Science.gov

Sample records for neutrino mass model

  1. Model of neutrino effective masses

    SciTech Connect

    Dinh Nguyen Dinh; Nguyen Thi Hong Van; Nguyen Anh Ky; Phi Quang Van

    2006-10-01

    It is shown that an effective (nonrenormalizable) coupling of lepton multiplets to scalar triplets in the 331 model with sterile/exotic neutrinos, can be a good way for generating neutrino masses of different types. The method is simple and avoids radiative/loop calculations which, sometimes, are long and complicated. Basing on some astrophysical arguments it is also stated that the scale of SU(3){sub L} symmetry breaking is at TeV scale, in agreement with earlier investigations. Or equivalently, starting from this symmetry breaking scale we could have sterile/exotic neutrinos with mass of a few keV's which could be used to explain several astrophysical and cosmological puzzles, such as the dark matter, the fast motion of the observed pulsars, the re-ionization of the Universe, etc.

  2. Radiative neutrino mass model with degenerate right-handed neutrinos

    NASA Astrophysics Data System (ADS)

    Kashiwase, Shoichi; Suematsu, Daijiro

    2016-03-01

    The radiative neutrino mass model can relate neutrino masses and dark matter at a TeV scale. If we apply this model to thermal leptogenesis, we need to consider resonant leptogenesis at that scale. It requires both finely degenerate masses for the right-handed neutrinos and a tiny neutrino Yukawa coupling. We propose an extension of the model with a U(1) gauge symmetry, in which these conditions are shown to be simultaneously realized through a TeV scale symmetry breaking. Moreover, this extension can bring about a small quartic scalar coupling between the Higgs doublet scalar and an inert doublet scalar which characterizes the radiative neutrino mass generation. It also is the origin of the Z_2 symmetry which guarantees the stability of dark matter. Several assumptions which are independently supposed in the original model are closely connected through this extension.

  3. Neutrino mass models and CP violation

    SciTech Connect

    Joshipura, Anjan S.

    2011-10-06

    Theoretical ideas on the origin of (a) neutrino masses (b) neutrino mass hierarchies and (c) leptonic mixing angles are reviewed. Topics discussed include (1) symmetries of neutrino mass matrix and their origin (2) ways to understand the observed patterns of leptonic mixing angles and (3)unified description of neutrino masses and mixing angles in grand unified theories.

  4. Supersymmetric model with Dirac neutrino masses

    SciTech Connect

    Marshall, Gardner; McCaskey, Mathew; Sher, Marc

    2010-03-01

    New models have recently been proposed in which a second Higgs doublet couples only to the lepton doublets and right-handed neutrinos, yielding Dirac neutrino masses. The vacuum value of this second 'nu-Higgs' doublet is made very small by means of a very softly-broken Z{sub 2} or U(1) symmetry. The latter is technically natural and avoids fine-tuning and very light scalars. We consider a supersymmetric version of this model, in which two additional doublets are added to the minimal supersymmetric standard model (MSSM). If kinematically allowed, the decay of the heavy MSSM scalar into charged nu-Higgs scalars will yield dilepton events which can be separated from the W-pair background. In addition, the nu-Higgsinos can lead to very dramatic tetralepton, pentalepton, and hexalepton events which have negligible background and can be detected at the LHC and the Tevatron.

  5. Neutrino mass

    SciTech Connect

    Robertson, R.G.H.

    1992-01-01

    Despite intensive experimental work since the neutrino's existence was proposed by Pauli 60 years ago, and its first observation by Reines and Cowan almost 40 years ago, the neutrino's fundamental properties remain elusive. Among those properties are the masses of the three known flavors, properties under charge conjugation, parity and time-reversal, and static and dynamic electromagnetic moments. Mass is perhaps the most fundamental, as it constrains the other properties. The present status of the search for neutrino mass is briefly reviewed.

  6. Renormalization of a two-loop neutrino mass model

    SciTech Connect

    Babu, K. S.; Julio, J.

    2014-01-01

    We analyze the renormalization group structure of a radiative neutrino mass model consisting of a singly charged and a doubly charged scalar fields. Small Majorana neutrino masses are generated by the exchange of these scalars via two-loop diagrams. We derive boundedness conditions for the Higgs potential and show how they can be satisfied to energies up to the Planck scale. Combining boundedness and perturbativity constraints with neutrino oscillation phenomenology, new limits on the masses and couplings of the charged scalars are derived. These in turn lead to lower limits on the branching ratios for certain lepton flavor violating (LFV) processes such as μ→eγ, μ→3e and μ – e conversion in nuclei. Improved LFV measurements could test the model, especially in the case of inverted neutrino mass hierarchy where these are more prominent.

  7. Model independent explorations of Majorana neutrino mass origins

    NASA Astrophysics Data System (ADS)

    Jenkins, James Phearl, Jr.

    The recent observation of nonzero neutrino mass is the first concrete indication of physics beyond the Standard Model. Their properties, unique among the other fermions, leads naturally to the idea of a Majorana neutrino mass term. Despite the strong theoretical prejudice toward this concept, it must be tested experimentally. This is indeed possible in the context of next generation experiments. Unfortunately, the scale of neutrino mass generation may be too large to explore directly, but useful information may still be extracted from independent experimental channels. Here I survey various model independent probes of Majorana neutrino mass origins. A brief introduction to the concepts relevant to the analysis is followed by a discussion of the physical ranges of neutrino mass and mixing parameters within the context of standard and non-standard interactions. Armed with this, I move on to systematically analyze the properties of radiatively generated neutrino masses induced by nonrenormalizable lepton number violating effective operators of mass dimensions five through eleven. By fitting these to the observed light mass scale, I extract predictions for neutrino mixing as well as neutrinoless double beta decay, rare meson/tau decays and collider phenomenology. I find that many such models are already constrained by current data and many more will be probed in the near future. I then move on demonstrate the utility of a low scale see saw mechanism via a viable 3+2+1 sterile neutrino model that satisfies all oscillation data as well as solves problems associated with supernova kicks and heavy element nucleosynthesis. From this I extract predictions for tritium and neutrinoless double beta decay searches. This is supplemented throughout by descriptions of practical limitations in addition to suggestions for future work.

  8. Absolute neutrino mass scale

    NASA Astrophysics Data System (ADS)

    Capelli, Silvia; Di Bari, Pasquale

    2013-04-01

    Neutrino oscillation experiments firmly established non-vanishing neutrino masses, a result that can be regarded as a strong motivation to extend the Standard Model. In spite of being the lightest massive particles, neutrinos likely represent an important bridge to new physics at very high energies and offer new opportunities to address some of the current cosmological puzzles, such as the matter-antimatter asymmetry of the Universe and Dark Matter. In this context, the determination of the absolute neutrino mass scale is a key issue within modern High Energy Physics. The talks in this parallel session well describe the current exciting experimental activity aiming to determining the absolute neutrino mass scale and offer an overview of a few models beyond the Standard Model that have been proposed in order to explain the neutrino masses giving a prediction for the absolute neutrino mass scale and solving the cosmological puzzles.

  9. Unification of gauge couplings in radiative neutrino mass models

    NASA Astrophysics Data System (ADS)

    Hagedorn, Claudia; Ohlsson, Tommy; Riad, Stella; Schmidt, Michael A.

    2016-09-01

    We investigate the possibility of gauge coupling unification in various radiative neutrino mass models, which generate neutrino masses at one- and/or two-loop level. Renormalization group running of gauge couplings is performed analytically and numerically at one- and two-loop order, respectively. We study three representative classes of radiative neutrino mass models: (I) minimal ultraviolet completions of the dimension-7 Δ L = 2 operators which generate neutrino masses at one- and/or two-loop level without and with dark matter candidates, (II) models with dark matter which lead to neutrino masses at one-loop level and (III) models with particles in the adjoint representation of SU(3). In class (I), gauge couplings unify in a few models and adding dark matter amplifies the chances for unification. In class (II), about a quarter of the models admits gauge coupling unification. In class (III), none of the models leads to gauge coupling unification. Regarding the scale of unification, we find values between 1014 GeV and 1016 GeV for models belonging to class (I) without dark matter, whereas models in class (I) with dark matter as well as models of class (II) prefer values in the range 5·1010 - 5·1014 GeV.

  10. Models of Neutrino Masses: Anarchy versus Hierarchy

    NASA Astrophysics Data System (ADS)

    Altarelli, Guido; Feruglio, Ferruccio; Masina, Isabella

    2003-01-01

    We present a quantitative study of the ability of models with different levels of hierarchy to reproduce the solar neutrino solutions, in particular the LA solution. As a flexible testing ground we consider models based on SU(5) × U(1)F. In this context, we have made statistical simulations of models with different patterns from anarchy to various types of hierarchy: normal hierarchical models with and without automatic suppression of the 23 (sub)determinant and inverse hierarchy models. We find that, not only for the LOW or VO solutions, but even in the LA case, the hierarchical models have a significantly better success rate than those based on anarchy. The normal hierarchy and the inverse hierarchy models have comparable performances in models with see-saw dominance, while the inverse hierarchy models are particularly good in the no see-saw versions. As a possible distinction between these categories of models, the inverse hierarchy models favour a maximal solar mixing angle and their rate of success drops dramatically as the mixing angle decreases, while normal hierarchy models are far more stable in this respect.

  11. Radiative model of neutrino mass with neutrino interacting MeV dark matter

    SciTech Connect

    Arhrib, Abdesslam; Boehm, Céline; Ma, Ernest; Yuan, Tzu-Chiang

    2016-04-26

    We consider the radiative generation of neutrino mass through the interactions of neutrinos with MeV dark matter. We construct a realistic renormalizable model with one scalar doublet (in additional to the standard model doublet) and one complex singlet together with three light singlet Majorana fermions, all transforming under a dark U(1){sub D} symmetry which breaks softly to Z{sub 2}. We study in detail the scalar sector which supports this specific scenario and its rich phenomenology.

  12. False vacuum in the supersymmetric mass varying neutrinos model

    SciTech Connect

    Takahashi, Ryo; Tanimoto, Morimitsu

    2008-02-15

    We present detailed analyses of the vacuum structure of the scalar potential in a supersymmetric mass varying neutrinos model. The observed dark energy density is identified with false vacuum energy and the dark energy scale of order (10{sup -3} eV){sup 4} is understood by the gravitationally suppressed supersymmetry breaking scale, F(TeV){sup 2}/M{sub Pl}, in the model. The vacuum expectation values of sneutrinos should be tiny in order that the model works. Some decay processes of superparticles into an acceleron and sterile neutrino are also discussed in the model.

  13. Direct neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Thümmler, T.

    2011-07-01

    The determination of the neutrino rest mass plays an important role at the intersections of cosmology, particle physics and astroparticle physics. This topic is currently being addressed by two complementary approaches in laboratory experiments. Neutrinoless double beta decay experiments probe whether neutrinos are Majorana particles and determine an effective neutrino mass value. Single beta decay experiments such as KATRIN and MARE investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Owing to neutrino flavour mixing, the neutrino mass parameter appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. Applying an ultra-luminous molecular windowless gaseous tritium source and an integrating high-resolution spectrometer of MAC-E filter type, it allows β-spectroscopy close to the T 2 end-point with unprecedented precision and will reach a sensitivity of 200 meV/ c 2 (90% C.L.) on the neutrino rest mass.

  14. Neutrino masses and oscillations in an unconventional model of lepton number violation

    NASA Astrophysics Data System (ADS)

    Tamvakis, K.; Vergados, J. D.

    1985-06-01

    Radiatively generated neutrino masses are studied in the framework of a simple model which predicts large mixings for neutrinos independently of the actual value of neutrino masses. The associated phenomenology of neutrino oscillations is analysed in detail. Other lepton violating processes are also discussed.

  15. False Vacuum in the Supersymmetric Mass Varying Neutrino Model

    SciTech Connect

    Tanimoto, Morimitsu

    2009-04-17

    We discuss the vacuum structure of the scalar potential in a supersymmetric Mass Varying Neutrinos model. The observed dark energy density is identified with the false vacuum energy and the dark energy scale of order (10{sup -3} eV){sup 4} is understood by gravitationally suppressed supersymmetry breaking scale, F(TeV{sup 2})/M{sub pl}.

  16. Neutrino masses in the left right supersymmetric model

    NASA Astrophysics Data System (ADS)

    Frank, M.

    2002-08-01

    We show that in a left-right supersymmetric model with a Higgs structure that supports the see-saw mechanism, the neutrinos get additional contributions to their masses at one loop level. The mechanism responsible is analogous to the Grossman-Haber see-saw mechanism, but the additional mass terms are proportional to the mass difference of the right-handed sneutrinos. We show that the data on both the solar and the atmospheric neutrinos can be accommodated by either two almost degenerate right-handed sneutrinos, or two heavy sneutrino with different, but still relatively small, mass splittings. We discuss the implications of this result for the masses and mixings of the heavy sneutrinos, and the soft-breaking parameters of the left-right supersymmetric model.

  17. Models of neutrino mass, mixing and CP violation

    NASA Astrophysics Data System (ADS)

    King, Stephen F.

    2015-12-01

    In this topical review we argue that neutrino mass and mixing data motivates extending the Standard Model (SM) to include a non-Abelian discrete flavour symmetry in order to accurately predict the large leptonic mixing angles and {C}{P} violation. We begin with an overview of the SM puzzles, followed by a description of some classic lepton mixing patterns. Lepton mixing may be regarded as a deviation from tri-bimaximal mixing, with charged lepton corrections leading to solar mixing sum rules, or tri-maximal lepton mixing leading to atmospheric mixing rules. We survey neutrino mass models, using a roadmap based on the open questions in neutrino physics. We then focus on the seesaw mechanism with right-handed neutrinos, where sequential dominance (SD) can account for large lepton mixing angles and {C}{P} violation, with precise predictions emerging from constrained SD (CSD). We define the flavour problem and discuss progress towards a theory of favour using GUTs and discrete family symmetry. We classify models as direct, semidirect or indirect, according to the relation between the Klein symmetry of the mass matrices and the discrete family symmetry, in all cases focussing on spontaneous {C}{P} violation. Finally we give two examples of realistic and highly predictive indirect models with CSD, namely an A to Z of flavour with Pati-Salam and a fairly complete A 4 × SU(5) SUSY GUT of flavour, where both models have interesting implications for leptogenesis.

  18. Predictive model for radiatively induced neutrino masses and mixings with dark matter.

    PubMed

    Gustafsson, Michael; No, Jose M; Rivera, Maximiliano A

    2013-05-24

    A minimal extension of the standard model to naturally generate small neutrino masses and provide a dark matter candidate is proposed. The dark matter particle is part of a new scalar doublet field that plays a crucial role in radiatively generating neutrino masses. The symmetry that stabilizes the dark matter also suppresses neutrino masses to appear first at three-loop level. Without the need of right-handed neutrinos or other very heavy new fields, this offers an attractive explanation of the hierarchy between the electroweak and neutrino mass scales. The model has distinct verifiable predictions for the neutrino masses, flavor mixing angles, colliders, and dark matter signals.

  19. Neutrino mass model with S3 symmetry and seesaw interplay

    NASA Astrophysics Data System (ADS)

    Pramanick, Soumita; Raychaudhuri, Amitava

    2016-12-01

    We develop a seesaw model for neutrino masses and mixing with an S3×Z3 symmetry. It involves an interplay of type-I and type-II seesaw contributions of which the former is subdominant. The S3×Z3 quantum numbers of the fermion and scalar fields are chosen such that the type-II seesaw generates a mass matrix which incorporates the atmospheric mass splitting and sets θ23=π /4 . The solar splitting and θ13 are absent, while the third mixing angle can achieve any value, θ120. Specific choices of θ120 are of interest, e.g., 35.3° (tribimaximal), 45.0° (bimaximal), 31.7° (golden ratio), and 0° (no solar mixing). The role of the type-I seesaw is to nudge all the above into the range indicated by the data. The model results in novel interrelationships between these quantities due to their common origin, making it readily falsifiable. For example, normal (inverted) ordering is associated with θ23 in the first (second) octant. C P violation is controlled by phases in the right-handed neutrino Majorana mass matrix, Mν R . In their absence, only normal ordering is admissible. When Mν R is complex, the Dirac C P phase, δ , can be large, i.e., ˜±π /2 , and inverted ordering is also allowed. The preliminary results from T2K and NOVA which favor normal ordering and δ ˜-π /2 are indicative, in this model, of a lightest neutrino mass of 0.05 eV or more.

  20. Neutrino masses, leptogenesis, and dark matter in a hybrid seesaw model

    SciTech Connect

    Gu Peihong; Hirsch, M.; Valle, J. W. F.

    2009-02-01

    We suggest a hybrid seesaw model where relatively light right-handed neutrinos give no contribution to neutrino mass matrix due to a special symmetry. This allows their Yukawa couplings to the standard model particles to be relatively strong, so that the standard model Higgs boson can decay dominantly to a left- and a right-handed neutrino, leaving another stable right-handed neutrino as cold dark matter. In our model neutrino masses arise via the type-II seesaw mechanism, the Higgs triplet scalars being also responsible for the generation of the matter-antimatter asymmetry via the leptogenesis mechanism.

  1. Connecting Dirac and Majorana neutrino mass matrices in the minimal left-right symmetric model.

    PubMed

    Nemevšek, Miha; Senjanović, Goran; Tello, Vladimir

    2013-04-12

    Probing the origin of neutrino mass by disentangling the seesaw mechanism is one of the central issues of particle physics. We address it in the minimal left-right symmetric model and show how the knowledge of light and heavy neutrino masses and mixings suffices to determine their Dirac Yukawa couplings. This in turn allows one to make predictions for a number of high and low energy phenomena, such as decays of heavy neutrinos, neutrinoless double beta decay, electric dipole moments of charged leptons, and neutrino transition moments. We also discuss a way of reconstructing the neutrino Dirac Yukawa couplings at colliders such as the LHC.

  2. Cosmological Neutrino Mass Detection: The Best Probe of Neutrino Lifetime

    SciTech Connect

    Serpico, Pasquale D.

    2007-04-27

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence, on neutrino secret interactions with (quasi)massless particles as in Majoron models. On the other hand, neutrino decay may provide a way out to explain a discrepancy < or approx. 0.1 eV between cosmic neutrino bounds and lab data.

  3. Cosmological neutrino mass detection: The Best probe of neutrino lifetime

    SciTech Connect

    Serpico, Pasquale D.; /Fermilab

    2007-01-01

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on neutrino secret interactions with (quasi-)massless particles as in majoron models. On the other hand, neutrino decay may provide a way-out to explain a discrepancy {approx}< 0.1 eV between cosmic neutrino bounds and Lab data.

  4. Neutrino masses, neutrino oscillations, and cosmological implications

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1982-01-01

    Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.

  5. Neutrino masses and mixings

    SciTech Connect

    Wolfenstein, L.

    1991-12-31

    Theoretical prejudices, cosmology, and neutrino oscillation experiments all suggest neutrino mass are far below present direct experimental limits. Four interesting scenarios and their implications are discussed: (1) a 17 keV {nu}{sub {tau}}, (2) a 30 ev {nu}{sub {tau}} making up the dark matter, (3) a 10{sup {minus}3} ev {nu}{sub {mu}} to solve the solar neutrino problem, and (4) a three-neutrino MSW solution.

  6. Mass determination of neutrinos

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1988-01-01

    A time-energy correlation method has been developed to determine the signature of a nonzero neutrino mass in a small sample of neutrinos detected from a distant source. The method is applied to the Kamiokande II (Hirata et al., 1987) and IMB (Bionta et al., 1987) observations of neutrino bursts from SN 1987A. Using the Kamiokande II data, the neutrino rest mass is estimated at 2.8 + 2.0, - 1.4 eV and the initial neutrino pulse is found to be less than 0.3 sec full width, followed by an emission tail lasting at least 10 sec.

  7. Neutrino mass, a status report

    SciTech Connect

    Robertson, R.G.H.

    1993-08-01

    Experimental approaches to neutrino mass include kinematic mass measurements, neutrino oscillation searches at rectors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing.

  8. Baryon asymmetry via leptogenesis in a neutrino mass model with complex scaling

    NASA Astrophysics Data System (ADS)

    Samanta, Rome; Chakraborty, Mainak; Roy, Probir; Ghosal, Ambar

    2017-03-01

    Baryogenesis via leptogenesis is investigated in a specific model of light neutrino masses and mixing angles. The latter was proposed on the basis of an assumed complex-extended scaling property of the neutrino Majorana mass matrix Mν, derived with a type-1 seesaw from a Dirac mass matrix mD and a heavy singlet neutrino Majorana mass matrix MR. One of its important features, highlighted here, is that there is a common source of the origin of a nonzero θ13 and the CP violating lepton asymmetry through the imaginary part of mD. The model predicted CP violation to be maximal for the Dirac type and vanishing for the Majorana type. We assume strongly hierarchical mass eigenvalues for MR. The leptonic CP asymmetry parameter εα1 mm with lepton flavor α, originating from the decays of the lightest of the heavy neutrinos N1 (of mass M1) at a temperature T ~ M1, is what matters here with the lepton asymmetries, originating from the decays of N2,3, being washed out. The light leptonic and heavy neutrino number densities (normalized to the entropy density) are evolved via Boltzmann equations down to electroweak temperatures to yield a baryon asymmetry through sphaleronic transitions. The effects of flavored vs. unflavored leptogenesis in the three mass regimes (1) M1 < 109 GeV, (2) 109 GeV < M1 < 1012 GeV and (3) M1 > 1012 GeV are numerically worked out for both a normal and an inverted mass ordering of the light neutrinos. Corresponding results on the baryon asymmetry of the universe are obtained, displayed and discussed. For values close to the best-fit points of the input neutrino mass and mixing parameters, obtained from neutrino oscillation experiments, successful baryogenesis is achieved for the mass regime (2) and a normal mass ordering of the light neutrinos with a nonzero θ13 playing a crucial role. However, the other possibility of an inverted mass ordering for the same mass regime, though disfavored, cannot be excluded. A discussion is also given on the

  9. Systematic U(1 ) B - L extensions of loop-induced neutrino mass models with dark matter

    NASA Astrophysics Data System (ADS)

    Ho, Shu-Yu; Toma, Takashi; Tsumura, Koji

    2016-08-01

    We study the gauged U(1 ) B - L extensions of the models for neutrino masses and dark matter. In this class of models, tiny neutrino masses are radiatively induced through the loop diagrams, while the origin of the dark matter stability is guaranteed by the remnant of the gauge symmetry. Depending on how the lepton number conservation is violated, these models are systematically classified. We present complete lists for the one-loop Z2 and the two-loop Z3 radiative seesaw models as examples of the classification. The anomaly cancellation conditions in these models are also discussed.

  10. Neutrino mass from triton decay

    NASA Astrophysics Data System (ADS)

    Weinheimer, Christian

    2006-07-01

    Since the discovery of neutrino flavor oscillation in different fields and by many different experiments we believe that neutrinos have non-vanishing masses in contrast to their current description within the Standard Model of particle physics. However, the absolute values of the neutrino masses, which are as important for particle physics as they are for cosmology and astrophysics, cannot be determined by oscillation experiments alone. There are a few ways to determine the neutrino mass scale, but the only model-independent method is the investigation of the electron energy spectrum of a β decay near its endpoint with tritium being the ideal isotope for the classical spectrometer set-up. The tritium β decay experiments at Mainz and Troitsk have recently been finished. At Mainz all relevant systematic uncertainties have been investigated by dedicated experiments yielding an upper limit of m(ν)<2.3eV/c (90% C.L.). The new Karlsruhe Tritium Neutrino Experiment (KATRIN) will enhance the sensitivity on the neutrino mass by an ultra-precise measurement of the tritium β decay spectrum near the endpoint by another order of magnitude down to 0.2 eV/c2 by using a very strong windowless gaseous molecular tritium source and a huge ultra-high resolution electrostatic spectrometer of MAC-E-Filter type. The recent achievements in test experiments show, that this very challenging experiment is feasible.

  11. AN OVERVIEW OF NEUTRINO MASSES AND MIXING IN SO(10) MODELS.

    SciTech Connect

    CHEN,M.C.MAHANTHAPPA,K.T.

    2003-06-05

    We review in this talk various SUSY SO(10) models. Specifically, we discuss how small neutrino masses are generated in and generic predictions of different SO(10) models. A comparison of the predictions of these models for sin{sup 2} {theta}{sub 13}is given.

  12. Direct measurements of neutrino mass

    SciTech Connect

    Robertson, R.G.H.

    1991-01-01

    Some recent developments in the experimental search for neutrino mass are discussed. New data from Los Alamos on the electron neutrino mass as measured in tritium beta decay give an upper limit of 9.3 eV at the 95% confidence level. This result is not consistent with the long-standing ITEP result of 26(5) eV within a model-independent'' range of 17 to 40 eV. It now appears that the electron neutrino is not sufficiently massive to close the universe by itself. Hime and Jelley report finding new evidence for a 17-keV neutrino in the {Beta} decay of {sup 35}S and {sup 63}Ni. Many other experiments are being reported and the situation is still unresolved. 56 refs., 1 fig., 3 tabs.

  13. WMAPping out neutrino masses

    SciTech Connect

    Pierce, Aaron; Murayama, Hitoshi

    2003-10-28

    Recent data from the Wilkinson Microwave Anisotropy Probe (WMAP) place important bounds on the neutrino sector. The precise determination of the baryon number in the universe puts a strong constraint on the number of relativistic species during Big-Bang Nucleosynthesis. WMAP data, when combined with the 2dF Galaxy Redshift Survey (2dFGRS), also directly constrain the absolute mass scale of neutrinos. These results impinge upon a neutrino oscillation interpretation of the result from the Liquid Scintillator Neutrino Detector (LSND).We also note that the Heidelberg-Moscow evidence for neutrinoless double beta decay is only consistent with the WMAP+2dFGRS data for the largest values of the nuclear matrix element.

  14. A realistic model of neutrino masses with a large neutrinoless double beta decay rate

    NASA Astrophysics Data System (ADS)

    del Aguila, Francisco; Aparici, Alberto; Bhattacharya, Subhaditya; Santamaria, Arcadi; Wudka, Jose

    2012-05-01

    The minimal Standard Model extension with the Weinberg operator does accommodate the observed neutrino masses and mixing, but predicts a neutrinoless double beta (0 νββ) decay rate proportional to the effective electron neutrino mass, which can be then arbitrarily small within present experimental limits. However, in general 0 νββ decay can have an independent origin and be near its present experimental bound; whereas neutrino masses are generated radiatively, contributing negligibly to 0 νββ decay. We provide a realization of this scenario in a simple, well defined and testable model, with potential LHC effects and calculable neutrino masses, whose two-loop expression we derive exactly. We also discuss the connection of this model to others that have appeared in the literature, and remark on the significant differences that result from various choices of quantum number assignments and symmetry assumptions. In this type of models lepton flavor violating rates are also preferred to be relatively large, at the reach of foreseen experiments. Interestingly enough, in our model this stands for a large third mixing angle, {{si}}{{{n}}^{{2}}}{θ_{{{13}}}}{˜}}}{ > }}0.00{8} , when μ→ eee is required to lie below its present experimental limit.

  15. Neutrino masses and solar neutrinos

    SciTech Connect

    Wolfenstein, L.

    1992-11-01

    It has been pointed out by Bahcall and Bethe and others that all solar neutrino data can be explained by MSW oscillations with m({nu}{sub {mu}}) {approximately} 10{sup {minus}3} eV consistent with ideas grand unified theories (GUTS). There is a second possibility consistent with GUTS ideas with m({nu}{sub {tau}}) {approximately} 10{sup {minus}2} eV and m({nu} {sub {mu}}) {approximately} 10 {sup {minus}4} eV. The two cases can be distinguished by a measurement of the solar neutrinos from {sup {tau}}Be.

  16. S3 × Bbb Z2 model for neutrino mass matrices

    NASA Astrophysics Data System (ADS)

    Grimus, Walter; Lavoura, Luís

    2005-08-01

    We propose a model for lepton mass matrices based on the seesaw mechanism, a complex scalar gauge singlet and a horizontal symmetry S3 × Bbb Z2. In a suitable weak basis, the charged-lepton mass matrix and the neutrino Dirac mass matrix are diagonal, but the vacuum expectation value of the scalar gauge singlet renders the Majorana mass matrix of the right-handed neutrinos non-diagonal, thereby generating lepton mixing. When the symmetry S3 is not broken in the scalar potential, the effective light-neutrino Majorana mass matrix enjoys μ-τ interchange symmetry, thus predicting maximal atmospheric neutrino mixing together with Ue3 = 0. A partial and less predictive form of μ-τ interchange symmetry is obtained when the symmetry S3 is softly broken in the scalar potential. Enlarging the symmetry group S3 × Bbb Z2 by an additional discrete electron-number symmetry Bbb Z2(e), a more predicitive model is obtained, which is in practice indistinguishable from a previous one based on the group D4.

  17. Constraints on texture zero and cofactor zero models for neutrino mass

    SciTech Connect

    Whisnant, K.; Liao, Jiajun; Marfatia, D.

    2014-06-24

    Imposing a texture or cofactor zero on the neutrino mass matrix reduces the number of independent parameters from nine to seven. Since five parameters have been measured, only two independent parameters would remain in such models. We find the allowed regions for single texture zero and single cofactor zero models. We also find strong similarities between single texture zero models with one mass hierarchy and single cofactor zero models with the opposite mass hierarchy. We show that this correspondence can be generalized to texture-zero and cofactor-zero models with the same homogeneous costraints on the elements and cofactors.

  18. Model for neutrino masses and dark matter with a discrete gauge symmetry

    NASA Astrophysics Data System (ADS)

    Chang, We-Fu; Wong, Chi-Fong

    2012-01-01

    A simple renormalizable U(1) gauge model is constructed to explain the smallness of the active neutrino masses and provide the stable cold dark matter candidate simultaneously. The local U(1) symmetry is assumed to be spontaneously broken by a scalar field around the TeV scale. The active neutrino masses are then generated at one-loop level. This model contains several cold dark matter candidates whose stability is guaranteed by a residual discrete gauge Z2 symmetry à la the Krauss-Wilczek mechanism. Unlike the other dark matter models, no further global discrete or continuous symmetry is introduced. Moreover, the masses of all fermionic degrees of freedom beyond the standard model are closely related to the scale of spontaneous breaking of U(1); thus they could be probed at or below the TeV scale. The possible cosmological and phenomenological consequences are briefly discussed.

  19. Neutrinos beyond the Standard Model

    SciTech Connect

    Valle, J.W.F.

    1989-08-01

    I review some basic aspects of neutrino physics beyond the Standard Model such as neutrino mixing and neutrino non-orthogonality, universality and CP violation in the lepton sector, total lepton number and lepton flavor violation, etc.. These may lead to neutrino decays and oscillations, exotic weak decay processes, neutrinoless double /beta/ decay, etc.. Particle physics models are discussed where some of these processes can be sizable even in the absence of measurable neutrino masses. These may also substantially affect the propagation properties of solar and astrophysical neutrinos. 39 refs., 4 figs.

  20. Starobinsky-like inflation and neutrino masses in a no-scale SO(10) model

    SciTech Connect

    Ellis, John; Garcia, Marcos A.G.; Nagata, Natsumi; Nanopoulos, Dimitri V.; Olive, Keith A.

    2016-11-08

    Using a no-scale supergravity framework, we construct an SO(10) model that makes predictions for cosmic microwave background observables similar to those of the Starobinsky model of inflation, and incorporates a double-seesaw model for neutrino masses consistent with oscillation experiments and late-time cosmology. We pay particular attention to the behaviour of the scalar fields during inflation and the subsequent reheating.

  1. Starobinsky-like inflation and neutrino masses in a no-scale SO(10) model

    NASA Astrophysics Data System (ADS)

    Ellis, John; Garcia, Marcos A. G.; Nagata, Natsumi; Nanopoulos, Dimitri V.; Olive, Keith A.

    2016-11-01

    Using a no-scale supergravity framework, we construct an SO(10) model that makes predictions for cosmic microwave background observables similar to those of the Starobinsky model of inflation, and incorporates a double-seesaw model for neutrino masses consistent with oscillation experiments and late-time cosmology. We pay particular attention to the behaviour of the scalar fields during inflation and the subsequent reheating.

  2. Radiative neutrino mass, dark matter, and leptogenesis

    SciTech Connect

    Gu Peihong; Sarkar, Utpal

    2008-05-15

    We propose an extension of the standard model, in which neutrinos are Dirac particles and their tiny masses originate from a one-loop radiative diagram. The new fields required by the neutrino mass generation also accommodate the explanation for the matter-antimatter asymmetry and dark matter in the Universe.

  3. A critical analysis of one-loop neutrino mass models with minimal dark matter

    NASA Astrophysics Data System (ADS)

    Ahriche, Amine; McDonald, Kristian L.; Nasri, Salah; Picek, Ivica

    2016-06-01

    A recent paper investigated minimal RνMDM models with the type T1-iii and T3 one-loop topologies. However, the candidate most-minimal model does not possess an accidental symmetry - the scalar potential contains an explicit symmetry breaking term, rendering the dark matter unstable. We present two models that cure this problem. However, we further show that all of the proposed minimal one-loop RνMDM models suffer from a second problem - an additional source of explicit Z2 symmetry breaking in the Yukawa sector. We perform a more-general analysis to show that neutrino mass models using either the type T3 or type T1-iii one-loop topologies do not give viable minimal dark matter candidates. Consequently, one-loop models of neutrino mass with minimal dark matter do not appear possible. Thus, presently there remains a single known (three-loop) model of neutrino mass that gives stable dark matter without invoking any new symmetries.

  4. Validity of quasi-degenerate neutrino mass models and their predictions on baryogenesis

    NASA Astrophysics Data System (ADS)

    Francis, Ng. K.; Nimai Singh, N.

    2012-10-01

    Quasi-degenerate neutrino mass models (QDN) which can explain the current data on neutrino masses and mixings, are studied. In the first part, we study the effect of CP-phases on QDN mass matrix (mLL) obeying μ-τ symmetry in normal hierarchical (QD-NH) and inverted hierarchical (QD-IH) patterns. The numerical predictions are consistent with observed data on (i) solar mixing angle (θ12) which lies below tri-bimaximal (TBM) value, (ii) absolute neutrino masses consistent with 0νββ decay mass parameter (mee) and (iii) cosmological upper bound ∑i3mi. mLL is parameterized using only two unknown parameters (ɛ,η) within μ-τ symmetry. The second part deals with the estimation of observed baryon asymmetry of the universe (BAU) where we consider the Majorana CP violating phases (α,β) and the Dirac neutrino mass matrix (mLR). mLR is taken as either the charged lepton or the up quark mass matrix. α, β is derived from the heavy right-handed Majorana mass matrix MRR. MRR is generated from mLL and mLR through inversion of Type-I seesaw formula. The predictions for BAU are nearly consistent with observations for flavoured thermal leptogenesis scenario for Type-IA in both QD-NH and QD-IH models. We also observe some enhancement effects in flavour leptogenesis compared to non-flavour leptogenesis by a magnitude of order one. In non-thermal leptogenesis QD-NH Type-IA is the only model consistent with observed data on baryon asymmetry. QD-NH model appears to be more favourable than those of QD-IH. The predicted inflaton mass needed to produce the BAU is found to be Mϕ˜1010 GeV corresponding to the reheating temperature TR=106 GeV. The present analysis shows that the three absolute neutrino masses may exhibit quasi-degenerate pattern in nature.

  5. Predictivity of neutrino mass sum rules

    NASA Astrophysics Data System (ADS)

    Gehrlein, Julia; Merle, Alexander; Spinrath, Martin

    2016-11-01

    Correlations between light neutrino observables are arguably the strongest predictions of lepton flavor models based on (discrete) symmetries, except for the very few cases which unambiguously predict the full set of leptonic mixing angles. A subclass of these correlations is neutrino mass sum rules, which connect the three (complex) light neutrino mass eigenvalues among each other. This connection constrains both the light neutrino mass scale and the Majorana phases, so that mass sum rules generically lead to a nonzero value of the lightest neutrino mass and to distinct predictions for the effective mass probed in neutrinoless double beta decay. However, in nearly all cases known, the neutrino mass sum rules are not exact and receive corrections from various sources. We introduce a formalism to handle these corrections perturbatively in a model-independent manner, which overcomes issues present in earlier approaches. Our ansatz allows us to quantify the modification of the predictions derived from neutrino mass sum rules. We show that, in most cases, the predictions are fairly stable: while small quantitative changes can appear, they are generally rather mild. We therefore establish the predictivity of neutrino mass sum rules on a level far more general than previously known.

  6. A class of three-loop models with neutrino mass and dark matter

    NASA Astrophysics Data System (ADS)

    Chen, Chian-Shu; McDonald, Kristian L.; Nasri, Salah

    2014-06-01

    We study a class of three-loop models for neutrino mass in which dark matter plays a key role in enabling the mass diagram. The simplest models in this class have Majorana dark matter and include the proposal of Krauss, Nasri and Trodden; we identify the remaining related models, including the viable colored variants. The next-to-simplest models use either more multiplets and/or a slight modification of the loop-diagram, and predict inert N-tuplet scalar dark matter.

  7. Neutrino mass and mixing: Summary of the neutrino sessions

    SciTech Connect

    Bowles, T.J.

    1993-01-01

    A great deal of experimental and theoretical effort is underway to use neutrinos as a probe for Physics Beyond the Standard Model. Most of these efforts center on the questions of the possible existence of non zero neutrino mass and mixing. Sessions at the Moriond conferences have dealt with these questions at most of the meetings during the last several years and this year was no exception. Presentations covering most of the current and planned research in this field were presented and discussed. Although there is, at present, no definitive evidence for a non zero neutrino mass and mixing, several unresolved problems (in particular solar neutrinos) do seem to be indicating the likely existence of new neutrino properties. It is likely that before the end of this decade, efforts now being initiated will be able to determine whether or not the hints we are now seeing are really due to new physics.

  8. Model independent extraction of the axial mass parameter in CCQE anti neutrino-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Grebe, Heather

    2013-10-01

    Neutrino oscillation studies depend on a consistent value for the axial mass. For this reason, a model-independent extraction of this parameter from quasielastic (anti)neutrino-nucleon scattering data is vital. While most studies employ a model-dependent extraction using the dipole model of the axial form factor, we present a model-independent description using the z expansion of the axial form factor. Quasielastic antineutrino scattering data on C-12 from the MiniBooNE experiment are analyzed using this model-independent description. The value found, mA = 0 .85-0 . 06 + 0 . 13 +/- 0 . 13 GeV, differs significantly from the value utilized by the MiniBooNE Collaboration, mA = 1 . 35 GeV. Advisor: Dr. Gil Paz Wayne State Univerity.

  9. Seesaw model in SO(10) with an upper limit on right-handed neutrino masses

    NASA Astrophysics Data System (ADS)

    Abud, M.; Buccella, F.; Falcone, D.; Oliver, L.

    2012-08-01

    In the framework of SO(10) gauge unification and the seesaw mechanism, we show that the upper bound on the mass of the heaviest right-handed neutrino MR3<3×1011GeV, given by the Pati-Salam intermediate scale of B-L spontaneous symmetry breaking, constrains the observables related to the left-handed light neutrino mass matrix. We assume such an upper limit on the masses of right-handed neutrinos and, as a first approximation, a Cabibbo form for the matrix VL that diagonalizes the Dirac neutrino matrix mD. Using the inverse seesaw formula, we show that our hypotheses imply a triangular relation in the complex plane of the light neutrino masses with the Majorana phases. We obtain normal hierarchy with an absolute scale for the light neutrino spectrum. Two regions are allowed for the lightest neutrino mass m1 and for the Majorana phases, implying predictions for the neutrino mass measured in Tritium decay and for the double beta decay effective mass |⟨mee⟩|.

  10. Generalized Friedberg-Lee Model for Neutrino Masses and Leptonic CP Violation from μ-τ Symmetry Breaking

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-Zhong; Zhang, He; Zhou, Shun

    Assuming the Majorana nature of massive neutrinos, we generalize the Friedberg-Lee neutrino mass model to include CP violation in the neutrino mass matrix Mν. The most general case with all the free parameters of Mν being complex is discussed. We show that a favorable neutrino mixing pattern (with θ12 ≈ 35.3°, θ23 = 45°, θ13 ≠ 0° and δ = 90°) can naturally be derived from Mν, if it has an approximate or softly-broken μ-τ symmetry. We also point out a different way to obtain the nearly tri-bimaximal neutrino mixing pattern with δ = 0° and non-vanishing Majorana phases.

  11. Evidence for neutrino mass: A decade of discovery

    SciTech Connect

    Heeger, Karsten M.

    2004-12-08

    Neutrino mass and mixing are amongst the major discoveries of recent years. From the observation of flavor change in solar and atmospheric neutrino experiments to the measurements of neutrino mixing with terrestrial neutrinos, recent experiments have provided consistent and compelling evidence for the mixing of massive neutrinos. The discoveries at Super-Kamiokande, SNO, and KamLAND have solved the long-standing solar neutrino problem and demand that we make the first significant revision of the Standard Model in decades. Searches for neutrinoless double-beta decay probe the particle nature of neutrinos and continue to place limits on the effective mass of the neutrino. Possible signs of neutrinoless double-beta decay will stimulate neutrino mass searches in the next decade and beyond. I review the recent discoveries in neutrino physics and the current evidence for massive neutrinos.

  12. Constraints on Neutrino Mass from Galaxy Surveys

    NASA Astrophysics Data System (ADS)

    Cuesta, A. J.; Niro, V.; Verde, L.

    2017-03-01

    Modern large-scale galaxy surveys, combined with measurements of the cosmic microwave background, have managed to constrain the sum of neutrino masses to an order of magnitude below the limit placed by laboratory experiments. We discuss the signature of massive neutrinos in the distribution of galaxies and the current state of the art of neutrino mass constraints, focusing on parameter degeneracies that reveal how we can improve current constraints with next-generation galaxy surveys. We also comment on how the near future cosmology experiments are an opportunity for the first measurement of the value of the sum of neutrino masses, or alternatively, to find profound implications for neutrino physics extensions beyond the Standard Model.

  13. Neutrino mass, proton decay, and neutron oscillations as crucial tests of unification models (A Review)

    PubMed Central

    Marshak, R. E.

    1982-01-01

    Several crucial tests of three popular unification models (of strong, electromagnetic, and weak interactions) are described. The models are SU(5) and SO(10) at the grand unification theory (GUT) level and SU(4)C × SU(2)L × SU(2)R at the partial unification theory (PUT) level. The tests selected for discussion are the finiteness of the neutrino mass in the electron volt region, the decay of protons into antileptons in the range of 1031± yr, and the detectability of neutron oscillations at all. The PUT group can also be tested by establishing the existence of four generations of quarks and leptons.

  14. Pathways to naturally small Dirac neutrino masses

    NASA Astrophysics Data System (ADS)

    Ma, Ernest; Popov, Oleg

    2017-01-01

    If neutrinos are truly Dirac fermions, the smallness of their masses may still be natural if certain symmetries exist beyond those of the standard model of quarks and leptons. We perform a systematic study of how this may occur at tree level and in one loop. We also propose a scotogenic version of the left-right gauge model with naturally small Dirac neutrino masses in one loop.

  15. Limits on neutrino masses from neutrinoless double-β decay.

    PubMed

    Barea, J; Kotila, J; Iachello, F

    2012-07-27

    Neutrinoless double-β decay is of fundamental importance for the determining neutrino mass. By combining a calculation of nuclear matrix elements within the framework of the microscopic interacting boson model with an improved calculation of phase space factors, we set limits on the average light neutrino mass and on the average inverse heavy neutrino mass (flavor-violating parameter).

  16. Hiding neutrino mass in modified gravity cosmologies

    NASA Astrophysics Data System (ADS)

    Bellomo, Nicola; Bellini, Emilio; Hu, Bin; Jimenez, Raul; Pena-Garay, Carlos; Verde, Licia

    2017-02-01

    Cosmological observables show a dependence with the neutrino mass, which is partially degenerate with parameters of extended models of gravity. We study and explore this degeneracy in Horndeski generalized scalar-tensor theories of gravity. Using forecasted cosmic microwave background and galaxy power spectrum datasets, we find that a single parameter in the linear regime of the effective theory dominates the correlation with the total neutrino mass. For any given mass, a particular value of this parameter approximately cancels the power suppression due to the neutrino mass at a given redshift. The extent of the cancellation of this degeneracy depends on the cosmological large-scale structure data used at different redshifts. We constrain the parameters and functions of the effective gravity theory and determine the influence of gravity on the determination of the neutrino mass from present and future surveys.

  17. 3 Neutrino mass experiments fit a strange 3 + 3 model, but will KATRIN reveal the model's unique 3-part signature?

    NASA Astrophysics Data System (ADS)

    Ehrlich, R.

    2016-12-01

    Evidence is presented in support of an unconventional 3 + 3 model of the neutrino mass eigenstates with specific m2 > 0 and m2 < 0 masses. The two large m2 > 0 masses of the model were originally suggested based on a SN 1987A analysis, and they were further supported by several dark matter fits. The new evidence for one of the m2 > 0 mass values comes from an analysis of published data from the three most precise tritium β - decay experiments. The KATRIN experiment by virtue of a unique 3-part signature should either confirm or reject the model in its entirety.

  18. The KATRIN Neutrino Mass Experiment

    NASA Astrophysics Data System (ADS)

    Parno, Diana; Katrin Collaboration

    2017-01-01

    While neutrino oscillation experiments have demonstrated that the particles have non-zero mass, the absolute neutrino mass scale is still unknown. The Karlsruhe Tritium Neutrino experiment (KATRIN) is designed to improve on previous laboratory limits by an order of magnitude, probing the effective neutrino mass with a sensitivity approaching 0.2 eV at 90% confidence via the kinematics of tritium beta decay. At the same time, KATRIN has the potential to scan for sterile neutrinos at eV and keV scales. After years of preparation, all major components are now on site and commissioning is underway. I will report on the current status of the experiment, including recent results and preparations for the introduction of tritium later this year. US participation in KATRIN is supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FG02-97ER41020.

  19. Gauged U(1) Lμ -Lτ model in light of muon g - 2 anomaly, neutrino mass and dark matter phenomenology

    NASA Astrophysics Data System (ADS)

    Patra, Sudhanwa; Rao, Soumya; Sahoo, Nirakar; Sahu, Narendra

    2017-04-01

    Gauged U(1) Lμ -Lτ model has been advocated for a long time in light of muon g - 2 anomaly, which is a more than 3σ discrepancy between the experimental measurement and the standard model prediction. We augment this model with three right-handed neutrinos (Ne ,Nμ ,Nτ) and a vector-like singlet fermion (χ) to explain simultaneously the non-zero neutrino masses and dark matter content of the Universe, while satisfying the anomalous muon g - 2 constraints. We find that the model suffers stringent constraints from the simultaneous explanation of neutrino trident production and muon g - 2 anomaly. In a large region of the parameter space, where contribution to muon g - 2 anomaly comes partially and yet not ruled out by neutrino trident production, the model can explain the positron excess, observed at PAMELA, Fermi-LAT and AMS-02 through dark matter annihilation, while satisfying the relic density and direct detection limits.

  20. Neutrino mixing matrix and masses from a generalized Friedberg-Lee model

    NASA Astrophysics Data System (ADS)

    Razzaghi, N.; Gousheh, S. S.

    2014-02-01

    The overall characteristics of the solar and atmospheric neutrino oscillation are approximately consistent with a tribimaximal form of the mixing matrix U of the lepton sector. Exact tribimaximal mixing leads to θ13=0. However, recent results from the Daya Bay and RENO experiments have established a nonzero value for θ13. Keeping the leading behavior of U as tribimaximal, we use a generalized Friedberg-Lee neutrino mass model along with a complementary ansatz to incorporate a nonzero θ13 along with CP violation. We generalize this model in two stages: In the first stage, we assume μ -τ symmetry and add imaginary components which leads to nonzero phases. In the second stage, we add a perturbation with real components which breaks the μ-τ symmetry, and this leads to a nonzero value for θ13. The combination of these two generalizations leads to CP violation. Using only two sets of the experimental data, we can fix all of the parameters of our model and predict not only values for the other experimental data, which agree well with the available data, but also the masses of neutrinos and the CP-violating phases and parameters. These predictions include the following: ⟨mνe⟩≈(0.033-0.037) eV, ⟨mνμ⟩≈(0.043-0.048) eV, ⟨mντ⟩≈(0.046-0.051) eV, and 59.21°≲δ ≲59.34°.

  1. Extending two Higgs doublet models for two-loop neutrino mass generation and one-loop neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Gu, Pei-Hong

    2017-02-01

    We extend some two Higgs doublet models, where the Yukawa couplings for the charged fermion mass generation only involve one Higgs doublet, by two singlet scalars respectively carrying a singly electric charge and a doubly electric charge. The doublet and singlet scalars together can mediate a two-loop diagram to generate a tiny Majorana mass matrix of the standard model neutrinos. Remarkably, the structure of the neutrino mass matrix is fully determined by the symmetric Yukawa couplings of the doubly charged scalar to the right-handed leptons. Meanwhile, a one-loop induced neutrinoless double beta decay can arrive at a testable level even if the electron neutrino has an extremely small Majorana mass. We also study other experimental constraints and implications including some rare processes and Higgs phenomenology.

  2. Direct determination of neutrino mass parameters at future colliders

    SciTech Connect

    Kadastik, M.; Raidal, M.; Rebane, L.

    2008-06-01

    If the observed light neutrino masses are induced by their Yukawa couplings to singlet right-handed neutrinos, the natural smallness of those makes direct collider tests of the electroweak scale neutrino mass mechanisms difficult in the simplest models. In the triplet Higgs seesaw scenario the smallness of light neutrino masses may come from the smallness of B-L breaking parameters, allowing sizable Yukawa couplings even for a TeV scale triplet. We show that, in this scenario, measuring the branching fractions of doubly charged Higgs to different same-charged lepton flavors at CERN LHC and/or ILC experiments will allow one to measure the neutrino mass parameters that neutrino oscillation experiments are insensitive to, including the neutrino mass hierarchy, lightest neutrino mass, and Majorana phases.

  3. Observational constraints on varying neutrino-mass cosmology

    SciTech Connect

    Geng, Chao-Qiang; Lee, Chung-Chi; Myrzakulov, R.; Sami, M.; Saridakis, Emmanuel N. E-mail: g9522545@oz.nthu.edu.tw E-mail: sami@iucaa.ernet.in

    2016-01-01

    We consider generic models of quintessence and we investigate the influence of massive neutrino matter with field-dependent masses on the matter power spectrum. In case of minimally coupled neutrino matter, we examine the effect in tracker models with inverse power-law and double exponential potentials. We present detailed investigations for the scaling field with a steep exponential potential, non-minimally coupled to massive neutrino matter, and we derive constraints on field-dependent neutrino masses from the observational data.

  4. Evaluation of the Majorana phases of a general Majorana neutrino mass matrix: Testability of hierarchical flavour models

    NASA Astrophysics Data System (ADS)

    Samanta, Rome; Chakraborty, Mainak; Ghosal, Ambar

    2016-03-01

    We evaluate the Majorana phases for a general 3 × 3 complex symmetric neutrino mass matrix on the basis of Mohapatra-Rodejohann's phase convention using the three rephasing invariant quantities I12, I13 and I23 proposed by Sarkar and Singh. We find them interesting as they allow us to evaluate each Majorana phase in a model independent way even if one eigenvalue is zero. Utilizing the solution of a general complex symmetric mass matrix for eigenvalues and mixing angles we determine the Majorana phases for both the hierarchies, normal and inverted, taking into account the constraints from neutrino oscillation global fit data as well as bound on the sum of the three light neutrino masses (Σimi) and the neutrinoless double beta decay (ββ0ν) parameter |m11 |. This methodology of finding the Majorana phases is applied thereafter in some predictive models for both the hierarchical cases (normal and inverted) to evaluate the corresponding Majorana phases and it is shown that all the sub cases presented in inverted hierarchy section can be realized in a model with texture zeros and scaling ansatz within the framework of inverse seesaw although one of the sub cases following the normal hierarchy is yet to be established. Except the case of quasi degenerate neutrinos, the methodology obtained in this work is able to evaluate the corresponding Majorana phases, given any model of neutrino masses.

  5. Seesaw neutrino masses and mixing with extended democracy

    NASA Astrophysics Data System (ADS)

    Joaquim, F. R.

    2001-05-01

    In the context of a minimal extension of the Standard Model with three extra heavy right-handed neutrinos, we propose a model for neutrino masses and mixing based on the hipothesis of a complete alignment of the lepton mass matrices in flavour space. Considering a uniform quasi-democratic structure for these matrices, we show that, in the presence of a highly hierarchical right-handed neutrino mass spectrum, the effective neutrino mass matrix, obtained through the seesaw mechanism, can reproduce all the solutions of the solar neutrino problem.

  6. Splitting Neutrino masses and Showering into Sky

    NASA Astrophysics Data System (ADS)

    Fargion, D.; D'Armiento, D.; Lanciano, O.; Oliva, P.; Iacobelli, M.; de Sanctis Lucentini, P. G.; Grossi, M.; de Santis, M.

    2007-06-01

    Neutrino masses might be as light as a few time the atmospheric neutrino mass splitting. The relic cosmic neutrinos may cluster in wide Dark Hot Local Group Halo. High Energy ZeV cosmic neutrinos (in Z-Showering model) might hit relic ones at each mass in different resonance energies in our nearby Universe. This non-degenerated density and energy must split UHE Z-boson secondaries (in Z-Burst model) leading to multi injection of UHECR nucleons within future extreme AUGER energy. Secondaries of Z-Burst as neutral gamma, below a few tens EeV are better surviving local GZK cut-off and they might explain recent Hires BL-Lac UHECR correlations at small angles. A different high energy resonance must lead to Glashow's anti-neutrino showers while hitting electrons in matter. In water and ice it leads to isotropic light explosions. In air, Glashow's anti-neutrino showers lead to collimated and directional air-showers offering a new Neutrino Astronomy. Because of neutrino flavor mixing, astrophysical energetic tau neutrino above tens GeV must arise over atmospheric background. At TeV range is difficult to disentangle tau neutrinos from other atmospheric flavors. At greater energy around PeV, Tau escaping mountains and Earth and decaying in flight are effectively showering in air sky. These Horizontal showering is splitting by geomagnetic field in forked shapes. Such air-showers secondaries release amplified and beamed gamma bursts (like observed TGF), made also by muon and electron pair bundles, with their accompanying rich Cherenkov flashes. Also planet's largest (Saturn, Jupiter) atmosphere limbs offer an ideal screen for UHE GZK and Z-burst tau neutrino, because their largest sizes. Titan thick atmosphere and small radius are optimal for discovering up-going resonant Glashow resonant anti-neutrino electron showers. Detection from Earth of Tau, anti-Tau, anti-electron neutrino induced Air-showers by twin Magic Telescopes on top mountains, or space based detection on

  7. Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation

    SciTech Connect

    Kersten, Joern; Smirnov, Alexei Yu.

    2007-10-01

    We consider the possibility to detect right-handed neutrinos, which are mostly singlets of the standard model gauge group, at future accelerators. Substantial mixing of these neutrinos with the active neutrinos requires a cancellation of different contributions to the light neutrino mass matrix at the level of 10{sup -8}. We discuss possible symmetries behind this cancellation and argue that for three right-handed neutrinos they always lead to conservation of total lepton number. Light neutrino masses can be generated by small perturbations violating these symmetries. In the most general case, LHC physics and the mechanism of neutrino mass generation are essentially decoupled; with additional assumptions, correlations can appear between collider observables and features of the neutrino mass matrix.

  8. Probing radiative neutrino mass models using trilepton channel at the LHC

    NASA Astrophysics Data System (ADS)

    Cherigui, Dounia; Guella, Chahrazed; Ahriche, Amine; Nasri, Salah

    2016-11-01

    In this work, we probe a class of neutrino mass models through the lepton flavor violating interactions of a singlet charged scalar, S± at the LHC proton-proton collisions with 8 TeV and 14 TeV energies. This scalar couples to the leptons and induces many processes such as pp →ℓ±ℓ±ℓ∓ +E̸T. In our analysis we discuss the opposite sign same flavor leptons signal, as well as the background free channel with the tau contribution which can enhance the signal/background ratio for center of mass energies √{ s} = 8 TeV and √{ s} = 14 TeV.

  9. Neutrino Masses and Mixing from Supersymmetric Inflation

    NASA Astrophysics Data System (ADS)

    Lazarides, G.

    A supersymmetric model based on a l-right symmetric gauge group is proposed where hybrid inflation, baryogenesis and neutrino oscillations are linked.This scheme, supplemented by a familiar ansatz for the neutrino Dirac masses and mixing of the two heaviest families and with the MSW resolution of the solar neutrino puzzle, implies that 1 eVmντ ≲ 9 eV. The mixing angle θμτ is predicted to lie in a narrow range which will be partially tested by the Chorus/Nomad experiment.

  10. Status of neutrino mass experiments

    SciTech Connect

    Fackler, O.

    1985-12-01

    In 1980 two experiments ignited a fertile field of research the determination of the neutrino masses. Subsequently, over 35 experiments using a variety of techniques have probed or are probing this question. Primarily I will discuss electron antineutrino (hereafter referred to as neutrino) mass experiments. However, let me begin in Section I to discuss astronomical and terrestrial observations which motivated these experiments. In Section II, I will quote limits from muon and tau mass determinations. These limits are more thoroughly discussed in other papers. I will continue by describing the four approaches used to measure the electron neutrino mass. In Section III, tritium beta decay mass determinations will be reviewed. This section includes a general summary of previous experimental results, and discussion of the major ongoing experiments. Section IV offers concluding remarks. 24 refs., 24 figs.

  11. Determining the neutrino mass hierarchy with cosmology

    SciTech Connect

    De Bernardis, Francesco; Kitching, Thomas D.; Heavens, Alan; Melchiorri, Alessandro

    2009-12-15

    The combination of current large-scale structure and cosmic microwave background anisotropies data can place strong constraints on the sum of the neutrino masses. Here we show that future cosmic shear experiments, in combination with cosmic microwave background constraints, can provide the statistical accuracy required to answer questions about differences in the mass of individual neutrino species. Allowing for the possibility that masses are nondegenerate we combine Fisher matrix forecasts for a weak lensing survey like Euclid with those for the forthcoming Planck experiment. Under the assumption that neutrino mass splitting is described by a normal hierarchy we find that the combination Planck and Euclid will possibly reach enough sensitivity to put a constraint on the mass of a single species. Using a Bayesian evidence calculation we find that such future experiments could provide strong evidence for either a normal or an inverted neutrino hierarchy. Finally we show that if a particular neutrino hierarchy is assumed then this could bias cosmological parameter constraints, for example, the dark energy equation of state parameter, by > or approx. 1{sigma}, and the sum of masses by 2.3{sigma}. We finally discuss the impact of uncertainties on the theoretical modeling of nonlinearities. The results presented in this analysis are obtained under an approximation to the nonlinear power spectrum. This significant source of uncertainty needs to be addressed in future work.

  12. The KATRIN neutrino mass experiment

    NASA Astrophysics Data System (ADS)

    Wolf, Joachim; Katrin Collaboration

    2010-11-01

    The Karlsruhe Tritium Neutrino experiment (KATRIN) aims to determine the electron neutrino mass from tritium decay in a model-independent way, by a kinematic measurement of the energy of β-electrons. The unprecedented sensitivity of 0.2 eV/c2 will improve present limits by one order of magnitude. The decay electrons will originate from a 10 m long windowless gaseous tritium source. Super-conducting magnets will guide the electrons through a differential and cryogenic pumping section to the electro-static tandem spectrometer (MAG-E-filter), where the kinetic energy will be measured. The experiment is presently being built at the Forschungszentrum Karlsruhe by an international collaboration of more than 120 scientists. The largest component, the 1240 m3 main spectrometer, was delivered end of 2006 and first commissioning tests have been performed. This paper gives an overview of the goals and technological challenges of the experiment and reports on the progress in commissioning first major components. The start of first measurements is expected in 2012.

  13. Neutrino mass as the probe of intermediate mass scales

    SciTech Connect

    Senjanovic, G.

    1980-01-01

    A discussion of the calculability of neutrino mass is presented. The possibility of neutrinos being either Dirac or Majorana particles is analyzed in detail. Arguments are offered in favor of the Majorana case: the smallness of neutrino mass is linked to the maximality of parity violation in weak interactions. It is shown how the measured value of neutrino mass would probe the existence of an intermediate mass scale, presumably in the TeV region, at which parity is supposed to become a good symmetry. Experimental consequences of the proposed scheme are discussed, in particular the neutrino-less double ..beta.. decay, where observation would provide a crucial test of the model, and rare muon decays such as ..mu.. ..-->.. e..gamma.. and ..mu.. ..-->.. ee anti e. Finally, the embedding of this model in an O(10) grand unified theory is analyzed, with the emphasis on the implications for intermediate mass scales that it offers. It is concluded that the proposed scheme provides a distinct and testable alternative for understanding the smallness of neutrino mass. 4 figures.

  14. Neutrino mass implications for muon decay parameters

    SciTech Connect

    Erwin, Rebecca J.; Kile, Jennifer; Ramsey-Musolf, Michael J.; Wang Peng

    2007-02-01

    We use the scale of neutrino mass and naturalness considerations to obtain model-independent expectations for the magnitude of possible contributions to muon decay Michel parameters from new physics above the electroweak symmetry-breaking scale. Focusing on Dirac neutrinos, we obtain a complete basis of dimension four and dimension six effective operators that are invariant under the gauge symmetry of the standard model and that contribute to both muon decay and neutrino mass. We show that - in the absence of fine tuning - the most stringent neutrino-mass naturalness bounds on chirality-changing vector operators relevant to muon decay arise from one-loop operator mixing. The bounds we obtain on their contributions to the Michel parameters are 2 orders of magnitude stronger than bounds previously obtained in the literature. In addition, we analyze the implications of one-loop matching considerations and find that the expectations for the size of various scalar and tensor contributions to the Michel parameters are considerably smaller than derived from previous estimates of two-loop operator mixing. We also show, however, that there exist gauge-invariant operators that generate scalar and tensor contributions to muon decay but whose flavor structure allows them to evade neutrino-mass naturalness bounds. We discuss the implications of our analysis for the interpretation of muon-decay experiments.

  15. Review of direct neutrino mass experiments

    SciTech Connect

    Dragoun, O.

    2015-10-28

    Advantages and drawbacks of the kinematic methods of the neutrino mass determination are discussed. The meaning of the effective neutrino mass, resulting from measurements of the endpoint region of β-spectra is clarified. Current experimental constraints on the mass of active as well as sterile neutrinos are presented. Several new experiments are briefly outlined.

  16. Renormalizable model for neutrino mass, dark matter, muon g - 2 and 750 GeV diphoton excess

    NASA Astrophysics Data System (ADS)

    Okada, Hiroshi; Yagyu, Kei

    2016-05-01

    We discuss a possibility to explain the 750 GeV diphoton excess observed at the LHC in a three-loop neutrino mass model which has a similar structure to the model by Krauss, Nasri and Trodden. Tiny neutrino masses are naturally generated by the loop effect of new particles with their couplings and masses to be of order 0.1-1 and TeV, respectively. The lightest right-handed neutrino, which runs in the three-loop diagram, can be a dark matter candidate. In addition, the deviation in the measured value of the muon anomalous magnetic moment from its prediction in the standard model can be compensated by one-loop diagrams with exotic multi-charged leptons and scalar bosons. For the diphoton event, an additional isospin singlet real scalar field plays the role to explain the excess by taking its mass of 750 GeV, where it is produced from the gluon fusion production via the mixing with the standard model like Higgs boson. We find that the cross section of the diphoton process can be obtained to be a few fb level by taking the masses of new charged particles to be about 375 GeV and related coupling constants to be order 1.

  17. Neutrinos: in and out of the standard model

    SciTech Connect

    Parke, Stephen; /Fermilab

    2006-07-01

    The particle physics Standard Model has been tremendously successful in predicting the outcome of a large number of experiments. In this model Neutrinos are massless. Yet recent evidence points to the fact that neutrinos are massive particles with tiny masses compared to the other particles in the Standard Model. These tiny masses allow the neutrinos to change flavor and oscillate. In this series of Lectures, I will review the properties of Neutrinos In the Standard Model and then discuss the physics of Neutrinos Beyond the Standard Model. Topics to be covered include Neutrino Flavor Transformations and Oscillations, Majorana versus Dirac Neutrino Masses, the Seesaw Mechanism and Leptogenesis.

  18. Neutrino masses, Majorons, and muon decay

    SciTech Connect

    Santamaria, A.; Bernabeu, J.; Pich, A.

    1987-09-01

    The contributions to the parameters xi, delta, rho, and eta in muon decay coming from double Majoron emission, Majorana neutrino masses, and effects of charged scalars are evaluated in the scalar-triplet model. The relevance of these effects for planned experiments is discussed.

  19. Neutrino masses, mixing, moments, and matter

    SciTech Connect

    Marciano, W.J.

    1988-01-01

    The present status of neutrino masses, mixing, and electromagnetic moments is surveyed. Potential enhancements of neutrino oscillations, decay, and spin-flavor precession due to their interactions with matter are described.

  20. Neutrino mass from M theory SO(10)

    NASA Astrophysics Data System (ADS)

    Acharya, Bobby S.; Bożek, Krzysztof; Romão, Miguel Crispim; King, Stephen F.; Pongkitivanichkul, Chakrit

    2016-11-01

    We study the origin of neutrino mass from SO(10) arising from M Theory compactified on a G 2-manifold. This is linked to the problem of the breaking of the extra U(1) gauge group, in the SU(5) × U(1) subgroup of SO(10), which we show can achieved via a (generalised) Kolda-Martin mechanism. The resulting neutrino masses arise from a combination of the seesaw mechanism and induced R-parity breaking contributions. The rather complicated neutrino mass matrix is analysed for one neutrino family and it is shown how phenomenologically acceptable neutrino masses can emerge.

  1. Introduction to direct neutrino mass measurements and KATRIN

    NASA Astrophysics Data System (ADS)

    Thümmler, T.; Katrin Collaboration

    2012-08-01

    The properties of neutrinos and especially their rest mass play an important role at the intersections of cosmology, particle physics and astroparticle physics. At present there are two complementary approaches to address this topic in laboratory experiments. The search for neutrinoless double beta decay probes whether neutrinos are Majorana particles and determines an effective neutrino mass value. On the other hand experiments such as MARE, KATRIN and the recently proposed Project 8 will investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Here, because of neutrino flavour mixing, the neutrino mass appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. It combines an ultra-luminous molecular windowless gaseous tritium source with an integrating high-resolution spectrometer of MAC-E filter type. It will investigate the neutrino rest mass with 0.2 eV/c (90% C.L.) sensitivity and allow β spectroscopy close to the T endpoint at 18.6 keV with unprecedented precision.

  2. Masses, mixing angles and phases of general Majorana neutrino mass matrix

    NASA Astrophysics Data System (ADS)

    Adhikary, Biswajit; Chakraborty, Mainak; Ghosal, Ambar

    2013-10-01

    General Majorana neutrino mass matrix is complex symmetric and for three generations of neutrinos it contains 12 real parameters. We diagonalize this general neutrino mass matrix and express the three neutrino masses, three mixing angles, one Dirac CP phase and two Majorana phases (removing three unphysical phases) in terms of the neutrino mass matrix elements. We apply the results in the context of a neutrino mass matrix derived from a broken cyclic symmetry invoking type-I seesaw mechanism. Phenomenological study of the above mass matrix allows enough parameter space to satisfy the neutrino oscillation data with only 10% breaking of this symmetry. In this model only normal mass hierarchy is allowed. In addition, the Dirac CP phase and the Majorana phases are numerically estimated. Σ m i and | m νee | are also calculated.

  3. Constraining absolute neutrino masses via detection of galactic supernova neutrinos at JUNO

    SciTech Connect

    Lu, Jia-Shu; Cao, Jun; Li, Yu-Feng; Zhou, Shun E-mail: caoj@ihep.ac.cn E-mail: zhoush@ihep.ac.cn

    2015-05-01

    A high-statistics measurement of the neutrinos from a galactic core-collapse supernova is extremely important for understanding the explosion mechanism, and studying the intrinsic properties of neutrinos themselves. In this paper, we explore the possibility to constrain the absolute scale of neutrino masses m{sub ν} via the detection of galactic supernova neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO) with a 20 kiloton liquid-scintillator detector. In assumption of a nearly-degenerate neutrino mass spectrum and a normal mass ordering, the upper bound on the absolute neutrino mass is found to be m{sub ν} < (0.83 ± 0.24) eV at the 95% confidence level for a typical galactic supernova at a distance of 10 kpc, where the mean value and standard deviation are shown to account for statistical fluctuations. For comparison, we find that the bound in the Super-Kamiokande experiment is m{sub ν} < (0.94 ± 0.28) eV at the same confidence level. However, the upper bound will be relaxed when the model parameters characterizing the time structure of supernova neutrino fluxes are not exactly known, and when the neutrino mass ordering is inverted.

  4. Constraining absolute neutrino masses via detection of galactic supernova neutrinos at JUNO

    SciTech Connect

    Lu, Jia-Shu; Cao, Jun; Li, Yu-Feng; Zhou, Shun

    2015-05-26

    A high-statistics measurement of the neutrinos from a galactic core-collapse supernova is extremely important for understanding the explosion mechanism, and studying the intrinsic properties of neutrinos themselves. In this paper, we explore the possibility to constrain the absolute scale of neutrino masses m{sub ν} via the detection of galactic supernova neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO) with a 20 kiloton liquid-scintillator detector. In assumption of a nearly-degenerate neutrino mass spectrum and a normal mass ordering, the upper bound on the absolute neutrino mass is found to be m{sub ν}<(0.83±0.24) eV at the 95% confidence level for a typical galactic supernova at a distance of 10 kpc, where the mean value and standard deviation are shown to account for statistical fluctuations. For comparison, we find that the bound in the Super-Kamiokande experiment is m{sub ν}<(0.94±0.28) eV at the same confidence level. However, the upper bound will be relaxed when the model parameters characterizing the time structure of supernova neutrino fluxes are not exactly known, and when the neutrino mass ordering is inverted.

  5. Testable two-loop radiative neutrino mass model based on an LLQd c Qd c effective operator

    NASA Astrophysics Data System (ADS)

    Angel, Paul W.; Cai, Yi; Rodd, Nicholas L.; Schmidt, Michael A.; Volkas, Raymond R.

    2013-10-01

    A new two-loop radiative Majorana neutrino mass model is constructed from the gauge-invariant effective operator L i L j Q k d c Q l d c ɛ ik ɛ jl that violates lepton number conservation by two units. The ultraviolet completion features two scalar leptoquark flavors and a color-octet Majorana fermion. We show that there exists a region of parameter space where the neutrino oscillation data can be fitted while simultaneously meeting flavor-violation and collider bounds. The model is testable through lepton flavor-violating processes such as μ → eγ, μ → eee, and μN → eN conversion, as well as collider searches for the scalar leptoquarks and color-octet fermion. We computed and compiled a list of necessary Passarino-Veltman integrals up to boxes in the approximation of vanishing external momenta and made them available as a Mathematica package, denoted as ANT.

  6. Neutrino masses and scalar singlet dark matter

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Subhaditya; Jana, Sudip; Nandi, S.

    2017-03-01

    We propose a simple extension of the Standard Model (SM) which has a viable dark matter (DM) candidate and can explain the generation of tiny neutrino masses. The DM is an electroweak (EW) singlet scalar S , odd under an imposed exact Z2 symmetry, that interacts with the SM through the "Higgs portal" coupling, while all other particles are even under Z2. The model also has an EW isospin 3 /2 scalar Δ and a pair of EW isospin vectors Σ and Σ ¯, which are responsible for generating tiny neutrino mass via the effective dimension-seven operator. Thanks to the additional interactions with Δ , the scalar singlet DM S survives a large region of parameter space by relic density constraints from WMAP/Planck and direct search bounds from updated LUX data. Constraints on the model from the LHC are also discussed.

  7. Searching for radiative neutrino mass generation at the LHC

    NASA Astrophysics Data System (ADS)

    Volkas, Raymond R.

    2015-04-01

    In this talk (talk given at the International Conference on Massive Neutrinos, Singapore, 9-13 February 2015), I describe the general characteristics of radiative neutrino mass models that can be probed at the LHC. I then cover the specific constraints on a new, explicit model of this type.

  8. Probing the Absolute Mass Scale of Neutrinos

    SciTech Connect

    Prof. Joseph A. Formaggio

    2011-10-12

    The experimental efforts of the Neutrino Physics Group at MIT center primarily around the exploration of neutrino mass and its significance within the context of nuclear physics, particle physics, and cosmology. The group has played a prominent role in the Sudbury Neutrino Observatory, a neutrino experiment dedicated to measure neutrino oscillations from 8B neutrinos created in the sun. The group is now focusing its efforts in the measurement of the neutrino mass directly via the use of tritium beta decay. The MIT group has primary responsibilities in the Karlsruhe Tritium Neutrino mass experiment, expected to begin data taking by 2013. Specifically, the MIT group is responsible for the design and development of the global Monte Carlo framework to be used by the KATRIN collaboration, as well as responsibilities directly associated with the construction of the focal plane detector. In addition, the MIT group is sponsoring a new research endeavor for neutrino mass measurements, known as Project 8, to push beyond the limitations of current neutrino mass experiments.

  9. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    SciTech Connect

    Vale, D.; Rauscher, T.; Paar, N. E-mail: Thomas.Rauscher@unibas.ch

    2016-02-01

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for {sup 56}Fe and {sup 208}Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(ν-bar {sub e},e{sup +})n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of ν{sub e}- and ν-bar {sub e}-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei ({sup 208}Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.

  10. The modified correlation mass method for detecting neutrino mass from astrophysical neutrino bursts

    NASA Technical Reports Server (NTRS)

    Chan, Kwing L.; Chiu, Hong-Yee; Kondo, Yoji

    1989-01-01

    A modified correlation mass method for calculating the value of a possible neutrino mass from neutrino bursts of astrophysical origin is proposed which can more sensitively detect small neutrino masses than previous methods. Application of the method to the neutrinos detected from SN 1987 A yields a value of 3.6 + or - 0.3 eV for the neutrino mass energy with a confidence level of 97 percent. Assuming a neutrino mass of 3.6 eV, and transforming all of the detected neutrino events back to the point of emission, it is shown that bursts are composed of a short initial pulse (which lasts for about 0.1 sec and contains 30-40 percent of the total neutrinos) and an extended emission lasting for about 10 sec.

  11. Neutrino mass and mixing with discrete symmetry.

    PubMed

    King, Stephen F; Luhn, Christoph

    2013-05-01

    This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A₄, S₄ and Δ(96).

  12. The experimental status of neutrino masses and mixings

    SciTech Connect

    Robertson, R.G.H.

    1992-01-01

    We review the current status of experimental knowledge about neutrinos derived from kinematic mass measurements, neutrino oscillation searches at reactors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing.

  13. Neutrino mass and mixing, and non-accelerator experiments

    SciTech Connect

    Robertson, R.G.H.

    1992-01-01

    We review the current status of experimental knowledge about neutrinos derived from kinematic mass measurements, neutrino oscillation searches at reactors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indication that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing.

  14. PINGU sensitivity to neutrino mass hierarchy

    SciTech Connect

    Groß, Andreas; Collaboration: IceCube-PINGU Collaboration

    2014-11-18

    Determination of the neutrino mass hierarchy (NMH) is among the most fundamental questions in particle physics. Recent measurements of 1) a large mixing angle between the first and the third neutrino mass eigenstates and 2) the first observation of atmospheric neutrino oscillations at tens of GeV with neutrino telescopes, open the intriguing new possibility to exploit matter effects in neutrino oscillation to determine the neutrino mass hierarchy. A further extension of IceCube/DeepCore called PINGU (Precision IceCube Next Generation Upgrade) has been recently envisioned with the ultimate goal to measure neutrino mass hierarchy. PINGU would consist of additional IceCube-like strings of detectors deployed in the deepest and cleanest ice in the center of IceCube. More densely deployed instrumentation would provide a threshold substantially below 10 GeV and enhance the sensitivity to the mass hierarchy signal in atmospheric neutrinos. Here we discuss an estimate of the PINGU sensitivity to the mass hierarchy determined using an approximation with an Asimov dataset and an oscillation parameter fit.

  15. Revisiting the texture zero neutrino mass matrices

    NASA Astrophysics Data System (ADS)

    Singh, Madan; Ahuja, Gulsheen; Gupta, Manmohan

    2016-12-01

    In the light of refined and large measurements of the reactor mixing angle θ, we have revisited the texture three- and two-zero neutrino mass matrices in the flavor basis. For Majorana neutrinos, it has been explicitly shown that all the texture three-zero mass matrices remain ruled out. Further, for both normal and inverted mass ordering, for the texture two-zero neutrino mass matrices one finds interesting constraints on the Dirac-like CP-violating phase δ and Majorana phases ρ and σ.

  16. Status of the neutrino mass experiment KATRIN

    SciTech Connect

    Bornschein, L.; Bornschein, B.; Sturm, M.; Roellig, M.; Priester, F.

    2015-03-15

    The most sensitive way to determine the neutrino mass scale without further assumptions is to measure the shape of a tritium beta spectrum near its kinematic end-point. Tritium is the nucleus of choice because of its low endpoint energy, superallowed decay and simple atomic structure. Within an international collaboration the Karlsruhe Tritium Neutrino experiment (KATRIN) is currently being built up at KIT. KATRIN will allow a model-independent measurement of the neutrino mass scale with an expected sensitivity of 0.2 eV/c{sup 2} (90% CL). KATRIN will use a source of ultrapure molecular tritium. This contribution presents the status of the KATRIN experiment, thereby focusing on its Calibration and Monitoring System (CMS), which is the last component being subject to research/development. After a brief overview of the KATRIN experiment in Section II the CMS is introduced in Section III. In Section IV the Beta Induced X-Ray Spectroscopy (BIXS) as method of choice to monitor the tritium activity of the KATRIN source is described and first results are presented.

  17. Distinguishing neutrino mass hierarchies using dark matter annihilation signals at IceCube

    SciTech Connect

    Allahverdi, Rouzbeh; Dutta, Bhaskar; Ghosh, Dilip Kumar; Knockel, Bradley; Saha, Ipsita

    2015-12-01

    We explore the possibility of distinguishing neutrino mass hierarchies through the neutrino signal from dark matter annihilation at neutrino telescopes. We consider a simple extension of the standard model where the neutrino masses and mixing angles are obtained via the type-II seesaw mechanism as an explicit example. We show that future extensions of IceCube neutrino telescope may detect the neutrino signal from DM annihilation at the Galactic Center and inside the Sun, and differentiate between the normal and inverted mass hierarchies, in this model.

  18. Neutrino jets from high-mass WR gauge bosons in TeV-scale left-right symmetric models

    NASA Astrophysics Data System (ADS)

    Mitra, Manimala; Ruiz, Richard; Scott, Darren J.; Spannowsky, Michael

    2016-11-01

    We reexamine the discovery potential at hadron colliders of high-mass right-handed (RH) gauge bosons WR—an inherent ingredient of left-right symmetric models (LRSM). We focus on the regime where the WR is very heavy compared to the heavy Majorana neutrino N , and we investigate an alternative signature for WR→N decays. The produced neutrinos are highly boosted in this mass regime. Subsequently, their decays via off-shell WR bosons to jets, i.e., N →ℓ±jj, are highly collimated, forming a single neutrino jet (jN). The final-state collider signature is then ℓ±jN, instead of the widely studied ℓ±ℓ±j j . Present search strategies are not sensitive to this hierarchical mass regime due to the breakdown of the collider signature definition. We take into account QCD corrections beyond next-to-leading order (NLO) that are important for high-mass Drell-Yan processes at the 13 TeV Large Hadron Collider (LHC). For the first time, we evaluate WR production at NLO with threshold resummation at next-to-next-to-leading logarithm (NNLL) matched to the threshold-improved parton distributions. With these improvements, we find that a WR of mass MWR=3 (4 )[5 ] TeV and mass ratio of (mN/MWR)<0.1 can be discovered with a 5 - 6 σ statistical significance at 13 TeV after 10 (100 )[2000 ] fb-1 of data. Extending the analysis to the hypothetical 100 TeV Very Large Hadron Collider (VLHC), 5 σ can be obtained for WR masses up to MW R=15 (30 ) with approximately 100 fb-1 (10 ab-1 ). Conversely, with 0.9 (10 )[150 ] fb-1 of 13 TeV data, MWR<3 (4 )[5 ] TeV and (mN/MWR)<0.1 can be excluded at 95% C.L.; with 100 fb-1 (2.5 ab-1 ) of 100 TeV data, MW R<22 (33 ) TeV can be excluded.

  19. Pseudo Dirac neutrinos in the seesaw model

    NASA Astrophysics Data System (ADS)

    Dutta, Gautam; Joshipura, Anjan S.

    1995-04-01

    A specific class of textures for the Dirac and Majorana mass matrices in the seesaw model leading to a pair of almost degenerate neutrinos is discussed. These textures can be obtained by imposing a horizontal U(1) symmetry. A specific model is discussed in which (1) all three neutrino masses are similar in magnitude and could lie around 1 eV providing the hot component of the dark matter in the Universe, (2) two of these are highly degenerate and their (mass)2 difference could solve the solar neutrino problem through the large angle MSW solution, and (3) the electron neutrino mass may be observable through a Kurie plot as well as through a search of the neutrinoless double β decay.

  20. Neutrino mass hierarchy and octant determination with atmospheric neutrinos.

    PubMed

    Barger, Vernon; Gandhi, Raj; Ghoshal, Pomita; Goswami, Srubabati; Marfatia, Danny; Prakash, Suprabh; Raut, Sushant K; Sankar, S Uma

    2012-08-31

    The recent discovery by the Daya-Bay and RENO experiments, that θ(13) is nonzero and relatively large, significantly impacts existing experiments and the planning of future facilities. In many scenarios, the nonzero value of θ(13) implies that θ(23) is likely to be different from π/4. Additionally, large detectors will be sensitive to matter effects on the oscillations of atmospheric neutrinos, making it possible to determine the neutrino mass hierarchy and the octant of θ(23). We show that a 50 kT magnetized liquid argon neutrino detector can ascertain the mass hierarchy with a significance larger than 4σ with moderate exposure times, and the octant at the level of 2-3σ with greater exposure.

  1. Fermion masses and neutrino mixing in an U(1){sub H} flavor symmetry model with hierarchical radiative generation for light charged fermion masses

    SciTech Connect

    Hernandez-Galeana, Albino

    2007-11-01

    I report the analysis performed on fermion masses and mixing, including neutrino mixing, within the context of a model with hierarchical radiative mass generation mechanism for light charged fermions, mediated by exotic scalar particles at one and two loops, respectively, meanwhile the neutrinos get Majorana mass terms at tree level through the Yukawa couplings with two SU(2){sub L} Higgs triplets. All the resulting mass matrices in the model, for the u, d, and e fermion charged sectors, the neutrinos and the exotic scalar particles, are diagonalized in exact analytical form. Quantitative analysis shows that this model is successful to accommodate the hierarchical spectrum of masses and mixing in the quark sector as well as the charged lepton masses. The lepton mixing matrix, V{sub PMNS}, is written completely in terms of the neutrino masses m{sub 1}, m{sub 2}, and m{sub 3}. Large lepton mixing for {theta}{sub 12} and {theta}{sub 23} is predicted in the range of values 0.7 < or approx. sin{sup 2}2{theta}{sub 12} < or approx. 0.7772 and 0.87 < or approx. sin{sup 2}2{theta}{sub 23} < or approx. 0.9023 by using 0.033 < or approx. s{sub 13}{sup 2} < or approx. 0.04. These values for lepton mixing are consistent with 3{sigma} allowed ranges provided by recent global analysis of neutrino data oscillation. From {delta}m{sub sol}{sup 2} bounds, neutrino masses are predicted in the range of values m{sub 1}{approx_equal}(1.706-2.494)x10{sup -3} eV, m{sub 2}{approx_equal}(6.675-12.56)x10{sup -3} eV, and m{sub 3}{approx_equal}(1.215-2.188)x10{sup -2} eV, respectively. The above allowed lepton mixing leads to the quark-lepton complementary relations {theta}{sub 12}{sup CKM}+{theta}{sub 12}{sup PMNS}{approx_equal}41.543 deg. -44.066 deg. and {theta}{sub 23}{sup CKM}+{theta}{sub 23}{sup PMNS}{approx_equal}36.835 deg. -38.295 deg. The new exotic scalar particles induce flavor changing neutral currents and contribute to lepton flavor violating processes such as E{yields}e{sub 1}e

  2. Neutrino Masses from a Pseudo-Dirac Bino.

    PubMed

    Coloma, Pilar; Ipek, Seyda

    2016-09-09

    We show that, in U(1)_{R}-symmetric supersymmetric models, the bino and its Dirac partner (the singlino) can play the role of right-handed neutrinos and generate the neutrino masses and mixing, without the need for traditional bilinear or trilinear R-parity violating operators. The two particles form a pseudo-Dirac pair, the "biνo." An inverse seesaw texture is generated for the neutrino-biνo sector, and the lightest neutrino is predicted to be massless. Unlike in most models with heavy right-handed neutrinos, the biνo can be sizably produced at the LHC through its interactions with colored particles, while respecting low energy constraints from neutrinoless double-beta decay and charged lepton flavor violation.

  3. Neutrino masses from a pseudo-Dirac bino

    DOE PAGES

    Coloma, Pilar; Ipek, Seyda

    2016-09-09

    We show that, in U(1)R-symmetric supersymmetric models, the bino and its Dirac partner (the singlino) can play the role of right-handed neutrinos and generate the neutrino masses and mixing, without the need for traditional bilinear or trilinear R-parity violating operators. The two particles form a pseudo-Dirac pair, the “bi νo.” An inverse seesaw texture is generated for the neutrino-biνo sector, and the lightest neutrino is predicted to be massless. Lastly, unlike in most models with heavy right-handed neutrinos, the bi νo can be sizably produced at the LHC through its interactions with colored particles, while respecting low energy constraints frommore » neutrinoless double-beta decay and charged lepton flavor violation.« less

  4. Neutrino masses from a pseudo-Dirac bino

    SciTech Connect

    Coloma, Pilar; Ipek, Seyda

    2016-09-09

    We show that, in U(1)R-symmetric supersymmetric models, the bino and its Dirac partner (the singlino) can play the role of right-handed neutrinos and generate the neutrino masses and mixing, without the need for traditional bilinear or trilinear R-parity violating operators. The two particles form a pseudo-Dirac pair, the “bi νo.” An inverse seesaw texture is generated for the neutrino-biνo sector, and the lightest neutrino is predicted to be massless. Lastly, unlike in most models with heavy right-handed neutrinos, the bi νo can be sizably produced at the LHC through its interactions with colored particles, while respecting low energy constraints from neutrinoless double-beta decay and charged lepton flavor violation.

  5. Lepton mass hierarchy and neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Fritzsch, Harald; Zhi-Zhong, Xing

    1996-02-01

    Starting from the symmetry of lepton flavor democracy, we propose and discuss a simple pattern for the mass generation and flavor mixing of the charged leptons and neutrinos. The three neutrino masses are nearly degenerate, and the flavor mixing angles can be calculated. The observed deficit of solar and atmospheric neutrinos can be interpreted as a consequence of the near degeneracy and large oscillations of νe, νμ and ντ in the vacuum. Our ansatz can also accommodate the cosmological requirement for hot dark matter and the current data on neutrinoless ββ-decay.

  6. Neutrino Experiments

    SciTech Connect

    McKeown, R. D.

    2010-08-04

    Recent studies of neutrino oscillations have established the existence of finite neutrino masses and mixing between generations of neutrinos. The combined results from studies of atmospheric neutrinos, solar neutrinos, reactor antineutrinos and neutrinos produced at accelerators paint an intriguing picture that clearly requires modification of the standard model of particle physics. These results also provide clear motivation for future neutrino oscillation experiments as well as searches for direct neutrino mass and nuclear double-beta decay. I will discuss the program of new neutrino oscillation experiments aimed at completing our knowledge of the neutrino mixing matrix.

  7. Higgs mass from neutrino-messenger mixing

    NASA Astrophysics Data System (ADS)

    Byakti, Pritibhajan; Khosa, Charanjit K.; Mummidi, V. S.; Vempati, Sudhir K.

    2017-03-01

    The discovery of the Higgs particle at 125 GeV has put strong constraints on minimal messenger models of gauge mediation, pushing the stop masses into the multi-TeV regime. Extensions of these models with matter-messenger mixing terms have been proposed to generate a large trilinear parameter, A t , relaxing these constraints. The detailed survey of these models [1, 2] so far considered messenger mixings with only MSSM superfields. In the present work, we extend the survey to MSSM with inverse-seesaw mechanism. The neutrino-sneutrino corrections to the Higgs mass in the inverse seesaw model are not significant in the minimal gauge mediation model, unless one considers messenger-matter interaction terms. We classify all possible models with messenger-matter interactions and perform thorough numerical analysis to find out the promising models. We found that out of the 17 possible models 9 of them can lead to Higgs mass within the observed value without raising the sfermion masses significantly. The successful models have stop masses ˜1.5 TeV with small or negligible mixing and yet a light CP even Higgs at 125 GeV.

  8. A model for pseudo-Dirac neutrinos: leptogenesis and ultra-high energy neutrinos

    NASA Astrophysics Data System (ADS)

    Ahn, Y. H.; Kang, Sin Kyu; Kim, C. S.

    2016-10-01

    We propose a model where sterile neutrinos are introduced to make light neutrinos to be pseudo-Dirac particles. It is shown how tiny mass splitting necessary for realizing pseudo-Dirac neutrinos can be achieved. Within the model, we show how leptogenesis can be successfully generated. Motivated by the recent observation of very high energy neutrino events at IceCube, we study a possibility to observe the effects of the pseudo-Dirac property of neutrinos by performing astronomical-scale baseline experiments to uncover the oscillation effects of very tiny mass splitting. We also discuss future prospect to observe the effects of the pseudo-Dirac property of neutrinos at high energy neutrino experiments.

  9. Minimal supergravity scalar neutrino dark matter and inverse seesaw neutrino masses.

    PubMed

    Arina, C; Bazzocchi, F; Fornengo, N; Romao, J C; Valle, J W F

    2008-10-17

    We show that within the inverse seesaw mechanism for generating neutrino masses, minimal supergravity naturally provides the scalar neutrino as the lightest superparticle. We also demonstrate that such schemes naturally reconcile the small neutrino masses with the correct relic scalar neutrino dark matter abundance and accessible direct detection rates in nuclear recoil experiments. This way, inverse seesaw minimal supergravity offers a common solution to the generation of the neutrino mass and to the origin of dark matter.

  10. Observables sensitive to absolute neutrino masses: Constraints and correlations from world neutrino data

    SciTech Connect

    Fogli, G.L.; Lisi, E.; Marrone, A.; Palazzo, A.; Melchiorri, A.; Serra, P.; Silk, J.

    2004-12-01

    In the context of three-flavor neutrino mixing, we present a thorough study of the phenomenological constraints applicable to three observables sensitive to absolute neutrino masses: The effective neutrino mass in Tritium beta-decay (m{sub {beta}}); the effective Majorana neutrino mass in neutrinoless double beta-decay (m{sub {beta}}{sub {beta}}); and the sum of neutrino masses in cosmology ({sigma}). We discuss the correlations among these variables which arise from the combination of all the available neutrino oscillation data, in both normal and inverse neutrino mass hierarchy. We set upper limits on m{sub {beta}} by combining updated results from the Mainz and Troitsk experiments. We also consider the latest results on m{sub {beta}}{sub {beta}} from the Heidelberg-Moscow experiment, both with and without the lower bound claimed by such experiment. We derive upper limits on {sigma} from an updated combination of data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite and the two degrees Fields (2dF) Galaxy Redshifts Survey, with and without Lyman-{alpha} forest data from the Sloan Digital Sky Survey (SDSS), in models with a nonzero running of the spectral index of primordial inflationary perturbations. The results are discussed in terms of two-dimensional projections of the globally allowed region in the (m{sub {beta}},m{sub {beta}}{sub {beta}},{sigma}) parameter space, which neatly show the relative impact of each data set. In particular, the (in)compatibility between {sigma} and m{sub {beta}}{sub {beta}} constraints is highlighted for various combinations of data. We also briefly discuss how future neutrino data (both oscillatory and nonoscillatory) can further probe the currently allowed regions.

  11. Observables sensitive to absolute neutrino masses. II

    SciTech Connect

    Fogli, G. L.; Marrone, A.; Rotunno, A. M.; Lisi, E.; Melchiorri, A.; Palazzo, A.; Silk, J.; Slosar, A.

    2008-08-01

    In this followup to Phys. Rev. D 75, 053001 (2007) , we report updated constraints on neutrino mass-mixing parameters, in light of recent neutrino oscillation data (KamLAND, SNO, and MINOS) and cosmological observations (WMAP 5-year and other data). We discuss their interplay with the final 0{nu}2{beta} decay results in {sup 76}Ge claimed by part of the Heidelberg-Moscow Collaboration, using recent evaluations of the corresponding nuclear matrix elements, and their uncertainties. We also comment on the 0{nu}2{beta} limits in {sup 130}Te recently set by Cuoricino and on prospective limits or signals from the Karlsruhe tritium neutrino experiment.

  12. Measurement of neutrino masses from relative velocities.

    PubMed

    Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Inman, Derek; Yu, Yu

    2014-09-26

    We present a new technique to measure neutrino masses using their flow field relative to dark matter. Present day streaming motions of neutrinos relative to dark matter and baryons are several hundred km/s, comparable with their thermal velocity dispersion. This results in a unique dipole anisotropic distortion of the matter-neutrino cross power spectrum, which is observable through the dipole distortion in the cross correlation of different galaxy populations. Such a dipole vanishes if not for this relative velocity and so it is a clean signature for neutrino mass. We estimate the size of this effect and find that current and future galaxy surveys may be sensitive to these signature distortions.

  13. Neutrino masses and ordering via multimessenger astronomy

    NASA Astrophysics Data System (ADS)

    Langæble, Kasper; Meroni, Aurora; Sannino, Francesco

    2016-09-01

    We define the theoretical framework and deduce the conditions under which multimessenger astronomy can provide useful information about neutrino masses and their ordering. The framework uses time differences between the arrival of neutrinos and the other light messenger, i.e. the graviton, emitted in astrophysical catastrophes. We also provide a preliminary feasibility study elucidating the experimental reach and challenges for planned neutrino detectors such as Hyper-Kamiokande as well as future several-megaton detectors. This study shows that future experiments can be useful in independently testing the cosmological bounds on absolute neutrino masses. Concretely, the success of such measurements depends crucially on the available rate of astrophysical events and further requires development of high resolution timing besides the need for megaton-size detectors.

  14. Zero minors of the neutrino mass matrix

    SciTech Connect

    Lashin, E. I.; Chamoun, N.

    2008-10-01

    We examine the possibility that a certain class of neutrino mass matrices, namely, those with two independent vanishing minors in the flavor basis, regardless of being invertible or not, is sufficient to describe current data. We compute generic formulas for the ratios of the neutrino masses and for the Majorana phases. We find that seven textures with two vanishing minors can accommodate the experimental data. We present an estimate of the mass matrix for these patterns. All of the possible textures can be dynamically generated through the seesaw mechanism augmented with a discrete Abelian symmetry.

  15. Constraining bilinear R-parity violation from neutrino masses

    NASA Astrophysics Data System (ADS)

    Góźdź, Marek; Kamiński, Wiesław A.

    2008-10-01

    We confront the R-parity violating minimal supersymmetric standard model with the neutrino oscillation data. Investigating the 1-loop particle-sparticle diagrams with additional bilinear insertions on the external neutrino lines we construct the relevant contributions to the neutrino mass matrix. A comparison of the so-obtained matrices with the experimental ones assuming normal or inverted hierarchy and taking into account possible CP-violating phases allows to set constraints on the values of the bilinear coupling constants. A similar calculation is presented with the input from the Heidelberg-Moscow neutrinoless double beta decay experiment. We base our analysis on the renormalization group evolution of the minimal supersymmetric standard model parameters which are unified at the grand unified theory scale. Using the obtained bounds we calculate the contributions to the Majorana neutrino transition magnetic moments.

  16. Small Neutrino Masses from Supersymmetry Breaking

    SciTech Connect

    Arkani-Hamed, Nima; Hall, Lawrence; Murayama, Hitoshi; Smith, David; Weiner, Neal

    2000-06-27

    An alternative to the conventional see-saw mechanism is proposed to explain the origin of small neutrino masses in supersymmetric theories. The masses and couplings of the right-handed neutrino field are suppressed by supersymmetry breaking, in a way similar to the suppression of the Higgs doublet mass, $\\mu$. New mechanisms for light Majorana, Dirac and sterile neutrinos arise, depending on the degree of suppression. Superpartner phenomenology is greatly altered by the presence of weak scale right-handed sneutrinos, which may have a coupling to a Higgs boson and a left-handed sneutrino. The sneutrino spectrum and couplings are quite unlike the conventional case - the lightest sneutrino can be the dark matter and predictions are given for event rates at upcoming halo dark matter direct detection experiments. Higgs decays and search strategies are changed. Copious Higgs production at hadron colliders can result from cascade decays of squarks and gluinos.

  17. Probing neutrino masses with CMB lensing extraction

    SciTech Connect

    Lesgourgues, Julien; Perotto, Laurence; Pastor, Sergio; Piat, Michel

    2006-02-15

    We evaluate the ability of future cosmic microwave background (CMB) experiments to measure the power spectrum of large scale structure using quadratic estimators of the weak lensing deflection field. We calculate the sensitivity of upcoming CMB experiments such as BICEP, QUaD, BRAIN, ClOVER and Planck to the nonzero total neutrino mass M{sub {nu}} indicated by current neutrino oscillation data. We find that these experiments greatly benefit from lensing extraction techniques, improving their one-sigma sensitivity to M{sub {nu}} by a factor of order four. The combination of data from Planck and the SAMPAN mini-satellite project would lead to {sigma}(M{sub {nu}}){approx}0.1 eV, while a value as small as {sigma}(M{sub {nu}}){approx}0.035 eV is within the reach of a space mission based on bolometers with a passively cooled 3-4 m aperture telescope, representative of the most ambitious projects currently under investigation. We show that our results are robust not only considering possible difficulties in subtracting astrophysical foregrounds from the primary CMB signal but also when the minimal cosmological model ({lambda} Mixed Dark Matter) is generalized in order to include a possible scalar tilt running, a constant equation-of-state parameter for the dark energy and/or extra relativistic degrees of freedom.

  18. Improvement of cosmological neutrino mass bounds

    NASA Astrophysics Data System (ADS)

    Giusarma, Elena; Gerbino, Martina; Mena, Olga; Vagnozzi, Sunny; Ho, Shirley; Freese, Katherine

    2016-10-01

    The most recent measurements of the temperature and low-multipole polarization anisotropies of the cosmic microwave background from the Planck satellite, when combined with galaxy clustering data from the Baryon Oscillation Spectroscopic Survey in the form of the full shape of the power spectrum, and with baryon acoustic oscillation measurements, provide a 95% confidence level (C.L.) upper bound on the sum of the three active neutrinos ∑mν<0.183 eV , among the tightest neutrino mass bounds in the literature, to date, when the same data sets are taken into account. This very same data combination is able to set, at ˜70 % C.L., an upper limit on ∑mν of 0.0968 eV, a value that approximately corresponds to the minimal mass expected in the inverted neutrino mass hierarchy scenario. If high-multipole polarization data from Planck is also considered, the 95% C.L. upper bound is tightened to ∑mν<0.176 eV . Further improvements are obtained by considering recent measurements of the Hubble parameter. These limits are obtained assuming a specific nondegenerate neutrino mass spectrum; they slightly worsen when considering other degenerate neutrino mass schemes. Low-redshift quantities, such as the Hubble constant or the reionization optical depth, play a very important role when setting the neutrino mass constraints. We also comment on the eventual shifts in the cosmological bounds on ∑mν when possible variations in the former two quantities are addressed.

  19. Explaining solar neutrinos with heavy Higgs masses in partial split supersymmetry

    SciTech Connect

    Diaz, Marco Aurelio; Garay, Francisca; Koch, Benjamin

    2009-12-01

    Partial Split Supersymmetry with violation of R-parity as a model for neutrino masses is explored. It is shown that at the one-loop level the model can give predictions that are in agreement with all present experimental values for the neutrino sector. An analytical result is that the small solar neutrino mass difference can be naturally explained in the decoupling limit for the heavy Higgs mass eigenstates.

  20. Challenges Confronting Superluminal Neutrino Models

    NASA Astrophysics Data System (ADS)

    Evslin, Jarah

    2012-12-01

    This talk opens the CosPA2011 session on OPERA's superluminal neutrino claim. I summarize relevant observations and constraints from OPERA, MINOS, ICARUS, KamLAND, IceCube and LEP as well as observations of SN1987A. I selectively review some models of neutrino superluminality which have been proposed since OPERA's announcement, focusing on a neutrino dark energy model. Powerful theoretical constraints on these models arise from Cohen-Glashow bremsstrahlung and from phase space requirements for the initial neutrino production. I discuss these constraints and how they might be evaded in models in which the maximum velocities of both neutrinos and charged leptons are equal but only superluminal inside of a dense medium.

  1. Neutrino mass hierarchy determination using reactor antineutrinos

    NASA Astrophysics Data System (ADS)

    Ghoshal, Pomita; Petcov, S. T.

    2011-03-01

    Building on earlier studies, we investigate the possibility to determine the type of neutrino mass spectrum (i.e., "the neutrino mass hierarchy") in a high statistics reactor {bar{ν }_e} experiment with a relatively large KamLAND-like detector and an optimal baseline of 60 Km. We analyze systematically the Fourier Sine and Cosine Transforms (FST and FCT) of simulated reactor antineutrino data with reference to their specific mass hierarchy-dependent features discussed earlier in the literature. We perform also a binned χ 2 analysis of the sensitivity of simulated reactor {bar{ν }_e} event spectrum data to the neutrino mass hierarchy, and determine, in particular, the characteristics of the detector and the experiment (energy resolution, visible energy threshold, exposure, systematic errors, binning of data, etc.), which would allow us to get significant information on, or even determine, the type of the neutrino mass spectrum. We find that if sin2 2 θ 13 is sufficiently large, sin2 2 θ 13 ≳ 0 .02, the requirements on the set-up of interest are very challenging, but not impossible to realize.

  2. Shedding light on neutrino masses with dark forces

    DOE PAGES

    Batell, Brian; Pospelov, Maxim; Shuve, Brian

    2016-08-08

    Heavy right-handed neutrinos, N , provide the simplest explanation for the origin of light neutrino masses and mixings. If MN is at or below the weak scale, direct experimental discovery of these states is possible at accelerator experiments such as the LHC or new dedicated beam dump experiments; in these experiments, N decays after traversing a macroscopic distance from the collision point. The experimental sensitivity to right-handed neutrinos is significantly enhanced if there is a new “dark” gauge force connecting them to the Standard Model (SM), and detection of N can be the primary discovery mode for the new darkmore » force itself. We take the well-motivated example of a B – L gauge symmetry and analyze the sensitivity to displaced decays of N produced via the new gauge interaction in two experiments: the LHC and the proposed SHiP beam dump experiment. In the most favorable case in which the mediator can be produced on-shell and decays to right handed neutrinos (pp → X + VB–L → X + N N ), the sensitivity reach is controlled by the square of the B – L gauge coupling. Here, we demonstrate that these experiments could access neutrino parameters responsible for the observed SM neutrino masses and mixings in the most straightforward implementation of the see-saw mechanism.« less

  3. Shedding light on neutrino masses with dark forces

    SciTech Connect

    Batell, Brian; Pospelov, Maxim; Shuve, Brian

    2016-08-08

    Heavy right-handed neutrinos, N , provide the simplest explanation for the origin of light neutrino masses and mixings. If MN is at or below the weak scale, direct experimental discovery of these states is possible at accelerator experiments such as the LHC or new dedicated beam dump experiments; in these experiments, N decays after traversing a macroscopic distance from the collision point. The experimental sensitivity to right-handed neutrinos is significantly enhanced if there is a new “dark” gauge force connecting them to the Standard Model (SM), and detection of N can be the primary discovery mode for the new dark force itself. We take the well-motivated example of a B – L gauge symmetry and analyze the sensitivity to displaced decays of N produced via the new gauge interaction in two experiments: the LHC and the proposed SHiP beam dump experiment. In the most favorable case in which the mediator can be produced on-shell and decays to right handed neutrinos (pp → X + VB–L → X + N N ), the sensitivity reach is controlled by the square of the B – L gauge coupling. Here, we demonstrate that these experiments could access neutrino parameters responsible for the observed SM neutrino masses and mixings in the most straightforward implementation of the see-saw mechanism.

  4. Shedding light on neutrino masses with dark forces

    NASA Astrophysics Data System (ADS)

    Batell, Brian; Pospelov, Maxim; Shuve, Brian

    2016-08-01

    Heavy right-handed neutrinos, N , provide the simplest explanation for the origin of light neutrino masses and mixings. If M N is at or below the weak scale, direct experimental discovery of these states is possible at accelerator experiments such as the LHC or new dedicated beam dump experiments; in these experiments, N decays after traversing a macroscopic distance from the collision point. The experimental sensitivity to right-handed neutrinos is significantly enhanced if there is a new "dark" gauge force connecting them to the Standard Model (SM), and detection of N can be the primary discovery mode for the new dark force itself. We take the well-motivated example of a B - L gauge symmetry and analyze the sensitivity to displaced decays of N produced via the new gauge interaction in two experiments: the LHC and the proposed SHiP beam dump experiment. In the most favorable case in which the mediator can be produced on-shell and decays to right handed neutrinos ( pp → X + V B- L → X + N N ), the sensitivity reach is controlled by the square of the B - L gauge coupling. We demonstrate that these experiments could access neutrino parameters responsible for the observed SM neutrino masses and mixings in the most straightforward implementation of the see-saw mechanism.

  5. Universal Extra Dimension models with right-handed neutrinos

    SciTech Connect

    Matsumoto, Shigeki; Sato, Joe; Yamanaka, Masato; Senami, Masato

    2008-04-21

    Relic abundance of dark matter is investigated in the framework of universal extra dimension (UED) models with right-handed neutrinos. These models are free from the KK graviton problem in the minimal UED model. The first KK particle of the right-handed neutrino is a dark matter candidate in this framework. When ordinary neutrino masses are large enough such as the degenerate mass spectrum case, the dark matter relic abundance can increase significantly. The scale of the extra dimension consistent with cosmological observations can be 500 GeV in the minimal setup of UED models with right-handed neutrinos.

  6. Neutrino Mass Seesaw Version 3: Recent Developments

    SciTech Connect

    Ma, Ernest

    2009-04-20

    The origin of neutrino mass is usually attributed to a seesaw mechanism, either through a heavy Majorana fermion singlet (version 1) or a heavy scalar triplet (version 2). Recently, the idea of using a heavy Majorana fermion triplet (version 3) has gained some attention. This is a review of the basic idea involved, its U(1) gauge extension, and some recent developments.

  7. Cosmic Neutrinos

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2008-02-01

    I recall the place of neutrinos in the electroweak theory and summarize what we know about neutrino mass and flavor change. I next review the essential characteristics expected for relic neutrinos and survey what we can say about the neutrino contribution to the dark matter of the Universe. Then I discuss the standard-model interactions of ultrahigh-energy neutrinos, paying attention to the consequences of neutrino oscillations, and illustrate a few topics of interest to neutrino observatories. I conclude with short comments on the remote possibility of detecting relic neutrinos through annihilations of ultrahigh-energy neutrinos at the Z resonance.

  8. Unique forbidden beta decays and neutrino mass

    SciTech Connect

    Dvornický, Rastislav; Šimkovic, Fedor

    2015-10-28

    The measurement of the electron energy spectrum in single β decays close to the endpoint provides a direct determination of the neutrino masses. The most sensitive experiments use β decays with low Q value, e.g. KATRIN (tritium) and MARE (rhenium). We present the theoretical spectral shape of electrons emitted in the first, second, and fourth unique forbidden β decays. Our findings show that the Kurie functions for these unique forbidden β transitions are linear in the limit of massless neutrinos like the Kurie function of the allowed β decay of tritium.

  9. Late Time Neutrino Masses, the LSND Experiment and the Cosmic Microwave Background

    SciTech Connect

    Chacko, Z.; Hall, Lawrence J.; Oliver, Steven J.; Perelstein, Maxim

    2004-05-07

    Models with low-scale breaking of global symmetries in the neutrino sector provide an alternative to the seesaw mechanism for understanding why neutrinos are light. Such models can easily incorporate light sterile neutrinos required by the LSND experiment. Furthermore, the constraints on the sterile neutrino properties from nucleosynthesis and large scale structure can be removed due to the non-conventional cosmological evolution of neutrino masses and densities. We present explicit, fully realistic supersymmetric models, and discuss the characteristic signatures predicted in the angular distributions of the cosmic microwave background.

  10. Measuring neutrino masses with a future galaxy survey

    SciTech Connect

    Hamann, Jan; Hannestad, Steen; Wong, Yvonne Y.Y. E-mail: sth@phys.au.dk

    2012-11-01

    We perform a detailed forecast on how well a EUCLID-like photometric galaxy and cosmic shear survey will be able to constrain the absolute neutrino mass scale. Adopting conservative assumptions about the survey specifications and assuming complete ignorance of the galaxy bias, we estimate that the minimum mass sum of Σm{sub ν} ≅ 0.06 eV in the normal hierarchy can be detected at 1.5σ to 2.5σ significance, depending on the model complexity, using a combination of galaxy and cosmic shear power spectrum measurements in conjunction with CMB temperature and polarisation observations from PLANCK. With better knowledge of the galaxy bias, the significance of the detection could potentially reach 5.4σ. Interestingly, neither PLANCK+shear nor PLANCK+galaxy alone can achieve this level of sensitivity; it is the combined effect of galaxy and cosmic shear power spectrum measurements that breaks the persistent degeneracies between the neutrino mass, the physical matter density, and the Hubble parameter. Notwithstanding this remarkable sensitivity to Σm{sub ν}, EUCLID-like shear and galaxy data will not be sensitive to the exact mass spectrum of the neutrino sector; no significant bias ( < 1σ) in the parameter estimation is induced by fitting inaccurate models of the neutrino mass splittings to the mock data, nor does the goodness-of-fit of these models suffer any significant degradation relative to the true one (Δχ{sub eff}{sup 2} < 1)

  11. QLC relation and neutrino mass hierarchy

    SciTech Connect

    Ferrandis, Javier; Pakvasa, Sandip

    2005-01-27

    Latest measurements have revealed that the deviation from a maximal solar mixing angle is approximately the Cabibbo angle, i.e., QLC relation. We argue that it is not plausible that this deviation from maximality, be it a coincidence or not, comes from the charged lepton mixing. Consequently we have calculated the required corrections to the exactly bimaximal neutrino mass matrix ansatz necessary to account for the solar mass difference and the solar mixing angle. We point out that the relative size of these two corrections depends strongly on the hierarchy case under consideration. We find that the inverted hierarchy case with opposite CP parities, which is known to guarantee the RGE stability of the solar mixing angle, offers the most plausible scenario for a high energy origin of a QLC-corrected bimaximal neutrino mass matrix. This possibility may allow us to explain the QLC relation in connection with the origin of the charged fermion mass matrices.

  12. One vanishing minor in the neutrino mass matrix

    SciTech Connect

    Lashin, E. I.; Chamoun, N.

    2009-11-01

    We study a specific texture of the neutrino mass matrix, namely the models with one 2x2 subdeterminant equal to zero. We carry out a complete phenomenological analysis with all possible relevant correlations. Every pattern of the six possible ones is found able to accommodate the experimental data, with three cases allowing also for noninvertible mass matrices. We present symmetry realizations for all the models.

  13. Bilarge neutrino mixing and mass of the lightest neutrino from third generation dominance in a democratic approach

    NASA Astrophysics Data System (ADS)

    Dermíšek, Radovan

    2004-08-01

    We show that both small mixing in the quark sector and large mixing in the lepton sector can be obtained from a simple assumption of universality of Yukawa couplings and the right-handed neutrino Majorana mass matrix in leading order. We discuss conditions under which bilarge mixing in the lepton sector is achieved with a minimal amount of fine-tuning requirements for possible models. From knowledge of the solar and atmospheric mixing angles we determine the allowed values of sin θ13. If embedded into grand unified theories, the third generation Yukawa coupling unification is a generic feature while masses of the first two generations of charged fermions depend on small perturbations. In the neutrino sector, the heavier two neutrinos are model dependent, while the mass of the lightest neutrino in this approach does not depend on perturbations in the leading order. The right-handed neutrino mass scale can be identified with the GUT scale in which case the mass of the lightest neutrino is given as (m2top/MGUT)sin2 θ23 sin2 θ12 in the limit sin θ13≃0. Discussing symmetries we make a connection with hierarchical models and show that the basis independent characteristic of this scenario is a strong dominance of the third generation right-handed neutrino, M1,M2<10-4M3, M3=MGUT.

  14. Phenomenological study of extended seesaw model for light sterile neutrino

    NASA Astrophysics Data System (ADS)

    Nath, Newton; Ghosh, Monojit; Goswami, Srubabati; Gupta, Shivani

    2017-03-01

    We study the zero textures of the Yukawa matrices in the minimal extended type-I seesaw (MES) model which can give rise to ˜ eV scale sterile neutrinos. In this model, three right handed neutrinos and one extra singlet S are added to generate a light sterile neutrino. The light neutrino mass matrix for the active neutrinos, m ν , depends on the Dirac neutrino mass matrix ( M D ), Majorana neutrino mass matrix ( M R ) and the mass matrix ( M S ) coupling the right handed neutrinos and the singlet. The model predicts one of the light neutrino masses to vanish. We systematically investigate the zero textures in M D and observe that maximum five zeros in M D can lead to viable zero textures in m ν . For this study we consider four different forms for M R (one diagonal and three off diagonal) and two different forms of ( M S ) containing one zero. Remarkably we obtain only two allowed forms of m ν ( m eτ = 0 and m ττ = 0) having inverted hierarchical mass spectrum. We re-analyze the phenomenological implications of these two allowed textures of m ν in the light of recent neutrino oscillation data. In the context of the MES model, we also express the low energy mass matrix, the mass of the sterile neutrino and the active-sterile mixing in terms of the parameters of the allowed Yukawa matrices. The MES model leads to some extra correlations which disallow some of the Yukawa textures obtained earlier, even though they give allowed one-zero forms of m ν . We show that the allowed textures in our study can be realized in a simple way in a model based on MES mechanism with a discrete Abelian flavor symmetry group Z 8 × Z 2.

  15. Generalized mass ordering degeneracy in neutrino oscillation experiments

    SciTech Connect

    Coloma, Pilar; Schwetz, Thomas

    2016-09-07

    Here, we consider the impact of neutral-current (NC) nonstandard neutrino interactions (NSI) on the determination of the neutrino mass ordering. We show that in the presence of NSI there is an exact degeneracy which makes it impossible to determine the neutrino mass ordering and the octant of the solar mixing angle θ12 at oscillation experiments. The degeneracy holds at the probability level and for arbitrary matter density profiles, and hence solar, atmospheric, reactor, and accelerator neutrino experiments are affected simultaneously. The degeneracy requires order-1 corrections from NSI to the NC electron neutrino-quark interaction and can be tested in electron neutrino NC scattering experiments.

  16. Neutrino '88. Proceedings.

    NASA Astrophysics Data System (ADS)

    Schneps, J.; Kafka, T.; Mann, W. A.; Nath, P.

    Contents: 1. Neutrino mass. 2. Neutrino oscillations. 3. Double beta decay. 4. Solar neutrinos. 5. Neutrinos from supernovae. 6. Neutrino interactions at accelerators. 7. New detectors for neutrino processes. 8. Neutrino interactions at accelerators II. 9. W, Z, and the standard model. 10. "Fred Reines at 70" Fest. 11. Nucleon decay, the standard model, and beyond. 12. Neutrinos: Earth, atmosphere, Sun, and galaxies. 13. Dark matter and cosmology. 14. Theoretical topics. 15. Future prospects.

  17. Implications of 4 texture zeros mass matrices for neutrino anomalies

    NASA Astrophysics Data System (ADS)

    Gill, P. S.; Gupta, Manmohan

    1998-04-01

    Phenomenological 4 texture zeros mass matrices, successful in accommodating the CKM phenomenology, are used to simultaneously explain the three neutrino anomalies: the solar neutrino problem (SNP), the atmospheric neutrino problem (ANP), and the LSND anomaly. When the SNP is resolved through vacuum oscillations, we obtain a solution implying large mixing. In case the SNP is resolved through the MSW mechanism, the neutrino masses follow a ``natural'' hierarchy.

  18. The halo model in a massive neutrino cosmology

    SciTech Connect

    Massara, Elena; Villaescusa-Navarro, Francisco; Viel, Matteo E-mail: villaescusa@oats.inaf.it

    2014-12-01

    We provide a quantitative analysis of the halo model in the context of massive neutrino cosmologies. We discuss all the ingredients necessary to model the non-linear matter and cold dark matter power spectra and compare with the results of N-body simulations that incorporate massive neutrinos. Our neutrino halo model is able to capture the non-linear behavior of matter clustering with a ∼20% accuracy up to very non-linear scales of k = 10 h/Mpc (which would be affected by baryon physics). The largest discrepancies arise in the range k = 0.5 – 1 h/Mpc where the 1-halo and 2-halo terms are comparable and are present also in a massless neutrino cosmology. However, at scales k < 0.2 h/Mpc our neutrino halo model agrees with the results of N-body simulations at the level of 8% for total neutrino masses of < 0.3 eV. We also model the neutrino non-linear density field as a sum of a linear and clustered component and predict the neutrino power spectrum and the cold dark matter-neutrino cross-power spectrum up to k = 1 h/Mpc with ∼30% accuracy. For masses below 0.15 eV the neutrino halo model captures the neutrino induced suppression, casted in terms of matter power ratios between massive and massless scenarios, with a 2% agreement with the results of N-body/neutrino simulations. Finally, we provide a simple application of the halo model: the computation of the clustering of galaxies, in massless and massive neutrinos cosmologies, using a simple Halo Occupation Distribution scheme and our halo model extension.

  19. Neutrino mass hierarchy and stepwise spectral swapping of supernova neutrino flavors.

    PubMed

    Duan, Huaiyu; Fuller, George M; Carlson, J; Qian, Yong-Zhong

    2007-12-14

    We examine a phenomenon recently predicted by numerical simulations of supernova neutrino flavor evolution: the swapping of supernova nu(e) and nu(mu,tau) energy spectra below (above) energy E(C) for the normal (inverted) neutrino mass hierarchy. We present the results of large-scale numerical calculations which show that in the normal neutrino mass hierarchy case, E(C) decreases as the assumed effective 2x2 vacuum nu(e)<==>nu(mu,tau) mixing angle (approximately theta13) is decreased. In contrast, these calculations indicate that E(C) is essentially independent of the vacuum mixing angle in the inverted neutrino mass hierarchy case. With a good neutrino signal from a future galactic supernova, the above results could be used to determine the neutrino mass hierarchy even if theta13 is too small to be measured by terrestrial neutrino oscillation experiments.

  20. CP violating phase from minimal texture neutrino mass matrix: Test of the phase relevant to leptogenesis

    NASA Astrophysics Data System (ADS)

    Fukugita, Masataka; Kaneta, Yuya; Shimizu, Yusuke; Tanimoto, Morimitsu; Yanagida, Tsutomu T.

    2017-01-01

    The model of neutrino mass matrix with minimal texture is now tightly constrained by experiment so that it can yield a prediction for the phase of CP violation. This phase is predicted to lie in the range δCP = 0.77 π- 1.24 π. If neutrino oscillation experiment would find the CP violation phase outside this range, this means that the minimal-texture neutrino mass matrix, the element of which is all real, fails and the neutrino mass matrix must be complex, i.e., the phase must be present that is responsible for leptogenesis.

  1. Measuring neutrino masses with weak lensing

    SciTech Connect

    Wong, Yvonne Y. Y.

    2006-11-17

    Weak gravitational lensing of distant galaxies by large scale structure (LSS) provides an unbiased way to map the matter distribution in the low redshift universe. This technique, based on the measurement of small distortions in the images of the source galaxies induced by the intervening LSS, is expected to become a key cosmological probe in the future. We discuss how future lensing surveys can probe the sum of the neutrino masses at the 0 05 eV level.

  2. Neutrinos

    PubMed Central

    Besson, Dave; Cowen, Doug; Selen, Mats; Wiebusch, Christopher

    1999-01-01

    Neutrinos represent a new “window” to the Universe, spanning a large range of energy. We discuss the science of neutrino astrophysics and focus on two energy regimes. At “lower” energies (≈1 MeV), studies of neutrinos born inside the sun, or produced in interactions of cosmic rays with the atmosphere, have allowed the first incontrovertible evidence that neutrinos have mass. At energies typically one thousand to one million times higher, sources further than the sun (both within the Milky Way and beyond) are expected to produce a flux of particles that can be detected only through neutrinos. PMID:10588680

  3. Supernovae, neutrino rest mass, and the middle-energy neutrino background in the universe

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Seidov, Z. F.

    Neutrinos emitted during the formation of the neutron stars and black holes form, together with relict microwave radiation and relict neutrinos, a background for the present universe. The energy of the kind of neutrino emitted in neutron star formation, at 3-30 MeV, is much greater than that of relict neutrinos and much smaller than that of the cosmic ray neutrinos; they are accordingly designated 'middle energy neutrinos' (MENs). It is presently shown that the MEN background's density, at 2-10 x 10 to the -33rd gm/cu cm, is greater than the density of relict microwave radiation and less than the density of matter. The MEN spectra presently calculated yield 0.002 to 0.008 solar neutrino units in the solar chlorine-argon detector. Possible neutrino rest mass effects are discussed for the cases of expanding universe propagation and MEN background spatial structure.

  4. Constraints on the relic neutrino abundance and implications for cosmological neutrino mass limits

    SciTech Connect

    Bell, Nicole F.; /Fermilab

    2004-01-01

    The authors examine a mechanism which can lead to flavor transformation of neutrino-antineutrino asymmetries in the early universe, a process which is unavoidable when the neutrino mixing angles are large. This sets the best limit on the lepton number of the universe, and hence on the relic neutrino abundance. They also consider the consequences for the relic neutrino abundance if extra neutrino interactions are allowed, e.g., the coupling of the neutrinos to a light (compared to m{sub {nu}}) boson. For a wide range of couplings not excluded by other considerations, the relic neutrinos would annihilate to bosons at late times, and thus make a negligible contribution to the matter density today. This mechanism evades the neutrino mass limits arising from large scale structure.

  5. Neutrinoless double beta decay and neutrino mass

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.; Ejiri, H.; Šimkovic, F.

    2016-11-01

    The observation of neutrinoless double beta decay (DBD) will have important consequences. First it will signal that lepton number is not conserved and the neutrinos are Majorana particles. Second, it represents our best hope for determining the absolute neutrino mass scale at the level of a few tens of meV. To achieve the last goal, however, certain hurdles have to be overcome involving particle, nuclear and experimental physics. Particle physics is important since it provides the mechanisms for neutrinoless DBD. In this review, we emphasize the light neutrino mass mechanism. Nuclear physics is important for extracting the useful information from the data. One must accurately evaluate the relevant nuclear matrix elements (NMEs), a formidable task. To this end, we review the recently developed sophisticated nuclear structure approaches, employing different methods and techniques of calculation. We also examine the question of quenching of the axial vector coupling constant, which may have important consequences on the size of the NMEs. From an experimental point of view it is challenging, since the life times are extremely long and one has to fight against formidable backgrounds. One needs large isotopically enriched sources and detectors with good energy resolution and very low background.

  6. Three-loop neutrino mass model with a colored triplet scalar

    NASA Astrophysics Data System (ADS)

    Cheung, Kingman; Nomura, Takaaki; Okada, Hiroshi

    2017-01-01

    We study a variation of the Krauss-Nasri-Trodden model with a colored triplet scalar field and a colored singlet scalar field. We discuss the anomaly coming from b →s μ μ ¯, fit to the muon anomalous magnetic moment and the relic density of the Majorana-type dark matter candidate, and satisfy various constraints such as lepton flavor violations and flavor-changing neutral currents. Also, we discuss the direct constraints from the collider searches and the possibilities of detecting the new fields at the LHC.

  7. Gravity effects on neutrino masses in split supersymmetry

    SciTech Connect

    Diaz, Marco Aurelio; Koch, Benjamin; Panes, Boris

    2009-06-01

    The mass differences and mixing angles of neutrinos can neither be explained by R-parity violating split supersymmetry nor by flavor blind quantum gravity alone. It is shown that combining both effects leads, within the allowed parameter range, to good agreement with the experimental results. The atmospheric mass is generated by supersymmetry through mixing between neutrinos and neutralinos, while the solar mass is generated by gravity through flavor blind dimension five operators. Maximal atmospheric mixing forces the tangent squared of the solar angle to be equal to 1/2. The scale of the quantum gravity operator is predicted within a 5% error, implying that the reduced Planck scale should lie around the grand unified theory scale. In this way, the model is very predictive and can be tested at future experiments.

  8. Neutrino Mass from Beta Decay of the Free Neutron

    NASA Astrophysics Data System (ADS)

    Tegen, R.; Miller, H. G.

    We calculate the beta decay rate of the free neutron including effects due to (i) a neutrino mass around 1 eV, (ii) deviations from the leptonic V-A structure, (iii) nucleon form factors F1,2V (q2), GA(q2), and (iv) W- propagation. At the end-point energies linear neutrino mass effects in n -> p + e- + ¯ {ν }e are almost exclusively kinematical. If the neutrino spectrum is (almost) degenerate, neutrino oscillations cannot uniquely determine the mass of the neutrino, and direct mass determinations become necessary. The traditional Kurie plot and a partially integrated decay rate are found to be sensitive to a neutrino mass between 1 eV and 3 eV.

  9. Testable radiative neutrino mass model without additional symmetries and explanation for the b →s ℓ+ℓ- anomaly

    NASA Astrophysics Data System (ADS)

    Cheung, Kingman; Nomura, Takaaki; Okada, Hiroshi

    2016-12-01

    We propose a one-loop radiative Majorana-type neutrino-mass matrix without any kind of additional symmetries by introducing two leptoquark-like bosons only. In this scenario, we show that the anomaly appearing in the process b →s ℓℓ ¯ can be explained without any conflicts against various constraints such as lepton-flavor violations, flavor-changing neutral currents, oblique parameters Δ S , Δ T , and the Drell-Yan process. We make the predictions for the flavor-violating lepton-pair production (e μ , e τ , and μ τ ) at the LHC, as well as the cross sections for pair production of these leptoquark-like bosons.

  10. Common origin of neutrino mass, dark matter and Dirac leptogenesis

    NASA Astrophysics Data System (ADS)

    Borah, Debasish; Dasgupta, Arnab

    2016-12-01

    We study the possibility of generating tiny Dirac neutrino masses at one loop level through the scotogenic mechanism such that one of the particles going inside the loop can be a stable cold dark matter (DM) candidate. Majorana mass terms of singlet fermions as well as tree level Dirac neutrino masses are prevented by incorporating the presence of additional discrete symmetries in a minimal fashion, which also guarantee the stability of the dark matter candidate. Due to the absence of total lepton number violation, the observed baryon asymmetry of the Universe is generated through the mechanism of Dirac leptogenesis where an equal and opposite amount of leptonic asymmetry is generated in the left and right handed sectors which are prevented from equilibration due to tiny Dirac Yukawa couplings. Dark matter relic abundance is generated through its usual freeze-out at a temperature much below the scale of leptogenesis. We constrain the relevant parameter space from neutrino mass, baryon asymmetry, Planck bound on dark matter relic abundance, and latest LUX bound on spin independent DM-nucleon scattering cross section. We also discuss the charged lepton flavour violation (μ → e γ) and electric dipole moment of electron in this model in the light of the latest experimental data and constrain the parameter space of the model.

  11. Challenging the Neutrino Mass with Cuore

    NASA Astrophysics Data System (ADS)

    Ferroni, F.

    2008-06-01

    One of the fundamental questions still open in elementary particle is the nature of the neutrino mass. Whether Dirac or Majorana, its knowledge would deeply impact the development of the field. Double Beta Decay experiments are, although extremely challenging, the only way known that might give an answer to the question. In this paper one of the second generation experiment that aims to get the sensitivity for probing the inverted hierarchy will be discussed. It is CUORE, in preparation at the Gran Sasso underground laboratories of INFN.

  12. Upper bound on neutrino mass based on T2K neutrino timing measurements

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haegel, L.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, R. A.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; King, S.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Koga, T.; Kolaceke, A.; Konaka, A.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Riccio, C.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaker, F.; Shaw, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2016-01-01

    The Tokai to Kamioka (T2K) long-baseline neutrino experiment consists of a muon neutrino beam, produced at the J-PARC accelerator, a near detector complex and a large 295-km-distant far detector. The present work utilizes the T2K event timing measurements at the near and far detectors to study neutrino time of flight as a function of derived neutrino energy. Under the assumption of a relativistic relation between energy and time of flight, constraints on the neutrino rest mass can be derived. The sub-GeV neutrino beam in conjunction with timing precision of order tens of ns provide sensitivity to neutrino mass in the few MeV /c2 range. We study the distribution of relative arrival times of muon and electron neutrino candidate events at the T2K far detector as a function of neutrino energy. The 90% C.L. upper limit on the mixture of neutrino mass eigenstates represented in the data sample is found to be mν2<5.6 MeV2/c4 .

  13. Degeneracy effects of neutrino mass ejection in supernovae

    NASA Technical Reports Server (NTRS)

    Mazurek, T. J.

    1974-01-01

    A neutrino mechanism is discussed in order to explain supernovae in massive stars. An argument is presented for supernova mass ejection through leptonic neutrino transport characteristics suppressed by the arbitrary zero chemical potential condition. Results show that lepton conservation effects may be important in supernova neutrino transport. At low temperature and density the diffusion approximation becomes less precise because of the long mean free paths of low energy neutrinos. The amount of equilibrium neutrino spectrum affected here is small over most of the collapsing supernova structure.

  14. Prospects for constraining neutrino mass using Planck and Lyman-{alpha} forest data

    SciTech Connect

    Gratton, Steven; Lewis, Antony; Efstathiou, George

    2008-04-15

    In this paper we investigate how well Planck and Lyman-{alpha} forest data will be able to constrain the sum of the neutrino masses, and thus, in conjunction with flavor oscillation experiments, be able to determine the absolute masses of the neutrinos. It seems possible that Planck, together with a Lyman-{alpha} survey, will be able to put pressure on an inverted hierarchial model for the neutrino masses. However, even for optimistic assumptions of the precision of future Lyman-{alpha} data sets, it will not be possible to confirm a minimal-mass normal hierarchy.

  15. Sneutrino dark matter in gauged inverse seesaw models for neutrinos.

    PubMed

    An, Haipeng; Dev, P S Bhupal; Cai, Yi; Mohapatra, R N

    2012-02-24

    Extending the minimal supersymmetric standard model to explain small neutrino masses via the inverse seesaw mechanism can lead to a new light supersymmetric scalar partner which can play the role of inelastic dark matter (IDM). It is a linear combination of the superpartners of the neutral fermions in the theory (the light left-handed neutrino and two heavy standard model singlet neutrinos) which can be very light with mass in ~5-20 GeV range, as suggested by some current direct detection experiments. The IDM in this class of models has keV-scale mass splitting, which is intimately connected to the small Majorana masses of neutrinos. We predict the differential scattering rate and annual modulation of the IDM signal which can be testable at future germanium- and xenon-based detectors.

  16. Neutrino mass matrices with two vanishing cofactors and Fritzsch texture for charged lepton mass matrix

    NASA Astrophysics Data System (ADS)

    Wang, Weijian; Guo, Shu-Yuan; Wang, Zhi-Gang

    2016-04-01

    In this paper, we study the cofactor 2 zero neutrino mass matrices with the Fritzsch-type structure in charged lepton mass matrix (CLMM). In the numerical analysis, we perform a scan over the parameter space of all the 15 possible patterns to get a large sample of viable scattering points. Among the 15 possible patterns, three of them can accommodate the latest lepton mixing and neutrino mass data. We compare the predictions of the allowed patterns with their counterparts with diagonal CLMM. In this case, the severe cosmology bound on the neutrino mass set a strong constraint on the parameter space, rendering two patterns only marginally allowed. The Fritzsch-type CLMM will have impact on the viable parameter space and give rise to different phenomenological predictions. Each allowed pattern predicts the strong correlations between physical variables, which is essential for model selection and can be probed in future experiments. It is found that under the no-diagonal CLMM, the cofactor zeros structure in neutrino mass matrix is unstable as the running of renormalization group (RG) from seesaw scale to the electroweak scale. A way out of the problem is to propose the flavor symmetry under the models with a TeV seesaw scale. The inverse seesaw model and a loop-induced model are given as two examples.

  17. Perturbative bottom-up approach for neutrino mass matrix in light of large θ13 and role of lightest neutrino mass

    NASA Astrophysics Data System (ADS)

    Dutta, Rupak; Ch, Upender; Giri, Anjan K.; Sahu, Narendra

    2014-08-01

    We discuss the role of lightest neutrino mass (m0) in the neutrino mass matrix, defined in a flavor basis, through a bottom-up approach using the current neutrino oscillation data. We find that if m0 < 10-3eV, then the deviation δMν in the neutrino mass matrix from a tree-level, say tribimaximal neutrino mass matrix, does not depend on m0. As a result δMν's are exactly predicted in terms of the experimentally determined quantities such as solar and atmospheric mass squared differences and the mixing angles. On the other hand for m0 ≳10-3eV, δMν strongly depends on m0 and hence cannot be determined within the knowledge of oscillation parameters alone. In this limit, we provide an exponential parametrization for δMν for all values of m0 such that it can factorize the m0 dependency of δMν from rest of the oscillation parameters. This helps us in finding δMν as a function of the solar and atmospheric mass squared differences and the mixing angles for all values of m0. We use this information to build up a model of neutrino masses and mixings in a top-down scenario which can predict large θ13 perturbatively.

  18. Astrophysics and cosmology closing in on neutrino masses

    NASA Technical Reports Server (NTRS)

    Dar, Arnon

    1990-01-01

    Massive neutrinos are expected in most grand unified theories that attempt to unify the strong and electroweak interactions. So far, heroic laboratory experiments have yielded only upper bounds on the masses of the elusive neutrinos. These bounds, however, are not very restrictive and cannot even exclude the possibility that the dark matter in the universe consists of neutrinos. The astrophysical and cosmological bounds on the masses of the muon and tau neutrinos, m(nu sub mu) and m(nu sub tau), which already are much more restrictive than the laboratory bounds, and the laboratory bound on the mass of the electron neutrino, m(nu sub e) can be improved significantly by future astrophysical and cosmological observations that perhaps will pin down the neutrino masses. Indeed, the recent results from the solar neutrino experiments combined with the seesaw mechanism for generating neutrino masses suggest that m(nu sub e) of about 10 to the -8th electron volts, m(nu sub mu) of about 0.001 electron volts, and m(nu sub tau) of about 10 electron volts, which can be tested in the near future by solar neutrino and accelerator experiments.

  19. Strong thermal leptogenesis and the absolute neutrino mass scale

    SciTech Connect

    Bari, Pasquale Di; King, Sophie E.; Fiorentin, Michele Re E-mail: sk1806@soton.ac.uk

    2014-03-01

    We show that successful strong thermal leptogenesis, where the final asymmetry is independent of the initial conditions and in particular a large pre-existing asymmetry is efficiently washed-out, favours values of the lightest neutrino mass m{sub 1}∼>10 meV for normal ordering (NO) and m{sub 1}∼>3 meV for inverted ordering (IO) for models with orthogonal matrix entries respecting |Ω{sub ij}{sup 2}|∼<2. We show analytically why lower values of m{sub 1} require a higher level of fine tuning in the seesaw formula and/or in the flavoured decay parameters (in the electronic for NO, in the muonic for IO). We also show how this constraint exists thanks to the measured values of the neutrino mixing angles and could be tightened by a future determination of the Dirac phase. Our analysis also allows us to place a more stringent constraint for a specific model or class of models, such as SO(10)-inspired models, and shows that some models cannot realise strong thermal leptogenesis for any value of m{sub 1}. A scatter plot analysis fully supports the analytical results. We also briefly discuss the interplay with absolute neutrino mass scale experiments concluding that they will be able in the coming years to either corner strong thermal leptogenesis or find positive signals pointing to a non-vanishing m{sub 1}. Since the constraint is much stronger for NO than for IO, it is very important that new data from planned neutrino oscillation experiments will be able to solve the ambiguity.

  20. Testing neutrino mass generation mechanisms from the lepton flavor violating decay of the Higgs boson

    NASA Astrophysics Data System (ADS)

    Aoki, Mayumi; Kanemura, Shinya; Sakurai, Kodai; Sugiyama, Hiroaki

    2016-12-01

    We investigate how observations of the lepton flavor violating decay of the Higgs boson (h → ℓℓ‧) can narrow down models of neutrino mass generation mechanisms, which were systematically studied in Refs. [1,2] by focusing on the combination of new Yukawa coupling matrices with leptons. We find that a wide class of models for neutrino masses can be excluded if evidence for h → ℓℓ‧ is really obtained in the current or future collider experiments. In particular, simple models of Majorana neutrino masses cannot be compatible with the observation of h → ℓℓ‧. It is also found that some of the simple models to generate masses of Dirac neutrinos radiatively can be compatible with a significant rate of the h → ℓℓ‧ process.

  1. Measurable neutrino mass scale in A{sub 4}xSU(5)

    SciTech Connect

    Antusch, S.; Spinrath, M.; King, Stephen F.

    2011-01-01

    We propose a supersymmetric A{sub 4}xSU(5) model of quasidegenerate neutrinos which predicts the effective neutrino mass m{sub ee} relevant for neutrinoless double beta decay to be proportional to the neutrino mass scale, thereby allowing its determination approximately independently of unknown Majorana phases. Such a natural quasidegeneracy is achieved by using A{sub 4} family symmetry (as an example of a non-Abelian family symmetry with real triplet representations) to enforce a contribution to the neutrino mass matrix proportional to the identity. Tribimaximal neutrino mixing as well as quark CP violation with {alpha}{approx_equal}90 deg. d a leptonic CP phase {delta}{sub MNS{approx_equal}}90 deg. arise from the breaking of the A{sub 4} family symmetry by the vacuum expectation values of four 'flavon' fields pointing in specific postulated directions in flavor space.

  2. Prospects for cosmic neutrino detection in tritium experiments in the case of hierarchical neutrino masses

    SciTech Connect

    Blennow, Mattias

    2008-06-01

    We discuss the effects of neutrino mixing and the neutrino mass hierarchy when considering the capture of the cosmic neutrino background (CNB) on radioactive nuclei. The implications of mixing and hierarchy at future generations of tritium decay experiments are considered. We find that the CNB should be detectable at these experiments provided that the resolution for the kinetic energy of the outgoing electron can be pushed to a few 0.01 eV for the scenario with inverted neutrino mass hierarchy, about an order of magnitude better than that of the upcoming KATRIN experiment. Another order of magnitude improvement is needed in the case of normal neutrino mass hierarchy. We also note that mixing effects generally make the prospects for CNB detection worse due to an increased maximum energy of the normal beta decay background.

  3. Majorana neutrino masses and the neutrinoless double-beta decay

    SciTech Connect

    Faessler, A.

    2006-12-15

    Neutrinoless double-beta decay is forbidden in the Standard Model of electroweak and strong interaction but allowed in most Grand Unified Theories (GUTs). Only if the neutrino is a Majorana particle (identical with its antiparticle) and if it has a mass is neutrinoless double-beta decay allowed. Apart from one claim that the neutrinoless double-beta decay in {sup 76}Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow one to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUTs and the minimal R-parity-violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUTs. For that, one has to assume that the specific mechanism is the leading one for neutrinoless double-beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present work, one discusses the accuracy of the present status of calculating of the nuclear matrix elements and the corresponding limits of GUTs and supersymmetric parameters.

  4. Active and sterile neutrino mass effects on beta decay spectra

    SciTech Connect

    Boillos, Juan Manuel; Moya de Guerra, Elvira

    2013-06-10

    We study the spectra of the emitted charged leptons in charge current weak nuclear processes to analyze the effect of neutrino masses. Standard active neutrinos are studied here, with masses of the order of 1 eV or lower, as well as sterile neutrinos with masses of a few keV. The latter are warm dark matter (WDM) candidates hypothetically produced or captured as small mixtures with the active neutrinos. We compute differential decay or capture rates spectra in weak charged processes of different nuclei ({sup 3}H, {sup 187}Re, {sup 107}Pd, {sup 163}Ho, etc) using different masses of both active and sterile neutrinos and different values of the mixing parameter.

  5. Experimental constraints on the neutrino oscillations and a simple model of three-flavor mixing

    SciTech Connect

    Raczka, P.A.; Szymacha, A. ); Tatur, S. )

    1994-02-01

    A simple model of neutrino mixing is considered which contains only one right-handed neutrino field coupled, via the mass term, to the three usual left-handed fields. This is the simplest model that allows for three-flavor neutrino oscillations. The existing experimental limits on the neutrino oscillations are used to obtain constraints on the two free-mixing parameters of the model. A specific sum rule relating the oscillation probabilities of different flavors is derived.

  6. Form invariance and symmetry in the neutrino mass matrix

    SciTech Connect

    Lashin, E. I.; Nasri, S.; Malkawi, E.; Chamoun, N.

    2011-01-01

    We present the general form of the unitary matrices keeping invariant the Majorana neutrino mass matrix of specific texture suitable for explaining oscillation data. In the case of the tri-bimaximal pattern with two degenerate masses, we give a specific realization of the underlying U(1) symmetry which can be uplifted to a symmetry in a complete theory including charged leptons. For this, we present a model with three light SM-like Higgs doublets and one heavy Higgs triplet and find that one can accommodate the hierarchy of the charged-lepton masses. The lepton mass spectrum can also be achieved in another model extending the SM with three SM-singlet scalars transforming nontrivially under the flavor symmetry. We discuss how such a model has room for generating enough baryon asymmetry through leptogenesis in the framework of type-I and -II seesaw mechanisms.

  7. Diffuse supernova neutrinos: oscillation effects, stellar cooling and progenitor mass dependence

    SciTech Connect

    Lunardini, Cecilia; Tamborra, Irene E-mail: tamborra@mpp.mpg.de

    2012-07-01

    We estimate the diffuse supernova neutrino background (DSNB) using the recent progenitor-dependent, long-term supernova simulations from the Basel group and including neutrino oscillations at several post-bounce times. Assuming multi-angle matter suppression of collective effects during the accretion phase, we find that oscillation effects are dominated by the matter-driven MSW resonances, while neutrino-neutrino collective effects contribute at the 5–10% level. The impact of the neutrino mass hierarchy, of the time-dependent neutrino spectra and of the diverse progenitor star population is 10% or less, small compared to the uncertainty of at least 25% of the normalization of the supernova rate. Therefore, assuming that the sign of the neutrino mass hierarchy will be determined within the next decade, the future detection of the DSNB will deliver approximate information on the MSW-oscillated neutrino spectra. With a reliable model for neutrino emission, its detection will be a powerful instrument to provide complementary information on the star formation rate and for learning about stellar physics.

  8. Leptogenesis, neutrino masses and gauge unification

    NASA Astrophysics Data System (ADS)

    Cosme, N.

    2004-08-01

    Leptogenesis is considered in its natural context where Majorana neutrinos fit in a gauge unification scheme and therefore couple to some extra gauge bosons. The masses of some of these gauge bosons are expected to be similar to those of the heavy Majorana particles, and this can have important consequences for leptogenesis. In fact, the effect can go both ways. Stricter bounds are obtained on one hand due to the dilution of the CP-violating effect by new decay and scattering channels, while, in a re-heating scheme, the presence of gauge couplings facilitates the re-population of the Majorana states. The latter effect allows in particular for smaller Dirac couplings.

  9. Can electron capture tell us the mass of the neutrino?

    NASA Astrophysics Data System (ADS)

    Faessler, Amand; Šimkovic, F.

    2016-04-01

    The neutrino masses are one of the most important open problems in particle physics. Presently major efforts are underway to measure the electron antineutrino-mass by the triton beta decay [1] and the effective Majorana neutrino mass by the double beta decay [2]. The best way to determine the neutrino mass by electron capture was assumed to be in {}163{Ho}. The total decay energy of the excited daughter atom has for all excitations the same upper energy limit of the Q-value minus the mass of the electron neutrino. Recently Robertson [3] claimed, that the excitation of the two-hole states makes the determination of the neutrino mass by this method practically impossible. But Faessler and Simkovic [4] showed, that the influence of the two-hole states is less than 1% near the Q-value, the area relevant for the determination of the neutrino mass. Even weaker are the contributions of the three-hole states [5]. The upper end of the calorimetric deexcitation spectrum of Dy is dominated by the highest energy one-hole resonance. With a Lorentzian profile of this resonance one has to fit after including the experimental sensitivity four parameters: (1) the neutrino mass, (2) the Q-value, (3) the width of the resonance and (4) its strength. This contribution discusses the problems of the determination of the neutrino mass by electron capture in {}163{Ho}. The conclusion of this work is, that the determination of the electron neutrino mass by electron capture in {}163{Ho} is difficult, but (probably) not impossible.

  10. The neutrino mass hierarchy measurement with a neutrino telescope in the Mediterranean Sea: A feasibility study

    SciTech Connect

    Tsirigotis, A. G.; Collaboration: KM3NeT Collaboration

    2014-11-18

    With the measurement of a non zero value of the θ{sub 13} neutrino mixing parameter, interest in neutrinos as source of the baryon asymmetry of the universe has increased. Among the measurements of a rich and varied program in near future neutrino physics is the determination of the mass hierarchy. We present the status of a study of the feasibility of using a densely instrumented undersea neutrino detector to determine the mass hierarchy, utilizing the Mikheyev-Smirnov-Wolfenstein (MSW) effect on atmospheric neutrino oscillations. The detector will use technology developed for KM3NeT. We present the systematic studies of the optimization of a detector in the required 5–10 GeV energy regime. These studies include new tracking and interaction identification algorithms as well as geometrical optimizations of the detector.

  11. Probing the origins of neutrino mass with supernova data.

    PubMed

    Davoudiasl, Hooman; Huber, Patrick

    2005-11-04

    We study type II supernova signatures of neutrino mass generation via symmetry breaking at a scale in the range from keV to MeV. The scalar responsible for symmetry breaking is thermalized in the supernova core and restores the symmetry. The neutrinos from scalar decays have about half the average energy of thermal neutrinos. The Bose-Einstein distribution of the scalars can be established with a megaton water Cerenkov detector. The discovery of the bimodal neutrino flux is, however, well within the reach of the Super-Kamiokande detector, without a detailed knowledge of the supernova parameters.

  12. Neutrino mass spectrum and future beta decay experiments

    NASA Astrophysics Data System (ADS)

    Farzan, Y.; Peres, O. L. G.; Smirnov, A. Yu.

    2001-09-01

    We study the discovery potential of future beta decay experiments on searches for the neutrino mass in the sub-eV range, and, in particular, KATRIN experiment with sensitivity m>0.3 eV. Effects of neutrino mass and mixing on the beta decay spectrum in the neutrino schemes which explain the solar and atmospheric neutrino data are discussed. The schemes which lead to observable effects contain one or two sets of quasi-degenerate states. Future beta decay measurements will allow to check the three-neutrino scheme with mass degeneracy, moreover, the possibility appears to measure the CP-violating Majorana phase. Effects in the four-neutrino schemes which can also explain the LSND data are strongly restricted by the results of Bugey and CHOOZ oscillation experiments: apart from bending of the spectrum and the shift of the end point one expects appearance of small kink of (<2%) size or suppressed tail after bending of the spectrum with rate below 2% of the expected rate for zero neutrino mass. We consider possible implications of future beta decay experiments for the neutrino mass spectrum, the determination of the absolute scale of neutrino mass and for establishing the nature of neutrinos. We show that beta decay measurements in combination with data from the oscillation and double beta decay experiments will allow to establish the structure of the scheme (hierarchical or non-hierarchical), the type of the hierarchy or ordering of states (normal or inverted) and to measure the relative CP-violating phase in the solar pair of states.

  13. Towards a Unified Model of Neutrino-Nucleus Reactions for Neutrino Oscillation Experiments.

    PubMed

    Nakamura, Satoshi; Kamano, Hiroyuki; Hayato, Yoshinari; Hirai, Masanori; Horiuchi, Wataru; Kumano, Shunzo; Murata, Tomoya; Saito, Koichi; Sakuda, Makoto; Sato, Toru; Suzuki, Yasuyuki

    2017-02-06

    A precise description of neutrino-nucleus reactions will play a key role in addressing fundamental questions such as the leptonic CP violation and the neutrino mass hierarchy through analyzing data from next-generation neutrino oscillation experiments. The neutrino energy relevant to the neutrino-nucleus reactions spans a broad range and, accordingly, the dominant reaction mechanism varies across the energy region from quasi-elastic scattering through nucleon resonance excitations to deep inelastic scattering. This corresponds to transitions of the effective degree of freedom for theoretical description from nucleons through meson-baryon to quarks. The main purpose of this review is to report our recent efforts towards a unified description of the neutrino-nucleus reactions over the wide energy range; recent overall progress in the field is also sketched. Starting with an overview of the current status of neutrino-nucleus scattering experiments, we formulate the cross section to be commonly used for the reactions over all the energy regions. A description of the neutrino-nucleon reactions follows and, in particular, a dynamical coupled-channels model for meson productions in and beyond the Δ(1232) region is discussed in detail. We then discuss the neutrino-nucleus reactions, putting emphasis on our theoretical approaches. We start the discussion with electroweak processes in few-nucleon systems studied with the correlated Gaussian method. Then we describe quasi-elastic scattering with nuclear spectral functions, and meson productions with a Δ-hole model. Nuclear modifications of the parton distribution functions determined through a global analysis are also discussed. Finally, we discuss issues to be addressed for future developments.

  14. Molecular effects in the neutrino mass determination from beta-decay of the tritium molecule

    SciTech Connect

    Fackler, O.; Jeziorski, B.; Kolos, W.; Szalewicz, K.; Monkhorst, H.J.; Mugge, M.

    1986-03-01

    Molecular final state energies and transition probabilities have been computed for beta-decay of the tritium molecule. The results are of sufficient accuracy to make a determination of the electron neutrino rest mass with an error not exceeding a few tenths of an electron volt. Effects of approximate models of tritium beta-decay on the neutrino mass determination are discussed. 14 refs., 3 figs., 1 tab.

  15. Effects of Non-Standard Neutrino Emission on the Evolution of Low-Mass Stars

    NASA Astrophysics Data System (ADS)

    Arceo-Díaz, S.; Schrüder, K. P.; Zuber, K.

    2013-04-01

    In this work we use models created with the Eggleton stellar evolution code, with near solar mass and metallicity, and determine which are the parameters sensitive to an enhanced neutrino emission. We analyze the changes in stellar evolution, through alterations in the HR-Diagram and internal structure, when the existence of a non-zero magnetic dipole moment causes an increased plasmon decay rate and an enhanced neutrino cooling flux in the stellar core. We also study the apparent connection between the mass-loss rate during the RGB branch, by the Reimers mechanism, and the enhanced neutrino emission by their magnetic dipole moment.

  16. Grand unification and low scale implications: D₂ parity for unification and neutrino masses

    SciTech Connect

    Tavartkiladze, Zurab

    2014-01-01

    The Grand Unified SU(5)-SU(5)´ model, augmented with D₂ Parity, is considered. The latter play crucial role for phenomenology. The model has several novel properties and gives interesting phenomenological implications. The charged leptons together with right handed (or sterile) neutrinos emerge es composite states. Within considered scenario, we study the charged fermion and neutrino mass generation. Moreover, we show that the model gives successful gauge coupling unification.

  17. Generalized mass ordering degeneracy in neutrino oscillation experiments

    DOE PAGES

    Coloma, Pilar; Schwetz, Thomas

    2016-09-07

    Here, we consider the impact of neutral-current (NC) nonstandard neutrino interactions (NSI) on the determination of the neutrino mass ordering. We show that in the presence of NSI there is an exact degeneracy which makes it impossible to determine the neutrino mass ordering and the octant of the solar mixing angle θ12 at oscillation experiments. The degeneracy holds at the probability level and for arbitrary matter density profiles, and hence solar, atmospheric, reactor, and accelerator neutrino experiments are affected simultaneously. The degeneracy requires order-1 corrections from NSI to the NC electron neutrino-quark interaction and can be tested in electron neutrinomore » NC scattering experiments.« less

  18. Neutrino masses and mixing in A5 with flavor antisymmetry

    NASA Astrophysics Data System (ADS)

    Joshipura, Anjan S.; Nath, Newton

    2016-08-01

    We discuss the consequences of assuming that the (Majorana) neutrino mass matrix Mν and the charged lepton mass matrix Ml satisfy SνTMνSν=-Mν and Tl†MlMl†Tl=MlMl† with respect to some discrete groups Sν and Tl contained in A5. These assumptions lead to a neutrino mass spectrum with two degenerate and one massless neutrino and also constrain mixing among them. We derive possible mixing patterns following from the choices Sν=Z2 , Z2×Z2 , and Tl=Z2,Z2×Z2,Z3,Z5 as subgroups of A5. One predicts the maximal atmospheric neutrino mixing angle θ23 and μ -τ reflection symmetry in a large number of cases, but it is also possible to obtain nonmaximal values for θ23. Only the third column of the neutrino mixing matrix can be obtained at the leading order due to degeneracy in masses of two of the neutrinos. We take up a specific example within the A5 group and identify Higgs vacuum expectation values which realize the above assumptions. Nonleading terms present in this example are shown to lead to splitting among degenerate pairs and a consistent description of both neutrino masses and mixing angles.

  19. Neutrino Mass Measurement Using a Directed Mono-Energetic Beam

    NASA Astrophysics Data System (ADS)

    Tsifrinovich, Vladimir; Folan, Lorcan

    2015-04-01

    It was shown that a directed mono-energetic neutrino beam can be generated by electron capture beta-decay in a sample with a strong hyperfine field at the radioactive nuclei. We study the conditions required to measure the neutrino rest mass using the recoil force produced by a directed neutrino beam. We consider the displacement of an atomic force microscope cantilever due to such a recoil force. We find the change in the cantilever displacement associated with the non-zero neutrino mass, as a function of nuclear half-life T1 / 2, cantilever spring constant, and temperature. We consider the opportunity to increase the sensitivity of the neutrino mass measurement using averaging of the measurement signal. We show that the optimal time for the signal accumulation is, approximately, 1.8T1 / 2. We compute the optimal signal-to-noise ratio for 119Sb nuclei decaying to 119Sn with a decrease in the nuclear spin from I = 5/2 to I = 3/2, and T1 / 2 = 38.2 hours. Finally, we present the parameters values required for detection of sub-eV neutrino rest mass, and estimate the angular distribution of neutrino radiation as a function of temperature.

  20. Neutrino Transport in Black Hole-Neutron Star Binaries: Dynamical Mass Ejection and Neutrino-Driven Wind

    NASA Astrophysics Data System (ADS)

    Kyutoku, K.; Kiuchi, K.; Sekiguchi, Y.; Shibata, M.; Taniguchi, K.

    2016-10-01

    We present our recent results of numerical-relativity simulations of black hole-neutron star binary mergers incorporating approximate neutrino transport. We in particular discuss dynamical mass ejection and neutrino-driven wind.

  1. Forbidden unique beta-decays and neutrino mass

    NASA Astrophysics Data System (ADS)

    Dvornický, Rastislav; Šimkovic, Fedor

    2013-12-01

    The measurement of the electron spectrum in beta-decays provides a robust direct determination of the values of neutrino masses. The planned rhenium beta-decay experiment, called the "Microcalorimeter Arrays for a Rhenium Experiment" (MARE), might probe the absolute mass scale of neutrinos with the same sensitivity as the Karlsruhe tritium neutrino mass (KATRIN) experiment, which is expected to collect data in a near future. In this contribution we discuss the spectrum of emitted electrons close to the end point in the case of the first unique forbidden beta-decay of 79Se, 107Pd and 187Re. It is found that the p3/2-wave emission dominates over the s1/2-wave. It is shown that the Kurie plot near the end point is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed beta-decay of 3H.

  2. Neutrinos: Theory and Phenomenology

    SciTech Connect

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  3. Massive neutrinos in the standard model and beyond

    NASA Astrophysics Data System (ADS)

    Thalapillil, Arun Madhav

    The generation of the fermion mass hierarchy in the standard model of particle physics is a long-standing puzzle. The recent discoveries from neutrino physics suggests that the mixing in the lepton sector is large compared to the quark mixings. To understand this asymmetry between the quark and lepton mixings is an important aim for particle physics. In this regard, two promising approaches from the theoretical side are grand unified theories and family symmetries. In the first part of my thesis we try to understand certain general features of grand unified theories with Abelian family symmetries by taking the simplest SU(5) grand unified theory as a prototype. We construct an SU(5) toy model with U(1) F ⊗Z'2 ⊗Z'' 2⊗Z''' 2 family symmetry that, in a natural way, duplicates the observed mass hierarchy and mixing matrices to lowest approximation. The system for generating the mass hierarchy is through a Froggatt-Nielsen type mechanism. One idea that we use in the model is that the quark and charged lepton sectors are hierarchical with small mixing angles while the light neutrino sector is democratic with larger mixing angles. We also discuss some of the difficulties in incorporating finer details into the model without making further assumptions or adding a large scalar sector. In the second part of my thesis, the interaction of high energy neutrinos with weak gravitational fields is explored. The form of the graviton-neutrino vertex is motivated from Lorentz and gauge invariance and the non-relativistic interpretations of the neutrino gravitational form factors are obtained. We comment on the renormalization conditions, the preservation of the weak equivalence principle and the definition of the neutrino mass radius. We associate the neutrino gravitational form factors with specific angular momentum states. Based on Feynman diagrams, spin-statistics, CP invariance and symmetries of the angular momentum states in the neutrino-graviton vertex, we deduce

  4. Sterile neutrinos with eV masses in cosmology — How disfavoured exactly?

    SciTech Connect

    Hamann, Jan; Hannestad, Steen; Raffelt, Georg G.; Wong, Yvonne Y.Y. E-mail: sth@phys.au.dk E-mail: yvonne.wong@physik.rwth-aachen.de

    2011-09-01

    We study cosmological models that contain sterile neutrinos with eV-range masses as suggested by reactor and short-baseline oscillation data. We confront these models with both precision cosmological data (probing the CMB decoupling epoch) and light-element abundances (probing the BBN epoch). In the minimal ΛCDM model, such sterile neutrinos are strongly disfavoured by current data because they contribute too much hot dark matter. However, if the cosmological framework is extended to include also additional relativistic degrees of freedom beyond the three standard neutrinos and the putative sterile neutrinos, then the hot dark matter constraint on the sterile states is considerably relaxed. A further improvement is achieved by allowing a dark energy equation of state parameter w < −1. While BBN strongly disfavours extra radiation beyond the assumed eV-mass sterile neutrino, this constraint can be circumvented by a small ν{sub e} degeneracy. Any model containing eV-mass sterile neutrinos implies also strong modifications of other cosmological parameters. Notably, the inferred cold dark matter density can shift up by 20–75% relative to the standard ΛCDM value.

  5. Neutrino mass hierarchy and three-flavor spectral splits of supernova neutrinos

    SciTech Connect

    Dasgupta, Basudeb; Mirizzi, Alessandro; Tomas, Ricard; Tamborra, Irene

    2010-05-01

    It was recently realized that three-flavor effects could peculiarly modify the development of spectral splits induced by collective oscillations, for supernova neutrinos emitted during the cooling phase of a protoneutron star. We systematically explore this case, explaining how the impact of these three-flavor effects depends on the ordering of the neutrino masses. In inverted mass hierarchy, the solar mass splitting gives rise to instabilities in regions of the (anti)neutrino energy spectra that were otherwise stable under the leading two-flavor evolution governed by the atmospheric mass splitting and by the 1-3 mixing angle. As a consequence, the high-energy spectral splits found in the electron (anti)neutrino spectra disappear, and are transferred to other flavors. Imperfect adiabaticity leads to smearing of spectral swap features. In normal mass hierarchy, the three-flavor and the two-flavor instabilities act in the same region of the neutrino energy spectrum, leading to only minor departures from the two-flavor treatment.

  6. Neutrino diffusion and mass ejection in protoneutron stars

    SciTech Connect

    Almeida, L. G.; Rodrigues, H.; Portes, D. Jr.; Duarte, S. B.

    2010-11-15

    We discuss the mass ejection mechanism induced by diffusion of neutrino during the early stage of the protoneutron star cooling. A dynamical calculation is employed in order to determine the amount of matter ejected and the remnant compact object mass. An equation of state considering hadronic and quark phases for the stellar dense matter was used to solve the whole time evolution of the system during the cooling phase. The initial neutrino population was obtained by considering beta equilibrium in the dense stellar matter with confined neutrinos, in the very early period of the deleptonic stage of the nascent pulsar. For specified initial configurations of the protoneutron star, we solve numerically the set of equations of motion together with neutrino diffusion through the dense stellar medium.

  7. Impact of eV-mass sterile neutrinos on neutrino-driven supernova outflows

    SciTech Connect

    Tamborra, Irene; Raffelt, Georg G.; Hüdepohl, Lorenz; Janka, Hans-Thomas E-mail: raffelt@mpp.mpg.de E-mail: thj@mpa-garching.mpg.de

    2012-01-01

    Motivated by recent hints for sterile neutrinos from the reactor anomaly, we study active-sterile conversions in a three-flavor scenario (2 active + 1 sterile families) for three different representative times during the neutrino-cooling evolution of the proto-neutron star born in an electron-capture supernova. In our ''early model'' (0.5 s post bounce), the ν{sub e}-ν{sub s} MSW effect driven by Δm{sup 2} = 2.35eV{sup 2} is dominated by ordinary matter and leads to a complete ν{sub e}-ν{sub s} swap with little or no trace of collective flavor oscillations. In our ''intermediate'' (2.9 s p.b.) and ''late models'' (6.5 s p.b.), neutrinos themselves significantly modify the ν{sub e}-ν{sub s} matter effect, and, in particular in the late model, νν refraction strongly reduces the matter effect, largely suppressing the overall ν{sub e}-ν{sub s} MSW conversion. This phenomenon has not been reported in previous studies of active-sterile supernova neutrino oscillations. We always include the feedback effect on the electron fraction Y{sub e} due to neutrino oscillations. In all examples, Y{sub e} is reduced and therefore the presence of sterile neutrinos can affect the conditions for heavy-element formation in the supernova ejecta, even if probably not enabling the r-process in the investigated outflows of an electron-capture supernova. The impact of neutrino-neutrino refraction is strong but complicated, leaving open the possibility that with a more complete treatment, or for other supernova models, active-sterile neutrino oscillations could generate conditions suitable for the r-process.

  8. TRITIUM-β-DECAY Experiments - the Direct way to the Absolute Neutrino Mass

    NASA Astrophysics Data System (ADS)

    Bornschein, Lutz

    2013-11-01

    Tritium-β-decay experiments provide the most sensitive approach to measure the absolute neutrino mass in a model independent way. The Karlsruhe Tritium Neutrino experiment KATRIN will measure the neutrino mass scale with an expected sensitivity of 0.2 eV/c2 (90% C.L.) and so will help to clarify the roles of neutrinos in the early universe. KATRIN investigates spectroscopically the electron spectrum from tritium β-decay 3 H -> 3 {He} + {e}^ - + bar ν e close to the kinematic endpoint of 18.6 keV. It will use a windowless gaseous tritium source in combination with an electrostatic filter for energy analysis. KATRIN is currently under construction at the Karlsruhe Institute of Technology (KIT) Campus North. This proceeding will give an overview of the status of the main components of the KATRIN experiment.

  9. Relic abundance of dark matter in universal extra dimension models with right-handed neutrinos

    SciTech Connect

    Matsumoto, Shigeki; Sato, Joe; Yamanaka, Masato; Senami, Masato

    2009-04-17

    Relic abundance of dark matter is investigated in the framework of universal extra dimension models with right-handed neutrinos. These models are free from the serious Kaluza-Klein (KK) graviton problem that the original universal extra dimension model possesses. The first KK particle of the right-handed neutrino is a candidate for dark matter in this framework. When ordinary neutrino masses are large enough such as the degenerate mass spectrum case, the dark matter relic abundance can change significantly. The scale of the extra dimension consistent with cosmological observations can be 500 GeV in the minimal setup of universal extra dimension models with right-handed neutrinos.

  10. Probing neutrino mass with displaced vertices at the Fermilab Tevatron

    SciTech Connect

    Campos, F. de; Eboli, O.J.P.; Magro, M.B.; Porod, W.; Restrepo, D.; Valle, J.W.F.

    2005-04-01

    Supersymmetric extensions of the standard model exhibiting bilinear R-parity violation can generate naturally the observed neutrino mass spectrum as well as mixings. One interesting feature of these scenarios is that the lightest supersymmetric particle (LSP) is unstable, with several of its decay properties predicted in terms of neutrino mixing angles. A smoking gun of this model in colliders is the presence of displaced vertices due to LSP decays in large parts of the parameter space. In this work we focus on the simplest model of this type that comes from minimal supergravity with universal R-parity conserving soft breaking of supersymmetry augmented with bilinear R-parity breaking terms at the electroweak scale (RmSUGRA). We evaluate the potential of the Fermilab Tevatron to probe the RmSUGRA parameters through the analysis of events possessing two displaced vertices stemming from LSP decays. We show that requiring two displaced vertices in the events leads to a reach in m{sub 1/2} twice the one in the usual multilepton signals in a large fraction of the parameter space.

  11. Neutrinos and the origin of fermion mass structure

    SciTech Connect

    Ross, Graham G.

    2007-11-20

    The pattern of neutrino masses and mixings is characteristically different from those observed in the quark sector. I discuss why this should be the case and what implications this has for the origin of quark and lepton masses, mixings and CP violation.

  12. Two-loop Dirac neutrino mass and WIMP dark matter

    NASA Astrophysics Data System (ADS)

    Bonilla, Cesar; Ma, Ernest; Peinado, Eduardo; Valle, Jose W. F.

    2016-11-01

    We propose a "scotogenic" mechanism relating small neutrino mass and cosmological dark matter. Neutrinos are Dirac fermions with masses arising only in two-loop order through the sector responsible for dark matter. Two triality symmetries ensure both dark matter stability and strict lepton number conservation at higher orders. A global spontaneously broken U(1) symmetry leads to a physical Diracon that induces invisible Higgs decays which add up to the Higgs to dark matter mode. This enhances sensitivities to spin-independent WIMP dark matter search below mh / 2.

  13. Magic neutrino mass matrix and the Bjorken Harrison Scott parameterization

    NASA Astrophysics Data System (ADS)

    Lam, C. S.

    2006-09-01

    Observed neutrino mixing can be described by a tribimaximal MNS matrix. The resulting neutrino mass matrix in the basis of a diagonal charged lepton mass matrix is both 2-3 symmetric and magic. By a magic matrix, I mean one whose row sums and column sums are all identical. I study what happens if 2-3 symmetry is broken but the magic symmetry is kept intact. In that case, the mixing matrix is parameterized by a single complex parameter Ue 3, in a form discussed recently by Bjorken, Harrison, and Scott.

  14. Dirac or Inverse Seesaw Neutrino Masses from Gauged B - L Symmetry

    NASA Astrophysics Data System (ADS)

    Ma, Ernest; Srivastava, Rahul

    The gauged B - L symmetry is one of the simplest and well studied extension of standard model. In the conventional case, addition of three singlet right-handed neutrinos each transforming as -1 under the B - L symmetry renders it anomaly free. It is usually assumed that the B - L symmetry is spontaneously broken by a singlet scalar having two units of B - L charge, resulting in a natural implementation of Majorana seesaw mechanism for neutrinos. However, as we discuss in this proceeding, there is another simple anomaly free solution which leads to Dirac or inverse seesaw masses for neutrinos. These new possibilities are explored along with an application to neutrino mixing with S3 flavour symmetry.

  15. Leptogenesis, radiative neutrino masses and inert Higgs triplet dark matter

    SciTech Connect

    Lu, Wen-Bin; Gu, Pei-Hong

    2016-05-18

    We extend the standard model by three types of inert fields including Majorana fermion singlets/triplets, real Higgs singlets/triplets and leptonic Higgs doublets. In the presence of a softly broken lepton number and an exactly conserved Z{sub 2} discrete symmetry, these inert fields together can mediate a one-loop diagram for a Majorana neutrino mass generation. The heavier inert fields can decay to realize a successful leptogenesis while the lightest inert field can provide a stable dark matter candidate. As an example, we demonstrate the leptogenesis by the inert Higgs doublet decays. We also perform a systematic study on the inert Higgs triplet dark matter scenario where the interference between the gauge and Higgs portal interactions can significantly affect the dark matter properties.

  16. Neutrino mass and mixing: from theory to experiment

    NASA Astrophysics Data System (ADS)

    King, Stephen F.; Merle, Alexander; Morisi, Stefano; Shimizu, Yusuke; Tanimoto, Morimitsu

    2014-04-01

    The origin of fermion mass hierarchies and mixings is one of the unresolved and most difficult problems in high-energy physics. One possibility to address the flavour problems is by extending the standard model to include a family symmetry. In the recent years it has become very popular to use non-Abelian discrete flavour symmetries because of their power in the prediction of the large leptonic mixing angles relevant for neutrino oscillation experiments. Here we give an introduction to the flavour problem and to discrete groups that have been used to attempt a solution for it. We review the current status of models in light of the recent measurement of the reactor angle, and we consider different model-building directions taken. The use of the flavons or multi-Higgs scalars in model building is discussed as well as the direct versus indirect approaches. We also focus on the possibility of experimentally distinguishing flavour symmetry models by means of mixing sum rules and mass sum rules. In fact, we illustrate in this review the complete path from mathematics, via model building, to experiments, so that any reader interested in starting work in the field could use this text as a starting point in order to obtain a broad overview of the different subject areas.

  17. The doublet majoron model and solar neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Bertolini, S.; Santamaria, A.

    1988-12-01

    We present a minimal extension of the standard electroweak theory which, as a consequence of the spontaneous breaking of lepton number and the radiative origin of the neutrino mass, offers a natural framework for the solution of the solar neutrino problem through matter-enhanced neutrino oscillations (Mikheyev-Smirnov-Wolfenstein mechanism). Indeed, we show that the presently available astrophysical bounds on the lepton-breaking vacuum expectation value naturally lead to neutrino masses in the required regime. The fact that the Majoron belongs to an SU(2)L doublet and not a triplet has relevant phenomenological implications. In particular, the scalar contribution to the Z0 width is four times smaller than in the triplet model and equivalent to 1/2 a neutrino-antineutrino mode. Relevant effects related to the presence of two physical singly charged scalars, both at the quantum and tree level, are studied. As a result we find that the model is tightly constrained by present data. In particular, for a wide range of parameters, the decay μ --> eγ is within two orders of magnitude from the present experimental limit. Also at Department de Física Teòrica, Universitat de València and IFIC, Universitat de València-CSIC, Spain.

  18. Can the negative mass square of the electron neutrino be an indication of degenerated relic neutrinos?

    NASA Astrophysics Data System (ADS)

    Jinnouchi, O.; Homma, K.

    1998-09-01

    The unphysical result of the negative mass square of the electron neutrinos recently reported in several tritium β-decay experiments, is one of the most attractive subjects among remaining physical problems. As a possible scenario to explain the anomaly, we have assumed a reaction with relic neutrinos which are predicted by the standard big bang cosmology. If such neutrinos could exist, the interaction of the relic neutrinos with the target tritium, νe+3H-->3He+e- could be laid under the large amount of the β-decay process, 3H-->3He+e-+νē, which would cause a peak-like structure beyond the end-point in the Kurie plot. Based on the assumption, we evaluated the cross section from the event rate found in the peak by re-fitting to the 1991 data published by the Mainz Group. In this letter we will provide a scenario that can account for the evaluated cross section by introducing a spatially inhomogeneous neutrino degeneration, which would result much lower temperature than the prediction from the standard big bang cosmology.

  19. Neutrino mass limits: Robust information from the power spectrum of galaxy surveys

    NASA Astrophysics Data System (ADS)

    Cuesta, Antonio J.; Niro, Viviana; Verde, Licia

    2016-09-01

    We present cosmological upper limits on the sum of active neutrino masses using large-scale power spectrum data from the WiggleZ Dark Energy Survey and from the Sloan Digital Sky Survey - Data Release 7 (SDSS-DR7) sample of Luminous Red Galaxies (LRG). Combining measurements on the Cosmic Microwave Background temperature and polarisation anisotropies by the Planck satellite together with WiggleZ power spectrum results in a neutrino mass bound of 0.37 eV at 95% C.L., while replacing WiggleZ by the SDSS-DR7 LRG power spectrum, the 95% C.L. bound on the sum of neutrino masses is 0.38 eV. Adding Baryon Acoustic Oscillation (BAO) distance scale measurements, the neutrino mass upper limits greatly improve, since BAO data break degeneracies in parameter space. Within a ΛCDM model, we find an upper limit of 0.13 eV (0.14 eV) at 95% C.L., when using SDSS-DR7 LRG (WiggleZ) together with BAO and Planck. The addition of BAO data makes the neutrino mass upper limit robust, showing only a weak dependence on the power spectrum used. We also quantify the dependence of neutrino mass limit reported here on the CMB lensing information. The tighter upper limit (0.13 eV) obtained with SDSS-DR7 LRG is very close to that recently obtained using Lyman-alpha clustering data, yet uses a completely different probe and redshift range, further supporting the robustness of the constraint. This constraint puts under some pressure the inverted mass hierarchy and favours the normal hierarchy.

  20. Neutrino mass constraint from CMB, BAO and SN

    SciTech Connect

    Ichikawa, Kazuhide

    2007-11-20

    We show that the cosmic microwave background (CMB) data of WMAP can give subelectronvolt limit on the neutrino mass. We investigate how much we can make it more stringent by using 'standard ruler' measurements such as baryon acoustic oscillation (BAO) and type Ia supernovae (SN)

  1. Neutrinos from SN 1987A - Implications for cooling of the nascent neutron star and the mass of the electron antineutrino

    NASA Technical Reports Server (NTRS)

    Loredo, Thomas J.; Lamb, Don Q.

    1989-01-01

    Data on neutrinos from SN 1987A are compared here with parameterized models of the neutrino emission using a consistent and straightforward statistical methodology. The empirically measured detector background spectra are included in the analysis, and the data are compared with a much wider variety of neutrino emission models than was explored previously. It is shown that the inferred neutrino emission model parameters are strongly correlated. The analysis confirms that simple models of the neutrino cooling of the nascent neutron star formed by the SN adequately explain the data. The inferred radius and binding energy of the neutron star are in excellent agreement with model calculations based on a wide range of equations of state. The results also raise the upper limit of the electron antineutrino rest mass to roughly 25 eV at the 95 percent confidence level, roughly 1.5-5 times higher than found previously.

  2. New limits on the neutrino mass, lepton conservation, and no-neutrino double beta decay of /sup 76/Ge

    SciTech Connect

    Avignone, F.T. III; Brodzinski, R.L.; Brown, D.P.; Evans, J.C. Jr.; Hensley, W.K.; Reeves, J.H.; Wogman, N.A.

    1983-03-07

    A continuing search for the no-neutrino mode of the double beta decay of /sup 76/Ge has resulted in a new lower limit T/sub 1/2//sup 0nu/ > or =1.7 x 10/sup 22/ yr. This value corresponds to a 90% confidence level determined with a maximum-likelihood analysis of the energy interval 2041 +- 2 keV. Combined with recent shell-model calculations, the data imply m/sub ..nu../< or =10 eV and a limit on lepton nonconservation Vertical BaretaVertical Bar< or =2.4 x 10/sup -5/. In the context of the shell model, the data imply that the electron neutrino is not a Majorana mass eigenstate.

  3. TRIMS: Validating T2 Molecular Effects for Neutrino Mass Experiments

    NASA Astrophysics Data System (ADS)

    Lin, Ying-Ting; Bodine, Laura; Enomoto, Sanshiro; Kallander, Matthew; Machado, Eric; Parno, Diana; Robertson, Hamish; Trims Collaboration

    2017-01-01

    The upcoming KATRIN and Project 8 experiments will measure the model-independent effective neutrino mass through the kinematics near the endpoint of tritium beta-decay. A critical systematic, however, is the understanding of the molecular final-state distribution populated by tritium decay. In fact, the current theory incorporated in the KATRIN analysis framework predicts an observable that disagrees with an experimental result from the 1950s. The Tritium Recoil-Ion Mass Spectrometer (TRIMS) experiment will reexamine branching ratio of the molecular tritium (T2) beta decay to the bound state (3HeT+). TRIMS consists of a magnet-guided time-of-flight mass spectrometer with a detector located on each end. By measuring the kinetic energy and time-of-flight difference of the ions and beta particles reaching the detectors, we will be able to distinguish molecular ions from atomic ones and hence derive the ratio in question.We will give an update on simulation software, analysis tools, and the apparatus, including early commissioning results. U.S. Department of Energy Office of Science, Office of Nuclear Physics, Award Number DE-FG02-97ER41020.

  4. Forbidden unique beta-decays and neutrino mass

    SciTech Connect

    Dvornický, Rastislav; Šimkovic, Fedor

    2013-12-30

    The measurement of the electron spectrum in beta-decays provides a robust direct determination of the values of neutrino masses. The planned rhenium beta-decay experiment, called the “Microcalorimeter Arrays for a Rhenium Experiment” (MARE), might probe the absolute mass scale of neutrinos with the same sensitivity as the Karlsruhe tritium neutrino mass (KATRIN) experiment, which is expected to collect data in a near future. In this contribution we discuss the spectrum of emitted electrons close to the end point in the case of the first unique forbidden beta-decay of {sup 79}Se, {sup 107}Pd and {sup 187}Re. It is found that the p{sub 3/2}-wave emission dominates over the s{sub 1/2}-wave. It is shown that the Kurie plot near the end point is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed beta-decay of {sup 3}H.

  5. Phenomenology of "bimaximal + Democratic" Type Neutrino Mass Matrix

    NASA Astrophysics Data System (ADS)

    Ghosal, Ambar; Majumdar, Debasish

    We demonstrate that "Bimaximal + Democratic" type neutrino mass matrix can accommodate the deviation of θ⊙ from its maximal value along with the other present-day neutrino experimental results, namely, atmospheric, CHOOZ, neutrinoless double beta decay (ββ0ν) and result obtained from WMAP experiment. We define a function χp in terms of solar and atmospheric neutrino mass squared differences and solar neutrino mixing angle (obtained from different experiments and our proposed texture). The masses and mixing angles are expressed in terms of three parameters in our proposed texture. The allowed region of the texture parameters is obtained through minimization of the above function. The proposed texture crucially depends on the value of the experimental results of ββ0ν experiment among all other above-mentioned experiments. If, in future, ββ0ν experiments, namely, MOON, EXO, GENIUS shift the lower bound on at the higher side by one order, the present texture will be ruled out.

  6. Connecting radiative neutrino mass, neutron-antineutron oscillation, proton decay, and leptogenesis through dark matter

    NASA Astrophysics Data System (ADS)

    Gu, Pei-Hong; Ma, Ernest; Sarkar, Utpal

    2016-12-01

    The scotogenic mechanism for radiative neutrino mass is generalized to include neutron-antineutron oscillation as well as proton decay. Dark matter is stabilized by extending the notion of lepton parity to matter parity. Leptogenesis is also a possible byproduct. This framework unifies the description of all these important topics in physics beyond the standard model of particle interactions.

  7. Dark matter physics in neutrino specific two Higgs doublet model

    NASA Astrophysics Data System (ADS)

    Baek, Seungwon; Nomura, Takaaki

    2017-03-01

    Although the seesaw mechanism is a natural explanation for the small neutrino masses, there are cases when the Majorana mass terms for the right-handed neutrinos are not allowed due to symmetry. In that case, if neutrino-specific Higgs doublet is introduced, neutrinos become Dirac particles and their small masses can be explained by its small VEV. We show that the same symmetry, which we assume a global U(1) X , can also be used to explain the stability of dark matter. In our model, a new singlet scalar breaks the global symmetry spontaneously down to a discrete Z 2 symmetry. The dark matter particle, lightest Z 2-odd fermion, is stabilized. We discuss the phenomenology of dark matter: relic density, direct detection, and indirect detection. We find that the relic density can be explained by a novel Goldstone boson channel or by resonance channel. In the most region of parameter space considered, the direct detections is suppressed well below the current experimental bound. Our model can be further tested in indirect detection experiments such as FermiLAT gamma ray searches or neutrinoless double beta decay experiments.

  8. Textures with two traceless submatrices of the neutrino mass matrix

    SciTech Connect

    Alhendi, H. A.; Mudlej, A. A.; Lashin, E. I.

    2008-01-01

    We propose a new texture for the light neutrino mass matrix. The proposal is based upon imposing a zero-trace condition on the two-by-two submatrices of the complex symmetric Majorana mass matrix in the flavor basis where the charged lepton mass matrix is diagonal. Restricting the mass matrix to have two traceless submatrices may be found sufficient to describe the current data. Eight out of 15 independent possible cases are found to be compatible with current data. Numerical and some approximate analytical results are presented.

  9. Effect of neutrino rest mass on ionization equilibrium freeze-out

    NASA Astrophysics Data System (ADS)

    Grohs, E.; Fuller, G. M.; Kishimoto, C. T.; Paris, M. W.

    2015-12-01

    We show how small neutrino rest masses can increase the expansion rate near the photon decoupling epoch in the early Universe, causing an earlier, higher temperature freeze-out for ionization equilibrium compared to the massless neutrino case. This yields a larger free-electron fraction, thereby affecting the photon diffusion length differently than the sound horizon at photon decoupling. This neutrino-mass and recombination effect depends strongly on the neutrino rest masses. Though below current sensitivity, this effect could be probed by next-generation cosmic microwave background experiments, giving another observational handle on neutrino rest mass.

  10. Effect of neutrino rest mass on ionization equilibrium freeze-out

    SciTech Connect

    Grohs, Evan Bradley; Fuller, George M.; Kishimoto, Chad T.; Paris, Mark W.

    2015-12-23

    We show how small neutrino rest masses can increase the expansion rate near the photon decoupling epoch in the early Universe, causing an earlier, higher temperature freeze-out for ionization equilibrium compared to the massless neutrino case. This yields a larger free-electron fraction, thereby affecting the photon diffusion length differently than the sound horizon at photon decoupling. This neutrino-mass and recombination effect depends strongly on the neutrino rest masses. Ultimately, though below current sensitivity, this effect could be probed by next-generation cosmic microwave background experiments, giving another observational handle on neutrino rest mass.

  11. Phenomenology of the minimal B-L extension of the standard model: Z{sup '} and neutrinos

    SciTech Connect

    Basso, Lorenzo; Belyaev, Alexander; Moretti, Stefano; Shepherd-Themistocleous, Claire H.

    2009-09-01

    We present the Large Hadron Collider (LHC) discovery potential in the Z{sup '} and heavy neutrino sectors of a U(1){sub B-L} enlarged standard model also encompassing 3 heavy Majorana neutrinos. This model exhibits novel signatures at the LHC, the most interesting arising from a Z{sup '} decay chain involving heavy neutrinos, eventually decaying into leptons and jets. In particular, this signature allows one to measure the Z{sup '} and heavy neutrino masses involved. In addition, over a large region of the parameter space, the heavy neutrinos are rather long-lived particles producing distinctive displaced vertices that can be seen in the detectors. Lastly, the simultaneous measurement of both the heavy neutrino mass and decay length enables an estimate of the absolute mass of the parent light neutrino.

  12. Computation of neutrino masses in R-parity violating supersymmetry: SOFTSUSY3.2

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Kom, C. H.; Hanussek, M.

    2012-03-01

    The program SOFTSUSY can calculate tree-level neutrino masses in the R-parity violating minimal supersymmetric standard model (MSSM) with real couplings. At tree-level, only one neutrino acquires a mass, in contradiction with neutrino oscillation data. Here, we describe an extension to the SOFTSUSY program which includes one-loop R-parity violating effects' contributions to neutrino masses and mixing. Including the one-loop effects refines the radiative electroweak symmetry breaking calculation, and may result in up to three massive, mixed neutrinos. This paper serves as a manual to the neutrino mass prediction mode of the program, detailing the approximations and conventions used. Program summaryProgram title: SOFTSUSY Catalogue identifier: ADPM_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADPM_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 93 291 No. of bytes in distributed program, including test data, etc.: 1 288 618 Distribution format: tar.gz Programming language: C++, Fortran Computer: Personal computer Operating system: Tested on Linux 4.x Word size: 32 bits Classification: 11.1, 11.6 Catalogue identifier of previous version: ADPM_v2_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 232 Does the new version supersede the previous version?: Yes Nature of problem: Calculation of neutrino masses and the neutrino mixing matrix at one-loop level in the R-parity violating minimal supersymmetric standard model. The solution to the renormalisation group equations must be consistent with a high or weak-scale boundary condition on supersymmetry breaking parameters and R-parity violating parameters, as well as a weak-scale boundary condition on gauge couplings, Yukawa couplings and the Higgs potential parameters. Solution method: Nested iterative algorithm

  13. Seesaw model and two zero flavor neutrino texture

    NASA Astrophysics Data System (ADS)

    Kitabayashi, Teruyuki; Yasuè, Masaki

    2017-03-01

    In the two zero flavor neutrino mass matrix scheme with nonvanishing Majorana effective mass Mee for the neutrinoless double beta decay, four textures are compatible with observed data. We obtain the complete list of the possible textures of four zero Dirac neutrino mass matrix mD in the seesaw mechanism providing these four flavor neutrino textures. Explicit analytical analysis of mD turns out to provide the relation of mD ∝Mee.

  14. Solar models, neutrino experiments, and helioseismology

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Ulrich, Roger K.

    1988-01-01

    The event rates and their recognized uncertainties are calculated for 11 solar neutrino experiments using accurate solar models. These models are also used to evaluate the frequency spectrum of the p and g oscillations modes of the sun. It is shown that the discrepancy between the predicted and observed event rates in the Cl-37 and Kamiokande II experiments cannot be explained by a 'likely' fluctuation in input parameters with the best estimates and uncertainties given in the present study. It is suggested that, whatever the correct solution to the solar neutrino problem, it is unlikely to be a 'trival' error.

  15. Multinucleon Ejection Model for Two Body Current Neutrino Interactions

    SciTech Connect

    Sobczyk, Jan T.; /Fermilab

    2012-06-01

    A model is proposed to describe nucleons ejected from a nucleus as a result of two-body-current neutrino interactions. The model can be easily implemented in Monte Carlo neutrino event generators. Various possibilities to measure the two-body-current contribution are discussed. The model can help identify genuine charge current quasielastic events and allow for a better determination of the systematic error on neutrino energy reconstruction in neutrino oscillation experiments.

  16. Dark matter, {mu} problem, and neutrino mass with gauged R symmetry

    SciTech Connect

    Choi, Ki-Young; Chun, Eung Jin; Lee, Hyun Min

    2010-11-15

    We show that the {mu} problem and the strong CP problem can be resolved in the context of the gauged U(1){sub R} symmetry, realizing an automatic Peccei-Quinn symmetry. In this scheme, right-handed neutrinos can be introduced to explain small Majorana or Dirac neutrino mass. The U(1){sub R} D-term mediated supersymmetry (SUSY) breaking, called the U(1){sub R} mediation, gives rise to a specific form of the flavor-conserving superpartner masses. For the given solution to the {mu} problem, electroweak symmetry breaking condition requires the superpartners of the standard model at low energy to be much heavier than the gravitino. Thus, the dark matter candidate can be either gravitino or right-handed sneutrino. In the Majorana neutrino case, only gravitino is a natural dark matter candidate. On the other hand, in the Dirac neutrino case, the right-handed sneutrino can be also a dark matter candidate as it gets mass only from SUSY breaking. We discuss the non-thermal production of our dark matter candidates from the late decay of stau and find that the constraints from the big bang nucleosynthesis can be evaded for a TeV-scale stau mass.

  17. Peccei-Quinn symmetry, dark matter, and neutrino mass

    SciTech Connect

    Ma, Ernest

    2014-06-24

    It is pointed out that a residual Z{sub 2} symmetry of the usual anomalous Peccei-Quinn U(1){sub PQ} symmetry (which solves the strong CP problem) may be used for an absolutely stable heavy dark-matter particle in addition to the long-lived axion. The same Z{sub 2} symmetry may also be used to generate radiative neutrino mass.

  18. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    SciTech Connect

    Lai, Kwang-Chang; Lee, Fei-Fan; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi

    2016-07-22

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(ν-bar)+p→ν(ν-bar)+p, and inverse beta decays (IBD), ν-bar{sub e}+p→n+e{sup +}, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of ν-bar{sub e} flux with the ν-bar{sub x} (x=μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.

  19. Novel Ideas for Neutrino Beams

    SciTech Connect

    Peach, Ken

    2007-04-23

    Recent developments in neutrino physics, primarily the demonstration of neutrino oscillations in both atmospheric neutrinos and solar neutrinos, provide the first conclusive evidence for physics beyond the Standard Model of particle physics. The simplest phenomenology of neutrino oscillations, for three generations of neutrino, requires six parameters - two squared mass differences, 3 mixing angles and a complex phase that could, if not 0 or {pi}, contribute to the otherwise unexplained baryon asymmetry observed in the universe. Exploring the neutrino sector will require very intense beams of neutrinos, and will need novel solutions.

  20. Radiative neutrino model with S U (2 )L triplet fields

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi; Orikasa, Yuta

    2016-12-01

    We propose a loop-induced neutrino mass model, in which we introduce several exotic fermions and bosons with an S U (2 )L multiplet, and discuss various phenomenologies such as lepton flavor violations, the muon anomalous magnetic moment, nonstandard interacting neutrinoless double beta decay, the relic density of dark matter, and the possibility of the spin-independent direct detection searches, imposing the constraints of oblique parameters. And we show a benchmark point to satisfy all the constraints and discuss our predictions.

  1. Fourth standard model family neutrino at future linear colliders

    SciTech Connect

    Ciftci, A.K.; Ciftci, R.; Sultansoy, S.

    2005-09-01

    It is known that flavor democracy favors the existence of the fourth standard model (SM) family. In order to give nonzero masses for the first three-family fermions flavor democracy has to be slightly broken. A parametrization for democracy breaking, which gives the correct values for fundamental fermion masses and, at the same time, predicts quark and lepton Cabibbo-Kobayashi-Maskawa (CKM) matrices in a good agreement with the experimental data, is proposed. The pair productions of the fourth SM family Dirac ({nu}{sub 4}) and Majorana (N{sub 1}) neutrinos at future linear colliders with {radical}(s)=500 GeV, 1 TeV, and 3 TeV are considered. The cross section for the process e{sup +}e{sup -}{yields}{nu}{sub 4}{nu}{sub 4}(N{sub 1}N{sub 1}) and the branching ratios for possible decay modes of the both neutrinos are determined. The decays of the fourth family neutrinos into muon channels ({nu}{sub 4}(N{sub 1}){yields}{mu}{sup {+-}}W{sup {+-}}) provide cleanest signature at e{sup +}e{sup -} colliders. Meanwhile, in our parametrization this channel is dominant. W bosons produced in decays of the fourth family neutrinos will be seen in detector as either di-jets or isolated leptons. As an example, we consider the production of 200 GeV mass fourth family neutrinos at {radical}(s)=500 GeV linear colliders by taking into account di-muon plus four jet events as signatures.

  2. Physical effects involved in the measurements of neutrino masses with future cosmological data

    NASA Astrophysics Data System (ADS)

    Archidiacono, Maria; Brinckmann, Thejs; Lesgourgues, Julien; Poulin, Vivian

    2017-02-01

    Future Cosmic Microwave Background experiments together with upcoming galaxy and 21-cm surveys will provide extremely accurate measurements of different cosmological observables located at different epochs of the cosmic history. The new data will be able to constrain the neutrino mass sum with the best precision ever. In order to exploit the complementarity of the different redshift probes, a deep understanding of the physical effects driving the impact of massive neutrinos on CMB and large scale structures is required. The goal of this work is to describe these effects, assuming a summed neutrino mass close to its minimum allowed value. We find that parameter degeneracies can be removed by appropriate combinations, leading to robust and model independent constraints. A joint forecast of the sensitivity of Euclid and DESI surveys together with a CORE-like CMB experiment leads to a 1σ uncertainty of 14 meV on the summed neutrino mass. Finally the degeneracy between Mν and the optical depth at reionization τreio, originating in the combination of CMB and low redshift galaxy probes, might be broken by future 21-cm surveys, thus further decreasing the uncertainty on Mν. For instance, an independent determination of the optical depth with an accuracy of σ(τreio)=0.001 (which might be achievable, although this is subject to astrophysical uncertainties) would decrease the uncertainty down to σ(Mν)=12 meV.

  3. Relic abundance of dark matter in universal extra dimension models with right-handed neutrinos

    SciTech Connect

    Matsumoto, Shigeki; Sato, Joe; Yamanaka, Masato; Senami, Masato

    2007-08-15

    Relic abundance of dark matter is investigated in the framework of universal extra dimension models with right-handed neutrinos. These models are free from the serious Kaluza-Klein (KK) graviton problem that the original universal extra dimension model has. The first KK particle of the right-handed neutrino is a candidate for dark matter in this framework, and its relic abundance is determined by three processes, (1) the decay of the KK photon into the first KK right-handed neutrino in the late universe, (2) production of the first KK right-handed neutrino from the thermal bath in the early universe, and (3) the decay of higher KK right-handed neutrinos into the first KK right-handed neutrino in the late universe. When ordinary neutrino masses are large enough such as the degenerate mass spectrum case, the last process contributes to the abundance significantly, even if the reheating temperature is low. The scale of the extra dimension consistent with cosmological observations can be 500 GeV in the minimal setup of universal extra dimension models with right-handed neutrinos.

  4. Nonzero θ13 with unbroken μ -τ symmetry of the active neutrino mass matrix in the presence of a light sterile neutrino

    NASA Astrophysics Data System (ADS)

    Borah, Debasish

    2017-02-01

    We revisit the possibility of generating a nonzero reactor mixing angle in a scenario where there is a sterile neutrino at the eV scale apart from the usual three sub-eV scale active neutrinos. We show that the 3 ×3 active neutrino mass matrix can possess a μ -τ symmetry and can still be consistent with the nonzero value of the reactor mixing angle θ13 if this μ -τ symmetry is broken in the sterile neutrino sector. We first propose a simple model based on the discrete flavor symmetry A4×Z3×Z3' to realize such a scenario and then numerically evaluate the complete 3 +1 neutrino parameter space that allows such a possibility. We show that the possibility of generating a nonzero θ13 can, in general, remain valid even if the present 3 +1 neutrino global fit data get ruled out by future experiments. We also discuss the possible implications at neutrinoless double beta decay (0 ν β β ) experiments in view of the latest results from the KamLAND-Zen experiment.

  5. Neutrino mixing in a left-right model

    NASA Astrophysics Data System (ADS)

    Martins Simões, J. A.; Ponciano, J. A.

    We study the mixing among different generations of massive neutrino fields in a mass terms in the Yukawa sector. Parity can be spontaneously broken at a scale model can accommodate a consistent pattern for neutral fermion masses as well as neutrino oscillations. The left and right sectors can be connected by a new neutral current. PACS: 12.60.-i, 14.60.St, 14.60.Pq

  6. Classically conformal radiative neutrino model with gauged B - L symmetry

    NASA Astrophysics Data System (ADS)

    Okada, Hiroshi; Orikasa, Yuta

    2016-09-01

    We propose a classically conformal model in a minimal radiative seesaw, in which we employ a gauged B - L symmetry in the standard model that is essential in order to work the Coleman-Weinberg mechanism well that induces the B - L symmetry breaking. As a result, nonzero Majorana mass term and electroweak symmetry breaking simultaneously occur. In this framework, we show a benchmark point to satisfy several theoretical and experimental constraints. Here theoretical constraints represent inert conditions and Coleman-Weinberg condition. Experimental bounds come from lepton flavor violations (especially μ → eγ), the current bound on the Z‧ mass at the CERN Large Hadron Collider, and neutrino oscillations.

  7. Neutrino Physics at Fermilab

    ScienceCinema

    Saoulidou, Niki

    2016-07-12

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  8. Final scientific and technical report: New experiments to measure the neutrino mass scale

    SciTech Connect

    Monreal, Benjamin

    2016-11-19

    In this work, we made material progress towards future measurements of the mass of the neutrino. The neutrino is a fundamental particle, first observed in the 1950s and subjected to particularly intense study over the past 20 years. It is now known to have some, non-zero mass, but we are in an unusual situation of knowing the mass exists but not knowing what value it takes. The mass may be determined by precise measurements of certain radioactive decay distributions, particularly the beta decay of tritium. The KATRIN experiment is an international project which is nearing the beginning of a tritium measurement campaign using a large electrostatic spectrumeter. This research included participation in KATRIN, including construction and delivery of a key calibration subsystem, the ``Rear Section''. To obtain sensitivity beyond KATRIN's, new techniques are required; this work included R\\&D on a new technique we call CRES (Cyclotron Resonance Electron Spectroscopy) which has promise to enable even-more-sensitive tritium decay measurements. We successfully carried out CRES spectroscopy in a model system in 2014, making an important step towards the design of a next-generation tritium experiment with new neutrino mass measurement abilities.

  9. Higgs lepton flavour violation: UV completions and connection to neutrino masses

    NASA Astrophysics Data System (ADS)

    Herrero-García, Juan; Rius, Nuria; Santamaria, Arcadi

    2016-11-01

    We study lepton violating Higgs (HLFV) decays, first from the effective field theory (EFT) point of view, and then analysing the different high-energy realizations of the operators of the EFT, highlighting the most promising models. We argue why two Higgs doublet models can have a BR( h → τ μ) ˜ 0 .01, and why this rate is suppressed in all other realizations including vector-like leptons. We further discuss HLFV in the context of neutrino mass models: in most cases it is generated at one loop giving always BR( h → τ μ) < 10-4 and typically much less, which is beyond experimental reach. However, both the Zee model and extended left-right symmetric models contain extra SU(2) doublets coupled to leptons and could in principle account for the observed excess, with interesting connections between HLFV and neutrino parameters.

  10. Effect of atmospheric flux uncertainties on the determination of the neutrino mass hierarchy

    NASA Astrophysics Data System (ADS)

    Sandroos, Joakim; Erhardt, Thomas; Arlen, Tim; Böser, Sebastian

    2016-04-01

    The next generation of large-volume neutrino telescopes will include low-energy subarrays which will be able to measure neutrinos with energies of a few GeV. In this energy range the primary signal below the horizon is neutrinos created by cosmic ray interactions in the atmosphere. The measured event rate will depend on the neutrino mass hierarchy, allowing determination of this quantity to a significance level of about 3.5 sigma within a 5-year period, mostly limited by systematic uncertainties. We present here the impact of the uncertainties on the atmospheric neutrino flux normalization on the determination of the neutrino mass hierarchy. We suggest constraining the systematic uncertainties by including the downgoing neutrino sample, which will increase the significance. This work was performed using simulation data from the low-energy extension to the IceCube detector located at the geographic south pole, PINGU, and is relevant to a wide range of other experiments.

  11. Neutrino masses and mixing with seesaw mechanism and universal breaking of extended democracy

    NASA Astrophysics Data System (ADS)

    Akhmedov, E. K.; Branco, G. C.; Joaquim, F. R.; Silva-Marcos, J. I.

    2001-01-01

    In the framework of a minimal extension of the SM, where the only additional fields are three right-handed neutrinos, we suggest that the charged lepton, the Dirac neutrino and the right-handed Majorana neutrino mass matrices are all, to leading approximation, proportional to the democratic matrix. With the further assumption that the breaking of this extended democracy is universal for all leptonic mass matrices, a large mixing in the 2-3 sector can be obtained and is linked to the seesaw mechanism, together with the existence of a strong hierarchy in the masses of right-handed neutrinos. The structure of the resulting effective mass matrix of light neutrinos is stable against the RGE evolution, and a good fit to all solar and atmospheric neutrino data is obtained.

  12. Generalized Friedberg-Lee model for CP violation in neutrino physics

    NASA Astrophysics Data System (ADS)

    Razzaghi, N.; Gousheh, S. S.

    2012-09-01

    We propose a phenomenological model of Dirac neutrino mass operator based on the Friedberg-Lee neutrino mass model to include CP violation. By considering the most general set of complex coefficients, and imposing the condition that the mass eigenvalues are real, we find a neutrino mass matrix which is non-Hermitian, symmetric, and magic. In particular, we find that the requirement of obtaining real mass eigenvalues by transferring the residual phases to the mass eigenstates self-consistently dictates the following relationship between the imaginary part of the mass matrix elements B and the parameters of the Friedberg-Lee model: B=±(3)/(4)(a-br)2sin⁡22θ13cos⁡2θ12. We obtain inverted neutrino mass hierarchy m3=0. Making a correspondence between our model and the experimental data produces stringent conditions on the parameters as follows: 35.06°≲θ12≲36.27°, θ23=45°, 7.27°≲θ13≲11.09°, and 82.03°≲δ≲85.37°. We get mildly broken μ-τ symmetry, which reduces the resultant neutrino mixing pattern from tri-bimaximal to trimaximal. The CP violation as measured by the Jarlskog parameter is restricted by 0.027≲J≲0.044.

  13. Determining neutrino mass hierarchy by precise measurements of two delta m**2 in electron-neutrino and muon-neutrino disappearance experiments

    SciTech Connect

    Minakata, H.; Nunokawa, H.; Parke, Stephen J.; Zukanovich Funchal, R.; /Sao Paulo U.

    2006-09-01

    In this talk, the authors discuss the possibility of determining the neutrino mass hierarchy by comparing the two effective atmospheric neutrino mass squared differences measured, respectively, in electron, and in muon neutrino disappearance oscillation experiments. if the former, is larger (smaller) than the latter, the mass hierarchy is of normal (inverted) type. They consider two very high precision (a few per mil) measurements of such mass squared differences by the phase II of the T2K (Tokai-to-Kamioka) experiment and by the novel Moessbauer enhanced resonant {bar {nu}}{sub e} absorption technique. Under optimistic assumptions for the systematic errors of both measurements, they determine the region of sensitivities where the mass hierarchy can be distinguished. Due to the tight space limitation, they present only the general idea and show a few most important plots.

  14. Leptogenesis with many neutrinos

    SciTech Connect

    Eisele, Marc-Thomas

    2008-02-15

    We consider leptogenesis in scenarios with many neutrino singlets. We find that the lower bound for the reheating temperature can be significantly relaxed with respect to the hierarchical three neutrino case. We further argue that the upper bound for the neutrino mass scale from leptogenesis gets significantly lifted in these scenarios. As a specific realization, we then discuss an extradimensional model, where the large number of neutrinos is provided by Kaluza-Klein excitations.

  15. Maximal atmospheric neutrino mixing in an SU(5) model

    NASA Astrophysics Data System (ADS)

    Grimus, W.; Lavoura, L.

    2003-05-01

    We show that maximal atmospheric and large solar neutrino mixing can be implemented in SU(5) gauge theories, by making use of the U(1) F symmetry associated with a suitably defined family number F, together with a Z2 symmetry which does not commute with F. U(1) F is softly broken by the mass terms of the right-handed neutrino singlets, which are responsible for the seesaw mechanism; in additio n, U(1) F is also spontaneously broken at the electroweak scale. In our scenario, lepton mixing stems exclusively from the right-handed-neutrino Majorana mass matrix, whereas the CKM matrix originates solely in the up-type-quark sector. We show that, despite the non-supersymmetric character of our model, unification of the gauge couplings can be achieved at a scale 1016 GeV < m U < 1019 GeV; indeed, we have found a particula r solution to this problem which yields results almost identical to the ones of the minimal supersymmetric standard model.

  16. Cosmogenic Neutrinos Challenge the Cosmic-ray Proton Dip Model

    NASA Astrophysics Data System (ADS)

    Heinze, Jonas; Boncioli, Denise; Bustamante, Mauricio; Winter, Walter

    2016-07-01

    The origin and composition of ultra-high-energy cosmic rays (UHECRs) remain a mystery. The proton dip model describes their spectral shape in the energy range above 109 GeV by pair production and photohadronic interactions with the cosmic microwave background. The photohadronic interactions also produce cosmogenic neutrinos peaking around 109 GeV. We test whether this model is still viable in light of recent UHECR spectrum measurements from the Telescope Array experiment and upper limits on the cosmogenic neutrino flux from IceCube. While two-parameter fits have been already presented, we perform a full scan of the three main physical model parameters: source redshift evolution, injected proton maximal energy, and spectral index. We find qualitatively different conclusions compared to earlier two-parameter fits in the literature: a mild preference for a maximal energy cutoff at the sources instead of the Greisen-Zatsepin-Kuzmin cutoff, hard injection spectra, and strong source evolution. The predicted cosmogenic neutrino flux exceeds the IceCube limit for any parameter combination. As a result, the proton dip model is challenged at more than 95% C.L. This is strong evidence against this model independent of mass composition measurements.

  17. Dynamics of neutrino lumps in growing neutrino quintessence

    NASA Astrophysics Data System (ADS)

    Casas, Santiago; Pettorino, Valeria; Wetterich, Christof

    2016-11-01

    We investigate the formation and dissipation of large-scale neutrino structures in cosmologies where the time evolution of dynamical dark energy is stopped by a growing neutrino mass. In models where the coupling between neutrinos and dark energy grows with the value of the scalar cosmon field, the evolution of neutrino lumps depends on the neutrino mass. For small masses the lumps form and dissolve periodically, leaving only a small backreaction of the neutrino structures on the cosmic evolution. This process heats the neutrinos to temperatures far above the photon temperature, such that neutrinos acquire again an almost relativistic equation of state. The present equation of state of the combined cosmon-neutrino fluid is very close to -1 . By contrast, for larger neutrino masses, the lumps become stable. The highly concentrated neutrino structures entail a large backreaction similar to the case of a constant neutrino-cosmon coupling. A present average neutrino mass of around 0.5 eV seems to be compatible with observations so far. For masses lower than this value, neutrino-induced gravitational potentials remain small, making the lumps difficult to detect.

  18. Radiofrequency instruments to search for new particles and measure neutrino mass

    NASA Astrophysics Data System (ADS)

    Rybka, Gray

    2016-09-01

    The smallness of the neutrino mass scale and renewed interest in sub-eV particles to explain dark matter and dark energy suggest that physics beyond the standard model may be found by looking at energies much lower than those traditionally associated with nuclear physics. Fortuitously, recent advances in microwave and radiofrequency electronics from fields such as radio astronomy and quantum computing offer the ability to access these energy scales with unprecedented sensitivity. I will discuss the application of these advances to nuclear physics, highlighting experiments using microwave technology to probe the neutrino mass scale and experiments using of quantum radiofrequency electronics to search for sub-eV particles such as axions.

  19. Heavy neutrinos and lepton flavor violation in left-right symmetric models at the LHC

    NASA Astrophysics Data System (ADS)

    Das, S. P.; Deppisch, F. F.; Kittel, O.; Valle, J. W. F.

    2012-09-01

    We discuss lepton flavor violating processes induced in the production and decay of heavy right-handed neutrinos at the LHC. Such particles appear in left-right symmetrical extensions of the standard model as the messengers of neutrino mass generation, and can have masses at the TeV scale. We determine the expected sensitivity on the right-handed neutrino mixing matrix, as well as on the right-handed gauge boson and heavy neutrino masses. By comparing the sensitivity of the LHC with that of searches for low energy lepton flavor violating processes, we identify favorable areas of the parameter space to explore the complementarity between lepton flavor violating at low and high energies.

  20. NEW NEUTRINO MASS BOUNDS FROM SDSS-III DATA RELEASE 8 PHOTOMETRIC LUMINOUS GALAXIES

    SciTech Connect

    De Putter, Roland; Mena, Olga; Giusarma, Elena; Ho, Shirley; Seo, Hee-Jong; White, Martin; Ross, Nicholas P.; Cuesta, Antonio; Ross, Ashley J.; Percival, Will J.; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Pan, Kaike; Shelden, Alaina; Simmons, Audrey; Kirkby, David; Schneider, Donald P.; and others

    2012-12-10

    We present neutrino mass bounds using 900,000 luminous galaxies with photometric redshifts measured from Sloan Digital Sky Survey III Data Release 8. The galaxies have photometric redshifts between z = 0.45 and z = 0.65 and cover 10,000 deg{sup 2}, thus probing a volume of 3 h {sup -3} Gpc{sup 3} and enabling tight constraints to be derived on the amount of dark matter in the form of massive neutrinos. A new bound on the sum of neutrino masses {Sigma}m{sub {nu}} < 0.27 eV, at the 95% confidence level (CL), is obtained after combining our sample of galaxies, which we call ''CMASS'', with Wilkinson Microwave Anisotropy Probe (WMAP) seven-year cosmic microwave background data and the most recent measurement of the Hubble parameter from the Hubble Space Telescope (HST). This constraint is obtained with a conservative multipole range of 30 < l < 200 in order to minimize nonlinearities, and a free bias parameter in each of the four redshift bins. We study the impact of assuming this linear galaxy bias model using mock catalogs and find that this model causes a small ({approx}1{sigma}-1.5{sigma}) bias in {Omega}{sub DM} h {sup 2}. For this reason, we also quote neutrino bounds based on a conservative galaxy bias model containing additional, shot-noise-like free parameters. In this conservative case, the bounds are significantly weakened, e.g., {Sigma}m{sub {nu}} < 0.38 eV (95% CL) for WMAP+HST+CMASS (l{sub max} = 200). We also study the dependence of the neutrino bound on the multipole range (l{sub max} = 150 versus l{sub max} = 200) and on which combination of data sets is included as a prior. The addition of supernova and/or baryon acoustic oscillation data does not significantly improve the neutrino mass bound once the HST prior is included. A companion paper describes the construction of the angular power spectra in detail and derives constraints on a general cosmological model, including the dark energy equation of state w and the spatial curvature {Omega}{sub K

  1. New Neutrino Mass Bounds from SDSS-III Data Release 8 Photometric Luminous Galaxies

    NASA Astrophysics Data System (ADS)

    de Putter, Roland; Mena, Olga; Giusarma, Elena; Ho, Shirley; Cuesta, Antonio; Seo, Hee-Jong; Ross, Ashley J.; White, Martin; Bizyaev, Dmitry; Brewington, Howard; Kirkby, David; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Pan, Kaike; Percival, Will J.; Ross, Nicholas P.; Schneider, Donald P.; Shelden, Alaina; Simmons, Audrey; Snedden, Stephanie

    2012-12-01

    We present neutrino mass bounds using 900,000 luminous galaxies with photometric redshifts measured from Sloan Digital Sky Survey III Data Release 8. The galaxies have photometric redshifts between z = 0.45 and z = 0.65 and cover 10,000 deg2, thus probing a volume of 3 h -3 Gpc3 and enabling tight constraints to be derived on the amount of dark matter in the form of massive neutrinos. A new bound on the sum of neutrino masses ∑m ν < 0.27 eV, at the 95% confidence level (CL), is obtained after combining our sample of galaxies, which we call "CMASS," with Wilkinson Microwave Anisotropy Probe (WMAP) seven-year cosmic microwave background data and the most recent measurement of the Hubble parameter from the Hubble Space Telescope (HST). This constraint is obtained with a conservative multipole range of 30 < l < 200 in order to minimize nonlinearities, and a free bias parameter in each of the four redshift bins. We study the impact of assuming this linear galaxy bias model using mock catalogs and find that this model causes a small (~1σ-1.5σ) bias in ΩDM h 2. For this reason, we also quote neutrino bounds based on a conservative galaxy bias model containing additional, shot-noise-like free parameters. In this conservative case, the bounds are significantly weakened, e.g., ∑m ν < 0.38 eV (95% CL) for WMAP+HST+CMASS (lmax = 200). We also study the dependence of the neutrino bound on the multipole range (lmax = 150 versus lmax = 200) and on which combination of data sets is included as a prior. The addition of supernova and/or baryon acoustic oscillation data does not significantly improve the neutrino mass bound once the HST prior is included. A companion paper describes the construction of the angular power spectra in detail and derives constraints on a general cosmological model, including the dark energy equation of state w and the spatial curvature Ω K , while a second companion paper presents a measurement of the scale of baryon acoustic oscillations from

  2. Los Alamos Science, Number 25 -- 1997: Celebrating the Neutrino

    DOE R&D Accomplishments Database

    Cooper, N. G. ed.

    1997-01-01

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  3. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    SciTech Connect

    Cooper, N.G.

    1997-12-31

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  4. Neutrino oscillations: From a historical perspective to the present status

    NASA Astrophysics Data System (ADS)

    Bilenky, S.

    2016-07-01

    The history of neutrino mixing and oscillations is briefly presented. Basics of neutrino mixing and oscillations and convenient formalism of neutrino oscillations in vacuum are given. The role of neutrino in the Standard Model and the Weinberg mechanism of the generation of the Majorana neutrino masses are discussed.

  5. Neutrino oscillations: from an historical perspective to the present status

    NASA Astrophysics Data System (ADS)

    Bilenky, S.

    2016-05-01

    The history of neutrino mixing and oscillations is briefly presented. Basics of neutrino mixing and oscillations and convenient formalism of neutrino oscillations in vacuum is given. The role of neutrino in the Standard Model and the Weinberg mechanism of the generation of the Majorana neutrino masses are discussed.

  6. Neutrinos and lepton flavor violation in the left-right twin Higgs model

    SciTech Connect

    Abada, Asmaa; Hidalgo, Irene

    2008-06-01

    We analyze the lepton sector of the left-right twin Higgs model. This model offers an alternative way to solve the 'little hierarchy' problem of the standard model. We show that one can achieve an effective seesaw to explain the origin of neutrino masses and that this model can accommodate the observed neutrino masses and mixings. We have also studied the lepton flavor violation process l{sub i}{yields}l{sub j}{gamma} and discussed how the experimental bound from these branching ratios constrains the scale of symmetry breaking of this twin Higgs model.

  7. Neutrino oscillations in a stochastic model for space-time foam

    SciTech Connect

    Alexandre, J.; Farakos, K.; Mavromatos, N. E.; Pasipoularides, P.

    2008-05-15

    We study decoherence models for flavor oscillations in four-dimensional stochastically fluctuating space-times and discuss briefly the sensitivity of current neutrino experiments to such models. We demonstrate the model dependence of the associated decoherence-induced damping coefficients in front of the oscillatory terms in the respective transition probabilities between flavors. Within the context of specific models of foam, involving pointlike D-branes and leading to decoherence-induced damping which is inversely proportional to the neutrino energies, we also argue that future limits on the relevant decoherence parameters coming from TeV astrophysical neutrinos, to be observed in ICE-CUBE, are not far from theoretically expected values with Planck-mass suppression. Ultrahigh energy neutrinos from gamma ray bursts at cosmological distances can also exhibit in principle sensitivity to such effects.

  8. 4-Neutrino mass schemes and the likelihood of (3+1)-mass spectra

    NASA Astrophysics Data System (ADS)

    Grimus, W.; Schwetz, T.

    2001-04-01

    We examine the (3+1)-class of 4-neutrino mass spectra within a rigorous statistical analysis based on the Bayesian approach to probability. The data of the Bugey, CDHS and KARMEN experiments are combined by using a likelihood function. Our statistical approach allows us to incorporate solar and atmospheric neutrino data and also the result of the CHOOZ experiment via inequalities which involve elements of the neutrino mixing matrix and are derived from these data. For any short-baseline Δ m^2 we calculate a bound on the LSND transition amplitude A_{μ;e} and find that, in the Δ m^2 A_{μ;e} plane, there is no overlap between the 99% CL region allowed by the latest LSND analysis and the region allowed by our bound on A_{μ;e} at 95% CL; there are some small overlap regions if we take the bound at 99% CL. Therefore, we conclude that, with the existing data, the (3+1)-neutrino mass spectra are not very likely. However, treating the (2+2)-spectra with our method, we find that they are well compatible with all data.

  9. Correlation of neutrino fluxes in the standard Bahcall-Ulrich solar model in connection with the solar-neutrino problem.

    NASA Astrophysics Data System (ADS)

    Kopylov, A. V.

    1993-01-01

    The ratios of the fluxes of solar neutrinos from the CNO cycle to those of boron neutrinos are less model-dependent than the fluxes themselves in the standard Bahcall-Ulrich solar model. The uncertainties for these ratios are calculated at the level of three standard deviations. Their importance in the overall formulation of the problem of detecting solar neutrinos is discussed.

  10. Supernova heavy element nucleosynthesis: Can it tell us about neutrino masses?

    SciTech Connect

    Fuller, George M.

    1997-05-20

    Here we describe a new probe of neutrino properties based on heavy element nucleosynthesis. This technique is in many ways akin to the familiar light element Primordial Nucleosynthesis probe of conditions in the early universe. Our new probe is based on the fact that neutrino masses and vacuum mixings can engender matter-enhanced neutrino flavor transformation in the post core bounce supernova environment. Transformations of the type {nu}{sub {mu}}{sub (r)}<-->{nu}{sub e} in this site will have significant effects on the synthesis of the rapid neutron capture (r-Process) elements and the light p-nuclei. We suggest that an understanding of the origin of these nuclides, combined with the measured abundances of these species, may provide a ''Rosetta Stone'' for neutrino properties. Heavy element nucleosynthesis abundance considerations give either constraints/evidence for neutrino masses and flavor mixings, or strong constraints on the site of origin of r-Process nucleosynthesis. The putative limits on neutrino characteristics are complimentary to those derived from laboratory neutrino oscillation studies and solar and atmospheric neutrino experiments. Preliminary studies show that the existence of r-Process nuclei in the abundances observed in the Galaxy cannot be understood unless neutrinos have small masses (possibly in the cosmologically significant range)

  11. Neutrino oscillation, finite self-mass and general Yang-Mills symmetry

    NASA Astrophysics Data System (ADS)

    Hsu, Jong-Ping

    2016-10-01

    The conservation of lepton number is assumed to be associated with a general Yang-Mills (gYM) symmetry. New transformations involve (Lorentz) vector gauge functions and characteristic phase functions, and they form a group. General Yang-Mills fields are associated with new fourth-order equations and linear potentials. Lepton self-masses turn out to be finite and proportional to the inverse of lepton masses, which implies that neutrinos should have nonzero masses. Thus, gYM symmetry could provide an understanding of neutrino oscillations and suggests that neutrinos with masses and very weak leptonic force may play a role in dark matter.

  12. Are neutrinos their own antiparticles?

    SciTech Connect

    Kayser, Boris; /Fermilab

    2009-03-01

    We explain the relationship between Majorana neutrinos, which are their own antiparticles, and Majorana neutrino masses. We point out that Majorana masses would make the neutrinos very distinctive particles, and explain why many theorists strongly suspect that neutrinos do have Majorana masses. The promising approach to confirming this suspicion is to seek neutrinoless double beta decay. We introduce a toy model that illustrates why this decay requires nonzero neutrino masses, even when there are both right-handed and left-handed weak currents.

  13. FERMION MASSES AND NEUTRINO OSCILLATIONS IN SO(10) X SU(2)F*

    SciTech Connect

    CHEN, M-C.; MAHANTHAPPA, K.T.

    2004-06-17

    We present in this talk a model based on SO(10) x SU(2){sub F} having symmetric mass textures with 5 zeros constructed by us recently. The symmetric mass textures arising from the left-right symmetry breaking chain of SO(10) give rise to good predictions for the masses, mixing angles and CP violation measures in the quark and lepton sectors (including the neutrinos), all in agreement with the most up-to-date experimental data within 1 {sigma}. Various lepton flavor violating decays in our model are also investigated. Unlike in models with lop-sided textures, our prediction for the decay rate of {mu} + e{gamma} is much suppressed and yet it is large enough to be probed by the next generation of experiments. The observed baryonic asymmetry in the Universe can be accommodated in our model utilizing soft leptogenesis.

  14. Global analysis of neutrino masses, mixings, and phases: Entering the era of leptonic CP violation searches

    NASA Astrophysics Data System (ADS)

    Fogli, G. L.; Lisi, E.; Marrone, A.; Montanino, D.; Palazzo, A.; Rotunno, A. M.

    2012-07-01

    We perform a global analysis of neutrino oscillation data, including high-precision measurements of the neutrino mixing angle θ13 at reactor experiments, which have confirmed previous indications in favor of θ13>0. Recent data presented at the Neutrino 2012 conference are also included. We focus on the correlations between θ13 and the mixing angle θ23, as well as between θ13 and the neutrino CP-violation phase δ. We find interesting indications for θ23<π/4 and possible hints for δ˜π, with no significant difference between normal and inverted mass hierarchy.

  15. Non-renormalizable operators for solar neutrino mass generation in Split SuSy with bilinear R-parity violation

    NASA Astrophysics Data System (ADS)

    Díaz, Marco Aurelio; Koch, Benjamin; Rojas, Nicolás

    2017-03-01

    The Minimal Supersymmetric Extension of the Standard Model (MSSM) is able to explain the current data from neutrino physics. Unfortunately Split Supersymmetry as low energy approximation of this theory fails to generate a solar square mass difference, including after the addition of bilinear R-Parity Violation. In this work, it is shown how one can derive an effective low energy theory from the MSSM in the spirit of Split Supersymmetry, which has the potential of explaining the neutrino phenomenology. This is achieved by going beyond leading order in the process of integrating out heavy scalars from the original theory, which results in non-renormalizable operators in the effective low energy theory. It is found that in particular a d = 8 operator is crucial for the generation of the neutrino mass differences.

  16. Very low energy supernovae from neutrino mass loss

    SciTech Connect

    Lovegrove, Elizabeth; Woosley, S. E.

    2013-06-01

    It now seems likely that some percentage of more massive supernova progenitors do not explode by any of the currently discussed explosion mechanisms. This has led to speculation concerning the observable transients that might be produced if such a supernova fails. Even if a prompt outgoing shock fails to form in a collapsing presupernova star, one must still consider the hydrodynamic response of the star to the abrupt loss of mass via neutrinos as the core forms a protoneutron star. Following a suggestion by Nadezhin, we calculate the hydrodynamical responses of typical supernova progenitor stars to the rapid loss of approximately 0.2-0.5 M {sub ☉} of gravitational mass from their centers. In a red supergiant star, a very weak supernova with total kinetic energy ∼10{sup 47} erg results. The binding energy of a large fraction of the hydrogen envelope before the explosion is of the same order and, depending upon assumptions regarding the maximum mass of a neutron star, most of it is ejected. Ejection speeds are ∼100 km s{sup –1} and luminosities ∼10{sup 39} erg s{sup –1} are maintained for about a year. A significant part of the energy comes from the recombination of hydrogen. The color of the explosion is extremely red and the events bear some similarity to 'luminous red novae', but have much lower speeds.

  17. Sterile particles from the flavor gauge model of masses

    NASA Astrophysics Data System (ADS)

    Smetana, Adam

    2013-04-01

    Our motivation is to study a dynamics which has the ambition to underlie models of the electroweak symmetry breaking via the condensation of known fermions. The right-handed neutrinos and the seesaw mechanism are necessary ingredients for viability of this scenario. The existence of right-handed neutrinos follows from theoretical consistence of a model based on dynamical flavor gauge symmetry breaking. The model is defined by a particular flavor representation setting of electroweakly charged fermions. Only finite number of versions of the model exists. They differ by the number and the flavor structure of the right-handed neutrino sector. We choose for inspection one of them, the non-minimal version with right-handed neutrinos in one sextet and four anti-triplet flavor representations. We show that a Majorana pairing of the sextet right-handed neutrinos is responsible for the flavor symmetry breaking and for the seesaw pattern of the neutrino mass matrix. The dynamically generated neutrino mass matrix spontaneously breaks the lepton number and the chiral sterility symmetry of the right-handed neutrino sector. As a result, a spectrum of majorons, neutrino composites, manifests. We study main characteristics of both massive sterile neutrinos and majorons.

  18. Hadronization processes in neutrino interactions

    SciTech Connect

    Katori, Teppei; Mandalia, Shivesh

    2015-10-15

    Next generation neutrino oscillation experiments utilize details of hadronic final states to improve the precision of neutrino interaction measurements. The hadronic system was often neglected or poorly modelled in the past, but they have significant effects on high precision neutrino oscillation and cross-section measurements. Among the physics of hadronic systems in neutrino interactions, the hadronization model controls multiplicities and kinematics of final state hadrons from the primary interaction vertex. For relatively high invariant mass events, many neutrino experiments rely on the PYTHIA program. Here, we show a possible improvement of this process in neutrino event generators, by utilizing expertise from the HERMES experiment. Finally, we estimate the impact on the systematics of hadronization models for neutrino mass hierarchy analysis using atmospheric neutrinos such as the PINGU experiment.

  19. Can the Negative Mass Square of the Electron Neutrinos BE AN Indication of Interaction with Relic Neutrinos?

    NASA Astrophysics Data System (ADS)

    Homma, Kensuke; Jinnouchi, Osamu

    2003-04-01

    The unphysical result of the negative mass square of the electron neutrinos recently reported in several tritium β-decay experiments, is one of the most attractive subjects. As a possible scenario to explain the anomaly, we have assumed a reaction with relic neutrinos which are predicted by the standard big bang cosmology. If such neutrinos could exist, the interaction of the relic neutrinos with the target tritium, νe + 3H → 3He + e- could be laid under the large amount of the β-decay process, H- > He + e- + bar ν e, which would cause a peak-like structure beyond the end-point in the Kurie plot. Based on the assumption, we evaluated the cross section from the event rate found in the peak by re-fitting to the 1991 data published by Mainz Group. In this talk we will provide a scenario that could account for the evaluated cross section by assuming a coherent state of the neutrino sea, which would result much lower temperature than the prediction from the standard big bang cosmology.

  20. New mechanism for Type-II seesaw dominance in SO(10) with low-mass , RH neutrinos, and verifiable LFV, LNV and proton decay

    NASA Astrophysics Data System (ADS)

    Nayak, Bidyut Prava; Parida, Mina Ketan

    2015-05-01

    The dominance of Type-II seesaw mechanism for the neutrino masses has attracted considerable attention because of a number of advantages. We show a novel approach to achieve Type-II seesaw dominance in non-supersymmetric SO(10) grand unification where a low-mass boson and specific patterns of right-handed neutrino masses are predicted within the accessible energy range of the Large Hadron Collider. In spite of the high value of the seesaw scale, - GeV, the model predicts new dominant contributions to neutrino-less double beta decay in the - channel close to the current experimental limits via exchanges of heavier singlet fermions used as essential ingredients of this model even when the light active neutrino masses are normally hierarchical or invertedly hierarchical. We obtain upper bounds on the lightest sterile neutrino mass GeV, GeV and GeV for normally hierarchical, invertedly hierarchical and quasi-degenerate patterns of light-neutrino masses, respectively. The underlying non-unitarity effects lead to lepton flavour violating decay branching ratios within the reach of ongoing or planned experiments and the leptonic CP-violation parameter nearly two order larger than the quark sector. Some of the predicted values on the proton lifetime for are found to be within the currently accessible search limits. Other aspects of model applications including leptogenesis etc. are briefly indicated.

  1. NOvA and T2K: The Race for the neutrino mass hierarchy

    SciTech Connect

    Mena, Olga; Nunokawa, Hiroshi; Parke, Stephen J.; /Fermilab

    2006-09-01

    The determination of the ordering of the neutrino masses (the hierarchy) is probably a crucial prerequisite to understand the origin of lepton masses and mixings and to establish their relationship to the analogous properties in the quark sector. Here, we follow an alternative strategy to the usual neutrino-antineutrino comparison in long baseline neutrino oscillation experiments: we exploit the combination of the neutrino-only data from the NOvA and the T2K experiments by performing these two off-axis experiments at different distances but at the same /L, where is the mean neutrino energy and L is the baseline. This would require a minor adjustment to the proposed off-axis angle for one or both of the proposed experiments.

  2. Solar Neutrino Spectroscopy

    NASA Astrophysics Data System (ADS)

    Feilitzsch, F. v.

    1999-01-01

    Since the pioneering experiment of R. Davis et al., which started neutrino astronomy by measuring the solar neutrinos via the inverse beta decay reaction on 37Cl, all solar neutrino experiments find a considerably lower flux than expected by standard solar models. This finding is generally called the solar neutrino problem. Many attempts have been made to explain this result by altering the solar models, or assuming different nuclear cross sections for fusion processes assumed to be the energy sources in the sun. There have been performed numerous experiments recently to investigate the different possibilities to explain the solar neutrino problem. These experiments covered solar physics with helioseismology, nuclear cross section measurements, and solar neutrino experiments. Up to now no convincing explanation based on "standard" physics was suggested. However, assuming nonstandard neutrino properties, i.e. neutrino masses and mixing as expected in most extensions of the standard theory of elementary particle physics, natural solutions for the solar neutrino problem can be found. It appears that with this newly invented neutrino astronomy fundamental information on astrophysics as well as elementary particle physics are tested uniquely. In this contribution an attempt is made to review the situation of the neutrino astronomy for solar neutrino spectroscopy and discuss the future prospects in this field.

  3. Neutrino fluxes from nonuniversal Higgs mass LSP annihilations in the Sun

    SciTech Connect

    Ellis, John; Olive, Keith A.; Savage, Christopher; Spanos, Vassilis C.

    2011-04-15

    We extend our previous studies of the neutrino fluxes expected from neutralino LSP annihilations inside the Sun to include variants of the minimal supersymmetric extension of the Standard Model (MSSM) with squark, slepton and gaugino masses constrained to be universal at the GUT scale, but allowing one or two nonuniversal supersymmetry breaking parameters contributing to the Higgs masses (NUHM1,2). As in the constrained MSSM (CMSSM) with universal Higgs masses, there are large regions of the NUHM parameter space where the LSP density inside the Sun is not in equilibrium, so that the annihilation rate may be far below the capture rate, and there are also large regions where the capture rate is not dominated by spin-dependent LSP-proton scattering. The spectra possible in the NUHM are qualitatively similar to those in the CMSSM. We calculate neutrino-induced muon fluxes above a threshold energy of 10 GeV, appropriate for the IceCube/DeepCore detector, for points where the NUHM yields the correct cosmological relic density for representative choices of the NUHM parameters. We find that the IceCube/DeepCore detector can probe regions of the NUHM parameter space in addition to analogues of the focus point strip and the tip of the coannihilation strip familiar from the CMSSM. These include regions with enhanced Higgsino-gaugino mixing in the LSP composition, that occurs where neutralino mass eigenstates cross over. On the other hand, rapid-annihilation funnel regions in general yield neutrino fluxes that are unobservably small.

  4. State of physics at the end of the 20. century: Massive neutrinos?

    SciTech Connect

    Slansky, R.

    1997-10-01

    A brief review of neutrino masses is presented with focus on how masses might appear in unified models. A fall 1996 status report of the LSND (Liquid Scintillator Neutrino Detector) experiment at Los Alamos is given; the statistical evidence for neutrino oscillations is becoming stronger. A summary of a unified model based on SO(18) shows possible complications in understanding neutrino masses.

  5. The new discussion of a neutrino mass and issues in the formation of large-scale structure

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.

    1991-01-01

    It is argued that the discrepancy between the large-scale structure predicted by cosmological models with neutrino mass (hot dark matter) do not differ drastically from the observed structure. Evidence from the correlation amplitude, nonlinearity and the onset of galaxy formation, large-scale streaming velocities, and the topology of large-scale structure is considered. Hot dark matter models seem to be as accurate predictors of the large-scale structure as are cold dark matter models.

  6. Neutrino Oscillation Physics

    SciTech Connect

    Kayser, Boris

    2012-06-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far the most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.

  7. Measurement of the neutrino mass splitting and flavor mixing by MINOS.

    PubMed

    Adamson, P; Andreopoulos, C; Armstrong, R; Auty, D J; Ayres, D S; Backhouse, C; Barr, G; Bishai, M; Blake, A; Bock, G J; Boehnlein, D J; Bogert, D; Cavanaugh, S; Cherdack, D; Childress, S; Choudhary, B C; Coelho, J A B; Coleman, S J; Corwin, L; Cronin-Hennessy, D; Danko, I Z; de Jong, J K; Devenish, N E; Diwan, M V; Dorman, M; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grant, N; Grzelak, K; Habig, A; Harris, D; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Huang, X; Hylen, J; Ilic, J; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Lefeuvre, G; Ling, J; Litchfield, P J; Litchfield, R P; Loiacono, L; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGowan, A M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, W H; Mishra, S R; Mitchell, J; Moore, C D; Morfín, J; Mualem, L; Mufson, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Oliver, W P; Orchanian, M; Ospanov, R; Paley, J; Patterson, R B; Pawloski, G; Pearce, G F; Petyt, D A; Phan-Budd, S; Plunkett, R K; Qiu, X; Ratchford, J; Raufer, T M; Rebel, B; Rodrigues, P A; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreiner, P; Shanahan, P; Smith, C; Sousa, A; Stamoulis, P; Strait, M; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tinti, G; Toner, R; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Wojcicki, S G; Yang, T; Zwaska, R

    2011-05-06

    Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of 7.25×10(20) protons on target. A fit to neutrino oscillations yields values of |Δm(2)|=(2.32(-0.08)(+0.12))×10(-3) eV(2) for the atmospheric mass splitting and sin(2)(2θ)>0.90 (90% C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively.

  8. Effects of non-standard neutrino emission on the evolution of low-mass stars

    NASA Astrophysics Data System (ADS)

    Arceo-Díaz, S.; Schröder, K.-P.; Jack, D.; Zuber, K.

    2014-10-01

    Using the {Pools et al. (1995)} version of the STARS code with updated numerical tables for neutrino plasmon decay ({Kantor et al. 2007}), along with the reinterpretation of the Reimers mass-loss prescription by {Schröder et al. (2005)}, we analyze the consequences of enhanced neutrino emission on the internal structure and late evolution of the degenerated cores in low-mass stars, the non-standard increase in tip-RGB luminosity and the impact on the calibration of the Reimers mass-loss mechanism and the changes driven in post-RGB phases. With synthetic spectra generated with the PHOENIX code {Baron & Hauschildt et al. (1997)}, we also study the dependence of the non-standard increase in brightness on the selected NIR photometric band. By comparing our stellar evolutionary models with the synthetic spectra and the photometric data base of ω-Cen by {Sollima et al. (2004)}, we find the limit value μ_{ν}≤ 2.2× 10^{-12}μ_{B}.

  9. Neutrinos

    NASA Astrophysics Data System (ADS)

    Winter, K.; Murdin, P.

    2000-11-01

    Neutrinos are electrically neutral ELEMENTARY PARTICLES which experience only the weak nuclear force and gravity. Their existence was introduced as a hypothesis by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in radioactive beta decay. Chadwick had discovered in 1914 that the energy spectrum of electrons emitted in beta decay was not monoenergetic but continuous...

  10. Assessment of molecular effects on neutrino mass measurements from tritium β decay

    NASA Astrophysics Data System (ADS)

    Bodine, L. I.; Parno, D. Â. S.; Robertson, R. Â. G. Â. H.

    2015-03-01

    The β decay of molecular tritium currently provides the highest sensitivity in laboratory-based neutrino mass measurements. The upcoming Karlsruhe Tritium Neutrino (KATRIN) experiment will improve the sensitivity to 0.2 eV, making a percent-level quantitative understanding of molecular effects essential. The modern theoretical calculations available for neutrino mass experiments agree with spectroscopic data. Moreover, when neutrino mass experiments performed in the 1980s with gaseous tritium are reevaluated using these modern calculations, the extracted neutrino mass squared values are consistent with zero instead of being significantly negative. However, the calculated molecular final-state branching ratios are in conflict with dissociation experiments performed in the 1950s. We reexamine the theory of the final-state spectrum of molecular-tritium decay and its effect on the determination of the neutrino mass, with an emphasis on the role of the vibrational- and rotational-state distribution in the ground electronic state. General features can be reproduced quantitatively from considerations of kinematics and zero-point motion. We summarize the status of validation efforts and suggest means for resolving the apparent discrepancy in dissociation rates.

  11. Measurement of the Top Quark Mass in Dilepton Final States with the Neutrino Weighting Method

    SciTech Connect

    Ilchenko, Yuriy

    2012-12-15

    The top quark is the heaviest fundamental particle observed to date. The mass of the top quark is a free parameter in the Standard Model (SM). A precise measurement of its mass is particularly important as it sets an indirect constraint on the mass of the Higgs boson. It is also a useful constraint on contributions from physics beyond the SM and may play a fundamental role in the electroweak symmetry breaking mechanism. I present a measurement of the top quark mass in the dilepton channel using the Neutrino Weighting Method. The data sample corresponds to an integrated luminosity of 4.3 fb-1 of p$\\bar{p}$ collisions at Tevatron with √s = 1.96 TeV, collected with the DØ detector. Kinematically under-constrained dilepton events are analyzed by integrating over neutrino rapidity. Weight distributions of t$\\bar{t}$ signal and background are produced as a function of the top quark mass for different top quark mass hypotheses. The measurement is performed by constructing templates from the moments of the weight distributions and input top quark mass, followed by a subsequent likelihood t to data. The dominant systematic uncertainties from jet energy calibration is reduced by using a correction from `+jets channel. To replicate the quark avor dependence of the jet response in data, jets in the simulated events are additionally corrected. The result is combined with our preceding measurement on 1 fb-1 and yields mt = 174.0± 2.4 (stat.) ±1.4 (syst.) GeV.

  12. Observables sensitive to absolute neutrino masses: A reappraisal after WMAP 3-year and first MINOS results

    SciTech Connect

    Fogli, G. L.; Lisi, E.; Marrone, A.; Melchiorri, A.; Serra, P.; Palazzo, A.; Silk, J.; Slosar, A.

    2007-03-01

    In the light of recent neutrino oscillation and nonoscillation data, we revisit the phenomenological constraints applicable to three observables sensitive to absolute neutrino masses: The effective neutrino mass in single beta decay (m{sub {beta}}); the effective Majorana neutrino mass in neutrinoless double beta decay (m{sub {beta}}{sub {beta}}); and the sum of neutrino masses in cosmology ({sigma}). In particular, we include the constraints coming from the first Main Injector Neutrino Oscillation Search (MINOS) data and from the Wilkinson Microwave Anisotropy Probe (WMAP) three-year (3y) data, as well as other relevant cosmological data and priors. We find that the largest neutrino squared mass difference is determined with a 15% accuracy (at 2{sigma}) after adding MINOS to world data. We also find upper bounds on the sum of neutrino masses {sigma} ranging from {approx}2 eV (WMAP-3y data only) to {approx}0.2 eV (all cosmological data) at 2{sigma}, in agreement with previous studies. In addition, we discuss the connection of such bounds with those placed on the matter power spectrum normalization parameter {sigma}{sub 8}. We show how the partial degeneracy between {sigma} and {sigma}{sub 8} in WMAP-3y data is broken by adding further cosmological data, and how the overall preference of such data for relatively high values of {sigma}{sub 8} pushes the upper bound of {sigma} in the sub-eV range. Finally, for various combination of data sets, we revisit the (in)compatibility between current {sigma} and m{sub {beta}}{sub {beta}} constraints (and claims), and derive quantitative predictions for future single and double beta decay experiments.

  13. Low mass binary neutron star mergers : gravitational waves and neutrino emission

    NASA Astrophysics Data System (ADS)

    Foucart, Francois; SXS Collaboration Collaboration

    2016-03-01

    We present numerical simulations of low mass binary neutron star mergers (1 . 2M⊙ - 1 . 2M⊙) with the SpEC code for a set of three nuclear-theory based, finite temperature equations of state. The merger remnant is a massive neutron star which is either permanently stable or long-lived. We focus on the post-merger gravitational wave signal, and on neutrino-matter interactions in the merger remnant. We show that the frequency peaks of the post-merger gravitational wave signal are in good agreement with predictions obtained from simulations using a simpler treatment of gravity. We then estimate the neutrino emission of the remnant using a neutrino leakage scheme and, in one case, compare these results with a gray two-moment neutrino transport scheme. We confirm the complex geometry of the neutrino emission, also observed in previous simulations with neutrino leakage, and show explicitly the presence of important differences in the neutrino luminosity, disk composition, and outflow properties between the neutrino leakage and transport schemes. We discuss the impact of our results on our ability to measure the neutron star equation of state, and on the post-merger electromagnetic signal and r-process nucleosynthesis in neutron star mergers. Einstein Fellow.

  14. Matter Effects on Neutrino Oscillations in Different Supernova Models

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Hu, Li-Jun; Li, Rui-Cheng; Guo, Xin-Heng; Young, Bing-Lin

    2016-04-01

    In recent years, with the development of simulations about supernova explosion, we have a better understanding about the density profiles and the shock waves in supernovae than before. There might be a reverse shock wave, another sudden change of density except the forward shock wave, or even no shock wave, emerging in the supernova. Instead of using the expression of the crossing probability at the high resonance, PH, we have studied the matter effects on neutrino oscillations in different supernova models. In detail, we have calculated the survival probability of ve (Ps) and the conversion probability of vx (Pc) in the Schrödinger equation within a simplified two-flavor framework for a certain case, in which the neutrino transfers through the supernova matter from an initial flavor eigenstate located at the core of the supernova. Our calculations was based on the data of density in three different supernova models obtained from simulations. In our work, we do not steepen the density gradient around the border of the shock wave, which differs to what was done in most of the other simulations. It is found that the mass and the density distribution of the supernova do make a difference on the behavior of Ps and Pc. With the results of Ps and Pc, we can estimate the number of ve (and vx) remained in the beam after they go through the matter in the supernova. Supported by National Science Foundation of China under Grant Nos. 11175020 and 11275025

  15. Light sterile neutrino and dark matter in left-right symmetric models without a Higgs bidoublet

    NASA Astrophysics Data System (ADS)

    Borah, Debasish

    2016-10-01

    We present a class of left-right symmetric models where Dirac as well as Majorana mass terms of neutrinos can arise at the one-loop level in a scotogenic fashion: with dark matter particles going inside the loop. We show the possibility of naturally light right-handed neutrinos that can have interesting implications for neutrinoless double beta decay experiments as well as cosmology. Apart from a stable dark matter candidate stabilized by a remnant Z2 symmetry, one can also have a long-lived keV sterile neutrino dark matter in these models. This class of models can have very different collider signatures compared to the conventional left-right models.

  16. Experimental conditions for determination of the neutrino mass hierarchy with reactor antineutrinos

    NASA Astrophysics Data System (ADS)

    Pac, Myoung Youl

    2016-01-01

    This article reports the optimized experimental requirements to determine neutrino mass hierarchy using electron antineutrinos (νbare) generated in a nuclear reactor. The features of the neutrino mass hierarchy can be extracted from the | Δ m312 | and | Δ m322 | oscillations by applying the Fourier sine and cosine transforms to the L / E spectrum. To determine the neutrino mass hierarchy above 90% probability, the requirements on the energy resolution as a function of the baseline are studied at sin2 ⁡ 2θ13 = 0.1. If the energy resolution of the neutrino detector is less than 0.04 /√{Eν} and the determination probability obtained from Bayes' theorem is above 90%, the detector needs to be located around 48-53 km from the reactor(s) to measure the energy spectrum of νbare. These results will be helpful for setting up an experiment to determine the neutrino mass hierarchy, which is an important problem in neutrino physics.

  17. Extended scaling and residual flavor symmetry in the neutrino Majorana mass matrix

    NASA Astrophysics Data System (ADS)

    Samanta, Rome; Roy, Probir; Ghosal, Ambar

    2016-12-01

    The residual symmetry approach, along with a complex extension for some flavor invariance, is a powerful tool to uncover the flavor structure of the 3 × 3 neutrino Majorana mass matrix M_ν toward gaining insights into neutrino mixing. We utilize this to propose a complex extension of the real scaling ansatz for M_ν which was introduced some years ago. Unlike the latter, our proposal allows a nonzero mass for each of the three light neutrinos as well as a nonvanishing θ _{13}. The generation of light neutrino masses via the type-I seesaw mechanism is also demonstrated. A major result of this scheme is that leptonic Dirac CP-violation must be maximal while atmospheric neutrino mixing does not need to be exactly maximal. Moreover, each of the two allowed Majorana phases, to be probed by the search for nuclear 0ν β β decay, has to be at one of its two CP-conserving values. There are other interesting consequences such as the allowed occurrence of a normal mass ordering which is not favored by the real scaling ansatz. Our predictions will be tested in ongoing and future neutrino oscillation experiments at T2K, NOν A and DUNE.

  18. KM3NeT - ORCA: measuring the neutrino mass ordering in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Kouchner, Antoine

    2016-05-01

    ORCA (Oscillations Research with Cosmics in the Abyss) is the low-energy branch of KM3NeT, the underwater Cherenkov neutrino detector in the Mediterranean. Its primary goal is to resolve the long-standing unsolved question of the neutrino mass ordering by measuring matter oscillation effects in atmospheric neutrinos. To be deployed at the French KM3NeT site, ORCA’s multi-PMT optical modules will exploit the excellent optical properties of deep seawater to reconstruct cascade and track events with a few GeV of energy. This contribution reviews the methods and technology, and discusses the current expected performances.

  19. Neutrino sector with Majorana mass terms and Friedberg-Lee symmetry

    NASA Astrophysics Data System (ADS)

    Jarlskog, C.

    2008-04-01

    We examine a recently proposed symmetry/condition by Friedberg and Lee in a framework where three right-handed neutrinos are added to the spectrum of the three-family minimal standard model. It is found that the right-handed neutrinos are very special, with respect to this symmetry. In the symmetry limit the neutrinos are massless, which could possibly be a hint about why they are light. Imposed as a condition and not as a full symmetry, we find that one of the three right-handed neutrinos simply decouples (has only gravitational interactions) and one of the interacting neutrinos is massless. The possible relation of the model to the seesaw mechanism is briefly discussed.

  20. Cosmology Favoring Extra Radiation and Sub-eV Mass Sterile Neutrinos as an Option

    SciTech Connect

    Hamann, Jan; Hannestad, Steen; Raffelt, Georg G.; Tamborra, Irene; Wong, Yvonne Y. Y.

    2010-10-29

    Precision cosmology and big-bang nucleosynthesis mildly favor extra radiation in the Universe beyond photons and ordinary neutrinos, lending support to the existence of low-mass sterile neutrinos. We use the WMAP 7-year data, small-scale cosmic microwave background observations from ACBAR, BICEP, and QuAD, the SDSS 7th data release, and measurement of the Hubble parameter from HST observations to derive credible regions for the assumed common mass scale m{sub s} and effective number N{sub s} of thermally excited sterile neutrino states. Our results are compatible with the existence of one or perhaps two sterile neutrinos, as suggested by LSND and MiniBooNE, if m{sub s} is in the sub-eV range.

  1. Absolute mass of neutrinos and the first unique forbidden β decay of Re187

    NASA Astrophysics Data System (ADS)

    Dvornický, Rastislav; Muto, Kazuo; Šimkovic, Fedor; Faessler, Amand

    2011-04-01

    The planned rhenium β-decay experiment, called the “Microcalorimeter Arrays for a Rhenium Experiment” (MARE), might probe the absolute mass scale of neutrinos with the same sensitivity as the Karlsruhe tritium neutrino mass (KATRIN) experiment, which will take commissioning data in 2011 and will proceed for 5 years. We present the energy distribution of emitted electrons for the first unique forbidden β decay of Re187. It is found that the p-wave emission of electron dominates over the s wave. By assuming mixing of three neutrinos, the Kurie function for the rhenium β decay is derived. It is shown that the Kurie plot near the end point is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed β decay of H3.

  2. Absolute mass of neutrinos and the first unique forbidden {beta} decay of {sup 187}Re

    SciTech Connect

    Dvornicky, Rastislav; Simkovic, Fedor; Muto, Kazuo; Faessler, Amand

    2011-04-15

    The planned rhenium {beta}-decay experiment, called the ''Microcalorimeter Arrays for a Rhenium Experiment'' (MARE), might probe the absolute mass scale of neutrinos with the same sensitivity as the Karlsruhe tritium neutrino mass (KATRIN) experiment, which will take commissioning data in 2011 and will proceed for 5 years. We present the energy distribution of emitted electrons for the first unique forbidden {beta} decay of {sup 187}Re. It is found that the p-wave emission of electron dominates over the s wave. By assuming mixing of three neutrinos, the Kurie function for the rhenium {beta} decay is derived. It is shown that the Kurie plot near the end point is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed {beta} decay of {sup 3}H.

  3. Correlation mass method for analysis of neutrinos from supernova 1987A

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee; Chan, Kwing L.; Kondo, Yoji

    1988-01-01

    Application of a time-energy correlation method to the Kamiokande II (KII) observations of neutrinos apparently emitted from supernova 1987A has yielded a neutrino rest mass of 3.6 eV. A Monte Carlo analysis shows a reconfirming probabilty distribution for the neutrino rest mass peaked at 2.8, and dropping to 50 percent of the peak at 1.4 and 4.8 eV. Although the KII data indicate a very short time scale of emission, over an extended period on the order of 10 sec, both data from the Irvine-Michigan-Brookhaven experiment and the KII data show a tendency for the more energetic neutrinos to be emitted earlier at the source, suggesting the possibility of cooling.

  4. Cosmology favoring extra radiation and sub-eV mass sterile neutrinos as an option.

    PubMed

    Hamann, Jan; Hannestad, Steen; Raffelt, Georg G; Tamborra, Irene; Wong, Yvonne Y Y

    2010-10-29

    Precision cosmology and big-bang nucleosynthesis mildly favor extra radiation in the Universe beyond photons and ordinary neutrinos, lending support to the existence of low-mass sterile neutrinos. We use the WMAP 7-year data, small-scale cosmic microwave background observations from ACBAR, BICEP, and QuAD, the SDSS 7th data release, and measurement of the Hubble parameter from HST observations to derive credible regions for the assumed common mass scale m{s} and effective number N{s} of thermally excited sterile neutrino states. Our results are compatible with the existence of one or perhaps two sterile neutrinos, as suggested by LSND and MiniBooNE, if m{s} is in the sub-eV range.

  5. Atmospheric neutrinos and discovery of neutrino oscillations

    PubMed Central

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations. PMID:20431258

  6. Atmospheric neutrinos and discovery of neutrino oscillations.

    PubMed

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations.

  7. Neutrino physics

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2008-09-01

    The field of neutrino physics has expanded greatly in recent years with the discovery that neutrinos change flavor and therefore have mass. Although there are many neutrino physics results since the last DIS workshop, these proceedings concentrate on recent neutrino physics results that either add to or depend on the understanding of Deep Inelastic Scattering. They also describe the short and longer term future of neutrino DIS experiments.

  8. Meson exchange current (MEC) models in neutrino interaction generators

    SciTech Connect

    Katori, Teppei

    2015-05-15

    Understanding of the so-called 2 particle-2 hole (2p-2h) effect is an urgent program in neutrino interaction physics for current and future oscillation experiments. Such processes are believed to be responsible for the event excesses observed by recent neutrino experiments. The 2p-2h effect is dominated by the meson exchange current (MEC), and is accompanied by a 2-nucleon emission from the primary vertex, instead of a single nucleon emission from the charged-current quasi-elastic (CCQE) interaction. Current and future high resolution experiments can potentially nail down this effect. For this reason, there are world wide efforts to model and implement this process in neutrino interaction simulations. In these proceedings, I would like to describe how this channel is modeled in neutrino interaction generators.

  9. Neutrino mass and the origin of galactic magnetic fields

    SciTech Connect

    Enqvist, K. ); Semikoz, V. IZMIRAN, Academy of Sciences, Troitsk 142092 ); Shukurov, A. Computing Center, Moscow University, Moscow 119899 ); Sokoloff, D. Isaac Newton Institute, Cambridge University, Cambridge CB3 0EH )

    1993-11-15

    We compare two constraints on the strength of the cosmological primordial magnetic field: the one following from the restrictions on the Dirac neutrino spin flip in the early Universe, and another one based on the galactic dynamo theory for the Milky Way (presuming that the seed magnetic field has a relic origin). Since the magnetic field facilitates transitions between left- and right-handed neutrino states, thereby affecting [sup 4]He production at primordial nucleosynthesis, we can obtain a guaranteed [ital upper] limit on the strength of the relic magnetic field in the protogalaxy, [ital B][sub [ital c

  10. Neutrino event counts from Type Ia supernova models

    NASA Astrophysics Data System (ADS)

    Nagaraj, Gautam; Scholberg, Kate

    2016-01-01

    Core collapse supernovae (SNe) are widely known to be among the universe's primary neutrino factories, releasing ˜99% of their energy, or ˜1053 ergs, in the form of the tiny leptons. On the other hand, less than 4% of the energy of Type Ia SNe is released via neutrinos, hence making Ia SNe impossible to detect (through neutrino observations) at typical supernova distances. For this reason, neutrino signatures from these explosions have very rarely been modeled. We ran time-sliced fluences from non-oscillation pure deflagration and delayed detonation (DDT) Ia models by Odrzywolek and Plewa (2011) through SNOwGLoBES, a software that calculates event rates and other observed quantities of supernova neutrinos in various detectors. We determined Ia neutrino event rates in Hyper-K, a proposed water Cherenkov detector, JUNO, a scintillator detector under construction, and DUNE, a proposed argon detector, and identified criteria to distinguish between the two models (pure deflagration and DDT) based on data from a real supernova (statistically represented by a Poisson distribution around the expected result). We found that up to distances of 8.00, 1.54, and 2.37 kpc (subject to change based on oscillation effects and modified detector efficiencies), we can discern the explosion mechanism with ≥90% confidence in Hyper-K, JUNO, and DUNE, respectively, thus learning more about Ia progenitors.

  11. Emanations of dark matter: Muon anomalous magnetic moment, radiative neutrino mass, and novel leptogenesis at the TeV scale

    SciTech Connect

    Hambye, Thomas; Kannike, Kristjan; Raidal, Martti; Ma, Ernest

    2007-05-01

    The evidence for dark matter signals a new class of particles at the TeV scale, which may manifest themselves indirectly through loop effects. In a simple model we show that these loop effects may be responsible for the enhanced muon anomalous magnetic moment, for the neutrino mass, as well as for leptogenesis in a novel way. This scenario can be verified at LHC and/or ILC experiments.

  12. Constraints on neutrino masses from the study of the nearby large-scale structure and galaxy cluster counts

    NASA Astrophysics Data System (ADS)

    Böhringer, Hans; Chon, Gayoung

    2016-07-01

    The high precision measurements of the cosmic microwave background by the Planck survey yielded tight constraints on cosmological parameters and the statistics of the density fluctuations at the time of recombination. This provides the means for a critical study of structure formation in the Universe by comparing the microwave background results with present epoch measurements of the cosmic large-scale structure. It can reveal subtle effects such as how different forms of Dark Matter may modify structure growth. Currently most interesting is the damping effect of structure growth by massive neutrinos. Different observations of low redshift matter density fluctuations provided evidence for a signature of massive neutrinos. Here we discuss the study of the cosmic large-scale structure with a complete sample of nearby, X-ray luminous clusters from our REFLEX cluster survey. From the observed X-ray luminosity function and its reproduction for different cosmological models, we obtain tight constraints on the cosmological parameters describing the matter density, Ωm, and the density fluctuation amplitude, σ8. A comparison of these constraints with the Planck results shows a discrepancy in the framework of a pure ΛCDM model, but the results can be reconciled, if we allow for a neutrino mass in the range of 0.17 eV to 0.7 eV. Also some others, but not all of the observations of the nearby large-scale structure provide evidence or trends for signatures of massive neutrinos. With further improvement in the systematics and future survey projects, these indications will develop into a definitive measurement of neutrino masses.

  13. Neutrino fluctuat nec mercitur: are fossil neutrinos detectable

    SciTech Connect

    De Rujula, A

    1980-04-01

    A brief report is presented on the question whether light (few eV to approx. 100 eV) neutrinos left over from the big bang are detectable. The answer is perhaps. If the weak current of leptons, like those of quarks, are not diagonal in mass eigenstates, a neutrino will decay into a lighter neutrino and a monochromatic photon. The corresponding photon line may be detectable provided: neutrinos are heavy enough to participate in galaxy clustering and neutrino lifetimes are, as in some weak interaction models, short enough.

  14. Beta Decay in the Field of an Electromagnetic Wave and Experiments on Measuring the Neutrino Mass

    SciTech Connect

    Dorofeev, O.F.; Lobanov, A.E.

    2005-06-01

    Investigations of the effect of an electromagnetic wave field on the beta-decay process are used to analyze the tritium-decay experimental data on the neutrino mass. It is shown that the electromagnetic wave can distort the beta spectrum, shifting the end point to the higher energy region. This phenomenon is purely classical and it is associated with the electron acceleration in the radiation field. Since strong magnetic fields exist in setups for precise measurement of the neutrino mass, the indicated field can appear owing to the synchrotron radiation mechanism. The phenomenon under consideration can explain the experimentally observed anomalies in the spectrum of the decay electrons; in particular, the effect of the 'negative square of the neutrino mass'.

  15. Geometry of the effective Majorana neutrino mass in the 0νββ decay

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-zhong; Zhou, Ye-Ling

    2015-01-01

    The neutrinoless double-beta (0νββ) decay is a unique process used to identify the Majorana nature of massive neutrinos, and its rate depends on the size of the effective Majorana neutrino mass ee. We put forward a novel ‘coupling-rod’ diagram to describe ee in the complex plane, by which the effects of the neutrino mass ordering and CP-violating phases on ee are intuitively understood. We show that this geometric language allows us to easily obtain the maximum and minimum of |ee|. It remains usable even if there is a kind of new physics contributing to ee, and it can also be extended to describe the effective Majorana masses eμ, eτ, μτ and ττ which may appear in some other lepton-number violating processes.

  16. Overview of Neutrino Mixing Models and Their Mixing Angle Predictions

    SciTech Connect

    Albright, Carl H.

    2009-11-01

    An overview of neutrino-mixing models is presented with emphasis on the types of horizontal flavor and vertical family symmetries that have been invoked. Distributions for the mixing angles of many models are displayed. Ways to differentiate among the models and to narrow the list of viable models are discussed.

  17. Constraints on Neutrino Masses from the Lensing Dispersion of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Hada, Ryuichiro; Futamase, Toshifumi

    2016-09-01

    We investigate how accurately the total mass of neutrinos is constrained from the magnitude dispersion of SNe Ia due to the effects of gravitational lensing. For this purpose, we use the propagation equation of light bundles in a realistic inhomogeneous universe and propose a sample selection for supernovae to avoid difficulties associated with small-scale effects such as strong lensing or shear effects. With a fitting formula for the nonlinear matter power spectrum taking account of the effects of massive neutrinos, we find that in our model it is possible to obtain the upper limit {{Σ }}{m}ν ≃ 1.0[{{eV}}] for future optical imaging surveys with the Wide-Field InfraRed Survey Telescope and Large Synoptic Survey Telescope. Furthermore, we discuss how far we need to observe SNe Ia and to what extent we have to reduce the magnitude error except for lensing in order to realize the current tightest limit {{Σ }}{m}ν \\lt 0.2[{{eV}}].

  18. A gauge model for right handed neutrinos as dark matter

    NASA Astrophysics Data System (ADS)

    Hernández-Pinto, R. J.; Pérez-Lorenzana, A.

    2008-07-01

    We suggest a simple extension of the electroweak group, SU(2)L×U(1)Y×U(1)B-L, where the breaking of U(1)B-L symmetry provides masses for right handed neutrinos, N, at an acceptable range for them to be Dark Matter (DM). We study the contributions to Mo/ller and Bhabha scattering due to B-L neutral boson to constrain its gauge coupling. We analize N decay rates to determine the number of families that should be considered as DM candidates. The decoupling temperature between active and sterile neutrinos is also calculated.

  19. Solar neutrino limit on axions and keV-mass bosons

    SciTech Connect

    Gondolo, Paolo; Raffelt, Georg G.

    2009-05-15

    The all-flavor solar neutrino flux measured by the Sudbury Neutrino Observatory constrains nonstandard energy losses to less than about 10% of the Sun's photon luminosity, superseding a helioseismological argument and providing new limits on the interaction strength of low-mass particles. For the axion-photon coupling strength we find g{sub a{gamma}}<7x10{sup -10} GeV{sup -1}. We also derive explicit limits on the Yukawa coupling to electrons of pseudoscalar, scalar, and vector bosons with keV-scale masses.

  20. Neutrino mass matrices from two zero 3 × 2 Yukawa textures and minimal d = 5 entries

    NASA Astrophysics Data System (ADS)

    Achelashvili, Avtandil; Tavartkiladze, Zurab

    2016-05-01

    Aiming to relate leptonic CP violating phase δ to the cosmological CP asymmetry, we study the extension of MSSM by two quasi-degenerate (strictly degenerate at tree level) right-handed neutrinos and consider all possible two texture zero 3 × 2 Yukawa matrices plus one ΔL = 2 dimension five (d = 5) operator contributing to the light neutrino mass matrix. We classify all experimentally viable mass matrices, leading to several predictions, and analytically derive predictive relations. We also relate the CP violating δ phase to the CP phase of the thermal leptogenesis.

  1. Neutrino-driven Supernova of a Low-mass Iron-core Progenitor Boosted by Three-dimensional Turbulent Convection

    NASA Astrophysics Data System (ADS)

    Melson, Tobias; Janka, Hans-Thomas; Marek, Andreas

    2015-03-01

    We present the first successful simulation of a neutrino-driven supernova explosion in three dimensions (3D), using the Prometheus-Vertex code with an axis-free Yin-Yang grid and a sophisticated treatment of three-flavor, energy-dependent neutrino transport. The progenitor is a nonrotating, zero-metallicity 9.6 {{M}⊙ } star with an iron core. While in spherical symmetry outward shock acceleration sets in later than 300 ms after bounce, a successful explosion starts at ˜130 ms postbounce in two dimensions (2D). The 3D model explodes at about the same time but with faster shock expansion than in 2D and a more quickly increasing and roughly 10% higher explosion energy of >1050 erg. The more favorable explosion conditions in 3D are explained by lower temperatures and thus reduced neutrino emission in the cooling layer below the gain radius. This moves the gain radius inward and leads to a bigger mass in the gain layer, whose larger recombination energy boosts the explosion energy in 3D. These differences are caused by less coherent, less massive, and less rapid convective downdrafts associated with postshock convection in 3D. The less violent impact of these accretion downflows in the cooling layer produces less shock heating and therefore diminishes energy losses by neutrino emission. We thus have, for the first time, identified a reduced mass accretion rate, lower infall velocities, and a smaller surface filling factor of convective downdrafts as consequences of 3D postshock turbulence that facilitate neutrino-driven explosions and strengthen them compared to the 2D case.

  2. Neutrino Oscillations, the Higgs Boson, and the Private Higgs Model

    NASA Astrophysics Data System (ADS)

    BenTov, Jonathan

    "CESR, PEP, PETRA, ISABELLE, p-bar p colliders, LEP, the tevatron, and ep machines are at various levels of design or construction. They will study the properties of b-matter, see weak intermediaries, and perhaps find the t-quark and the Higgs boson. Never before was there such a bestiary waiting to be discovered; and what surprises will be found!" - S. L. Glashow ("The Future of Elementary Particle Physics," Quarks and Leptons, NATO Advanced Study Institutes Series Volume 61, 1980, pp 687-713) The situation in 1980 was clearly different from the present situation in 2013, in which we face the very real possibilty that no new degrees of freedom will ever again be within reach of a collider. In an intriguing twist of fate, this very fact results in a sharp paradox for fundamental physics: the Higgs mass should be MP/m h ˜ 1017 times larger than it actually is, and the vacuum energy density of the universe should be (M P/A)4 ˜ (1031)4 times larger than it actually is, and apparently nature refuses to give us any more clues as to why. These together are what I would call the main problem of 21st century physics: despite all of the predictive success of particle physics so far, we must find a way to suitably modify the rules of quantum field theory, lest we accept the unproductive defeatist attitude that our universe is simply fine-tuned. In the meantime, there is much interesting work to be done in more "traditional" particle physics: we have learned that neutrinos actually have tiny but nonzero masses, which is clear and unambiguous evidence for physics beyond the Standard Model. I will allocate the first third of this document to phenomena related to neutrino oscillations. In particular, I would like to argue that some of the apparent differences between neutrino mixing and quark mixing are to an extent illusory, and actually many aspects of the two sectors can be understood in a coherent framework for extending the Standard Model. The remaining two-thirds of this

  3. A search at Super-Kamiokande for low mass dark matter candidates in the T2K neutrino beam

    NASA Astrophysics Data System (ADS)

    Nantais, Corina; T2K Collaboration

    2015-04-01

    The T2K neutrino beam is produced by colliding 30 GeV protons with a graphite target, and some dark sector models predict that a dark matter candidate could be created in the collision. This massive and neutral particle could scatter off a nucleon in Super-Kamiokande, a 50 kilotonne water Cherenkov detector. Similar to the neutral-current quasielastic neutrino-oxygen interaction, the dark matter candidate could interact with the oxygen nucleus, kicking out a nucleon and leaving the nucleus in an excited state. As the nucleus deexcites, 6 MeV gamma-rays are emitted which can be efficiently detected by Super-Kamiokande. The longer time of flight for a dark matter candidate, compared to a neutrino, allows separation between the dark matter induced signal and the neutrino induced background. In the intense global effort to measure dark matter, this complementary search investigates the sub-GeV mass range where other experiments have reduced sensitivity.

  4. Gravitational wave generated by mass ejection in protoneutron star neutrino burst

    SciTech Connect

    Almeida, L. G.; Rodrigues, H.; Portes, D. JR.; Duarte, S. B.

    2010-11-12

    In this work we discuss the mechanism of mass ejection in protoneutron stars induced by diffusion of neutrinos. A dynamical calculation is employed in order to determine the amount of matter ejected and the properties of the remnant compact object [1]. The equations of state of this supra-nuclear regime [2] is properly linked with others describing the different sub-nuclear regimes of density [3, 4, 5]. For specified initial configurations of the protoneutron star, we solve numerically the set of equations of motion together with a schematic treatment of the neutrino transport through the dense stellar medium. We investigate the gravitational waves production accompanying the mass ejection induced by the neutrino burst. It is estimated the gravitational wave intensity and the detection of such wave by the existing detector or near future project for this purpose is discussed.

  5. Sterile Neutrino Search with MINOS

    SciTech Connect

    Devan, Alena V.

    2015-08-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, ms2 ~ 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  6. UHE neutrino and cosmic ray emission from GRBs: Revising the models and clarifying the cosmic ray-neutrino connection

    SciTech Connect

    Bustamante, Mauricio Winter, Walter; Baerwald, Philipp

    2014-11-18

    Gamma-ray bursts (GRBs) have long been held as one of the most promising sources of ultra-high energy (UHE) neutrinos. The internal shock model of GRB emission posits the joint production of UHE cosmic rays (UHECRs, above 10{sup 8} GeV), photons, and neutrinos, through photohadronic interactions between source photons and magnetically-confined energetic protons, that occur when relativistically-expanding matter shells loaded with baryons collide with one another. While neutrino observations by IceCube have now ruled out the simplest version of the internal shock model, we show that a revised calculation of the emission, together with the consideration of the full photohadronic cross section and other particle physics effects, results in a prediction of the prompt GRB neutrino flux that still lies one order of magnitude below the current upper bounds, as recently exemplified by the results from ANTARES. In addition, we show that by allowing protons to directly escape their magnetic confinement without interacting at the source, we are able to partially decouple the cosmic ray and prompt neutrino emission, which grants the freedom to fit the UHECR observations while respecting the neutrino upper bounds. Finally, we briefly present advances towards pinning down the precise relation between UHECRs and UHE neutrinos, including the baryonic loading required to fit UHECR observations, and we will assess the role that very large volume neutrino telescopes play in this.

  7. Measuring the mass of a sterile neutrino with a very short baseline reactor experiment

    NASA Astrophysics Data System (ADS)

    Latimer, D. C.; Escamilla, J.; Ernst, D. J.

    2007-04-01

    An analysis of the world's neutrino oscillation data, including sterile neutrinos, [M. Sorel, C. M. Conrad, and M. H. Shaevitz, Phys. Rev. D 70, 073004 (2004)] found a peak in the allowed region at a mass-squared difference Δm2≅0.9eV2. We trace its origin to harmonic oscillations in the electron survival probability Pee as a function of L/E, the ratio of baseline to neutrino energy, as measured in the near detector of the Bugey experiment. We find a second occurrence for Δm2≅1.9eV2. We point out that the phenomenon of harmonic oscillations of Pee as a function of L/E, as seen in the Bugey experiment, can be used to measure the mass-squared difference associated with a sterile neutrino in the range from a fraction of an eV2 to several eV2 (compatible with that indicated by the LSND experiment), as well as measure the amount of electron-sterile neutrino mixing. We observe that the experiment is independent, to lowest order, of the size of the reactor and suggest the possibility of a small reactor with a detector sitting at a very short baseline.

  8. Measuring the mass of a sterile neutrino with a very short baseline reactor experiment

    SciTech Connect

    Latimer, D. C.; Escamilla, J.; Ernst, D. J.

    2007-04-15

    An analysis of the world's neutrino oscillation data, including sterile neutrinos, [M. Sorel, C. M. Conrad, and M. H. Shaevitz, Phys. Rev. D 70, 073004 (2004)] found a peak in the allowed region at a mass-squared difference {delta}m{sup 2} congruent with 0.9 eV{sup 2}. We trace its origin to harmonic oscillations in the electron survival probability P{sub ee} as a function of L/E, the ratio of baseline to neutrino energy, as measured in the near detector of the Bugey experiment. We find a second occurrence for {delta}m{sup 2} congruent with 1.9 eV{sup 2}. We point out that the phenomenon of harmonic oscillations of P{sub ee} as a function of L/E, as seen in the Bugey experiment, can be used to measure the mass-squared difference associated with a sterile neutrino in the range from a fraction of an eV{sup 2} to several eV{sup 2} (compatible with that indicated by the LSND experiment), as well as measure the amount of electron-sterile neutrino mixing. We observe that the experiment is independent, to lowest order, of the size of the reactor and suggest the possibility of a small reactor with a detector sitting at a very short baseline.

  9. Identifying neutrino mass hierarchy at extremely small theta13 through earth matter effects in a supernova signal.

    PubMed

    Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro

    2008-10-24

    Collective neutrino flavor transformations deep inside a supernova are sensitive to the neutrino mass hierarchy even at extremely small values of theta_(13). Exploiting this effect, we show that comparison of the antineutrino signals from a galactic supernova in two megaton class water Cherenkov detectors, one of which is shadowed by Earth, will enable us to distinguish between the hierarchies if sin(2)theta_(13) < or approximately 10(-5), where long baseline neutrino experiments would be ineffectual.

  10. Neutrino physics with JUNO

    NASA Astrophysics Data System (ADS)

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Buizza Avanzini, Margherita; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Hervé; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Göger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cécile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Möllenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M.; McDonough, William F.; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Björn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frédéric; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2016-03-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3-4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters {{sin}}2{θ }12, {{Δ }}{m}212, and | {{Δ }}{m}{ee}2| to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ˜5000 inverse-beta-decay events and ˜2000 all-flavor neutrino-proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations

  11. Neutrino masses and cosmology with Lyman-alpha forest power spectrum

    NASA Astrophysics Data System (ADS)

    Palanque-Delabrouille, Nathalie; Yèche, Christophe; Baur, Julien; Magneville, Christophe; Rossi, Graziano; Lesgourgues, Julien; Borde, Arnaud; Burtin, Etienne; LeGoff, Jean-Marc; Rich, James; Viel, Matteo; Weinberg, David

    2015-11-01

    We present constraints on neutrino masses, the primordial fluctuation spectrum from inflation, and other parameters of the ΛCDM model, using the one-dimensional Lyα-forest power spectrum measured by [1] from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS-III), complemented by Planck 2015 cosmic microwave background (CMB) data and other cosmological probes. This paper improves on the previous analysis by [2] by using a more powerful set of calibrating hydrodynamical simulations that reduces uncertainties associated with resolution and box size, by adopting a more flexible set of nuisance parameters for describing the evolution of the intergalactic medium, by including additional freedom to account for systematic uncertainties, and by using Planck 2015 constraints in place of Planck 2013. Fitting Lyα data alone leads to cosmological parameters in excellent agreement with the values derived independently from CMB data, except for a weak tension on the scalar index ns. Combining BOSS Lyα with Planck CMB constrains the sum of neutrino masses to ∑ mν < 0.12 eV (95% C.L.) including all identified systematic uncertainties, tighter than our previous limit (0.15 eV) and more robust. Adding Lyα data to CMB data reduces the uncertainties on the optical depth to reionization τ, through the correlation of τ with σ8. Similarly, correlations between cosmological parameters help in constraining the tensor-to-scalar ratio of primordial fluctuations r. The tension on ns can be accommodated by allowing for a running dns/d ln k. Allowing running as a free parameter in the fits does not change the limit on ∑ mν. We discuss possible interpretations of these results in the context of slow-roll inflation.

  12. Neutrino masses and cosmology with Lyman-alpha forest power spectrum

    SciTech Connect

    Palanque-Delabrouille, Nathalie; Yèche, Christophe; Baur, Julien; Magneville, Christophe; Borde, Arnaud; Burtin, Etienne; LeGoff, Jean-Marc; Rich, James; Lesgourgues, Julien; Viel, Matteo; Weinberg, David E-mail: christophe.yeche@cea.fr E-mail: christophe.magneville@cea.fr E-mail: Julien.Lesgourgues@cern.ch

    2015-11-01

    We present constraints on neutrino masses, the primordial fluctuation spectrum from inflation, and other parameters of the ΛCDM model, using the one-dimensional Lyα-forest power spectrum measured by [1] from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS-III), complemented by Planck 2015 cosmic microwave background (CMB) data and other cosmological probes. This paper improves on the previous analysis by [2] by using a more powerful set of calibrating hydrodynamical simulations that reduces uncertainties associated with resolution and box size, by adopting a more flexible set of nuisance parameters for describing the evolution of the intergalactic medium, by including additional freedom to account for systematic uncertainties, and by using Planck 2015 constraints in place of Planck 2013. Fitting Lyα data alone leads to cosmological parameters in excellent agreement with the values derived independently from CMB data, except for a weak tension on the scalar index n{sub s}. Combining BOSS Lyα with Planck CMB constrains the sum of neutrino masses to ∑ m{sub ν} < 0.12 eV (95% C.L.) including all identified systematic uncertainties, tighter than our previous limit (0.15 eV) and more robust. Adding Lyα data to CMB data reduces the uncertainties on the optical depth to reionization τ, through the correlation of τ with σ{sub 8}. Similarly, correlations between cosmological parameters help in constraining the tensor-to-scalar ratio of primordial fluctuations r. The tension on n{sub s} can be accommodated by allowing for a running dn{sub s}/d ln k. Allowing running as a free parameter in the fits does not change the limit on ∑ m{sub ν}. We discuss possible interpretations of these results in the context of slow-roll inflation.

  13. Neutrino phenomenology

    DOE PAGES

    Coloma, Pilar

    2016-11-21

    Neutrino oscillations have demonstrated that neutrinos have mass and, by now, oscillation experiments have been able to determine most of the parameters in the leptonic mixing matrix with a very good accuracy. Nevertheless, there are still many open questions in the neutrino sector. As a result, I will briefly discuss some of these questions, pointing out possible experimental avenues to address them.

  14. Forecasts on neutrino mass constraints from the redshift-space two-point correlation function

    NASA Astrophysics Data System (ADS)

    Petracca, F.; Marulli, F.; Moscardini, L.; Cimatti, A.; Carbone, C.; Angulo, R. E.

    2016-11-01

    We provide constraints on the accuracy with which the neutrino mass fraction, fν, can be estimated when exploiting measurements of redshift-space distortions, describing in particular how the error on neutrino mass depends on three fundamental parameters of a characteristic galaxy redshift survey: density, halo bias and volume. In doing this, we make use of a series of dark matter halo catalogues extracted from the BASICC simulation. The mock data are analysed via a Markov Chain Monte Carlo likelihood analysis. We find a fitting function that well describes the dependence of the error on bias, density and volume, showing a decrease in the error as the bias and volume increase, and a decrease with density down to an almost constant value for high-density values. This fitting formula allows us to produce forecasts on the precision achievable with future surveys on measurements of the neutrino mass fraction. For example, a Euclid-like spectroscopic survey should be able to measure the neutrino mass fraction with an accuracy of δfν ≈ 3.1 × 10-3 (which is equivalent to δ∑mν ≈ 0.039eV), using redshift-space clustering once all the other cosmological parameters are kept fixed to the ΛCDM case.

  15. DESI and other Dark Energy experiments in the era of neutrino mass measurements

    DOE PAGES

    Font-Ribera, Andreu; McDonald, Patrick; Mostek, Nick; ...

    2014-05-19

    Here we present Fisher matrix projections for future cosmological parameter measurements, including neutrino masses, Dark Energy, curvature, modified gravity, the inflationary perturbation spectrum, non-Gaussianity, and dark radiation. We focus on DESI and generally redshift surveys (BOSS, HETDEX, eBOSS, Euclid, and WFIRST), but also include CMB (Planck) and weak gravitational lensing (DES and LSST) constraints. The goal is to present a consistent set of projections, for concrete experiments, which are otherwise scattered throughout many papers and proposals. We include neutrino mass as a free parameter in most projections, as it will inevitably be relevant $-$ DESI and other experiments can measuremore » the sum of neutrino masses to ~ 0.02 eV or better, while the minimum possible sum is 0.06 eV. We note that constraints on Dark Energy are significantly degraded by the presence of neutrino mass uncertainty, especially when using galaxy clustering only as a probe of the BAO distance scale (because this introduces additional uncertainty in the background evolution after the CMB epoch). Using broadband galaxy power becomes relatively more powerful, and bigger gains are achieved by combining lensing survey constraints with redshift survey constraints. Finally, we do not try to be especially innovative, e.g., with complex treatments of potential systematic errors $-$ these projections are intended as a straightforward baseline for comparison to more detailed analyses.« less

  16. Status report on the Livermore-Rockefeller-Fermilab neutrino mass experiment

    SciTech Connect

    Fackler, O.; Mugge, M.; Sticker, H.; White, R.M.; Woerner, R.

    1986-03-01

    An experiment is being performed to determine the electron neutrino mass with the precision of a few eV by measuring the tritium beta decay energy distribution near the endpoint. Key features of the experiment are a 2 eV resolution electrostatic spectrometer and a high-activity frozen tritium source.

  17. DESI and other Dark Energy experiments in the era of neutrino mass measurements

    SciTech Connect

    Font-Ribera, Andreu; McDonald, Patrick; Mostek, Nick; Reid, Beth A.; Seo, Hee-Jong; Slosar, Anže E-mail: PVMcDonald@lbl.gov E-mail: BAReid@lbl.gov E-mail: anze@bnl.gov

    2014-05-01

    We present Fisher matrix projections for future cosmological parameter measurements, including neutrino masses, Dark Energy, curvature, modified gravity, the inflationary perturbation spectrum, non-Gaussianity, and dark radiation. We focus on DESI and generally redshift surveys (BOSS, HETDEX, eBOSS, Euclid, and WFIRST), but also include CMB (Planck) and weak gravitational lensing (DES and LSST) constraints. The goal is to present a consistent set of projections, for concrete experiments, which are otherwise scattered throughout many papers and proposals. We include neutrino mass as a free parameter in most projections, as it will inevitably be relevant — DESI and other experiments can measure the sum of neutrino masses to ∼ 0.02 eV or better, while the minimum possible sum is ∼ 0.06 eV. We note that constraints on Dark Energy are significantly degraded by the presence of neutrino mass uncertainty, especially when using galaxy clustering only as a probe of the BAO distance scale (because this introduces additional uncertainty in the background evolution after the CMB epoch). Using broadband galaxy power becomes relatively more powerful, and bigger gains are achieved by combining lensing survey constraints with redshift survey constraints. We do not try to be especially innovative, e.g., with complex treatments of potential systematic errors — these projections are intended as a straightforward baseline for comparison to more detailed analyses.

  18. DESI and other Dark Energy experiments in the era of neutrino mass measurements

    SciTech Connect

    Font-Ribera, Andreu; McDonald, Patrick; Mostek, Nick; Reid, Beth A.; Seo, Hee-Jong; Slosar, Anže

    2014-05-19

    Here we present Fisher matrix projections for future cosmological parameter measurements, including neutrino masses, Dark Energy, curvature, modified gravity, the inflationary perturbation spectrum, non-Gaussianity, and dark radiation. We focus on DESI and generally redshift surveys (BOSS, HETDEX, eBOSS, Euclid, and WFIRST), but also include CMB (Planck) and weak gravitational lensing (DES and LSST) constraints. The goal is to present a consistent set of projections, for concrete experiments, which are otherwise scattered throughout many papers and proposals. We include neutrino mass as a free parameter in most projections, as it will inevitably be relevant $-$ DESI and other experiments can measure the sum of neutrino masses to ~ 0.02 eV or better, while the minimum possible sum is 0.06 eV. We note that constraints on Dark Energy are significantly degraded by the presence of neutrino mass uncertainty, especially when using galaxy clustering only as a probe of the BAO distance scale (because this introduces additional uncertainty in the background evolution after the CMB epoch). Using broadband galaxy power becomes relatively more powerful, and bigger gains are achieved by combining lensing survey constraints with redshift survey constraints. Finally, we do not try to be especially innovative, e.g., with complex treatments of potential systematic errors $-$ these projections are intended as a straightforward baseline for comparison to more detailed analyses.

  19. Neutrino mass constraint from the Sloan Digital Sky Survey power spectrum of luminous red galaxies and perturbation theory

    SciTech Connect

    Saito, Shun; Takada, Masahiro; Taruya, Atsushi

    2011-02-15

    We compare the model power spectrum, computed based on perturbation theory, with the power spectrum of luminous red galaxies (LRG) measured from the Sloan Digital Sky Survey Data Release 7 catalog, assuming a flat, cold dark matter-dominated cosmology. The model includes the effects of massive neutrinos, nonlinear matter clustering and nonlinear, scale-dependent galaxy bias in a self-consistent manner. We first test the accuracy of the perturbation theory model by comparing the model predictions with the halo power spectrum in real- and redshift-space, measured from 70 simulation realizations for a cold dark matter model without massive neutrinos. We show that the perturbation theory model with bias parameters being properly adjusted can fairly well reproduce the simulation results. As a result, the best-fit parameters obtained from the hypothetical parameter fitting recover, within statistical uncertainties, the input cosmological parameters in simulations, including an upper bound on neutrino mass, if the power spectrum information up to k{approx_equal}0.15 hMpc{sup -1} is used. However, for the redshift-space power spectrum, the best-fit cosmological parameters show a sizable bias from the input values if using the information up to k{approx_equal}0.2 hMpc{sup -1}, probably due to nonlinear redshift distortion effect. Given these tests, we decided, as a conservative choice, to use the LRG power spectrum up to k=0.1 hMpc{sup -1} in order to minimize possible unknown nonlinearity effects. In combination with the recent results from Wilkinson Microwave Background Anisotropy Probe (WMAP), we derive a robust upper bound on the sum of neutrino masses, given as (95% C.L.), marginalized over other parameters including nonlinear bias parameters and dark energy equation of state parameter. The upper bound is only slightly improved to if including the LRG spectrum up to k=0.2 hMpc{sup -1}, due to severe parameter degeneracies, although the constraint may be biased as

  20. Neutrino masses and cosmological parameters from a Euclid-like survey: Markov Chain Monte Carlo forecasts including theoretical errors

    SciTech Connect

    Audren, Benjamin; Lesgourgues, Julien; Bird, Simeon; Haehnelt, Martin G.; Viel, Matteo E-mail: julien.lesgourgues@cern.ch E-mail: haehnelt@ast.cam.ac.uk

    2013-01-01

    We present forecasts for the accuracy of determining the parameters of a minimal cosmological model and the total neutrino mass based on combined mock data for a future Euclid-like galaxy survey and Planck. We consider two different galaxy surveys: a spectroscopic redshift survey and a cosmic shear survey. We make use of the Monte Carlo Markov Chains (MCMC) technique and assume two sets of theoretical errors. The first error is meant to account for uncertainties in the modelling of the effect of neutrinos on the non-linear galaxy power spectrum and we assume this error to be fully correlated in Fourier space. The second error is meant to parametrize the overall residual uncertainties in modelling the non-linear galaxy power spectrum at small scales, and is conservatively assumed to be uncorrelated and to increase with the ratio of a given scale to the scale of non-linearity. It hence increases with wavenumber and decreases with redshift. With these two assumptions for the errors and assuming further conservatively that the uncorrelated error rises above 2% at k = 0.4 h/Mpc and z = 0.5, we find that a future Euclid-like cosmic shear/galaxy survey achieves a 1-σ error on M{sub ν} close to 32 meV/25 meV, sufficient for detecting the total neutrino mass with good significance. If the residual uncorrelated errors indeed rises rapidly towards smaller scales in the non-linear regime as we have assumed here then the data on non-linear scales does not increase the sensitivity to the total neutrino mass. Assuming instead a ten times smaller theoretical error with the same scale dependence, the error on the total neutrino mass decreases moderately from σ(M{sub ν}) = 18 meV to 14 meV when mildly non-linear scales with 0.1 h/Mpc < k < 0.6 h/Mpc are included in the analysis of the galaxy survey data.

  1. Experimental data on solar neutrinos

    NASA Astrophysics Data System (ADS)

    Ludhova, Livia

    2016-04-01

    Neutrino physics continues to be a very active research field, full of opened fundamental questions reaching even beyond the Standard Model of elementary particles and towards a possible new physics. Solar neutrinos have played a fundamental historical role in the discovery of the phenomenon of neutrino oscillations and thus non-zero neutrino mass. Even today, the study of solar neutrinos provides an important insight both into the neutrino as well as into the stellar and solar physics. In this section we give an overview of the most important solar-neutrino measurements from the historical ones up to the most recent ones. We cover the results from the experiments using radio-chemic (Homestake, SAGE, GNO, GALLEX), water Cherenkov (Kamiokande, Super-Kamiokande, SNO), and the liquid-scintillator (Borexino, KamLAND) detection techniques.

  2. The Absolute Mass of Neutrino and the First Unique Forbidden β-DECAY of 187Re

    NASA Astrophysics Data System (ADS)

    Dvornický, Rastislav; Šimkovic, Fedor; Muto, Kazuo

    2011-10-01

    The planned rhenium β-decay experiment MARE might probe the absolute mass scale of neutrinos with the same sensitivity as the tritium β-decay experiment KATRIN, which will start data taking in 2011 and will proceed for five years. We present the energy distribution of emitted electrons for the first unique forbidden β-decay of 187Re. It is found that the p-wave emission of electron dominates over the s-wave. By assuming mixing of three neutrinos the Kurie function for the rhenium β-decay is derived. It is shown that the Kurie plot near the endpoint is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed βof 3H.

  3. Neutrino and gravitational wave signal of a delayed-detonation model of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Seitenzahl, Ivo R.; Herzog, Matthias; Ruiter, Ashley J.; Marquardt, Kai; Ohlmann, Sebastian T.; Röpke, Friedrich K.

    2015-12-01

    The progenitor system(s) and the explosion mechanism(s) of type Ia supernovae (SNe Ia) are still under debate. Nonelectromagnetic observables, in particular, gravitational waves and neutrino emission, of thermoclear supernovae are a complementary window to light curves and spectra for studying these enigmatic objects. A leading model for SNe Ia is the thermonuclear incineration of a near-Chandrasekhar mass carbon-oxygen white dwarf star in a "delayed detonation." We calculate a three-dimensional hydrodynamic explosion for the N100 delayed-detonation model extensively discussed in the literature, taking the dynamical effects of neutrino emission from all important contributing source terms into account. Although neutrinos carry away 2 ×1049 erg of energy, we confirm the common view that neutrino energy losses are dynamically not very important, resulting in only a modest reduction of final kinetic energy by 2%. We then calculate the gravitational wave signal from the time evolution of the quadrupole moment. Our model radiates 7 ×1039 erg in gravitational waves and the spectrum has a pronounced peak around 0.4 Hz. Depending on viewing angle and polarization, we find that the future space-based gravitational wave missions DECIGO and BBO would be able to detect our source to a distance of ˜1.3 Mpc . We predict a clear signature of the deflagration-to-detonation transition in the neutrino and the gravitational wave signals. If observed, such a feature would be a strong indicator of the realization of delayed detonations in near-Chandrasekhar mass white dwarfs.

  4. The analysis of solar models: Neutrinos and oscillations

    NASA Technical Reports Server (NTRS)

    Ulrich, R. K.; Rhodes, E. J., Jr.; Tomczyk, S.; Dumont, P. J.; Brunish, W. M.

    1983-01-01

    Tests of solar neutrino flux and solar oscillation frequencies were used to assess standard stellar structure theory. Standard and non-standard solar models are enumerated and discussed. The field of solar seismology, wherein the solar interior is studied from the measurement of solar oscillations, is introduced.

  5. Supernova bound on keV-mass sterile neutrinos reexamined

    SciTech Connect

    Raffelt, Georg G.; Zhou Shun

    2011-05-01

    Active-sterile neutrino mixing is strongly constrained for m{sub s} < or approx. 100 keV to avoid excessive energy losses from supernova cores. For smaller m{sub s}, matter effects suppress the effective mixing angle except for a resonant range of energies where it is enhanced. We study the case of {nu}{sub {tau}-{nu}s} mixing where a {nu}{sub {tau}-{nu}{tau}} asymmetry builds up due to the strong excess of {nu}{sub s} over {nu}{sub s} emission or vice versa, reducing the overall emission rate. In the warm dark matter range m{sub s} < or approx. 10 keV the mixing angle is essentially unconstrained.

  6. The kinematic Sunyaev-Zel'dovich effect of the large-scale structure (I): dependence on neutrino mass

    NASA Astrophysics Data System (ADS)

    Roncarelli, M.; Villaescusa-Navarro, F.; Baldi, M.

    2017-01-01

    The study of neutrinos in astrophysics requires the combination of different observational probes. The temperature anisotropies of the cosmic microwave background induced via the kinematic Sunyaev-Zel'dovich (kSZ) effect may provide interesting information since they are expected to receive significant contribution from high-redshift plasma. We present a set of cosmological hydrodynamical simulations that include a treatment of the neutrino component considering 4 different sum of neutrino masses: Σmν = (0, 0.15, 0.3, 0.6) eV. Using their outputs we modelled the kSZ effect due to the large-scale structure after the reionisation by producing mock maps, then computed the kSZ power spectrum and studied how it depends on zre and Σmν. We also run as set of 4 simulations to study and correct possible systematics due to resolution, finite box size and astrophysics. With massless neutrinos we obtain D^kSZ_{3000}=4.0 μK2 (zre=8.8), enough to account for all of the kSZ signal of D^kSZ_{3000}=(2.9 ± 1.3)μK2 measured with the South Pole Telescope (George et al. 2015). This translates into an upper limit on the kSZ effect due to patchy reionisation of D^kSZ,patchy_{3000}<1.0 μK2 (95% C.L.). Massive neutrinos induce a damping of kSZ effect power of about 8, 12 and 40 per cent for Σmν = (0.15, 0.3, 0.6) eV, respectively. We study the dependence of the kSZ signal with zre and the neutrino mass fraction, fν, and obtain D^kSZ_{3000}∝zre0.26(1 - fν)14.3. Interestingly, the scaling with fν is significantly shallower with respect to the equivalent thermal SZ effect, and may be used to break the degeneracy with other cosmological parameters.

  7. SN1987A-Neutrino emission from Supernova': in Dynamic universe model of cosmology

    NASA Astrophysics Data System (ADS)

    Naga Parameswara Gupta, Satyavarapu

    SN1987A-Neutrino emission from supernova before the star bursts' is an important discovery, when viewed from `Dynamic universe model of cosmology' point of view. In OMEG05, we have successfully presented the reasons for calculation error called `missing mass' in an inhomoge-neous, anisotropic and multi-body Dynamic universe Model, where this error is not occurring. But there are some new voices that say about generation of some flavors of neutrinos during Bigbang. We find from SN1987A Neutrino generation covers all flavors. Remaining flavors of Neutrinos are generated from sun and stars. This covers the whole spectrum. This paper covers all these aspects. And other earlier results by Dynamic Universe Model 1. Offers Singularity free solutions 2. Non-collapsing Galaxy structures 3. Solving Missing mass in Galaxies, and it finds reason for Galaxy circular velocity curves. . . . 4. Blue shifted and red shifted Galaxies co-existence. . . 5. Explains the force behind expansion of universe. 6. Explains the large voids and non-uniform matter densities. 7. Explains the Pioneer anomaly 8. Predicts the trajectory of New Horizons satellite. 9 Jeans swindle test 10. Existence of large number of blue shifted Galaxies `SITA Simulations' software was developed about 18 years back for Dynamic Universe Model of Cosmology. It is based on Newtonian physics. It is Classical singularity free N-body tensor solution to the old problem announced by King Oscar II and tried by Poincare in year AD1888 for 133 masses, tested extensively for so many years. This was developed on 486 based PC of those days; the same software was used repeatedly for so many years for solving different Physical problems on Different PCs and Laptops. It is based on Dynamic Universe Model's mathematical back ground.

  8. Low mass binary neutron star mergers: Gravitational waves and neutrino emission

    NASA Astrophysics Data System (ADS)

    Foucart, Francois; Haas, Roland; Duez, Matthew D.; O'Connor, Evan; Ott, Christian D.; Roberts, Luke; Kidder, Lawrence E.; Lippuner, Jonas; Pfeiffer, Harald P.; Scheel, Mark A.

    2016-02-01

    Neutron star mergers are among the most promising sources of gravitational waves for advanced ground-based detectors. These mergers are also expected to power bright electromagnetic signals, in the form of short gamma-ray bursts, infrared/optical transients powered by r-process nucleosynthesis in neutron-rich material ejected by the merger, and radio emission from the interaction of that ejecta with the interstellar medium. Simulations of these mergers with fully general relativistic codes are critical to understand the merger and postmerger gravitational wave signals and their neutrinos and electromagnetic counterparts. In this paper, we employ the Spectral Einstein Code to simulate the merger of low mass neutron star binaries (two 1.2 M⊙ neutron stars) for a set of three nuclear-theory-based, finite temperature equations of state. We show that the frequency peaks of the postmerger gravitational wave signal are in good agreement with predictions obtained from recent simulations using a simpler treatment of gravity. We find, however, that only the fundamental mode of the remnant is excited for long periods of time: emission at the secondary peaks is damped on a millisecond time scale in the simulated binaries. For such low mass systems, the remnant is a massive neutron star which, depending on the equation of state, is either permanently stable or long lived (i.e. rapid uniform rotation is sufficient to prevent its collapse). We observe strong excitations of l =2 , m =2 modes, both in the massive neutron star and in the form of hot, shocked tidal arms in the surrounding accretion torus. We estimate the neutrino emission of the remnant using a neutrino leakage scheme and, in one case, compare these results with a gray two-moment neutrino transport scheme. We confirm the complex geometry of the neutrino emission, also observed in previous simulations with neutrino leakage, and show explicitly the presence of important differences in the neutrino luminosity, disk

  9. Constraints from primordial nucleosynthesis on the mass of the tau neutrino

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Turner, Michael S.; Chakravorty, A.; Schramm, David N.

    1991-01-01

    It is shown that primordial nucleosynthesis excludes a tau-neutrino mass from 0.3 to 25 MeV (Dirac) and 0.5 to 25 MeV (Majorana) provided that its lifetime is not less than about 1 sec, and from 0.3 to 30 MeV (Dirac) and 0.5 to 32 MeV (Majorana) for a lifetime of not less than about 1000 sec. A modest improvement in the laboratory mass limit - from 35 to 25 MeV - would imply that the tau-neutrino mass must be less than 0.5 MeV (provided the lifetime is not less than about 1 sec).

  10. Majorana Neutrino Masses by Spectroscopic Studies of Double Beta Decays and Moon

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu

    This is a brief review of spectroscopic studies of neutrino-less double beta decays (0νββ) and the MOON (Mo Observatory Of Neutrinos) project. It aims at studying the Majorana nature of neutrinos and the mass spectrum by spectroscopic studies of 0νββ with ν-mass sensitivity of ≈ 30 meV. The solid scintillator option of the MOON detector is a super ensemble of multi-layer modules, each being composed by a scintillator plate and two tracking detector planes. Thin ββ source films are interleaved between the detector planes. High localization of the two β tracks enables one to select true signals and reject BG ones by spatial and time correlation analyses. MOON with detector ≠ ββ source is used for studying 0νββ decays from 100Mo, 82Se and other ββ isotopes with large nuclear sensitivity (large Qββ). Real-time exclusive measurements of low energy solar neutrinos can also be made by observing inverse β rays from solar-ν captures of 100Mo in delayed coincidence with the subsequent β decay of 100Tc.

  11. Oscillation properties of active and sterile neutrinos and neutrino anomalies at short distances

    NASA Astrophysics Data System (ADS)

    Khruschov, V. V.; Fomichev, S. V.; Titov, O. A.

    2016-09-01

    A generalized phenomenological (3 + 2 + 1) model featuring three active and three sterile neutrinos that is intended for calculating oscillation properties of neutrinos for the case of a normal activeneutrino mass hierarchy and a large splitting between the mass of one sterile neutrino and the masses of the other two sterile neutrinos is considered. A new parametrization and a specific form of the general mixing matrix are proposed for active and sterile neutrinos with allowance for possible CP violation in the lepton sector, and test values are chosen for the neutrino masses and mixing parameters. The probabilities for the transitions between different neutrino flavors are calculated, and graphs representing the probabilities for the disappearance of muon neutrinos/antineutrinos and the appearance of electron neutrinos/antineutrinos in a beam of muon neutrinos/antineutrinos versus the distance from the neutrino source for various values of admissible model parameters at neutrino energies not higher than 50 MeV, as well as versus the ratio of this distance to the neutrino energy, are plotted. It is shown that the short-distance accelerator anomaly in neutrino data (LNSD anomaly) can be explained in the case of a specific mixing matrix for active and sterile neutrinos (which belongs to the a 2 type) at the chosen parameter values. The same applies to the short-distance reactor and gallium anomalies. The theoretical results obtained in the present study can be used to interpret and predict the results of ground-based neutrino experiments aimed at searches for sterile neutrinos, as well as to analyze some astrophysical observational data.

  12. A neutrino model fit to the CMB power spectrum

    NASA Astrophysics Data System (ADS)

    Shanks, T.; Johnson, R. W. F.; Schewtschenko, J. A.; Whitbourn, J. R.

    2014-12-01

    The standard cosmological model, Λ cold dark matter (ΛCDM), provides an excellent fit to cosmic microwave background (CMB) data. However, the model has well-known problems. For example, the cosmological constant, Λ, is fine-tuned to 1 part in 10100 and the CDM particle is not yet detected in the laboratory. Shanks previously investigated a model which assumed neither exotic particles nor a cosmological constant but instead postulated a low Hubble constant (H0) to allow a baryon density compatible with inflation and zero spatial curvature. However, recent Planck results make it more difficult to reconcile such a model with CMB power spectra. Here, we relax the previous assumptions to assess the effects of assuming three active neutrinos of mass ≈5 eV. If we assume a low H0 ≈ 45 km s-1 Mpc-1 then, compared to the previous purely baryonic model, we find a significantly improved fit to the first three peaks of the Planck power spectrum. Nevertheless, the goodness of fit is still significantly worse than for ΛCDM and would require appeal to unknown systematic effects for the fit ever to be considered acceptable. A further serious problem is that the amplitude of fluctuations is low (σ8 ≈ 0.2), making it difficult to form galaxies by the present day. This might then require seeds, perhaps from a primordial magnetic field, to be invoked for galaxy formation. These and other problems demonstrate the difficulties faced by models other than ΛCDM in fitting ever more precise cosmological data.

  13. Precision Studies at the Neutrino Frontier

    NASA Astrophysics Data System (ADS)

    Heeger, Karsten M.

    2013-04-01

    Neutrinos were proposed as a remedy to explain nuclear beta decay and are now essential in our understanding of the Universe. Neutrinos determine the abundance of light elements, are critical to supernova explosions, and may hold the key to understanding the matter-antimatter asymmetry. Studies of neutrinos from the Sun and nuclear reactors have confirmed the prediction of solar models and provided evidence for neutrino flavor oscillation. The observation of neutrino oscillation is amongst the major discoveries and demands that we make the first significant revision of the Standard Model. The search for neutrinoless double beta decay is the only experimental approach to probing the Majorana nature of neutrinos and will provide insight into the fundamental nature of neutrino mass. I will review Stuart Freedman's contributions to neutrino physics and in advancing the field to precision measurements.

  14. Freeze-in production of sterile neutrino dark matter in U(1){sub B−L} model

    SciTech Connect

    Biswas, Anirban; Gupta, Aritra

    2016-09-27

    With the advent of new and more sensitive direct detection experiments, scope for a thermal WIMP explanation of dark matter (DM) has become extremely constricted. The non-observation of thermal WIMP in these experiments has put a strong upper bound on WIMP-nucleon scattering cross section and within a few years it is likely to overlap with the coherent neutrino-nucleon cross section. Hence in all probability, DM may have some non-thermal origin. In this work we explore in detail this possibility of a non-thermal sterile neutrino DM within the framework of U(1){sub B−L} model. The U(1){sub B−L} model on the other hand is a well-motivated and minimal way of extending the standard model so that it can explain the neutrino masses via Type-I see-saw mechanism. We have shown, besides explaining the neutrino mass, it can also accommodate a non-thermal sterile neutrino DM with correct relic density. In contrast with the existing literature, we have found that W{sup ±} decay can also be a dominant production mode of the sterile neutrino DM. To obtain the comoving number density of dark matter, we have solved here a coupled set of Boltzmann equations considering all possible decay as well as annihilation production modes of the sterile neutrino dark matter. The framework developed here though has been done for a U(1){sub B−L} model, can be applied quite generally for any models with an extra neutral gauge boson and a fermionic non-thermal dark matter.

  15. Satellite galaxies in semi-analytic models of galaxy formation with sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Lovell, Mark R.; Bose, Sownak; Boyarsky, Alexey; Cole, Shaun; Frenk, Carlos S.; Gonzalez-Perez, Violeta; Kennedy, Rachel; Ruchayskiy, Oleg; Smith, Alex

    2016-09-01

    The sterile neutrino is a viable dark matter candidate that can be produced in the early Universe via non-equilibrium processes, and would therefore possess a highly non-thermal spectrum of primordial velocities. In this paper we analyse the process of structure formation with this class of dark matter particles. To this end we construct primordial dark matter power spectra as a function of the lepton asymmetry, L6, that is present in the primordial plasma and leads to resonant sterile neutrino production. We compare these power spectra with those of thermally produced dark matter particles and show that resonantly produced sterile neutrinos are much colder than their thermal relic counterparts. We also demonstrate that the shape of these power spectra is not determined by the free-streaming scale alone. We then use the power spectra as an input for semi-analytic models of galaxy formation in order to predict the number of luminous satellite galaxies in a Milky Way-like halo. By assuming that the mass of the Milky Way halo must be no more than 2 × 1012 M⊙ (the adopted upper bound based on current astronomical observations) we are able to constrain the value of L6 for Ms ≤ 8 keV. We also show that the range of L6 that is in best agreement with the 3.5 keV line (if produced by decays of 7 keV sterile neutrino) requires that the Milky Way halo has a mass no smaller than 1.5 × 1012 M⊙. Finally, we compare the power spectra obtained by direct integration of the Boltzmann equations for a non-resonantly produced sterile neutrino with the fitting formula of Viel et al. and find that the latter significantly underestimates the power amplitude on scales relevant to satellite galaxies.

  16. Neutrinos as the messengers of CPT violation

    NASA Astrophysics Data System (ADS)

    Borissov, Liubomir Anguelov

    CPT violation has the potential to explain all three existing neutrino oscillation signals without enlarging the neutrino sector. CPT violation in the Dirac mass terms of the three neutrino flavors preserves Lorentz invariance, but generates in dependent masses for neutrinos and antineutrinos. This specific signature can be motivated by braneworld scenarios with extra dimensions, where neutrinos are the natural messengers for Standard Model physics of CPT violation in the bulk. A simple model of maximal CPT violation is sufficient to explain the exisiting neutrino data, while accommodating the recent results from the KamLAND experiment and making dramatic predictions for the ongoing MiniBooNE experiment. In addition, the model fits the existing SuperKamiokande data, at least as well as the standard atmospheric neutrino oscillation models. Another attractive feature of the presented model is that it provides a new promising mechanism for baryogenesis, which obviates two of the three Sakharov conditions necessary to generate the baryon asymmetry of the universe. CPT-violating scenarios can give new insights about the possible nature of neutrinos. Majorana neutrino masses are still allowed, but in general, there are no longer Majorana neutrinos in the conventional sense. However, CPT-violating models still have interesting consequences for neutrinoless double beta decay. Compared to the usual case, while the larger mass scale (from LSND) may appear, a greater degree of suppression can also occur.

  17. Cosmology with massive neutrinos III: the halo mass function and an application to galaxy clusters

    SciTech Connect

    Costanzi, Matteo; Borgani, Stefano; Villaescusa-Navarro, Francisco; Viel, Matteo; Xia, Jun-Qing; Castorina, Emanuele; Sefusatti, Emiliano E-mail: villaescusa@oats.inaf.it E-mail: xiajq@ihep.ac.cn E-mail: castori@sissa.it

    2013-12-01

    We use a suite of N-body simulations that incorporate massive neutrinos as an extra-set of particles to investigate their effect on the halo mass function. We show that for cosmologies with massive neutrinos the mass function of dark matter haloes selected using the spherical overdensity (SO) criterion is well reproduced by the fitting formula of Tinker et al. (2008) once the cold dark matter power spectrum is considered instead of the total matter power, as it is usually done. The differences between the two implementations, i.e. using P{sub cdm}(k) instead of P{sub m}(k), are more pronounced for large values of the neutrino masses and in the high end of the halo mass function: in particular, the number of massive haloes is higher when P{sub cdm}(k) is considered rather than P{sub m}(k). As a quantitative application of our findings we consider a Planck-like SZ-clusters survey and show that the differences in predicted number counts can be as large as 30% for ∑m{sub ν} = 0.4 eV. Finally, we use the Planck-SZ clusters sample, with an approximate likelihood calculation, to derive Planck-like constraints on cosmological parameters. We find that, in a massive neutrino cosmology, our correction to the halo mass function produces a shift in the σ{sub 8}(Ω{sub m}/0.27){sup γ} relation which can be quantified as Δγ ∼ 0.05 and Δγ ∼ 0.14 assuming one (N{sub ν} = 1) or three (N{sub ν} = 3) degenerate massive neutrino, respectively. The shift results in a lower mean value of σ{sub 8} with Δσ{sub 8} = 0.01 for N{sub ν} = 1 and Δσ{sub 8} = 0.02 for N{sub ν} = 3, respectively. Such difference, in a cosmology with massive neutrinos, would increase the tension between cluster abundance and Planck CMB measurements.

  18. Neutrino footprint in large scale structure

    NASA Astrophysics Data System (ADS)

    Garay, Carlos Peña; Verde, Licia; Jimenez, Raul

    2017-03-01

    Recent constrains on the sum of neutrino masses inferred by analyzing cosmological data, show that detecting a non-zero neutrino mass is within reach of forthcoming cosmological surveys. Such a measurement will imply a direct determination of the absolute neutrino mass scale. Physically, the measurement relies on constraining the shape of the matter power spectrum below the neutrino free streaming scale: massive neutrinos erase power at these scales. However, detection of a lack of small-scale power from cosmological data could also be due to a host of other effects. It is therefore of paramount importance to validate neutrinos as the source of power suppression at small scales. We show that, independent on hierarchy, neutrinos always show a footprint on large, linear scales; the exact location and properties are fully specified by the measured power suppression (an astrophysical measurement) and atmospheric neutrinos mass splitting (a neutrino oscillation experiment measurement). This feature cannot be easily mimicked by systematic uncertainties in the cosmological data analysis or modifications in the cosmological model. Therefore the measurement of such a feature, up to 1% relative change in the power spectrum for extreme differences in the mass eigenstates mass ratios, is a smoking gun for confirming the determination of the absolute neutrino mass scale from cosmological observations. It also demonstrates the synergy between astrophysics and particle physics experiments.

  19. Neutrino fluxes from constrained minimal supersymmetric standard model lightest supersymmetric particle annihilations in the Sun

    SciTech Connect

    Ellis, John; Olive, Keith A.; Savage, Christopher; Spanos, Vassilis C.

    2010-04-15

    We evaluate the neutrino fluxes to be expected from neutralino lightest supersymmetric particle (LSP) annihilations inside the Sun, within the minimal supersymmetric extension of the standard model with supersymmetry-breaking scalar and gaugino masses constrained to be universal at the grand unified theory scale [the constrained minimal supersymmetric standard model (CMSSM)]. We find that there are large regions of typical CMSSM (m{sub 1/2},m{sub 0}) planes where the LSP density inside the Sun is not in equilibrium, so that the annihilation rate may be far below the capture rate. We show that neutrino fluxes are dependent on the solar model at the 20% level, and adopt the AGSS09 model of Serenelli et al. for our detailed studies. We find that there are large regions of the CMSSM (m{sub 1/2},m{sub 0}) planes where the capture rate is not dominated by spin-dependent LSP-proton scattering, e.g., at large m{sub 1/2} along the CMSSM coannihilation strip. We calculate neutrino fluxes above various threshold energies for points along the coannihilation/rapid-annihilation and focus-point strips where the CMSSM yields the correct cosmological relic density for tan{beta}=10 and 55 for {mu}>0, exploring their sensitivities to uncertainties in the spin-dependent and -independent scattering matrix elements. We also present detailed neutrino spectra for four benchmark models that illustrate generic possibilities within the CMSSM. Scanning the cosmologically favored parts of the parameter space of the CMSSM, we find that the IceCube/DeepCore detector can probe at best only parts of this parameter space, notably the focus-point region and possibly also at the low-mass tip of the coannihilation strip.

  20. Calculation of molecular final states and their effect on a precision neutrino mass experiment

    SciTech Connect

    Fackler, O.; Mugge, M.; Sticker, H.; Winter, N.; Woerner, R.

    1984-02-01

    An experiment to determine the electron neutrino mass is being performed with the precision of a few electron volts by measuring the tritium beta decay energy distribution near the endpoint. At the few electron volt level, a major consideration in the choice of a tritium source is the effect of excited final atomic or molecular states on the beta decay distribution. It is important to choose a source for which the initial and final states can be accurately calculated. Frozen tritium was chosen as the source since the states of molecular tritium and those of the HeT/sup +/ daughter ion have electronic wavefunctions that can be calculated with high accuracy. The effects of final excited states on the neutrino mass determination and the results of these calculations are described.

  1. Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen

    NASA Astrophysics Data System (ADS)

    Gando, A.; Gando, Y.; Hachiya, T.; Hayashi, A.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Karino, Y.; Koga, M.; Matsuda, S.; Mitsui, T.; Nakamura, K.; Obara, S.; Oura, T.; Ozaki, H.; Shimizu, I.; Shirahata, Y.; Shirai, J.; Suzuki, A.; Takai, T.; Tamae, K.; Teraoka, Y.; Ueshima, K.; Watanabe, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Fushimi, K.; Banks, T. I.; Berger, B. E.; Fujikawa, B. K.; O'Donnell, T.; Winslow, L. A.; Efremenko, Y.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.; KamLAND-Zen Collaboration

    2016-08-01

    We present an improved search for neutrinoless double-beta (0 ν β β ) decay of 136Xe in the KamLAND-Zen experiment. Owing to purification of the xenon-loaded liquid scintillator, we achieved a significant reduction of the Agm110 contaminant identified in previous searches. Combining the results from the first and second phase, we obtain a lower limit for the 0 ν β β decay half-life of T1/2 0 ν>1.07 ×1 026 yr at 90% C.L., an almost sixfold improvement over previous limits. Using commonly adopted nuclear matrix element calculations, the corresponding upper limits on the effective Majorana neutrino mass are in the range 61-165 meV. For the most optimistic nuclear matrix elements, this limit reaches the bottom of the quasidegenerate neutrino mass region.

  2. Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen.

    PubMed

    Gando, A; Gando, Y; Hachiya, T; Hayashi, A; Hayashida, S; Ikeda, H; Inoue, K; Ishidoshiro, K; Karino, Y; Koga, M; Matsuda, S; Mitsui, T; Nakamura, K; Obara, S; Oura, T; Ozaki, H; Shimizu, I; Shirahata, Y; Shirai, J; Suzuki, A; Takai, T; Tamae, K; Teraoka, Y; Ueshima, K; Watanabe, H; Kozlov, A; Takemoto, Y; Yoshida, S; Fushimi, K; Banks, T I; Berger, B E; Fujikawa, B K; O'Donnell, T; Winslow, L A; Efremenko, Y; Karwowski, H J; Markoff, D M; Tornow, W; Detwiler, J A; Enomoto, S; Decowski, M P

    2016-08-19

    We present an improved search for neutrinoless double-beta (0νββ) decay of ^{136}Xe in the KamLAND-Zen experiment. Owing to purification of the xenon-loaded liquid scintillator, we achieved a significant reduction of the ^{110m}Ag contaminant identified in previous searches. Combining the results from the first and second phase, we obtain a lower limit for the 0νββ decay half-life of T_{1/2}^{0ν}>1.07×10^{26}  yr at 90% C.L., an almost sixfold improvement over previous limits. Using commonly adopted nuclear matrix element calculations, the corresponding upper limits on the effective Majorana neutrino mass are in the range 61-165 meV. For the most optimistic nuclear matrix elements, this limit reaches the bottom of the quasidegenerate neutrino mass region.

  3. Neutrino fluxes from a core-collapse supernova in a model with three sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Yudin, A. V.; Nadyozhin, D. K.; Khruschov, V. V.; Fomichev, S. V.

    2016-12-01

    The characteristics of the gravitational collapse of a supernova and the fluxes of active and sterile neutrinos produced during the formation of its protoneutron core have been calculated numerically. The relative yields of active and sterile neutrinos in corematter with different degrees of neutronization have been calculated for various input parameters and various initial conditions. A significant increase in the fraction of sterile neutrinos produced in superdense core matter at the resonant degree of neutronization has been confirmed. The contributions of sterile neutrinos to the collapse dynamics and the total flux of neutrinos produced during collapse have been shown to be relatively small. The total luminosity of sterile neutrinos is considerably lower than the luminosity of electron neutrinos, but their spectrum is considerably harder at high energies.

  4. Neutrinos and cosmology: a lifetime relationship

    SciTech Connect

    Serpico, Pasquale D.; /Fermilab

    2008-06-01

    We consider the example of neutrino decays to illustrate the profound relation between laboratory neutrino physics and cosmology. Two case studies are presented: In the first one, we show how the high precision cosmic microwave background spectral data collected by the FIRAS instrument on board of COBE, when combined with Lab data, have greatly changed bounds on the radiative neutrino lifetime. In the second case, we speculate on the consequence for neutrino physics of the cosmological detection of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a detection at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on some models of neutrino secret interactions.

  5. Soft see-saw: Radiative origin of neutrino masses in SUSY theories

    NASA Astrophysics Data System (ADS)

    Megrelidze, Luka; Tavartkiladze, Zurab

    2017-01-01

    Radiative neutrino mass generation within supersymmetric (SUSY) construction is studied. The mechanism is considered where the lepton number violation is originating from the soft SUSY breaking terms. This requires MSSM extensions with states around the TeV scale. We present several explicit realizations based on extensions either by MSSM singlet or SU(2)w triplet states. Besides some novelties of the proposed scenarios, various phenomenological implications are also discussed.

  6. Viable chaotic inflation as a source of neutrino masses and leptogenesis

    NASA Astrophysics Data System (ADS)

    Nakayama, Kazunori; Takahashi, Fuminobu; Yanagida, Tsutomu T.

    2016-06-01

    We show that the seesaw mechanism as well as leptogenesis are natural outcomes of a viable chaotic inflation in supergravity. The inflation model contains two superfields, the inflaton and stabilizer fields, which, being singlets under the standard model gauge symmetry, naturally couple to the lepton and Higgs doublets. The inflaton decays into leptons and Higgs fields, and the reheating temperature is predicted to be of O (1013) GeV, for which thermal leptogenesis is possible. On the other hand, gravitinos are copiously produced, and various solutions to the gravitino problem are discussed. We also argue that, if the shift symmetry of the inflaton is explicitly broken down to a discrete one, neutrino Yukawa couplings are periodic in the inflaton field, and masses of leptons and Higgs do not blow up even if the inflaton takes super-Planckian field values. The inflaton potential is given by a sum of sinusoidal functions with different height and periodicity, the so-called multi-natural inflation. We show that the predicted scalar spectral index and tensor-to-scalar ratio lie in the region favored by the Planck data.

  7. A simple motivated completion of the standard model below the Planck scale: Axions and right-handed neutrinos

    NASA Astrophysics Data System (ADS)

    Salvio, Alberto

    2015-04-01

    We study a simple Standard Model (SM) extension, which includes three families of right-handed neutrinos with generic non-trivial flavor structure and an economic implementation of the invisible axion idea. We find that in some regions of the parameter space this model accounts for all experimentally confirmed pieces of evidence for physics beyond the SM: it explains neutrino masses (via the type-I see-saw mechanism), dark matter, baryon asymmetry (through leptogenesis), solves the strong CP problem and has a stable electroweak vacuum. The last property may allow us to identify the Higgs field with the inflaton.

  8. Experimental Neutrino Physics: Final Report

    SciTech Connect

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  9. Probing neutrino oscillations in supersymmetric models at the Large Hadron Collider

    SciTech Connect

    Campos, F. de; Eboli, O. J. P.; Hirsch, M.; Valle, J. W. F.; Porod, W.

    2010-10-01

    The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.

  10. Cosmogenic neutrinos and ultra-high energy cosmic ray models

    SciTech Connect

    Aloisio, R.; Petrera, S.; Boncioli, D.; Grillo, A.F.; Salamida, F. E-mail: denise.boncioli@lngs.infn.it E-mail: aurelio.grillo@lngs.infn.it E-mail: salamida@ipno.in2p3.fr

    2015-10-01

    We use an updated version of SimProp, a Monte Carlo simulation scheme for the propagation of ultra-high energy cosmic rays, to compute cosmogenic neutrino fluxes expected on Earth in various scenarios. These fluxes are compared with the newly detected IceCube events at PeV energies and with recent experimental limits at EeV energies of the Pierre Auger Observatory. This comparison allows us to draw some interesting conclusions about the source models for ultra-high energy cosmic rays. We will show how the available experimental observations are almost at the level of constraining such models, mainly in terms of the injected chemical composition and cosmological evolution of sources. The results presented here will also be important in the evaluation of the discovery capabilities of the future planned ultra-high energy cosmic ray and neutrino observatories.

  11. Nonzero {theta}{sub 13} for neutrino mixing in a supersymmetric B-L gauge model with T{sub 7} lepton flavor symmetry

    SciTech Connect

    Cao Qinghong; Khalil, Shaaban; Ma, Ernest; Okada, Hiroshi

    2011-10-01

    We discuss how {theta}{sub 13}{ne}0 is accommodated in a recently proposed renormalizable model of neutrino mixing using the non-Abelian discrete symmetry T{sub 7} in the context of a supersymmetric extension of the standard model with gauged U(1){sub B-L}. We predict a correlation between {theta}{sub 13} and {theta}{sub 23}, as well as the effective neutrino mass m{sub ee} in neutrinoless double beta decay.

  12. Cosmology with massive neutrinos I: towards a realistic modeling of the relation between matter, haloes and galaxies

    SciTech Connect

    Villaescusa-Navarro, Francisco; Viel, Matteo; Marulli, Federico; Castorina, Emanuele; Sefusatti, Emiliano; Saito, Shun E-mail: federico.marulli3@unibo.it E-mail: branchin@fis.uniroma3.it E-mail: esefusat@ictp.it

    2014-03-01

    By using a suite of large box-size N-body simulations that incorporate massive neutrinos as an extra set of particles, with total masses of 0.15, 0.30, and 0.60 eV, we investigate the impact of neutrino masses on the spatial distribution of dark matter haloes and on the distribution of galaxies within the haloes. We compute the bias between the spatial distribution of dark matter haloes and the overall matter and cold dark matter distributions using statistical tools such as the power spectrum and the two-point correlation function. Overall we find a scale-dependent bias on large scales for the cosmologies with massive neutrinos. In particular, we find that the bias decreases with the scale, being this effect more important for higher neutrino masses and at high redshift. However, our results indicate that the scale-dependence in the bias is reduced if the latter is computed with respect to the cold dark matter distribution only. We find that the value of the bias on large scales is reasonably well reproduced by the Tinker fitting formula once the linear cold dark matter power spectrum is used, instead of the total matter power spectrum. We also investigate whether scale-dependent bias really comes from purely neutrino's effect or from nonlinear gravitational collapse of haloes. For this purpose, we address the Ω{sub ν}-σ{sub 8} degeneracy and find that such degeneracy is not perfect, implying that neutrinos imprint a slight scale dependence on the large-scale bias. Finally, by using a simple halo occupation distribution (HOD) model, we investigate the impact of massive neutrinos on the distribution of galaxies within dark matter haloes. We use the main galaxy sample in the Sloan Digital Sky Survey (SDSS) II Data Release 7 to investigate if the small-scale galaxy clustering alone can be used to discriminate among different cosmological models with different neutrino masses. Our results suggest that different choices of the HOD parameters can reproduce the

  13. Di-Higgs signatures from R-parity violating supersymmetry as the origin of neutrino mass

    NASA Astrophysics Data System (ADS)

    Biswas, Sanjoy; Chun, Eung Jin; Sharma, Pankaj

    2016-12-01

    Motivated by the naturalness and neutrino mass generation, we study a bilinear R-parity violating supersymmetric scenario with a light Higgsino-like lightest super-symmetric particle (LSP). We observe that the LSP can have substantial decay branching ratio to ν h in a large part of the parameter space, and thus study the pair production of electroweakinos followed by the decays {tilde{χ}}_1^{±}to {tilde{χ}}_1^0{W}^{± (ast )} and {tilde{χ}}_1^0to ν h . This leads to an interesting signature of Higgs boson pair production associated with significantly large missing transverse energy which is grossly distinct from the di-Higgs production in the Standard Model. We investigate the perspective of probing such signatures by performing a detector level simulation using a toy calorimeter of both the signal and corresponding backgrounds for the high-luminosity high energy phase of the Large Hadron Collider (LHC). We also advocate some observables based on kinematical features to provide an excellent handle to suppress the backgrounds.

  14. Mass modeling for bars

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1987-01-01

    Methods of modeling mass for bars are surveyed. A method for extending John Archer's concept of consistent mass beyond just translational inertia effects is included. Recommendations are given for various types of modeling situations.

  15. High energy neutrinos from gamma-ray bursts: Recent observations and models

    NASA Astrophysics Data System (ADS)

    Gao, Shan

    Neutrino astronomy began with the detection of solar neutrinos, supernova neutrinos (SN1987A) and more recently the 37 events in IceCube which are very likely to be an astrophysical origin. The result from IceCube is perhaps the most exciting discovery of the year 2013, capping a several decades long search. Various astrophysical candidates have been proposed as sources of high energy neutrinos, although the origin of the IceCube neutrinos remains a mystery. Gamma-ray bursts (GRBs), the most energetic explosions in the universe, were considered as the most promising source for high energy cosmic rays and neutrinos (with AGNs). However, a previous search of GRB neutrinos by IceCube surprised the GRB community with negative results, challenging the simple standard picture of GRB prompt emission which is called the internal shock" model. In this thesis we give a closer investigation of this model as well as several leading alternative models. With a careful consideration of the particle physics and the model parameters we show that the previous negative result with GRB neutrinos is not surprising, and only those models with extremely optimistic parameters can be ruled out. We predict that GRBs are unlikely to be the sole sources of the IceCube events, but signals of GRB neutrinos may be detected in the near future, with the neutrino telescopes such as IceCube/DeepCore, KM3Net, ARA, ARIANNA, ANITA etc.

  16. Sterile Neutrino Experiments I: Accelerator-based

    NASA Astrophysics Data System (ADS)

    Toups, Matthew

    2017-01-01

    The Standard Model is the theory that describes the fundamental constituents of matter and their interactions. Despite its great success, there still exists evidence for a wide range of phenomena, which lie outside the framework of the Standard Model. Among these, neutrino flavor oscillations hold great promise to bring insight to the field towards a theory that transcends the Standard Model. The discovery of light, sterile neutrinos that mix with the three active neutrino flavors and modify the standard three-neutrino oscillation probabilities in vacuum and matter would be a major breakthrough for the field and contribute to our overall understanding of neutrino mass and mixing. Current indications for light sterile neutrinos come from a variety of experiments reporting anomalies. The accelerator-based LSND and MiniBooNE experiments, for example, reported an excess of electron-type neutrinos over short baselines, which if interpreted as due to νμ ->νe (or νμ ->νe) oscillations, would imply the existence of a fourth light neutrino mass state. On the other hand, null results from other accelerator-based neutrino oscillation experiments searching for sterile neutrinos have put constraints on the possible existence of these particles. This talk will review the accelerator-based searches for light, sterile neutrinos as well as the prospects for confirming or refuting their existence in the coming years.

  17. Solar model uncertainties, MSW analysis, and future solar neutrino experiments

    NASA Astrophysics Data System (ADS)

    Hata, Naoya; Langacker, Paul

    1994-07-01

    Various theoretical uncertainties in the standard solar model and in the Mikheyev-Smirnov-Wolfenstein (MSW) analysis are discussed. It is shown that two methods give consistent estimations of the solar neutrino flux uncertainties: (a) a simple parametrization of the uncertainties using the core temperature and the ncuelar production cross sections; (b) the Monte Carlo method of Bahcall and Ulrich. In the MSW analysis, we emphasize proper treatments of correlations of theoretical uncertainties between flux components and between different detectors, the Earth effect, and multiple solutions in a combined χ2 procedure. In particular the large-angle solution of the combined observation is allowed at 95% C.L. only when the theoretical uncertainties are included. If their correlations were ignored, the region would be overestimated. The MSW solutions for various standard and nonstandard solar models are also shown. The MSW predictions of the global solutions for the future solar neutrino experiments are given, emphasizing the measurement of the energy spectrum and the day-night effect in Sudbury Neutrino Observatory and Super-Kamiokande to distinguish the two solutions.

  18. An upper limit on the neutrino rest mass.

    NASA Technical Reports Server (NTRS)

    Cowsik, R.; Mcclelland, J.

    1972-01-01

    It is pointed out that the measurement of the deceleration parameter by Sandage (1972) implies an upper limit of a few tens of electron volts on the sum of the masses of all the possible light, stable particles that interact only weakly. In the discussion of the problem, it is assumed that the universe is expanding from an initially hot and condensed state as envisaged in the 'big-bang' theories.

  19. Identifying Neutrino Mass Hierarchy at Extremely Small {theta}{sub 13} through Earth Matter Effects in a Supernova Signal

    SciTech Connect

    Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro

    2008-10-24

    Collective neutrino flavor transformations deep inside a supernova are sensitive to the neutrino mass hierarchy even at extremely small values of {theta}{sub 13}. Exploiting this effect, we show that comparison of the antineutrino signals from a galactic supernova in two megaton class water Cherenkov detectors, one of which is shadowed by Earth, will enable us to distinguish between the hierarchies if sin{sup 2}{theta}{sub 13} < or approx. 10{sup -5}, where long baseline neutrino experiments would be ineffectual.

  20. Neutrinos in Nuclear Physics

    SciTech Connect

    McKeown, Bob

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  1. The solar neutrino problem.

    NASA Astrophysics Data System (ADS)

    Xu, Renxin; Luo, Xianhan

    1995-12-01

    The solar neutrino problem (SNP) is reviewed on the bases of neutrino physics, solar neutrino detection and standard solar model. It is interesting that the detected neutrino flux values of different solar neutrino detectors are lower than the values calculated by SMM in different degree. The studies on SNP in particle physics and in astrophysics are also discussed respectively.

  2. Impact of semi-annihilation of ℤ{sub 3} symmetric dark matter with radiative neutrino masses

    SciTech Connect

    Aoki, Mayumi; Toma, Takashi

    2014-09-08

    We investigate a ℤ{sub 3} symmetric model with two-loop radiative neutrino masses. Dark matter in the model is either a Dirac fermion or a complex scalar as a result of an unbroken ℤ{sub 3} symmetry. In addition to standard annihilation processes, semi-annihilation of the dark matter contributes to the relic density. We study the effect of the semi-annihilation in the model and find that those contributions are important to obtain the observed relic density. The experimental signatures in dark matter searches are also discussed, where some of them are expected to be different from the signatures of dark matter in ℤ{sub 2} symmetric models.

  3. Solar neutrinos and neutrino physics

    NASA Astrophysics Data System (ADS)

    Maltoni, Michele; Smirnov, Alexei Yu.

    2016-04-01

    Solar neutrino studies triggered and largely motivated the major developments in neutrino physics in the last 50 years. The theory of neutrino propagation in different media with matter and fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true solution of the solar neutrino problem. Parameters θ_{12} and Δ m 2 21 have been measured; θ_{13} extracted from the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3 ν paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. These searches allow us to get stringent, and in some cases unique bounds on new physics. We summarize the results on physics of propagation, neutrino properties and physics beyond the standard model obtained from studies of solar neutrinos.

  4. Search for Heavy Neutrinos and WR Bosons with Right-Handed Couplings in a Left-Right Symmetric Model in pp Collisions at s=7TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Vilela Pereira, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M., Jr.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.

    2012-12-01

    Results are presented from a search for heavy, right-handed muon neutrinos, Nμ, and right-handed WR bosons, which arise in the left-right symmetric extensions of the standard model. The analysis is based on a 5.0fb-1 sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected by the CMS detector at the Large Hadron Collider. No evidence is observed for an excess of events over the standard model expectation. For models with exact left-right symmetry, heavy right-handed neutrinos are excluded at 95% confidence level for a range of neutrino masses below the WR mass, dependent on the value of MWR. The excluded region in the two-dimensional (MWR, MNμ) mass plane extends to MWR=2.5TeV.

  5. Determination of the neutrino mass hierarchy with a new statistical method

    NASA Astrophysics Data System (ADS)

    Stanco, L.; Dusini, S.; Tenti, M.

    2017-03-01

    Nowadays neutrino physics is undergoing a change of perspective: the discovery period is almost over and the phase of precise measurements is starting. Despite the limited statistics collected for some variables, the three-flavor oscillation neutrino framework is strengthening well. In this framework a new method has been developed to determine the neutrino mass ordering, one of the still unknown and most relevant parameters. The method is applied to the 2015 results of the NOvA experiment for νμ→νe appearance, including its systematic errors. A substantial gain in significance is obtained compared to the traditional Δ χ2 approach. Perspectives are provided for future results obtainable by NOvA with larger exposures. Assuming the number of the 2015 νe observed events scales with the exposure, an increase in only a factor three would exclude the inverted hierarchy at more than 95% C.L. over the full range of the C P violating phase. The preliminary 2016 NOvA measurement on νμ→νe appearance has also been analyzed.

  6. Sterile Neutrino Search with Starting Events in IceCube

    NASA Astrophysics Data System (ADS)

    Ghorbani, Kevin; Halzen, Francis; IceCube Collaboration Meeting Collaboration

    2017-01-01

    IceCube is a cubic kilometer neutrino detector at the South Pole which is sensitive to sterile neutrinos with masses and mixing angles at and around the range of LSND/MiniBooNE anomaly. In this analysis, we measure the up-going atmospheric neutrinos with energies from approximately 100 GeV to 20 TeV as a function of zenith angle which reflects the distance that the neutrinos traveled through the Earth. In the case of 3 + 1 sterile neutrino model, we anticipate a strong matter resonance resulting into the disappearance of muon anti-neutrinos and a weak disappearance of muon neutrinos, due to MSW-resonant oscillation. In this analysis we specialize to contained neutrino events with secondary muons that start in the detector to obtain a superior measurement of energy compared to previous analyses. I will present the event selection process and sensitivity to sterile neutrinos with IceCube starting events. NSF

  7. Neutrino-driven Explosion of a 20 Solar-mass Star in Three Dimensions Enabled by Strange-quark Contributions to Neutrino-Nucleon Scattering

    NASA Astrophysics Data System (ADS)

    Melson, Tobias; Janka, Hans-Thomas; Bollig, Robert; Hanke, Florian; Marek, Andreas; Müller, Bernhard

    2015-08-01

    Interactions with neutrons and protons play a crucial role for the neutrino opacity of matter in the supernova core. Their current implementation in many simulation codes, however, is rather schematic and ignores not only modifications for the correlated nuclear medium of the nascent neutron star, but also free-space corrections from nucleon recoil, weak magnetism, or strange quarks, which can easily add up to changes of several 10% for neutrino energies in the spectral peak. In the Garching supernova simulations with the Prometheus-Vertex code, such sophistications have been included for a long time except for the strange-quark contributions to the nucleon spin, which affect neutral-current neutrino scattering. We demonstrate on the basis of a 20 {M}⊙ progenitor star that a moderate strangeness-dependent contribution of {g}{{a}}{{s}}=-0.2 to the axial-vector coupling constant {g}{{a}}≈ 1.26 can turn an unsuccessful three-dimensional (3D) model into a successful explosion. Such a modification is in the direction of current experimental results and reduces the neutral-current scattering opacity of neutrons, which dominate in the medium around and above the neutrinosphere. This leads to increased luminosities and mean energies of all neutrino species and strengthens the neutrino-energy deposition in the heating layer. Higher nonradial kinetic energy in the gain layer signals enhanced buoyancy activity that enables the onset of the explosion at ˜300 ms after bounce, in contrast to the model with vanishing strangeness contributions to neutrino-nucleon scattering. Our results demonstrate the close proximity to explosion of the previously published, unsuccessful 3D models of the Garching group.

  8. Search for sterile neutrino oscillations in muon neutrino disappearance at MINOS/MINOS+

    NASA Astrophysics Data System (ADS)

    Todd, Jacob; Minos+ Collaboration

    2017-01-01

    A wide variety of neutrino oscillation phenomena are well-described by the standard three-flavour neutrino model, but some anomalies exist. The LSND and MiniBooNE experiments have measured electron antineutrino appearance in excess of standard oscillation predictions, which points to the possibility of a sterile neutrino with higher mass than the presently known states. MINOS, a two-detector, long-baseline neutrino oscillation experiment, was optimized for the measurement of muon neutrino disappearance in the NuMI neutrino beam. A sterile neutrino responsible for the LSND and MiniBooNE excesses would cause distortions in the charged current and neutral current MINOS spectra, which permits the search for sterile neutrinos at MINOS. In close collaboration with the Daya Bay reactor neutrino experiment, MINOS has placed strong constraints on the sterile neutrino parameter space for a model with one additional sterile neutrino. Further, the extension of data collection with MINOS+, which samples the NuMI beam in a medium energy configuration, markedly increases the sensitivity of the combined MINOS and MINOS+ sample to a 3+1-flavour sterile neutrino model.

  9. Computation with Inverse States in a Finite Field FP: The Muon Neutrino Mass, the Unified Strong-Electroweak Coupling Constant, and the Higgs Mass

    SciTech Connect

    DAI,YANG; BORISOV,ALEXEY B.; BOYER,KEITH; RHODES,CHARLES K.

    2000-08-11

    The construction of inverse states in a finite field F{sub P{sub {alpha}}} enables the organization of the mass scale with fundamental octets in an eight-dimensional index space that identifies particle states with residue class designations. Conformance with both CPT invariance and the concept of supersymmetry follows as a direct consequence of this formulation. Based on two parameters (P{sub {alpha}} and g{sub {alpha}}) that are anchored on a concordance of physical data, this treatment leads to (1) a prospective mass for the muon neutrino of {approximately}27.68 meV, (2) a value of the unified strong-electroweak coupling constant {alpha}* = (34.26){sup {minus}1} that is physically defined by the ratio of the electron neutrino and muon neutrino masses, and (3) a see-saw congruence connecting the Higgs, the electron neutrino, and the muon neutrino masses. Specific evaluation of the masses of the corresponding supersymmetric Higgs pair reveals that both particles are superheavy (> 10{sup 18}GeV). No renormalization of the Higgs masses is introduced, since the calculational procedure yielding their magnitudes is intrinsically divergence-free. Further, the Higgs fulfills its conjectured role through the see-saw relation as the particle defining the origin of all particle masses, since the electron and muon neutrino systems, together with their supersymmetric partners, are the generators of the mass scale and establish the corresponding index space. Finally, since the computation of the Higgs masses is entirely determined by the modulus of the field P{sub {alpha}}, which is fully defined by the large-scale parameters of the universe through the value of the universal gravitational constant G and the requirement for perfect flatness ({Omega} = 1.0), the see-saw congruence fuses the concepts of mass and space and creates a new unified archetype.

  10. Neutrino democracy, fermion mass hierarchies, and proton decay from 5D SU(5)

    NASA Astrophysics Data System (ADS)

    Shafi, Qaisar; Tavartkiladze, Zurab

    2003-04-01

    The explanation of various observed phenomena such as large angle neutrino oscillations, hierarchies of charged fermion masses and CKM mixings, and apparent baryon number conservation may have a common origin. We show how this could occur in 5D SUSY SU(5) supplemented by a U(1) flavor symmetry and additional matter supermultiplets called “copies.” In addition, the proton decays into p→Kν, with an estimated lifetime of the order of 1033-1036 yr. Other decay channels include Ke and Kμ with comparable rates. We also expect that BR(μ→eγ)˜BR(τ→μγ).

  11. Lensing convergence and the neutrino mass scale in galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Cardona, Wilmar; Durrer, Ruth; Kunz, Martin; Montanari, Francesco

    2016-08-01

    We demonstrate the importance of including the lensing contribution in galaxy clustering analyses with large galaxy redshift surveys. It is well known that radial cross-correlations between different redshift bins of galaxy surveys are dominated by lensing. But we show here that also neglecting lensing in the autocorrelations within one bin severely biases cosmological parameter estimation with redshift surveys. It leads to significant shifts for several cosmological parameters, most notably the scalar spectral index and the neutrino mass scale. Especially the latter parameter is one of the main targets of future galaxy surveys.

  12. Acquiring information about neutrino parameters by detecting supernova neutrinos

    SciTech Connect

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2010-08-01

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle {theta}{sub 13}, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about {theta}{sub 13} and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.

  13. Tom Bonner Prize Lecture: The Beta Spectrum of Tritium and the Problem of Neutrino Mass

    NASA Astrophysics Data System (ADS)

    Robertson, R. G. Hamish

    1997-04-01

    Enrico Fermi showed more than 60 years ago that the shape of beta spectra was sensitive to the mass of the unobserved particle, the neutrino, proposed by Wolfgang Pauli. With the discovery of tritium and its small decay energy, increasingly stringent limits were placed on the electron antineutrino mass. A roadblock at about 50 eV, namely the atomic and molecular structure of tritium-containing substances, was surmounted in the 1980s with the development at Los Alamos of methods for high-resolution beta spectroscopy with gases, together with worldwide theoretical work on the structure of diatomic T2 and T^3He^+. It was then possible to reach the very interesting region of cosmological relevance below 20 eV. An unexpected and strange new roadblock has now been encountered in all experiments on T_2. The spectrum near the endpoint is not consistent with theory either with or without neutrino mass. The questions now are, do the experiments all report the same phenomenon, and (if so) is it atomic theory, particle theory, or perhaps cosmology that needs repair?

  14. Core mass at the helium flash from observations and a new bound on neutrino electromagnetic properties

    NASA Technical Reports Server (NTRS)

    Raffelt, Georg G.

    1990-01-01

    Existing measurements of the bolometric magnitudes of the brightest red giants in 26 globular clusters are used to determine the brightness difference between the tip of the red giant branch (on average found to be 0.1 mag brighter than the brightest red giant) and RR Lyrae stars. The metallicity variation of the result agrees perfectly with theoretical predictions. In conjunction with previous determinations of the number ratio of horizontal-branch versus red giant stars, with statistical parallax determinations of RR Lyrae absolute luminosities, and with theoretical predictions based on the Sweigart and Gross evolutionary sequences, this result yields an allowed range for a hypothetical core mass variation relative to the standard results of (0.009 + or - 0.012) solar mass. If neutrinos had anomalous electromagnetic dipole moments, the increased energy loss near the helium flash would lead to an increased core mass. Constraints on neutrino electromagnetic properties are determined from the color-magnitude diagrams of the globular clusters.

  15. A light sterile neutrino from Friedberg-Lee symmetry

    NASA Astrophysics Data System (ADS)

    He, Xiao-Gang; Liao, Wei

    2014-01-01

    Light sterile neutrinos of mass about an eV with mixing U of a few percent to active neutrinos may solve some anomalies shown in experimental data related to neutrino oscillation. How to have light sterile neutrinos is one of the theoretical problems which have attracted a lot of attentions. In this article we show that such an eV scale light sterile neutrino candidate can be obtained in a seesaw model in which the right-handed neutrinos satisfy a softly-broken Friedberg-Lee (FL) symmetry. In this model a right-handed neutrino is guaranteed by the FL symmetry to be light comparing with other two heavy right-handed neutrinos. It can be of eV scale when the FL symmetry is softly broken and can play the role of eV scale sterile neutrino needed for explaining the anomalies of experimental data. This model predicts that one of the active neutrino is massless. We find that this model prefers inverted hierarchy mass pattern of active neutrinos than normal hierarchy. An interesting consequence of this model is that realizing relatively large |U| and relatively small |U| in this model naturally leads to a relatively small |U|. This interesting prediction can be tested in future atmospheric or solar neutrino experiments.

  16. Neutrino Oscillations and the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wark, David

    2001-04-01

    When the existence of the neutrino was almost apologetically first proposed by Wolfgang Pauli it was intended to explain the mysterious apparent absence of energy and momentum in beta decay. 70 years later the neutrino has indeed solved that mystery, but it has generated still more of its own. Are neutrinos massive? Is it possible to create a neutrino with its spin in the same direction as its momentum? What fraction of the mass of the Universe is made up of neutrinos? Are the flavour labels which we put on neutrinos, like electron and muon, really fixed or can they change? Why does no experiment see the predicted flux of neutrinos from the Sun? Why do there appear to be roughly equal numbers of muon and electron neutrinos created in our atmosphere, rather than the 2:1 ratio we would expect? Many of these questions were coupled when Bruno Pontecorvo first suggested that the shortfall in solar neutrino measurements were caused by neutrino oscillations - neutrinos spontaneously changing flavour as they travel from the Sun. 30 years later we still await definitive proof of that conjecture, and providing that proof is the reason for the Sudbury Neutrino Observatory. The talk will discuss the current state of neutrino oscillations studies, and show how the unique capabilities of the Sudbury Neutrino Observatory can provide definitive proof of whether neutrino oscillations are the long-sought answer to the solar neutrino problem.

  17. Cosmology based on f(R) gravity admits 1 eV sterile neutrinos.

    PubMed

    Motohashi, Hayato; Starobinsky, Alexei A; Yokoyama, Jun'ichi

    2013-03-22

    It is shown that the tension between recent neutrino oscillation experiments, favoring sterile neutrinos with masses of the order of 1 eV, and cosmological data which impose stringent constraints on neutrino masses from the free streaming suppression of density fluctuations, can be resolved in models of the present accelerated expansion of the Universe based on f(R) gravity.

  18. Magnetic moment of the majorana neutrino in the left-right symmetric model

    SciTech Connect

    Boyarkin, O. M. Boyarkina, G. G.

    2013-04-15

    Corrections to the neutrino magnetic dipole moment from the singly charged Higgs bosons h{sup ({+-})} and {delta}-tilde{sup (}{+-}) were calculated within the left-right symmetric model involving Majorana neutrinos. It is shown that, if the h{sup ({+-})} and {delta}-tilde{sup (}{+-}) bosons lie at the electroweak scale, the contributions from Higgs sector are commensurate with the contribution of charged gauge bosons or may even exceed it. The behavior of the neutrino flux inmatter and in amagnetic field was studied. It was found that resonance transitions between light and heavy neutrinos are forbidden.

  19. Neutrino factory

    DOE PAGES

    Bogomilov, M.; Matev, R.; Tsenov, R.; ...

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less

  20. Neutrino factory

    SciTech Connect

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R.J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A.C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  1. Precise measurement of the top quark mass in dilepton decays using optimized neutrino weighting

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Cuth, J.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schott, M.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.

    2016-01-01

    We measure the top quark mass in dilepton final states of t t bar events in p p bar collisions at √{ s} = 1.96 TeV, using data corresponding to an integrated luminosity of 9.7 fb-1 at the Fermilab Tevatron Collider. The analysis features a comprehensive optimization of the neutrino weighting method to minimize the statistical uncertainties. We also improve the calibration of jet energies using the calibration determined in t t bar →lepton +jets events, which reduces the otherwise limiting systematic uncertainty from the jet energy scale. The measured top quark mass is mt = 173.32 ± 1.36 (stat) ± 0.85 (syst) GeV.

  2. Disentangling the various Mechanisms of neutrinoless double beta decay to extract the neutrino mass

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.

    2011-12-01

    It is well known that there exist many mechanisms that may contribute to neutrinoless double beta decay. By exploiting the fact that the associated nuclear matrix elements are target dependent we show that, given definite experimental results on a sufficient number of targets, one can determine or sufficiently constrain all lepton violating parameters including the mass term. As a specific example we show that, given the observation of the 0νββ-decay in three different nuclei, e.g. 76Ge, 100Mo and 130Te, and assuming just three active lepton number violating parameters, e.g. light and heavy neutrino mass mechanisms in left handed currents as well as R-parity breaking SUSY mechanism, one may determine all lepton violating parameters, provided that they are relatively real.

  3. Precise measurement of the top quark mass in dilepton decays using optimized neutrino weighting

    DOE PAGES

    Abazov, Victor Mukhamedovich

    2015-11-11

    We measure the top quark mass in dilepton final states of tt¯ events in pp¯ collisions at √s= 1.96 TeV, using data corresponding to an integrated luminosity of 9.7 fb-1 at the Fermilab Tevatron Collider. The analysis features a comprehensive optimization of the neutrino weighting method to minimize the statistical uncertainties. Furthermore, we improve the calibration of jet energies using the calibration determined in tt¯ → lepton + jets events, which reduces the otherwise limiting systematic uncertainty from the jet energy scale. As a result, the measured top quark mass is mt = 173.32±1.36(stat)±0.85(syst) GeV.

  4. Comparison of anti-neutrino reactor spectrum models with the Bugey 3 measurements

    NASA Astrophysics Data System (ADS)

    Achkar, B.; Aleksan, R.; Avenier, M.; Bagieu, G.; Bouchez, J.; Brissot, R.; Cavaignac, J. F.; Collot, J.; Cousinou, M.-C.; Cussonneau, J. P.; Declais, Y.; Dufour, Y.; Favier, J.; Garciaz, F.; Kajfasz, E.; de Kerret, H.; Koang, D. H.; Lefièvre, B.; Lesquoy, E.; Mallet, J.; Metref, A.; Nagy, E.; Obolensky, M.; Pessard, H.; Pierre, F.; Stutz, A.; Wuthrick, J. P.

    1996-02-01

    The Bugey 3 neutrino oscillation experiment has provided high statistics neutrino energy spectra recorded at 15 and 40 meters from a nuclear reactor core. Assuming no oscillations, the measured spectra favor a model of reactor spectrum based on the beta spectra measured at ILL.

  5. Neutrino Oscillations: Eighty Years in Review

    NASA Astrophysics Data System (ADS)

    Bowers, Rebecca Lyn

    In order to discuss neutrino oscillations, it is necessary to have knowledge of the developments in the field spanning the last eighty years. The existence of the neutrino was posited by Wolfgang Pauli in 1930 to account for the mass defect in beta decay, and to this day physicists are still endeavoring to answer fundamental questions about this enigmatic particle. The scope of this thesis includes a historical background of neutrino physics and a discussion of neutrinos and the Standard Model; subsequent to this is a discussion of the Solar Neutrino Problem, which provided the impetus for the proposal of neutrino oscillations. Bolstering the theory of neutrino oscillations (which is developed in the body of this thesis) are neutrino detector experiments and their results; these include the Homestake experiment, SNO, Kamiokande and Super-Kamiokande, MINOS, and Double-Chooz. We also include relevant derivations, most particularly of the quantum mechanics of neutrino oscillations as treated in the wave packet formalism. We have amassed here the principle theories and experimental results -- a mere tip of the iceberg -- that have brought us to our current understanding of neutrino oscillations. We have also studied the quantum mechanics of neutrino oscillations and developed for ourselves the wave packet formalism describing the phenomenon.

  6. Fermion masses and mixing in general warped extra dimensional models

    NASA Astrophysics Data System (ADS)

    Frank, Mariana; Hamzaoui, Cherif; Pourtolami, Nima; Toharia, Manuel

    2015-06-01

    We analyze fermion masses and mixing in a general warped extra dimensional model, where all the Standard Model (SM) fields, including the Higgs, are allowed to propagate in the bulk. In this context, a slightly broken flavor symmetry imposed universally on all fermion fields, without distinction, can generate the full flavor structure of the SM, including quarks, charged leptons and neutrinos. For quarks and charged leptons, the exponential sensitivity of their wave functions to small flavor breaking effects yield hierarchical masses and mixing as it is usual in warped models with fermions in the bulk. In the neutrino sector, the exponential wave-function factors can be flavor blind and thus insensitive to the small flavor symmetry breaking effects, directly linking their masses and mixing angles to the flavor symmetric structure of the five-dimensional neutrino Yukawa couplings. The Higgs must be localized in the bulk and the model is more successful in generalized warped scenarios where the metric background solution is different than five-dimensional anti-de Sitter (AdS5 ). We study these features in two simple frameworks, flavor complimentarity and flavor democracy, which provide specific predictions and correlations between quarks and leptons, testable as more precise data in the neutrino sector becomes available.

  7. Determining the neutrino mass hierarchy and CP violation in NoVA with a second off-axis detector

    SciTech Connect

    Mena, Olga; Palomares-Ruiz, Sergio; Pascoli, Silvia; /CERN /Durham U., IPPP

    2005-10-01

    We consider a Super-NOVA-like experimental configuration based on the use of two detectors in a long-baseline experiment as NOVA. We take the far detector as in the present NOVA proposal and add a second detector at a shorter baseline. The location of the second off-axis detector is chosen such that the ratio L/E is the same for both detectors, being L the baseline and E the neutrino energy. We consider liquid argon and water- Cerenkov techniques for the second off-axis detector and study, for different experimental setups, the detector mass required for the determination of the neutrino mass hierarchy, for different values of {theta}{sub 13}. We also study the capabilities of such an experimental setup for determining CP-violation in the neutrino sector. Our results show that by adding a second off-axis detector a remarkable enhancement on the capabilities of the current NOVA experiment could be achieved.

  8. Neutrino mixing model based on an A4×Z3×Z4 flavor symmetry

    NASA Astrophysics Data System (ADS)

    Ky, Nguyen Anh; Quang Vǎn, Phi; Há»`ng Vân, Nguyen Thi

    2016-11-01

    A model of a neutrino mixing with an A4×Z3×Z4 flavor symmetry is suggested. In addition to the standard model fields, the present model contains six new fields that transform under different representations of A4×Z3×Z4. The model is constructed to slightly deviate from a tribimaximal model in agreement with the current experimental data; thus, all analysis can be done in the base of the perturbation method. Within this model, as an application, a relation between the mixing angles (θ12 , θ23 , θ13 ) and the Dirac C P -violation phase (δC P) is established. This relation allows a prediction of δC P and the Jarlskog parameter (JC P). The predicted value δC P is in the 1 σ region of the global fit for both the normal and inverse neutrino mass ordering and gives JC P to be within the bound |JC P|≤0.04 . For an illustration, the model is checked numerically and gives values of the neutrino masses (of the order of 0.1 eV) and the mixing angle θ13 (about 9°) very close to the current experimental data.

  9. The neutrino portal to new physics

    SciTech Connect

    Ma, Ernest

    2014-06-24

    Neutrinos may have interactions beyond those of the standard model. They may be responsible for neutrino mass and provide a link to other fundamental issues of particle physics such as dark matter. A brief incomplete survey of some of the theoretical ideas along this direction is offered.

  10. Relic neutrino decoupling with flavour oscillations revisited

    SciTech Connect

    Salas, Pablo F. de; Pastor, Sergio

    2016-07-28

    We study the decoupling process of neutrinos in the early universe in the presence of three-flavour oscillations. The evolution of the neutrino spectra is found by solving the corresponding momentum-dependent kinetic equations for the neutrino density matrix, including for the first time the proper collision integrals for both diagonal and off-diagonal elements. This improved calculation modifies the evolution of the off-diagonal elements of the neutrino density matrix and changes the deviation from equilibrium of the frozen neutrino spectra. However, it does not vary the contribution of neutrinos to the cosmological energy density in the form of radiation, usually expressed in terms of the effective number of neutrinos, N{sub eff}. We find a value of N{sub eff}=3.045, in agreement with previous theoretical calculations and consistent with the latest analysis of Planck data. This result does not depend on the ordering of neutrino masses. We also consider the effect of non-standard neutrino-electron interactions (NSI), predicted in many theoretical models where neutrinos acquire mass. For two sets of NSI parameters allowed by present data, we find that N{sub eff} can be reduced down to 3.040 or enhanced up to 3.059.

  11. Relic neutrino decoupling with flavour oscillations revisited

    NASA Astrophysics Data System (ADS)

    de Salas, Pablo F.; Pastor, Sergio

    2016-07-01

    We study the decoupling process of neutrinos in the early universe in the presence of three-flavour oscillations. The evolution of the neutrino spectra is found by solving the corresponding momentum-dependent kinetic equations for the neutrino density matrix, including for the first time the proper collision integrals for both diagonal and off-diagonal elements. This improved calculation modifies the evolution of the off-diagonal elements of the neutrino density matrix and changes the deviation from equilibrium of the frozen neutrino spectra. However, it does not vary the contribution of neutrinos to the cosmological energy density in the form of radiation, usually expressed in terms of the effective number of neutrinos, Neff. We find a value of Neff = 3.045, in agreement with previous theoretical calculations and consistent with the latest analysis of Planck data. This result does not depend on the ordering of neutrino masses. We also consider the effect of non-standard neutrino-electron interactions (NSI), predicted in many theoretical models where neutrinos acquire mass. For two sets of NSI parameters allowed by present data, we find that Neff can be reduced down to 3.040 or enhanced up to 3.059.

  12. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  13. E sub 6 leptoquarks and the solar neutrino problem

    NASA Technical Reports Server (NTRS)

    Roulet, Esteban

    1991-01-01

    The possibility that non-conventional neutrino oscillations take place in the superstring inspired E sub 6 models is considered. In this context, the influence of leptoquark mediated interactions of the neutrinos with nucleons in the resonant flavor conversion is discussed. It is shown that this effect can be significant for v sub e - v sub tau oscillations if these neutrinos have masses required in the ordinary Mikheyev-Smirnov-Wolfenstein (MSW) effect, and may lead to a solution of the solar neutrino problem even in the absence of vacuum mixings. On the other hand, this model cannot lead to a resonant behavior in the sun if the neutrinos are massless.

  14. Cosmological and supernova neutrinos

    SciTech Connect

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Suzuki, T.

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  15. Cosmological and supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

    2014-06-01

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  16. Coronal Neutrino Emission in Hypercritical Accretion Flows

    NASA Astrophysics Data System (ADS)

    Kawabata, R.; Mineshige, S.; Kawanaka, N.

    2008-03-01

    Hypercritical accretion flows onto stellar mass black holes (BHs) are commonly believed to be as a promising model of central engines of gamma-ray bursts (GRBs). In this model a certain fraction of the gravitational binding energy of accreting matter is deposited to the energy of relativistic jets via neutrino annihilation and/or magnetic fields. However, some recent studies have indicated that the energy deposition rate by neutrino annihilation is somewhat smaller than that needed to power a GRB. To overcome this difficulty, Ramirez-Ruiz and Socrates proposed that high-energy neutrinos from the hot corona above the accretion disk might enhance the efficiency of the energy deposition. We elucidate the disk corona model in the context of hypercritical accretion flows. From the energy balance in the disk and the corona, we can calculate the disk and coronal temperature, Td and Tc, and neutrino spectra, taking into account the neutrino cooling processes by neutrino-electron scatterings and neutrino pair productions. The calculated neutrino spectra consist of two peaks: one by the neutrino emission from the disk and the other by that from the corona. We find that the disk corona can enhance the efficiency of energy release but only by a factor of 1.5 or so, unless the height of the corona is very small, Hll r. This is because the neutrino emission is very sensitive to the temperature of the emitting region, and then the ratio Tc/Td cannot be very large.

  17. Neutrino masses and mixings: Status of known and unknown 3ν parameters

    NASA Astrophysics Data System (ADS)

    Capozzi, F.; Lisi, E.; Marrone, A.; Montanino, D.; Palazzo, A.

    2016-07-01

    Within the standard 3ν mass-mixing framework, we present an up-to-date global analysis of neutrino oscillation data (as of January 2016), including the latest available results from experiments with atmospheric neutrinos (Super-Kamiokande and IceCube DeepCore), at accelerators (first T2K ν ‾ and NO νAν runs in both appearance and disappearance modes), and at short-baseline reactors (Daya Bay and RENO far/near spectral ratios), as well as a reanalysis of older KamLAND data in the light of the ;bump; feature recently observed in reactor spectra. We discuss improved constraints on the five known oscillation parameters (δm2, | Δm2 |, sin2 ⁡θ12, sin2 ⁡θ13, sin2 ⁡θ23), and the status of the three remaining unknown parameters: the mass hierarchy [sign (± Δm2)], the θ23 octant [sign (sin2 ⁡θ23 - 1 / 2)], and the possible CP-violating phase δ. With respect to previous global fits, we find that the reanalysis of KamLAND data induces a slight decrease of both δm2 and sin2 ⁡θ12, while the latest accelerator and atmospheric data induce a slight increase of | Δm2 |. Concerning the unknown parameters, we confirm the previous intriguing preference for negative values of sin ⁡ δ (with best-fit values around sin ⁡ δ ≃ - 0.9), but we find no statistically significant indication about the θ23 octant or the mass hierarchy (normal or inverted). Assuming an alternative (so-called LEM) analysis of NO νA data, some δ ranges can be excluded at > 3 σ, and the normal mass hierarchy appears to be slightly favored at ∼ 90% C.L. We also describe in detail the covariances of selected pairs of oscillation parameters. Finally, we briefly discuss the implications of the above results on the three non-oscillation observables sensitive to the (unknown) absolute ν mass scale: the sum of ν masses Σ (in cosmology), the effective νe mass mβ (in beta decay), and the effective Majorana mass mββ (in neutrinoless double beta decay).

  18. Tau neutrino component to tritium beta decay

    SciTech Connect

    Snyderman, N.J.

    1995-06-01

    A framework is given for explaining anomalous results of neutrino mass experiments that measure the high energy electron spectrum of tritium {beta} decay. The experimental results have been fit to a negative neutrino mass square. We show that there is a consistent phenomenological interpretation due to a positive mass tau neutrino component of the {beta} decay spectrum, with strong near threshold final state interactions with the He nucleus. If this enhancement is due to new interactions between low energy tau neutrinos and nuclei, then the tritium 0 decay experiments could be used as detectors for cosmic background tau neutrinos. The model predicts a distinctive spectrum shape that is consistent with a recent high statistics LLNL experiment. A fit to the experiment gives a tau neutrino mass of 23 eV. Tau neutrinos of this mass would dominate the mass of the universe. Requirements for a theoretical model are given, as well as models that realize different aspects of these requirements. While qualitatively successful, the theoretical models have such severe quantitative difficulties that the accuracy of the molecular physics of the T-{sup 3}He ion, assumed in the analysis of the experimental data, is called into question.

  19. Measuring the electron neutrino mass with improved sensitivity: the HOLMES experiment

    NASA Astrophysics Data System (ADS)

    Giachero, A.; Alpert, B. K.; Becker, D. T.; Bennett, D. A.; Biasotti, M.; Brofferio, C.; Ceriale, V.; Ceruti, G.; Corsini, D.; Day, P. K.; De Gerone, M.; Dressler, R.; Faverzani, M.; Ferri, E.; Fowler, J. W.; Fumagalli, E.; Gallucci, G.; Gard, J. D.; Gatti, F.; Hays-Wehle, J. P.; Heinitz, S.; Hilton, G. C.; Köster, U.; Lusignoli, M.; Mates, J. A. B.; Nisi, S.; Nucciotti, A.; Orlando, A.; Parodi, L.; Pessina, G.; Pizzigoni, G.; Puiu, A.; Ragazzi, S.; Reintsema, C. D.; Ribeiro Gomes, M.; Schmidt, D. R.; Schumann, D.; Siccardi, F.; Sisti, M.; Swetz, D. S.; Terranova, F.; Ullom, J. N.; Vale, L. R.

    2017-02-01

    HOLMES is a new experiment aiming at directly measuring the neutrino mass with a sensitivity below 2 eV . HOLMES will perform a calorimetric measurement of the energy released in the decay of 163Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with spectrometers. This measurement was proposed in 1982 by A. De Rujula and M. Lusignoli, but only recently the detector technological progress has allowed to design a sensitive experiment. HOLMES will deploy a 1000 pixels array of low temperature microcalorimeters with implanted 163Ho nuclei. HOLMES, besides being an important step forward in the direct neutrino mass measurement with a calorimetric approach, will also establish the potential of this approach to extend the sensitivity down to 0.1 eV and lower. The detectors used for the HOLMES experiment will be Mo/Cu bilayers TESs (Transition Edge Sensors) on SiNx membrane with gold absorbers. Microwave multiplexed rf-SQUIDs are the best available technique to read out large array of such detectors. An extensive R&D activity is in progress in order to maximize the multiplexing factor while preserving the performances of the individual detectors. To embed the 163Ho into the gold absorbers a custom mass separator ion implanter is being developed. The current activities are focused on the the single detector performances optimization and on the 163Ho isotope production and embedding. A preliminary measurement of a sub-array of 4× 16 detectors is planned late in 2017. In this contribution we present the HOLMES project with its technical challenges, its status and perspectives.

  20. Massive Dirac neutrinos and SN 1987A

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Gandhi, Raj; Turner, Michael S.

    1992-01-01

    The wrong-helicity states of a Dirac neutrino can provide an important cooling mechanism for young neutron stars. Based on numerical models of the early cooling of the neutron star associated with SN 1987A which self-consistently incorporate wrong-helicity neutrino emission, it is argued that a Dirac neutrino of mass greater than 30 keV (25 keV if it is degenerate) leads to shortening of the neutrino burst that is inconsistent with the Irvine-Michigan-Brookhaven and Kamiokande II data. If pions are as abundant as nucleons in the cores of neutron stars, the present limit improves to 15 keV.

  1. Right-Handed Neutrinos and the 2 TeV $W'$ Boson

    DOE PAGES

    Coloma, Pilar; Dobrescu, Bogdan A.; Lopez-Pavon, Jacobo

    2015-12-30

    The CMS e+e-jj events of invariant mass near 2 TeV are consistent with a W' boson decaying into an electron and a right-handed neutrino whose TeV-scale mass is of the Dirac type. We show that the Dirac partner of the right-handed electron-neutrino can be the right-handed tau-neutrino. Furthermore, a prediction of this model is that the sum of the τ+e+jj and τ-e-jj signal cross sections equals twice that for e+e-jj. The Standard Model neutrinos acquire Majorana masses and mixings compatible with neutrino oscillation data.

  2. Fast time variations of supernova neutrino signals from 3-dimensional models

    DOE PAGES

    Lund, Tina; Wongwathanarat, Annop; Janka, Hans -Thomas; ...

    2012-11-19

    Here, we study supernova neutrino flux variations in the IceCube detector, using 3D models based on a simplified neutrino transport scheme. The hemispherically integrated neutrino emission shows significantly smaller variations compared with our previous study of 2D models, largely because of the reduced activity of the standing accretion shock instability in this set of 3D models which we interpret as a pessimistic extreme. For the studied cases, intrinsic flux variations up to about 100 Hz frequencies could still be detected in a supernova closer than about 2 kpc.

  3. Z ', Higgses and heavy neutrinos in U(1)' models: from the LHC to the GUT scale

    NASA Astrophysics Data System (ADS)

    Accomando, Elena; Corianò, Claudio; Rose, Luigi Delle; Fiaschi, Juri; Marzo, Carlo; Moretti, Stefano

    2016-07-01

    We study a class of non-exotic minimal U(1)' extensions of the Standard Model, which includes all scenarios that are anomaly-free with the ordinary fermion content augmented by one Right-Handed neutrino per generation, wherein the new Abelian gauge group is spontaneously broken by the non-zero Vacuum Expectation Value of an additional Higgs singlet field, in turn providing mass to a Z ' state. By adopting the B - L example, whose results can be recast into those pertaining to the whole aforementioned class, and allowing for both scalar and gauge mixing, we first extract the surviving parameter space in presence of up-to-date theoretical and experimental constraints. Over the corresponding parameter configurations, we then delineate the high energy behaviour of such constructs in terms of their stability and perturbativity. Finally, we highlight key production and decay channels of the new states entering the spectra of this class of models, i.e., heavy neutrinos, a second Higgs state and the Z ', which are amenable to experimental investigation at the Large Hadron Collider. We therefore set the stage to establish a direct link between measurements obtainable at the Electro-Weak scale and the dynamics of the underlying model up to those where a Grand Unification Theory embedding a U(1)' can be realised.

  4. Phenomenology of hybrid scenarios of neutrino dark energy

    SciTech Connect

    Antusch, Stefan; Dutta, Koushik; Das, Subinoy E-mail: subinoy@nyu.edu

    2008-10-15

    We study the phenomenology of hybrid scenarios of neutrino dark energy, where in addition to a so-called mass-varying neutrino (MaVaN) sector a cosmological constant (from a false vacuum) is driving the accelerated expansion of the universe today. For general power law potentials we calculate the effective equation of state parameter w{sub eff}(z) in terms of the neutrino mass scale. Due to the interaction of the dark energy field ('acceleron') with the neutrino sector, w{sub eff}(z) is predicted to become smaller than -1 for z>0, which could be tested in future cosmological observations. For the scenarios considered, the neutrino mass scale additionally determines which fraction of the dark energy is dynamical, and which originates from the 'cosmological-constant-like' vacuum energy of the false vacuum. On the other hand, the field value of the 'acceleron' field today as well as the masses of the right-handed neutrinos, which appear in the seesaw-type mechanism for small neutrino masses, are not fixed. This, in principle, allows us to realize hybrid scenarios of neutrino dark energy with a 'high-scale' seesaw where the right-handed neutrino masses are close to the GUT scale. We also comment on how MaVaN hybrid scenarios with 'high-scale' seesaw might help to resolve stability problems of dark energy models with non-relativistic neutrinos.

  5. Cosmology with massive neutrinos coupled to dark energy.

    PubMed

    Brookfield, A W; van de Bruck, C; Mota, D F; Tocchini-Valentini, D

    2006-02-17

    Cosmological consequences of a coupling between massive neutrinos and dark energy are investigated. In such models, the neutrino mass is a function of a scalar field, which plays the role of dark energy. The evolution of the background and cosmological perturbations are discussed. We find that mass-varying neutrinos can leave a significant imprint on the anisotropies in the cosmic microwave background and even lead to a reduction of power on large angular scales.

  6. Resonantly produced 7 keV sterile neutrino dark matter models and the properties of Milky Way satellites.

    PubMed

    Abazajian, Kevork N

    2014-04-25

    Sterile neutrinos produced through a resonant Shi-Fuller mechanism are arguably the simplest model for a dark matter interpretation of the origin of the recent unidentified x-ray line seen toward a number of objects harboring dark matter. Here, I calculate the exact parameters required in this mechanism to produce the signal. The suppression of small-scale structure predicted by these models is consistent with Local Group and high-z galaxy count constraints. Very significantly, the parameters necessary in these models to produce the full dark matter density fulfill previously determined requirements to successfully match the Milky Way Galaxy's total satellite abundance, the satellites' radial distribution, and their mass density profile, or the "too-big-to-fail problem." I also discuss how further precision determinations of the detailed properties of the candidate sterile neutrino dark matter can probe the nature of the quark-hadron transition, which takes place during the dark matter production.

  7. An experiment to measure the electron neutrino mass using a cryogenic tritium source

    SciTech Connect

    Fackler, O.; Jeziorski, B.; Kolos, W.; Monkhorst, H.; Mugge, M.; Sticker, H.; Szalewicz, K.; White, R.M.; Woerner, R.

    1985-06-25

    An experiment has been performed to determine the electron neutrino mass with the precision of a few eV by measuring the tritium beta decay energy distribution near the endpoint. Key features of the experiment are a 2 eV resolution electrostatic spectrometer and a high-activity frozen tritium source. It is important that the source have electronic wavefunctions which can be accurately calculated. These calculations have been made for tritium and the HeT/sup +/ daughter ion and allow determination of branching fractions to 0.1% and energy of the excited states to 0.1 eV. The excited final molecular state calculations and the experimental apparatus are discussed. 4 refs., 5 figs.

  8. Experiment to measure the electron neutrino mass using a frozen tritium source

    SciTech Connect

    Fackler, O.; Mugge, M.; Sticker, H.; White, R.M.; Woerner, R.

    1985-03-01

    We are performing an experiment to determine the electron neutrino mass with the precision of a few eV by measuring the tritium beta decay energy distribution near the endpoint. Key features of the experiment are a 2 eV resolution electrostatic spectrometer and a high-activity frozen tritium source. It is important that the source have electronic wavefunctions which can be accurately calculated. These calculations can be precisely made for tritium and the HeT/sup +/ daughter ion and allow determination of branching fractions to 0.1% and energy of the excited states to 0.1 eV. We discuss the excited final molecular state calculations and describe the experimental apparatus. 2 references, 6 figures.

  9. Thermal properties of holmium-implanted gold films for a neutrino mass experiment with cryogenic microcalorimeters

    SciTech Connect

    Prasai, K.; Yanardag, S. Basak; Galeazzi, M.; Uprety, Y.; Alves, E.; Rocha, J.; Bagliani, D.; Biasotti, M.; Gatti, F.; Gomes, M. Ribeiro

    2013-08-15

    In a microcalorimetric neutrino mass experiment using the radioactive decay of {sup 163}Ho, the radioactive material must be fully embedded in the microcalorimeter absorber. One option that is being investigated is to implant the radioactive isotope into a gold absorber, as gold is successfully used in other applications. However, knowing the thermal properties at the working temperature of microcalorimeters is critical for choosing the absorber material and for optimizing the detector performance. In particular, it is paramount to understand if implanting the radioactive material in gold changes its heat capacity. We used a bolometric technique to measure the heat capacity of gold films, implanted with various concentrations of holmium and erbium (a byproduct of the {sup 163}Ho fabrication), in the temperature range 70 mK–300 mK. Our results show that the specific heat capacity of the gold films is not affected by the implant, making this a viable option for a future microcalorimeter holmium experiment.

  10. Neutrino oscillation studies with reactors.

    PubMed

    Vogel, P; Wen, L J; Zhang, C

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  11. Neutrino oscillation studies with reactors

    DOE PAGES

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  12. Neutrino oscillation studies with reactors

    PubMed Central

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos. PMID:25913819

  13. Neutrino Masses in the Landscape and Global-Local Dualities in Eternal Inflation

    NASA Astrophysics Data System (ADS)

    Mainemer Katz, Dan

    In this dissertation we study two topics in Theoretical Cosmology: one more formal, the other more phenomenological. We work in the context of eternally inflating cosmologies. These arise in any fundamental theory that contains at least one stable or metastable de Sitter vacuum. Each topic is presented in a different chapter: Chapter 1 deals with the measure problem in eternal inflation. Global-local duality is the equivalence of seemingly different regulators in eternal inflation. For example, the light- cone time cutoff (a global measure, which regulates time) makes the same predictions as the causal patch (a local measure that cuts off space). We show that global-local duality is far more general. It rests on a redundancy inherent in any global cutoff: at late times, an attractor regime is reached, characterized by the unlimited exponential self-reproduction of a certain fundamental region of spacetime. An equivalent local cutoff can be obtained by restricting to this fundamental region. We derive local duals to several global cutoffs of interest. The New Scale Factor Cutoff is dual to the Short Fat Geodesic, a geodesic of fixed infinitesimal proper width. Vilenkin's CAH Cutoff is equivalent to the Hubbletube, whose width is proportional to the local Hubble volume. The famous youngness problem of the Proper Time Cutoff can be readily understood by considering its local dual, the Incredible Shrinking Geodesic. The chapter closely follows our paper. Chapter 2 deals with the question of whether neutrino masses could be anthropically explained. The sum of active neutrino masses is well constrained, 58 meV ≤ mupsilon [is approximately less than] 0.23 eV, but the origin of this scale is not well understood. Here we investigate the possibility that it arises by environmental selection in a large landscape of vacua. Earlier work had noted the detrimental effects of neutrinos on large scale structure. However, using Boltzmann codes to compute the smoothed density

  14. Cosmology with massive neutrinos II: on the universality of the halo mass function and bias

    SciTech Connect

    Castorina, Emanuele; Sefusatti, Emiliano; Sheth, Ravi K.; Villaescusa-Navarro, Francisco; Viel, Matteo E-mail: emiliano.sefusatti@brera.inaf.it E-mail: villaescusa@oats.inaf.it

    2014-02-01

    We use a large suite of N-body simulations to study departures from universality in halo abundances and clustering in cosmologies with non-vanishing neutrino masses. To this end, we study how the halo mass function and halo bias factors depend on the scaling variable σ{sup 2}(M,z), the variance of the initial matter fluctuation field, rather than on halo mass M and redshift z themselves. We show that using the variance of the cold dark matter rather than the total mass field, i.e., σ{sup 2}{sub cdm}(M,z) rather than σ{sup 2}{sub m}(M,z), yields more universal results. Analysis of halo bias yields similar conclusions: when large-scale halo bias is defined with respect to the cold dark matter power spectrum, the result is both more universal, and less scale- or k-dependent. These results are used extensively in Papers I and III of this series.

  15. Boltzmann hierarchy for interacting neutrinos I: formalism

    SciTech Connect

    Oldengott, Isabel M.; Rampf, Cornelius; Wong, Yvonne Y.Y. E-mail: cornelius.rampf@port.ac.uk

    2015-04-01

    Starting from the collisional Boltzmann equation, we derive for the first time and from first principles the Boltzmann hierarchy for neutrinos including interactions with a scalar particle. Such interactions appear, for example, in majoron-like models of neutrino mass generation. We study two limits of the scalar mass: (i) An extremely massive scalar whose only role is to mediate an effective 4-fermion neutrino-neutrino interaction, and (ii) a massless scalar that can be produced in abundance and thus demands its own Boltzmann hierarchy. In contrast to, e.g., the first-order Boltzmann hierarchy for Thomson-scattering photons, our interacting neutrino/scalar Boltzmann hierarchies contain additional momentum-dependent collision terms arising from a non-negligible energy transfer in the neutrino-neutrino and neutrino-scalar interactions. This necessitates that we track each momentum mode of the phase space distributions individually, even if the particles were massless. Comparing our hierarchy with the commonly used (c{sub eff}{sup 2},c{sub vis}{sup 2})-parameterisation, we find no formal correspondence between the two approaches, which raises the question of whether the latter parameterisation even has an interpretation in terms of particle scattering. Lastly, although we have invoked majoron-like models as a motivation for our study, our treatment is in fact generally applicable to all scenarios in which the neutrino and/or other ultrarelativistic fermions interact with scalar particles.

  16. Neutrino magnetohydrodynamics

    SciTech Connect

    Haas, Fernando; Pascoal, Kellen Alves; Mendonça, José Tito

    2016-01-15

    A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the effects of the charged weak current on the electron-ion magnetohydrodynamic fluid are taken into account. The model incorporates in a systematic way the role of the Fermi neutrino weak force in magnetized plasmas. A fast neutrino-driven short wavelengths instability associated with the magnetosonic wave is derived. Such an instability should play a central role in strongly magnetized plasma as occurs in supernovae, where dense neutrino beams also exist. In addition, in the case of nonlinear or high frequency waves, the neutrino coupling is shown to be responsible for breaking the frozen-in magnetic field lines condition even in infinite conductivity plasmas. Simplified and ideal NMHD assumptions were adopted and analyzed in detail.

  17. Detecting neutrino magnetic moments with conducting loops

    NASA Astrophysics Data System (ADS)

    Apyan, Aram; Apyan, Armen; Schmitt, Michael

    2008-02-01

    It is well established that neutrinos have mass, yet it is very difficult to measure those masses directly. Within the standard model of particle physics, neutrinos will have an intrinsic magnetic moment proportional to their mass. We examine the possibility of detecting the magnetic moment using a conducting loop. According to Faraday’s law of induction, a magnetic dipole passing through a conducting loop induces an electromotive force in the loop. We compute this electromotive force for neutrinos in several cases, based on a fully covariant formulation of the problem. We discuss prospects for a real experiment, as well as the possibility to test the relativistic formulation of intrinsic magnetic moments.

  18. Prospects for neutrino spin coherence in supernovae

    NASA Astrophysics Data System (ADS)

    Tian, James Y.; Patwardhan, Amol V.; Fuller, George M.

    2017-03-01

    We present neutrino bulb model simulations of Majorana neutrino coherent spin transformation (i.e., neutrino-antineutrino transformation), coupled to neutrino flavor evolution, for conditions corresponding to the neutronization burst epoch of an oxygen-neon-magnesium core collapse supernova. Significant neutrino spin transformation in, for example, the neutronization burst could alter the fluences of neutrinos and antineutrinos in a way which is potentially detectable for a Galactic core collapse supernova. Our calculations for the first time incorporate geometric dilution in the spin evolution of the neutrinos and combine two-flavor and three-flavor evolution with spin mixing physics. We find that significant spin transformations can occur, but only with a large neutrino luminosity and an electron fraction (Ye) profile which facilitates adiabatic conditions for the spin-channel resonance. Using our adopted parameters of neutrino energy spectra, luminosity, density and Ye profiles, our calculations require an unrealistically large neutrino rest mass to sustain the spin transformation. It is an open question whether examining different density profiles or incorporating other sources of nonlinear feedback, such as Ye feedback, could mitigate this need. We find that spin transformations are not sensitive to the flavor structure of neutrinos; i.e., the spin transformations occur regardless of whether we simulate two- or three-flavor transformations. In the two-flavor case, spin transformations were insensitive to the choice of solar or atmospheric mass-squared splitting as well as the choice of the Majorana phase. Importantly, our three-flavor simulations, as well as our two-flavor simulations done with the atmospheric mass-squared splitting, show that the inclusion of spin degrees of freedom can significantly and qualitatively alter neutrino flavor evolution.

  19. Solar neutrinos and the influence of radiative opacities on solar models

    NASA Technical Reports Server (NTRS)

    Carson, T. R.; Ezer, D.; Stothers, R.

    1973-01-01

    Use of new radiative opacities based on the hot Thomas-Fermi model of the atom yields a predicted solar neutrino flux which is still considerably larger than the flux observed in Davis's Cl-37 experiment.

  20. Precise /sup 3/H-/sup 3/He mass difference for neutrino mass determination

    SciTech Connect

    Lippmaa, E.; Pikver, R.; Suurmaa, E.; Past, J.; Puskar, J.; Koppel, I.; Tammik, A.

    1985-01-28

    The precise /sup 3/H-/sup 3/He atomic mass difference has been measured by high-resolution (10/sup -8/) ion cyclotron resonance in a 4.7-T magnetic field. The result of 18 599 +- 2 eV favors a nonzero electron antineutrino mass.

  1. Implications of SU(2)_L x U(1) Symmetry for SIM(2) Invariant Neutrino Masses

    SciTech Connect

    Alan Dunn; Thomas Mehen

    2006-10-16

    We consider SU(2){sub L} x U(1) gauge invariant generalizations of a nonlocal, Lorentz violating mass term for neutrinos that preserves a SIM(2) subgroup. This induces Lorentz violating effects in QED as well as tree-level lepton family number violating interactions. Measurements of g{sub e} - 2 with trapped electrons severely constrain possible SIM(2) mass terms for electrons which violate C invariance. We study Lorentz violating effects in a C invariant and SIM(2) invariant extension of QED. We examine the Lorentz violating interactions of nonrelativistic electrons with electromagnetic fields to determine their impact on the spectroscopy of hydrogen-like atoms and g{sub e} - 2 measurements with trapped electrons. Generically, Lorentz violating corrections are suppressed by m{sub v}{sup 2}/m{sub e}{sup 2} and are within experimental limits. We study one-loop corrections to electron and photon self-energies and point out the need for a prescription to handle IR divergences induced by the nonlocality of the theory. We also calculate the tree level contribution to {mu} {yields} e + {gamma} from SIM(2) invariant mass terms.

  2. Limits of Majorana neutrino mass from combined analysis of data from 76Ge and 136Xe neutrinoless double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Klimenko, A. A.; Rumyantseva, N. S.

    2017-01-01

    We present effective Majorana neutrino mass limits < m ββ> obtained from the joint analysis of the recently published results of 76Ge and 136Xe neutrinoless double beta decay (0νββ) experiments, which was carried out by using the Bayesian calculations. Nuclear matrix elements (NMEs) used for the analysis are taken from the works, in which NMEs of 76Ge and 136Xe were simultaneously calculated. This reduced systematic errors connected with NME calculation techniques. The new effective Majorana neutrino mass limits < m ββ> less than [85.4-197.0] meV are much closer to the inverse neutrino mass hierarchy region.

  3. Neutrino dark energy in grand unified theories

    NASA Astrophysics Data System (ADS)

    Bhatt, Jitesh R.; Gu, Pei-Hong; Sarkar, Utpal; Singh, Santosh K.

    2009-10-01

    We studied a left-right symmetric model that can accommodate the neutrino dark energy (νDE) proposal. The type-III seesaw mechanism is implemented to give masses to the neutrinos. After explaining the model, we study the consistency of the model by minimizing the scalar potential and obtaining the conditions for the required vacuum expectation values of the different scalar fields. This model is then embedded in an SO(10) grand unified theory and the allowed symmetry breaking scales are determined by the condition of the gauge coupling unification. Although SU(2)R breaking is required to be high, its Abelian subgroup U(1)R is broken in the TeV range, which can then give the required neutrino masses and predicts new gauge bosons that could be detected at LHC. The neutrino masses are studied in detail in this model, which shows that at least 3 singlet fermions are required.

  4. Neutrino dark energy in grand unified theories

    SciTech Connect

    Bhatt, Jitesh R.; Sarkar, Utpal; Singh, Santosh K.; Gu, P.-H.

    2009-10-01

    We studied a left-right symmetric model that can accommodate the neutrino dark energy ({nu}DE) proposal. The type-III seesaw mechanism is implemented to give masses to the neutrinos. After explaining the model, we study the consistency of the model by minimizing the scalar potential and obtaining the conditions for the required vacuum expectation values of the different scalar fields. This model is then embedded in an SO(10) grand unified theory and the allowed symmetry breaking scales are determined by the condition of the gauge coupling unification. Although SU(2){sub R} breaking is required to be high, its Abelian subgroup U(1){sub R} is broken in the TeV range, which can then give the required neutrino masses and predicts new gauge bosons that could be detected at LHC. The neutrino masses are studied in detail in this model, which shows that at least 3 singlet fermions are required.

  5. Very low-energy neutrino interactions

    SciTech Connect

    Suzuki, Toshio

    2015-05-15

    Neutrino-nucleus reaction cross sections are now evaluated rather accurately by shell-model (SM) or SM+RPA calculations based on recent advances in nuclear structure studies. Due to these achievements, reliable constraints on super-nova neutrino temperatures as well as neutrino oscillation parameters become possible. Supernova neutrino tempeatures are constrained from abundances of elements obtained by using new ν-nucleus reaction cross sections. A possibility of constructing supernova neutrino spectrum from beta-beam measurements is pointed out. Neutrino mass hierarchy and mixing angle θ{sub 13} can be determined from abundance ratio of {sup 7}Li/{sup 11}B, which is sensitive to the MSW matter oscillation effects in supernova explosions. Inverted mass hierarchy is shown to be statistically more favored based on a recent analysis of presolar grains. Effects of neutrino-neutrino interactions are also shown to play important roles in r-process nucleosynthesis. Importance and possibilities of direct measurements of ν-induced cross sections on {sup 40}Ar and {sup 208}Pb are discussed for future supernova neutrino detections. Recent calculations of the cross sections for ν-{sup 40}Ar are presented. The need for new theoretical evaluations of the cross sections for ν-{sup 208}Pb is pointed out. Challenges to experiments on coherent elastic scattering are presented.

  6. Neutrino Oscillations as a Probe of Light Scalar Dark Matter.

    PubMed

    Berlin, Asher

    2016-12-02

    We consider a class of models involving interactions between ultralight scalar dark matter and standard model neutrinos. Such couplings modify the neutrino mass splittings and mixing angles to include additional components that vary in time periodically with a frequency and amplitude set by the mass and energy density of the dark matter. Null results from recent searches for anomalous periodicities in the solar neutrino flux strongly constrain the dark matter-neutrino coupling to be orders of magnitude below current and projected limits derived from observations of the cosmic microwave background.

  7. Neutrino Oscillations as a Probe of Light Scalar Dark Matter

    NASA Astrophysics Data System (ADS)

    Berlin, Asher

    2016-12-01

    We consider a class of models involving interactions between ultralight scalar dark matter and standard model neutrinos. Such couplings modify the neutrino mass splittings and mixing angles to include additional components that vary in time periodically with a frequency and amplitude set by the mass and energy density of the dark matter. Null results from recent searches for anomalous periodicities in the solar neutrino flux strongly constrain the dark matter-neutrino coupling to be orders of magnitude below current and projected limits derived from observations of the cosmic microwave background.

  8. Search for Neutrinos from Annihilation of Captured Low-Mass Dark Matter Particles in the Sun by Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Choi, K.; Abe, K.; Haga, Y.; Hayato, Y.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakano, Y.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Tomura, T.; Wendell, R. A.; Irvine, T.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Lee, K. P.; Nishimura, Y.; Okumura, K.; McLachlan, T.; Labarga, L.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Tanaka, H. A.; Tobayama, S.; Goldhaber, M.; Carminati, G.; Kropp, W. R.; Mine, S.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Ganezer, K. S.; Hill, J.; Hong, N.; Kim, J. Y.; Lim, I. T.; Akiri, T.; Himmel, A.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Tasaka, S.; Jang, J. S.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Suzuki, A. T.; Takeuchi, Y.; Bronner, C.; Hirota, S.; Huang, K.; Ieki, K.; Ikeda, M.; Kikawa, T.; Minamino, A.; Nakaya, T.; Suzuki, K.; Takahashi, S.; Fukuda, Y.; Itow, Y.; Mitsuka, G.; Mijakowski, P.; Hignight, J.; Imber, J.; Jung, C. K.; Yanagisawa, C.; Ishino, H.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Yano, T.; Kuno, Y.; Tacik, R.; Kim, S. B.; Okazawa, H.; Choi, Y.; Nishijima, K.; Koshiba, M.; Totsuka, Y.; Yokoyama, M.; Martens, K.; Marti, Ll.; Vagins, M. R.; Martin, J. F.; de Perio, P.; Konaka, A.; Wilking, M. J.; Chen, S.; Zhang, Y.; Wilkes, R. J.; Super-Kamiokande Collaboration

    2015-04-01

    Super-Kamiokande (SK) can search for weakly interacting massive particles (WIMPs) by detecting neutrinos produced from WIMP annihilations occurring inside the Sun. In this analysis, we include neutrino events with interaction vertices in the detector in addition to upward-going muons produced in the surrounding rock. Compared to the previous result, which used the upward-going muons only, the signal acceptances for light (few-GeV /c2-200 -GeV /c2 ) WIMPs are significantly increased. We fit 3903 days of SK data to search for the contribution of neutrinos from WIMP annihilation in the Sun. We found no significant excess over expected atmospheric-neutrino background and the result is interpreted in terms of upper limits on WIMP-nucleon elastic scattering cross sections under different assumptions about the annihilation channel. We set the current best limits on the spin-dependent WIMP-proton cross section for WIMP masses below 200 GeV /c2 (at 10 GeV /c2 , 1.49 ×10-39 cm2 for χ χ →b b ¯ and 1.31 ×10-40 cm2 for χ χ →τ+τ- annihilation channels), also ruling out some fraction of WIMP candidates with spin-independent coupling in the few-GeV /c2 mass range.

  9. Search for neutrinos from annihilation of captured low-mass dark matter particles in the sun by super-kamiokande.

    PubMed

    Choi, K; Abe, K; Haga, Y; Hayato, Y; Iyogi, K; Kameda, J; Kishimoto, Y; Miura, M; Moriyama, S; Nakahata, M; Nakano, Y; Nakayama, S; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Tomura, T; Wendell, R A; Irvine, T; Kajita, T; Kametani, I; Kaneyuki, K; Lee, K P; Nishimura, Y; Okumura, K; McLachlan, T; Labarga, L; Kearns, E; Raaf, J L; Stone, J L; Sulak, L R; Berkman, S; Tanaka, H A; Tobayama, S; Goldhaber, M; Carminati, G; Kropp, W R; Mine, S; Renshaw, A; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Hong, N; Kim, J Y; Lim, I T; Akiri, T; Himmel, A; Scholberg, K; Walter, C W; Wongjirad, T; Ishizuka, T; Tasaka, S; Jang, J S; Learned, J G; Matsuno, S; Smith, S N; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Bronner, C; Hirota, S; Huang, K; Ieki, K; Ikeda, M; Kikawa, T; Minamino, A; Nakaya, T; Suzuki, K; Takahashi, S; Fukuda, Y; Itow, Y; Mitsuka, G; Mijakowski, P; Hignight, J; Imber, J; Jung, C K; Yanagisawa, C; Ishino, H; Kibayashi, A; Koshio, Y; Mori, T; Sakuda, M; Yano, T; Kuno, Y; Tacik, R; Kim, S B; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Totsuka, Y; Yokoyama, M; Martens, K; Marti, Ll; Vagins, M R; Martin, J F; de Perio, P; Konaka, A; Wilking, M J; Chen, S; Zhang, Y; Wilkes, R J

    2015-04-10

    Super-Kamiokande (SK) can search for weakly interacting massive particles (WIMPs) by detecting neutrinos produced from WIMP annihilations occurring inside the Sun. In this analysis, we include neutrino events with interaction vertices in the detector in addition to upward-going muons produced in the surrounding rock. Compared to the previous result, which used the upward-going muons only, the signal acceptances for light (few-GeV/c^{2}-200-GeV/c^{2}) WIMPs are significantly increased. We fit 3903 days of SK data to search for the contribution of neutrinos from WIMP annihilation in the Sun. We found no significant excess over expected atmospheric-neutrino background and the result is interpreted in terms of upper limits on WIMP-nucleon elastic scattering cross sections under different assumptions about the annihilation channel. We set the current best limits on the spin-dependent WIMP-proton cross section for WIMP masses below 200  GeV/c^{2} (at 10  GeV/c^{2}, 1.49×10^{-39}  cm^{2} for χχ→bb[over ¯] and 1.31×10^{-40}  cm^{2} for χχ→τ^{+}τ^{-} annihilation channels), also ruling out some fraction of WIMP candidates with spin-independent coupling in the few-GeV/c^{2} mass range.

  10. Sterile neutrinos, dark matter, and pulsar velocities in models with a Higgs singlet.

    PubMed

    Kusenko, Alexander

    2006-12-15

    We identify the range of parameters for which the sterile neutrinos can simultaneously explain the cosmological dark matter and the observed velocities of pulsars. To satisfy all cosmological bounds, the relic sterile neutrinos must be produced sufficiently cold. This is possible in a class of models with a gauge-singlet Higgs boson coupled to the neutrinos. Sterile dark matter can be detected by the x-ray telescopes. The presence of the singlet in the Higgs sector can be tested at the CERN Large Hadron Collider.

  11. BEST sensitivity to O(1) eV sterile neutrino

    NASA Astrophysics Data System (ADS)

    Barinov, Vladislav; Gavrin, Vladimir; Gorbunov, Dmitry; Ibragimova, Tatiana

    2016-04-01

    Numerous anomalous results in neutrino oscillation experiments can be attributed to the interference of an ˜1 eV sterile neutrino. The Baksan Experiment on Sterile Transitions (BEST), specially designed to fully explore the Gallium anomaly, starts next year. We investigate the sensitivity of BEST in search of a sterile neutrino mixed with an electron neutrino. Then, performing the combined analysis of all the Gallium experiments (SAGE, GALLEX, BEST), we find the region in the model parameter space (sterile neutrino mass and mixing angle) which will be excluded if BEST agrees with no sterile neutrino hypothesis. For the opposite case, if BEST observes the signal as it follows from the sterile neutrino explanation of the Gallium (SAGE and GALLEX) anomaly, we show how BEST will improve upon the present estimates of the model parameters.

  12. Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon decoupling epochs

    SciTech Connect

    Grohs, E.; Fuller, George M.; Kishimoto, Chad T.; Paris, Mark W. E-mail: gfuller@ucsd.edu E-mail: mparis@lanl.gov

    2015-05-01

    We show that a self-consistent and coupled treatment of the weak decoupling, big bang nucleosynthesis, and photon decoupling epochs can be used to provide new insights and constraints on neutrino sector physics from high-precision measurements of light element abundances and Cosmic Microwave Background observables. Implications of beyond-standard-model physics in cosmology, especially within the neutrino sector, are assessed by comparing predictions against five observables: the baryon energy density, helium abundance, deuterium abundance, effective number of neutrinos, and sum of the light neutrino mass eigenstates. We give examples for constraints on dark radiation, neutrino rest mass, lepton numbers, and scenarios for light and heavy sterile neutrinos.

  13. Probing for correlated neutrino emission from gamma-ray bursts with Antarctic Cherenkov telescopes: A theoretical modeling and analytical search paradigm in the context of the fireball phenomenolgy

    NASA Astrophysics Data System (ADS)

    Stamatikos, Michael

    2006-06-01

    Intrinsic neutrino properties qualify them as unique cosmic messengers, which may open a new window on the most energetic and enigmatic processes in the universe. Canonical fireball phenomenology, in the context of hadronic acceleration, predicts correlated MeV to EeV neutrinos from gamma-ray bursts (GRBs). Ideal for detection are ~ TeV-PeV muon neutrinos, which are expected to be in spatial and temporal coincidence with prompt g-ray emission, which is tantamount to nearly background-free searches in operational and planned neutrino observatories such as the Antarctic Muon and Neutrino Detector Array (AMANDA) and IceCube, respectively. A positive detection of such high energy neutrinos would confirm hadronic acceleration in the relativistic GRB-wind, providing critical insight to the associated micro-physics of the fireball, while possibly revealing an astrophysical acceleration mechanism for the highest energy cosmic rays. Depending on the signal model assumption(s), a null detection may constrain some GRB progenitor scenarios, as well as restrict models featuring GRBs as cosmic ray accelerators. We describe the theoretical modeling and analysis techniques associated with a search for correlated leptonic emission from GRB030329, which triggered the High Energy Transient Explorer (HETE-II). Under the assumption of associated hadronic acceleration, the expected neutrino energy flux is directly derived, based upon confronting the fireball description with GRB030329's individual (discrete) set of observed electromagnetic parameters, for various models. In particular, spectral analysis, featuring a prompt photon energy fit to the Band function, and a spectroscopically observed redshift, due to doppler analysis of the optical transient afterglow, have been used to characterize various neutrino spectra and their response in AMANDA and IceCube. The effects of anisotropic emission, via an inferred beaming angle, and the consequences of non-trivial neutrino mass, such as

  14. CUORE and beyond: Bolometric techniques to explore inverted neutrino mass hierarchy

    DOE PAGES

    Artusa, D. R.; Avignone, F. T.; Azzolini, O.; ...

    2015-03-24

    The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of 130Te. With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6 × 1026 y at 1σ (9.5 × 1025 y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40–100 meVmore » (50–130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with 130Te and possibly other double beta decay candidate nuclei.« less

  15. CUORE and beyond: Bolometric techniques to explore inverted neutrino mass hierarchy

    SciTech Connect

    Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Cai, X. Z.; Camacho, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Carbone, L.; Cardani, L.; Carrettoni, M.; Casali, N.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Dafinei, I.; Dally, A.; Datskov, V.; De Biasi, A.; Deninno, M. M.; Di Domizio, S.; di Vacri, M. L.; Ejzak, L.; Fang, D. Q.; Farach, H. A.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Goett, J.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Hennings-Yeomans, R.; Huang, H. Z.; Kadel, R.; Kazkaz, K.; Keppel, G.; Kolomensky, Yu. G.; Li, Y. L.; Ligi, C.; Liu, X.; Ma, Y. G.; Maiano, C.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Napolitano, T.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; O’Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Previtali, E.; Rampazzo, V.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zarra, C.; Zhu, B. X.; Zucchelli, S.

    2015-03-24

    The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of 130Te. With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6 × 1026 y at 1σ (9.5 × 1025 y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40–100 meV (50–130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with 130Te and possibly other double beta decay candidate nuclei.

  16. Dirac neutrino in warped extra dimensions

    NASA Astrophysics Data System (ADS)

    Chang, We-Fu; Ng, John N.; Wu, Jackson M. S.

    2009-12-01

    We implement Dirac neutrinos in the minimal custodial Randall-Sundrum setting via the Krauss-Wilczek mechanism. We demonstrate by giving explicit lepton mass matrices that with neutrinos in the normal hierarchy, lepton mass and mixing patterns can be naturally reproduced at the scale set by the constraints from electroweak precision measurements, and at the same time without violating bounds set by lepton flavor violations. Our scenario generically predicts a nonzero neutrino mixing angle θ13, as well as the existence of sub-TeV right-handed Kaluza-Klein neutrinos, which partner the right-handed standard model charged leptons. These relatively light KK neutrinos may be searched for at the LHC.

  17. A model for large non-standard interactions of neutrinos leading to the LMA-Dark solution

    NASA Astrophysics Data System (ADS)

    Farzan, Yasaman

    2015-09-01

    It is well-known that in addition to the standard LMA solution to solar anomaly, there is another solution called LMA-Dark which requires Non-Standard Interactions (NSI) with effective couplings as large as the Fermi coupling. Although this solution satisfies all the bounds from various neutrino oscillation observations and even provides a better fit to low energy solar neutrino spectrum, it is not as popular as the LMA solution mainly because no model compatible with the existing bounds has been so far constructed to give rise to this solution. We introduce a model that provides a foundation for such large NSI with strength and flavor structure required for the LMA-Dark solution. This model is based on a new U(1) ‧ gauge interaction with a gauge boson of mass ∼ 10 MeV under which quarks as well as the second and third generations of leptons are charged. We show that observable effects can appear in the spectrum of supernova and high energy cosmic neutrinos. Our model predicts a new contribution to the muon magnetic dipole moment and new rare meson decay modes.

  18. Cosmological and astrophysical implications of sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Petraki, Kalliopi

    The discovery of neutrino masses suggests that the Standard Model should be supplemented with new gauge-singlet fermions, often called sterile neutrinos. The interplay among the new couplings introduced in the Standard Model can accommodate the neutrino oscillation data for a variety of choices: the new particles can be extremely heavy and practically unobservable, or they can be light, in which case they can solve several long-standing puzzles. It has been shown, for example, that sterile neutrinos in some range of masses can account for dark matter, their emission from a supernova can explain pulsar kicks, arid their decays can play an important role in the formation of the first stars. Though indirect, these clues indicate that sterile neutrinos can be the minimal solution to a variety of unsolved problems. This emphasizes the importance of investigating further the consequences of these new degrees of freedom for cosmology and astrophysics. In this dissertation, I explore the possible role of sterile neutrinos of different mass scales in some cosmological and astrophysical phenomena. A minimal extension of the Higgs sector of the Standard Model, with a gauge- singlet boson coupled to sterile neutrinos, can provide a consistent framework for the theory of neutrino masses, and can produce a relic population of keV sterile neutrinos via decays of the singlet Higgs. The latter can account for the dark matter of the universe. The mechanism operates around the electroweak scale, and has interesting consequences for the electroweak phase transition. Relic sterile neutrinos produced via decays at the electroweak scale constitute colder dark matter than those produced via other previously suggested mechanisms. The primordial thermal content of dark matter has important implications for the formation of cosmic structures, such as clusters and galaxies. The assessment of the relevant properties suggests that sterile neutrinos produced at the electroweak scale are a

  19. A Global three-parameter model for neutrino oscillations using Lorentz violation

    NASA Astrophysics Data System (ADS)

    Katori, Teppei; Kostelecky, Alan; Tayloe, Rex

    2006-10-01

    The neutrino oscillation experiment is a natural interferometer. It is sensitive to small spacetime properties without using the photon (QED) but the sensitivity is comparable with precision optical measurements (<10-19GeV). So neutrino oscillations may be seeing small spacetime effects, such as Lorentz violation. Lorentz and CPT violation are predicted phenomena from Planck scale physics and are actively studied, mainly under the Standard-Model Extension (SME) formalism, the Standard Model with Particle Lorentz Violation. We have developed a model of neutrino oscillations that has only three degrees of freedom and is consistent with existing data under the renormalizable sector of SME, and it offers an alternative to the standard 3-neutrino massive model. All classes of neutrino data are described, including solar, reactor, atmospheric, and LSND oscillations. The disappearance of solar neutrinos is obtained without matter-enhanced oscillations (MSW effect). Quantitative predictions are offered for the ongoing MiniBooNE experiment and for the future experiments OscSNS, NOvA, and T2K.

  20. One-loop correction effects on supernova neutrino fluxes: a new possible probe for Beyond Standard Models

    SciTech Connect

    Gava, J.

    2010-05-01

    We present the consequences of a large radiative correction term coming from Supersymmetry (SUSY) upon the electron neutrino fluxes streaming off a core-collapse supernova using a 3-flavour neutrino-neutrino interaction code. We explore the interplay between the neutrino-neutrino interaction and the effects of the resonance associated with the μ−τ neutrino index of refraction. We find that sizeable effects may be visible in the flux on Earth and, consequently, on the number of events upon the energy signal of electron neutrinos in a liquid argon detector. Such effects could lead to a probe for Beyond Standard Model (BSM) physics and, ideally, to constraints in the SUSY parameter space.

  1. Dynamical coupled-channels model for neutrino-induced meson productions in resonance region

    NASA Astrophysics Data System (ADS)

    Nakamura, S. X.; Kamano, H.; Sato, T.

    2015-10-01

    A dynamical coupled-channels (DCC) model for neutrino-nucleon reactions in the resonance region is developed. Starting from the DCC model that we have previously developed through an analysis of π N ,γ N →π N ,η N ,K Λ ,K Σ reaction data for W ≤2.1 GeV , we extend the model of the vector current to Q2≤3.0 (GeV /c )2 by analyzing electron-induced reaction data for both proton and neutron targets. We derive axial-current matrix elements that are related to the π N interactions of the DCC model through the partially conserved axial current (PCAC) relation. Consequently, the interference pattern between resonant and nonresonant amplitudes is uniquely determined. We calculate cross sections for neutrino-induced meson productions, and compare them with available data. Our result for the single-pion production reasonably agrees with the data. We also make a comparison with the double-pion production data. Our model is the first DCC model that can give the double-pion production cross sections in the resonance region. We also make comparison of our result with other existing models to reveal an importance of testing the models in the light of PCAC and electron reaction data. The DCC model developed here will be a useful input for constructing a neutrino-nucleus reaction model and a neutrino event generator for analyses of neutrino experiments.

  2. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    SciTech Connect

    Coleman, Stephen James

    2011-05-01

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting Δm232 = (2.32-0.08+0.12) x 10-3 eV2/c4 and the mixing angle sin2(2θ32) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2σ and the neutrino quantum decoherence hypothesis is disfavored at 9.0σ.

  3. Model-dependent high-energy neutrino flux from gamma-ray bursts.

    PubMed

    Zhang, Bing; Kumar, Pawan

    2013-03-22

    The IceCube Collaboration recently reported a stringent upper limit on the high energy neutrino flux from gamma-ray bursts (GRBs), which provides a meaningful constraint on the standard internal shock model. Recent broadband electromagnetic observations of GRBs also challenge the internal shock paradigm for GRBs, and some competing models for γ-ray prompt emission have been proposed. We describe a general scheme for calculating the GRB neutrino flux, and compare the predicted neutrino flux levels for different models. We point out that the current neutrino flux upper limit starts to constrain the standard internal shock model. The dissipative photosphere models are also challenged if the cosmic ray luminosity from GRBs is at least 10 times larger than the γ-ray luminosity. If the neutrino flux upper limit continues to go down in the next few years, then it would suggest the following possibilities: (i) the photon-to-proton luminosity ratio in GRBs is anomalously high for shocks, which may be achieved in some dissipative photosphere models and magnetic dissipation models; or (ii) the GRB emission site is at a larger radius than the internal shock radius, as expected in some magnetic dissipation models such as the internal collision-induced magnetic reconnection and turbulence model.

  4. Plans for a high-resolution measurement of the tritium beta-spectrum end point to determine the neutrino mass

    NASA Astrophysics Data System (ADS)

    Graham, R. L.; Lone, M. A.; Andrews, H. R.; Geiger, J. S.; Gallant, J. L.; Knowles, J. W.; Lee, H. C.; Lee-Whiting, G. E.

    1983-06-01

    The Chalk River π ≫2 iron-free beta spectrometer is being recommissioned and upgraded for a precise meaurement of the shape of the tritium spectrum near the end point. With a multiple strip source and 60—element detector array an overall energy resolution of σ 19 eV FWHM is expected. Computer simulation of the expected experimental Kurie plots are presented for various and anti-neutrino mass assumptions.

  5. Plans for a high-resolution measurement of the tritium. beta. -spectrum end point to determine the neutrino mass

    SciTech Connect

    Graham, R.L.; Lone, M.A.; Andrews, H.R.; Geiger, J.S.; Gallant, J.L.; Knowles, J.W.; Lee, H.C.; Lee-Whiting, G.E.

    1983-01-01

    The Chalk River ..pi.. ..sqrt..2 iron-free ..beta.. spectrometer is being recommissioned and upgraded for a precise measurement of the shape of the tritium spectrum near the end point. With a multiple strip source and 60-element detector array an overall energy resolution of less than or equal to 19 eV FWHM is expected. Computer simulations of the expected experimental Kurie plots are presented for various anti-neutrino mass assumptions.

  6. Weighing Neutrinos with Cosmic Neutral Hydrogen

    NASA Astrophysics Data System (ADS)

    Villaescusa-Navarro, Francisco; Bull, Philip; Viel, Matteo

    2015-12-01

    We investigate the signatures left by massive neutrinos on the spatial distribution of neutral hydrogen (H i) in the post-reionization era by running hydrodynamic simulations that include massive neutrinos as additional collisionless particles. We find that halos in massive/massless neutrino cosmologies host a similar amount of neutral hydrogen, although for a fixed halo mass, on average, the H i mass increases with the sum of the neutrino masses. Our results show that H i is more strongly clustered in cosmologies with massive neutrinos, while its abundance, ΩH i(z), is lower. These effects arise mainly from the impact of massive neutrinos on cosmology: they suppress both the amplitude of the matter power spectrum on small scales and the abundance of dark matter halos. Modeling the H i distribution with hydrodynamic simulations at z > 3 and a simple analytic model at z < 3, we use the Fisher matrix formalism to conservatively forecast the constraints that Phase 1 of the Square Kilometre Array will place on the sum of neutrino masses, Mν ≡ Σ mν. We find that with 10,000 hr of interferometric observations at 3 ≲ z ≲ 6 from a deep and narrow survey with SKA1-LOW, the sum of the neutrino masses can be measured with an error σ(Mν) ≲ 0.3 eV (95% CL). Similar constraints can be obtained with a wide and deep SKA1-MID survey at z ≲ 3, using the single-dish mode. By combining data from MID, LOW, and Planck, plus priors on cosmological parameters from a Stage IV spectroscopic galaxy survey, the sum of the neutrino masses can be determined with an error σ(Mν) ≃ 0.06 eV (95% CL).

  7. WEIGHING NEUTRINOS WITH COSMIC NEUTRAL HYDROGEN

    SciTech Connect

    Villaescusa-Navarro, Francisco; Viel, Matteo; Bull, Philip E-mail: viel@oats.inaf.it

    2015-12-01

    We investigate the signatures left by massive neutrinos on the spatial distribution of neutral hydrogen (H i) in the post-reionization era by running hydrodynamic simulations that include massive neutrinos as additional collisionless particles. We find that halos in massive/massless neutrino cosmologies host a similar amount of neutral hydrogen, although for a fixed halo mass, on average, the H i mass increases with the sum of the neutrino masses. Our results show that H i is more strongly clustered in cosmologies with massive neutrinos, while its abundance, Ω{sub H} {sub i}(z), is lower. These effects arise mainly from the impact of massive neutrinos on cosmology: they suppress both the amplitude of the matter power spectrum on small scales and the abundance of dark matter halos. Modeling the H i distribution with hydrodynamic simulations at z > 3 and a simple analytic model at z < 3, we use the Fisher matrix formalism to conservatively forecast the constraints that Phase 1 of the Square Kilometre Array will place on the sum of neutrino masses, M{sub ν} ≡ Σ m{sub ν}. We find that with 10,000 hr of interferometric observations at 3 ≲ z ≲ 6 from a deep and narrow survey with SKA1-LOW, the sum of the neutrino masses can be measured with an error σ(M{sub ν}) ≲ 0.3 eV (95% CL). Similar constraints can be obtained with a wide and deep SKA1-MID survey at z ≲ 3, using the single-dish mode. By combining data from MID, LOW, and Planck, plus priors on cosmological parameters from a Stage IV spectroscopic galaxy survey, the sum of the neutrino masses can be determined with an error σ(M{sub ν}) ≃ 0.06 eV (95% CL)

  8. Predicting the CP-Phase for Neutrinos

    NASA Astrophysics Data System (ADS)

    Takasugi, Eiichi

    In view of recent observation of neutrino mixing angles and also the CP-phase, the model to predict the CP phase becomes more interesting. In 2000, we proposed the neutrino mass matrix that predicts the maximal CP violation and the 2-3 mixing angle. I revisit this model and explore this model further to investigate Majorana phases and the possible extension that allows the deviation of the CP phase and the 2-3 mixing from the maximal.

  9. Overview and Status of Experimental Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Stancu, Ion

    2002-10-01

    Seventy years after the existence of the neutrino has been postulated by Wolfgang Pauli, these elusive particles remain surrounded by mystery. One of the most fundamental questions about neutrinos is whether they have an identically vanishing mass, as assumed by the Standard Model, or not. Direct measurements have proven to be extremely difficult to perform, and have yielded so far only upper limits. However, if neutrino flavour oscillations do happen, this would automatically imply that at least one of the three neutrinos (the electron, muon or tau neutrino) must have a non-zero mass. The present experimental data indicate that both the solar and atmospheric neutrino deficits can be explained by the phenomenon of neutrino oscillations, while the positive signal reported by the accelerator-based LSND experiment remains to be verified by an independent measurement (MiniBooNE). This talk reviews the current status of the neutrino oscillations experiments, experiments which are quite likely to produce results with significant consequences for both the Standard Model and Cosmology.

  10. Nucleosynthesis and Neutrinos

    SciTech Connect

    Kajino, Toshitaka

    2011-05-06

    Neutrinos play the critical roles in nucleosynthesis of light-to-heavy mass nuclei in core-collapse supernovae. We study the nucleosynthesis induced by neutrino interactions and find suitable average neutrino temperatures in order to explain the observed solar system abundances of several isotopes {sup 7}Li, {sup 11}B, {sup 138}La and {sup 180}Ta. These isotopes are predominantly synthesized by the supernova {nu}-process. We also study the neutrino oscillation effects on their abundances and propose a method to determine the unknown neutrino oscillation parameters, i.e. {theta}{sub 13} and mass hierarchy.

  11. Constraints to the decays of Dirac neutrinos from SN 1987A

    NASA Technical Reports Server (NTRS)

    Dodelson, Scott; Frieman, Joshua A.; Turner, Michael S.

    1992-01-01

    The decay mode of a keV-mass Dirac neutrino is addressed with reference to the nineteen neutrino events associated with SN 1987A that were detected by the Kamiokande II and Irvine-Brookhaven-Michigan detectors. A complementary constraint is presented which is based upon a distinctive signal associated with the decay of wrong-helicity neutrinos that was not seen: high-energy (50 MeV and higher) neutrino events. The absence of such events excludes the decay of wrong-helicity neutrinos into proper-helicity neutrinos for a Dirac neutrino of mass between 1 and 300 keV. The constraint also rules out models of the 17-keV neutrino.

  12. Examination of the calorimetric spectrum to determine the neutrino mass in low-energy electron capture decay

    NASA Astrophysics Data System (ADS)

    Robertson, R. G. H.

    2015-03-01

    Background: The standard kinematic method for determining neutrino mass from the β decay of tritium or other isotope is to measure the shape of the electron spectrum near the endpoint. A similar distortion of the "visible energy" remaining after electron capture is caused by neutrino mass. There has been a resurgence of interest in using this method with 163Ho, driven by technological advances in microcalorimetry. Recent theoretical analyses offer reassurance that there are no significant theoretical uncertainties. Purpose: The theoretical analyses consider only single vacancy states in the daughter 163Dy atom. It is necessary to consider configurations with more than one vacancy that can be populated owing to the change in nuclear charge. Method: The shakeup and shake-off theory of Carlson and Nestor is used as a basis for estimating the population of double-vacancy states. Results: A spectrum of satellites associated with each primary vacancy created by electron capture is presented. Conclusions: The theory of the calorimetric spectrum is more complicated than has been described heretofore. There are numerous shakeup and shake-off satellites present across the spectrum, and some may be very near the endpoint. The spectrum shape is presently not understood well enough to permit a sensitive determination of the neutrino mass in this way.

  13. Turbulence patterns and neutrino flavor transitions in high-resolution supernova models

    SciTech Connect

    Borriello, Enrico; Mirizzi, Alessandro; Chakraborty, Sovan; Janka, Hans-Thomas; Lisi, Eligio E-mail: sovan@mppmu.mpg.de E-mail: eligio.lisi@ba.infn.it

    2014-11-01

    During the shock-wave propagation in a core-collapse supernova (SN), matter turbulence may affect neutrino flavor conversion probabilities. Such effects have been usually studied by adding parametrized small-scale random fluctuations (with arbitrary amplitude) on top of coarse, spherically symmetric matter density profiles. Recently, however, two-dimensional (2D) SN models have reached a space resolution high enough to directly trace anisotropic density profiles, down to scales smaller than the typical neutrino oscillation length. In this context, we analyze the statistical properties of a large set of SN matter density profiles obtained in a high-resolution 2D simulation, focusing on a post-bounce time (2 s) suited to study shock-wave effects on neutrino propagation on scales as small as O(100) km and possibly below. We clearly find the imprint of a broken (Kolmogorov-Kraichnan) power-law structure, as generically expected in 2D turbulence spectra. We then compute the flavor evolution of SN neutrinos along representative realizations of the turbulent matter density profiles, and observe no or modest damping of the neutrino crossing probabilities on their way through the shock wave. In order to check the effect of possibly unresolved fluctuations at scales below O(100) km, we also apply a randomization procedure anchored to the power spectrum calculated from the simulation, and find consistent results within ± 1σ fluctuations. These results show the importance of anchoring turbulence effects on SN neutrinos to realistic, fine-grained SN models.

  14. Cosmological Bounds of Sterile Neutrinos in a S U(3) C ⊗ S U(3) L ⊗ S U(3) R ⊗ U(1) N Model as Dark Matter Candidates

    NASA Astrophysics Data System (ADS)

    Ferreira, C. P.; Guzzo, M. M.; de Holanda, P. C.

    2016-08-01

    We study sterile neutrinos in an extension of the standard model, based on the gauge group S U(3) C ⊗ S U(3) L ⊗ S U(3) R ⊗ U(1) N , and use this model to illustrate how to apply cosmological limits to thermalized particles that decouple while relativistic. These neutrinos, N a L , can be dark matter candidates, with a kiloelectron volt mass range arising rather naturally in this model. We analyse the cosmological limits imposed by N e f f and dark matter abundance on these neutrinos. Assuming that these neutrinos have roughly equal masses and are not CDM, we conclude that the N e f f experimental value can be satisfied in some cases and the abundance constraint implies that these neutrinos are hot dark matter. With this information, we give upper bounds on the Yukawa coupling between the sterile neutrinos and a scalar field, the possible values of the VEV of this scalar field and lower bounds to the mass of one gauge boson of the model.

  15. Second unique forbidden {beta} decay of {sup 115}In and neutrino mass

    SciTech Connect

    Dvornicky, R.; Simkovic, F.

    2011-12-16

    The measurement of the electron spectrum in {beta} decays close to the end point provides a robust direct determination of the values of neutrino masses. The most sensitive experiments use tritium and rhenium {beta} decays because these transitions have low Q value. Recent measurement with Penning traps established that the {beta} decay of {sup 115}In(9/2{sup +}) to the first excited state of {sup 115}Sn(3/2{sup +}) is a transition with the smallest Q value among {beta} decays. The decay is associated with a change of spin and parity {Delta}J{sup {pi}} = 3{sup +} ({Delta}L = 2, {Delta}S = 1) of nucleus, i.e., classified as unique second forbidden {beta} decay. Our investigation shows that in this transition electrons are predominantly emitted in d{sub 5/2} partial waves. In addition, it is found that the Kurie function associated with this transition near the end point within a good accuracy reflects a behavior the Kurie function of superallowed {beta} transitions.

  16. Isolation of 163Ho from dysprosium target material by HPLC for neutrino mass measurements

    DOE PAGES

    Mocko, Veronika; Taylor, Wayne  A.; Nortier, Francois M.; ...

    2015-04-29

    The rare earth isotope 163Ho is of interest for neutrino mass measurements. This report describes the isolation of 163Ho from a proton-irradiated dysprosium target and its purification. A Dy metal target was irradiated with 16 MeV protons for 10 h. After target dissolution, 163Ho was separated from the bulk Dy via cation-exchange high performance liquid chromatography using 70 mmol dm–3 α-hydroxyisobutyric acid as the mobile phase. Subsequent purification of the collected Ho fraction was performed to remove the α-hydroxyisobutyrate chelating agent and to concentrate the Ho in a low ionic strength aqueous matrix. The final solution was characterized by MC-ICP-MSmore » to determine the 163Ho/165Ho ratio, 163Ho and the residual Dy content. The HPLC purification process resulted in a decontamination factor 1.4E5 for Dy. As a result, the isolated Ho fraction contained 24.8 ±1.3 ng of 163Ho corresponding to holmium recovery of 72 ± 3%.« less

  17. Development of Microwave Superconducting Microresonators for Neutrino Mass Measurement in the Holmes Framework

    NASA Astrophysics Data System (ADS)

    Giachero, A.; Day, P. K.; Falferi, P.; Faverzani, M.; Ferri, E.; Giordano, C.; Maino, M.; Margesin, B.; Mezzena, R.; Nizzolo, R.; Nucciotti, A.; Puiu, A.; Zanetti, L.

    2016-07-01

    The European Research Council has recently funded HOLMES, a project with the aim of performing a calorimetric measurement of the electron neutrino mass measuring the energy released in the electron capture decay of 163Ho. The baseline for HOLMES are microcalorimeters coupled to transition edge sensors read-out with rf-SQUIDs, for microwave multiplexing purposes. A promising alternative solution is based on superconducting microwave resonators that have undergone rapid development in the last decade. These detectors, called Microwave Kinetic Inductance Detectors (MKIDs), are inherently multiplexed in the frequency domain and suitable for even larger-scale pixel arrays, with theoretical high energy resolution and fast response. The aim of our activity is to develop arrays of microresonator detectors for X-ray spectroscopy and suitable for the calorimetric measurement of the energy spectra of 163Ho. Superconductive multilayer films composed by a sequence of pure Titanium and stoichiometric TiN layers show many ideal properties for MKIDs, such as low loss, large sheet resistance, large kinetic inductance, and tunable critical temperature T_c. We developed Ti/TiN multilayer microresonators with T_c within the range from 70 mK to 4.5 K and with good uniformity. In this contribution, we present the design solutions adopted, the fabrication processes, and the characterization results.

  18. Solar neutrino experiments and neutrino oscillations

    SciTech Connect

    Cleveland, B.T.; Davis, R. Jr.; Rowley, J.K.

    1981-01-01

    This report gives the results of the Brookhaven solar neutrino experiment that is based upon the neutrino capture reaction, /sup 37/Cl(..nu..,e/sup -/)/sup 37/Ar. The experiment was built in 1967 to test the theory of solar energy production, and it is well known that the neutrino capture rate in the detector is lower than that expected from theoretical models of the sun. The results will be compared to the current solar model calculations. One possible explanation of the low solar neutrino capture rate is that the neutrinos oscillate between two or more neutrino states, a topic of particular interest to this conference. This question is discussed in relation to the /sup 37/Cl experiment, and to other solar neutrino detectors that are capable of observing the lower energy neutrinos from the sun. A radiochemical solar neutrino detector located deep underground has a very low background and is capable of detecting the monoenergetic neutrinos from megacurie sources of radioisotopes that decay by electron capture. Experiments of this nature are described that are capable of testing for neutrino oscillations with a omicronm/sup 2/ as low as 0.2 eV/sup 2/ if there is maximum mixing between two neutrino states.

  19. Experiment neutrino-4 on searching for a sterile neutrino with multisection detector model

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Ivochkin, V. G.; Samoilov, R. M.; Fomin, A. K.; Zinov'ev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Chernyi, A. V.; Zherebtsov, O. M.; Polyushkin, A. O.; Martem'yanov, V. P.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Izhutov, A. L.; Tuzov, A. A.; Sazontov, S. A.; Ryazanov, D. K.; Gromov, M. O.; Afanas'ev, V. V.; Zaitsev, M. E.; Chaikovskii, M. E.

    2017-02-01

    A laboratory for searching for oscillations of reactor antineutrinos has been created based on the SM-3 reactor in order to approach the problem of the possible existence of a sterile neutrino. The multisection detector prototype with a liquid scintillator volume of 350 L was installed in mid-2015. This detector can move inside the passive shield in a range of 6-11 m from the active core of the reactor. The antineutrino flux was measured for the first time at these short distances from the active core of the reactor by the movable detector. The measurements with the multisection detector prototype demonstrated that it is possible to measure the antineutrino flux from the reactor in the complicated conditions of cosmic background on the Earth's surface.

  20. Computation of masses and binding energies of some hadrons and bosons according to the rotating lepton model and the relativistic Newton equation

    NASA Astrophysics Data System (ADS)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2016-08-01

    We compute analytically the masses, binding energies and hamiltonians of gravitationally bound Bohr-type states via the rotating relativistic lepton model which utilizes the de Broglie wavelength equation in conjunction with special relativity and Newton's relativistic gravitational law. The latter uses the inertial-gravitational masses, rather than the rest masses, of the rotating particles. The model also accounts for the electrostatic charge- induced dipole interactions between a central charged lepton, which is usually a positron, with the rotating relativistic lepton ring. We use three rotating relativistic neutrinos to model baryons, two rotating relativistic neutrinos to model mesons, and a rotating relativistic electron neutrino - positron (or electron) pair to model the W± bosons. It is found that gravitationally bound ground states comprising three relativistic neutrinos have masses in the baryon mass range (∼⃒ 0.9 to 1 GeV/c2), while ground states comprising two neutrinos have masses in the meson mass range (∼⃒ 0.4 to 0.8 GeV/c2). It is also found that the rest mass values of quarks are in good agreement with the heaviest neutrino mass value of 0.05 eV/c2 and that the mass of W± bosons (∼⃒ 81 GeV/c2) corresponds to the mass of a rotating gravitationally confined e± — ve pair. A generalized expression is also derived for the gravitational potential energy of such relativistic Bohr-type structures.

  1. Solar Neutrino Problem

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Evans, J. C.; Cleveland, B. T.

    1978-04-28

    A summary of the results of the Brookhaven solar neutrino experiment is given and discussed in relation to solar model calculations. A review is given of the merits of various new solar neutrino detectors that were proposed.

  2. Transition-Edge Sensor Arrays of Microcalorimeters with ^{163}Ho for Direct Neutrino Mass Measurements with HOLMES

    NASA Astrophysics Data System (ADS)

    Orlando, A.; Biasotti, M.; Ceriale, V.; De Gerone, M.; Gatti, F.; Hays-Wehle, J.; Pizzigoni, G.; Schmidt, D.; Swetz, D.; Ullom, J.

    2016-08-01

    The HOLMES experiment will provide an important step forward in direct neutrino mass measurements with a calorimetric approach as an alternative to spectrometry. HOLMES will perform a calorimetric measurement of the energy released in the decay of ^{163}Ho and will deploy a large array of transition-edge sensor microcalorimeters with implanted ^{163}Ho nuclei. The resulting mass sensitivity could be as low as 0.4 eV, and it will also establish the potential of this approach to extend the sensitivity down to 0.1 eV and lower.

  3. No-neutrino double beta decay: more than one neutrino

    SciTech Connect

    Rosen, S.P.

    1983-01-01

    Interference effects between light and heavy Majorana neutrinos in the amplitude for no-neutrino double beta decay are discussed. The effects include an upper bound on the heavy neutrino mass, and an A dependence for the effective mass extracted from double beta decay. Thus the search for the no-neutrino decay mode should be pursued in several nuclei, and particularly in Ca/sup 48/, where the effective mass may be quite large.

  4. Substructure lensing in galaxy clusters as a constraint on low-mass sterile neutrinos in tensor-vector-scalar theory: The straight arc of Abell 2390

    SciTech Connect

    Feix, Martin; Zhao Hongsheng; Fedeli, Cosimo; Hoekstra, Henk

    2010-12-15

    Certain covariant theories of the modified Newtonian dynamics paradigm seem to require an additional hot dark matter (HDM) component--in the form of either heavy ordinary neutrinos or more recently light sterile neutrinos (SNs) with a mass around 11 eV--to be relieved of problems ranging from cosmological scales down to intermediate ones relevant for galaxy clusters. Here we suggest using gravitational lensing by galaxy clusters to test such a marriage of neutrino HDM and modified gravity, adopting the framework of tensor-vector-scalar theory (TeVeS). Unlike conventional cold dark matter (CDM), such HDM is subject to strong phase-space constraints, which allows one to check cluster lens models inferred within the modified framework for consistency. Since the considered HDM particles cannot collapse into arbitrarily dense clumps and only form structures well above the galactic scale, systems which indicate the need for dark substructure are of particular interest. As a first example, we study the cluster lens Abell 2390 and its impressive straight arc with the help of numerical simulations. Based on our results, we outline a general and systematic approach to model cluster lenses in TeVeS which significantly reduces the calculation complexity. We further consider a simple bimodal lens configuration, capable of producing the straight arc, to demonstrate our approach. We find that such a model is marginally consistent with the hypothesis of 11 eV SNs. Future work including more detailed and realistic lens models may further constrain the necessary SN distribution and help to conclusively assess this point. Cluster lenses could therefore provide an interesting discriminator between CDM and such modified gravity scenarios supplemented by SNs or other choices of HDM.

  5. Substructure lensing in galaxy clusters as a constraint on low-mass sterile neutrinos in tensor-vector-scalar theory: The straight arc of Abell 2390

    NASA Astrophysics Data System (ADS)

    Feix, Martin; Zhao, Hongsheng; Fedeli, Cosimo; Pestaña, José Luis Garrido; Hoekstra, Henk

    2010-12-01

    Certain covariant theories of the modified Newtonian dynamics paradigm seem to require an additional hot dark matter (HDM) component—in the form of either heavy ordinary neutrinos or more recently light sterile neutrinos (SNs) with a mass around 11 eV—to be relieved of problems ranging from cosmological scales down to intermediate ones relevant for galaxy clusters. Here we suggest using gravitational lensing by galaxy clusters to test such a marriage of neutrino HDM and modified gravity, adopting the framework of tensor-vector-scalar theory (TeVeS). Unlike conventional cold dark matter (CDM), such HDM is subject to strong phase-space constraints, which allows one to check cluster lens models inferred within the modified framework for consistency. Since the considered HDM particles cannot collapse into arbitrarily dense clumps and only form structures well above the galactic scale, systems which indicate the need for dark substructure are of particular interest. As a first example, we study the cluster lens Abell 2390 and its impressive straight arc with the help of numerical simulations. Based on our results, we outline a general and systematic approach to model cluster lenses in TeVeS which significantly reduces the calculation complexity. We further consider a simple bimodal lens configuration, capable of producing the straight arc, to demonstrate our approach. We find that such a model is marginally consistent with the hypothesis of 11 eV SNs. Future work including more detailed and realistic lens models may further constrain the necessary SN distribution and help to conclusively assess this point. Cluster lenses could therefore provide an interesting discriminator between CDM and such modified gravity scenarios supplemented by SNs or other choices of HDM.

  6. Report of the Solar and Atmospheric Neutrino Working Group

    SciTech Connect

    Back, H.; Bahcall, J.N.; Bernabeu, J.; Boulay, M.G.; Bowles, T.; Calaprice, F.; Champagne, A.; Freedman, S.; Gai, M.; Galbiati, C.; Gallagher, H.; Gonzalez-Garcia, C.; Hahn, R.L.; Heeger, K.M.; Hime, A.; Jung, C.K.; Klein, J.R.; Koike, M.; Lanou, R.; Learned, J.G.; Lesko, K.T.; Losecco, J.; Maltoni, M.; Mann, A.; McKinsey, D.; Palomares-Ruiz, S.; Pena-Garay, C.; Petcov, S.T.; Piepke, A.; Pitt, M.; Raghavan, R.; Robertson, R.G.H.; Scholberg, K.; Sobel, H.W.; Takeuchi, T.; Vogelaar, R.; Wolfenstein, L.

    2004-10-22

    The highest priority of the Solar and Atmospheric Neutrino Experiment Working Group is the development of a real-time, precision experiment that measures the pp solar neutrino flux. A measurement of the pp solar neutrino flux, in comparison with the existing precision measurements of the high energy {sup 8}B neutrino flux, will demonstrate the transition between vacuum and matter-dominated oscillations, thereby quantitatively testing a fundamental prediction of the standard scenario of neutrino flavor transformation. The initial solar neutrino beam is pure {nu}{sub e}, which also permits sensitive tests for sterile neutrinos. The pp experiment will also permit a significantly improved determination of {theta}{sub 12} and, together with other solar neutrino measurements, either a measurement of {theta}{sub 13} or a constraint a factor of two lower than existing bounds. In combination with the essential pre-requisite experiments that will measure the {sup 7}Be solar neutrino flux with a precision of 5%, a measurement of the pp solar neutrino flux will constitute a sensitive test for non-standard energy generation mechanisms within the Sun. The Standard Solar Model predicts that the pp and {sup 7}Be neutrinos together constitute more than 98% of the solar neutrino flux. The comparison of the solar luminosity measured via neutrinos to that measured via photons will test for any unknown energy generation mechanisms within the nearest star. A precise measurement of the pp neutrino flux (predicted to be 92% of the total flux) will also test stringently the theory of stellar evolution since the Standard Solar Model predicts the pp flux with a theoretical uncertainty of 1%. We also find that an atmospheric neutrino experiment capable of resolving the mass hierarchy is a high priority. Atmospheric neutrino experiments may be the only alternative to very long baseline accelerator experiments as a way of resolving this fundamental question. Such an experiment could be a very

  7. Future Long-Baseline Neutrino Oscillations: View from North America

    SciTech Connect

    Wilson, R. J.

    2015-06-01

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE), that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  8. Future long-baseline neutrino oscillations: View from North America

    SciTech Connect

    Wilson, Robert J.

    2015-07-15

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE) that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  9. Direct Measurement of the Mass Difference of (163)Ho and (163)Dy Solves the Q-Value Puzzle for the Neutrino Mass Determination.

    PubMed

    Eliseev, S; Blaum, K; Block, M; Chenmarev, S; Dorrer, H; Düllmann, Ch E; Enss, C; Filianin, P E; Gastaldo, L; Goncharov, M; Köster, U; Lautenschläger, F; Novikov, Yu N; Rischka, A; Schüssler, R X; Schweikhard, L; Türler, A

    2015-08-07

    The atomic mass difference of (163)Ho and (163)Dy has been directly measured with the Penning-trap mass spectrometer SHIPTRAP applying the novel phase-imaging ion-cyclotron-resonance technique. Our measurement has solved the long-standing problem of large discrepancies in the Q value of the electron capture in (163)Ho determined by different techniques. Our measured mass difference shifts the current Q value of 2555(16) eV evaluated in the Atomic Mass Evaluation 2012 [G. Audi et al., Chin. Phys. C 36, 1157 (2012)] by more than 7σ to 2833(30(stat))(15(sys)) eV/c(2). With the new mass difference it will be possible, e.g., to reach in the first phase of the ECHo experiment a statistical sensitivity to the neutrino mass below 10 eV, which will reduce its present upper limit by more than an order of magnitude.

  10. Long-Baseline Neutrino Experiments

    SciTech Connect

    Diwan, M. V.; Galymov, V.; Qian, X.; Rubbia, A.

    2016-10-19

    We review long-baseline neutrino experiments in which neutrinos are detected after traversing macroscopic distances. Over such distances neutrinos have been found to oscillate among flavor states. Experiments with solar, atmospheric, reactor, and accelerator neutrinos have resulted in a coherent picture of neutrino masses and mixing of the three known flavor states. We will summarize the current best knowledge of neutrino parameters and phenomenology with our focus on the evolution of the experimental technique. We will proceed from the rst evidence produced by astrophysical neutrino sources to the current open questions and the goals of future research

  11. DEEP UNDERGROUND NEUTRINO EXPERIMENT

    SciTech Connect

    Wilson, Robert J.

    2016-03-03

    The Deep Underground Neutrino Experiment (DUNE) collaboration will perform an experiment centered on accelerator-based long-baseline neutrino studies along with nucleon decay and topics in neutrino astrophysics. It will consist of a modular 40-kt (fiducial) mass liquid argon TPC detector located deep underground at the Sanford Underground Research Facility in South Dakota and a high-resolution near detector at Fermilab in Illinois. This conguration provides a 1300-km baseline in a megawatt-scale neutrino beam provided by the Fermilab- hosted international Long-Baseline Neutrino Facility.

  12. Massive neutrinos and invisible axion minimally connected

    NASA Astrophysics Data System (ADS)

    Bertolini, Stefano; Di Luzio, Luca; Kolešová, Helena; Malinský, Michal

    2015-03-01

    We survey a few minimal scalar extensions of the standard electroweak model that provide a simple setup for massive neutrinos in connection with an invisible axion. The presence of a chiral U (1 ) à la Peccei-Quinn drives the pattern of Majorana neutrino masses while providing a dynamical solution to the strong C P problem and an axion as a dark matter candidate. We paradigmatically apply such a renormalizable framework to type-II seesaw and to two viable models for neutrino oscillations where the neutrino masses arise at one and two loops, respectively. We comment on the naturalness of the effective setups as well as on their implications for vacuum stability and electroweak baryogenesis.

  13. Upper bound of 0.28 eV on neutrino masses from the largest photometric redshift survey.

    PubMed

    Thomas, Shaun A; Abdalla, Filipe B; Lahav, Ofer

    2010-07-16

    We present a new limit of ∑m(v) ≤ 0.28 (95% CL) on the sum of the neutrino masses assuming a flat ΛCDM cosmology. This relaxes slightly to ∑m(ν) ≤ 0.34 and ∑m(v) ≤ 0.47 when quasinonlinear scales are removed and w≠ -1, respectively. These are derived from a new photometric catalogue of over 700,000 luminous red galaxies (MegaZ DR7) with a volume of 3.3  (Gpc h(-1))(3) and redshift range 0.45 < z < 0.65. The data are combined with WMAP 5-year CMB, baryon acoustic oscillations, supernovae, and a Hubble Space Telescope prior on h. When combined with WMAP these data are as constraining as adding all supernovae and baryon oscillation data available. The upper limit is one of the tightest constraints on the neutrino from cosmology or particle physics. Further, if these bounds hold, they all predict that current-to-next generation neutrino experiments, such as KATRIN, are unlikely to obtain a detection.

  14. Gravity triggered neutrino condensates

    SciTech Connect

    Barenboim, Gabriela

    2010-11-01

    In this work we use the Schwinger-Dyson equations to study the possibility that an enhanced gravitational attraction triggers the formation of a right-handed neutrino condensate, inducing dynamical symmetry breaking and generating a Majorana mass for the right-handed neutrino at a scale appropriate for the seesaw mechanism. The composite field formed by the condensate phase could drive an early epoch of inflation. We find that to the lowest order, the theory does not allow dynamical symmetry breaking. Nevertheless, thanks to the large number of matter fields in the model, the suppression by additional powers in G of higher order terms can be compensated, boosting them up to their lowest order counterparts. This way chiral symmetry can be broken dynamically and the infrared mass generated turns out to be in the expected range for a successful seesaw scenario.

  15. Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model

    SciTech Connect

    Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.

    2011-06-15

    We present the calculation of the atmospheric neutrino fluxes with an interaction model named JAM, which is used in PHITS (Particle and Heavy-Ion Transport code System) [K. Niita et al., Radiation Measurements 41, 1080 (2006).]. The JAM interaction model agrees with the HARP experiment [H. Collaboration, Astropart. Phys. 30, 124 (2008).] a little better than DPMJET-III[S. Roesler, R. Engel, and J. Ranft, arXiv:hep-ph/0012252.]. After some modifications, it reproduces the muon flux below 1 GeV/c at balloon altitudes better than the modified DPMJET-III, which we used for the calculation of atmospheric neutrino flux in previous works [T. Sanuki, M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 75, 043005 (2007).][M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Phys. Rev. D 75, 043006 (2007).]. Some improvements in the calculation of atmospheric neutrino flux are also reported.

  16. Galaxy clustering, CMB and supernova data constraints on ϕCDM model with massive neutrinos

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Xu, Lixin

    2016-01-01

    We investigate a scalar field dark energy model (i.e., ϕCDM model) with massive neutrinos, where the scalar field possesses an inverse power-law potential, i.e., V (ϕ) ∝ϕ-α (α > 0). We find that the sum of neutrino masses Σmν has significant impacts on the CMB temperature power spectrum and on the matter power spectrum. In addition, the parameter α also has slight impacts on the spectra. A joint sample, including CMB data from Planck 2013 and WMAP9, galaxy clustering data from WiggleZ and BOSS DR11, and JLA compilation of Type Ia supernova observations, is adopted to confine the parameters. Within the context of the ϕCDM model under consideration, the joint sample determines the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the Thomson scattering optical depth due to reionization, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ* = (1.0415-0.0011+0.0012) ×10-2, τ =0.0914-0.0242+0.0266, Ωbh2 = 0.0222 ± 0.0005, Ωch2 = 0.1177 ± 0.0036, and ns =0.9644-0.0119+0.0118, respectively, at 95% confidence level (CL). It turns out that α < 4.995 at 95% CL for the ϕCDM model. And yet, the ΛCDM scenario corresponding to α = 0 is not ruled out at 95% CL. Moreover, we get Σmν < 0.262 eV at 95% CL for the ϕCDM model, while the corresponding one for the ΛCDM model is Σmν < 0.293 eV. The allowed scale of Σmν in the ϕCDM model is a bit smaller than that in the ΛCDM model. It is consistent with the qualitative analysis, which reveals that the increases of α and Σmν both can result in the suppression of the matter power spectrum. As a consequence, when α is larger, in order to avoid suppressing the matter power spectrum too much, the value of Σmν should be smaller.

  17. Neutrino halos in clusters of galaxies and their weak lensing signature

    SciTech Connect

    Villaescusa-Navarro, Francisco; Peña-Garay, Carlos; Miralda-Escudé, Jordi; Quilis, Vicent E-mail: miralda@icc.ub.es E-mail: vicent.quilis@uv.es

    2011-06-01

    We study whether non-linear gravitational effects of relic neutrinos on the development of clustering and large-scale structure may be observable by weak gravitational lensing. We compute the density profile of relic massive neutrinos in a spherical model of a cluster of galaxies, for several neutrino mass schemes and cluster masses. Relic neutrinos add a small perturbation to the mass profile, making it more extended in the outer parts. In principle, this non-linear neutrino perturbation is detectable in an all-sky weak lensing survey such as EUCLID by averaging the shear profile of a large fraction of the visible massive clusters in the universe, or from its signature in the general weak lensing power spectrum or its cross-spectrum with galaxies. However, correctly modeling the distribution of mass in baryons and cold dark matter and suppressing any systematic errors to the accuracy required for detecting this neutrino perturbation is severely challenging.

  18. Neutrino-axion-dilaton interconnection

    NASA Astrophysics Data System (ADS)

    Bertolini, Stefano; Di Luzio, Luca; Kolešová, Helena; Malinský, Michal; Vasquez, Juan Carlos

    2016-01-01

    We show that a recently proposed framework that provides a simple connection between Majorana neutrinos and an invisible axion in minimal scalar extensions of the standard electroweak model can be naturally embedded in a classically scale-invariant setup. The explicit breaking of the scale invariance à la Coleman-Weinberg generates the Peccei-Quinn and electroweak scales. The spontaneous breaking of the chiral U (1 )PQ triggers the generation of neutrino masses via Type-II seesaw and, at the same time, provides a dynamical solution to the strong C P problem as well as the axion as a dark matter candidate. The electroweak and neutrino mass scales are obtained via a technically natural ultraweak limit of the singlet scalar interactions. Accordingly, a realistic and perturbatively stable scalar spectrum, possibly in the reach of the LHC, is naturally obtained. A very light pseudodilaton characterizes such a setting. The vacuum stability of the extended setup is discussed.

  19. Dark matter relic abundance and light sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Tang, Yi-Lei; Zhu, Shou-hua

    2017-01-01

    In this paper, we calculate the relic abundance of the dark matter particles when they can annihilate into sterile neutrinos with the mass ≲ 100 GeV in a simple model. Unlike the usual standard calculations, the sterile neutrino may fall out of the thermal equilibrium with the thermal bath before the dark matter freezes out. In such a case, if the Yukawa coupling y N between the Higgs and the sterile neutrino is small, this process gives rise to a larger ΩDM h 2 so we need a larger coupling between the dark matter and the sterile neutrino for a correct relic abundance.

  20. Electromagnetic properties of massive neutrinos

    SciTech Connect

    Dobrynina, A. A. Mikheev, N. V.; Narynskaya, E. N.

    2013-10-15

    The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.

  1. Neutrino Experiments: Hierarchy, CP, CPT

    NASA Astrophysics Data System (ADS)

    Gupta, Manmohan; Randhawa, Monika; Singh, Mandip

    We present an overview of our recent investigations regarding the prospects of ongoing neutrino experiments as well as future experiments in determining few of the most important unknowns in the field of neutrino physics, specifically the neutrino mass ordering and leptonic CP-violation phase. The effect of matter oscillations on the neutrino oscillation probabilities has been exploited in resolving the degeneracy between the neutrino mass ordering and the CP violation phase in the leptonic sector. Further, we estimate the extent of extrinsic CP and CPT violation in the experiments with superbeams as well as neutrino factories.

  2. Finite temperature corrections and embedded strings in noncommutative geometry and the standard model with neutrino mixing

    SciTech Connect

    Martins, R. A.

    2007-08-15

    The recent extension of the standard model to include massive neutrinos in the framework of noncommutative geometry and the spectral action principle involves new scalar fields and their interactions with the usual complex scalar doublet. After ensuring that they bring no unphysical consequences, we address the question of how these fields affect the physics predicted in the Weinberg-Salam theory, particularly in the context of the electroweak phase transition. Applying the Dolan-Jackiw procedure, we calculate the finite temperature corrections, and find that the phase transition is first order. The new scalar interactions significantly improve the stability of the electroweak Z string, through the 'bag' phenomenon described by Vachaspati and Watkins ['Bound states can stabilize electroweak strings', Phys. Lett. B 318, 163-168 (1993)]. (Recently, cosmic strings have climbed back into interest due to a new evidence.) Sourced by static embedded strings, an internal space analogy of Cartan's torsion is drawn, and a possible Higgs-force-like 'gravitational' effect of this nonpropagating torsion on the fermion masses is described. We also check that the field generating the Majorana mass for the {nu}{sub R} is nonzero in the physical vacuum.

  3. Search for sterile neutrinos in muon neutrino disappearance mode at FNAL

    NASA Astrophysics Data System (ADS)

    Anokhina, A.; Bagulya, A.; Benettoni, M.; Bernardini, P.; Brugnera, R.; Calabrese, M.; Cecchetti, A.; Cecchini, S.; Chernyavskiy, M.; Dal Corso, F.; Dalkarov, O.; Del Prete, A.; De Robertis, G.; De Serio, M.; Di Ferdinando, D.; Dusini, S.; Dzhatdoev, T.; Fini, R. A.; Fiore, G.; Garfagnini, A.; Guerzoni, M.; Klicek, B.; Kose, U.; Jakovcic, K.; Laurenti, G.; Lippi, I.; Loddo, F.; Longhin, A.; Malenica, M.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marsella, G.; Mauri, N.; Medinaceli, E.; Mingazheva, R.; Morgunova, O.; Muciaccia, M. T.; Nessi, M.; Orecchini, D.; Paoloni, A.; Papadia, G.; Paparella, L.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Polukhina, N.; Pozzato, M.; Roda, M.; Roganova, T.; Rosa, G.; Sahnoun, Z.; Shchedrina, T.; Simone, S.; Sirignano, C.; Sirri, G.; Spurio, M.; Stanco, L.; Starkov, N.; Stipcevic, M.; Surdo, A.; Tenti, M.; Togo, V.; Vladymyrov, M.

    2017-01-01

    The NESSiE Collaboration has been setup to undertake a conclusive experiment to clarify the muon-neutrino disappearance measurements at short baselines in order to put severe constraints to models with more than the three-standard neutrinos. To this aim the current FNAL-Booster neutrino beam for a Short-Baseline experiment was carefully evaluated by considering the use of magnetic spectrometers at two sites, near and far ones. The detector locations were studied, together with the achievable performances of two OPERA-like spectrometers. The study was constrained by the availability of existing hardware and a time-schedule compatible with the undergoing project of multi-site Liquid-Argon detectors at FNAL. The settled physics case and the kind of proposed experiment on the Booster neutrino beam would definitively clarify the existing tension between the ν _{μ } disappearance and the ν e appearance/disappearance at the eV mass scale. In the context of neutrino oscillations the measurement of ν _{μ } disappearance is a robust and fast approach to either reject or discover new neutrino states at the eV mass scale. We discuss an experimental program able to extend by more than one order of magnitude (for neutrino disappearance) and by almost one order of magnitude (for antineutrino disappearance) the present range of sensitivity for the mixing angle between standard and sterile neutrinos. These extensions are larger than those achieved in any other proposal presented so far.

  4. Non-linear evolution of the cosmic neutrino background

    SciTech Connect

    Villaescusa-Navarro, Francisco; Viel, Matteo; Peña-Garay, Carlos E-mail: spb@ias.edu E-mail: viel@oats.inaf.it

    2013-03-01

    We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference ΛCDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10{sup 11}−10{sup 15} h{sup −1}M{sub s}un, over a redshift range z = 0−2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified and mass and redshift dependent deviations from the expected Fermi-Dirac distribution are in place both in the cosmological volume and inside haloes. The neutrino density profiles around virialized haloes have been carefully investigated and a simple fitting formula is provided. The neutrino profile, unlike the cold dark matter one, is found to be cored with core size and central density that depend on the neutrino mass, redshift and mass of the halo, for halos of masses larger than ∼ 10{sup 13.5}h{sup −1}M{sub s}un. For lower masses the neutrino profile is best fitted by a simple power-law relation in the range probed by the simulations. The results we obtain are numerically converged in terms of neutrino profiles at the 10% level for scales above ∼ 200 h{sup −1}kpc at z = 0, and are stable with

  5. The Latest Neutrino Oscillation Results from Super-Kamiokande

    SciTech Connect

    Sobel, Henry W.

    2006-02-08

    Super-Kamiokande is the world's largest water Cherenkov detector, with a net mass of 50,000 tons. The scientific goals of the experiment include searches for proton decays, and studies of neutrinos from various sources. In this paper we review some of the latest results from our neutrino oscillations studies using atmospheric neutrinos, solar neutrinos and neutrinos from the KEK neutrino beam.

  6. Disambiguating seesaw models using invariant mass variables at hadron colliders

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.

    2016-01-01

    We propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. These kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. A Monte Carlo simulation with detector effects is conducted to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at the √{s}=14 and 100 TeV hadron colliders.

  7. Disambiguating seesaw models using invariant mass variables at hadron colliders

    DOE PAGES

    Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.

    2016-01-19

    Here, we propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. Furthermore, these kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. We also conducted a Monte Carlo simulation with detector effects in order to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at themore » $$\\sqrt{s}$$ = 14 and 100TeV hadron colliders.« less

  8. Disambiguating seesaw models using invariant mass variables at hadron colliders

    SciTech Connect

    Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.

    2016-01-19

    Here, we propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. Furthermore, these kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. We also conducted a Monte Carlo simulation with detector effects in order to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at the $\\sqrt{s}$ = 14 and 100TeV hadron colliders.

  9. Astrophysical and cosmological constraints to neutrino properties

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Schramm, David N.; Turner, Michael S.

    1989-01-01

    The astrophysical and cosmological constraints on neutrino properties (masses, lifetimes, numbers of flavors, etc.) are reviewed. The freeze out of neutrinos in the early Universe are discussed and then the cosmological limits on masses for stable neutrinos are derived. The freeze out argument coupled with observational limits is then used to constrain decaying neutrinos as well. The limits to neutrino properties which follow from SN1987A are then reviewed. The constraint from the big bang nucleosynthesis on the number of neutrino flavors is also considered. Astrophysical constraints on neutrino-mixing as well as future observations of relevance to neutrino physics are briefly discussed.

  10. Current trends in non-accelerator particle physics: 1, Neutrino mass and oscillation. 2, High energy neutrino astrophysics. 3, Detection of dark matter. 4, Search for strange quark matter. 5, Magnetic monopole searches

    SciTech Connect

    He, Yudong |

    1995-07-01

    This report is a compilation of papers reflecting current trends in non-accelerator particle physics, corresponding to talks that its author was invited to present at the Workshop on Tibet Cosmic Ray Experiment and Related Physics Topics held in Beijing, China, April 4--13, 1995. The papers are entitled `Neutrino Mass and Oscillation`, `High Energy Neutrino Astrophysics`, `Detection of Dark Matter`, `Search for Strange Quark Matter`, and `Magnetic Monopole Searches`. The report is introduced by a survey of the field and a brief description of each of the author`s papers.

  11. On the Requirements for Realistic Modeling of Neutrino Transport in Simulations of Core-collapse Supernovae

    SciTech Connect

    Lentz, Eric J; Mezzacappa, Anthony; Messer, Bronson; Liebendoerfer, Matthias; Hix, William Raphael; Bruenn, S. W.

    2012-01-01

    We have conducted a series of numerical experiments with the spherically-symmetric, general-relativistic neutrino radiation hydrodynamics code Agile-BOLTZTRAN to examine the effects of several approximations used in multidimensional core-collapse supernova simulations. Our code permits us to examine the effects of these approximations quantitatively by removing, or substituting for, the pieces of supernova physics of interest. These approximations include: (1) using Newtonian versus general-relativistic gravity, hydrodynamics, and transport; (2) using older weak interactions, including the omission of non-isoenergetic neutrino scattering, versus up-to-date weak interactions; and (3) omitting the velocity-dependent terms, or observer corrections, from the neutrino Boltzmann kinetic equation. We demonstrate that each of these changes has non-negligible effects on the outcomes of our simulations. Finally, we discuss the impact these results have for current, and future, multidimensional models.

  12. Testing the LMA solution with solar neutrinos independently of solar models

    NASA Astrophysics Data System (ADS)

    Barger, V.; Marfatia, D.; Whisnant, K.

    2005-06-01

    We perform a comparative study of two methods of determining the survival probabilities of low, intermediate, and high energy solar neutrinos that emphasizes the general agreement between the large mixing angle (LMA) solution and extant solar neutrino data. The first analysis is oscillation parameter-independent and the second analysis involves an approximate calculation of the survival probabilities in the three energy ranges that depends only on oscillation parameters. We show that future experiments like BOREXino, CLEAN, HERON, LENS and MOON, that measure pp and 7Be neutrinos, will facilitate a stringent test of the LMA solution independently of the standard solar model (SSM), without recourse to earth-matter effects. Throughout, we describe the role of SSM assumptions on our results. If the LMA solution passes the test without needing to be modified, it may be possible to establish that θ is non-zero at more than 2σ assuming the SSM prediction for the pp flux is correct.

  13. Few active mechanisms of the 0νββ decay and effective mass of Majorana neutrinos

    NASA Astrophysics Data System (ADS)

    Šimkovic, Fedor; Vergados, John; Faessler, Amand

    2010-12-01

    It is well known that there exist many mechanisms that may contribute to neutrinoless double beta decay. By exploiting the fact that the associated nuclear matrix elements are target dependent we show that, given definite experimental results on a sufficient number of targets, one can determine or sufficiently constrain all lepton violating parameters including the mass term. As a specific example we show that, assuming the observation of the 0νββ decay in three different nuclei, e.g., Ge76, Mo100, and Te130, and just three lepton number violating mechanisms (light- and heavy-neutrino mass mechanisms as well as the R-parity breaking supersymmetry mechanism) being active, there are only four different solutions for the lepton violating parameters, provided that they are relatively real. In particular, our analysis shows that the effective neutrino Majorana mass |mββ| can be almost uniquely extracted by utilizing other existing constraints (cosmological observations and tritium β-decay experiments). We also point out the possibility that the nonobservation of the 0νββ decay for some isotopes could be in agreement with a value of |mββ| in the sub-eV region. We thus suggest that it is important to have at least two different 0νββ-decay experiments for a given nucleus. We note that obtained results are sensitive to the accuracy of measured half-lives and to uncertainties in calculated nuclear matrix elements.

  14. New simple A{sub 4} neutrino model for nonzero {theta}{sub 13} and large {delta}{sub CP}

    SciTech Connect

    Ishimori, Hajime

    2013-05-23

    In a new simple application of the non-Abelian discrete symmetry A{sub 4} to charged-lepton and neutrino mass matrices, we show that for the current experimental central value of sin{sup 2} 2{theta}{sub 13} Asymptotically-Equal-To 0.1, leptonic CP violation is necessarily large, i.e. Double-Vertical-Line tan{delta}{sub CP} Double-Vertical-Line > 1.3. We also consider T{sub 7} model with one parameter to be complex, thus allowing for one Dirac CP phase {delta}{sub CP} and two Majorana CP phases {alpha}{sub 1,2}. We find a slight modification to this correlation as a function of {delta}{sub CP}. For a given set of input values of {Delta}m{sup 2}{sub 21}, {Delta}m{sup 2}{sub 32}, {theta}{sub 12}, and {theta}{sub 13}, we obtain sin{sup 2} 2{theta}{sub 23} and m{sub ee} (the effective Majorana neutrino mass in neutrinoless double beta decay) as functions of tan {delta}{sub CP}. We find that the structure of this model always yields small Double-Vertical-Line tan {delta}{sub CP} Double-Vertical-Line .

  15. A New Neutrino Oscillation

    SciTech Connect

    Parke, Stephen J.; /Fermilab

    2011-07-01

    Starting in the late 1960s, neutrino detectors began to see signs that neutrinos, now known to come in the flavors electron ({nu}{sub e}), muon ({nu}{sub {mu}}), and tau ({nu}{sub {tau}}), could transform from one flavor to another. The findings implied that neutrinos must have mass, since massless particles travel at the speed of light and their clocks, so to speak, don't tick, thus they cannot change. What has since been discovered is that neutrinos oscillate at two distinct scales, 500 km/GeV and 15,000 km/GeV, which are defined by the baseline (L) of the experiment (the distance the neutrino travels) divided by the neutrino energy (E). Neutrinos of one flavor can oscillate into neutrinos of another flavor at both L/E scales, but the amplitude of these oscillations is different for the two scales and depends on the initial and final flavor of the neutrinos. The neutrino states that propogate unchanged in time, the mass eigenstates {nu}1, {nu}2, {nu}3, are quantum mechanical mixtures of the electron, muon, and tau neutrino flavors, and the fraction of each flavor in a given mass eigenstate is controlled by three mixing angles and a complex phase. Two of these mixing angles are known with reasonable precision. An upper bound exists for the third angle, called {theta}{sub 13}, which controls the size of the muon neutrino to electron neutrino oscillation at an L/E of 500 km/GeV. The phase is completely unknown. The existence of this phase has important implications for the asymmetry between matter and antimatter we observe in the universe today. Experiments around the world have steadily assembled this picture of neutrino oscillation, but evidence of muon neutrino to electron neutrino oscillation at 500 km/GeV has remained elusive. Now, a paper from the T2K (Tokai to Kamioka) experiment in Japan, reports the first possible observation of muon neutrinos oscillating into electron neutrinos at 500 km/GeV. They see 6 candidate signal events, above an expected background

  16. Large extra dimensions at the Deep Underground Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Berryman, Jeffrey M.; de Gouvêa, André; Kelly, Kevin J.; Peres, O. L. G.; Tabrizi, Zahra

    2016-08-01

    We investigate the potential of the long-baseline Deep Underground Neutrino Experiment (DUNE) to study large-extra-dimension (LED) models originally proposed to explain the smallness of neutrino masses by postulating that right-handed neutrinos, unlike all standard model fermion fields, can propagate in the bulk. The massive Kaluza-Klein (KK) modes of the right-handed neutrino fields modify the neutrino oscillation probabilities and can hence affect their propagation. We show that, as far as DUNE is concerned, the LED model is indistinguishable from a (3 +3 N )-neutrino framework for modest values of N ; N =1 is usually a very good approximation. Nonetheless, there are no new sources of C P -invariance violation other than one C P -odd phase that can be easily mapped onto the C P -odd phase in the standard three-neutrino paradigm. We analyze the sensitivity of DUNE to the LED framework and explore the capability of DUNE to differentiate the LED model from the three-neutrino scenario and from a generic (3 +1 )-neutrino model.

  17. Optical simulation of neutrino oscillations in binary waveguide arrays.

    PubMed

    Marini, Andrea; Longhi, Stefano; Biancalana, Fabio

    2014-10-10

    We theoretically propose and investigate an optical analogue of neutrino oscillations in a pair of vertically displaced binary waveguide arrays with longitudinally modulated effective refractive index. Optical propagation is modeled through coupled-mode equations, which in the continuous limit converge to two coupled Dirac equations for fermionic particles with different mass states, analogously to neutrinos. In addition to simulating neutrino oscillation in the noninteracting regime, our optical setting enables us to explore neutrino interactions in extreme regimes that are expected to play an important role in massive supernova stars. In particular, we predict the quenching of neutrino oscillations and the existence of topological defects, i.e., neutrino solitons, which in our photonic simulator should be observable as excitation of optical gap solitons propagating along the binary arrays at high excitation intensities.

  18. Observing Muon Neutrino to Electron Neutrino Oscillations in the NOνA Experiment

    SciTech Connect

    Xin, Tian

    2016-01-01

    Neutrino oscillations offers an insight on new physics beyond the Standard Model. The three mixing angles (θ12, θ13 and θ23) and the two mass splittings (Δm2 and Αm2 ) have been measured by different neutrino oscillation experiments. Some other parameters including the mass ordering of different neutrino mass eigenstates and the CP violation phase are still unknown. NOνA is a long-baseline accelerator neutrino experiment, using neutrinos from the NuMI beam at Fermilab. The experiment is equipped with two functionally identical detectors about 810 kilometers apart and 14 mrad off the beam axis. In this configuration, the muon neutrinos from the NuMI beam reach the disappearance maximum in the far detector and a small fraction of that oscillates into electron neutrinos. The sensitivity to the mass ordering and CP viola- tion phase determination is greately enhanced. This thesis presents the νeappearance analysis using the neutrino data collected with the NOνA experiment between February 2014 and May 2015, which corresponds to 3.45 ×1020 protons-on-target (POT). The νe appearance analysis is performed by comparing the observed νe CC-like events to the estimated background at the far detector. The total background is predicted to be 0.95 events with 0.89 originated from beam events and 0.06 from cosmic ray events. The beam background is obtained by extrapolating near detector data through different oscillation channels, while the cosmic ray background is calculated based on out-of-time NuMI trigger data. A total of 6 electron neutrino candidates are observed in the end at the far detector which represents 3.3 σ excess over the predicted background. The NOνA result disfavors inverted mass hierarchy for δcp ϵ [0, 0.6π] at 90% C.L.

  19. CP violation in neutrino oscillations in Minimal Supersymmetric extension of the Standard Model

    SciTech Connect

    Delepine, David; Gonzalez Macias, Vannia

    2008-07-02

    In this talk, we estimate the size of lepton flavor and CP violation in neutrino oscillations in the framework of Minimal Supersymmetric extension of the Standard Model (MSSM). We find that we may have significant CP-violating contributions up to an order of magnitude ({approx}10{sup -2}) smaller than the standard four-Fermi couplings.

  20. Quasi-degenerate neutrinos from an abelian family symmetry

    SciTech Connect

    Binetruy, P. |; Lavignac, S.; Petcov, S. |; Ramond, P.

    1996-12-31

    The authors show that models with an abelian family symmetry which accounts for the observed hierarchies of masses and mixings in the quark sector may also accommodate quasi-degeneracies in the neutrino mass spectrum. Such approximate degeneracies are, in this context, associated with large mixing angles. The parameters of this class of models are constrained. The authors discuss their phenomenological implications for present and foreseen neutrino experiments.