competitive sensitivities for few-GeV dark matter masses.« less

  9. A PRECISION MEASUREMENT OF THE NEUTRINO MIXING ANGLE THETA (SUB 13) USING REACTOR ANTINEUTRINOS AT DAYA BAY.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KETTELL, S.; ET AL.

    2006-10-16

    This document describes the design of the Daya Bay reactor neutrino experiment. Recent discoveries in neutrino physics have shown that the Standard Model of particle physics is incomplete. The observation of neutrino oscillations has unequivocally demonstrated that the masses of neutrinos are nonzero. The smallness of the neutrino masses (<2 eV) and the two surprisingly large mixing angles measured have thus far provided important clues and constraints to extensions of the Standard Model. The third mixing angle, {delta}{sub 13}, is small and has not yet been determined; the current experimental bound is sin{sup 2} 2{theta}{sub 13} < 0.17 at 90%more » confidence level (from Chooz) for {Delta}m{sub 31}{sup 2} = 2.5 x 10{sup -3} eV{sup 2}. It is important to measure this angle to provide further insight on how to extend the Standard Model. A precision measurement of sin{sup 2} 2{theta}{sub 13} using nuclear reactors has been recommended by the 2004 APS Multi-divisional Study on the Future of Neutrino Physics as well as a recent Neutrino Scientific Assessment Group (NUSAG) report. We propose to perform a precision measurement of this mixing angle by searching for the disappearance of electron antineutrinos from the nuclear reactor complex in Daya Bay, China. A reactor-based determination of sin{sup 2} 2{theta}{sub 13} will be vital in resolving the neutrino-mass hierarchy and future measurements of CP violation in the lepton sector because this technique cleanly separates {theta}{sub 13} from CP violation and effects of neutrino propagation in the earth. A reactor-based determination of sin{sup 2} 2{theta}{sub 13} will provide important, complementary information to that from long-baseline, accelerator-based experiments. The goal of the Daya Bay experiment is to reach a sensitivity of 0.01 or better in sin{sup 2} 2{theta}{sub 13} at 90% confidence level.« less

  10. Dips in the diffuse supernova neutrino background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farzan, Yasaman; Palomares-Ruiz, Sergio, E-mail: yasaman@theory.ipm.ac.ir, E-mail: Sergio.Palomares.Ruiz@ific.uv.es

    2014-06-01

    Scalar (fermion) dark matter with mass in the MeV range coupled to ordinary neutrinos and another fermion (scalar) is motivated by scenarios that establish a link between radiatively generated neutrino masses and the dark matter relic density. With such a coupling, cosmic supernova neutrinos, on their way to us, could resonantly interact with the background dark matter particles, giving rise to a dip in their redshift-integrated spectra. Current and future neutrino detectors, such as Super-Kamiokande, LENA and Hyper-Kamiokande, could be able to detect this distortion.

  11. Search for active-sterile neutrino mixing using neutral-current interactions in NOvA

    NASA Astrophysics Data System (ADS)

    Adamson, P.; Aliaga, L.; Ambrose, D.; Anfimov, N.; Antoshkin, A.; Arrieta-Diaz, E.; Augsten, K.; Aurisano, A.; Backhouse, C.; Baird, M.; Bambah, B. A.; Bays, K.; Behera, B.; Bending, S.; Bernstein, R.; Bhatnagar, V.; Bhuyan, B.; Bian, J.; Blackburn, T.; Bolshakova, A.; Bromberg, C.; Brown, J.; Brunetti, G.; Buchanan, N.; Butkevich, A.; Bychkov, V.; Campbell, M.; Catano-Mur, E.; Childress, S.; Choudhary, B. C.; Chowdhury, B.; Coan, T. E.; Coelho, J. A. B.; Colo, M.; Cooper, J.; Corwin, L.; Cremonesi, L.; Cronin-Hennessy, D.; Davies, G. S.; Davies, J. P.; Derwent, P. F.; Dharmapalan, R.; Ding, P.; Djurcic, Z.; Dukes, E. C.; Duyang, H.; Edayath, S.; Ehrlich, R.; Feldman, G. J.; Frank, M. J.; Gabrielyan, M.; Gallagher, H. R.; Germani, S.; Ghosh, T.; Giri, A.; Gomes, R. A.; Goodman, M. C.; Grichine, V.; Groh, M.; Group, R.; Grover, D.; Guo, B.; Habig, A.; Hartnell, J.; Hatcher, R.; Hatzikoutelis, A.; Heller, K.; Himmel, A.; Holin, A.; Howard, B.; Hylen, J.; Jediny, F.; Judah, M.; Kafka, G. K.; Kalra, D.; Kasahara, S. M. S.; Kasetti, S.; Keloth, R.; Kolupaeva, L.; Kotelnikov, S.; Kourbanis, I.; Kreymer, A.; Kumar, A.; Kurbanov, S.; Lackey, T.; Lang, K.; Lee, W. M.; Lin, S.; Lokajicek, M.; Lozier, J.; Luchuk, S.; Maan, K.; Magill, S.; Mann, W. A.; Marshak, M. L.; Matera, K.; Matveev, V.; Méndez, D. P.; Messier, M. D.; Meyer, H.; Miao, T.; Miller, W. H.; Mishra, S. R.; Mohanta, R.; Moren, A.; Mualem, L.; Muether, M.; Mufson, S.; Murphy, R.; Musser, J.; Nelson, J. K.; Nichol, R.; Niner, E.; Norman, A.; Nosek, T.; Oksuzian, Y.; Olshevskiy, A.; Olson, T.; Paley, J.; Patterson, R. B.; Pawloski, G.; Pershey, D.; Petrova, O.; Petti, R.; Phan-Budd, S.; Plunkett, R. K.; Poling, R.; Potukuchi, B.; Principato, C.; Psihas, F.; Radovic, A.; Rameika, R. A.; Rebel, B.; Reed, B.; Rocco, D.; Rojas, P.; Ryabov, V.; Sachdev, K.; Sail, P.; Samoylov, O.; Sanchez, M. C.; Schroeter, R.; Sepulveda-Quiroz, J.; Shanahan, P.; Sheshukov, A.; Singh, J.; Singh, J.; Singh, P.; Singh, V.; Smolik, J.; Solomey, N.; Song, E.; Sousa, A.; Soustruznik, K.; Strait, M.; Suter, L.; Talaga, R. L.; Tas, P.; Thayyullathil, R. B.; Thomas, J.; Tian, X.; Tognini, S. C.; Tripathi, J.; Tsaris, A.; Urheim, J.; Vahle, P.; Vasel, J.; Vinton, L.; Vold, A.; Vrba, T.; Wang, B.; Wetstein, M.; Whittington, D.; Wojcicki, S. G.; Wolcott, J.; Yadav, N.; Yang, S.; Zalesak, J.; Zamorano, B.; Zwaska, R.; NOvA Collaboration

    2017-10-01

    We report results from the first search for sterile neutrinos mixing with active neutrinos through a reduction in the rate of neutral-current interactions over a baseline of 810 km between the NOvA detectors. Analyzing a 14-kton detector equivalent exposure of 6.05 ×1020 protons-on-target in the NuMI beam at Fermilab, we observe 95 neutral-current candidates at the Far Detector compared with 83.5 ±9.7 (stat ) ±9.4 (syst ) events predicted assuming mixing only occurs between active neutrino species. No evidence for νμ→νs transitions is found. Interpreting these results within a 3 +1 model, we place constraints on the mixing angles θ24<20.8 ° and θ34<31.2 ° at the 90% C.L. for 0.05 eV2≤Δ m412≤0.5 eV2 , the range of mass splittings that produce no significant oscillations over the Near Detector baseline.

  12. Revision of the LHCb limit on Majorana neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shuve, Brian; Peskin, Michael E.

    2016-12-16

    We revisit the recent limits from LHCb on a Majorana neutrino N in the mass range 250–5000 MeV [R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 112, 131802 (2014).]. These limits are among the best currently available, and they will be improved soon by the addition of data from Run 2 of the LHC. LHCb presented a model-independent constraint on the rate of like-sign leptonic decays, and then derived a constraint on the mixing angle V μ 4 based on a theoretical model for the B decay width to N and the N lifetime. The model used ismore » unfortunately unsound. We revise the conclusions of the paper based on a decay model similar to the one used for the τ lepton and provide formulas useful for future analyses.« less

  13. Neutrino Analysis of the September 2010 Crab Nebula Flare and Time-Integrated Constraints on Neutrino Emission from the Crab Using IceCube

    NASA Technical Reports Server (NTRS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, A.; Ahlers, M.; Altmann; Andeen, K.; Auffenberg, J; Bai, X.; hide

    2012-01-01

    We present the results for a search of high-energy muon neutrinos with the IceCube detector in coincidence with the Crab nebula flare reported on September 2010 by various experiments. Due to the unusual flaring state of the otherwise steady source we performed a prompt analysis of the 79-string configuration data to search for neutrinos that might be emitted along with the observed gamma-rays. We performed two different and complementary data selections of neutrino events in the time window of 10 days around the flare. One event selection is optimized for discovery of E(sub v)(sup -2) neutrino spectrum typical of 1st order Fermi acceleration. A similar event selection has also been applied to the 40-string data to derive the time-integrated limits to the neutrino emission from the Crab [35]. The other event selection was optimized for discovery of neutrino spectra with softer spectral index and TeV energy cut-offs as observed for various galactic sources in gamma-rays. The 90% CL best upper limits on the Crab flux during the 10 day flare are 4.73 x 10(exp -11) per square centimeter per second TeV(sup -1) for an E(sub v)(sup -2) neutrino spectrum and 2.50 x 10(exp -10) per square centimeter per second TeV(sup -1) for a softer neutrino spectra of E(sub v)(sup -2.7), as indicated by Fermi measurements during the flare. IceCube has also set a time-integrated limit on the neutrino emission of the Crab using 375.5 days of livetime of the 40-string configuration data. This limit is compared to existing models of neutrino production from the Crab and its impact on astrophysical parameters is discussed. The most optimistic predictions of some models are already rejected by the IceCube neutrino telescope with more than 90% CL.

  14. Neutrino Analysis of the September 2010 Crab Nebula Flare and Time-integrated Constraints on Neutrino Emission From the Crab Using IceCube

    NASA Technical Reports Server (NTRS)

    Stamatikos, M.; Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguliar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; hide

    2012-01-01

    We present the results for a search of high-energy muon neutrinos with the IceCube detector in coincidence with the Crab nebula flare reported on September 2010 by various experiments. Due to the unusual flaring state of the otherwise steady source we performed a prompt analysis of the 79-string configuration data to search for neutrinos that might be emitted along with the observed gamma-rays. We performed two different and complementary data selections of neutrino events in the time window of 10 days around the flare. One event selection is optimized for discovery of E(sub nu)(sup -2) neutrino spectrum typical of 1st order Fermi acceleration. A similar event selection has also been applied to the 40-string data to derive the time-integrated limits to the neutrino emission from the Crab [35]. The other event selection was optimized for discovery of neutrino spectra with softer spectral index and TeV energy cut-offs as observed for various galactic sources in gamma-rays. The 90% CL best upper limits on the Crab flux during the 10 day flare are 4.73 x 10(exp -11) per square centimeter per second TeV (sup -1) for an E(sub nu) (sup -2) neutrino spectrum and 2.50 x 10(exp -10) per square centimeter per second TeV(sup -1) for a softer neutrino spectra of E(sub nu)(sup -2.7), as indicated by Fermi measurements during the flare. IceCube has also set a time-integrated limit on the neutrino emission of the Crab using 375.5 days of livetime of the 40-string configuration data. This limit is compared to existing models of neutrino production from the Crab and its impact on astrophysical parameters is discussed. The most optimistic predictions of some models are already rejected by the IceCube neutrino telescope with more than 90% CL.

  15. Flavour-symmetric type-II Dirac neutrino seesaw mechanism

    NASA Astrophysics Data System (ADS)

    Bonilla, Cesar; Lamprea, J. M.; Peinado, Eduardo; Valle, Jose W. F.

    2018-04-01

    We propose a Standard Model extension with underlying A4 flavour symmetry where small Dirac neutrino masses arise from a Type-II seesaw mechanism. The model predicts the "golden" flavour-dependent bottom-tau mass relation, requires an inverted neutrino mass ordering and non-maximal atmospheric mixing angle. Using the latest neutrino oscillation global fit [1] we derive restrictions on the oscillation parameters, such as a correlation between δCP and mνlightest.

  16. Dynamical friction in the primordial neutrino sea

    NASA Astrophysics Data System (ADS)

    Okoli, Chiamaka; Scrimgeour, Morag I.; Afshordi, Niayesh; Hudson, Michael J.

    2017-06-01

    Standard big bang cosmology predicts a cosmic neutrino background at Tν ≃ 1.95 K. Given the current neutrino oscillation measurements, we know most neutrinos move at large, but non-relativistic, velocities. Therefore, dark matter haloes moving in the sea of primordial neutrinos form a neutrino wake behind them, which would slow them down, due to the effect of dynamical friction. In this paper, we quantify this effect for realistic haloes, in the context of the halo model of structure formation, and show that it scales as m_ν ^4× relative velocity and monotonically grows with the halo mass. Galaxy redshift surveys can be sensitive to this effect (at >3σ confidence level, depending on survey properties, neutrino mass and hierarchy) through redshift space distortions of distinct galaxy populations.

  17. Neutrino oscillations: The rise of the PMNS paradigm

    NASA Astrophysics Data System (ADS)

    Giganti, C.; Lavignac, S.; Zito, M.

    2018-01-01

    Since the discovery of neutrino oscillations, the experimental progress in the last two decades has been very fast, with the precision measurements of the neutrino squared-mass differences and of the mixing angles, including the last unknown mixing angle θ13. Today a very large set of oscillation results obtained with a variety of experimental configurations and techniques can be interpreted in the framework of three active massive neutrinos, whose mass and flavour eigenstates are related by a 3 × 3 unitary mixing matrix, the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, parametrized by three mixing angles θ12, θ23, θ13 and a CP-violating phase δCP. The additional parameters governing neutrino oscillations are the squared-mass differences Δ mji2 = mj2 - mi2, where mi is the mass of the ith neutrino mass eigenstate. This review covers the rise of the PMNS three-neutrino mixing paradigm and the current status of the experimental determination of its parameters. The next years will continue to see a rich program of experimental endeavour coming to fruition and addressing the three missing pieces of the puzzle, namely the determination of the octant and precise value of the mixing angle θ23, the unveiling of the neutrino mass ordering (whether m1

  18. Dodelson-Widrow production of sterile neutrino Dark Matter with non-trivial initial abundance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merle, Alexander; Totzauer, Maximilian; Schneider, Aurel, E-mail: amerle@mpp.mpg.de, E-mail: aurel@physik.uzh.ch, E-mail: totzauer@mpp.mpg.de

    2016-04-01

    The simplest way to create sterile neutrinos in the early Universe is by their admixture to active neutrinos. However, this mechanism, connected to the Dark Matter (DM) problem by Dodelson and Widrow (DW), cannot simulatenously meet the relic abundance constraint as well as bounds from structure formation and X-rays. Nonetheless, unless a symmetry forces active-sterile mixing to vanish exactly, the DW mechanism will unavoidably affect the sterile neutrino DM population created by any other production mechanism. We present a semi-analytic approach to the DW mechanism acting on an arbitrary initial abundance of sterile neutrinos, allowing to combine DW with anymore » other preceeding production mechanism in a physical and precise way. While previous analyses usually assumed that the spectra produced by DW and another mechanism can simply be added, we use our semi-analytic results to discuss the validity of this assumption and to quantify its accurateness, thereby also scrutinising the DW spectrum and the derived mass bounds. We then map our results to the case of sterile neutrino DM from the decay of a real SM singlet coupled to the Higgs. Finally, we will investigate aspects of structure formation beyond the usual simple free-streaming estimates in order to judge on the effects of the DW modification on the sterile neutrino DM spectra generated by scalar decay.« less

  19. Neutrino masses and cosmological parameters from a Euclid-like survey: Markov Chain Monte Carlo forecasts including theoretical errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audren, Benjamin; Lesgourgues, Julien; Bird, Simeon

    2013-01-01

    We present forecasts for the accuracy of determining the parameters of a minimal cosmological model and the total neutrino mass based on combined mock data for a future Euclid-like galaxy survey and Planck. We consider two different galaxy surveys: a spectroscopic redshift survey and a cosmic shear survey. We make use of the Monte Carlo Markov Chains (MCMC) technique and assume two sets of theoretical errors. The first error is meant to account for uncertainties in the modelling of the effect of neutrinos on the non-linear galaxy power spectrum and we assume this error to be fully correlated in Fouriermore » space. The second error is meant to parametrize the overall residual uncertainties in modelling the non-linear galaxy power spectrum at small scales, and is conservatively assumed to be uncorrelated and to increase with the ratio of a given scale to the scale of non-linearity. It hence increases with wavenumber and decreases with redshift. With these two assumptions for the errors and assuming further conservatively that the uncorrelated error rises above 2% at k = 0.4 h/Mpc and z = 0.5, we find that a future Euclid-like cosmic shear/galaxy survey achieves a 1-σ error on M{sub ν} close to 32 meV/25 meV, sufficient for detecting the total neutrino mass with good significance. If the residual uncorrelated errors indeed rises rapidly towards smaller scales in the non-linear regime as we have assumed here then the data on non-linear scales does not increase the sensitivity to the total neutrino mass. Assuming instead a ten times smaller theoretical error with the same scale dependence, the error on the total neutrino mass decreases moderately from σ(M{sub ν}) = 18 meV to 14 meV when mildly non-linear scales with 0.1 h/Mpc < k < 0.6 h/Mpc are included in the analysis of the galaxy survey data.« less

  20. Neutrino Oscillation Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayser, Boris

    2012-06-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far themore » most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.« less

  1. Solar neutrino masses and mixing from bilinear R-parity broken supersymmetry: Analytical versus numerical results

    NASA Astrophysics Data System (ADS)

    Díaz, M.; Hirsch, M.; Porod, W.; Romão, J.; Valle, J.

    2003-07-01

    We give an analytical calculation of solar neutrino masses and mixing at one-loop order within bilinear R-parity breaking supersymmetry, and compare our results to the exact numerical calculation. Our method is based on a systematic perturbative expansion of R-parity violating vertices to leading order. We find in general quite good agreement between the approximate and full numerical calculations, but the approximate expressions are much simpler to implement. Our formalism works especially well for the case of the large mixing angle Mikheyev-Smirnov-Wolfenstein solution, now strongly favored by the recent KamLAND reactor neutrino data.

  2. New class of two-loop neutrino mass models with distinguishable phenomenology

    NASA Astrophysics Data System (ADS)

    Cao, Qing-Hong; Chen, Shao-Long; Ma, Ernest; Yan, Bin; Zhang, Dong-Ming

    2018-04-01

    We discuss a new class of neutrino mass models generated in two loops, and explore specifically three new physics scenarios: (A) doubly charged scalar, (B) dark matter, and (C) leptoquark and diquark, which are verifiable at the 14 TeV LHC Run-II. We point out how the different Higgs insertions will distinguish our two-loop topology with others if the new particles in the loop are in the simplest representations of the SM gauge group.

  3. Physics prospects of the Jinping neutrino experiment

    NASA Astrophysics Data System (ADS)

    Beacom, John F.; Chen, Shaomin; Cheng, Jianping; Doustimotlagh, Sayed N.; Gao, Yuanning; Gong, Guanghua; Gong, Hui; Guo, Lei; Han, Ran; He, Hong-Jian; Huang, Xingtao; Li, Jianmin; Li, Jin; Li, Mohan; Li, Xueqian; Liao, Wei; Lin, Guey-Lin; Liu, Zuowei; McDonough, William; Šrámek, Ondřej; Tang, Jian; Wan, Linyan; Wang, Yuanqing; Wang, Zhe; Wang, Zongyi; Wei, Hanyu; Xi, Yufei; Xu, Ye; Xu, Xun-Jie; Yang, Zhenwei; Yao, Chunfa; Yeh, Minfang; Yue, Qian; Zhang, Liming; Zhang, Yang; Zhao, Zhihong; Zheng, Yangheng; Zhou, Xiang; Zhu, Xianglei; Zuber, Kai

    2017-02-01

    The China Jinping Underground Laboratory (CJPL), which has the lowest cosmic-ray muon flux and the lowest reactor neutrino flux of any laboratory, is ideal to carry out low-energy neutrino experiments. With two detectors and a total fiducial mass of 2000 tons for solar neutrino physics (equivalently, 3000 tons for geo-neutrino and supernova neutrino physics), the Jinping neutrino experiment will have the potential to identify the neutrinos from the CNO fusion cycles of the Sun, to cover the transition phase for the solar neutrino oscillation from vacuum to matter mixing, and to measure the geo-neutrino flux, including the Th/U ratio. These goals can be fulfilled with mature existing techniques. Efforts on increasing the target mass with multi-modular neutrino detectors and on developing the slow liquid scintillator will increase the Jinping discovery potential in the study of solar neutrinos, geo-neutrinos, supernova neutrinos, and dark matter. Supported by the National Natural Science Foundation of China (11235006, 11475093, 11135009, 11375065, 11505301, and 11620101004), the Tsinghua University Initiative Scientific Research Program (20121088035, 20131089288, and 20151080432), the Key Laboratory of Particle & Radiation Imaging (Tsinghua University), the CAS Center for Excellence in Particle Physics (CCEPP), U.S. National Science Foundation Grant PHY-1404311 (Beacom), and U.S. Department of Energy under contract DE-AC02-98CH10886 (Yeh).

  4. Observation of coherent elastic neutrino-nucleus scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akimov, D.; Albert, J. B.; An, P.

    The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross section is by far the largest of all low-energy neutrino couplings. This mode of interaction offers new opportunities to study neutrino properties and leads to a miniaturization of detector size, with potential technological applications. In this paper, we observed this process at a 6.7σ confidence level, using a low-background, 14.6-kilogram CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the standard model for this process,more » were observed in high signal-to-background conditions. Finally, improved constraints on nonstandard neutrino interactions with quarks are derived from this initial data set.« less

  5. Observation of coherent elastic neutrino-nucleus scattering

    DOE PAGES

    Akimov, D.; Albert, J. B.; An, P.; ...

    2017-08-03

    The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross section is by far the largest of all low-energy neutrino couplings. This mode of interaction offers new opportunities to study neutrino properties and leads to a miniaturization of detector size, with potential technological applications. In this paper, we observed this process at a 6.7σ confidence level, using a low-background, 14.6-kilogram CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the standard model for this process,more » were observed in high signal-to-background conditions. Finally, improved constraints on nonstandard neutrino interactions with quarks are derived from this initial data set.« less

  6. Tom Bonner Prize Lecture: The Beta Spectrum of Tritium and the Problem of Neutrino Mass

    NASA Astrophysics Data System (ADS)

    Robertson, R. G. Hamish

    1997-04-01

    Enrico Fermi showed more than 60 years ago that the shape of beta spectra was sensitive to the mass of the unobserved particle, the neutrino, proposed by Wolfgang Pauli. With the discovery of tritium and its small decay energy, increasingly stringent limits were placed on the electron antineutrino mass. A roadblock at about 50 eV, namely the atomic and molecular structure of tritium-containing substances, was surmounted in the 1980s with the development at Los Alamos of methods for high-resolution beta spectroscopy with gases, together with worldwide theoretical work on the structure of diatomic T2 and T^3He^+. It was then possible to reach the very interesting region of cosmological relevance below 20 eV. An unexpected and strange new roadblock has now been encountered in all experiments on T_2. The spectrum near the endpoint is not consistent with theory either with or without neutrino mass. The questions now are, do the experiments all report the same phenomenon, and (if so) is it atomic theory, particle theory, or perhaps cosmology that needs repair?

  7. Dark matter vs. neutrinos: the effect of astrophysical uncertainties and timing information on the neutrino floor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Jonathan H., E-mail: jonathan.h.m.davis@gmail.com

    2015-03-01

    Future multi-tonne Direct Detection experiments will be sensitive to solar neutrino induced nuclear recoils which form an irreducible background to light Dark Matter searches. Indeed for masses around 6 GeV the spectra of neutrinos and Dark Matter are so similar that experiments are said to run into a neutrino floor, for which sensitivity increases only marginally with exposure past a certain cross section. In this work we show that this floor can be overcome using the different annual modulation expected from solar neutrinos and Dark Matter. Specifically for cross sections below the neutrino floor the DM signal is observable throughmore » a phase shift and a smaller amplitude for the time-dependent event rate. This allows the exclusion power to be improved by up to an order of magnitude for large exposures. In addition we demonstrate that, using only spectral information, the neutrino floor exists over a wider mass range than has been previously shown, since the large uncertainties in the Dark Matter velocity distribution make the signal spectrum harder to distinguish from the neutrino background. However for most velocity distributions it can still be surpassed using timing information, and so the neutrino floor is not an absolute limit on the sensitivity of Direct Detection experiments.« less

  8. Dark matter vs. neutrinos: the effect of astrophysical uncertainties and timing information on the neutrino floor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Jonathan H.

    2015-03-09

    Future multi-tonne Direct Detection experiments will be sensitive to solar neutrino induced nuclear recoils which form an irreducible background to light Dark Matter searches. Indeed for masses around 6 GeV the spectra of neutrinos and Dark Matter are so similar that experiments are said to run into a neutrino floor, for which sensitivity increases only marginally with exposure past a certain cross section. In this work we show that this floor can be overcome using the different annual modulation expected from solar neutrinos and Dark Matter. Specifically for cross sections below the neutrino floor the DM signal is observable throughmore » a phase shift and a smaller amplitude for the time-dependent event rate. This allows the exclusion power to be improved by up to an order of magnitude for large exposures. In addition we demonstrate that, using only spectral information, the neutrino floor exists over a wider mass range than has been previously shown, since the large uncertainties in the Dark Matter velocity distribution make the signal spectrum harder to distinguish from the neutrino background. However for most velocity distributions it can still be surpassed using timing information, and so the neutrino floor is not an absolute limit on the sensitivity of Direct Detection experiments.« less

  9. Right-Handed Neutrinos and the 2 TeV $W'$ Boson

    DOE PAGES

    Coloma, Pilar; Dobrescu, Bogdan A.; Lopez-Pavon, Jacobo

    2015-12-30

    The CMS e +e -jj events of invariant mass near 2 TeV are consistent with a W' boson decaying into an electron and a right-handed neutrino whose TeV-scale mass is of the Dirac type. We show that the Dirac partner of the right-handed electron-neutrino can be the right-handed tau-neutrino. Furthermore, a prediction of this model is that the sum of the τ +e +jj and τ -e -jj signal cross sections equals twice that for e +e -jj. The Standard Model neutrinos acquire Majorana masses and mixings compatible with neutrino oscillation data.

  10. A study of muon neutrino to electron neutrino oscillations in the MINOS experiment

    NASA Astrophysics Data System (ADS)

    Yang, Tingjun

    The observation of neutrino oscillations (neutrino changing from one flavor to another) has provided compelling evidence that the neutrinos have non-zero masses and that leptons mix, which is not part of the original Standard Model of particle physics. The theoretical framework that describes neutrino oscillation involves two mass scales (Delta m2atm , and Delta m2sol ), three mixing angles (theta12, theta23, and theta13) and one CP violating phase (delta CP). Both mass scales and two of the mixing angles (theta 12 and theta23) have been measured by many neutrino experiments. The mixing angle theta13, which is believed to be very small, remains unknown. The current best limit on theta13 comes from the CHOOZ experiment: theta13 < 11° at 90% C.L. at the atmospheric mass scale. deltaCP is also unknown today. MINOS, the Main Injector Neutrino Oscillation Search, is a long baseline neutrino experiment based at Fermi National Accelerator Laboratory. The experiment uses a muon neutrino beam, which is measured 1 km downstream from its origin in the Near Detector at Fermilab and then 735 km later in the Far Detector at the Soudan mine. By comparing these two measurements, MINOS can obtain parameters in the atmospheric sector of neutrino oscillations. MINOS has published results on the precise measurement of Delta m2atm and theta23 through the disappearance of muon neutrinos in the Far Detector and on a search for sterile neutrinos by looking for a deficit in the number of neutral current interactions seen in the Far Detector. MINOS also has the potential to improve the limit on the neutrino mixing angle theta 13 or make the first measurement of its value by searching for an electron neutrino appearance signal in the Far Detector. This is the focus of the study presented in this thesis. We developed a neural network based algorithm to distinguish the electron neutrino signal from background. The most important part of this measurement is the background estimation, which is

  11. Can one measure the Cosmic Neutrino Background?

    NASA Astrophysics Data System (ADS)

    Faessler, Amand; Hodák, Rastislav; Kovalenko, Sergey; Šimkovic, Fedor

    The Cosmic Microwave Background (CMB) yields information about our Universe at around 380,000 years after the Big Bang (BB). Due to the weak interaction of the neutrinos with matter, the Cosmic Neutrino Background (CNB) should give information about a much earlier time of our Universe, around one second after the BB. Probably, the most promising method to "see" the CNB is the capture of the electron neutrinos from the Background by Tritium, which then decays into 3He and an electron with the energy of the the Q-value = 18.562 keV plus the electron neutrino rest mass. The "KArlsruhe TRItium Neutrino" (KATRIN) experiment, which is in preparation, seems presently the most sensitive proposed method for measuring the electron antineutrino mass. At the same time, KATRIN can also look by the reaction νe(˜1.95K) + 3H → 3He + e-(Q = 18.6keV + mνec2). The capture of the Cosmic Background Neutrinos (CNB) should show in the electron spectrum as a peak by the electron neutrino rest mass above Q. Here, the possibility to see the CNB with KATRIN is studied. A detection of the CNB by KATRIN seems not to be possible at the moment. But KATRIN should be able to determine an upper limit for the local electron neutrino density of the CNB.

  12. Search for flavor-changing nonstandard neutrino interactions using ν e appearance in MINOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, P.; Anghel, I.; Aurisano, A.

    Inmore » this paper, we report new constraints on flavor-changing nonstandard neutrino interactions from the MINOS long-baseline experiment using ν e and ν¯ e appearance candidate events from predominantly ν μ and ν¯ μ beams. We used a statistical selection algorithm to separate ν e candidates from background events, enabling an analysis of the combined MINOS neutrino and antineutrino data. Finally, we observe no deviations from standard neutrino mixing, and thus place constraints on the nonstandard interaction matter effect, |ϵ eτ|, and phase, (δ CP + δ eτ), using a 30-bin likelihood fit.« less

  13. Search for flavor-changing nonstandard neutrino interactions using ν e appearance in MINOS

    DOE PAGES

    Adamson, P.; Anghel, I.; Aurisano, A.; ...

    2017-01-09

    Inmore » this paper, we report new constraints on flavor-changing nonstandard neutrino interactions from the MINOS long-baseline experiment using ν e and ν¯ e appearance candidate events from predominantly ν μ and ν¯ μ beams. We used a statistical selection algorithm to separate ν e candidates from background events, enabling an analysis of the combined MINOS neutrino and antineutrino data. Finally, we observe no deviations from standard neutrino mixing, and thus place constraints on the nonstandard interaction matter effect, |ϵ eτ|, and phase, (δ CP + δ eτ), using a 30-bin likelihood fit.« less

  14. Common origin of the 3.55 keV x-ray line and the Galactic Center gamma-ray excess in a radiative neutrino mass model

    NASA Astrophysics Data System (ADS)

    Borah, Debasish; Dasgupta, Arnab; Adhikari, Rathin

    2015-10-01

    We attempt to simultaneously explain the recently observed 3.55 keV x-ray line in the analysis of XMM-Newton telescope data and the Galactic Center gamma ray excess observed by the Fermi Gamma Ray Space Telescope within an Abelian gauge extension of the standard model. We consider a two component dark matter scenario with tree level mass difference 3.55 keV such that the heavier one can decay into the lighter one and a photon with energy 3.55 keV. The lighter dark matter candidate is protected from decaying into the standard model particles by a remnant Z2 symmetry into which the Abelian gauge symmetry gets spontaneously broken. If the mass of the dark matter particle is chosen to be within 31-40 GeV, then this model can also explain the Galactic Center gamma ray excess if the dark matter annihilation into b b ¯ pairs has a cross section of ⟨σ v ⟩≃(1.4 -2.0 )×1 0-26 cm3/s . We constrain the model from the requirement of producing correct dark matter relic density, 3.55 keV x-ray line flux, and Galactic Center gamma ray excess. We also impose the bounds coming from dark matter direct detection experiments as well as collider limits on additional gauge boson mass and gauge coupling. We also briefly discuss how this model can give rise to subelectron volt neutrino masses at tree level as well as the one-loop level while keeping the dark matter mass at a few tens of giga-electron volts. We also constrain the model parameters from the requirement of keeping the one-loop mass difference between two dark matter particles below a kilo-electron volt. We find that the constraints from light neutrino mass and kilo-electron volt mass splitting between two dark matter components show more preference for opposite C P eigenvalues of the two fermion singlet dark matter candidates in the model.

  15. Search for Neutrinos from Annihilation of Captured Low-Mass Dark Matter Particles in the Sun by Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Choi, K.; Abe, K.; Haga, Y.; Hayato, Y.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakano, Y.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Tomura, T.; Wendell, R. A.; Irvine, T.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Lee, K. P.; Nishimura, Y.; Okumura, K.; McLachlan, T.; Labarga, L.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Tanaka, H. A.; Tobayama, S.; Goldhaber, M.; Carminati, G.; Kropp, W. R.; Mine, S.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Ganezer, K. S.; Hill, J.; Hong, N.; Kim, J. Y.; Lim, I. T.; Akiri, T.; Himmel, A.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Tasaka, S.; Jang, J. S.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Suzuki, A. T.; Takeuchi, Y.; Bronner, C.; Hirota, S.; Huang, K.; Ieki, K.; Ikeda, M.; Kikawa, T.; Minamino, A.; Nakaya, T.; Suzuki, K.; Takahashi, S.; Fukuda, Y.; Itow, Y.; Mitsuka, G.; Mijakowski, P.; Hignight, J.; Imber, J.; Jung, C. K.; Yanagisawa, C.; Ishino, H.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Yano, T.; Kuno, Y.; Tacik, R.; Kim, S. B.; Okazawa, H.; Choi, Y.; Nishijima, K.; Koshiba, M.; Totsuka, Y.; Yokoyama, M.; Martens, K.; Marti, Ll.; Vagins, M. R.; Martin, J. F.; de Perio, P.; Konaka, A.; Wilking, M. J.; Chen, S.; Zhang, Y.; Wilkes, R. J.; Super-Kamiokande Collaboration

    2015-04-01

    Super-Kamiokande (SK) can search for weakly interacting massive particles (WIMPs) by detecting neutrinos produced from WIMP annihilations occurring inside the Sun. In this analysis, we include neutrino events with interaction vertices in the detector in addition to upward-going muons produced in the surrounding rock. Compared to the previous result, which used the upward-going muons only, the signal acceptances for light (few-GeV /c2-200 -GeV /c2 ) WIMPs are significantly increased. We fit 3903 days of SK data to search for the contribution of neutrinos from WIMP annihilation in the Sun. We found no significant excess over expected atmospheric-neutrino background and the result is interpreted in terms of upper limits on WIMP-nucleon elastic scattering cross sections under different assumptions about the annihilation channel. We set the current best limits on the spin-dependent WIMP-proton cross section for WIMP masses below 200 GeV /c2 (at 10 GeV /c2 , 1.49 ×10-39 cm2 for χ χ →b b ¯ and 1.31 ×10-40 cm2 for χ χ →τ+τ- annihilation channels), also ruling out some fraction of WIMP candidates with spin-independent coupling in the few-GeV /c2 mass range.

  16. Sterile neutrinos and indirect dark matter searches in IceCube

    NASA Astrophysics Data System (ADS)

    Argüelles, Carlos A.; Kopp, Joachim

    2012-07-01

    If light sterile neutrinos exist and mix with the active neutrino flavors, this mixing will affect the propagation of high-energy neutrinos from dark matter annihilation in the Sun. In particular, new Mikheyev-Smirnov-Wolfenstein resonances can occur, leading to almost complete conversion of some active neutrino flavors into sterile states. We demonstrate how this can weaken IceCube limits on neutrino capture and annihilation in the Sun and how potential future conflicts between IceCube constraints and direct detection or collider data might be resolved by invoking sterile neutrinos. We also point out that, if the dark matter-nucleon scattering cross section and the allowed annihilation channels are precisely measured in direct detection and collider experiments in the future, IceCube can be used to constrain sterile neutrino models using neutrinos from the dark matter annihilation.

  17. 11.2 Solar Neutrinos

    NASA Astrophysics Data System (ADS)

    Nakahata, Masayuki

    This document is part of Subvolume A `Theory and Experiments' of Volume 21 `Elementary Particles' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It contains of the Chapter `11 Experimental Results on Neutrino Masses and Mixings' the Section `11.2 Solar Neutrinos' with the content:

  18. Starobinsky-like inflation and neutrino masses in a no-scale SO(10) model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, John; Theoretical Physics Department, CERN,CH-1211 Geneva 23; Garcia, Marcos A.G.

    2016-11-08

    Using a no-scale supergravity framework, we construct an SO(10) model that makes predictions for cosmic microwave background observables similar to those of the Starobinsky model of inflation, and incorporates a double-seesaw model for neutrino masses consistent with oscillation experiments and late-time cosmology. We pay particular attention to the behaviour of the scalar fields during inflation and the subsequent reheating.

  19. Isocurvature constraints on portal couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kainulainen, Kimmo; Nurmi, Sami; Vaskonen, Ville

    2016-06-01

    We consider portal models which are ultraweakly coupled with the Standard Model, and confront them with observational constraints on dark matter abundance and isocurvature perturbations. We assume the hidden sector to contain a real singlet scalar s and a sterile neutrino ψ coupled to s via a pseudoscalar Yukawa term. During inflation, a primordial condensate consisting of the singlet scalar s is generated, and its contribution to the isocurvature perturbations is imprinted onto the dark matter abundance. We compute the total dark matter abundance including the contributions from condensate decay and nonthermal production from the Standard Model sector. We thenmore » use the Planck limit on isocurvature perturbations to derive a novel constraint connecting dark matter mass and the singlet self coupling with the scale of inflation: m {sub DM}/GeV ∼< 0.2λ{sub s}{sup 3/8} ( H {sub *}/10{sup 11} GeV){sup −3/2}. This constraint is relevant in most portal models ultraweakly coupled with the Standard Model and containing light singlet scalar fields.« less

  20. Neutrino physics with DARWIN

    NASA Astrophysics Data System (ADS)

    Benabderrahmane, M. L.

    2017-09-01

    DARWIN (DARk matter WImp search with liquid xenoN) will be a multi-ton dark matter detector with the primary goal of exploring the entire experimentally accessible parameter space for weakly interacting massive particles (WIMPs) over a wide mass-range. With its 40 tonne active liquid xenon target, low-energy threshold and ultra-low background level, DARWIN can also search for other rare interactions. Here we present its sensitivity to low-energy solar neutrinos and to neutrinoless double beta decay. In a low-energy window of 2-30 keV a rate of 105/year, from pp and 7Be neutrinos can be reached. Such a measurement, with 1% precision will allow testing neutrinos models. DARWIN could also reach a competitive half-life sensitivity of 8.5 · 1027 y to the neutrinoless double beta decay (0νββ) of 136Xe after an exposure of 140 t×y of natural xenon. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below 5 GeV/c2, and the event rate from 8B neutrinos would range from a few to a few tens of events per tonne and year, depending on the energy threshold of the detector. Deviations from the predicted but yet unmeasured neutrino flux would be an indication for physics beyond the Standard Model

  1. Atmospheric, Long Baseline, and Reactor Neutrino Data Constraints on θ13

    NASA Astrophysics Data System (ADS)

    Roa, J. E.; Latimer, D. C.; Ernst, D. J.

    2009-08-01

    An atmospheric neutrino oscillation tool that uses full three-neutrino oscillation probabilities and a full three-neutrino treatment of the Mikheyev-Smirnov-Wolfenstein effect, together with an analysis of the K2K, MINOS, and CHOOZ data, is used to examine the bounds on θ13. The recent, more finely binned, Super-K atmospheric data are employed. For L/Eν≳104km/GeV, we previously found significant linear in θ13 terms. This analysis finds θ13 bounded from above by the atmospheric data while bounded from below by CHOOZ. The origin of this result arises from data in the previously mentioned very long baseline region; here, matter effects conspire with terms linear in θ13 to produce asymmetric bounds on θ13. Assuming CP conservation, we find θ13=-0.07-0.11+0.18 (90% C.L.).

  2. Neutrino emission from nearby supernova progenitors

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi; Takahashi, Koh; Umeda, Hideyuki

    2016-05-01

    Neutrinos have an important role for energy loss process during advanced evolution of massive stars. Although the luminosity and average energy of neutrinos during the Si burning are much smaller than those of supernova neutrinos, these neutrinos are expected to be detected by the liquid scintillation neutrino detector KamLAND if a supernova explosion occurs at the distance of ~100 parsec. We investigate the neutrino emission from massive stars during advanced evolution. We calculate the evolution of the energy spectra of neutrinos produced through electron-positron pair-annihilation in the supernova progenitors with the initial mass of 12, 15, and 20 M ⊙ during the Si burning and core-collapse stages. The neutrino emission rate increases from ~ 1050 s-1 to ~ 1052 s-1. The average energy of electron-antineutrinos is about 1.25 MeV during the Si burning and gradually increases until the core-collapse. For one week before the supernova explosion, the KamLAND detector is expected to observe 12-24 and 6-13 v¯e events in the normal and inverted mass hierarchies, respectively, if a supernova explosion of a 12-20 M ⊙ star occurs at the distance of 200 parsec, corresponding to the distance to Betelgeuse. Observations of neutrinos from SN progenitors have a possibility to constrain the core structure and the evolution just before the core collapse of massive stars.

  3. Dark matter, muon g -2 , electric dipole moments, and Z →ℓi+ℓj- in a one-loop induced neutrino model

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Wei; Okada, Hiroshi; Senaha, Eibun

    2017-07-01

    We study a simple one-loop induced neutrino mass model that contains both bosonic and fermionic dark matter candidates and has the capacity to explain the muon anomalous magnetic moment anomaly. We perform a comprehensive analysis by taking into account the relevant constraints of charged lepton flavor violation, electric dipole moments, and neutrino oscillation data. We examine the constraints from lepton flavor-changing Z boson decays at the one-loop level, particularly when the involved couplings contribute to the muon g -2 . It is found that BR (Z →μ τ )≃(10-7- 10-6) while BR (τ →μ γ )≲10-11 in the fermionic dark matter scenario. The former can be probed by the precision measurement of the Z boson at future lepton colliders.

  4. Testing decay of astrophysical neutrinos with incomplete information

    NASA Astrophysics Data System (ADS)

    Bustamante, Mauricio; Beacom, John F.; Murase, Kohta

    2017-03-01

    Neutrinos mix and have mass differences, so decays from one to another must occur. But how fast? The best direct limits on nonradiative decays, based on solar and atmospheric neutrinos, are weak, τ ≳10-3 s (m /eV ) or much worse. Greatly improved sensitivity, τ ˜1 03 s (m /eV ), will eventually be obtained using neutrinos from distant astrophysical sources, but large uncertainties—in neutrino properties, source properties, and detection aspects—do not allow this yet. However, there is a way forward now. We show that IceCube diffuse neutrino measurements, supplemented by improvements expected in the near term, can increase sensitivity to τ ˜10 s (m /eV ) for all neutrino mass eigenstates. We provide a road map for the necessary analyses and show how to manage the many uncertainties. If limits are set, this would definitively rule out the long-considered possibility that neutrino decay affects solar, atmospheric, or terrestrial neutrino experiments.

  5. Detectability of thermal neutrinos from binary neutron-star mergers and implications for neutrino physics

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Kashiyama, Kazumi

    2018-05-01

    We propose a long-term strategy for detecting thermal neutrinos from the remnant of binary neutron-star mergers with a future M-ton water-Cherenkov detector such as Hyper-Kamiokande. Monitoring ≳2500 mergers within ≲200 Mpc , we may be able to detect a single neutrino with a human time-scale operation of ≈80 Mtyears for the merger rate of 1 Mpc-3 Myr-1 , which is slightly lower than the median value derived by the LIGO-Virgo Collaboration with GW170817. Although the number of neutrino events is minimal, contamination from other sources of neutrinos can be reduced efficiently to ≈0.03 by analyzing only ≈1 s after each merger identified with gravitational-wave detectors if gadolinium is dissolved in the water. The contamination may be reduced further to ≈0.01 if we allow the increase of waiting time by a factor of ≈1.7 . The detection of even a single neutrino can pin down the energy scale of thermal neutrino emission from binary neutron-star mergers and could strongly support or disfavor formation of remnant massive neutron stars. Because the dispersion relation of gravitational waves is now securely constrained to that of massless particles with a corresponding limit on the graviton mass of ≲10-22 eV /c2 by binary black-hole mergers, the time delay of a neutrino from gravitational waves can be used to put an upper limit of ≲O (10 ) meV /c2 on the absolute neutrino mass in the lightest eigenstate. Large neutrino detectors will enhance the detectability, and, in particular, 5 Mt Deep-TITAND and 10 Mt MICA planned in the future will allow us to detect thermal neutrinos every ≈16 and 8 years, respectively, increasing the significance.

  6. Observational constraints on successful model of quintessential Inflation

    NASA Astrophysics Data System (ADS)

    Geng, Chao-Qiang; Lee, Chung-Chi; Sami, M.; Saridakis, Emmanuel N.; Starobinsky, Alexei A.

    2017-06-01

    We study quintessential inflation using a generalized exponential potential V(phi)propto \\exp(-λ phin/MPln), n>1, the model admits slow-roll inflation at early times and leads to close-to-scaling behaviour in the post inflationary era with an exit to dark energy at late times. We present detailed investigations of the inflationary stage in the light of the Planck 2015 results, study post-inflationary dynamics and analytically confirm the existence of an approximately scaling solution. Additionally, assuming that standard massive neutrinos are non-minimally coupled, makes the field phi dominant once again at late times giving rise to present accelerated expansion of the Universe. We derive observational constraints on the field and time-dependent neutrino masses. In particular, for n=6 (8), the parameter λ is constrained to be, log λ > -7.29 (-11.7) the model produces the spectral index of the power spectrum of primordial scalar (matter density) perturbations as ns = 0.959 ± 0.001 (0.961 ± 0.001) and tiny tensor-to-scalar ratio, r<1.72 × 10-2 (2.32 × 10-2) respectively. Consequently, the upper bound on possible values of the sum of neutrino masses Σ mν lesssim 2.5 eV significantly enhances compared to that in the standard ΛCDM model.

  7. High-energy neutrinos from multibody decaying dark matter

    NASA Astrophysics Data System (ADS)

    Hiroshima, Nagisa; Kitano, Ryuichiro; Kohri, Kazunori; Murase, Kohta

    2018-01-01

    Since the report of the PeV-TeV neutrinos by the IceCube Collaboration, various particle physics models have been proposed to explain the neutrino spectrum by dark matter particles decaying into neutrinos and other standard model particles. In such scenarios, simultaneous γ -ray emission is commonly expected. Therefore, multimessenger connections are generally important for the indirect searches of dark matters. The recent development of γ -ray astronomy puts stringent constraints on the properties of dark matter, especially by observations with the Fermi γ -ray satellite in the last several years. Motivated by the lack of γ -ray as well as the shape of the neutrino spectrum observed by IceCube, we discuss a scenario in which the DM is a PeV scale particle which couples strongly to other invisible particles and its decay products do not contain a charged particle. As an example to realize such possibilities, we consider a model of fermionic dark matter that decays into a neutrino and many invisible fermions. The dark matter decay is secluded in the sense that the emitted products are mostly neutrinos and dark fermions. One remarkable feature of this model is the resulting broadband neutrino spectra around the energy scale of the dark matter. We apply this model to multi-PeV dark matter, and discuss possible observable consequences in light of the IceCube data. In particular, this model could account for the large flux at medium energies of ˜10 - 100 TeV , possibly as well as the second peak at PeV, without violating the stringent γ -ray constraints from Fermi and air-shower experiments such as CASA-MIA.

  8. Neutrino jets from high-mass WR gauge bosons in TeV-scale left-right symmetric models

    NASA Astrophysics Data System (ADS)

    Mitra, Manimala; Ruiz, Richard; Scott, Darren J.; Spannowsky, Michael

    2016-11-01

    We reexamine the discovery potential at hadron colliders of high-mass right-handed (RH) gauge bosons WR—an inherent ingredient of left-right symmetric models (LRSM). We focus on the regime where the WR is very heavy compared to the heavy Majorana neutrino N , and we investigate an alternative signature for WR→N decays. The produced neutrinos are highly boosted in this mass regime. Subsequently, their decays via off-shell WR bosons to jets, i.e., N →ℓ±jj, are highly collimated, forming a single neutrino jet (jN). The final-state collider signature is then ℓ±jN, instead of the widely studied ℓ±ℓ±j j . Present search strategies are not sensitive to this hierarchical mass regime due to the breakdown of the collider signature definition. We take into account QCD corrections beyond next-to-leading order (NLO) that are important for high-mass Drell-Yan processes at the 13 TeV Large Hadron Collider (LHC). For the first time, we evaluate WR production at NLO with threshold resummation at next-to-next-to-leading logarithm (NNLL) matched to the threshold-improved parton distributions. With these improvements, we find that a WR of mass MWR=3 (4 )[5 ] TeV and mass ratio of (mN/MWR)<0.1 can be discovered with a 5 - 6 σ statistical significance at 13 TeV after 10 (100 )[2000 ] fb-1 of data. Extending the analysis to the hypothetical 100 TeV Very Large Hadron Collider (VLHC), 5 σ can be obtained for WR masses up to MW R=15 (30 ) with approximately 100 fb-1 (10 ab-1 ). Conversely, with 0.9 (10 )[150 ] fb-1 of 13 TeV data, MWR<3 (4 )[5 ] TeV and (mN/MWR)<0.1 can be excluded at 95% C.L.; with 100 fb-1 (2.5 ab-1 ) of 100 TeV data, MW R<22 (33 ) TeV can be excluded.

  9. Updated observational constraints on quintessence dark energy models

    NASA Astrophysics Data System (ADS)

    Durrive, Jean-Baptiste; Ooba, Junpei; Ichiki, Kiyotomo; Sugiyama, Naoshi

    2018-02-01

    The recent GW170817 measurement favors the simplest dark energy models, such as a single scalar field. Quintessence models can be classified in two classes, freezing and thawing, depending on whether the equation of state decreases towards -1 or departs from it. In this paper, we put observational constraints on the parameters governing the equations of state of tracking freezing, scaling freezing, and thawing models using updated data, from the Planck 2015 release, joint light-curve analysis, and baryonic acoustic oscillations. Because of the current tensions on the value of the Hubble parameter H0, unlike previous authors, we let this parameter vary, which modifies significantly the results. Finally, we also derive constraints on neutrino masses in each of these scenarios.

  10. Double Beta Decays and Neutrinos - Experiments and MOON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejiri, H.; National Institute of Radiological Sciences, Chiba, 263-8555

    2008-01-24

    This is a brief review of the present and future experiments of neutrino-less double beta decays (0{nu}{beta}{beta}) and the MOON (Mo Observatory Of Neutrinos) project. High sensitivity 0{nu}{beta}{beta} experiments are unique and realistic probes for studying the Majorana nature of neutrinos and the absolute mass scale as suggested by neutrino oscillation experiments. MOON aims at spectroscopic 0{nu}{beta}{beta} studies with the {nu}-mass sensitivity of 100-30 meV by means of a super ensemble of multilayer modules of scintillator plates and tracking detector planes.

  11. Neutrino Phenomenology: Highlights of Oscillation Results and Future Prospects

    NASA Astrophysics Data System (ADS)

    Goswami, Srubabati

    2016-04-01

    In this talk the current status of neutrino oscillation parameters are presented. The prospects of determination of neutrino mass hierarchy, octant of θ23 and the CP phase δCP in future long-baseline and atmospheric experiments are reviewed. The impact of precision measurement of oscillation parameters on neutrino mass models are also discussed.

  12. All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the Antares neutrino telescope

    NASA Astrophysics Data System (ADS)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Brânzaş, H.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A. F.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L. A.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.

    2017-12-01

    Advanced LIGO detected a significant gravitational wave signal (GW170104) originating from the coalescence of two black holes during the second observation run on January 4th, 2017. An all-sky high-energy neutrino follow-up search has been made using data from the Antares neutrino telescope, including both upgoing and downgoing events in two separate analyses. No neutrino candidates were found within ± 500 s around the GW event time nor any time clustering of events over an extended time window of ± 3 months. The non-detection is used to constrain isotropic-equivalent high-energy neutrino emission from GW170104 to less than ˜ {1.2}× 10^{{55}} erg for a E^{-2} spectrum. This constraint is valid in the energy range corresponding to the 5-95% quantiles of the neutrino flux [3.2 TeV; 3.6 PeV], if the GW emitter was below the Antares horizon at the alert time.

  13. Measuring the electron neutrino mass with improved sensitivity: the HOLMES experiment

    NASA Astrophysics Data System (ADS)

    Giachero, A.; Alpert, B. K.; Becker, D. T.; Bennett, D. A.; Biasotti, M.; Brofferio, C.; Ceriale, V.; Ceruti, G.; Corsini, D.; Day, P. K.; De Gerone, M.; Dressler, R.; Faverzani, M.; Ferri, E.; Fowler, J. W.; Fumagalli, E.; Gallucci, G.; Gard, J. D.; Gatti, F.; Hays-Wehle, J. P.; Heinitz, S.; Hilton, G. C.; Köster, U.; Lusignoli, M.; Mates, J. A. B.; Nisi, S.; Nucciotti, A.; Orlando, A.; Parodi, L.; Pessina, G.; Pizzigoni, G.; Puiu, A.; Ragazzi, S.; Reintsema, C. D.; Ribeiro Gomes, M.; Schmidt, D. R.; Schumann, D.; Siccardi, F.; Sisti, M.; Swetz, D. S.; Terranova, F.; Ullom, J. N.; Vale, L. R.

    2017-02-01

    HOLMES is a new experiment aiming at directly measuring the neutrino mass with a sensitivity below 2 eV . HOLMES will perform a calorimetric measurement of the energy released in the decay of 163Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with spectrometers. This measurement was proposed in 1982 by A. De Rujula and M. Lusignoli, but only recently the detector technological progress has allowed to design a sensitive experiment. HOLMES will deploy a 1000 pixels array of low temperature microcalorimeters with implanted 163Ho nuclei. HOLMES, besides being an important step forward in the direct neutrino mass measurement with a calorimetric approach, will also establish the potential of this approach to extend the sensitivity down to 0.1 eV and lower. The detectors used for the HOLMES experiment will be Mo/Cu bilayers TESs (Transition Edge Sensors) on SiNx membrane with gold absorbers. Microwave multiplexed rf-SQUIDs are the best available technique to read out large array of such detectors. An extensive R&D activity is in progress in order to maximize the multiplexing factor while preserving the performances of the individual detectors. To embed the 163Ho into the gold absorbers a custom mass separator ion implanter is being developed. The current activities are focused on the the single detector performances optimization and on the 163Ho isotope production and embedding. A preliminary measurement of a sub-array of 4× 16 detectors is planned late in 2017. In this contribution we present the HOLMES project with its technical challenges, its status and perspectives.

  14. Calculation of the local density of relic neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Salas, P.F.; Gariazzo, S.; Pastor, S.

    2017-09-01

    Nonzero neutrino masses are required by the existence of flavour oscillations, with values of the order of at least 50 meV . We consider the gravitational clustering of relic neutrinos within the Milky Way, and used the N -one-body simulation technique to compute their density enhancement factor in the neighbourhood of the Earth with respect to the average cosmic density. Compared to previous similar studies, we pushed the simulation down to smaller neutrino masses, and included an improved treatment of the baryonic and dark matter distributions in the Milky Way. Our results are important for future experiments aiming at detectingmore » the cosmic neutrino background, such as the Princeton Tritium Observatory for Light, Early-universe, Massive-neutrino Yield (PTOLEMY) proposal. We calculate the impact of neutrino clustering in the Milky Way on the expected event rate for a PTOLEMY-like experiment. We find that the effect of clustering remains negligible for the minimal normal hierarchy scenario, while it enhances the event rate by 10 to 20% (resp. a factor 1.7 to 2.5) for the minimal inverted hierarchy scenario (resp. a degenerate scenario with 150 meV masses). Finally we compute the impact on the event rate of a possible fourth sterile neutrino with a mass of 1.3 eV.« less

  15. Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment

    NASA Astrophysics Data System (ADS)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J.-H.; Cheng, J.; Cheng, Y. P.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, R. P.; Guo, X. H.; Guo, Z.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Joshi, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, J. L.; Liu, J. C.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Lv, Z.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Mooney, M.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2016-10-01

    This Letter reports an improved search for light sterile neutrino mixing in the electron antineutrino disappearance channel with the full configuration of the Daya Bay Reactor Neutrino Experiment. With an additional 404 days of data collected in eight antineutrino detectors, this search benefits from 3.6 times the statistics available to the previous publication, as well as from improvements in energy calibration and background reduction. A relative comparison of the rate and energy spectrum of reactor antineutrinos in the three experimental halls yields no evidence of sterile neutrino mixing in the 2 ×10-4≲|Δ m412|≲0.3 eV2 mass range. The resulting limits on sin22 θ14 are improved by approx imately a factor of 2 over previous results and constitute the most stringent constraints to date in the |Δ m412|≲0.2 eV2 region.

  16. A search for matter enhanced neutrino oscillations through measurements of day and night solar neutrino fluxes at the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Miknaitis, Kathryn Kelly Schaffer

    The Sudbury Neutrino Observatory (SNO) is a heavy-water Cherenkov detector designed to study 8B neutrinos from the sun. Through the charged-current (CC) and neutral-current (NC) reactions of neutrinos on deuterium, SNO separately determines the flux of electron neutrinos and the flux of all active flavors of solar 8B neutrinos. SNO is also sensitive to the elastic scattering (ES) of neutrinos on electrons in the heavy water. Measurements of the CC and NC rates in SNO have conclusively demonstrated solar neutrino flavor change. This flavor change is believed to be caused by matter-enhanced oscillations in the sun, through the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Matter effects could also change the flavor composition of neutrinos that traverse the earth. A comparison of the day and night measured CC flux at SNO directly tests for the MSW effect and contributes to constraints on neutrino oscillation parameters in the MSW model. We perform measurements of the day and night neutrino fluxes using data from the second phase of SNO, in which salt (NaCl) was added to the heavy water to enhance sensitivity to the NC reaction. Better discrimination between CC and NC events in the salt phase allows the fluxes to be determined without constraining the neutrino energy spectrum. The day-night asymmetry in the CC flux measured in this model-independent analysis is ACC = [-5.6 +/- 7.4(stat.) +/- 5.3(syst.)]%, where the asymmetry is defined as the difference between the night and day values divided by their average. The asymmetries in the NC and ES fluxes are ANC = [4.2 +/- 8.6(stat.) +/- 7.2(syst.)]%, and AES = (14.6 +/- 19.8(stat.) +/- 3.3(syst.)]%. The neutral current asymmetry is expected to be zero assuming standard neutrino oscillations. When we constrain it to be zero, we obtain ACC = [-3.7 +/- 6.3(stat.) +/- 3.2(syst.)]% and AES = [15.3 +/- 19.8(stat.) +/- 3.0(syst.)]%. The day and night energy spectra from the CC reaction have been measured and show no evidence for

  17. Neutrino Oscillation in a Space-Time with Torsion

    NASA Astrophysics Data System (ADS)

    Alimohammadi, M.; Shariati, A.

    Using Einstein-Cartan-Dirac theory, we study the effect of torsion on neutrino oscillation. We see that torsion cannot induce neutrino oscillation, but affects it whenever oscillation exists for other reasons. We show that the torsion effect on neutrino oscillation is as important as the neutrino mass effect, whenever the ratio of neutrino number density to neutrino energy is ~ 1069 cm-3/eV, or the number density of the matter is ~ 1069cm-3.

  18. Effective Majorana mass matrix from tau and pseudoscalar meson lepton number violating decays

    NASA Astrophysics Data System (ADS)

    Abada, Asmaa; De Romeri, Valentina; Lucente, Michele; Teixeira, Ana M.; Toma, Takashi

    2018-02-01

    An observation of any lepton number violating process will undoubtedly point towards the existence of new physics and indirectly to the clear Majorana nature of the exchanged fermion. In this work, we explore the potential of a minimal extension of the Standard Model via heavy sterile fermions with masses in the [0.1 - 10] GeV range concerning an extensive array of "neutrinoless" meson and tau decay processes. We assume that the Majorana neutrinos are produced on-shell, and focus on three-body decays. We conduct an update on the bounds on the active-sterile mixing elements, |{U}_{ℓ }{{}{_{α}}}_4{U}_{ℓ }{{}{_{β}}}_4| , taking into account the most recent experimental bounds (and constraints) and new theoretical inputs, as well as the effects of a finite detector, imposing that the heavy neutrino decay within the detector. This allows to establish up-to-date comprehensive constraints on the sterile fermion parameter space. Our results suggest that the branching fractions of several decays are close to current sensitivities (likely within reach of future facilities), some being already in conflict with current data (as is the case of K + → ℓ α + ℓ β + π -, and τ - → μ +π-π-). We use these processes to extract constraints on all entries of an enlarged definition of a 3 × 3 "effective" Majorana neutrino mass matrix m ν αβ .

  19. Atmospheric, long baseline, and reactor neutrino data constraints on theta_{13}.

    PubMed

    Roa, J E; Latimer, D C; Ernst, D J

    2009-08-07

    An atmospheric neutrino oscillation tool that uses full three-neutrino oscillation probabilities and a full three-neutrino treatment of the Mikheyev-Smirnov-Wolfenstein effect, together with an analysis of the K2K, MINOS, and CHOOZ data, is used to examine the bounds on theta_{13}. The recent, more finely binned, Super-K atmospheric data are employed. For L/E_{nu} greater, similar 10;{4} km/GeV, we previously found significant linear in theta_{13} terms. This analysis finds theta_{13} bounded from above by the atmospheric data while bounded from below by CHOOZ. The origin of this result arises from data in the previously mentioned very long baseline region; here, matter effects conspire with terms linear in theta_{13} to produce asymmetric bounds on theta_{13}. Assuming CP conservation, we find theta_{13} = -0.07_{-0.11};{+0.18} (90% C.L.).

  20. The Angra Neutrino Project: precise measurement of θ13 and safeguards applications of neutrino detectors

    NASA Astrophysics Data System (ADS)

    Casimiro, E.; Anjos, J. C.

    2009-04-01

    We present an introduction to the Angra Neutrino Project. The goal of the project is to explore the use of neutrino detectors to monitor the reactor activity. The Angra Project, willl employ as neutrino sources the reactors of the nuclear power complex in Brazil, located in Angra dos Reis, some 150 Km south from the city of Rio de Janeiro. The Angra collaboration will develop and operate a low-mass neutrino detector to monitor the nuclear reactor activity, in particular to measure the reactor thermal power and the reactor fuel isotopic composition.

  1. A4 flavour model for Dirac neutrinos: Type I and inverse seesaw

    NASA Astrophysics Data System (ADS)

    Borah, Debasish; Karmakar, Biswajit

    2018-05-01

    We propose two different seesaw models namely, type I and inverse seesaw to realise light Dirac neutrinos within the framework of A4 discrete flavour symmetry. The additional fields and their transformations under the flavour symmetries are chosen in such a way that naturally predicts the hierarchies of different elements of the seesaw mass matrices in these two types of seesaw mechanisms. For generic choices of flavon alignments, both the models predict normal hierarchical light neutrino masses with the atmospheric mixing angle in the lower octant. Apart from predicting interesting correlations between different neutrino parameters as well as between neutrino and model parameters, the model also predicts the leptonic Dirac CP phase to lie in a specific range - π / 3 to π / 3. While the type I seesaw model predicts smaller values of absolute neutrino mass, the inverse seesaw predictions for the absolute neutrino masses can saturate the cosmological upper bound on sum of absolute neutrino masses for certain choices of model parameters.

  2. Neutrino Oscillations at Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Michael, Douglas

    2002-12-01

    Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments.

  3. Neutrino in standard model and beyond

    NASA Astrophysics Data System (ADS)

    Bilenky, S. M.

    2015-07-01

    After discovery of the Higgs boson at CERN the Standard Model acquired a status of the theory of the elementary particles in the electroweak range (up to about 300 GeV). What general conclusions can be inferred from the Standard Model? It looks that the Standard Model teaches us that in the framework of such general principles as local gauge symmetry, unification of weak and electromagnetic interactions and Brout-Englert-Higgs spontaneous breaking of the electroweak symmetry nature chooses the simplest possibilities. Two-component left-handed massless neutrino fields play crucial role in the determination of the charged current structure of the Standard Model. The absence of the right-handed neutrino fields in the Standard Model is the simplest, most economical possibility. In such a scenario Majorana mass term is the only possibility for neutrinos to be massive and mixed. Such mass term is generated by the lepton-number violating Weinberg effective Lagrangian. In this approach three Majorana neutrino masses are suppressed with respect to the masses of other fundamental fermions by the ratio of the electroweak scale and a scale of a lepton-number violating physics. The discovery of the neutrinoless double β-decay and absence of transitions of flavor neutrinos into sterile states would be evidence in favor of the minimal scenario we advocate here.

  4. Quasielastic neutrino charged-current scattering off 12C: Effects of the meson exchange currents and large nucleon axial mass

    NASA Astrophysics Data System (ADS)

    Butkevich, A. V.; Luchuk, S. V.

    2018-04-01

    The quasielastic scattering of muon neutrino and electrons on a carbon target are analyzed using the relativistic distorted-wave impulse approximation (RDWIA). We also evaluate the contribution of the two-particle and two-hole meson exchange current (2 p -2 h MEC) to electroweak response functions. The nuclear model dependence of the (anti)neutrino cross sections is studied within the RDWIA+MEC approach and RDWIA model with the large nucleon axial mass. It is shown that the results for the squared momentum transfer distribution d σ /d Q2 and for invariant mass of the final hadronic system distribution d σ /d W obtained within these models are substantially different.

  5. Symmetry breaking, and the effect of matter density on neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Mohseni Sadjadi, H.; Khosravi Karchi, A. P.

    2018-04-01

    A proposal for the neutrino mass, based on neutrino-scalar field interaction, is introduced. The scalar field is also non-minimally coupled to the Ricci scalar, and hence relates the neutrino mass to the matter density. In a dense region, the scalar field obeys the Z2 symmetry, and the neutrino is massless. In a dilute region, the Z2 symmetry breaks and neutrino acquires mass from the non-vanishing expectation value of the scalar field. We consider this scenario in the framework of a spherical dense object whose outside is a dilute region. In this background, we study the neutrino flavors oscillation, along with the consequences of the theory on oscillation length and MSW effect. This preliminary model may shed some lights on the existing anomalies within the neutrino data, concerning the different oscillating behavior of the neutrinos in regions with different densities.

  6. Can one measure the Cosmic Neutrino Background?

    NASA Astrophysics Data System (ADS)

    Faessler, Amand; Hodák, Rastislav; Kovalenko, Sergey; Šimkovic, Fedor

    The Cosmic Microwave Background (CMB) yields information about our Universe at around 380,000 years after the Big Bang (BB). Due to the weak interaction of the neutrinos with matter, the Cosmic Neutrino Background (CNB) should give information about a much earlier time of our Universe, around one second after the BB. Probably, the most promising method to “see” the CNB is the capture of the electron neutrinos from the Background by Tritium, which then decays into 3He and an electron with the energy of the the Q-value = 18.562keV plus the electron neutrino rest mass. The “KArlsruhe TRItium Neutrino” (KATRIN) experiment, which is in preparation, seems presently the most sensitive proposed method for measuring the electron antineutrino mass. At the same time, KATRIN can also look by the reaction νe(˜ 1.95K) +3H →3He + e-(Q = 18.6keV + m νec2). The capture of the Cosmic Background Neutrinos (CNB) should show in the electron spectrum as a peak by the electron neutrino rest mass above Q. Here, the possibility to see the CNB with KATRIN is studied. A detection of the CNB by KATRIN seems not to be possible at the moment. But KATRIN should be able to determine an upper limit for the local electron neutrino density of the CNB.

  7. Enhanced tau neutrino appearance through invisible decay

    NASA Astrophysics Data System (ADS)

    Pagliaroli, Giulia; Di Marco, Natalia; Mannarelli, Massimo

    2016-06-01

    The decay of neutrino mass eigenstates leads to a change of the conversion and survival probability of neutrino flavor eigenstates. Exploiting the recent results released by the long-baseline OPERA experiment we perform the statistical investigation of the neutrino invisible decay hypothesis in the νμ→ντ appearance channel. We find that the neutrino decay provides an enhancement of the expected tau appearance signal with respect to the standard oscillation scenario for the long-baseline OPERA experiment. The increase of the νμ→ντ conversion probability by the decay of one of the mass eigenstates is due to a reduction of the "destructive interference" among the different massive neutrino components. Despite data showing a very mild preference for invisible decays with respect to the oscillations only hypothesis, we provide an upper limit for the neutrino decay lifetime in this channel of τ3/m3≳1.3 ×10-13 s /eV at the 90% confidence level.

  8. Geophysical searches for three-neutrino oscillations

    NASA Technical Reports Server (NTRS)

    Cudell, J. R.; Gaisser, T. K.

    1985-01-01

    The possibilities of using cosmic ray induced neutrinos to detect oscillations in deep underground experiments were considered. The matter effects are nonnegligible in the two neutrino case, they reduce a mixing angle of 45 deg to 7.5 deg for 1 GeV neutrinos of squared mass difference 10/4 eV59 going through the Earth making the oscillation totally unobservable. They produce a natural oscillation length of about 6000 km in the case of massless neutrinos. Adding a third neutrino flavor considerably modifies the oscillation pattern and suggests that scales down to 5 x 10/5 eV could be observed even when we take into account matter effects and the electron contribution to the incoming flux. The effect of matter on the probability curves for different cases are shown by varying the masses and the mixing matrix. The ratio upward upsilon + upsilon/downward upsilon + upsilon as a function of the zenith angle at Cleveland, neglecting angular smearing and energy threshold effects is predicted.

  9. Neutrino production in e+e- collisions in a left-right-symmetric model

    NASA Astrophysics Data System (ADS)

    Gluza, J.; Zrałek, M.

    1993-12-01

    The production of light and heavy (νN) and two heavy neutrinos (NN) in e+e- collisions is investigated. The heavy neutrinos which appear naturally in the left-right-symmetric models are considered. The correlation between heavy gauge boson masses, masses of heavy neutrinos, and elements of the mixing matrices in the charged and neutral currents are taken into account. For comparison, two cases where the neutrinos are either Majorana or Dirac particles are studied. However, only Majorana neutrinos appear naturally in the studied version of a L-R-symmetric model. New bounds on the mass of heavy neutrinos from CERN LEP I, and the correlation between masses of the charged gauge bosons and heavy Majorana neutrinos which follows from the lack of neutrinoless double-β decay, are included. The conclusion about production of heavy Majorana neutrinos from the L-R model in future e+e- colliders (LEP II, NLC) is less optimistic compared with previous investigations. In the case of two Dirac neutrino production (NN) the cross section is larger than in the Majorana case.

  10. First neutrino oscillation measurements in NOvA

    DOE PAGES

    Messier, M. D.

    2016-04-20

    In this study, the NOvA experiment uses the Fermilab NuMI neutrino beam and a newly constructed 14 kt detector to address several open questions in neutrino oscillations including the neutrino mass hierarchy, the precise value of the angle θ 23, and the CP-violating phase δ CP. The experiment has been running since 2014 and has recently released its first results from an equivalent exposure of 2.74 × 10 20 protons-on-target equal to 8% of the eventual data set. Measurements of ν μ → ν μ oscillations find Δm 2 32 = (2.52 +0.2 –0.18) × 10 -3 eV 2 andmore » 0.38 < sin 2θ 23 < 0.65 for the normal neutrino mass hierarchy. The experiment has observed ν μ → ν e oscillations at 3.3 σ C.L. in this early data and disfavors the inverted neutrino mass hierarchy in the range 0.1π < δ CP < 0.5π at the 90% C.L.« less

  11. Signatures of dark radiation in neutrino and dark matter detectors

    NASA Astrophysics Data System (ADS)

    Cui, Yanou; Pospelov, Maxim; Pradler, Josef

    2018-05-01

    We consider the generic possibility that the Universe's energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with nongravitational interactions with standard model (SM) particles. Such dark radiation may consist of SM singlets or a nonthermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In particular, for interacting dark radiation carrying a typical momentum of ˜30 MeV /c , both types of experiments provide competitive constraints. This study also demonstrates that non-standard sources of neutrino emission (e.g., via dark matter decay) are capable of creating a "neutrino floor" for dark matter direct detection that is closer to current bounds than is expected from standard neutrino sources.

  12. Searches for light sterile neutrinos with multitrack displaced vertices

    NASA Astrophysics Data System (ADS)

    Cottin, Giovanna; Helo, Juan Carlos; Hirsch, Martin

    2018-03-01

    We study discovery prospects for long-lived sterile neutrinos at the LHC with multitrack displaced vertices, with masses below the electroweak scale. We reinterpret current displaced vertex searches making use of publicly available, parametrized selection efficiencies for modeling the detector response to displaced vertices. We focus on the production of right-handed WR bosons and neutrinos N in a left-right symmetric model, and find poor sensitivity. After proposing a different trigger strategy (considering the prompt lepton accompanying the neutrino displaced vertex) and optimized cuts in the invariant mass and track multiplicity of the vertex, we find that the LHC with √{s }=13 TeV and 300 fb-1 is able to probe sterile neutrino masses between 10 GeV mass of 2 TeV masses up to mN˜30 GeV and mWR<5 TeV , 3000 fb-1 will be needed. This work joins other efforts in motivating dedicated experimental searches to target this low sterile neutrino mass region.

  13. A model explaining neutrino masses and the DAMPE cosmic ray electron excess

    NASA Astrophysics Data System (ADS)

    Fan, Yi-Zhong; Huang, Wei-Chih; Spinrath, Martin; Tsai, Yue-Lin Sming; Yuan, Qiang

    2018-06-01

    We propose a flavored U(1)eμ neutrino mass and dark matter (DM) model to explain the recent DArk Matter Particle Explorer (DAMPE) data, which feature an excess on the cosmic ray electron plus positron flux around 1.4 TeV. Only the first two lepton generations of the Standard Model are charged under the new U(1)eμ gauge symmetry. A vector-like fermion ψ, which is our DM candidate, annihilates into e± and μ± via the new gauge boson Z‧ exchange and accounts for the DAMPE excess. We have found that the data favors a ψ mass around 1.5 TeV and a Z‧ mass around 2.6 TeV, which can potentially be probed by the next generation lepton colliders and DM direct detection experiments.

  14. Evidence of electron neutrino appearance in a muon neutrino beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Abgrall, N.; Aihara, H.; Akiri, T.; Albert, J. B.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Beznosko, D.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Boyd, S.; Brailsford, D.; Bravar, A.; Bronner, C.; Brook-Roberge, D. G.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; Day, M.; de André, J. P. A. M.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Dobson, J.; Drapier, O.; Duboyski, T.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Dziomba, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Frank, E.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Joo, K. K.; Jung, C. K.; Kaboth, A.; Kaji, H.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khanam, F.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J. Y.; Kim, J.; Kim, S. B.; Kirby, B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kowalik, K.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Laing, A.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Licciardi, C.; Lim, I. T.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, G. D.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marchionni, A.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCauley, N.; McFarland, K. S.; McGrew, C.; McLachlan, T.; Messina, M.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakajima, K.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nicholls, T. C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Obayashi, Y.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Pac, M. Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pinzon Guerra, E. S.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Scully, D. I.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shibata, M.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Szeptycka, M.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. A.; Tanaka, M. M.; Tanaka, M.; Taylor, I. J.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2013-08-01

    The T2K Collaboration reports evidence for electron neutrino appearance at the atmospheric mass splitting, |Δm322|≈2.4×10-3eV2. An excess of electron neutrino interactions over background is observed from a muon neutrino beam with a peak energy of 0.6 GeV at the Super-Kamiokande (SK) detector 295 km from the beam’s origin. Signal and background predictions are constrained by data from near detectors located 280 m from the neutrino production target. We observe 11 electron neutrino candidate events at the SK detector when a background of 3.3±0.4(syst) events is expected. The background-only hypothesis is rejected with a p value of 0.0009 (3.1σ), and a fit assuming νμ→νe oscillations with sin⁡22θ23=1, δCP=0 and |Δm322|=2.4×10-3eV2 yields sin⁡22θ13=0.088-0.039+0.049(stat+syst).

  15. COHERENT enlightenment of the neutrino dark side

    NASA Astrophysics Data System (ADS)

    Coloma, Pilar; Gonzalez-Garcia, M. C.; Maltoni, Michele; Schwetz, Thomas

    2017-12-01

    In the presence of nonstandard neutrino interactions (NSI), oscillation data are affected by a degeneracy which allows the solar mixing angle to be in the second octant (also known as the dark side) and implies a sign flip of the atmospheric mass-squared difference. This leads to an ambiguity in the determination of the ordering of neutrino masses, one of the main goals of the current and future experimental neutrino program. We show that the recent observation of coherent neutrino-nucleus scattering by the COHERENT experiment, in combination with global oscillation data, excludes the NSI degeneracy at the 3.1 σ (3.6 σ ) C.L. for NSI with up (down) quarks.

  16. Lepton Flavorful Fifth Force and Depth-Dependent Neutrino Matter Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, Mark B.; Zhang, Yue

    We consider a fifth force to be an interaction that couples to matter with a strength that grows with the number of atoms. In addition to competing with the strength of gravity a fifth force can give rise to violations of the equivalence principle. Current long range constraints on the strength and range of fifth forces are very impressive. Amongst possible fifth forces are those that couple to lepton flavorful chargesmore » $$L_e-L_{\\mu}$$ or $$L_e-L_{\\tau}$$. They have the property that their range and strength are also constrained by neutrino interactions with matter. In this brief note we review the existing constraints on the allowed parameter space in gauged $$U(1)_{L_e-L_{\\mu}, L_{\\tau}}$$. We find two regions where neutrino oscillation experiments are at the frontier of probing such a new force. In particular, there is an allowed range of parameter space where neutrino matter interactions relevant for long baseline oscillation experiments depend on the depth of the neutrino beam below the surface of the earth.« less

  17. Lepton flavorful fifth force and depth-dependent neutrino matter interactions

    NASA Astrophysics Data System (ADS)

    Wise, Mark B.; Zhang, Yue

    2018-06-01

    We consider a fifth force to be an interaction that couples to matter with a strength that grows with the number of atoms. In addition to competing with the strength of gravity a fifth force can give rise to violations of the equivalence principle. Current long range constraints on the strength and range of fifth forces are very impressive. Amongst possible fifth forces are those that couple to lepton flavorful charges L e - L μ or L e - L τ . They have the property that their range and strength are also constrained by neutrino interactions with matter. In this brief note we review the existing constraints on the allowed parameter space in gauged U{(1)}_{L_e-{L}_{μ },{L}_{τ }} . We find two regions where neutrino oscillation experiments are at the frontier of probing such a new force. In particular, there is an allowed range of parameter space where neutrino matter interactions relevant for long baseline oscillation experiments depend on the depth of the neutrino beam below the surface of the earth.

  18. Search for active-sterile neutrino mixing using neutral-current interactions in NOvA

    DOE PAGES

    Adamson, P.; Aliaga, L.; Ambrose, D.; ...

    2017-10-30

    Here, we report results from the first search for sterile neutrinos mixing with active neutrinos through a reduction in the rate of neutral-current interactions over a baseline of 810 km between the NOvA detectors. Analyzing a 14-kton detector equivalent exposure of 6.05 × 10 20 protons-on-target in the NuMI beam at Fermilab, we observe 95 neutral-current candidates at the Far Detector compared with 83.5 ± 9.7(stat) ± 9.4(syst) events predicted assuming mixing only occurs between active neutrino species. No evidence for νμ→νs transitions is found. Interpreting these results within a 3+1 model, we place constraints on the mixing angles θ 24more » < 20.8° and θ 34 < 31.2° at the 90% C.L. for 0.05 eV 2 ≤ Δm 41 2 ≤ 0.5 eV 2, the range of mass splittings that produce no significant oscillations over the Near Detector baseline.« less

  19. Future Reactor Neutrino Experiments (RRNOLD)1

    NASA Astrophysics Data System (ADS)

    Jaffe, David E.

    The prospects for future reactor neutrino experiments that would use tens of kilotons of liquid scintillator with a ∼ 50 km baseline are discussed. These experiments are generically dubbed "RRNOLD" for Radical Reactor Neutrino Oscillation Liquid scintillator Detector experiment. Such experiments are designed to resolve the neutrino mass hierarchy and make sub-percent measurements sin2θ12, Δm232 and Δm122 . RRNOLD would also be sensitive to neutrinos from other sources and have notable sensitivity to proton decay.

  20. Sterile neutrino searches at future e-e+, pp and e-p colliders

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Cazzato, Eros; Fischer, Oliver

    2017-05-01

    Sterile neutrinos are among the most attractive extensions of the SM to generate the light neutrino masses observed in neutrino oscillation experiments. When the sterile neutrinos are subject to a protective symmetry, they can have masses around the electroweak scale and potentially large neutrino Yukawa couplings, which makes them testable at planned future particle colliders. We systematically discuss the production and decay channels at electron-positron, proton-proton and electron-proton colliders and provide a complete list of the leading order signatures for sterile neutrino searches. Among other things, we discuss several novel search channels, and present a first look at the possible sensitivities for the active-sterile mixings and the heavy neutrino masses. We compare the performance of the different collider types and discuss their complementarity.

  1. Neutrinos: Nature's Identity Thieves?

    ScienceCinema

    Lincoln, Don

    2017-12-09

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  2. Neutrinos: Nature's Identity Thieves?

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  3. Neutrinos in large extra dimensions and short-baseline ν e appearance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carena, Marcela; Li, Ying -Ying; Machado, Camila S.

    Here, we show that, in the presence of bulk masses, sterile neutrinos propagating in large extra dimensions (LED) can induce electron-neutrino appearance effects. This is in contrast to what happens in the standard LED scenario, and hence LED models with explicit bulk masses have the potential to address the MiniBooNE and LSND appearance results as well as the reactor and Gallium anomalies. A special feature in our scenario is that the mixing of the first Kaluza-Klein modes to active neutrinos can be suppressed, making the contribution of heavier sterile neutrinos to oscillations relatively more important. We study the implications ofmore » this neutrino mass generation mechanism for current and future neutrino oscillation experiments and show that the Short Baseline Neutrino Program at Fermilab will be able to efficiently probe such a scenario. In addition, this framework leads to massive Dirac neutrinos and thus precludes any signal in neutrinoless double beta decay experiments.« less

  4. Neutrinos in large extra dimensions and short-baseline ν e appearance

    DOE PAGES

    Carena, Marcela; Li, Ying -Ying; Machado, Camila S.; ...

    2017-11-16

    Here, we show that, in the presence of bulk masses, sterile neutrinos propagating in large extra dimensions (LED) can induce electron-neutrino appearance effects. This is in contrast to what happens in the standard LED scenario, and hence LED models with explicit bulk masses have the potential to address the MiniBooNE and LSND appearance results as well as the reactor and Gallium anomalies. A special feature in our scenario is that the mixing of the first Kaluza-Klein modes to active neutrinos can be suppressed, making the contribution of heavier sterile neutrinos to oscillations relatively more important. We study the implications ofmore » this neutrino mass generation mechanism for current and future neutrino oscillation experiments and show that the Short Baseline Neutrino Program at Fermilab will be able to efficiently probe such a scenario. In addition, this framework leads to massive Dirac neutrinos and thus precludes any signal in neutrinoless double beta decay experiments.« less

  5. Neutrinos in large extra dimensions and short-baseline νe appearance

    NASA Astrophysics Data System (ADS)

    Carena, Marcela; Li, Ying-Ying; Machado, Camila S.; Machado, Pedro A. N.; Wagner, Carlos E. M.

    2017-11-01

    We show that, in the presence of bulk masses, sterile neutrinos propagating in large extra dimensions (LED) can induce electron-neutrino appearance effects. This is in contrast to what happens in the standard LED scenario, and hence LED models with explicit bulk masses have the potential to address the MiniBooNE and LSND appearance results as well as the reactor and Gallium anomalies. A special feature in our scenario is that the mixing of the first Kaluza-Klein modes to active neutrinos can be suppressed, making the contribution of heavier sterile neutrinos to oscillations relatively more important. We study the implications of this neutrino mass generation mechanism for current and future neutrino oscillation experiments and show that the Short Baseline Neutrino Program at Fermilab will be able to efficiently probe such a scenario. In addition, this framework leads to massive Dirac neutrinos and thus precludes any signal in neutrinoless double beta decay experiments.

  6. Addendum to "Compact Perturbative Expressions for Neutrino Oscillations in Matter"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denton, Peter B.; Minakata, Hisakazu; Parke, Stephen J.

    2018-01-19

    In this paper we rewrite the neutrino mixing angles and mass squared differences in matter given, in our original paper, in a notation that is more conventional for the reader. Replacing the usual neutrino mixing angles and mass squared differences in the expressions for the vacuum oscillation probabilities with these matter mixing angles and mass squared differences gives an excellent approximation to the oscillation probabilities in matter. Comparisons for T2K, NOvA, T2HKK and DUNE are also given for neutrinos and anti-neutrinos, disappearance and appearance channels, normal ordering and inverted ordering.

  7. Light sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Gariazzo, S.; Giunti, C.; Laveder, M.; Li, Y. F.; Zavanin, E. M.

    2016-03-01

    The theory and phenomenology of light sterile neutrinos at the eV mass scale is reviewed. The reactor, gallium and Liquid Scintillator Neutrino Detector anomalies are briefly described and interpreted as indications of the existence of short-baseline oscillations which require the existence of light sterile neutrinos. The global fits of short-baseline oscillation data in 3 + 1 and 3 + 2 schemes are discussed, together with the implications for β-decay and neutrinoless double-β decay. The cosmological effects of light sterile neutrinos are briefly reviewed and the implications of existing cosmological data are discussed. The review concludes with a summary of future perspectives. This review is dedicated to the memory of Hai-Wei Long, our dear friend and collaborator, who passed away on 29 May 2015. He was an exceptionally kind person and an enthusiastic physicist. We deeply miss him.

  8. Review of indirect detection of dark matter with neutrinos

    NASA Astrophysics Data System (ADS)

    Danninger, Matthias

    2017-09-01

    Dark Matter could be detected indirectly through the observation of neutrinos produced in dark matter self-annihilations or decays. Searches for such neutrino signals have resulted in stringent constraints on the dark matter self-annihilation cross section and the scattering cross section with matter. In recent years these searches have made significant progress in sensitivity through new search methodologies, new detection channels, and through the availability of rich datasets from neutrino telescopes and detectors, like IceCube, ANTARES, Super-Kamiokande, etc. We review recent experimental results and put them in context with respect to other direct and indirect dark matter searches. We also discuss prospects for discoveries at current and next generation neutrino detectors.

  9. The Angra Neutrino Project: precise measurement of {theta}{sub 13} and safeguards applications of neutrino detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casimiro, E.; Anjos, J. C.

    2009-04-20

    We present an introduction to the Angra Neutrino Project. The goal of the project is to explore the use of neutrino detectors to monitor the reactor activity. The Angra Project, willl employ as neutrino sources the reactors of the nuclear power complex in Brazil, located in Angra dos Reis, some 150 Km south from the city of Rio de Janeiro. The Angra collaboration will develop and operate a low-mass neutrino detector to monitor the nuclear reactor activity, in particular to measure the reactor thermal power and the reactor fuel isotopic composition.

  10. Probing neutrino and Higgs sectors in { SU(2) }_1 × { SU(2) }_2 × { U(1) }_Y model with lepton-flavor non-universality

    NASA Astrophysics Data System (ADS)

    Hue, L. T.; Arbuzov, A. B.; Ngan, N. T. K.; Long, H. N.

    2017-05-01

    The neutrino and Higgs sectors in the { SU(2) }_1 × { SU(2) }_2 × { U(1) }_Y model with lepton-flavor non-universality are discussed. We show that active neutrinos can get Majorana masses from radiative corrections, after adding only new singly charged Higgs bosons. The mechanism for the generation of neutrino masses is the same as in the Zee models. This also gives a hint to solving the dark matter problem based on similar ways discussed recently in many radiative neutrino mass models with dark matter. Except the active neutrinos, the appearance of singly charged Higgs bosons and dark matter does not affect significantly the physical spectrum of all particles in the original model. We indicate this point by investigating the Higgs sector in both cases before and after singly charged scalars are added into it. Many interesting properties of physical Higgs bosons, which were not shown previously, are explored. In particular, the mass matrices of charged and CP-odd Higgs fields are proportional to the coefficient of triple Higgs coupling μ . The mass eigenstates and eigenvalues in the CP-even Higgs sector are also presented. All couplings of the SM-like Higgs boson to normal fermions and gauge bosons are different from the SM predictions by a factor c_h, which must satisfy the recent global fit of experimental data, namely 0.995<|c_h|<1. We have analyzed a more general diagonalization of gauge boson mass matrices, then we show that the ratio of the tangents of the W-W' and Z-Z' mixing angles is exactly the cosine of the Weinberg angle, implying that number of parameters is reduced by 1. Signals of new physics from decays of new heavy fermions and Higgs bosons at LHC and constraints of their masses are also discussed.

  11. TRIMS: Validating T2 Molecular Effects for Neutrino Mass Experiments

    NASA Astrophysics Data System (ADS)

    Lin, Ying-Ting; Trims Collaboration

    2017-09-01

    The Tritium Recoil-Ion Mass Spectrometer (TRIMS) experiment examines the branching ratio of the molecular tritium (T2) beta decay to the bound state (3HeT+). Measuring this branching ratio helps to validate the current molecular final-state theory applied in neutrino mass experiments such as KATRIN and Project 8. TRIMS consists of a magnet-guided time-of-flight mass spectrometer with a detector located on each end. By measuring the kinetic energy and time-of-flight difference of the ions and beta particles reaching the detectors, we will be able to distinguish molecular ions from atomic ones and hence derive the ratio in question. We will give an update on the apparatus, simulation software, and analysis tools, including efforts to improve the resolution of our detectors and to characterize the stability and uniformity of our field sources. We will also share our commissioning results and prospects for physics data. The TRIMS experiment is supported by U.S. Department of Energy Office of Science, Office of Nuclear Physics, Award Number DE-FG02-97ER41020.

  12. Effects of neutrino oscillations on nucleosynthesis and neutrino signals for an 18 M⊙ supernova model

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Ru; Qian, Yong-Zhong; Martínez-Pinedo, Gabriel; Fischer, Tobias; Huther, Lutz

    2015-03-01

    In this paper, we explore the effects of neutrino flavor oscillations on supernova nucleosynthesis and on the neutrino signals. Our study is based on detailed information about the neutrino spectra and their time evolution from a spherically symmetric supernova model for an 18 M⊙ progenitor. We find that collective neutrino oscillations are not only sensitive to the detailed neutrino energy and angular distributions at emission, but also to the time evolution of both the neutrino spectra and the electron density profile. We apply the results of neutrino oscillations to study the impact on supernova nucleosynthesis and on the neutrino signals from a Galactic supernova. We show that in our supernova model, collective neutrino oscillations enhance the production of rare isotopes 138La and 180Ta but have little impact on the ν p -process nucleosynthesis. In addition, the adiabatic Mikheyev-Smirnov-Wolfenstein flavor transformation, which occurs in the C /O and He shells of the supernova, may affect the production of light nuclei such as 7Li and 11B. For the neutrino signals, we calculate the rate of neutrino events in the Super-Kamiokande detector and in a hypothetical liquid argon detector. Our results suggest the possibility of using the time profiles of the events in both detectors, along with the spectral information of the detected neutrinos, to infer the neutrino mass hierarchy.

  13. Sterile neutrinos and RK

    NASA Astrophysics Data System (ADS)

    Vicente, A.

    2013-07-01

    We consider an enhancement in the violation of lepton flavour universality in light meson decays arising from modified Wlν couplings in the standard model minimally extended by sterile neutrinos. Due to the presence of additional mixings between the active neutrinos and the new sterile states, the deviation from unitarity of the leptonic mixing matrix intervening in charged currents might lead to a tree-level enhancement of RP = Γ(P → ev)/Γ(P → μν), with P = K, π. These enhancements are illustrated in the case of the inverse seesaw, showing that one can saturate the current experimental bounds on ΔrK (and Δrπ), while in agreement with the different experimental and observational constraints.

  14. Heavy Right-Handed Neutrino Dark Matter and PeV Neutrinos at IceCube

    NASA Technical Reports Server (NTRS)

    Bhupal Dev, P. S.; Kazanas, D.; Mohapatra, R. N.; Teplitz, V. L.; Zhang, Yongchao

    2016-01-01

    We discuss a simple non-supersymmetric model based on the electroweak gauge group SU(2) (sub L) times SU(2) prime times U(1) (Sub B-L) where the lightest of the right-handed neutrinos, which are part of the leptonic doublet of SU(2) prime, play the role of a long-lived unstable dark matter with mass in the multi-Peta-electronvolt range. We use a resonant s-channel annihilation to obtain the correct thermal relic density and relax the unitarity bound on dark matter mass. In this model, there exists a 3-body dark matter decay mode producing tau leptons and neutrinos, which could be the source for the Peta-electronvolt cascade events observed in the IceCube experiment. The model can be tested with more precise flavor information of the highest-energy neutrino events in future data.

  15. PeV Neutrinos Observed by IceCube from Cores of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2013-01-01

    I show that the high energy neutrino flux predicted to arise from active galactic nuclei cores can explain the PeV neutrinos detected by IceCube without conflicting with the constraints from the observed extragalactic cosmic-ray and gamma-ray backgrounds.

  16. Electron-neutrino charged-current quasi-elastic scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Wolcott, Jeremy

    2014-03-01

    The electron-neutrino charged-current quasi-elastic (CCQE) cross-section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino CCQE cross-section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino CCQE cross-section, but to date there has been no precise experimental verification of these estimates at an energy scale appropriate to such experiments. We present the current status of a direct measurement of the electron neutrino CCQE differential cross-section as a function of the squared four-momentum transfer to the nucleus, Q2, in MINERvA. This talk will discuss event selection, background constraints, and the flux prediction used in the calculation.

  17. Probing new physics with atmospheric neutrinos at KM3NeT-ORCA

    NASA Astrophysics Data System (ADS)

    Coelho, João A. B.; KM3NeT Collaboration

    2017-09-01

    We present the prospects of ORCA searches for new physics phenomena using atmospheric neutrinos. Focus is given to exploiting the impact of strong matter effects on the oscillation of atmospheric neutrinos in light of expanded models, such as sterile neutrinos and non-standard interactions. In the presence of light sterile neutrinos that mix with active neutrinos, additional resonances and suppressions may occur at different energies. One may also use neutrino oscillations to probe the properties of the coherent forward scattering which may be altered by new interactions beyond the Standard Model. Preliminary studies show that ORCA would be able to probe some parameters of these models with sensitivity up to one order of magnitude better than current constraints.

  18. Initial condition for baryogenesis via neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Asaka, Takehiko; Eijima, Shintaro; Ishida, Hiroyuki; Minogawa, Kosuke; Yoshii, Tomoya

    2017-10-01

    We consider a baryogenesis scenario via the oscillation of right-handed neutrinos with Majorana masses of the order of GeV, which are also responsible for neutrino masses by the seesaw mechanism. We study how the initial condition alters the prediction of the present baryon asymmetry by this mechanism. It is usually assumed that the abundance of right-handed neutrinos is zero after the reheating of the inflationary universe and they are produced in scattering processes by the renomalizable Yukawa interaction. However, the higher-dimensional operator with right-handed neutrinos may provide an additional production which is most effective at the reheating epoch. It is shown that such an initial abundance of right-handed neutrinos can significantly modify the prediction when the strong washout of the asymmetry is absent. This leads to the parameter space of the model for the successful baryogenesis being enlarged.

  19. Status and perspectives of neutrino physics at present and future experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagliarone, Carmine Elvezio, E-mail: pagliarone@unicas.it, E-mail: carmine.pagliarone@lngs.infn.it; Laboratori Nazionali del Gran Sasso

    2016-03-25

    Neutrino Physics and Dark Matter searches play a crucial role in nowadays Particle and Astroparticle Physics. The present review paper will describe general properties of neutrinos and neutrino mass phenomenology (Dirac and Majorana masses). Space will be dedicated to the experimental attempts to answer the question of the neutrino mass hierarchy. We will give, then, a short review of the results of part of the experiments that have been running so far. We will also shortly summarize future experiments that plan to explore this very wide scientific area.

  20. Precise Measurement of the Neutrino Mixing Parameter θ23 from Muon Neutrino Disappearance in an Off-Axis Beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Floetotto, L.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iwai, E.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-05-01

    New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter θ23. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57×1020 protons on target, T2K has fit the energy-dependent νμ oscillation probability to determine oscillation parameters. The 68% confidence limit on sin2(θ23) is 0.514-0.056+0.055 (0.511±0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Δm322=(2.51±0.10)×10-3 eV2/c4 (inverted hierarchy: Δm132=(2.48±0.10)×10-3 eV2/c4). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.

  1. Observational constraints on successful model of quintessential Inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Chao-Qiang; Lee, Chung-Chi; Sami, M.

    We study quintessential inflation using a generalized exponential potential V (φ)∝ exp(−λ φ {sup n} / M {sub Pl} {sup n} ), n >1, the model admits slow-roll inflation at early times and leads to close-to-scaling behaviour in the post inflationary era with an exit to dark energy at late times. We present detailed investigations of the inflationary stage in the light of the Planck 2015 results, study post-inflationary dynamics and analytically confirm the existence of an approximately scaling solution. Additionally, assuming that standard massive neutrinos are non-minimally coupled, makes the field φ dominant once again at late times givingmore » rise to present accelerated expansion of the Universe. We derive observational constraints on the field and time-dependent neutrino masses. In particular, for n =6 (8), the parameter λ is constrained to be, log λ > −7.29 (−11.7); the model produces the spectral index of the power spectrum of primordial scalar (matter density) perturbations as n {sub s} = 0.959 ± 0.001 (0.961 ± 0.001) and tiny tensor-to-scalar ratio, r <1.72 × 10{sup −2} (2.32 × 10{sup −2}) respectively. Consequently, the upper bound on possible values of the sum of neutrino masses Σ m {sub ν} ∼< 2.5 eV significantly enhances compared to that in the standard ΛCDM model.« less

  2. Sound speed and viscosity of semi-relativistic relic neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, Lawrence; Long, Andrew J., E-mail: krauss@asu.edu, E-mail: andrewjlong@kicp.uchicago.edu

    2016-07-01

    Generalized fluid equations, using sound speed c {sub eff}{sup 2} and viscosity c {sub vis}{sup 2} as effective parameters, provide a convenient phenomenological formalism for testing the relic neutrino 'null hypothesis,' i.e. that that neutrinos are relativistic and free-streaming prior to recombination. In this work, we relax the relativistic assumption and ask 'to what extent can the generalized fluid equations accommodate finite neutrino mass?' We consider both the mass of active neutrinos, which are largely still relativistic at recombination m {sup 2} / T {sup 2} ∼ 0.2, and the effect of a semi-relativistic sterile component. While there is nomore » one-to-one mapping between mass/mixing parameters and c {sub eff}{sup 2} and c {sub vis}{sup 2}, we demonstrate that the existence of a neutrino mass could induce a bias to measurements of c {sub eff}{sup 2} and c {sub vis}{sup 2} at the level of 0.01 m {sup 2} / T {sup 2} ∼ 10{sup -3}.« less

  3. Los Alamos Science, Number 25 -- 1997: Celebrating the Neutrino

    DOE R&D Accomplishments Database

    Cooper, N. G. ed.

    1997-01-01

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  4. Generalized Friedberg-Lee model for CP violation in neutrino physics

    NASA Astrophysics Data System (ADS)

    Razzaghi, N.; Gousheh, S. S.

    2012-09-01

    We propose a phenomenological model of Dirac neutrino mass operator based on the Friedberg-Lee neutrino mass model to include CP violation. By considering the most general set of complex coefficients, and imposing the condition that the mass eigenvalues are real, we find a neutrino mass matrix which is non-Hermitian, symmetric, and magic. In particular, we find that the requirement of obtaining real mass eigenvalues by transferring the residual phases to the mass eigenstates self-consistently dictates the following relationship between the imaginary part of the mass matrix elements B and the parameters of the Friedberg-Lee model: B=±(3)/(4)(a-br)2sin⁡22θ13cos⁡2θ12. We obtain inverted neutrino mass hierarchy m3=0. Making a correspondence between our model and the experimental data produces stringent conditions on the parameters as follows: 35.06°≲θ12≲36.27°, θ23=45°, 7.27°≲θ13≲11.09°, and 82.03°≲δ≲85.37°. We get mildly broken μ-τ symmetry, which reduces the resultant neutrino mixing pattern from tri-bimaximal to trimaximal. The CP violation as measured by the Jarlskog parameter is restricted by 0.027≲J≲0.044.

  5. Detecting the Neutrino

    NASA Astrophysics Data System (ADS)

    Arns, Robert G.

    In 1930 Wolfgang Pauli suggested that a new particle might be required to make sense of the radioactive-disintegration mode known as beta decay. This conjecture initially seemed impossible to verify since the new particle, which became known as the neutrino, was uncharged, had zero or small mass, and interacted only insignificantly with other matter. In 1951 Frederick Reines and Clyde L. Cowan, Jr., of the Los Alamos Scientific Laboratory undertook the difficult task of detecting the free neutrino by observing its inverse beta-decay interaction with matter. They succeeded in 1956. The neutrino was accepted rapidly as a fundamental particle despite discrepancies in reported details of the experiments and despite the absence of independent verification of the result. This paper describes the experiments, examines the nature of the discrepancies, and discusses the circumstances of the acceptance of the neutrino's detection by the physics community.

  6. A Method to Constrain Mass and Spin of GRB Black Holes within the NDAF Model

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Xue, Li; Zhao, Xiao-Hong; Zhang, Fu-Wen; Zhang, Bing

    2016-04-01

    Black holes (BHs) hide themselves behind various astronomical phenomena and their properties, I.e., mass and spin, are usually difficult to constrain. One leading candidate for the central engine model of gamma-ray bursts (GRBs) invokes a stellar mass BH and a neutrino-dominated accretion flow (NDAF), with the relativistic jet launched due to neutrino-anti-neutrino annihilations. Such a model gives rise to a matter-dominated fireball, and is suitable to interpret GRBs with a dominant thermal component with a photospheric origin. We propose a method to constrain BH mass and spin within the framework of this model and apply the method to the thermally dominant GRB 101219B, whose initial jet launching radius, r0, is constrained from the data. Using our numerical model of NDAF jets, we estimate the following constraints on the central BH: mass MBH ˜ 5-9 M⊙, spin parameter a* ≳ 0.6, and disk mass 3 M⊙ ≲ Mdisk ≲ 4 M⊙. Our results also suggest that the NDAF model is a competitive candidate for the central engine of GRBs with a strong thermal component.

  7. High-energy gamma-ray and neutrino production in star-forming galaxies across cosmic time: Difficulties in explaining the IceCube data

    NASA Astrophysics Data System (ADS)

    Sudoh, Takahiro; Totani, Tomonori; Kawanaka, Norita

    2018-06-01

    We present new theoretical modeling to predict the luminosity and spectrum of gamma-ray and neutrino emission of a star-forming galaxy, from the star formation rate (ψ), gas mass (Mgas), stellar mass, and disk size, taking into account production, propagation, and interactions of cosmic rays. The model reproduces the observed gamma-ray luminosities of nearby galaxies detected by Fermi better than the simple power-law models as a function of ψ or ψMgas. This model is then used to predict the cosmic background flux of gamma-rays and neutrinos from star-forming galaxies, by using a semi-analytical model of cosmological galaxy formation that reproduces many observed quantities of local and high-redshift galaxies. Calibration of the model using gamma-ray luminosities of nearby galaxies allows us to make a more reliable prediction than previous studies. In our baseline model, star-forming galaxies produce about 20% of the isotropic gamma-ray background unresolved by Fermi, and only 0.5% of IceCube neutrinos. Even with an extreme model assuming a hard injection cosmic-ray spectral index of 2.0 for all galaxies, at most 22% of IceCube neutrinos can be accounted for. These results indicate that it is difficult to explain most of the IceCube neutrinos by star-forming galaxies, without violating the gamma-ray constraints from nearby galaxies.

  8. High-energy gamma-ray and neutrino production in star-forming galaxies across cosmic time: Difficulties in explaining the IceCube data

    NASA Astrophysics Data System (ADS)

    Sudoh, Takahiro; Totani, Tomonori; Kawanaka, Norita

    2018-04-01

    We present new theoretical modeling to predict the luminosity and spectrum of gamma-ray and neutrino emission of a star-forming galaxy, from the star formation rate (ψ), gas mass (Mgas), stellar mass, and disk size, taking into account production, propagation, and interactions of cosmic rays. The model reproduces the observed gamma-ray luminosities of nearby galaxies detected by Fermi better than the simple power-law models as a function of ψ or ψMgas. This model is then used to predict the cosmic background flux of gamma-rays and neutrinos from star-forming galaxies, by using a semi-analytical model of cosmological galaxy formation that reproduces many observed quantities of local and high-redshift galaxies. Calibration of the model using gamma-ray luminosities of nearby galaxies allows us to make a more reliable prediction than previous studies. In our baseline model, star-forming galaxies produce about 20% of the isotropic gamma-ray background unresolved by Fermi, and only 0.5% of IceCube neutrinos. Even with an extreme model assuming a hard injection cosmic-ray spectral index of 2.0 for all galaxies, at most 22% of IceCube neutrinos can be accounted for. These results indicate that it is difficult to explain most of the IceCube neutrinos by star-forming galaxies, without violating the gamma-ray constraints from nearby galaxies.

  9. Model-dependence of neutrino emissivities and neutrino luminosities of neutron stars from the direct Urca processes and the modified Urca processes

    NASA Astrophysics Data System (ADS)

    Yin, Peng; Fan, Xiaohua; Dong, Jianmin; Guo, Wenmei; Zuo, Wei

    2017-05-01

    The neutrino emissivities in β-stable neutron star matter from the direct Urca (DU) processes and the modified Urca (MU) processes have been investigated by adopting 26 Skyrme interactions. Several physical quantities related to the MU processes and the DU processes have been calculated and discussed. The model-dependence of the neutrino emissivities from the DU processes is found to stem mainly from the model-dependence of the effective mass, while the neutrino emissivities from the MU processes are determined by the competition between the effects of the symmetry energy and the effective mass. Besides, we have investigated the total neutrino luminosities of neutron stars, with the masses of 1.2 , 1.4 , 1.6 and 1.8M⊙, from the DU processes and the MU processes. The neutrino luminosity of a neutron star is found to be primarily determined by whether the electron DU process is allowed or not. As long as the electron DU process can occur, the total luminosity turns out to be 5 to 8 orders of magnitude larger as compared with the case that the DU process is forbidden, which indicates that the strongest model-dependence of the neutrino luminosity comes from that of the symmetry energy and the equation of state (EOS) of neutron star matter. In the case that the DU processes are allowed, the discrepancy of the calculated neutrino luminosity using various Skyrme interactions remains noticeable, which is essentially attributed to the model-dependence of the symmetry energy, the EOS of NS matter and the effective masses.

  10. The BAHAMAS project: the CMB-large-scale structure tension and the roles of massive neutrinos and galaxy formation

    NASA Astrophysics Data System (ADS)

    McCarthy, Ian G.; Bird, Simeon; Schaye, Joop; Harnois-Deraps, Joachim; Font, Andreea S.; van Waerbeke, Ludovic

    2018-05-01

    Recent studies have presented evidence for tension between the constraints on Ωm and σ8 from the cosmic microwave background (CMB) and measurements of large-scale structure (LSS). This tension can potentially be resolved by appealing to extensions of the standard model of cosmology and/or untreated systematic errors in the modelling of LSS, of which baryonic physics has been frequently suggested. We revisit this tension using, for the first time, carefully calibrated cosmological hydrodynamical simulations, which thus capture the backreaction of the baryons on the total matter distribution. We have extended the BAryons and HAloes of MAssive Sysmtes simulations to include a treatment of massive neutrinos, which currently represents the best-motivated extension to the standard model. We make synthetic thermal Sunyaev-Zel'dovich effect, weak galaxy lensing, and CMB lensing maps and compare to observed auto- and cross-power spectra from a wide range of recent observational surveys. We conclude that: (i) in general, there is tension between the primary CMB and LSS when adopting the standard model with minimal neutrino mass; (ii) after calibrating feedback processes to match the gas fractions of clusters, the remaining uncertainties in the baryonic physics modelling are insufficient to reconcile this tension; and (iii) if one accounts for internal tensions in the Planck CMB data set (by allowing the lensing amplitude, ALens, to vary), invoking a non-minimal neutrino mass, typically of 0.2-0.4 eV, can resolve the tension. This solution is fully consistent with separate constraints from the primary CMB and baryon acoustic oscillations.

  11. Quantum mechanics of neutrino oscillations - hand waving for pedestrians.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipkin, H. J.

    1998-12-22

    Why Hand Waving? All calculations in books describe oscillations in time. But real experiments don't measure time. Hand waving is used to convert the results of a ''gedanken time experiment'' to the result of a real experiment measuring oscillations in space. Right hand waving gives the right answer; wrong hand waving gives the wrong answer. Many papers use wrong handwaving to get wrong answers. This talk explains how to do it right and also answers the following questions: (1) A neutrino which is a mixture of two mass eigenstates is emitted with muon in the decay of a pion atmore » rest. This is a ''missing mass experiment'' where the muon energy determines the neutrino mass. Why are the two mass states coherent? (2) A neutrino which is a mixture of two mass eigenstates is emitted at time t=0. The two mass eigenstates move with different velocities and arrive at the detector at different times. Why are the two mass states coherent? (3) A neutrino is a mixture of two overlapping wave packets with different masses moving with different velocities. Will the wave packets eventually separate? If yes, when?« less

  12. Neutrino Flux Prediction for the NuMI Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soplin, Leonidas Aliaga

    2016-01-01

    The determination of the neutrino flux in any conventional neutrino beam presents a challenge for the current and future short and long baseline neutrino experiments. The uncertainties associated with the production and attenuation of the hadrons in the beamline materials along with those associated with the beam optics have a big effect in the flux spectrum knowledge. For experiments like MINERvA, understanding the flux is crucial since it enters directly into every neutrino-nucleus cross-sections measurements. The foundation of this work is predicting the neutrino flux at MINERvA using dedicated measurements of hadron production in hadron-nucleus collisions and incorporating in-situ MINERvAmore » data that can provide additional constraints. This work also includes the prospect for predicting the flux at other detectors like the NOvA Near detector. The procedure and conclusions of this thesis will have a big impact on future hadron production experiments and on determining the flux for the upcoming DUNE experiment.« less

  13. Neutrino Flux Prediction for the NuMI Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliaga Soplin, Leonidas

    2016-01-01

    The determination of the neutrino flux in any conventional neutrino beam presents a challenge for the current and future short and long baseline neutrino experiments. The uncertainties associated with the production and attenuation of the hadrons in the beamline materials along with those associated with the beam optics have a big effect in the flux spectrum knowledge. For experiments like MINERvA, understanding the flux is crucial since it enters directly into every neutrino-nucleus cross-sections measurements. The foundation of this work is predicting the neutrino flux at MINERvA using dedicated measurements of hadron production in hadron-nucleus collisions and incorporating in-situ MINERvAmore » data that can provide additional constraints. This work also includes the prospect for predicting the flux at other detectors like the NOvA Near detector. The procedure and conclusions of this thesis will have a big impact on future hadron production experiments and on determining the fl ux for the upcoming DUNE experiment.« less

  14. Viable twin cosmology from neutrino mixing

    NASA Astrophysics Data System (ADS)

    Csáki, Csaba; Kuflik, Eric; Lombardo, Salvator

    2017-09-01

    Twin Higgs models solve the little hierarchy problem without introducing new colored particles; however, they are often in tension with measurements of the radiation density at late times. Here we explore viable cosmological histories for twin Higgs models. In particular, we show that mixing between the Standard Model (SM) and twin neutrinos can thermalize the two sectors below the twin QCD phase transition, significantly reducing the twin sector's contribution to the radiation density. The requisite twin neutrino masses of O (1 - 20 ) GeV and mixing angle with SM neutrinos of 10-3-10-5 can be probed in a variety of current and planned experiments. We further find that these parameters can be naturally accessed in a warped UV completion, where the neutrino sector can also generate the Z2-breaking Higgs mass term needed to produce the hierarchy between the symmetry breaking scales f and v .

  15. Heavy right-handed neutrino dark matter and PeV neutrinos at IceCube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dev, P.S. Bhupal; Kazanas, D.; Mohapatra, R.N.

    2016-08-17

    We discuss a simple non-supersymmetric model based on the electroweak gauge group SU(2){sub L}×SU(2){sup ′}×U(1){sub B−L} where the lightest of the right-handed neutrinos, which are part of the leptonic doublet of SU(2){sup ′}, play the role of a long-lived unstable dark matter with mass in the multi-PeV range. We use a resonant s-channel annihilation to obtain the correct thermal relic density and relax the unitarity bound on dark matter mass. In this model, there exists a 3-body dark matter decay mode producing tau leptons and neutrinos, which could be the source for the PeV cascade events observed in the IceCubemore » experiment. The model can be tested with more precise flavor information of the highest-energy neutrino events in future data.« less

  16. New light Higgs boson and short-baseline neutrino anomalies

    NASA Astrophysics Data System (ADS)

    Asaadi, J.; Church, E.; Guenette, R.; Jones, B. J. P.; Szelc, A. M.

    2018-04-01

    The low-energy excesses observed by the MiniBooNE experiment have, to date, defied a convincing explanation under the standard model even with accommodation for nonzero neutrino mass. In this paper we explore a new oscillation mechanism to explain these anomalies, invoking a light neutrinophilic Higgs boson, conceived to induce a low Dirac neutrino mass in accord with experimental limits. Beam neutrinos forward scattering off of a locally overdense relic neutrino background give rise to a novel matter effect with an energy-specific resonance. An enhanced oscillation around this resonance peak produces flavor transitions which are highly consistent with the MiniBooNE neutrino- and antineutrino-mode data sets. The model provides substantially improved χ2 values beyond either the no-oscillation hypothesis or the more commonly explored 3 +1 sterile neutrino hypothesis. This mechanism would introduce distinctive signatures at each baseline in the upcoming short-baseline neutrino program at Fermilab, presenting opportunities for further exploration.

  17. New light Higgs boson and short-baseline neutrino anomalies

    DOE PAGES

    Asaadi, J.; Church, E.; Guenette, R.; ...

    2018-04-16

    Here, the low-energy excesses observed by the MiniBooNE experiment have, to date, defied a convincing explanation under the standard model even with accommodation for nonzero neutrino mass. In this paper we explore a new oscillation mechanism to explain these anomalies, invoking a light neutrinophilic Higgs boson, conceived to induce a low Dirac neutrino mass in accord with experimental limits. Beam neutrinos forward scattering off of a locally overdense relic neutrino background give rise to a novel matter effect with an energy-specific resonance. An enhanced oscillation around this resonance peak produces flavor transitions which are highly consistent with the MiniBooNE neutrino-more » and antineutrino-mode data sets. The model provides substantially improved χ2 values beyond either the no-oscillation hypothesis or the more commonly explored 3+1 sterile neutrino hypothesis. This mechanism would introduce distinctive signatures at each baseline in the upcoming short-baseline neutrino program at Fermilab, presenting opportunities for further exploration.« less

  18. New light Higgs boson and short-baseline neutrino anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asaadi, J.; Church, E.; Guenette, R.

    Here, the low-energy excesses observed by the MiniBooNE experiment have, to date, defied a convincing explanation under the standard model even with accommodation for nonzero neutrino mass. In this paper we explore a new oscillation mechanism to explain these anomalies, invoking a light neutrinophilic Higgs boson, conceived to induce a low Dirac neutrino mass in accord with experimental limits. Beam neutrinos forward scattering off of a locally overdense relic neutrino background give rise to a novel matter effect with an energy-specific resonance. An enhanced oscillation around this resonance peak produces flavor transitions which are highly consistent with the MiniBooNE neutrino-more » and antineutrino-mode data sets. The model provides substantially improved χ2 values beyond either the no-oscillation hypothesis or the more commonly explored 3+1 sterile neutrino hypothesis. This mechanism would introduce distinctive signatures at each baseline in the upcoming short-baseline neutrino program at Fermilab, presenting opportunities for further exploration.« less

  19. Strong thermal SO(10)-inspired leptogenesis in the light of recent results from long-baseline neutrino experiments

    NASA Astrophysics Data System (ADS)

    Chianese, Marco; Di Bari, Pasquale

    2018-05-01

    We confront recent experimental results on neutrino mixing parameters with the requirements from strong thermal SO(10)-inspired leptogenesis, where the asymmetry is produced from next-to-lightest right-handed neutrinos N 2 independently of the initial conditions. There is a nice agreement with latest global analyses supporting sin δ < 0 and normal ordering at ˜ 95% C.L. On the other hand, the more stringent experimental lower bound on the atmospheric mixing angle starts to corner strong thermal SO(10)-inspired leptogenesis. Prompted and encouraged by this rapid experimental advance, we obtain a precise determination of the allowed region in the plane δ versus θ 23. We confirm that for the benchmark case α 2 ≡ m D2 /m charm = 5 , where m D2 is the intermediate neutrino Dirac mass setting the N 2 mass, and initial pre-existing asymmetry N B - L p,i = 10- 3, the bulk of solutions lies in the first octant. Though most of the solutions are found outside the 95% C.L. experimental region, there is still a big allowed fraction that does not require a too fine-tuned choice of the Majorana phases so that the neutrinoless double beta decay effective neutrino mass allowed range is still m ee ≃ [10 , 30] meV. We also show how the constraints depend on N B - L p,i and α 2. In particular, we show that the current best fit, ( θ 23 , δ) ≃ (47° , -130°), can be reproduced for N B - L p,i = 10- 3 and α 2 = 6. Such large values for α 2 have been recently obtained in a few realistic fits within SO(10)-inspired models. Finally, we also obtain that current neutrino data rule out N B - L p,i ≳ 0.1 for α 2 ≲ 4.7.

  20. Sneutrino dark matter in gauged inverse seesaw models for neutrinos.

    PubMed

    An, Haipeng; Dev, P S Bhupal; Cai, Yi; Mohapatra, R N

    2012-02-24

    Extending the minimal supersymmetric standard model to explain small neutrino masses via the inverse seesaw mechanism can lead to a new light supersymmetric scalar partner which can play the role of inelastic dark matter (IDM). It is a linear combination of the superpartners of the neutral fermions in the theory (the light left-handed neutrino and two heavy standard model singlet neutrinos) which can be very light with mass in ~5-20 GeV range, as suggested by some current direct detection experiments. The IDM in this class of models has keV-scale mass splitting, which is intimately connected to the small Majorana masses of neutrinos. We predict the differential scattering rate and annual modulation of the IDM signal which can be testable at future germanium- and xenon-based detectors.