Science.gov

Sample records for neutrino nucleon scattering

  1. Neutrino-pair bremsstrahlung from nucleon-nucleon scattering

    DOE PAGES

    Li, Yi; Liou, M. K.; Schreiber, W. M.; Gibson, B. F.

    2015-07-22

    Background: Neutrino-pair bremsstrahlung processes from nucleon-nucleon scattering ΝΝνν¯ (nnvv¯, ppvv¯, and npvv¯) have recently attracted attention in studies of neutrino emission in neutron stars, because of the implications for the neutron star cooling. The calculated ΝΝνν¯ emissivities within the neutron star environment are relatively insensitive to the two-nucleon dynamical model used in the calculations, but differ significantly from those obtained using an OPE model. Purpose: To investigate the free ΝΝνν¯ cross sections using a realistic nucleon-nucleon scattering amplitude, comparing the relative sizes of the cross sections for the three processes nnvv¯, ppvv¯, and npvv¯.

  2. Nucleon-nucleon scattering in a strong external magnetic field and the neutrino emissivity

    SciTech Connect

    Bavarsad, E.; Mohammadi, R.; Haghighat, M.

    2010-11-15

    The nucleon-nucleon scattering in a large magnetic background is considered to find its potential to change the neutrino emissivity of the neutron stars. For this purpose, we consider the one-pion-exchange approximation to find the nucleon-nucleon (NN) cross section in a background field as large as 10{sup 15}-10{sup 18} G. We show that the NN cross section in neutron stars with temperatures in the range 0.1-5 MeV can be changed up to the 1 order of magnitude with respect to the one in the absence of the magnetic field. In the limit of the soft neutrino emission, the neutrino emissivity can be written in terms of the NN-scattering amplitude; therefore, the large magnetic fields can dramatically change the neutrino emissivity of the neutron stars as well.

  3. A proposed measurement of Δ s via neutrino-nucleon neutral-current elastic scattering

    NASA Astrophysics Data System (ADS)

    Tayloe, Rex

    2004-10-01

    The neutral-current neutrino-nucleon scattering process is uniquely sensitiveto the axial form factor of the nucleon. If strange quarks carry a significant fraction of the nucleon spin, they would contribute to this form factor and would be observable via a sufficiently precise measurement of this process. FINeSSE is a neutrino scattering experiment to be located at a near location (≈ 100m from neutrino production target) on an intense neutrino beamline. A novel detector using liquid scintillator and wavelength-shifting fibers will be employed. The motivation and methods of this experiment will be presented.

  4. Model independent extraction of the axial mass parameter in CCQE anti neutrino-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Grebe, Heather

    2013-10-01

    Neutrino oscillation studies depend on a consistent value for the axial mass. For this reason, a model-independent extraction of this parameter from quasielastic (anti)neutrino-nucleon scattering data is vital. While most studies employ a model-dependent extraction using the dipole model of the axial form factor, we present a model-independent description using the z expansion of the axial form factor. Quasielastic antineutrino scattering data on C-12 from the MiniBooNE experiment are analyzed using this model-independent description. The value found, mA = 0 .85-0 . 06 + 0 . 13 +/- 0 . 13 GeV, differs significantly from the value utilized by the MiniBooNE Collaboration, mA = 1 . 35 GeV. Advisor: Dr. Gil Paz Wayne State Univerity.

  5. Measurement of Neutrino-Nucleon Neutral-Current Elastic Scattering Cross-section at SciBooNE

    SciTech Connect

    Takei, Hideyuki

    2009-02-01

    In this thesis, results of neutrino-nucleon neutral current (NC) elastic scattering analysis are presented. Neutrinos interact with other particles only with weak force. Measurement of cross-section for neutrino-nucleon reactions at various neutrino energy are important for the study of nucleon structure. It also provides data to be used for beam flux monitor in neutrino oscillation experiments. The cross-section for neutrino-nucleon NC elastic scattering contains the axial vector form factor GA(Q2) as well as electromagnetic form factors unlike electromagnetic interaction. GA is propotional to strange part of nucleon spin (Δs) in Q2 → 0 limit. Measurement of NC elastic cross-section with smaller Q2 enables us to access Δs. NC elastic cross-sections of neutrino-nucleon and antineutrino-nucleon were measured earlier by E734 experiment at Brookheaven National Laboratory (BNL) in 1987. In this experiment, cross-sections were measured in Q2 > 0.4 GeV2 region. Result from this experiment was the only published data for NC elastic scattering cross-section published before our experiment. SciBooNE is an experiment for the measurement of neutrino-nucleon scattering cross-secitons using Booster Neutrino Beam (BNB) at FNAL. BNB has energy peak at 0.7 GeV. In this energy region, NC elastic scattering, charged current elastic scattering, charged current pion production, and neutral current pion production are the major reaction branches. SciBar, electromagnetic calorimeter, and Muon Range Detector are the detectors for SciBooNE. The SciBar consists of finely segmented scintillators and 14336 channels of PMTs. It has a capability to reconstruct particle track longer than 8 cm and separate proton from muons and pions using energy deposit information. Signal of NC elastic scattering is a single proton track. In vp → vp process, the recoil proton is detected. On the other hand, most of vn → vn is

  6. "Hammer" events, neutrino energies, and nucleon-nucleon correlations

    NASA Astrophysics Data System (ADS)

    Weinstein, L. B.; Hen, O.; Piasetzky, Eli

    2016-10-01

    Background: Accelerator-based neutrino oscillation measurements depend on observing a difference between the expected and measured rate of neutrino-nucleus interactions at different neutrino energies or different distances from the neutrino source. Neutrino-nucleus scattering cross sections are complicated and depend on the neutrino beam energy, the neutrino-nucleus interaction, and the structure of the nucleus. Knowledge of the incident neutrino energy spectrum and neutrino-detector interactions are crucial for analyzing neutrino oscillation experiments. The ArgoNeut liquid argon time projection chamber (lArTPC) observed charged-current neutrino-argon scattering events with two protons back-to-back in the final state ("hammer" events) which they associated with short-range correlated (SRC) nucleon-nucleon pairs. The large volume MicroBooNE lArTPC will measure far more of these unique events. Purpose: Determine what we can learn about the incident neutrino energy spectrum and/or the structure of SRC from hammer events that will be measured in MicroBooNE. Methods: We simulate hammer events using two models and the well-known electron-nucleon scattering cross section. In the first model the neutrino (or electron) scatters from a moving proton, ejecting a π+, and the π+ is then absorbed on a moving deuteron-like n p pair. In the second model the neutrino (or electron) scatters from a moving nucleon, exciting it to a Δ or N*, which then de-excites by interacting with a second nucleon: Δ N →p p . Results: The pion production and reabsorption process results in two back-to-back protons each with momentum of about 500 MeV/c , very similar to that of the observed ArgoNeut events. These distributions are insensitive to either the relative or center-of-mass momentum of the n p pair that absorbed the π . In this model, the incident neutrino energy can be reconstructed relatively accurately using the outgoing lepton. The Δ p →p p process results in two protons that

  7. Neutrino-Nucleon Interactions and Lattice QCD

    NASA Astrophysics Data System (ADS)

    Hill, Richard; Kronfeld, Andreas; Meyer, Aaron

    2016-03-01

    We address techniques to make the theoretical underpinning of neutrino-nucleon scattering more robust. We see this foundation as a necessary step to disentangle fundamental physics (such as neutrino oscillation parameters) from nuclear effects. We address a reanalysis of old experiments with elementary targets, model-independent parametrizations of nucleon form factors based on analyticity, and lattice QCD calculations of the form factors. speaker.

  8. Strangeness in the Nucleon, Cold Dark Matter in the Universe, and Neutrino Scattering off Liquid Argon

    SciTech Connect

    Papavassiliou, V.

    2010-03-30

    The strangeness content of the nucleon and the contribution of strange quarks to various nucleon quantum numbers, besides being of fundamental interest, also affects calculations of cross sections of processes that are important in searches for new physics. Here we focus on direct searches for cold dark matter, in the scenario in which the lightest supersymmetric neutral particle dominates the CDM density in the universe and point out that interpretation of searches, as well as the choice of optimal materials for future experiments, are hobbled by uncertainties in the contribution of strange quarks to the nucleon spin. We show how a future low-energy neutrino experiment using a liquid-Ar TPC can make important contributions in determining this quantity with much better precision and reduced theoretical uncertainties.

  9. Single photon production induced by (anti)neutrino neutral current scattering on nucleons and nuclear targets

    SciTech Connect

    Alvarez-Ruso, L.; Nieves, J.; Wang, E.

    2015-10-15

    We review our theoretical approach to neutral current photon emission on nucleons and nuclei in the few-GeV energy region, relevant for neutrino oscillation experiments. These reactions are dominated by the weak excitation of the Δ(1232) resonance but there are also important non-resonant contributions. We have also included terms mediated by nucleon excitations from the second resonance region. On nuclei, Pauli blocking, Fermi motion and the in-medium Δ resonance broadening have been taken into account for both incoherent and coherent reaction channels. With this model, the number and distributions of photon events at the MiniBooNE and T2K experiments have been obtained. We have also compared to the NOMAD upper limit at higher energies. The implications of our findings and future perspectives are discussed.

  10. Single photon production induced by (anti)neutrino neutral current scattering on nucleons and nuclear targets

    NASA Astrophysics Data System (ADS)

    Alvarez-Ruso, L.; Nieves, J.; Wang, E.

    2015-10-01

    We review our theoretical approach to neutral current photon emission on nucleons and nuclei in the few-GeV energy region, relevant for neutrino oscillation experiments. These reactions are dominated by the weak excitation of the Δ(1232) resonance but there are also important non-resonant contributions. We have also included terms mediated by nucleon excitations from the second resonance region. On nuclei, Pauli blocking, Fermi motion and the in-medium Δ resonance broadening have been taken into account for both incoherent and coherent reaction channels. With this model, the number and distributions of photon events at the MiniBooNE and T2K experiments have been obtained. We have also compared to the NOMAD upper limit at higher energies. The implications of our findings and future perspectives are discussed.

  11. In-medium effect with muon-neutrino and anti-muon-neutrino quasi-elastic scattering from 12C nucleons

    NASA Astrophysics Data System (ADS)

    Cheoun, Myung-Ki; Kim, K. S.; Kim, Hungchong; So, W. Y.; Maruyama, Tomoyuki; Kajino, Toshitaka

    2015-04-01

    We investigated the in-medium effect by density-dependent axial and weak-vector form factors on muon-neutrino ({{ν }μ }) and anti-muon-neutrino ({{\\bar{ν }}μ }) scattering in the quasi-elastic (QE) region from nucleons (N*) bound in a nucleus or immersed in a nuclear medium via neutral current (NC) and charged current (CC). For the density-dependent form factors, we exploited a quark-meson-coupling (QMC) model. We found that the {{ν }μ }({{\\bar{ν }}μ })-{{N}*} scattering cross sections via NC in the QE region usually decrease with an increased medium density, while those using CC were increased. However, their rate of change was sensitive to the four-momentum transfer given to a bound nucleon through scattering. We compared these results obtained by the elementary process corrected by the in-medium effect to the BNL and MiniBooNE data, which measured {{ν }μ } scattering cross sections per nucleon through {{ν }μ } - 12C scattering in 12C composite targets. The incident energy range was 550 \\lt {{E}ν }\\lt 3000 MeV. We increased the energy up to 100 GeV to compare our results to the NOMAD experimental data. In order to study the density effects on a nucleon embedded in 12C, we exploited the QMC form factors evaluated at ρ =0.5{{ρ }o}, where the normal density {{ρ }o}˜ 0.15 f{{m}-3}. The strangeness contributions in NC scattering are also incorporated into the form factors for comparison with experimental data. Our numerical results show that most of the experimental data can be explained in a satisfactory manner by the density-dependent elementary process, but there are some remaining deviations resulting from the nuclear structure, particularly in the low and high momentum-transfer regions.

  12. A phenomenological study of photon production in low energy neutrino nucleon scattering

    SciTech Connect

    Jenkins, James P; Goldman, Terry J

    2009-01-01

    Low energy photon production is an important background to many current and future precision neutrino experiments. We present a phenomenological study of t-channel radiative corrections to neutral current neutrino nucleus scattering. After introducing the relevant processes and phenomenological coupling constants, we will explore the derived energy and angular distributions as well as total cross-section predictions along with their estimated uncertainties. This is supplemented throughout with comments on possible experimental signatures and implications. We conclude with a general discussion of the analysis in the context of complimentary methodologies. This is based on a talk presented at the DPF 2009 meeting in Detroit MI.

  13. Ultrahigh-Energy Neutrino-Nucleon Deep-Inelastic Scattering and the Froissart Bound

    SciTech Connect

    Illarionov, Alexey Yu.; Kniehl, Bernd A.; Kotikov, Anatoly V.

    2011-06-10

    We present a simple formula for the total cross section {sigma}{sup {nu}}N of neutral- and charged-current deep-inelastic scattering of ultrahigh-energy neutrinos on isoscalar nuclear targets, which is proportional to the structure function F{sub 2}{sup {nu}}N(M{sub V}{sup 2}/s,M{sub V}{sup 2}), where M{sub V} is the intermediate-boson mass and s is the square of the center-of-mass energy. The coefficient in front of F{sub 2}{sup {nu}}N(x,Q{sup 2}) depends on the asymptotic low-x behavior of F{sub 2}{sup {nu}}N. It contains an additional lns term if F{sub 2}{sup {nu}}N scales with a power of ln(1/x). Hence, an asymptotic low-x behavior F{sub 2}{sup {nu}}N{proportional_to}ln{sup 2}(1/x), which is frequently assumed in the literature, already leads to a violation of the Froissart bound on {sigma}{sup {nu}}N.

  14. QCD analysis of nucleon structure functions in deep-inelastic neutrino-nucleon scattering: Laplace transform and Jacobi polynomials approach

    NASA Astrophysics Data System (ADS)

    Nejad, S. Mohammad Moosavi; Khanpour, Hamzeh; Tehrani, S. Atashbar; Mahdavi, Mahdi

    2016-10-01

    We present a detailed QCD analysis of nucleon structure functions x F3(x ,Q2) , based on Laplace transforms and the Jacobi polynomials approach. The analysis corresponds to the next-to-leading order and next-to-next-to-leading order approximations of perturbative QCD. The Laplace transform technique, as an exact analytical solution, is used for the solution of nonsinglet Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations at low- and large-x values. The extracted results are used as input to obtain the x and Q2 evolution of x F3(x ,Q2) structure functions using the Jacobi polynomials approach. In our work, the values of the typical QCD scale ΛMS¯ (nf) and the strong coupling constant αs(MZ2) are determined for four quark flavors (nf=4 ) as well. A careful estimation of the uncertainties shall be performed using the Hessian method for the valence-quark distributions, originating from the experimental errors. We compare our valence-quark parton distribution functions sets with those of other collaborations, in particular with the CT14, MMHT14, and NNPDF sets, which are contemporary with the present analysis. The obtained results from the analysis are in good agreement with those from the literature.

  15. Neutrino-driven Explosion of a 20 Solar-mass Star in Three Dimensions Enabled by Strange-quark Contributions to Neutrino–Nucleon Scattering

    NASA Astrophysics Data System (ADS)

    Melson, Tobias; Janka, Hans-Thomas; Bollig, Robert; Hanke, Florian; Marek, Andreas; Müller, Bernhard

    2015-08-01

    Interactions with neutrons and protons play a crucial role for the neutrino opacity of matter in the supernova core. Their current implementation in many simulation codes, however, is rather schematic and ignores not only modifications for the correlated nuclear medium of the nascent neutron star, but also free-space corrections from nucleon recoil, weak magnetism, or strange quarks, which can easily add up to changes of several 10% for neutrino energies in the spectral peak. In the Garching supernova simulations with the Prometheus-Vertex code, such sophistications have been included for a long time except for the strange-quark contributions to the nucleon spin, which affect neutral-current neutrino scattering. We demonstrate on the basis of a 20 {M}ȯ progenitor star that a moderate strangeness-dependent contribution of {g}{{a}}{{s}}=-0.2 to the axial-vector coupling constant {g}{{a}}≈ 1.26 can turn an unsuccessful three-dimensional (3D) model into a successful explosion. Such a modification is in the direction of current experimental results and reduces the neutral-current scattering opacity of neutrons, which dominate in the medium around and above the neutrinosphere. This leads to increased luminosities and mean energies of all neutrino species and strengthens the neutrino-energy deposition in the heating layer. Higher nonradial kinetic energy in the gain layer signals enhanced buoyancy activity that enables the onset of the explosion at ˜300 ms after bounce, in contrast to the model with vanishing strangeness contributions to neutrino–nucleon scattering. Our results demonstrate the close proximity to explosion of the previously published, unsuccessful 3D models of the Garching group.

  16. Single photon production {nu}{sub l}N{yields}{nu}{sub l}N{gamma} in neutrino-nucleon scattering

    SciTech Connect

    Barbero, C.; Mariano, A.

    2013-05-06

    The quasielastic charged current (CCQE) {nu}{sub e}n{yields}e{sup -}p scattering is the dominant mechanism to detect appearance of a {nu}{sub e} in an almost {nu}{sub {mu}} flux at the 1 GeV scale. Actual experiments show a precision below 1% and between less known background contributions, but necessary to constraint the event excess, we have the radiative corrections. A consistent model recently developed for the simultaneous description of elastic and radiative {pi}N scattering, pion-photoproduction and single pion production processes, both for charged and neutral current neutrino-nucleon scattering, is extended for the evaluation of the radiative {nu}{sub l}N{yields}{nu}{sub l}N{gamma} cross section. Our results are similar to a previous (but inconsistent) theoretical evaluation in the low energy region, and show an increment in the upper region where the {Delta} resonance becomes relevant.

  17. Few Nucleon Scattering and Three Nucleon Force

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Kimiko

    2009-10-01

    One recent topic of the few-nucleon system studies to explore the properties of three nucleon forces (3NFs) that appear in the system more than two nucleons. The 3NFs arise naturally in the standard meson exchange picture as well as in the more recent concept of chiral effective field theory. These forces are considered to be one key element to understand the nuclear phenomena in a consistent way. However there had been little knowledge with which to constrain the 3NFs. That is due to the fact that 3NFs are relatively weak compared to the nucleon--nucleon (NN) forces and then their effects are easily masked. Few nucleon scattering is one of the most promising tool for the 3NF study, because this system provides a rich set of energy dependent spin observables and differential cross sections. In the end of 1990's two theory groups reported the rigorous numerical Faddeev calculations incorporating 2π-exchange 3NFs in elastic Nd scattering at intermediate energies (E/A ˜100 MeV), and they suggested that the difference found in the cross section minima is the signature of 3NF effects. Since then experimental studies of intermediate-energy pd/nd elastic scattering and pd breakup reactions have been performed by groups at RIKEN, RCNP, KVI, IUCF and Uppsala. Theoretically addition of 3NFs other than 2π exchange types, and/or relativistic treatment, and completely new approach based on chiral effective field theory are now in progress. The importance of 3NFs has also been noted in other instances; e.g. descriptions of the binding energies of light mass nuclei and the empirical saturation point of symmetric nuclear matter. It is clear that the testing of 3NF models has just begun. In the presentation, recent progress in the 3NF study with few nucleon scattering at intermediate energies will be given.

  18. Polarized lepton-nucleon scattering

    SciTech Connect

    Hughes, E.

    1994-02-01

    Deep inelastic polarized lepton-nucleon scattering is reviewed in three lectures. The first lecture covers the polarized deep inelastic scattering formalism and foundational theoretical work. The second lecture describes the nucleon spin structure function experiments that have been performed up through 1993. The third lecture discusses implication of the results and future experiments aimed at high-precision measurements of the nucleon spin structure functions.

  19. Upper limit on the cross section for elastic neutralino-nucleon scattering in a neutrino experiment at the Baksan Underground Scintillator Telescope

    SciTech Connect

    Suvorova, O. V. Boliev, M. M. Demidov, S. V. Mikheyev, S. P.

    2013-11-15

    The results of a neutrino experiment that involved 24.12 yr of live time of observation of muons from the lower Earth's hemisphere with the aid of the Baksan Underground Scintillator Telescope are presented. In the problem of searches for a signal from the annihilation of dark matter in the Sun, an upper limit on the cross section for the elastic scattering of a weakly interacting massive particle (WIMP) on a nucleon was obtained at a 90% confidence level from an analysis of data accumulated within 21.15 yr of live time of observation. A neutralino in a nonminimal supersymmetric theory was considered for a WIMP. The best limit at the Baksan Underground Scintillator Telescope on the cross section for spin-dependent neutralino interactionwith a proton corresponds to 3 Multiplication-Sign 10{sup -4} pb for the neutralino mass of 210 GeV/c{sup 2}. This limit is three orders of magnitude more stringent than similar limits obtained in experiments that detected directly WIMP scattering on target nuclei.

  20. Coherent scattering of cosmic neutrinos

    NASA Technical Reports Server (NTRS)

    Opher, R.

    1974-01-01

    It is shown that cosmic neutrino scattering can be non-negligible when coherence effects previously neglected are taken into account. The coherent neutrino scattering cross section is derived and the neutrino index of refraction evaluated. As an example of coherent neutrino scattering, a detector using critical reflection is described which in principle can detect the low energy cosmic neutrino background allowed by the measured cosmological red shift.

  1. Backward pion-nucleon scattering

    SciTech Connect

    F. Huang; Sibirtsev, Alex; Haidenbauer, Johann; Meissner, Ulf-G.

    2010-02-01

    A global analysis of the world data on differential cross sections and polarization asymmetries of backward pion-nucleon scattering for invariant collision energies above 3 GeV is performed in a Regge model. Including the $N_\\alpha$, $N_\\gamma$, $\\Delta_\\delta$ and $\\Delta_\\beta$ trajectories, we reproduce both angular distributions and polarization data for small values of the Mandelstam variable $u$, in contrast to previous analyses. The model amplitude is used to obtain evidence for baryon resonances with mass below 3 GeV. Our analysis suggests a $G_{39}$ resonance with a mass of 2.83 GeV as member of the $\\Delta_{\\beta}$ trajectory from the corresponding Chew-Frautschi plot.

  2. Generator of neutrino-nucleon interactions for the FLUKA based simulation code

    SciTech Connect

    Battistoni, G.; Sala, P. R.; Ferrari, A.; Lantz, M.; Smirnov, G. I.

    2009-11-25

    An event generator of neutrino-nucleon and neutrino-nucleus interactions has been developed for the general purpose Monte Carlo code FLUKA. The generator includes options for simulating quasi-elastic interactions, the neutrino-induced resonance production and deep inelastic scattering. Moreover, it shares the hadronization routines developed earlier in the framework of the FLUKA package for simulating hadron-nucleon interactions. The simulation of neutrino-nuclear interactions makes use of the well developed PEANUT event generator implemented in FLUKA for modeling of the interactions between hadrons and nuclei. The generator has been tested in the neutrino energy range from 0 to 10 TeV and it is available in the standard FLUKA distribution. Limitations related to some particular kinematical conditions are discussed. A number of upgrades is foreseen for the generator which will optimize its applications for simulating experiments in the CNGS beam.

  3. Nucleon-nucleon scattering within a multiple subtractive renormalization approach

    SciTech Connect

    Timoteo, V. S.; Frederico, T.; Delfino, A.; Tomio, Lauro

    2011-06-15

    We present a methodology to renormalize the nucleon-nucleon interaction in momentum space, using a recursive multiple subtraction approach that prescinds from a cutoff regularization, to construct the kernel of the scattering equation. The subtracted scattering equation is solved with the next-leading-order and next-to-next-leading-order interactions. The results are presented for all partial waves up to j=2, fitted to low-energy experimental data. In this renormalization group invariant approach, the subtraction energy emerges as a renormalization scale and the momentum associated with it comes to be about the QCD scale ({Lambda}{sub QCD}), irrespectively to the partial wave.

  4. Scattering of dressed nucleons in nuclear matter

    NASA Astrophysics Data System (ADS)

    Dickhoff, W. H.

    1998-11-01

    The scattering of dressed nucleons in nuclear matter is studied. By casting the conventional asymptotic analysis of scattering in free space in the language of the two-body propagator, it becomes possible to develop modifications of this analysis due to the dressing of the scattering nucleons in the medium. While the scattering energy singles out a unique (on-shell) momentum characterizing the relative wave function of free or mean-field nucleons, this uniqueness is no longer maintained for dressed nucleons. The resulting distribution of momenta in the relative wave function leads to a localization in coordinate space of the influence of the scattering process which can be expressed as a healing of the wave function to the noninteracting one. An analytic approximation to the noninteracting propagator of the dressed nucleons is utilized to illustrate these points. The localization of the scattered wave implies that the particles no longer ``remember'' their scattering event beyond some finite distance. This feature suggests that the strict notion of a cross section in the medium is a tenuous concept. Approximate expressions are developed to characterize the strength of the interaction in the medium in terms of phase shifts and cross sections to facilitate comparisons with results of calculations involving mean-field nucleons.

  5. Neutrino-proton and anti-neutrino-proton elastic scattering

    SciTech Connect

    Fuess, Stuart Charles

    1981-01-01

    An experiment performed at the Brookhaven National Laboratory Alternating Gradient Synchrotron observed the elastic scattering of neutrinos and anti-neutrinos from a nuclear target. The neutral current anti-neutrino to neutral current neutrino ratio is: sigma(anti ..nu..p ..-->.. anti ..nu..p)/sigma(..nu..p ..-->.. ..nu..p) = 0.45 +- 0.18 for 0.33 less than or equal to Q/sup 2/ less than or equal to 1.0 (GeV/c)/sup 2/, where Q/sup 2/ is the square of the momentum transfer to the nucleon. The neutrino neutral current to charged current ratio is: sigma(..nu..p ..-->.. ..nu..p)/sigma(..nu..n ..-->.. ..mu../sup -/p) = 0.13 +- 0.04 for 0.25 less than or equal to Q/sup 2/ less than or equal to 1.0 (GeV/c)/sup 2/. The ratios are consistent with a value of the Weinberg angle of sin/sup 2/theta/sub w/ = 0.26 +- 0.08.

  6. Nuclear Effects in Neutrino-Nucleus Interactions and the MINERvA Neutrino Nucleus Scattering Program

    NASA Astrophysics Data System (ADS)

    Morfín, Jorge G.

    2011-09-01

    Nuclear effects of charged current deep inelastic neutrino-iron scattering have been studied in the frame-work of a χ2 analysis of parton distribution functions (PDFs)1. A set of iron PDFs have been extracted which are then used to compute xBj-dependent and Q2-dependent nuclear correction factors for iron structure functions which are required in global analyses of free nucleon PDFs. Upon comparing our results with nuclear correction factors from neutrino-nucleus scattering models and correction factors for l±-iron scattering we find that, except for very high xBj, our correction factors differ in both shape and magnitude from the correction factors of the models and charged-lepton scattering. The MINERvA neutrino-nucleus scattering experiment at Fermilab, will systematically study neutrino nuclear effects off of He, C, Fe and Pb for a more thorough A-dependent study of nuclear PDFs and these correction factors.

  7. Large Scattering Lengths, Universality, Correlations and Few-Nucleon Systems

    NASA Astrophysics Data System (ADS)

    Griesshammer, Harald W.

    2010-02-01

    In a plethora of processes pivotal e.g. for Big-Bang Nucleo-synthesis BBN, the typical energy scale lies below 10;MeV. Since the scattering lengths between two nucleons are much larger than the typical range of the nucleon-nucleon interaction, Nuclear Physics at these energies is described by the Effective Field Theory of Point-Like Interactions, EFT(PLI), a model-independent theory with systematically improvable, reliable theoretical uncertainties. It helps to provide the bridge from the deceptive simplicity of high-energy QCD, the microscopic theory of strong interactions, to the richness and complexity of few-nucleon physics, and to explain in turn how universal aspects emerge from that complexity. In contradistinction to atomic systems, effective-range contributions have often to be accounted for, as they provide sizable corrections of up to 30%. EFT(PLI) is an excellent tool to check data consistencies, to extract nucleon properties by uniquely subtracting nuclear binding effects, and to model-independently predict processes which are experimentally hard to access, e.g. for BBN and interactions between neutrinos and the lightest nuclei. Furthermore, its model-independent assessment of few-body interactions explains correlations between e.g. binding energies and scattering lengths, and thus allows to differentiate between observables which are dominated by large scattering lengths from those which are sensitive to the details of the nuclear force. The same concepts apply to halo-nuclei, i.e. systems which are much larger than its constituents, namely a small core orbited by nucleons. Some of these systems exhibit e.g. Borromean binding or an Efimov-spectrum. While the nucleon-nucleon scattering lengths cannot be tuned experimentally, there are indications that they are infinite when the pion has about 1.4 times its physical mass. EFT(PLI) explores whcih impact varying fundamental parameters of QCD has on the nuclear spectrum, and in particular on BBN. This

  8. Low-energy pion-nucleon scattering

    SciTech Connect

    Gibbs, W.R.; Ai, L.; Kaufmann, W.B.

    1998-02-01

    An analysis of low-energy charged pion-nucleon data from recent {pi}{sup {plus_minus}}p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f{sup 2}=0.0756{plus_minus}0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P{sub 31} and P{sub 13} partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the {Sigma} term. Off-shell amplitudes are also provided. {copyright} {ital 1998} {ital The American Physical Society}

  9. Low-energy pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Gibbs, W. R.; Ai, Li; Kaufmann, W. B.

    1998-02-01

    An analysis of low-energy charged pion-nucleon data from recent π+/-p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f2=0.0756+/-0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P31 and P13 partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the Σ term. Off-shell amplitudes are also provided.

  10. TeV strings and the neutrino-nucleon cross section at ultrahigh energies.

    PubMed

    Cornet, F; Illana, J I; Masip, M

    2001-05-01

    In scenarios with the fundamental unification scale at the TeV one expects string excitations of the standard model fields at accessible energies. We study the neutrino-nucleon cross section in these models. We show that duality of the scattering amplitude forces the existence of a tower of massive leptoquarks that mediate the process in the s channel. Using the narrow-width approximation we find a sum rule for the production rate of resonances with different spin at each mass level. We show that these contributions can increase substantially the standard model neutrino-nucleon cross section, although they seem insufficient to explain the cosmic ray events above the Greisen-Zatsepin-Kuz'min cutoff energy. PMID:11328143

  11. Neutrino Reactions on Two-Nucleon System and Core-Collapse Supernova

    NASA Astrophysics Data System (ADS)

    Nasu, Shota

    2011-10-01

    The neutrino reactions on nucleon and nucleus play important role in core-collapse supernova. Recently it is pointed that light nuclei(A = 2,3) can be abundant at the various stage of supernova environment. As an important mechanism of neutrino reaction on a few nucleon system, we study the neutrino emissivity on neutron fusion reaction nn-->de-νe.

  12. Neutrino Scattering and Flavor Transformation in Supernovae

    NASA Astrophysics Data System (ADS)

    Cherry, John F.; Carlson, J.; Friedland, Alexander; Fuller, George M.; Vlasenko, Alexey

    2012-06-01

    We argue that the small fraction of neutrinos that undergo direction-changing scattering outside of the neutrinosphere could have significant influence on neutrino flavor transformation in core-collapse supernova environments. We show that the standard treatment for collective neutrino flavor transformation is adequate at late times but could be inadequate in early epochs of core-collapse supernovae, where the potentials that govern neutrino flavor evolution are affected by the scattered neutrinos. Taking account of this effect, and the way it couples to entropy and composition, will require a new approach in neutrino flavor transformation modeling.

  13. Exact expressions and improved approximations for interaction rates of neutrinos with free nucleons in a high-temperature, high-density gas

    NASA Technical Reports Server (NTRS)

    Schinder, Paul J.

    1990-01-01

    The exact expressions needed in the neutrino transport equations for scattering of all three flavors of neutrinos and antineutrinos off free protons and neutrons, and for electron neutrino absorption on neutrons and electron antineutrino absorption on protons, are derived under the assumption that nucleons are noninteracting particles. The standard approximations even with corrections for degeneracy, are found to be poor fits to the exact results. Improved approximations are constructed which are adequate for nondegenerate nucleons for neutrino energies from 1 to 160 MeV and temperatures from 1 to 50 MeV.

  14. Quark models of dibaryon resonances in nucleon-nucleon scattering

    SciTech Connect

    Ping, J. L.; Huang, H. X.; Pang, H. R.; Wang Fan; Wong, C. W.

    2009-02-15

    We look for {delta}{delta} and N{delta} resonances by calculating NN scattering phase shifts of two interacting baryon clusters of quarks with explicit coupling to these dibaryon channels. Two phenomenological nonrelativistic chiral quark models giving similar low-energy NN properties are found to give significantly different dibaryon resonance structures. In the chiral quark model (ChQM), the dibaryon system does not resonate in the NNS waves, in agreement with the experimental SP07 NN partial-wave scattering amplitudes. In the quark delocalization and color screening model (QDCSM), the S-wave NN resonances disappear when the nucleon size b falls below 0.53 fm. Both quark models give an IJ{sup P}=03{sup +}{delta}{delta} resonance. At b=0.52 fm, the value favored by the baryon spectrum, the resonance mass is 2390 (2420) MeV for the ChQM with quadratic (linear) confinement, and 2360 MeV for the QDCSM. Accessible from the {sup 3}D{sub 3}{sup NN} channel, this resonance is a promising candidate for the known isoscalar ABC structure seen more clearly in the pn{yields}d{pi}{pi} production cross section at 2410 MeV in the recent preliminary data reported by the CELSIUS-WASA Collaboration. In the isovector dibaryon sector, our quark models give a bound or almost bound {sup 5}S{sub 2}{sup {delta}}{sup {delta}} state that can give rise to a {sup 1}D{sub 2}{sup NN} resonance. None of the quark models used have bound N{delta}P states that might generate odd-parity resonances.

  15. Neutrino-induced meson productions off nucleon at forward limit in nucleon resonance region

    SciTech Connect

    Nakamura, S. X.; Kamano, H.; Lee, T.-S. H.; Sato, T.

    2015-05-15

    We study forward neutrino-induced meson production off the nucleon in the resonance region. Our calculation is based on a dynamical coupled-channels (DCC) model that reasonably describes π(γ)N → πN, ηN, KΛ, KΣ data in the resonance region. We apply the PCAC hypothesis to the DCC model to relate the πN reaction amplitude to the forward neutrino reaction amplitude. In this way, we give a prediction for νN → πN, ππN, ηN, KΛ, KΣ reaction cross sections. The predicted νN → ππN, ηN, KΛ, KΣ cross sections are, for the first time, based on a model extensively tested by data. We compare our results with those from the Rein-Sehgal model that has been very often used in the existing Monte Carlo simulators for neutrino experiments. We find a significant difference between them.

  16. Effective theories for dark matter nucleon scattering

    NASA Astrophysics Data System (ADS)

    Hisano, Junji; Nagai, Ryo; Nagata, Natsumi

    2015-05-01

    We reformulate the calculation of the dark matter-nucleon scattering cross sections based on the method of effective field theories. We assume that the scatterings are induced by the exchange of colored mediators, and construct the effective theories by integrating out the colored particles. All of the leading order matching conditions as well as the renormalization group equations are presented. We consider a Majorana fermion, and real scalar and vector bosons for the dark matter and show the results for each case. The treatment for the twist-2 operators is discussed in detail, and it is shown that the scale of evaluating their nucleon matrix elements does not have to be the hadronic scale. The effects of the QCD corrections are evaluated on the assumption that the masses of the colored mediators are much heavier than the electroweak scale. Our formulation is systematic and model-independent, and thus suitable to be implemented in numerical packages, such as micrOMEGAs and DarkSUSY.

  17. Inelastic electron scattering from a moving nucleon

    SciTech Connect

    Kuhn, S.E.; Griffioen, K.

    1994-04-01

    The authors propose to measure inelastically scattered electrons in coincidence with spectator protons emitted backwards relative to the virtual photon direction in the reaction d(e, e{prime}p{sub s})X. In a simple spectator model, the backward proton has equal and opposite momentum to the neutron before it is struck, allowing the authors to study the dependence on kinematics and off-shell behaviour of the electron-nucleon inelastic cross section. If the photon couples to a quark in a 6-quark bag, a different dependence of the cross section on the kinematic variables (x, Q{sup 2}, and p{sub s}) can be observed. This proposed experiment requires large acceptance and beam energies above 6 GeV. It is ideally suited for the CEBAF Large Acceptance Spectrometer (CLAS).

  18. Constraints on neutrino-nucleon interactions at energies of 1 EeV with the IceCube Neutrino Observatory

    SciTech Connect

    Yoshida, Shigeru

    2010-11-15

    A search for extremely high energy cosmic neutrinos has been carried out with the IceCube Neutrino Observatory. The main signals in the search are neutrino-induced energetic charged leptons and their rate depends on the neutrino-nucleon cross section. The upper limit on the neutrino flux has implications for possible new physics beyond the standard model such as the extra space-time dimension scenarios which lead to a cross section much higher than the standard particle physics prediction. In this study we constrain the neutrino-nucleon cross section at energies beyond 10{sup 9} GeV with the IceCube observation. The constraints are obtained as a function of the extraterrestrial neutrino flux in the relevant energy range, which accounts for the astrophysical uncertainty of neutrino production models.

  19. Measurement of neutrino flux from neutrino-electron elastic scattering

    NASA Astrophysics Data System (ADS)

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration

    2016-06-01

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  20. Measurement of neutrino flux from neutrino-electron elastic scattering

    DOE PAGES

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; et al

    2016-06-10

    In muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux frommore » 9% to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.« less

  1. Neutrino Reactions on Two-Nucleon System and Core-Collapse Supernova

    SciTech Connect

    Nasu, Shota

    2011-10-21

    The neutrino reactions on nucleon and nucleus play important role in core-collapse supernova. Recently it is pointed that light nuclei(A = 2,3) can be abundant at the various stage of supernova environment. As an important mechanism of neutrino reaction on a few nucleon system, we study the neutrino emissivity on neutron fusion reaction nn{yields}de{sup -}{nu}-bar{sub e}.

  2. Neutrino-nucleus scattering off 136Xe

    NASA Astrophysics Data System (ADS)

    Ydrefors, E.; Suhonen, J.; Zhao, Y. M.

    2015-01-01

    Background: Theoretical estimates of the cross sections for the neutrino-nucleus scattering off relevant nuclei for supernova neutrinos are essential for many applications in neutrino physics and astrophysics. The double-β -decaying nucleus 136Xe nucleus is used by the EXO Collaboration in the search for neutrinoless double-β decay. A ton-scale experiment based on 136Xe could also be used for studies of supernova neutrinos and/or solar neutrinos. Purpose: The purpose of the present work is, thus, to perform a study of the charged-current and neutral-current nuclear responses to supernova neutrinos for 136Xe . Method: The cross sections are computed by using the well-established framework for studies of semileptonic processes in nuclei introduced by O'Connell, Donnelly, and Walecka [Phys. Rev. C 6, 719 (1972), 10.1103/PhysRevC.6.719]. The nuclear wave functions of the initial and the final nuclear states for the neutral-current neutrino-nucleus scattering in 136Xe are computed by using the quasiparticle random-phase approximation (QRPA). Similarly, the pnQRPA is adopted to construct the initial and final nuclear states which are relevant for the charged-current reactions. The nuclear responses to supernova neutrinos are subsequently computed by folding the cross sections with appropriate energy spectra for the incoming neutrinos. Results: We present results for the cross sections of the charged-current and neutral-current neutrino and antineutrino scatterings off 136Xe . Nuclear responses to supernova neutrinos are also given. For the considered scenario for the neutrino mixing we have found that neutrino interactions with matter and so-called collective neutrino oscillations enhance significantly the neutrino and antineutrino flux-averaged cross sections. Conclusions: We have found that for the charged-current and neutral-current neutrino scatterings off 136Xe transitions mediated by the 1+ multipole are the most important ones. However, for the charged

  3. Theory of neutrino emission from nucleon-hyperon matter in neutron stars: angular integrals

    NASA Astrophysics Data System (ADS)

    Kaminker, A. D.; Yakovlev, D. G.; Haensel, P.

    2016-08-01

    Investigations of thermal evolution of neutron stars with hyperon cores require neutrino emissivities for many neutrino reactions involving strongly degenerate particles (nucleons, hyperons, electrons, muons). We calculate the angular integrals In (over orientations of momenta of n degenerate particles) for major neutrino reactions with n=3, 4, 5 at all possible combinations of particle Fermi momenta. The integrals In are necessary ingredients for constructing a uniform database of neutrino emissivities in dense nucleon-hyperon matter. The results can also be used in many problems of physical kinetics of strongly degenerate systems.

  4. Extra dimensions, SN1987a, and nucleon-nucleon scattering data

    SciTech Connect

    Christoph Hanhart; Daniel R. Phillips; Sanjay Reddy; Martin J. Savage

    2001-02-01

    One of the strongest constraints on the existence of large, compact, ''gravity-only'' dimensions comes from SN1987a. If the rate of energy loss into these putative extra dimensions is too high, then the neutrino pulse from the supernova will differ from that actually seen. The dominant mechanism for the production of Kaluza-Klein gravitons and dilatons in the supernova is via gravistrahlung and dilastrahlung from the nucleon-nucleon system. In this paper we compute the rates for these processes in a model-independent way using low-energy theorems which relate the emissivities to the measured nucleon-nucleon cross section. This is possible because for soft gravitons and dilatons the leading contribution to the energy-loss rate is from graphs in which the gravitational radiation is produced from external nucleon legs. Previous calculations neglected these mechanisms. We re-evaluate the bounds on toroidally-compactified ''gravity-only'' dimensions (GODs), and find that consistency with the observed SN1987a neutrino signal requires that if there are two such dimensions then their radius must be less than 1 micron.

  5. A letter of intent for a neutrino scattering experiment on the booster neutrino meanline: FINeSSE

    SciTech Connect

    Fleming, B.T.; Tayloe, R.; /Indiana U. /Yale U.

    2005-03-01

    The experiment described in this Letter of Intent provides a decisive measurement of {Delta}s, the spin of the nucleon carried by strange quarks. This is crucial as, after more than thirty years of study, the spin contribution of strange quarks to the nucleon is still not understood. The interpretation of {Delta}s measurements from inclusive Deep Inelastic Scattering (DIS) experiments using charged leptons suffers from two questionable techniques; an assumption of SU(3)-flavor symmetry, and an extrapolation into unmeasured kinematic regions, both of which provide ample room for uncertain theoretical errors in the results. The results of recent semi-inclusive DIS data from HERMES paint a somewhat different picture of the contribution of strange quarks to the nucleon spin than do the inclusive results, but since HERMES does not make use of either of the above-mentioned techniques, then the results are somewhat incomparable. What is required is a measurement directly probing the spin contribution of the strange quarks in the nucleon. Neutrino experiments provide a theoretically clean and robust method of determining {Delta}s by comparing the neutral current interaction, which is isoscalar plus isovector, to the charged current interaction, which is strictly isovector. A past experiment, E734, performed at Brookhaven National Laboratory, has pioneered this effort. Building on what they have learned, we present an experiment which achieves a measurement to {+-} 0.025 using neutrino scattering, and {+-} 0.04 using anti-neutrino scattering, significantly better than past measurements. The combination of the neutrino and anti-neutrino data, when combined with the results of the parity-violating electron-nucleon scattering data, will produce the most significant result for {Delta}s. This experiment can also measure neutrino cross sections in the energy range required for accelerator-based precision oscillation measurements. Accurate measurements of cross sections have been

  6. Neutrino-induced Reactions and Neutrino Scattering with Nuclear Targets

    NASA Astrophysics Data System (ADS)

    Cheoun, Myung-Ki; Ha, Eunja; Yang, Ghil-Seok; Kim, Kyungsik; Kajino, T.

    2016-02-01

    We reviewed present status regarding experimental data and theoretical approaches for neutrino-induced reactions and neutrino scattering. With a short introduction of relevant data, our recent calculations by distorted-wave Born approximation for quasielastic region are presented for MiniBooNE data. For much higher energy neutrino data, such as NOMAD data, elementary process approach was shown to be useful instead of using complicated nuclear models. But, in the low energy region, detailed nuclear structure model, such as QRPA and shell model, turn out to be inescapable to explain the reaction data. Finally, we discussed that one step-process in the reaction is comparable to the two-step process, which has been usually used in the neutrino-nucleosynthesis.

  7. Disentangling neutrino-nucleon cross section and high energy neutrino flux with a km{sup 3} neutrino telescope

    SciTech Connect

    Borriello, E.; Miele, G.; Mangano, G.; Pisanti, O.; Pastor, S.

    2008-02-15

    The energy-zenith angular event distribution in a neutrino telescope provides a unique tool to determine at the same time the neutrino-nucleon cross section at extreme kinematical regions, and the high-energy neutrino flux. By using a simple parametrization for fluxes and cross sections, we present a sensitivity analysis for the case of a km{sup 3} neutrino telescope. In particular, we consider the specific case of an underwater Mediterranean telescope placed at the NEMO site, although most of our results also apply to an under-ice detector such as IceCube. We determine the sensitivity to departures from standard values of the cross sections above 1 PeV which can be probed independently from an a priori knowledge of the normalization and energy dependence of the flux. We also stress that the capability to tag downgoing neutrino showers in the PeV range against the cosmic-ray induced background of penetrating muons appears to be a crucial requirement to derive meaningful constraints on the cross section.

  8. Disentangling neutrino-nucleon cross section and high energy neutrino flux with a km^3 neutrino telescope

    SciTech Connect

    Borriello, E.; Cuoco, A.; Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O.; Serpico, P.D.

    2007-11-01

    The energy-zenith angular event distribution in a neutrino telescope provides a unique tool to determine at the same time the neutrino-nucleon cross section at extreme kinematical regions, and the high energy neutrino flux. By using a simple parameterization for fluxes and cross sections, we present a sensitivity analysis for the case of a km{sup 3} neutrino telescope. In particular, we consider the specific case of an under-water Mediterranean telescope placed at the NEMO site, although most of our results also apply to an under-ice detector such as IceCube. We determine the sensitivity to departures from standard values of the cross sections above 1 PeV which can be probed independently from an a-priori knowledge of the normalization and energy dependence of the flux. We also stress that the capability to tag downgoing neutrino showers in the PeV range against the cosmic ray induced background of penetrating muons appears to be a crucial requirement to derive meaningful constraints on the cross section.

  9. Goeppert-Mayer Award Recipient: Electron Scattering and Nucleon Structure

    NASA Astrophysics Data System (ADS)

    Beise, Elizabeth

    1998-04-01

    Electron scattering from hydrogen and light nuclear targets has long been recognized as one of the best tools for understanding the electromagnetic structure of protons, neutrons and few-nucleon systems. In the last decade, considerable progress has been made in the field through advances in polarized beams and polarized targets. Improvements in polarized electron sources has made it feasible to also study the structure of the nucleon through parity-violating electron scattering, where the nucleon's neutral weak structure is probed. In this talk, a summary of the present experimental status of the nucleon's electroweak structure will be presented, with an emphasis on recent results from the MIT-Bates and Jefferson Laboratories.

  10. Measuring strangeness matrix elements of the nucleon

    SciTech Connect

    Henley, E.M.; Pollock, S.J. ); Krein, G. Instituto de Fisica Teorica , Sao Paulo, SP ); Williams, A.G. Florida State Univ., Tallahassee, FL )

    1991-01-01

    Experiments are proposed to measure various strangeness matrix elements of the nucleon. Examples are electro- and neutrino- production of phi mesons and the difference between neutrino and antineutrino scattering from isospin zero targets, e.g., deuterons.

  11. Measuring strangeness matrix elements of the nucleon

    SciTech Connect

    Henley, E.M.; Pollock, S.J.; Krein, G. |; Williams, A.G. |

    1991-12-31

    Experiments are proposed to measure various strangeness matrix elements of the nucleon. Examples are electro- and neutrino- production of phi mesons and the difference between neutrino and antineutrino scattering from isospin zero targets, e.g., deuterons.

  12. Coherency in neutrino-nucleus elastic scattering

    NASA Astrophysics Data System (ADS)

    Kerman, S.; Sharma, V.; Deniz, M.; Wong, H. T.; Chen, J.-W.; Li, H. B.; Lin, S. T.; Liu, C.-P.; Yue, Q.; Texono Collaboration

    2016-06-01

    Neutrino-nucleus elastic scattering provides a unique laboratory to study the quantum mechanical coherency effects in electroweak interactions, towards which several experimental programs are being actively pursued. We report results of our quantitative studies on the transitions towards decoherency. A parameter (α ) is identified to describe the degree of coherency, and its variations with incoming neutrino energy, detector threshold, and target nucleus are studied. The ranges of α that can be probed with realistic neutrino experiments are derived, indicating complementarity between projects with different sources and targets. Uncertainties in nuclear physics and in α would constrain sensitivities in probing physics beyond the standard model. The maximum neutrino energies corresponding to α >0.95 are derived.

  13. Why black hole production in scattering of cosmic ray neutrinos is generically suppressed.

    PubMed

    Stojkovic, Dejan; Starkman, Glenn D; Dai, De-Chang

    2006-02-01

    It has been argued that neutrinos originating from ultrahigh energy cosmic rays can produce black holes deep in the atmosphere in models with TeV-scale quantum gravity. Such black-hole events could be observed at the Auger Observatory. However, any phenomenologically viable model with a low scale of quantum gravity must explain how to preserve protons from rapid decay. We argue that the suppression of proton decay will also suppress lepton-nucleon scattering and hence black-hole production by scattering of ultrahigh energy cosmic ray neutrinos in the atmosphere. We discuss explicitly the split fermion solution to the problem of fast proton decay.

  14. Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces

    DOE PAGES

    Hupin, Guillaume; Langhammer, Joachim; Navratil, Petr; Quaglioni, Sofia; Calci, Angelo; Roth, Robert

    2013-11-27

    We extend the ab initio no-core shell model/resonating-group method to include three-nucleon (3N) interactions for the description of nucleon-nucleus collisions. We outline the formalism, give algebraic expressions for the 3N-force integration kernels, and discuss computational aspects of two alternative implementations. The extended theoretical framework is then applied to nucleon-4He elastic scattering using similarity-renormalization-group (SRG)-evolved nucleon-nucleon plus 3N potentials derived from chiral effective field theory. We analyze the convergence properties of the calculated phase shifts and explore their dependence upon the SRG evolution parameter. We include up to six excited states of the 4He target and find significant effects from themore » inclusion of the chiral 3N force, e.g., it enhances the spin-orbit splitting between the 3/2– and 1/2– resonances and leads to an improved agreement with the phase shifts obtained from an accurate R-matrix analysis of the five-nucleon experimental data. As a result, we find remarkably good agreement with measured differential cross sections at various energies below the d+3H threshold, while analyzing powers manifest larger deviations from experiment for certain energies and angles.« less

  15. Ab initio calculations of three-nucleon scattering

    SciTech Connect

    Witala, H. Golak, J.; Skibiński, R.; Topolnicki, K.

    2015-10-15

    Results on three-nucleon (3N) elastic scattering below the pion production threshold are discussed with an emphasis on the need for a three-nucleon force (3NF). The large discrepancies found between a theory based on numerical solutions of 3N Faddeev equations with (semi)phenomenological NN potentials only and data point to the need for 3NF’s. This notion is supported by the fact that another possible reason for the discrepancies in elastic nucleon-deuteron (Nd) scattering, relativistic effects, turned out to be small. Results for new generation of chiral NN forces (up to N{sup 4}LO) together with theoretical truncation errors are shown.

  16. Axial structure of the nucleon

    SciTech Connect

    Veronique Bernard; Latifa Elouadrhiri; Ulf-G Meissner

    2002-01-01

    We review the current status of experimental and theoretical understanding of the axial nucleon structure at low and moderate energies. Topics considered include (quasi)elastic (anti)neutrino-nucleon scattering, charged pion electroproduction off nucleons and ordinary as well as radiative muon capture on the proton.

  17. Nucleon-nucleon scattering in the 1S0 partial wave in the modified Weinberg approach

    NASA Astrophysics Data System (ADS)

    Gasparyan, A. M.; Epelbaum, E.; Gegelia, J.; Krebs, H.

    2016-03-01

    Nucleon-nucleon scattering in the 1S0 partial wave is considered in chiral effective field theory within the recently suggested renormalizable formulation based on the Kadyshevsky equation. Contact interactions are taken into account beyond the leading-order approximation. The subleading contact terms are included non-perturbatively by means of subtractive renormalization. The dependence of the phase shifts on the choice of the renormalization condition is discussed. Perturbative inclusion of the subleading contact interaction is found to be justified only very close to threshold. The low-energy theorems are reproduced significantly better compared with the leading order results.

  18. Nucleon-nucleon scattering from dispersion relations: Next-to-next-to-leading order study

    NASA Astrophysics Data System (ADS)

    Oller, J. A.

    2016-02-01

    Nucleon-nucleon (NN ) scattering is studied by applying an approach based on the N /D method and chiral perturbation theory (ChPT), whose dynamical input per partial wave consists of the imaginary part of the NN partial-wave amplitude along the left-hand cut. The latter is calculated in one-loop ChPT up to and including next-to-next-to-leading order (NNLO). A power counting for the subtraction constants is established, which is appropriate for those subtractions attached to both the left- and the right-hand cuts. A quite good reproduction of the Nijmegen partial-wave analysis phase shifts and mixing angles results, which implies a steady improvement in the accurateness achieved by increasing the chiral order in the calculation of the dynamical input. I discuss that it is not necessary to fine tune the chiral counterterms ci determined from pion-nucleon scattering to agree with NN data, but instead one should perform the iteration of two-nucleon intermediate states in a well-defined way so as to keep proper unitarity and analyticity. It is also confirmed at NNLO the long-range correlations between the NN S -wave effective ranges and scattering lengths, when employing only once-subtracted dispersion relations, that hold up to around 10% when compared with experimental values.

  19. Neutrino-Electron Scattering in MINERvA for Constraining the NuMI Neutrino Flux

    SciTech Connect

    Park, Jaewon

    2013-01-01

    Neutrino-electron elastic scattering is used as a reference process to constrain the neutrino flux at the Main Injector (NuMI) beam observed by the MINERvA experiment. Prediction of the neutrino flux at accelerator experiments from other methods has a large uncertainty, and this uncertainty degrades measurements of neutrino oscillations and neutrino cross-sections. Neutrino-electron elastic scattering is a rare process, but its cross-section is precisely known. With a sample corresponding to $3.5\\times10^{20}$ protons on target in the NuMI low-energy neutrino beam, a sample of $120$ $\

  20. Anti-Neutrino Charged Current Quasi-Elastic Scattering in MINER$\

    SciTech Connect

    Chvojka, Jesse John

    2012-01-01

    The phenomenon of neutrino oscillation is becoming increasingly understood with results from accelerator-based and reactor-based experiments, but unanswered questions remain. The proper ordering of the neutrino mass eigenstates that compose the neutrino avor eigenstates is not completely known. We have yet to detect CP violation in neutrino mixing, which if present could help explain the asymmetry between matter and anti-matter in the universe. We also have not resolved whether sterile neutrinos, which do not interact in any Standard Model interaction, exist. Accelerator-based experiments appear to be the most promising candidates for resolving these questions; however, the ability of present and future experiments to provide answers is likely to be limited by systematic errors. A significant source of this systematic error comes from limitations in our knowledge of neutrino-nucleus interactions. Errors on cross-sections for such interactions are large, existing data is sometimes contradictory, and knowledge of nuclear effects is incomplete. One type of neutrino interaction of particular interest is charged current quasi-elastic (CCQE) scattering, which yields a final state consisting of a charged lepton and nucleon. This process, which is the dominant interaction near energies of 1 GeV, is of great utility to neutrino oscillation experiments since the incoming neutrino energy and the square of the momentum transferred to the final state nucleon, Q2, can be reconstructed using the final state lepton kinematics. To address the uncertainty in our knowledge of neutrino interactions, many experiments have begun making dedicated measurements. In particular, the MINER A experiment is studying neutrino-nucleus interactions in the few GeV region. MINERvA is a fine-grained, high precision, high statistics neutrino scattering experiment that will greatly improve our understanding of neutrino cross-sections and nuclear effects that affect the final state particles

  1. Can neutrino-electron scattering tell us whether neutrinos are Dirac or Majorana particles

    SciTech Connect

    Kayser, B.

    1988-04-01

    There has recently been interest in the possibility that neutrino-electron scattering experiments could determine whether neutrinos are Dirac or Majorana particles by providing information on their electromagnetic structure. We try to explain why studies of neutrino electromagnetic structure actually cannot distinguish between Dirac and Majorana neutrinos. 9 refs.

  2. Nucleon-Hyperon (and YY) Scattering on the Lattice

    SciTech Connect

    Huey-Wen Lin

    2011-09-01

    Lattice QCD offers the chance to study the interactions of strange hadrons from the first principles of QCD. These NY (nucleon-hyperon) and YY (hyperon-hyperon) interactions are crucial to understanding the strange matter that may be created in extreme environments, such as the core of a neutron star. Since the fast decay of strange matter prevents experiments from providing strong constraints on the parameters of such interactions, direct theoretical calculations are especially valuable. In this presentation, I will report on the latest progress toward precision nucleon-hyperon and hyperon-hyperon scattering calculation in lattice QCD.

  3. Influence of short-range correlations in neutrino-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Van Cuyck, T.; Jachowicz, N.; González-Jiménez, R.; Martini, M.; Pandey, V.; Ryckebusch, J.; Van Dessel, N.

    2016-08-01

    Background: Nuclear short-range correlations (SRCs) are corrections to mean-field wave functions connected with the short-distance behavior of the nucleon-nucleon interaction. These SRCs provide corrections to lepton-nucleus cross sections as computed in the impulse approximation (IA). Purpose: We want to investigate the influence of SRCs on the one-nucleon (1 N ) and two-nucleon (2 N ) knockout channels for muon-neutrino induced processes on a 12 target at energies relevant for contemporary measurements. Method: The model adopted in this work corrects the impulse approximation for SRCs by shifting the complexity induced by the SRCs from the wave functions to the operators. Due to the local character of the SRCs, it is argued that the expansion of these operators can be truncated at a low order. Results: The model is compared with electron-scattering data, and two-particle two-hole responses are presented for neutrino scattering. The contributions from the vector and axial-vector parts of the nuclear current as well as the central, tensor, and spin-isospin parts of the SRCs are studied. Conclusions: Nuclear SRCs affect the 1 N knockout channel and give rise to 2 N knockout. The exclusive neutrino-induced 2 N knockout cross section of SRC pairs is shown and the 2 N knockout contribution to the QE signal is calculated. The strength occurs as a broad background which extends into the dip region.

  4. Nucleon decay and atmospheric neutrinos in the Mont Blanc experiment

    NASA Technical Reports Server (NTRS)

    Battistoni, G.; Bellotti, E.; Bologne, G.; Campana, P.; Castagnoli, C.; Chiarella, V.; Ciocio, A.; Cundy, D. C.; Dettorepiazzoli, B.; Fiorini, E.

    1985-01-01

    In the NUSEX experiment, during 2.8 years of operation, 31 fully contained events have been collected; 3 among them are nucleon decay candidates, while the others have been attributed to upsilon interactions. Limits on nucleon lifetime and determinations of upsilon interaction rates are presented.

  5. Nucleon-Nucleon Scattering Parameters in the Limit of SU(3) Flavor Symmetry

    SciTech Connect

    Beane, Silas; Chang, Emanuel; Savage, Martin; Lin, Huey-Wen; Orginos, Konstantinos; Cohen, Saul; Detmold, William; Luu, Tom; Parreno, Assumpta; Junnarkar, Parikshit; Walker-Loud, Andre Paul

    2013-08-01

    The scattering lengths and effective ranges that describe low-energy nucleon-nucleon scattering are calculated in the limit of SU(3)-flavor symmetry at the physical strange-quark mass with Lattice Quantum Chromodynamics. The calculations are performed with an isotropic clover discretization of the quark action in three volumes with spatial extents of L ~ 3.4 fm, 4.5 fm and 6.7 fm, and with a lattice spacing of b ~ 0.145 fm. With determinations of the energies of the two-nucleon systems both of which contain bound states at these light-quark masses at rest and moving in the lattice volume, Luscher's method is used to determine the low-energy phase shift in each channel, from which the scattering length and effective range are obtained. The scattering parameters in the {sup 1}S{sub 0} channel are found to be m{sub π}a{sup ({sup 1}S{sub 0})} = 9.51+/-0.74+/-1.00 and m{sub π}r{sup ({sup 1}S{sub 0})} = 4.76+/-0.37+/-0.40, and in the {sup 3}S{sub 1} channel are m{sub π}a{sup ({sup 3}S{sub 1})} = 7.45+/-0.57+/-0.71 and m{sub π}r{sup ({sup 3}S{sub 1})} = 3.71+/-0.28+/-0.28. These values are consistent with the two-nucleon system exhibiting Wigner's supermultiplet symmetry, which becomes exact in the limit of large-N{sub c}.

  6. Nucleon polarizabilities: From Compton scattering to hydrogen atom

    NASA Astrophysics Data System (ADS)

    Hagelstein, Franziska; Miskimen, Rory; Pascalutsa, Vladimir

    2016-05-01

    We review the current state of knowledge of the nucleon polarizabilities and of their role in nucleon Compton scattering and in hydrogen spectrum. We discuss the basic concepts, the recent lattice QCD calculations and advances in chiral effective-field theory. On the experimental side, we review the ongoing programs aimed to measure the nucleon (scalar and spin) polarizabilities via the Compton scattering processes, with real and virtual photons. A great part of the review is devoted to the general constraints based on unitarity, causality, discrete and continuous symmetries, which result in model-independent relations involving nucleon polarizabilities. We (re-)derive a variety of such relations and discuss their empirical value. The proton polarizability effects are presently the major sources of uncertainty in the assessment of the muonic hydrogen Lamb shift and hyperfine structure. Recent calculations of these effects are reviewed here in the context of the "proton-radius puzzle". We conclude with summary plots of the recent results and prospects for the near-future work.

  7. Lepton-quark scattering and nucleon spin structure

    NASA Astrophysics Data System (ADS)

    Hochberg, David

    Consideration is given to the asymmetries arising from the deep inelastic scattering of longitudinally polarized electrons and positrons with longitudinally polarized protons at ep collider energies. Information from such measurements will provide means for testing models of nucleon spin structure. The Carlitz-Kaur model of spin structure is used as a guide for estimating the behavior of these asymmetries, which arise from the interference of the electromagnetic and neutral currents.

  8. Nucleon Compton Scattering with Two Space-Like Photons

    SciTech Connect

    Andrei Afanasev; I. Akushevich; N.P. Merenkov

    2002-08-01

    We calculate two-photon exchange effects for elastic electron-proton scattering at high momentum transfers. The corresponding nucleon Compton amplitude is defined by two space-like virtual photons that appear to have significant virtualities. We make predictions for (a) a single-spin beam asymmetry, and (b) a single-spin target asymmetry or recoil proton polarization caused by an unpolarized electron beam.

  9. Inclusive charged-current neutrino-nucleus scattering in the quasielastic region

    SciTech Connect

    Kim, K. S.; Cheoun, Myung-Ki

    2011-03-15

    We study inclusive charged-current reaction through total cross sections of neutrino-nucleus scattering within the framework of a relativistic single-particle model in the quasielastic region. To describe the final-state interaction between knocked-out nucleons and the residual nucleus, a real potential of final nucleons, which is generated by a relativistic mean field, is used with the assumption of no loss of flux, which leads to current conservation and gauge invariance. We calculate ({nu}{sub {mu},{mu}}{sup -}) and ({nu}-bar{sub {mu},{mu}}{sup +}) reactions. In these calculations, {sup 12}C, {sup 40}Ca, and {sup 208}Pb are used as target nuclei and the incident neutrino (antineutrino) energies are exploited up to 4 GeV. We find that the effect of the final-state interaction by the real potential of the knocked-out nucleons reduces cross sections by about 15%, similar to the effect of electron scattering. Furthermore, the effect of the Coulomb distortion for the outgoing leptons is shown to be different from the electron scattering. Finally, our total cross sections by scaling number of participated nucleons are presented to compare with experimental data.

  10. Virtual Compton scattering off the nucleon at low energies

    SciTech Connect

    Scherer, S.; Korchin, A.Y.; Koch, J.H.

    1996-08-01

    We investigate the low-energy behavior of the four-point Green{close_quote}s function {Gamma}{sup {mu}{nu}} describing virtual Compton scattering off the nucleon. Using Lorentz invariance, gauge invariance, and crossing symmetry, we derive the leading terms of an expansion of the operator in the four-momenta {ital q} and {ital q}{sup {prime}} of the initial and final photon, respectively. The model-independent result is expressed in terms of the electromagnetic form factors of the free nucleon, i.e., on-shell information which one obtains from electron-nucleon scattering experiments. Model-dependent terms appear in the operator at {ital O}({ital q}{sub {alpha}}{ital q}{sub {beta}}{sup {prime}}), whereas the orders {ital O}({ital q}{sub {alpha}}{ital q}{sub {beta}}) and {ital O}({ital q}{sub {alpha}}{sup {prime}}{ital q}{sub {beta}}{sup {prime}}) are contained in the low-energy theorem for {Gamma}{sup {mu}{nu}}, i.e., no new parameters appear. We discuss the leading terms of the matrix element and comment on the use of on-shell equivalent electromagnetic vertices in the calculation of {open_quote}{open_quote}Born terms{close_quote}{close_quote} for virtual Compton scattering. {copyright} {ital 1996 The American Physical Society.}

  11. Neutrino-induced reactions and neutrino scattering with nuclei in low and high neutrino energy

    NASA Astrophysics Data System (ADS)

    Cheoun, Myung-Ki; Ha, Eunja; Yang, Ghil-Seok; Kim, K. S.; Kajino, T.

    2016-06-01

    We reviewed present status regarding theoretical approaches for neutrino-induced reactions and neutrino scattering. With a short introduction of relevant data, our recent calculations by distorted-wave Born approximation (DWBA) for quasielastic region are presented for MiniBooNE data. We also discussed that one step-process estimated by the DWBA is comparable to the two-step process, which has been usually used in the neutrino-nucleosynthesis. For much higher energy neutrino data, such as NOMAD data, elementary process approach was shown to be useful instead of using complicated nuclear models. But, in the low energy region, detailed nuclear structure model, such as QRPA and shell model, turn out to be inescapable to explain the reaction data.

  12. Nucleon-nucleon correlations and multiquark cluster effects in semi-inclusive deep inelastic lepton scattering off

    SciTech Connect

    Simula, S.

    1994-04-01

    Semi-inclusive deep inelastic lepton scattering off nuclei is investigated assuming that virtual boson absorption occurs on a hadronic cluster which can be either a two-nucleon correlated pair or a six-quark bag. The differences in the energy distribution of nucleons produced in backward and forward directions are analyzed both at x<1 and x>1.

  13. Compton scattering and nucleon polarisabilities in chiral EFT: Status and future

    NASA Astrophysics Data System (ADS)

    Grießhammer, Harald W.; McGovern, Judith A.; Phillips, Daniel R.

    2016-05-01

    We review theoretical progress and prospects for determining the nucleon's static dipole polarisabilities from Compton scattering on few-nucleon targets, including new values; see Refs. [1-5] for details and a more thorough bibliography.

  14. Nucleon Compton scattering in the Dyson-Schwinger approach

    NASA Astrophysics Data System (ADS)

    Eichmann, Gernot; Fischer, Christian S.

    2013-02-01

    We analyze the nucleon’s Compton scattering amplitude in the Dyson-Schwinger/Faddeev approach. We calculate a subset of diagrams that implements the nonperturbative handbag contribution as well as all t-channel resonances. At the quark level, these ingredients are represented by the quark Compton vertex whose analytic properties we study in detail. We derive a general form for a fermion two-photon vertex that is consistent with its Ward-Takahashi identities and free of kinematic singularities, and we relate its transverse part to the on-shell nucleon Compton amplitude. We solve an inhomogeneous Bethe-Salpeter equation for the quark Compton vertex in rainbow-ladder truncation and implement it in the nucleon Compton scattering amplitude. The remaining ingredients are the dressed quark propagator and the nucleon’s bound-state amplitude which are consistently solved from Dyson-Schwinger and covariant Faddeev equations. We verify numerically that the resulting quark Compton vertex and nucleon Compton amplitude both reproduce the πγγ transition form factor when the pion pole in the t channel is approached.

  15. Neutrino-electron scattering. Progress report

    SciTech Connect

    White, D.H.

    1982-01-01

    We present here a progress report on an experiment to measure the cross section for nu/sub ..mu../e scattering at the Brookhaven AGS. A wide band focussing horn is used with a neutrino beam energy centered at 1.5 GeV. We have in hand measurements with nu/sub ..mu../ and anti nu/sub ..mu../ beams but we present preliminary data on the nu/sub ..mu../ beam running only. We also measure the reactions: nu/sub ..mu../ + n ..-->.. ..mu../sup -/ + p and nu/sub e/ + n ..-->.. e/sup -/ + p which will be used in normalization and in background estimation.

  16. Virtual Compton scattering off the nucleon in chiral perturbation theory

    SciTech Connect

    Hemmert, T.R.; Holstein, B.R.; Knoechlein, G.; Scherer, S.

    1997-03-01

    We investigate the spin-independent part of the virtual Compton scattering (VCS) amplitude off the nucleon within the framework of chiral perturbation theory. We perform a consistent calculation to third order in external momenta according to Weinberg`s power counting. With this calculation we can determine the second- and fourth-order structure-dependent coefficients of the general low-energy expansion of the spin-averaged VCS amplitude based on gauge invariance, crossing symmetry, and the discrete symmetries. We discuss the kinematical regime to which our calculation can be applied and compare our expansion with the multipole expansion by Guichon, Liu, and Thomas. We establish the connection of our calculation with the generalized polarizabilities of the nucleon where it is possible. {copyright} {ital 1997} {ital The American Physical Society}

  17. Effect of strangeness for neutrino (antineutrino) scattering in the quasi-elastic region

    SciTech Connect

    Kim, K. S.; Yu, Byung Geel; Cheoun, Myung-Ki

    2008-05-15

    We present the neutral- and charged-current reactions by incident neutrino (antineutrino) scattering on the nucleon and on the {sup 12}C target in the quasi-elastic region within the framework of a relativistic single-particle model. The incident energies at 500 MeV and 1 GeV are used for the scattering. Effects of strangeness are studied thoroughly on the cross sections, the ratios between the neutral- and charged-current reactions, and the asymmetries by incident neutrino and antineutrino. We find that there exists some cancellation of the strange quark contributions between the knocked-out protons and neutrons in the neutrino (antineutrino)-nucleus scattering. The effect of strangeness is exhibited more strongly on the asymmetry than on the ratio or cross section. On a difference of the asymmetry, the effect of strangeness appears strongly, but on a summation of the asymmetry, the effect almost disappears in the low and middle kinetic energies of the knocked-out nucleon.

  18. Nucleon Decay and Neutrino Experiments, Experiments at High Energy Hadron Colliders, and String Theor

    SciTech Connect

    Jung, Chang Kee; Douglas, Michaek; Hobbs, John; McGrew, Clark; Rijssenbeek, Michael

    2013-07-29

    This is the final report of the DOE grant DEFG0292ER40697 that supported the research activities of the Stony Brook High Energy Physics Group from November 15, 1991 to April 30, 2013. During the grant period, the grant supported the research of three Stony Brook particle physics research groups: The Nucleon Decay and Neutrino group, the Hadron Collider Group, and the Theory Group.

  19. The role of medium modifications for neutrino-pair processes from nucleon-nucleon bremsstrahlung. Impact on the protoneutron star deleptonization

    NASA Astrophysics Data System (ADS)

    Fischer, Tobias

    2016-09-01

    In this article the neutrino-pair production from nucleon-nucleon (NN) bremsstrahlung is explored via medium-modifications of the strong interactions at the level of the one-pion exchange approximation. It governs the bulk part of the NN interaction at low densities relevant for the neutrino physics in core-collapse supernova studies. The resulting medium-modified one-pion exchange rate for the neutrino-pair processes is implemented in simulations of core-collapse supernovae in order to study the impact on the neutrino signal emitted from the deleptonization of the nascent proto-neutron star (PNS). Consequences for the nucleosynthesis of heavy elements of the material ejected from the PNS surface are discussed.

  20. Proposal to perform a high - statisics neutrino scattering experiment using a fine - grained detector in the NuMI Beam

    SciTech Connect

    Morfin, J.G.; McFarland, K.; /Rochester U.

    2003-12-01

    The NuMI facility at Fermilab will provide an extremely intense beam of neutrinos for the MINOS neutrino-oscillation experiment. The spacious and fully-outfitted MINOS near detector hall will be the ideal venue for a high-statistics, high-resolution {nu} and {bar {nu}}-nucleon/nucleus scattering experiment. The experiment described here will measure neutrino cross-sections and probe nuclear effects essential to present and future neutrino-oscillation experiments. Moreover, with the high NuMI beam intensity, the experiment will either initially address or significantly improve our knowledge of a wide variety of neutrino physics topics of interest and importance to the elementary-particle and nuclear-physics communities.

  1. Nucleon polarisabilities from Compton scattering off the one- and few-nucleon system

    NASA Astrophysics Data System (ADS)

    Grießhammer, Harald W.

    2005-07-01

    These proceedings sketch how combining recent theoretical advances with data from the new generation of high-precision Compton scattering experiments on both the proton and few-nucleon systems offers fresh, detailed insight into the Physics of the nucleon polarisabilities. A multipole-analysis is presented to simplify their interpretation. Predictions from Chiral Effective Field Theory with special emphasis on the spin-polarisabilities can serve as a guideline for doubly-polarised experiments below 300 MeV. The strong energy-dependence of the scalar magnetic dipole-polarisability β turns out to be crucial to understanding the proton and deuteron data. Finally, a high-accuracy determination of the proton and neutron polarisabilities shows that they are identical within error-bars. For details and a better list of references, consult Refs. [H.W. Grießhammer, T.R. Hemmert, Phys. Rev. C 65 (2002) 045207, nucl-th/0110006; R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, B. Pasquini, Eur. Phys. J. A 20 (2004) 293, nucl-th/0307070; R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, Eur. Phys. J. A 20 (2004) 329, nucl-th/0308054; R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, D.R. Phillips, Eur. Phys. J. A, nucl-th/0405077 (in press)].

  2. Low-energy theorems for nucleon-nucleon scattering at Mπ=450 MeV

    NASA Astrophysics Data System (ADS)

    Baru, V.; Epelbaum, E.; Filin, A. A.

    2016-07-01

    We apply the low-energy theorems to analyze the recent lattice QCD results for the two-nucleon system at a pion mass of Mπ≃450 MeV obtained by the NPLQCD Collaboration. We find that the binding energies of the deuteron and dineutron are inconsistent with the low-energy behavior of the corresponding phase shifts within the quoted uncertainties and vice versa. Using the binding energies of the deuteron and dineutron as input, we employ the low-energy theorems to predict the phase shifts and extract the scattering length and the effective range in the S31 and S10 channels. Our results for these quantities are consistent with those obtained by the NPLQCD Collaboration from effective field theory analyses but are in conflict with their determination based on the effective-range approximation.

  3. Measurement of Muon Neutrino Quasielastic Scattering on Carbon

    SciTech Connect

    Aguilar-Arevalo, A. A.; Bugel, L.; Coney, L.; Conrad, J. M.; Djurcic, Z.; Mahn, K. B. M.; Monroe, J.; Schmitz, D.; Shaevitz, M. H.; Sorel, M.; Zeller, G. P.; Bazarko, A. O.; Laird, E. M.; Meyers, P. D.; Patterson, R. B.; Shoemaker, F. C.; Tanaka, H. A.; Brice, S. J.; Brown, B. C.; Finley, D. A.

    2008-01-25

    The observation of neutrino oscillations is clear evidence for physics beyond the standard model. To make precise measurements of this phenomenon, neutrino oscillation experiments, including MiniBooNE, require an accurate description of neutrino charged current quasielastic (CCQE) cross sections to predict signal samples. Using a high-statistics sample of {nu}{sub {mu}} CCQE events, MiniBooNE finds that a simple Fermi gas model, with appropriate adjustments, accurately characterizes the CCQE events observed in a carbon-based detector. The extracted parameters include an effective axial mass, M{sub A}{sup eff}=1.23{+-}0.20 GeV, that describes the four-momentum dependence of the axial-vector form factor of the nucleon, and a Pauli-suppression parameter, {kappa}=1.019{+-}0.011. Such a modified Fermi gas model may also be used by future accelerator-based experiments measuring neutrino oscillations on nuclear targets.

  4. Study of atmospheric neutrino interactions and search for nucleon decay in Soudan 2

    SciTech Connect

    Leeson, W.R.

    1995-12-14

    Contained event samples, including 30 single-track muon-like events, 35 single-shower electron-like events, and 34 multiprong events, have been obtained from a 1.0 kiloton-year exposure of the Soudan 2 detector. A sample of 15 multiprong events which are partially contained has also been isolated. Properties of these events are used to examine the verity of the atmospheric neutrino flavor ratio anomaly as reported by the Kamiokande and IMB-3 water Cherenkov experiments. The compatibility of the Soudan data with each of two `new physics` explanations for the anomaly, namely proton decay and neutrino oscillations, is investigated. We examine background processes which have not been explicitly treated by the water Cherenkov detectors. Chapters discuss underground non-accelerator particle physics, the atmospheric neutrino anomaly and its interpretation, the Soudan 2 detector and event selection, reconstruction of neutrino events, rock event contamination in Soudan `quasi-elastic` samples, contained multiprong events in Soudan 2, neutrino flavor composition of the multiprong sample, partially contained events in Soudan 2, nucleon decay in Soudan 2, and a summary and discussion. 12 refs., 124 figs., 28 tabs., 7 appendices.

  5. Measurement of Nuclear Dependence in Inclusive Charged Current Neutrino Scattering

    SciTech Connect

    Tice, Brian George

    2014-01-01

    Neutrino experiments use heavy nuclei (C, Fe, Pb) to achieve necessary statistics. However, the use of heavy nuclei exposes these experiments to the nuclear dependence of neutrino-nucleus cross sections, which are poorly known and difficult to model. This dissertation presents an analysis of the nuclear dependence of inclusive chargedcurrent neutrino scattering using events in carbon, iron, lead, and scintillator targets of the MINERvA detector. MINERvA (Main INjector ExpeRiment for -A) is a few-GeV neutrinonucleus scattering experiment at Fermilab.

  6. Constraints on nucleon decay via invisible modes from the Sudbury Neutrino Observatory.

    PubMed

    Ahmed, S N; Anthony, A E; Beier, E W; Bellerive, A; Biller, S D; Boger, J; Boulay, M G; Bowler, M G; Bowles, T J; Brice, S J; Bullard, T V; Chan, Y D; Chen, M; Chen, X; Cleveland, B T; Cox, G A; Dai, X; Dalnoki-Veress, F; Doe, P J; Dosanjh, R S; Doucas, G; Dragowsky, M R; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Formaggio, J A; Fowler, M M; Frame, K; Frati, W; Fulsom, B G; Gagnon, N; Graham, K; Grant, D R; Hahn, R L; Hall, J C; Hallin, A L; Hallman, E D; Hamer, A S; Handler, W B; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Hemingway, R J; Hime, A; Howe, M A; Jagam, P; Jelley, N A; Klein, J R; Kos, M S; Krumins, A V; Kutter, T; Kyba, C C M; Labranche, H; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Levine, I; Luoma, S; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Marino, A D; McCauley, N; McDonald, A B; McGee, S; McGregor, G; Mifflin, C; Miknaitis, K K S; Miller, G G; Moffat, B A; Nally, C W; Neubauer, M S; Nickel, B G; Noble, A J; Norman, E B; Oblath, N S; Okada, C E; Ollerhead, R W; Orrell, J L; Oser, S M; Ouellet, C; Peeters, S J M; Poon, A W P; Robertson, B C; Robertson, R G H; Rollin, E; Rosendahl, S S E; Rusu, V L; Schwendener, M H; Simard, O; Simpson, J J; Sims, C J; Sinclair, D; Skensved, P; Smith, M W E; Starinsky, N; Stokstad, R G; Stonehill, L C; Tafirout, R; Takeuchi, Y; Tesić, G; Thomson, M; Thorman, M; Van Berg, R; Van de Water, R G; Virtue, C J; Wall, B L; Waller, D; Waltham, C E; Tseung, H Wan Chan; Wark, D L; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wittich, P; Wouters, J M; Yeh, M; Zuber, K

    2004-03-12

    Data from the Sudbury Neutrino Observatory have been used to constrain the lifetime for nucleon decay to "invisible" modes, such as n-->3nu. The analysis was based on a search for gamma rays from the deexcitation of the residual nucleus that would result from the disappearance of either a proton or neutron from 16O. A limit of tau(inv)>2 x 10(29) yr is obtained at 90% confidence for either neutron- or proton-decay modes. This is about an order of magnitude more stringent than previous constraints on invisible proton-decay modes and 400 times more stringent than similar neutron modes.

  7. Measurement of muon neutrino quasi-elastic scattering on carbon

    SciTech Connect

    Aguilar-Arevalo, A.A.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; Curioni, A.; Djurcic, Z.; /Alabama U. /Bucknell U. /Cincinnati U. /Colorado U. /Columbia U. /Embry-Riddle Aeronautical U. /Fermilab /Indiana U. /Los Alamos /Louisiana State U. /Michigan U.

    2007-06-01

    Low energy (200 < E{sub v} < 2000 MeV) neutrino oscillation experiments, including MiniBooNE, require a model of charged current quasi-elastic (CCQE) neutrino interactions to predict signal samples. Using a high-statistics sample of muon neutrino CCQE events, MiniBooNE finds that a simple Fermi gas model, with appropriate adjustments, accurately characterizes the CCQE events observed in a carbon-based detector. The extracted parameters include an effective axial mass, M{sub A} = 1.23 {+-} 0.20 GeV, used to describe the four-momentum dependence of the axial-vector form factor of the nucleon; and a Pauli-suppression parameter, {kappa} = 1.019 {+-} 0.011.

  8. Final state interaction and Coulomb effect for neutrino-nucleus scattering in the quasielastic region

    SciTech Connect

    Kim, K. S.; Cheoun, M. K.

    2009-11-25

    We study the effect of final state interaction between outgoing nucleons and residual nuclei through total cross sections of neutrino-nucleus scattering within the framework of a relativistic single-particle model in the quasielastic region. To investigate the effect of the FSI, a relativistic phenomenological optical potential and a real potential for final nucleons are used. The real potential refers to no loss of flux while the optical potential indicates an absorption. We calculate both neutral-current reaction such as (v, v') and charged-current reactions like (v{sub e}, e{sup -}) and (v{sub {mu}}, {mu}{sup -}). In these calculations, {sup 12}C is used as a target nucleus and the incident neutrino (antineutrino) energies are exploited up to 2 GeV. We find that the effect of the FSI by the optical potential reduces cross sections about 50% and about 15% for the real potential. Furthermore, in the case of the charged-current reaction, we also calculate the Coulomb distortion of the outgoing leptons for {sup 12}C, {sup 40}Ca, and {sup 208}Pb. As a consequence, the effect of the Coulomb distortion is about a half by comparing with the case of electron scattering.

  9. Scattering of low-energy neutrinos on atomic shells

    SciTech Connect

    Babič, Andrej; Šimkovic, Fedor

    2015-10-28

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  10. Ab Initio Many-Body Calculations Of Nucleon-Nucleus Scattering

    SciTech Connect

    Quaglioni, S; Navratil, P

    2008-12-17

    We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on {sup 3}H, {sup 4}He and {sup 10}Be and proton scattering on {sup 3,4}He, using realistic nucleon-nucleon (NN) potentials. Our A = 4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-{sup 4}He S-wave phase shifts. We demonstrate that a proper treatment of the coupling to the n-{sup 10}Be continuum is successful in explaining the parity-inverted ground state in {sup 11}Be.

  11. The pion nucleon scattering lengths from pionic hydrogen and deuterium

    NASA Astrophysics Data System (ADS)

    Schröder, H.-Ch.; Badertscher, A.; Goudsmit, P. F. A.; Janousch, M.; Leisi, H. J.; Matsinos, E.; Sigg, D.; Zhao, Z. G.; Chatellard, D.; Egger, J.-P.; Gabathuler, K.; Hauser, P.; Simons, L. M.; Rusi El Hassani, A. J.

    2001-07-01

    This is the final publication of the ETH Zurich Neuchâtel PSI collaboration on the pionic hydrogen and deuterium precision X-ray experiments. We describe the recent hydrogen 3 p 1 s measurement, report on the determination of the Doppler effect correction to the transition line width, analyze the deuterium shift measurement and discuss implications of the combined hydrogen and deuterium results. From the pionic hydrogen 3 p 1 s transition experiments we obtain the strong-interaction energy level shift \\varepsilon_{1s} = -7.108±0.013 (stat.)±0.034 (syst.) eV and the total decay width Γ_{1s} = 0.868±0.040 (stat.)±0.038 (syst.) eV of the 1s state. Taking into account the electromagnetic corrections we find the hadronic π N s-wave scattering amplitude a_{π-prightarrowπ-p} = 0.0883±0.0008 m_{π}^{-1} for elastic scattering and a_{π-prightarrowπ0n} = -0.128±0.006 m_{π} ^{-1} for single charge exchange, respectively. We then combine the pionic hydrogen results with the 1 s level shift measurement on pionic deuterium and test isospin symmetry of the strong interaction: our data are still compatible with isospin symmetry. The isoscalar and isovector π N scattering lengths (within the framework of isospin symmetry) are found to be b_0 = -0.0001^{+0.0009}_{-0.0021} m_{π}^{-1} and b1 = -0.0885^{+0.0010}_{-0.0021} m_{π} ^{-1}, respectively. Using the GMO sum rule, we obtain from b_1 a new value of the π N coupling constant (g_{π N} = 13.21_{-0.05}^{+0.11}) from which follows the Goldberger Treiman discrepancy Δ_{{GT}} =0.027_{-0.008}^{+0.012}. The new values of b_0 and g_{π N} imply an increase of the nucleon sigma term by at least 9 MeV.

  12. Neutrino-Nucleus Coherent NC({pi}{sup 0}) Scattering in the MINOS Near Detector

    SciTech Connect

    Cherdack, Daniel

    2011-11-23

    Neutrino reactions recorded by the MINOS Near Detector in exposures totalling 2.8x10{sup 20} protons-on-target were searched for single, highly-forward {pi}{sup 0} mesons produced by coherent neutral current interactions {nu}{sub {mu}}+A{yields}{nu}{sub {mu}}+A+{pi}{sup 0}. Events having topologies consistent with single electromagnetic showers were isolated. Contributions from neutrino-induced backgrounds are determined using a data-driven fit of Monte Carlo distributions over sideband regions. The fit is used to project the background levels into signal regions. An excess of events above the best-fit background is observed for shower topologies of few GeV energies and at very forward angles. The partial cross section for NC({pi}{sup 0}) coherent scattering yielding E{sub vis}({pi}{sup 0})>1.0 GeV averaged over incident neutrino energies 2.4{<=}E{sub {nu}{<=}9}.0 GeV is (31.6{+-}10.5)x10{sup -40} cm{sup 2}/nucleus. Total cross sections for coherent scattering from nuclei of average nucleon number A{sub eff} = 48 and for iron (A = 56) nuclei are estimated for } = 4.9 GeV.

  13. Low-Energy Parameters of the Nucleon-Nucleon Scattering and Deuteron Properties, Electromagnetic Interactions with Bound Systems

    NASA Astrophysics Data System (ADS)

    Shebeko, A.; Dubovik, E.

    2013-08-01

    One more application of the method of unitary clothing transformations (UCT's) in the theory of nucleon-nucleon ( N - N) interaction has been presented. We have extended our previous analysis (Dubovik and Shebeko in Few-Body Syst 48:109-142, 2010) of the N - N scattering below the pion production threshold to treat the neutron-proton ( n - p) scattering at low energies and the deuteron static properties. Our calculations of deuteron magnetic and quadrupole moments have been carried out in the framework of a gauge independent description of electromagnetic (EM) interactions with nuclei (bound systems) using the clothed particle representation of the Hamiltonian, the boost and EM current density operators for the n-p system.

  14. Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD.

    PubMed

    Berger, Edmond L; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing

    2016-05-27

    We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon.

  15. Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD.

    PubMed

    Berger, Edmond L; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing

    2016-05-27

    We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon. PMID:27284650

  16. Measurements of cross-section of charge current inclusive of antineutrino scattering off nucleons using carbon, iron, lead and scintillator at MINER$\

    SciTech Connect

    Rakotondravohitra, Laza

    2015-08-18

    Neutrino physics is one of the most active fields in the domaine of high energy physics during the last century. The need of precise measurement of neutrino-nucleus interactions required by the neutrino oscillation experiments is a an exiting step. These measurements of cross-section are more than essential for neutrino oscillation experiment. Over the year, many measurements from varieties of experiments have been presented. MINERνA is one of the world leaders in measuring cross-section of neutrino and antineutrino -nucleus interactions. MINERνA is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. In order to study nuclear dependence, MINERνA is endowed with different types of solid nuclear targets as well are liquid targets such as helium and water. This thesis presents measurements of cross-section of antineutrino scattering off nucleons using a variety of solid nuclear targets, carbon, iron, lead and also polystyrene scintillator (CH). The data set of antineutrino used for this analysis was taken between March and July 2010 with a total of 1.60X1020 protons on target. Charged current inclusive interactions were selected by requiring a positive muon and kinematics limitation of acceptance of the muon spectrometer are applied. The analysis requires neutrino energy between 2GeV et 20GeV and the angle of muon θmu < 17degree . The absolute cross-section # as function of neutrino energy and the differential cross-section dσ/ dxbj measured and shown the corresponding systematics for each nuclear targets. Data results are compared with prediction of the models implemented in the neutrino events generators GENIE 2.6.2 used by the experiment.

  17. Inclusive neutrino scattering off deuteron from threshold to GeV energies

    SciTech Connect

    Gang Shen, Laura E. Marcucci, Joseph Carlson, Stefano Gandolfi, Rocco Schiavilla

    2012-09-01

    Cross sections for inclusive neutrino scattering off deuteron induced by neutral and charge-changing weak currents are calculated from threshold up to GeV energies, using the Argonne v{sub 18} potential and consistent nuclear electroweak currents with one- and two-body terms. Two-body contributions are found to be small, and increase the cross sections obtained with one-body currents by less than 10% over the whole range of energies. Total cross sections obtained by describing the final two-nucleon states with plane waves differ negligibly, for neutrino energies {approx}> 500 MeV, from those in which interaction effects in these states are fully accounted for. The sensitivity of the calculated cross sections to different models for the two-nucleon potential and/or two-body terms in the weak current is found to be weak. In order to illustrate nuclear structure effects, the cross sections are compared to those obtained in a naive model in which the deuteron is taken to consist of a free proton and neutron at rest.

  18. Search for Neutral Heavy Leptons in Neutrino-Nucleon Interactions at the Fnal Tevatron

    NASA Astrophysics Data System (ADS)

    de Barbaro, Pawel

    The search for Neutral Heavy Leptons (NHL) in the Neutrino-Nucleon (nu-N) interactions has been conducted using the CCFR Detector and the Fermilab Quad Triplet Beam (FNAL-E744 and FNAL-E770). No evidence for NHL was found in the charged current decay channel, NHL to mu^- + X. NHL with masses between 0.5 and 3.0 GeV/c ^2 were excluded for coupling to muons below 1 to 10^{-4} of Fermi strength, depending on the NHL mass. An excess of 5.2 +/- 2.3 NHL candidates, in the neutral current decay channel, NHL to nu + X, was found for events with the separation between the production vertex and the decay vertex greater than 2.3 meters. No evidence for NHL was found in the neutral current decay channel, NHL to nu + X for events with the separation between the production vertex and the decay vertex between 0.6 meters and 2.3 meters. NHL with masses between 0.5 and 2.0 GeV/c^2 were excluded for coupling to muon neutrinos below 1 to 5 times 10^{ -4} of Fermi strength, depending on the NHL mass. ftn*Research supported by the U.S. Department of Energy.

  19. A measurement of the neutral current neutrino-nucleon elastic cross section at MiniBooNE

    SciTech Connect

    Cox, David Christopher

    2008-02-01

    The neutral current neutrino-nucleon elastic interaction v N → v N is a fundamental process of the weak interaction ideally suited for characterizing the structure of the nucleon neutral weak current. This process comprises ~18% of neutrino events in the neutrino oscillation experiment, MiniBooNE, ranking it as the experiment's third largest process. Using ~10% of MiniBooNE's available neutrino data, a sample of these events were identified and analyzed to determine the differential cross section as a function of the momentum transfer of the interaction, Q2. This is the first measurement of a differential cross section with MiniBooNE data. From this analysis, a value for the nucleon axial mass MA was extracted to be 1.34 ± 0.25 GeV consistent with previous measurements. The integrated cross section for the Q2 range 0.189 → 1.13 GeV2 was calculated to be (8.8 ± 0.6(stat) ± 0.2(syst)) x 10-40 cm2.

  20. Azimuthal asymmetry of recoil electrons in neutrino-electron elastic scattering as signature of neutrino nature

    NASA Astrophysics Data System (ADS)

    Sobków, W.; Błaut, A.

    2016-05-01

    In this paper, we analyze the theoretically possible scenario beyond the standard model in order to show how the presence of the exotic scalar, tensor, {V}+{A} weak interactions in addition to the standard vector-axial ({V}-{A}) ones may help to distinguish the Dirac from Majorana neutrinos in the elastic scattering of an (anti)neutrino beam off the unpolarized electrons in the relativistic limit. We assume that the incoming (anti)neutrino beam comes from the polarized muon decay at rest and is the left-right chiral superposition with assigned direction of the transversal spin polarization with respect to the production plane. Our analysis is carried out for the flavour (current) neutrino eigenstates. It means that the transverse neutrino polarization estimates are the same both for the Dirac and Majorana cases. We display that the azimuthal asymmetry in the angular distribution of recoil electrons is generated by the interference terms between the standard and exotic couplings, which are proportional to the transversal (anti)neutrino spin polarization and independent of the neutrino mass. This asymmetry for the Majorana neutrinos is larger than for the Dirac ones. We also indicate the possibility of utilizing the azimuthal asymmetry measurements to search for the new CP-violating phases. Our study is based on the assumption that the possible detector (running for 1 year) has the shape of a flat circular ring, while the intense neutrino source is located in the centre of the ring and polarized perpendicularly to the ring. In addition, the large low-threshold, real-time detector is able to measure with a high resolution both the polar angle and the azimuthal angle of outgoing electron momentum. Our analysis is model-independent and consistent with the current upper limits on the non-standard couplings.

  1. Parity-Violating Electron Scattering and the Electric and Magnetic Strange Form Factors of the Nucleon

    SciTech Connect

    Armstrong, David S.; McKeown, Robert

    2012-11-01

    Measurement of the neutral weak vector form factors of the nucleon provides unique access to the strange quark content of the nucleon. These form factors can be studied using parity-violating electron scattering. A comprehensive program of experiments has been performed at three accelerator laboratories to determine the role of strange quarks in the electromagnetic form factors of the nucleon. This article reviews the remarkable technical progress associated with this program, describes the various methods used in the different experiments, and summarizes the physics results along with recent theoretical calculations.

  2. Polarized lepton deep-inelastic scattering from few-nucleon targets

    NASA Astrophysics Data System (ADS)

    Woloshyn, R. M.

    1989-06-01

    The structure functions for deep-inelastic scattering of polarized leptons from polarized few-nucleon targets (nucleon, 2H, 3He) are calculated in a parton model. Spin-dependent quark distributions constructed along the lines of Carlitz-Kaur model are used. The asymmetry for scattering from polarized 3He is small in magnitude and dominated by the neutron contribution. For 2H, cancellation between proton and neutron contributions leads to a very small asymmetry below x≈0.1. Otherwise the asymmetry is large but dominated by the proton.

  3. Effect of three-nucleon interactions in p-(3)He elastic scattering.

    PubMed

    Viviani, M; Girlanda, L; Kievsky, A; Marcucci, L E

    2013-10-25

    We present a detailed study of the effect of different three-nucleon interactions in p-(3)He elastic scattering at low energies. In particular, two interactions have been considered: one derived from effective field theory at next-to-next-to-leading order and one derived from a more phenomenological point of view-the so-called Illinois model. The four-nucleon scattering observables are calculated by using the Kohn variational principle and the hyperspherical harmonics technique, and the results are compared with available experimental data. We have found that the inclusion of both interactions improves the agreement with the experimental data, in particular, for the proton vector analyzing power.

  4. Neutrino Scattering on Atomic Electrons in Searches for the Neutrino Magnetic Moment

    SciTech Connect

    Voloshin, M. B.

    2010-11-12

    The scattering of a neutrino on atomic electrons is considered in the situation where the energy transferred to the electrons is comparable to the characteristic atomic energies, as relevant to the current experimental search for the neutrino magnetic moment. The process is induced by the standard electroweak interaction as well as by the possible neutrino magnetic moment. Quantum-mechanical sum rules are derived for the inclusive cross section at a fixed energy deposited in the atomic system, and it is shown that the differential over the energy transfer cross section is given, modulo very small corrections, by the same expression as for free electrons, once all possible final states of the electronic system are taken into account. Thus, the atomic effects effectively cancel in the inclusive process.

  5. Sensitivity to Z -prime and nonstandard neutrino interactions from ultralow threshold neutrino-nucleus coherent scattering

    NASA Astrophysics Data System (ADS)

    Dutta, Bhaskar; Mahapatra, Rupak; Strigari, Louis E.; Walker, Joel W.

    2016-01-01

    We discuss prospects for probing Z -prime and nonstandard neutrino interactions using neutrino-nucleus coherent scattering with ultralow energy (˜10 eV ) threshold Si and Ge detectors. The analysis is performed in the context of a specific and contemporary reactor-based experimental proposal, developed in cooperation with the Nuclear Science Center at Texas A&M University, and referencing available technology based upon economical and scalable detector arrays. For expected exposures, we show that sensitivity to the Z -prime mass is on the order of several TeV and is complementary to the LHC search with low-mass detectors in the near term. This technology is also shown to provide sensitivity to the neutrino magnetic moment, at a level that surpasses terrestrial limits, and is competitive with more stringent astrophysical bounds. We demonstrate the benefits of combining silicon and germanium detectors for distinguishing between classes of models of new physics and for suppressing correlated systematic uncertainties.

  6. Theory and phenomenology of coherent neutrino-nucleus scattering

    SciTech Connect

    McLaughlin, Gail

    2015-07-15

    We review the theory and phenomenology of coherent elastic neutrino-nucleus scattering (CEνNS). After a brief introduction, we summarize the places where CEνNS is already in use and then turn to future physics opportunities from CEνNS. CEνNS has been proposed as a way to limit or discover beyond the standard model physics, measure the nuclear-neutron radius and constrain the Weinberg angle.

  7. Polarized lepton-nucleon elastic scattering and a search for a light scalar boson

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Sheng; Miller, Gerald A.

    2015-09-01

    Lepton-nucleon elastic scattering, using the one-photon and one-scalar-boson exchange mechanisms considering all possible polarizations, is used to study searches for a new scalar boson and suggest new measurements of the nucleon form factors. A new light scalar boson, which feebly couples to leptons and nucleons, may account for the proton radius and muon g -2 puzzles. We show that the scalar boson produces relatively large effects in a certain kinematic region when using sufficient control of lepton and nucleon spin polarization. We generalize current techniques to measure the ratio GE:GM and present a new method to separately measure GM2 and GE2 using polarized incoming and outgoing muons.

  8. Comparison of exact and approximate evaluations of the single-scattering integral in nucleon-deuteron elastic scattering

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1972-01-01

    The exact nucleon-deuteron elastic single scattering integral was calculated numerically in order to evaluate errors in sticking factor approximations. A similar analysis made by using S wave separable potentials concluded that errors for these approximations were negligible except near backward angles where they were found to be about 10 percent.

  9. Superscaling Predictions for Neutral Current Quasielastic Neutrino-Nucleus Scattering

    SciTech Connect

    Martinez, M. C.; Udias, J. M.; Caballero, J. A.; Donnelly, T. W.

    2008-02-08

    The application of superscaling ideas to predict neutral-current (NC) quasielastic (QE) neutrino cross sections is investigated. The relativistic impulse approximation (RIA) using the same relativistic mean field potential (RMF) for both initial and final nucleons -- a model that reproduces the experimental (e,e{sup '}) scaling function -- is used to illustrate our findings. While NC reactions are apparently not well suited for scaling analyses, to a large extent, the RIA-RMF predictions do exhibit superscaling. Independence of the scaled response on the nuclear species is very well fulfilled. The RIA-RMF NC superscaling function is in good agreement with the experimental (e,e{sup '}) one. The idea that electroweak processes can be described with a universal scaling function, provided that mild restrictions on the kinematics are assumed, is shown to be valid.

  10. Nucleon-deuteron scattering using the adiabatic projection method

    NASA Astrophysics Data System (ADS)

    Elhatisari, Serdar; Lee, Dean; Meißner, Ulf-G.; Rupak, Gautam

    2016-06-01

    In this paper we discuss the adiabatic projection method, a general framework for scattering and reaction calculations on the lattice. We also introduce several new techniques developed to study nucleus-nucleus scattering and reactions on the lattice. We present technical details of the method for large-scale problems. To estimate the systematic errors of the calculations we consider simple two-particle scattering on the lattice. Then we benchmark the accuracy and efficiency of the numerical methods by applying these to calculate fermion-dimer scattering in lattice effective field theory with and without a long-range Coulomb potential. The fermion-dimer calculations correspond to neutron-deuteron and proton-deuteron scattering in the spin-quartet channel at leading order in the pionless effective field theory.

  11. Supersymmetry-generated jost functions and nucleon–nucleon scattering phase shifts

    SciTech Connect

    Bhoi, J. Laha, U.

    2015-10-15

    By exploiting the supersymmetry-inspired factorization method higher partial wave Jost solutions and functions for nuclear Hulthen potential are constructed from the knowledge of the ground state wave function. As a case study the nucleon–nucleon scattering phase shifts are computed for partial waves ℓ = 0, 1, and 2.

  12. Simulation of nucleon elastic scattering in the MARS14 code system

    SciTech Connect

    Igor L Rakhno et al.

    2001-11-26

    Correct modeling of nucleon elastic scattering is of special importance in many applications at high energy accelerators, such as deep penetration, beam loss and collimation studies. In present paper, the work performed to update the MARS elastic scattering model at E < 5 GeV is described. Modern evaluated nuclear data as well as fitting formulae are used in the new model. For protons as projectiles, Coulomb scattering and Coulomb-nuclear interference are taken into account in addition to nuclear elastic scattering. Comparisons with experimental angular distributions and calculations by means of other codes are presented.

  13. Partial-wave analysis of all nucleon-nucleon scattering data below 350 MeV

    SciTech Connect

    Stoks, V.G.J.; Klomp, R.A.M.; Rentmeester, M.C.M.; de Swart, J.J. )

    1993-08-01

    We present a multienergy partial-wave analysis of all [ital NN] scattering data below [ital T][sub lab]=350 MeV, published in a regular physics journal between 1955 and 1992. After careful examination, our final database consists of 1787 [ital pp] and 2514 [ital np] scattering data. Our fit to these data results in [chi][sup 2]/[ital N][sub df]=1.08, with [ital N][sub df]=3945 the total number of degrees of freedom. All phase shifts and mixing parameters can be determined accurately.

  14. Twist-four effects in deep inelastic neutrino scattering and sinStheta/sub w/

    SciTech Connect

    Fajfer, S.; Oakes, R.J.

    1985-07-01

    In addition to the standard perturbative QCD corrections to deep inelastic scattering, there are nonperturbative twist-four corrections which behave like 1/QS relative to the lnQS leading log corrections. We have calculated the twist-four, spin-one and spin-two corrections to sigma/sub NC/, sigma/sub CC/, R/sub nu/ and R/sub anti nu/ using the following procedure: The bilocal product of the weak currents is expanded into local operators using the Wilson operator product expansion. The coefficient functions obey the renormalization group equations and, neglecting the anomalous dimensions of the operators, were calculated using perturbative techniques. The nucleon matrix elements of the local operators can then be evaluated assuming some quark confinement model. We found that twist-four, spin-two corrections to the neutral current neutrino scattering decreases sinStheta/sub w/ by about 1%. Taking into account the twist-four, spin-two corrections for the charged current cross section, we found that they give a dominant contribution to the ratio R/sub nu/ and increased sinStheta/sub w/ by about 0.5%. We also have studied the model dependence of our results, and we have found that the twist-four, spin-two corrections to sinStheta/sub w/ are quite model dependent. The twist-four, spin-one corrections to the neutrino scattering were also calculated. These corrections come from two-quark, one-gluon operators and even at low QS their contribution was found to be considerably smaller than the twist-four, spin-two corrections.

  15. A relativistic meson-exchange model of pion-nucleon scattering

    SciTech Connect

    Lee, T.S.H.; Hung, C.T.; Yang, S.N.

    1995-08-01

    Pion-nucleon scattering is investigated using the Kadshevsky three-dimensional reduction of the Bethe-Salpeter equation. The resulting potential includes the direct and crossed N and {Delta} terms, and the t-channel {sigma}- and {rho}-exchange terms. The nucleon-pole condition is imposed to define the renormalization of the nucleon mass and the {pi}NN coupling constant. A mixture of the scalar and vector {sigma}{pi}{pi} couplings is introduced to simulate the broad width of the s-wave correlated two-pion exchange mechanism. Good descriptions of the {pi}N phase shifts up to 400 MeV have been obtained in all S- and P-waves. The off-shell behavior for our model differs significantly from that obtained using different reductions. A paper describing our results was published.

  16. Measurement of elastic muon-neutrino scattering off protons

    NASA Astrophysics Data System (ADS)

    Faissner, H.; Frenzel, E.; Hansl, T.; Hoffmann, D.; Radermacher, E.; Reithler, H.; Samm, U.; de Witt, H.; Baldo-Ceolin, M.; Bobisut, F.; Huzita, H.; Loreti, M.; Puglierin, G.

    1980-02-01

    Single recoil protons have been detected in a multiplate Al spark chamber exposed to the 2-GeV wide-band neutrino beam from the CERN proton synchrotron. Neutron-induced protons were suppressed by suitable geometrical and kinematical cuts. After correction for remaining neutron background (110+/-15 events) and single-pion contribution (45+/-6 events), the final sample contains 62+/-19 genuine neutrino-induced single protons. This yields an effective ratio of neutral-current (NC) to charged-current (CC) events of RN=(15+/-5)%, in the range 0.2<-q2<1.0 (GeV/c)2. This number is due to a mixture of elastic neutrino scatterings off protons and neutrons. From the probability fnp for a recoil neutron to give an accepted proton, one derives a model-independent combination of the NC/CC ratios Rp+fnpRn, with fnp=0.31+/-0.04. This favors axial-vector-isovector-dominant NC coupling constants and is consistent with the Weinberg-Salam model with 2θW=0.29+0.21-0.11. In terms of this model, this corresponds to Rp=(10+/-3)% and Rn=(15+3-5)%.

  17. Tests of effective interactions for nucleon scattering and charge exchange below 60 MeV

    SciTech Connect

    Dietrich, F.S.; Petrovich, F.

    1984-11-01

    Significant progress has been made over the past several years in developing energy-and density-dependent effective interactions and optical potentials based on free nucleon-nucleon potentials. This leads to the hope that the nucleon-scattering reaction mechanism may be well enough to probe details of nuclear spectroscopy (i.e., transition densities) more accurately than with purely phenomenological approaches. Of particular interest to this conference is the possibility of separating neutron and proton transition densitiies by comparing proton and neutron scattering, which can be done reliably only if the isovector parts of the effective interaction are well known. This paper attempts to assess the accuracy of presently available interactions through comparisons with elastic and inelastic scattering over a wide mass range, and also the (p,n) isobaric-analog reaction. Particular emphasis has been placed on the isovector parts of the interaction and on Coulomb corrections by comparing proton and neutron scattering on the same targets. In a number of cases, precise neutron data have been measured to facilitate these comparisons. 46 references.

  18. Complete set of deuteron analyzing powers for dp elastic scattering at 250-294 MeV/nucleon and the three-nucleon force

    NASA Astrophysics Data System (ADS)

    Sekiguchi, K.; Wada, Y.; Miyazaki, J.; Witała, H.; Dozono, M.; Gebauer, U.; Golak, J.; Kamada, H.; Kawase, S.; Kubota, Y.; Lee, C. S.; Maeda, Y.; Mashiko, T.; Miki, K.; Nogga, A.; Okamura, H.; Saito, T.; Sakai, H.; Sakaguchi, S.; Sakamoto, N.; Sasano, M.; Shimizu, Y.; Skibiński, R.; Suzuki, H.; Taguchi, T.; Takahashi, K.; Tang, T. L.; Uesaka, T.; Wakasa, T.; Yako, K.

    2014-06-01

    A complete high-precision set of deuteron analyzing powers for elastic deuteron-proton (dp) scattering at 250 and 294 MeV/nucleon has been measured. These data and previously existing data sets for the cross section at similar energies are compared to the results of three-nucleon Faddeev calculations based on modern nucleon-nucleon (NN) potentials alone or combined with two models of three-nucleon forces: the Tucson-Melbourne 99 and Urbana IX. Large discrepancies between pure NN theory and data, which are not resolved by the current three-nucleon forces, were found at c.m. backward angles θc .m.≳120° for all the deuteron analyzing powers and the cross section. Because only small relativistic effects were found for the deuteron analyzing powers and the cross section, the inclusion of short-range components of the three-nucleon force is probably required to get a better description of the data.

  19. Generalized polarizabilities and the spin-averaged amplitude in virtual Compton scattering off the nucleon

    SciTech Connect

    Drechsel, D.; Knoechlein, G.; Metz, A.; Scherer, S.

    1997-01-01

    We discuss the low-energy behavior of the spin-averaged amplitude of virtual Compton scattering off a nucleon. Based on gauge invariance, Lorentz invariance, and the discrete symmetries, it is shown that to first order in the frequency of the final real photon only two generalized polarizabilities appear. Different low-energy expansion schemes are discussed and put into perspective. {copyright} {ital 1997} {ital The American Physical Society}

  20. Parity Violating Electron Scattering and Strangeness in the Nucleon

    SciTech Connect

    Maas, Frank E.

    2008-10-13

    A measurement of the weak form factor of the proton allows a flavor separation of the strangeness contribution to the electromagnetic form factors. The weak form factor is accessed experimentally by the measurement of a parity violating (PV) asymmetry in the scattering of polarized electrons on unpolarized protons. An extended experimental program to measure these parity violating asymmetries has been performed and is going on at different accelerators. After the first round of experiments allowing a separation of the strangeness form factors G{sub E}{sup s} and G{sub M}{sup s} at a Q{sup 2}-value of 0.1 (GeV/c){sup 2}, new, preliminary results have been achieved at 0.23 (GeV/c){sup 2}.

  1. Emission of neutron-proton and proton-proton pairs in neutrino scattering

    NASA Astrophysics Data System (ADS)

    Ruiz Simo, I.; Amaro, J. E.; Barbaro, M. B.; De Pace, A.; Caballero, J. A.; Megias, G. D.; Donnelly, T. W.

    2016-11-01

    We use a recently developed model of relativistic meson-exchange currents to compute the neutron-proton and proton-proton yields in (νμ ,μ-) scattering from 12C in the 2p-2h channel. We compute the response functions and cross sections with the relativistic Fermi gas model for different kinematics from intermediate to high momentum transfers. We find a large contribution of neutron-proton configurations in the initial state, as compared to proton-proton pairs. In the case of charge-changing neutrino scattering the 2p-2h cross section of proton-proton emission (i.e., np in the initial state) is much larger than for neutron-proton emission (i.e., two neutrons in the initial state) by a (ω , q)-dependent factor. The different emission probabilities of distinct species of nucleon pairs are produced in our model only by meson-exchange currents, mainly by the Δ isobar current. We also analyze other effects including exchange contributions and the effect of the axial and vector currents.

  2. Complete Set of Deuteron Analyzing Powers for dp Elastic Scattering at Intermediate Energies and Three Nucleon Forces

    NASA Astrophysics Data System (ADS)

    Sekiguchi, K.; Wada, Y.; Miyazaki, J.; Taguchi, T.; Gebauer, U.; Dozono, M.; Kawase, S.; Kubota, Y.; Lee, C. S.; Maeda, Y.; Mashiko, T.; Miki, K.; Okamura, H.; Sakaguchi, S.; Sakai, H.; Sakamoto, N.; Sasano, M.; Shimizu, Y.; Takahashi, K.; Tang, T. L.; Uesaka, T.; Wakasa, T.; Yako, K.

    With the aim of clarifying roles of the 3NFs in nuclei experimental programs with polarized deuterons beams at intermediate energies are in progress at RIKEN RI Beam Factory. As the first step, we have measured a complete set of deuteron analyzing powers in deuteron-proton elastic scattering at 250 and 294 MeV/nucleon. The obtained data are compared with the Faddeev calculations based on the modern nucleon-nucleon forces together with the Tucson-Melbourne'99, and UrbanaIX three nucleon forces.

  3. Complete Set of Deuteron Analyzing Powers for dp Elastic Scattering at Intermediate Energies and Three Nucleon Forces

    NASA Astrophysics Data System (ADS)

    Sekiguchi, K.; Okamura, H.; Wada, Y.; Miyazaki, J.; Taguchi, T.; Gebauer, U.; Dozono, M.; Kawase, S.; Kubota, Y.; Lee, C. S.; Maeda, Y.; Mashiko, T.; Miki, K.; Sakaguchi, S.; Sakai, H.; Sakamoto, N.; Sasano, M.; Shimizu, Y.; Takahashi, K.; Tang, R.; Uesaka, T.; Wakasa, T.; Yako, K.

    2014-08-01

    With the aim of clarifying roles of the 3NFs in nuclei experimental programs with the polarized deuteron beam at intermediate energies are in progress at RIKEN RI Beam Factory. As the first step, we have measured a complete set of deuteron analyzing powers in deuteron-proton elastic scattering at 250 and 294 MeV/nucleon. The obtained data are compared with the Faddeev calculations based on the modern nucleon-nucleon forces together with the Tucson-Melbourne'99, and UrbanaIX three nucleon forces.

  4. Two-Phase Emission Detector for Measuring Coherent Neutrino-Nucleus Scattering

    SciTech Connect

    Bernstein, A; Hagmann, C A

    2003-11-26

    Coherent scattering is a flavor-blind, high-rate, as yet undetected neutrino interaction predicted by the Standard Model. We propose to use a compact (kg-scale), two-phase (liquid-gas) argon ionization detector to measure coherent neutrino scattering off nuclei. In our approach, neutrino-induced nuclear recoils in the liquid produce a weak ionization signal, which is transported into a gas under the influence of an electric field, amplified via electroluminescence, and detected by phototubes or avalanche diodes. This paper describes the features of the detector, and estimates signal and background rates for a reactor neutrino source. Relatively compact detectors of this type, capable of detecting coherent scattering, offer a new approach to flavor-blind detection of man-made and astronomical neutrinos, and may allow development of compact neutrino detectors capable of nonintrusive real-time monitoring of fissile material in reactors.

  5. Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances

    NASA Astrophysics Data System (ADS)

    Yao, De-Liang; Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A. M.; Gegelia, J.; Krebs, H.; Meißner, Ulf-G.

    2016-05-01

    We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the S- and P -partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the D and F waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in order to determine the strangeness content of the nucleon, we calculate the octet baryon masses in the presence of decuplet resonances up to next-to-next-to-leading order in SU(3) baryon chiral perturbation theory. The octet baryon sigma terms are predicted as a byproduct of this calculation.

  6. Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces

    SciTech Connect

    Hupin, Guillaume; Langhammer, Joachim; Navratil, Petr; Quaglioni, Sofia; Calci, Angelo; Roth, Robert

    2013-11-27

    We extend the ab initio no-core shell model/resonating-group method to include three-nucleon (3N) interactions for the description of nucleon-nucleus collisions. We outline the formalism, give algebraic expressions for the 3N-force integration kernels, and discuss computational aspects of two alternative implementations. The extended theoretical framework is then applied to nucleon-4He elastic scattering using similarity-renormalization-group (SRG)-evolved nucleon-nucleon plus 3N potentials derived from chiral effective field theory. We analyze the convergence properties of the calculated phase shifts and explore their dependence upon the SRG evolution parameter. We include up to six excited states of the 4He target and find significant effects from the inclusion of the chiral 3N force, e.g., it enhances the spin-orbit splitting between the 3/2 and 1/2 resonances and leads to an improved agreement with the phase shifts obtained from an accurate R-matrix analysis of the five-nucleon experimental data. As a result, we find remarkably good agreement with measured differential cross sections at various energies below the d+3H threshold, while analyzing powers manifest larger deviations from experiment for certain energies and angles.

  7. A study of double vertex events in the neutrino-nucleon interactions

    SciTech Connect

    Barbaro, P.d.; Bodek, A.; Budd, H.S.; Sakumoto, W.K. ); Bachmann, K.; Blair, R.; Foudas, C.; Lefmann, W.C.; Leung, W.C.; Mishra, S.R.; Quintas, P.; Rabinowitz, S.A.; Sciulli, F.; Seligman, W.; Shaevitz, M.H. ); Merritt, F.S.; Oreglia, M.J.; Schellman, H.; Schumm, B. ); Bernstein, R.H.; Borcherding, F.; Lamm, M.J.; Marsh, W.; Yovanovitch, D. ); Sandler, P.H.; Smith, W.H. )

    1992-02-05

    We searched for candidates of neutral heavy lepton (NHL) production in a sample of 2.6 million neutrino interactions in the Columbia-Chicago-Fermilab-Rochester (CCFR) neutrino detector. No evidence for a NHL was found in the charged current density channel, NHL[r arrow][mu][sup [minus

  8. Mechanism of pion production in {alpha}p scattering at 1 GeV/nucleon

    SciTech Connect

    Alkhazov, G. D.; Prokofiev, A. N. Smirnov, I. B.; Strokovsky, E. A.

    2012-09-15

    An analysis of the experimental data on one-pion and two-pion production in the p({alpha}, {alpha} Prime )X reaction studied in a semi-exclusive experiment at an energy of E{sub {alpha}} = 4.2 GeV has been performed. The obtained results demonstrate that the inelastic {alpha}-particle scattering on the proton at the energy of the experiment proceeds either through excitation and decay of the {Delta} resonance in the projectile {alpha} particle, or through excitation in the target proton of the Roper resonance, which decays into a nucleon and a pion, or a nucleon and a {sigma} meson-a system of two pions in the isospin I = 0, S-wave state.

  9. Molecular Dynamics Simulations for Neutrino Scattering in Heterogeneous High Dense Media

    SciTech Connect

    Caballero, O. L.

    2008-03-13

    The dynamics of core-collapse supernovae is sensitive to neutrino scattering. Using molecular dynamics simulations, we calculated ion static structure factors and neutrino mean free paths. We simulated the stellar medium as composed in one case by single ion specie, and in the other by a mixture of ions. For the heterogeneous plasma we used two different models and systematically found the neutrino mean free path is shorter for an ion mixture.

  10. Elastic pion-nucleon scattering in chiral perturbation theory: A fresh look

    NASA Astrophysics Data System (ADS)

    Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A.; Krebs, H.; Meißner, Ulf-G.

    2016-07-01

    Elastic pion-nucleon scattering is analyzed in the framework of chiral perturbation theory up to fourth order within the heavy-baryon expansion and a covariant approach based on an extended on-mass-shell renormalization scheme. We discuss in detail the renormalization of the various low-energy constants and provide explicit expressions for the relevant β functions and the finite subtractions of the power-counting breaking terms within the covariant formulation. To estimate the theoretical uncertainty from the truncation of the chiral expansion, we employ an approach which has been successfully applied in the most recent analysis of the nuclear forces. This allows us to reliably extract the relevant low-energy constants from the available scattering data at low energy. The obtained results provide clear evidence that the breakdown scale of the chiral expansion for this reaction is related to the Δ resonance. The explicit inclusion of the leading contributions of the Δ isobar is demonstrated to substantially increase the range of applicability of the effective field theory. The resulting predictions for the phase shifts are in an excellent agreement with the predictions from the recent Roy-Steiner-equation analysis of pion-nucleon scattering.

  11. High energy proton-proton elastic scattering at the Large Hadron Collider and nucleon structure

    NASA Astrophysics Data System (ADS)

    Luddy, Richard Joseph

    To gain insight into the structure of the nucleon, we pursue the development of the phenomenological model of Islam et al. (IIFS model) for high energy elastic pp and p¯p scattering. We determine the energy dependence of the parameters of the IIFS model using the available elastic differential cross section data from SPS Collider and Tevatron and the known asymptotic behavior of sigmatot (s) and rho(s) from dispersion relation calculations and more recent analyses of Cudell et al. (COMPETE Collaboration). Next, we incorporate a high energy elastic valence quark-quark scattering amplitude into the model based on BFKL pomeron to describe small impact parameter (large | t|) pp collisions. Finally, we predict the pp elastic differential cross section at the unprecedented c.m. energy of s = 14.0 TeV at the Large Hadron Collider (LHC). This prediction assumes crucial significance---because of an approved experiment at LHC: TOTal and Elastic Measurement (TOTEM). The TOTEM group plans to measure pp elastic dsigma/dt at 14.0 TeV all the way from momentum transfer |t| = 0 to |t| ≃ 10 GeV 2. Their measurement will stringently test not only the diffraction and o-exchange descriptions of the original IIFS model, but also the additional valence quark-quark scattering contribution that we find to be dominant for large |t|. Successful quantitative verification of the predicted dsigma/dt will mean that our picture of the nucleon with an outer cloud of qq¯ condensed ground state, an inner core of topological baryonic charge, and a still smaller core of massless valence quarks provides a realistic description of nucleon structure.

  12. Strangeness S =-1 hyperon-nucleon scattering in covariant chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Li, Kai-Wen; Ren, Xiu-Lei; Geng, Li-Sheng; Long, Bingwei

    2016-07-01

    Motivated by the successes of covariant baryon chiral perturbation theory in one-baryon systems and in heavy-light systems, we study relevance of relativistic effects in hyperon-nucleon interactions with strangeness S =-1 . In this exploratory work, we follow the covariant framework developed by Epelbaum and Gegelia to calculate the Y N scattering amplitude at leading order. By fitting the five low-energy constants to the experimental data, we find that the cutoff dependence is mitigated, compared with the heavy-baryon approach. Nevertheless, the description of the experimental data remains quantitatively similar at leading order.

  13. a Phenomenological Determination of the Pion-Nucleon Scattering Lengths from Pionic Hydrogen

    NASA Astrophysics Data System (ADS)

    Ericson, T. E. O.; Loiseau, B.; Wycech, S.

    A model independent expression for the electromagnetic corrections to a phenomenological hadronic pion-nucleon (πN) scattering length ah, extracted from pionic hydrogen, is obtained. In a non-relativistic approach and using an extended charge distribution, these corrections are derived up to terms of order α2 log α in the limit of a short-range hadronic interaction. We infer ahπ ^-p=0.0870(5)m-1π which gives for the πNN coupling through the GMO relation g2π ^± pn/(4π )=14.04(17).

  14. Charged-current quasielastic neutrino scattering cross sections on 12C with realistic spectral and scaling functions

    NASA Astrophysics Data System (ADS)

    Ivanov, M. V.; Antonov, A. N.; Caballero, J. A.; Megias, G. D.; Barbaro, M. B.; de Guerra, E. Moya; Udías, J. M.

    2014-01-01

    Charge-current quasielastic (anti)neutrino scattering cross sections on a 12C target are analyzed using a spectral function S (p,E) that gives a scaling function in accordance with the (e ,e') scattering data. The spectral function accounts for the nucleon-nucleon (NN) correlations, it has a realistic energy dependence, and natural orbitals (NOs) from the Jastrow correlation method are used in its construction. In all calculations the standard value of the axial mass MA=1.032 GeV/c2 is used. The results are compared with those when NN correlations are not included, as in the relativistic Fermi gas model, or when harmonic-oscillator single-particle wave functions are used instead of NOs. The role of the final-state interactions (FSIs) on the theoretical spectral and scaling functions, as well as on the cross sections, is accounted for. A comparison of the results for the cases with and without FSI, as well as to results from the phenomenological scaling function obtained from the superscaling analysis, is carried out. Our calculations based on the impulse approximation underpredict the MiniBooNE data but agree with the data from the NOMAD experiment. The possible missing ingredients in the considered theoretical models are discussed.

  15. Longitudinal-Transverse Separation of Deep-Inelastic Scattering at Low Q² on Nucleons and Nuclei

    SciTech Connect

    Tvaskis, Vladas

    2004-12-09

    Since the early experiments at SLAC, which discovered the nucleon substructure and led to the development of the quark parton model, deep inelastic scattering (DIS) has been the most powerful tool to investigate the partonic substructure of the nucleon. After about 30 years of experiments with electron and muon beams the nucleon structure function F{sub 2}(x,Q{sup 2}) is known with high precision over about four orders of magnitude in x and Q{sup 2}. In the region of Q{sup 2} > 1 (GeV/c){sup 2} the results of the DIS measurements are interpreted in terms of partons (quarks and gluons). The theoretical framework is provided in this case by perturbative Quantum Chromo Dynamics (pQCD), which includes scaling violations, as described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations. The description starts to fail when Q{sup 2} becomes of the order of 1 (GeV/c){sup 2}, where non-perturbative effects (higher-twist effects), which are still not fully understood, become important (non-pQCD). The sensitivity for order-n twist effects increases with decreasing Q{sup 2}, since they include a factor 1/(Q{sup 2}{sup n}) (n {ge} 1).

  16. A Lane consistent optical model potential for nucleon scattering on actinide nuclei with extended coupling

    NASA Astrophysics Data System (ADS)

    Quesada, José Manuel; Capote, Roberto; Soukhovitski, Efrem S.; Chiba, Satoshi

    2016-03-01

    An extension for odd-A actinides of a previously derived dispersive coupledchannel optical model potential (OMP) for 238U and 232Th nuclei is presented. It is used to fit simultaneously all the available experimental databases including neutron strength functions for nucleon scattering on 232Th, 233,235,238U and 239Pu nuclei. Quasi-elastic (p,n) scattering data on 232Th and 238U to the isobaric analogue states of the target nucleus are also used to constrain the isovector part of the optical potential. For even-even (odd) actinides almost all low-lying collective levels below 1 MeV (0.5 MeV) of excitation energy are coupled. OMP parameters show a smooth energy dependence and energy independent geometry.

  17. Determination of the pion-nucleon coupling constant and scattering lengths

    NASA Astrophysics Data System (ADS)

    Ericson, T. E.; Loiseau, B.; Thomas, A. W.

    2002-07-01

    We critically evaluate the isovector Goldberger-Miyazawa-Oehme (GMO) sum rule for forward πN scattering using the recent precision measurements of π-p and π-d scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data, g2c(GMO)/ 4π=14.11+/-0.05(statistical)+/-0.19(systematic) or f2c/4π=0.0783(11). This value is intermediate between that of indirect methods and the direct determination from backward np differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the pion-proton and pion-neutron scattering lengths with high precision, namely, (aπ-p+aπ-n)/2=[- 12+/-2(statistical)+/-8(systematic)]×10-4 m-1π and (aπ-p-aπ- n)/2=[895+/-3(statistical)+/-13 (systematic)]×10-4 m-1π. For the need of the present analysis, we improve the theoretical description of the pion-deuteron scattering length.

  18. A study of double vertex events in the neutrino-nucleon interactions

    NASA Astrophysics Data System (ADS)

    Barbaro, P. de; Bodek, A.; Budd, H. S.; Sakumoto, W. K.; Bachmann, K.; Blair, R.; Foudas, C.; Lefmann, W. C.; Leung, W. C.; Mishra, S. R.; Quintas, P.; Rabinowitz, S. A.; Sciulli, F.; Seligman, W.; Shaevitz, M. H.; Merritt, F. S.; Oreglia, M. J.; Schellman, H.; Schumm, B.; Bernstein, R. H.; Borcherding, F.; Lamm, M. J.; Marsh, W.; Yovanovitch, D.; Sandler, P. H.; Smith, W. H.

    1992-02-01

    We searched for candidates of neutral heavy lepton (NHL) production in a sample of 2.6 million neutrino interactions in the Columbia-Chicago-Fermilab-Rochester (CCFR) neutrino detector. No evidence for a NHL was found in the charged current density channel, NHL→μ-+X. A NHL with mass between 0.5 and 3.0 GeV/c2 has been excluded (at 90% CL) for couplings to muons between 1×10-2 and 1±10-4 of the Fermi strength, depending on the NHL mass. The results of a search for a neutral heavy particle decaying via the neutral channel are also discussed.

  19. The MINERvA Neutrino Scattering Experiment at Fermilab

    SciTech Connect

    Schmitz, David W.

    2011-11-23

    The MINER{nu}A experiment at Fermilab is aimed at precision measurements of neutrino interactions in nuclei for energies up to a few GeV. MINER{nu}A makes use of a fine-grained, fully active detector design and a range of nuclear target materials. The experiment began taking data in the NuMI neutrino beam at Fermilab in late 2009 and will collect data in both the neutrino and antineutrino configurations of the beamline.

  20. Measurement of the Parity-Violating Asymmetries in Electron-Deuteron Scattering in the Nucleon Resonance Region

    SciTech Connect

    Wang, Diancheng; Pan, Kai; Subedi, Ramesh R.; Deng, Xiaoyan

    2013-08-22

    We report on parity-violating asymmetries in the nucleon resonance region measured using 5 - 6 GeV longitudinally polarized electrons scattering off an unpolarized deuterium target. These results are the first parity-violating asymmetry data in the resonance region beyond the Δ(1232), and provide a verification of quark-hadron duality in the nucleon electroweak γ Z interference structure functions at the (10-15)% level. The results are of particular interest to models relevant for calculating the γ Z box-diagram corrections to elastic parity-violating electron scattering measurements.

  1. Double-doorway model for pion-nucleon elastic scattering in the [ital S][sub 11] channel

    SciTech Connect

    McLeod, R.J. ); Ernst, D.J. )

    1994-02-01

    Resonance energy pion-nucleon elastic scattering in the [ital S][sub 11] channel is modeled by assuming that the pion plus nucleon couple to two resonances, the resonances couple to inleastic channels, but there is no direct coupling of the pion-nucleon channel to the inelastic channels. The model is solved by matrix [ital N]/[ital D] methods. The coupling of the inelastic channels to the elastic channel is taken directly from data. Using form factors from the constituent quark model, we find the model is able to reproduce the experimentally determined pion-nucleon phases in the [ital S][sub 11] channel over the resonance region and that the resonance part of the amplitude is negligible at low energies.

  2. Incoherent $J/\\psi$ electroproduction from the deuteron at energies available at Jefferson Laboratory and the elastic$J/\\psi$-nucleon scattering amplitude

    SciTech Connect

    Howell, Gary T.; Miller, Gerald A.

    2013-07-01

    Calculations are presented for incoherent $J/\\psi$ electroproduction from the deuteron at JLab energies, including the effects of $J/\\psi$-nucleon rescattering in the final state, in order to determine the feasibility of measuring the $J/\\psi$-nucleon scattering length, or the $J/\\psi$-nucleon scattering amplitude at lower relative energies than in previous measurements. It is shown that for a scattering length of the size predicted by existing theoretical calculations, it would not be possible to determine the scattering length. However, it may be possible to determine the scattering amplitude at significantly lower relative energies than the only previous measurements.

  3. Neutrinos and dark matter

    SciTech Connect

    Ibarra, Alejandro

    2015-07-15

    Neutrinos could be key particles to unravel the nature of the dark matter of the Universe. On the one hand, sterile neutrinos in minimal extensions of the Standard Model are excellent dark matter candidates, producing potentially observable signals in the form of a line in the X-ray sky. On the other hand, the annihilation or the decay of dark matter particles produces, in many plausible dark matter scenarios, a neutrino flux that could be detected at neutrino telescopes, thus providing non-gravitational evidence for dark matter. More conservatively, the non-observation of a significant excess in the neutrino fluxes with respect to the expected astrophysical backgrounds can be used to constrain dark matter properties, such as the self-annihilation cross section, the scattering cross section with nucleons and the lifetime.

  4. Recent Developments in Neutrino/Antineutrino-Nucleus Interactions

    DOE PAGES

    Morfín, Jorge G.; Nieves, Juan; Sobczyk, Jan T.

    2012-01-01

    Recent experimental results and developments in the theoretical treatment of neutrino-nucleus interactions in the energy range of 1–10 GeV are discussed. Difficulties in extracting neutrino-nucleon cross sections from neutrino-nucleus scattering data are explained and significance of understanding nuclear effects for neutrino oscillation experiments is stressed. Detailed discussions of the status of two-body current contribution in the kinematic region dominated by quasielastic scattering and specific features of partonic nuclear effects in weak DIS scattering are presented.

  5. Recent Developments in Neutrino/Antineutrino-Nucleus Interactions

    SciTech Connect

    Morfín, Jorge G.; Nieves, Juan; Sobczyk, Jan T.

    2012-01-01

    Recent experimental results and developments in the theoretical treatment of neutrino-nucleus interactions in the energy range of 1–10 GeV are discussed. Difficulties in extracting neutrino-nucleon cross sections from neutrino-nucleus scattering data are explained and significance of understanding nuclear effects for neutrino oscillation experiments is stressed. Detailed discussions of the status of two-body current contribution in the kinematic region dominated by quasielastic scattering and specific features of partonic nuclear effects in weak DIS scattering are presented.

  6. Short-range nucleon correlations and neutrino emission by neutron stars

    SciTech Connect

    Frankfurt, Leonid; Strikman, Mark

    2008-10-13

    We argue that significant probability of protons with momenta above their Fermi surface leads for proton concentrations p/n{>=}1/8 to the enhancement of termally excited direct and modified URCA processes within a cold neutron star, and to a nonzero probability of direct URCA processes for small proton concentrations (p/n{<=}1/8). We evaluate high momentum tails of neutron, proton and electrons distributions within a neutron star. We expect also significantly faster neutrino cooling of hyperon stars.

  7. Neutrino Production of a Charmed Meson and the Transverse Spin Structure of the Nucleon.

    PubMed

    Pire, B; Szymanowski, L

    2015-08-28

    We calculate the amplitude for exclusive neutrino production of a charmed meson on an unpolarized target in the collinear QCD approach, where generalized parton distributions (GPDs) factorize from perturbatively calculable coefficient functions. We demonstrate that the transversity chiral odd GPDs contribute to the transverse cross section if the hard amplitude is calculated up to order m_{c}/Q. We show how to access these GPDs through the azimuthal dependence of the νN→μ^{-}D^{+}N differential cross section. PMID:26371643

  8. Virtual Compton Scattering at low energy and the generalized polarizabilities of the nucleon

    SciTech Connect

    Helene Fonvieille

    2003-05-01

    Virtual Compton Scattering (VCS) {gamma}*p {yields} {gamma}p at low CM energy gives access to the Generalized Polarizabilities of the nucleon. These observables generalize the concept of electromagnetic polarizabilities to the case of a virtual photon. Dedicated VCS experiments have been performed at MAMI, Jefferson Lab and MIT-Bates. The experimental status is reviewed, including analysis methods and physics results. The measurement of absolute (ep {yields} ep{gamma}) cross sections allows the extraction of the two unpolarized VCS structure functions P{sub LL}-P{sub TT}/{epsilon} and P{sub LT}, which are combinations of the Generalized Polarizabilities of the proton. Future prospects in the field of VCS at low energy are also presented.

  9. Deeply Virtual Compton Scattering on nucleons and nuclei in generalized vector meson dominance model

    SciTech Connect

    Vadim Guzey; Klaus Goeke; Marat Siddikov

    2008-02-01

    We consider Deeply Virtual Compton Scattering (DVCS) on nucleons and nuclei in the framework of generalized vector meson dominance (GVMD) model. We demonstrate that the GVMD model provides a good description of the HERA data on the dependence of the proton DVCS cross section on $Q^2$, $W$ (at $Q^2=4$ GeV$^2$) and $t$. At $Q^2 = 8$ GeV$^2$, the soft $W$-behavior of the GVMD model somewhat underestimates the $W$-dependence of the DVCS cross section due to the hard contribution not present in the GVMD model. We estimate $1/Q^2$ power-suppressed corrections to the DVCS amplitude and the DVCS cross section and find them large. We also make predictions for the nuclear DVCS amplitude and cross section in the kinematics of the future Electron-Ion Collider. We predict significant nuclear shadowing, which matches well predictions of the leading-twist nuclear shadowing in DIS on nuclei.

  10. Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter.

    PubMed

    Lynn, J E; Tews, I; Carlson, J; Gandolfi, S; Gezerlis, A; Schmidt, K E; Schwenk, A

    2016-02-12

    We present quantum Monte Carlo calculations of light nuclei, neutron-α scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral effective field theory up to next-to-next-to-leading order (N(2)LO). The two undetermined 3N low-energy couplings are fit to the (4)He binding energy and, for the first time, to the spin-orbit splitting in the neutron-α P-wave phase shifts. Furthermore, we investigate different choices of local 3N-operator structures and find that chiral interactions at N(2)LO are able to simultaneously reproduce the properties of A=3,4,5 systems and of neutron matter, in contrast to commonly used phenomenological 3N interactions.

  11. Chiral representation of the πN scattering amplitude and the pion-nucleon sigma term

    NASA Astrophysics Data System (ADS)

    Alarcón, J. M.; Camalich, J. Martin; Oller, J. A.

    2012-03-01

    We present a novel analysis of the πN scattering amplitude in Lorentz covariant baryon chiral perturbation theory renormalized in the extended-on-mass-shell scheme. This amplitude, valid up to O(p3) in the chiral expansion, systematically includes the effects of the Δ(1232) in the δ-counting, has the right analytic properties, and is renormalization-scale independent. This approach overcomes the limitations that previous chiral analyses of the πN scattering amplitude had, providing an accurate description of the partial wave phase shifts of the Karlsruhe-Helsinki and George-Washington groups up to energies just below the resonance region. We also study the solution of the Matsinos group which focuses on the parameterization of the data at low energies. Once the values of the low-energy constants are determined by adjusting the center-of-mass energy dependence of the amplitude to the scattering data, we obtain predictions on different observables. In particular, we extract an accurate value for the pion-nucleon sigma term, σπN. This allows us to avoid the usual method of extrapolation to the unphysical region of the amplitude. Our study indicates that the inclusion of modern meson-factory and pionic-atom data favors relatively large values of the sigma term. We report the value σπN=59(7)MeV and comment on implications that this result may have.

  12. Pion-Nucleon Scattering and Analysis from threshold to the N*(1440) Resonance Region

    NASA Astrophysics Data System (ADS)

    Sadler, Michael; Watson, Shon; Stahov, Jugoslav

    2008-10-01

    Many measurements for pion-nucleon scattering from threshold to the N*(1440) resonance region have been made since 1980, when the landmark Karlsruhe-Helsinki (KH) and Carnegie Mellon-Berkeley (CMB) partial wave analyses (PWA) were completed. These measurements consist of differential cross sections and analyzing powers for elastic scattering and charge exchange. Spin rotation parameters for elastic scattering in the momentum interval 0.4 -- 0.7 GeV/c have also been obtained. The program culminated with measurements of π-p -> Neutrals (charge exchange, multiple pi-zero final states, eta production, and inverse photoproduction) using the Crystal Ball at BNL. Resonance parameters for the N*(1440) in the Review of Particle Physics by the Particle Data Group have been obtained from the KH and CMB analyses. The 2006 edition also includes the analysis by George Washington University (GWU) ``for averages, fits, limits, etc.'', but the parameters were unchanged. An overview of the data will be presented along with comparisons to PWA.

  13. Electron events from the scattering with solar neutrinos in the search of keV scale sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Liao, Wei; Wu, Xiao-Hong; Zhou, Hang

    2014-05-01

    In a previous work, we showed that it is possible to detect keV scale sterile neutrino dark matter νs in a β decay experiment using radioactive sources such as T3 or Ru106. The signals of this dark matter candidate are monoenergetic electrons produced in the neutrino capture process νs+ N'→N+e-. These electrons have energy greater than the maximum energy of the electrons produced in the associated decay process N'→N+e-+ν ¯e. Hence, signal electron events are well beyond the end point of the β decay spectrum and are not polluted by the β decay process. Another possible background, which is a potential threat to the detection of νs dark matter, is the electron event produced by the scattering of solar neutrinos with electrons in target matter. In this article, we study in detail this possible background and discuss its implications for the detection of keV scale sterile neutrino dark matter. In particular, bound state features of electrons in Ru atoms are considered with care in the scattering process when the kinetic energy of the final electron is the same order of magnitude of the binding energy.

  14. Neutrino-nucleus scattering of {sup 95,97}Mo and {sup 116}Cd

    SciTech Connect

    Ydrefors, E.; Almosly, W.; Suhonen, J.

    2013-12-30

    Accurate knowledge about the nuclear responses to supernova neutrinos for relevant nuclear targets is important both for neutrino detection and for astrophysical applications. In this paper we discuss the cross sections for the charged-current neutrino-nucleus scatterings off {sup 95,97}Mo and {sup 116}Cd. The microscopic quasiparticle-phonon model is adopted for the odd-even nuclei {sup 95,97}Mo. In the case of {sup 116}Cd we present cross sections both for the Bonn one-boson-exchange potential and self-consistent calculations based on modern Skyrme interactions.

  15. Interplay of Neutrino Opacities in Core-collapse Supernova Simulations

    SciTech Connect

    Lentz, Eric J; Mezzacappa, Anthony; Messer, Bronson; Hix, William Raphael; Bruenn, S. W.

    2012-01-01

    We have conducted a series of numerical experiments using spherically symmetric, general relativistic, neutrino radiation hydrodynamics with the code Agile-BOLTZTRAN to examine the effects of including, and improving, the calculation of neutrino opacities on the development of supernova simulations by removing, or replacing, each opacity individually, or removing opacities in groups. We find that during core collapse improvements to electron capture (EC) on nuclei, namely EC on an ensemble of nuclei based on the hybrid model, relative to the simpler independent-particle approximation (IPA) for a mean nucleus, plays the most important role of all tested neutrino opacities. Low-energy neutrinos emitted by nuclear EC preferentially escape during collapse leading to larger deleptonization of the collapsing core, without the energy downscattering via non-isoenergetic scattering (NIS) on electrons required for the models with IPA nuclear EC. During shock breakout the primary influence on the emergent neutrinos arises from NIS on electrons. For the accretion phase NIS on free nucleons and pair emission by $e^+e^-$-annihilation have the largest impact on the neutrino emission and shock evolution. Other opacities evaluated including nucleon-nucleon bremsstrahlung and especially neutrino-positron scattering have little measurable impact on neutrino emission or shock dynamics. Modern treatments of nuclear electron capture, $e^+e^-$-annihilation pair emission, and non-isoenergetic scattering on electrons and free nucleons are critical elements of core-collapse simulations of all dimensionality.

  16. INTERPLAY OF NEUTRINO OPACITIES IN CORE-COLLAPSE SUPERNOVA SIMULATIONS

    SciTech Connect

    Lentz, Eric J.; Mezzacappa, Anthony; Hix, W. Raphael; Messer, O. E. Bronson; Bruenn, Stephen W.

    2012-11-20

    We have conducted a series of numerical experiments using spherically symmetric, general relativistic, neutrino radiation hydrodynamics with the code Agile-BOLTZTRAN to examine the effects of modern neutrino opacities on the development of supernova simulations. We test the effects of opacities by removing opacities or by undoing opacity improvements for individual opacities and groups of opacities. We find that improvements to electron capture (EC) on nuclei, namely EC on an ensemble of nuclei using modern nuclear structure models rather than the simpler independent-particle approximation (IPA) for EC on a mean nucleus, plays the most important role during core collapse of all tested neutrino opacities. Low-energy neutrinos emitted by modern nuclear EC preferentially escape during collapse without the energy downscattering on electrons required to enhance neutrino escape and deleptonization for the models with IPA nuclear EC. During shock breakout the primary influence on the emergent neutrinos arises from non-isoenergetic scattering (NIS) on electrons. For the accretion phase, NIS on free nucleons and pair emission by e {sup +} e {sup -} annihilation have the largest impact on the neutrino emission and shock evolution. Other opacities evaluated, including nucleon-nucleon bremsstrahlung and especially neutrino-positron scattering, have little measurable impact on neutrino emission or shock dynamics. Modern treatments of nuclear EC, e {sup +} e {sup -}-annihilation pair emission, and NIS on electrons and free nucleons are critical elements of core-collapse simulations of all dimensionality.

  17. Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA

    DOE PAGES

    Mousseau, J.

    2016-04-19

    Here, the MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5–50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy.more » However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x < 0.1. This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.« less

  18. Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA

    NASA Astrophysics Data System (ADS)

    Mousseau, J.; Wospakrik, M.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Zavala, G.; Zhang, D.; Minerν A Collaboration

    2016-04-01

    The MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5-50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy. However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x <0.1 . This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice et al. (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.

  19. Single-inclusive production of hadrons and jets in lepton-nucleon scattering at NLO

    NASA Astrophysics Data System (ADS)

    Hinderer, Patriz; Schlegel, Marc; Vogelsang, Werner

    2015-07-01

    We present next-to-leading order (NLO) perturbative-QCD calculations of the cross sections for ℓN →h X and ℓN →jet X . The main feature of these processes is that the scattered lepton is not observed, so that the hard scale that makes them perturbative is set by the transverse momentum of the hadron or jet. Kinematically, the two processes thus become direct analogs of single-inclusive production in hadronic collisions which, as has been pointed out in the literature, makes them promising tools for exploring transverse spin phenomena in QCD when the incident nucleon is transversely polarized. We find that the NLO corrections are sizable for the spin-averaged cross section. We also investigate in how far the scattering is dominated by the exchange of almost real (Weizsäcker-Williams) photons. We present numerical estimates of the cross sections for present-day fixed target experiments and for a possible future electron-ion collider.

  20. Effect of the tensor part of Skyrme interaction on the description of elastic nucleon-nucleus scattering on the basis of the optical model

    SciTech Connect

    Kuprikov, V. I.; Pilipenko, V. V.

    2013-01-15

    A microscopic optical nucleon-nucleus potential constructed on the basis of calculating the mass operator for the single-particle Green's function with Skyrme nucleon-nucleon forces was used to study the effect of the tensor part of Skyrme forces on describing differential cross sections for elastic nucleon-nucleus scattering and the structure of nuclei within a self-consistent approach. It was shown that an increase in the tensor terms of nucleon-nucleon forces impaired the description of nucleon-nucleus scattering within the model being considered. The parameters of Skyrme forces were optimized on the basis of an analysis of cross sections for neutron-nucleus scattering, the properties of nuclear matter and the structure of nuclei being tested in doing this. This optimization led to nucleon-nucleon force versions where the tensor part was small or zero and which described satisfactorily the structure of nuclei and cross sections for elastic neutron and proton scattering on nuclei over a broad range of target mass numbers.

  1. A method for measuring coherent elastic neutrino-nucleus scattering at a far off-axis high-energy neutrino beam target

    NASA Astrophysics Data System (ADS)

    Brice, S. J.; Cooper, R. L.; DeJongh, F.; Empl, A.; Garrison, L. M.; Hime, A.; Hungerford, E.; Kobilarcik, T.; Loer, B.; Mariani, C.; Mocko, M.; Muhrer, G.; Pattie, R.; Pavlovic, Z.; Ramberg, E.; Scholberg, K.; Tayloe, R.; Thornton, R. T.; Yoo, J.; Young, A.

    2014-04-01

    We present an experimental method for measuring the process of coherent elastic neutrino-nucleus scattering (CENNS). This method uses a detector situated transverse to a high-energy neutrino beam production target. This detector would be sensitive to the low-energy neutrinos arising from decay-at-rest pions in the target. We discuss the physics motivation for making this measurement and outline the predicted backgrounds and sensitivities using this approach. We report a measurement of neutron backgrounds as found in an off-axis surface location of the Fermilab Booster Neutrino Beam (BNB) target. The results indicate that the Fermilab BNB target is a favorable location for a CENNS experiment.

  2. A dedicated torsion balance to detect neutrinos by coherent scattering on high Debye temperature monocrystals

    NASA Astrophysics Data System (ADS)

    Cruceru, I.; Nicolescu, G.; Duliu, O. G.

    2008-11-01

    Coherent scattering of neutrinos on high Debye temperature monocrystals represent an alternative to detect solar as well as other high flux neutrino sources such as nuclear reactors or nuclear tests. Therefore, the possibility of detecting neutrinos by using sapphire monocrystals is presented and analyzed. Preliminary evaluations showed that 1 MeV neutrinos with a fluency density of 1012 cm-1 s-1 could interact with a 100 g sapphire monocrystal with a force of about 10-6 dyne, value measurable with a high sensitivity torsion balance. For this reason a torsion balance provided with 1 m length molybdenum or tungsten wire and an optical autocollimator able to measure small rotation angles of about 0.1 seconds of arc was designed, constructed and now is under preliminary tests. Both theoretical and practical implications of such kind of detector are presented and discussed.

  3. Measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon at $$\\langle E_{\

    DOE PAGES

    Wolcott, J.

    2016-02-25

    The first direct measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in the electron production angle, electron energy, and Q2 are presented. The ratio of the quasielastic, flux-integrated differential cross section in Q2 for νe with that of similarly selected νμ-induced events from the same exposure is used to probe assumptions that underpin conventional treatments of charged-current νe interactions used by long-baseline neutrino oscillation experiments. Furthermore, the data are found tomore » be consistent with lepton universality and are well described by the predictions of the neutrino event generator GENIE.« less

  4. Terascale Physics Opportunities at a High Statistics, High Energy Neutrino Scattering Experiment:. NuSOnG

    NASA Astrophysics Data System (ADS)

    Adams, T.; Batra, P.; Bugel, L.; Camilleri, L.; Conrad, J. M.; de Gouvêa, A.; Fisher, P. H.; Formaggio, J. A.; Jenkins, J.; Karagiorgi, G.; Kobilarcik, T. R.; Kopp, S.; Kyle, G.; Loinaz, W. A.; Mason, D. A.; Milner, R.; Moore, R.; Morfín, J. G.; Nakamura, M.; Naples, D.; Nienaber, P.; Olness, F. I.; Owens, J. F.; Pate, S. F.; Pronin, A.; Seligman, W. G.; Shaevitz, M. H.; Schellman, H.; Schienbein, I.; Syphers, M. J.; Tait, T. M. P.; Takeuchi, T.; Tan, C. Y.; van de Water, R. G.; Yamamoto, R. K.; Yu, J. Y.

    This paper presents the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering on Glass). This experiment uses a Tevatron-based neutrino beam to obtain over an order of magnitude higher statistics than presently available for the purely weak processes νμ + e- → νμ + e- and νμ + e- → νe + μ-. A sample of Deep Inelastic Scattering events which is over two orders of magnitude larger than past samples will also be obtained. As a result, NuSOnG will be unique among present and planned experiments for its ability to probe neutrino couplings to Beyond the Standard Model physics. Many Beyond Standard Model theories physics predict a rich hierarchy of TeV-scale new states that can correct neutrino cross-sections, through modifications of Zνν couplings, tree-level exchanges of new particles such as Z‧'s, or through loop-level oblique corrections to gauge boson propagators. These corrections are generic in theories of extra dimensions, extended gauge symmetries, supersymmetry, and more. The sensitivity of NuSOnG to this new physics extends beyond 5 TeV mass scales. This paper reviews these physics opportunities.

  5. Supernova matter at subnuclear densities as a resonant Fermi gas: enhancement of neutrino rates.

    PubMed

    Bartl, A; Pethick, C J; Schwenk, A

    2014-08-22

    At low energies nucleon-nucleon interactions are resonant and therefore supernova matter at subnuclear densities has many similarities to atomic gases with interactions dominated by a Feshbach resonance. We calculate the rates of neutrino processes involving nucleon-nucleon collisions and show that these are enhanced in mixtures of neutrons and protons at subnuclear densities due to the large scattering lengths. As a result, the rate for neutrino pair bremsstrahlung and absorption is significantly larger below 10(13) g cm(-3) compared to rates used in supernova simulations.

  6. Using Neutrino Nucleus Interactions as a Probe of the Strong Interaction

    SciTech Connect

    Morfin, Jorge G.

    2011-11-23

    Neutrino scattering experiments have been studying QCD for over 30 years. From the Gargamelle experiments in the early 70's, through the subsequent bubble chamber and electronic detector experiments in the 80's and 90's, neutrino scattering experiments have steadily accumulated increasing statistics and minimized their systematic errors. An example of the more recent studies of QCD with neutrinos is from the TeVatron neutrino beam--the NuTeV {nu}-Fe experiment. The problem the community faces in trying to study QCD with modern neutrino data is that there is no experimentally verified way to scale neutrino-nucleus (for example, Fe) results to the equivalent neutrino-nucleon values making it difficult to combine neutrino nucleus scattering data with charged-lepton nucleus and nucleon scattering data in QCD global fits to extract parton distribution functions. This is particularly crucial since there is now indications that nuclear effects in neutrino nucleus interactions are different than those measured in charged-lepton nucleus scattering. To better understand this situation, the MINER{nu}A neutrino-nucleus scattering experiment at Fermilab, a collaboration of elementary-particle and nuclear physicists, is systematically studying neutrino nuclear effects off of He, C, Fe and Pb for a more thorough A-dependent study of nuclear PDFs and these correction factors.

  7. Search for Elastic Coherent Neutrino Scattering off Atomic Nuclei at the Kalinin Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Akimov, D. Yu.; Belov, V. A.; Bolozdynya, A. I.; Burenkov, A. A.; Efremenko, Yu. V.; Etenko, A. V.; Kaplin, V. A.; Khromov, A. V.; Konovalov, A. M.; Kovalenko, A. G.; Kumpan, A. V.; Melikyan, Yu. A.; Rudik, D. G.; Sosnovtsev, V. V.

    We propose to detect and study neutrino neutral elastic coherent scattering off atomic nuclei with two-phase emission detector with liquid xenon as a target medium. One of the possible experimental site is a Kalinin Nuclear Power Plant (KNPP) situated in the Russian Federation. In this paper we discuss the design of the detector and expected signals and background for this site.

  8. Constraints on the virtual Compton scattering on the nucleon in a new dispersive formalism

    NASA Astrophysics Data System (ADS)

    Caprini, Irinel

    2016-04-01

    The dispersive representation of the virtual Compton forward scattering amplitude has been recently reexamined in connection with the evaluation of the Cottingham formula for the proton-neutron electromagnetic mass difference and the proton radius puzzle. The most difficult part of the analysis is related to one of the invariant amplitudes, denoted as T1(ν ,Q2), which requires a subtraction in the standard dispersion relation with respect to the energy ν at fixed photon momentum squared q2=-Q2. We propose an alternative dispersive framework, which implements analyticity and unitarity by combining the Cauchy integral relation at low and moderate energies with the modulus representation of the amplitude at high energies. Using techniques of functional analysis, we derive a necessary and sufficient condition for the consistency with analyticity of the subtraction function S1(Q2)=T1(0 ,Q2) , the cross sections measured at low and moderate energies and the Regge model assumed to be valid at high energies. From this condition we obtain model-independent constraints on the subtraction function, confronting them with the available information on nucleon magnetic polarizabilities and results reported recently in the literature. The formalism can be used also for testing the existence of a fixed pole at J =0 in the angular momentum plane, but more accurate data are necessary for a definite answer.

  9. A new paradigm for modeling the neutrino-nucleus cross section?

    SciTech Connect

    Benhar, Omar

    2011-11-23

    There is increasing evidence that the scheme, or paradigm, successfully applied to explain the wealth of electron-nucleus scattering data fails to describe the measured quasi elastic neutrino-nucleus cross sections. I argue that, before advocating modifications of the nucleon properties in the nuclear medium, the available data should be analyzed within a new paradigm, allowing for a consistent treatment of the reaction mechanisms, other than single nucleon knockout, contributing to the flux averaged neutrino cross section.

  10. Measurement of W-Z interference from neutrino-electron scattering

    SciTech Connect

    Burman, R.L.; Bowles, T.J.; Carlini, R.D.; Cochran, D.R.F.; Doe, P.J.; Frank, J.S.; Potter, M.E.; Sandberg, V.D.; Krakauer, D.A.; Talaga, R.L. |; Allen, R.C.; Chen, H.H.; Hausammann, R.; Lee, W.P.; Lu, X.Q.; Mahler, H.J.; Wang, K.C.; Piasetzky, E.

    1993-04-01

    Neutrino-electron elastic scattering was observed at LAMPF with a 15-ton fine-grained tracking calorimeter exposed to electron-neutrinos from muon decay at rest. The measured {nu}{sub e}e{sup {minus}} {yields} {nu}{sub e}e{sup {minus}} elastic scattering cross section, 10.0 {plus_minus} 1.5(stat) {plus_minus} 0.9(syst) {times} 10{sup {minus}45} cm{sup 2} {times} (E{sub {nu}}(MeV)), gives a model independent measurement of the strength of the destructive interference between the charged and neutral currents, I = {minus}1.07 {plus_minus} 0.21, that agrees well with the standard model (SM) prediction I = {minus}1.08. The agreement between the measured electroweak parameters and SM expectations is used to place limits on neutrino properties, such as neutrino flavor-changing neutral currents and neutrino electromagnetic moments, and on the masses of hypothetical new bosons that would interact with leptons.

  11. Cross section measurements for quasi-elastic neutrino-nucleus scattering with the MINOS near detector

    SciTech Connect

    Dorman, Mark Edward

    2008-04-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment based at the Fermi National Accelerator Laboratory (FNAL) in Chicago, Illinois. MINOS measures neutrino interactions in two large iron-scintillator tracking/sampling calorimeters; the Near Detector on-site at FNAL and the Far Detector located in the Soudan mine in northern Minnesota. The Near Detector has recorded a large number of neutrino interactions and this high statistics dataset can be used to make precision measurements of neutrino interaction cross sections. The cross section for charged-current quasi-elastic scattering has been measured by a number of previous experiments and these measurements disagree by up to 30%. A method to select a quasi-elastic enriched sample of neutrino interactions in the MINOS Near Detector is presented and a procedure to fit the kinematic distributions of this sample and extract the quasi-elastic cross section is introduced. The accuracy and robustness of the fitting procedure is studied using mock data and finally results from fits to the MINOS Near Detector data are presented.

  12. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    SciTech Connect

    Wolcott, J.

    2015-12-31

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter for electron neutrino appearance oscillation experiments. Current experiments typically begin with the muon neutrino cross section and apply theoretical corrections to obtain a prediction for the electron neutrino cross section. However, at present no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments exists. We present the cross sections for a CCQE-like process determined using the MINERvA detector, which are the first measurements of any exclusive reaction in few-GeV electron neutrino interactions. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^{2}$. We also compute the ratio to a muon neutrino cross-section in $Q^{2}$ from MINERvA. We find satisfactory agreement between these measurements and the predictions of the GENIE generator. We furthermore report on a photon-like background unpredicted by the generator which we interpret as neutral-coherent diffractive scattering from hydrogen.

  13. Superscaling in electron-nucleus scattering and its link to CC and NC QE neutrino-nucleus scattering

    SciTech Connect

    Barbaro, M. B.; Amaro, J. E.; Caballero, J. A.; González-Jiménez, R.; Donnelly, T. W.; Ivanov, M.; Udías, J. M.

    2015-05-15

    The superscaling approach (SuSA) to neutrino-nucleus scattering, based on the assumed universality of the scaling function for electromagnetic and weak interactions, is reviewed. The predictions of the SuSA model for bot CC and NC differential and total cross sections are presented and compared with the MiniBooNE data. The role of scaling violations, in particular the contribution of meson exchange currents in the two-particle two-hole sector, is explored.

  14. Direct extraction of nuclear effects in quasielastic scattering on carbon

    NASA Astrophysics Data System (ADS)

    Wilkinson, Callum; McFarland, Kevin S.

    2016-07-01

    Nuclear effects on neutrino reactions are expected to be a significant complication in current and future neutrino oscillation experiments seeking precision measurements of neutrino flavor transitions. Calculations of these nuclear effects are hampered by a lack of experimental data comparing neutrino reactions on free nucleons to neutrino reactions on nuclei. We present results from a novel technique that compares neutrino and antineutrino charged current quasielastic scattering on hydrocarbons to extract a cross section ratio of antineutrino charged current elastic reactions on free protons to charged current quasielastic reactions on the protons bound in a carbon nucleus. This measurement of nuclear effects is compared to models.

  15. CAPTAIN-Minerνa. Neutrino-Argon Scattering in a Medium-Energy Neutrino Beam

    SciTech Connect

    Mauger, Christopher M.

    2015-10-29

    The NuMI facility at Fermilab is currently providing an extremely intense beam of neutrinos for the NOνA, MINERνA and MINOS+ experiments. By installing the 5-ton CAPTAIN liquid argon TPC in front of the MINERνA detector in the NuMI beamline and combining the data from the CAPTAIN, MINERνA and MINOS+ detectors, a broad program of few-GeV neutrino cross section measurements on argon can be pursued. These measurements will be extremely helpful for future oscillation experiments. By directly comparing the cross sections on argon to MINERνA’s scintillator (CH) target, a new level of precision can be achieved in the measurements of the effects of the nucleus on neutrino interactions. These effects are of interest to not only the particle physics but also the nuclear physics community. This document describes in detail the physics goals of the CAPTAIN-MINERνA experiment, in addition to a first estimate of the technical resources required to install, commission and operate the CAPTAIN detector in front of the MINERVA detector.

  16. Neutrinos

    PubMed Central

    Besson, Dave; Cowen, Doug; Selen, Mats; Wiebusch, Christopher

    1999-01-01

    Neutrinos represent a new “window” to the Universe, spanning a large range of energy. We discuss the science of neutrino astrophysics and focus on two energy regimes. At “lower” energies (≈1 MeV), studies of neutrinos born inside the sun, or produced in interactions of cosmic rays with the atmosphere, have allowed the first incontrovertible evidence that neutrinos have mass. At energies typically one thousand to one million times higher, sources further than the sun (both within the Milky Way and beyond) are expected to produce a flux of particles that can be detected only through neutrinos. PMID:10588680

  17. Density and correlation integrals in deep-inelastic muon-nucleon scattering at 490 GeV

    NASA Astrophysics Data System (ADS)

    Adams, M. R.; Aïd, S.; Anthony, P. L.; Baker, M. D.; Bartlett, J.; Bhatti, A. A.; Botterweck, F.; Braun, H. M.; Busza, W.; Conrad, J. M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S. K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Figiel, J.; Gebauer, H. J.; Geesaman, D. F.; Gilman, R.; Green, M. C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V. W.; Jackson, H. E.; Jaffe, D. E.; Jancso, G.; Jansen, D. M.; Kadija, K.; Kaufman, S.; Kennedy, R. D.; Kirk, T.; Kobrak, H. G. E.; Krzywdzinski, S.; Kunori, S.; Lord, J. J.; Lubatti, H. J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Melanson, H.; Michael, D. G.; Mohr, W.; Montgomery, H. E.; Morfin, J. G.; Nickerson, R. B.; O'Day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F. M.; Ramberg, E. J.; Röser, A.; Ryan, J. J.; Salgado, C. W.; Salvarani, A.; Schellman, H.; Schmitt, M.; Schmitz, N.; Schüler, K. P.; Seyerlein, H. J.; Skuja, A.; Snow, G. A.; Söldner-Rembold, S.; Steinberg, P. H.; Stier, H. E.; Stopa, P.; Swanson, R. A.; Talaga, R.; Tentindo-Repond, S.; Trost, H.-J.; Venkataramania, H.; Wilhelm, M.; Wilkes, J.; Wilson, Richard; Wittek, W.; Wolbers, S. A.; Zhao, T.; Fermilab E665 Collaboration

    1994-09-01

    Results on density integrals Fq( Q2) and correlation integrals Kq( Q2) are presented for the first time in muon-nucleon scattering at ∼ 490 GeV, using data from the E665 experiment at the Tevatron of Fermilab. A clear rise of the Fq integrals with decreasing size of the phase-space cells (“intermittency”) is observed for pairs and triplets of negative hadrons whereas the effect is much weaker for mixed charge combinations. From these findings it is concluded that the observed intermittency signal is mainly caused by Bose-Einstein interference. Furthermore, no energy ( W) dependence of F2( Q2) is observed within the W range of the E665 experiment. Finally, the third-order correlation integrals K3( Q2) are found to be significantly different from zero which implies the presence of genuine three-particle correlations in muon-nucleon interactions.

  18. RED-100 detector for the first observation of the elastic coherent neutrino scattering off xenon nuclei

    NASA Astrophysics Data System (ADS)

    Akimov, D. Yu; Berdnikova, A. K.; Belov, V. A.; Bolozdynya, A. I.; Burenkov, A. A.; Efremenko, Yu V.; Gusakov, Yu V.; Etenko, A. V.; Kaplin, V. A.; Khromov, A. V.; Konovalov, A. M.; Kovalenko, A. G.; Kozlova, E. S.; Kumpan, A. V.; Krakhmalova, T. D.; Melikyan, Yu A.; Naumov, P. P.; Rudik, D. G.; Shafigullin, R. R.; Shakirov, A. V.; Simakov, G. E.; Sosnovtsev, V. V.; Stekhanov, V. N.; Tobolkin, A. A.; Tolstukhin, I. A.

    2016-02-01

    The RED-100 (Russian Emission Detector) is being constructed for the experiment to search for elastic coherent neutrino scattering off atomic nuclei. This fundamental process was predicted several decades ago by the Standard Model of electroweak interactions but has not been discovered yet. The RED-100 is a two-phase emission xenon detector containing ∼200 kg of the liquid Xe (∼ 100 kg of that is in a fiducial volume). One of the possible sites to carry out the experiment is the SNS (Spallation Neutron Source) facility at Oak Ridge National Laboratory, USA. SNS is the world's most intense pulsed source of neutrinos and unique place to study neutrino properties. The energy spectrum of neutrinos produced at the SNS extends up to ∼ 50 MeV and satisfies coherence condition. These neutrinos give kinetic energies of Xe recoils up to a few tens of keV where the response of nuclear recoils is well-known from neutron calibrations of dark matter detectors. The detector will be deployed in the basement under the experimental hall at a distance of ∼30 meters from the SNS target. The expected signal and background (neutron and gamma) are estimated for this specific location. The detector details, current status and future plans are provided.

  19. Improving Dark Matter Searches by Measuring the Nucleon Axial Form Factor: Perspectives from MicroBooNE

    SciTech Connect

    Miceli, Tia; Papavassiliou, Vassili; Pate, Stephen; Woodruff, Katherine

    2015-11-01

    The MicroBooNE neutrino experiment at Fermilab is constructing a liquid-argon time-projection chamber for the Booster Neutrino Beam to study neutrino oscillations and interactions with nucleons and nuclei, starting in 2014. We describe the experiment and focus on its unique abilities to measure cross sections at low values of $Q^2$. In particular, the neutral-current elastic scattering cross section is especially interesting, as it is sensitive to the contribution of the strange sea quark spin to the angular-momentum of the nucleon, $\\Delta s$. Implications for dark-matter searches are discussed.

  20. The Fermilab main injector neutrino program

    SciTech Connect

    Morfin, Jorge G.; /Fermilab

    2007-01-01

    The NuMI Facility at Fermilab provides an extremely intense beam of neutrinos making it an ideal place for the study of neutrino oscillations as well as high statistics (anti)neutrino-nucleon/nucleus scattering experiments. The MINOS neutrino oscillation {nu}{mu} disappearance experiment is currently taking data and has published first results. The NO{nu}A {nu}e appearance experiment is planning to begin taking data at the start of the next decade. For the study of neutrino scattering, the MINER{nu}A experiment at Fermilab is a collaboration of elementary-particle and nuclear physicists planning to use a fully active fine-grained solid scintillator detector. The overall goals of the experiment are to measure absolute exclusive cross-sections, nuclear effects in {nu} - A interactions, a systematic study of the resonance-DIS transition region and the high-xBj - low Q2 DIS region.

  1. Limit on flavor-changing neutral currents from a measurement of neutrino-electron elastic scattering

    SciTech Connect

    Krakauer, D.A.; Talaga, R.L. University of Maryland, College Park, Maryland 20742 ); Allen, R.C.; Chen, H.H.; Hausammann, R.; Lee, W.P.; Lu, X.; Mahler, H.J.; Wang, K.C. ); Bowles, T.J.; Burman, R.L.; Carlini, R.D.; Cochran, D.R.F.; Doe, P.J.; Frank, J.S.; Potter, M.E.; Sandberg, V.D. ); Piasetzky, E. )

    1992-02-01

    From a measurement of the absolute cross section in {nu}{sub {ital e}e}{sup {minus}} elastic scattering we have set a limit on flavor-changing neutral currents in the neutrino sector. We find that an off-diagonal, flavor-changing coupling is limited to 1{minus}{ital f}{sub {ital e}{ital e}}{lt}0.35 (90% C.L.).

  2. Recent Advances and Open Questions in Neutrino-induced Quasi-elastic Scattering and Single Photon Production

    SciTech Connect

    Garvey, G. T.; Harris, D. A.; Tanaka, H. A.; Tayloe, R.; Zeller, G. P.

    2015-06-15

    The study of neutrino–nucleus interactions has recently seen rapid development with a new generation of accelerator-based neutrino experiments employing medium and heavy nuclear targets for the study of neutrino oscillations. A few unexpected results in the study of quasi-elastic scattering and single photon production have spurred a revisiting of the underlying nuclear physics and connections to electron–nucleus scattering. A thorough understanding and resolution of these issues is essential for future progress in the study of neutrino oscillations.

  3. Probing Novel Properties of Nucleons and Nuclei via Parity Violating Electron Scattering

    SciTech Connect

    Mercado, Luis

    2012-05-01

    This thesis reports on two experiments conducted by the HAPPEx (Hall A Proton Parity Experiment) collaboration at the Thomas Jefferson National Accelerator Facility. For both, the weak neutral current interaction (WNC, mediated by the Z0 boson) is used to probe novel properties of hadronic targets. The WNC interaction amplitude is extracted by measuring the parity-violating asymmetry in the elastic scattering of longitudinally polarized electrons o unpolarized target hadrons. HAPPEx-III, conducted in the Fall of 2009, used a liquid hydrogen target at a momentum transfer of Q2 = 0.62 GeV2. The measured asymmetry was used to set new constraints on the contribution of strange quark form factors (GsE,M ) to the nucleon electromagnetic form factors. A value of APV = -23.803±} 0.778 (stat)± 0.359 (syst) ppm resulted in GsE + 0.517GsM = 0.003± 0.010 (stat)± 0.004 (syst)± 0.009 (FF). PREx, conducted in the Spring of 2010, used a polarized electron beam on a 208Pb target at a momentum transfer of Q2 = 0.009 GeV2. This parity-violating asymmetry can be used to obtain a clean measurement of the root-mean-square radius of the neutrons in the 208Pb nucleus. The Z0 boson couples mainly to neutrons; the neutron weak charge is much larger than that of the proton. The value of this asymmetry is at the sub-ppm level and has a projected experimental fractional precision of 3%. We will describe the accelerator setup used to set controls on helicity-correlated beam asymmetries and the analysis methods for finding the raw asymmetry for HAPPEx-III. We will also discuss in some detail the preparations to meet the experimental challenges associated with measuring such a small asymmetry with the degree of precision required for PREx.

  4. Neutral current neutrino-nucleus interactions at high energies

    SciTech Connect

    Gay Ducati, M. B.; Machado, M. M.; Machado, M. V. T.

    2009-04-01

    We present a QCD analysis of the neutral current (NC) neutrino-nucleus interaction at the small-x region using the color dipole formalism. This phenomenological approach is quite successful in describing experimental results in deep inelastic ep scattering and charged current neutrino-nucleus interactions at high energies. We present theoretical predictions for the relevant structure functions and the corresponding implications for the total NC neutrino cross section. It is shown that at small x, the NC boson-nucleon cross section should exhibit the geometric scaling property that has important consequences for ultrahigh energy neutrino phenomenology.

  5. Neutrino quantum kinetic equations: The collision term

    NASA Astrophysics Data System (ADS)

    Blaschke, Daniel N.; Cirigliano, Vincenzo

    2016-08-01

    We derive the collision term relevant for neutrino quantum kinetic equations in the early universe and compact astrophysical objects, displaying its full matrix structure in both flavor and spin degrees of freedom. We include in our analysis neutrino-neutrino processes, scattering and annihilation with electrons and positrons, and neutrino scattering off nucleons (the latter in the low-density limit). After presenting the general structure of the collision terms, we take two instructive limiting cases. The one-flavor limit highlights the structure in helicity space and allows for a straightforward interpretation of the off-diagonal entries in terms of the product of scattering amplitudes of the two helicity states. The isotropic limit is relevant for studies of the early universe: in this case the terms involving spin coherence vanish and the collision term can be expressed in terms of two-dimensional integrals, suitable for computational implementation.

  6. Neutrino quantum kinetic equations: The collision term

    DOE PAGES

    Blaschke, Daniel N.; Cirigliano, Vincenzo

    2016-08-25

    We derive the collision term relevant for neutrino quantum kinetic equations in the early universe and compact astrophysical objects, displaying its full matrix structure in both flavor and spin degrees of freedom. We include in our analysis neutrino-neutrino processes, scattering and annihilation with electrons and positrons, and neutrino scattering off nucleons (the latter in the low-density limit). After presenting the general structure of the collision terms, we take two instructive limiting cases. The one-flavor limit highlights the structure in helicity space and allows for a straightforward interpretation of the off-diagonal entries in terms of the product of scattering amplitudes ofmore » the two helicity states. As a result, the isotropic limit is relevant for studies of the early universe: in this case the terms involving spin coherence vanish and the collision term can be expressed in terms of two-dimensional integrals, suitable for computational implementation.« less

  7. Possible effect of the three-nucleon force on the virtual state of the triton and the correlated n-d doublet scattering length

    SciTech Connect

    Delfino, A.; Gloeckle, W.

    1984-07-01

    The energy E/sub v/ of the virtual state of the triton on the second sheet is calculated. The inclusion of a three-nucleon force moves E/sub v/ towards the n-d threshold. The n-d doublet scattering length a/sub 2/ is strongly correlated with E/sub v/. This offers a possible explanation for the improvement of the theoretical value for a/sub 2/ when a three-nucleon force is included.

  8. Photon emission in neutral current interactions with nucleons and nuclei

    SciTech Connect

    Alvarez-Ruso, L.; Nieves, J.; Wang, E.

    2015-05-15

    We report on our study of photon emission induced by E{sub ν} ∼ 1 GeV (anti)neutrino neutral current interactions with nucleons and nuclei. This process is an important background for ν{sub e} appearance oscillation experiments. At the relevant energies, the reaction is dominated by the excitation of the Δ(1232) resonance but there are also non-resonant contributions that, close to threshold, are fully determined by the effective chiral Lagrangian of strong interactions. We have obtained differential and integrated cross section for the (anti)neutrino-nucleon scattering and compare them with previous results. Furthermore, we have extended the model to nuclear targets taking into account Fermi motion, Pauli blocking and the in-medium modifications of the Δ properties. This study is important in order to reduce systematic effects in neutrino oscillation experiments.

  9. Parity-Violating Electron Scattering from {sup 4}He and the Strange Electric Form Factor of the Nucleon

    SciTech Connect

    Aniol, Konrad; Armstrong, David; Averett, Todd; Benaoum, Hachemi; Bertin, Pierre; Burtin, Etienne; Cahoon, Jason; Cates, Gordon; Chang, C; Chao, Yu-Chiu; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Craver, Brandon; Cusanno, Francesco; Decowski, Piotr; Deepa, Deepa; Ferdi, Catherine; Feuerbach, Robert; Finn, John; Frullani, Salvatore; Fuoti, Kirsten; Garibaldi, Franco; Gilman, Ronald; Glamazdin, Oleksandr; Gorbenko, V; Grames, Joseph; Hansknecht, John; Higinbotham, Douglas; Holmes, Richard; Holmstrom, Timothy; Humensky, Thomas; Ibrahim, Hassan; Jager, Cornelis De; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kowalski, Stanley; Kumar, Krishna; Lambert, Daniel; Laviolette, Peter; LeRose, John; Lhuillier, David; Liyanage, Nilanga; Margaziotis, Demetrius; Mazouz, Malek; McCormick, Kathy; Meekins, David; Meziani, Zein-Eddine; Michaels, Robert; Moffit, Bryan; Monaghan, Peter; Camacho, Carlos Munoz; Nanda, Sirish; Nelyubin, Vladimir; Neyret, Damien; Paschke, Kent; Poelker, Benard; Pomatsalyuk, Roman; Qiang, Yi; Reitz, Bodo; Roche, Julie; Saha, Arunava; Singh, Jaideep; Snyder, Ryan; Souder, Paul; Subedi, Ramesh; Suleiman, Riad; Sulkosky, Vincent; Tobias, William; Urciuoli, Guido; Vacheret, Antonin; Voutier, Eric; Wang, Kebin; Wilson, R; Wojtsekhowski, Bogdan; Zheng, Xiaochao

    2005-06-01

    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from {sup 4}He at an average scattering angle {theta}{sub lab} = 5.7 degrees and a four-momentum transfer Q{sup 2} = 0.091 GeV{sup 2}. From these data, for the first time, the strange electric form factor of the nucleon G{sub E}{sup s} can be isolated. The measured asymmetry of A{sub PV} = 6.72 {+-} 0.84 (stat) {+-} 0.21 (syst) parts per million yields a value of G{sub E}{sup s} = -0.038 {+-} 0.042 (stat) {+-} 0.010 (syst), consistent with zero.

  10. Parity-Violating Electron Scattering from {sup 4}He and the Strange Electric Form Factor of the Nucleon

    SciTech Connect

    Aniol, K.A.; Margaziotis, D.J.; Armstrong, D.S.; Averett, T.; Finn, J.M.; Holmstrom, T.; Kelleher, A.; Moffit, B.; Sulkosky, V.; Benaoum, H.; Holmes, R.; Souder, P.A.; Bertin, P.Y.; Ferdi, C.

    2006-01-20

    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from {sup 4}He at an average scattering angle <{theta}{sub lab}>=5.7 deg. and a four-momentum transfer Q{sup 2}=0.091 GeV{sup 2}. From these data, for the first time, the strange electric form factor of the nucleon G{sub E}{sup s} can be isolated. The measured asymmetry of A{sub PV}=(6.72{+-}0.84{sub (stat)}{+-}0.21{sub (syst)})x10{sup -6} yields a value of G{sub E}{sup s}=-0.038{+-}0.042{sub (stat)}{+-}0.010{sub (syst)}, consistent with zero.

  11. Dynamical coupled-channels model of {pi}N scattering in the W{<=}2 GeV nucleon resonance region

    SciTech Connect

    Julia-Diaz, B.; Lee, T.-S. H.; Matsuyama, A.; Sato, T.

    2007-12-15

    As a first step to analyze the electromagnetic meson production reactions in the nucleon resonance region, the parameters of the hadronic interactions of a dynamical coupled-channels model, developed in Physics Reports 439, 193 (2007), are determined by fitting the {pi}N-scattering data. The channels included in the calculations are {pi}N,{eta}N, and {pi}{pi}N, which has {pi}{delta},{rho}N, and {sigma}N resonant components. The nonresonant meson-baryon interactions of the model are derived from a set of Lagrangians by using a unitary transformation method. One or two bare excited nucleon states in each of S,P,D, and F partial waves are included to generate the resonant amplitudes in the fits. The parameters of the model are first determined by fitting as much as possible the empirical {pi}N elastic-scattering amplitudes of SAID up to 2 GeV. We then refine and confirm the resulting parameters by directly comparing the predicted differential cross section and target polarization asymmetry with the original data of the elastic {pi}{sup {+-}}p{yields}{pi}{sup {+-}}p and charge-exchange {pi}{sup -}p{yields}{pi}{sup 0}n processes. The predicted total cross sections of {pi}N reactions and {pi}N{yields}{eta}N reactions are also in good agreement with the data. Applications of the constructed model in analyzing the electromagnetic meson production data as well as the future developments are discussed.

  12. Evidence of coherent $$K^{+}$$ meson production in neutrino-nucleus scattering

    DOE PAGES

    Wang, Z.

    2016-08-05

    Neutrino-induced charged-current coherent kaon production νμA→μ-K+A is a rare, inelastic electroweak process that brings a K+ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K+, μ-, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which ismore » a model-independent characteristic of coherent scattering. Furthermore, we find the first experimental evidence for the process at 3σ significance.« less

  13. Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS

    NASA Astrophysics Data System (ADS)

    Markoff, Diane; Coherent Collaboration

    2015-10-01

    The COHERENT collaboration has proposed to measure coherent, elastic neutrino-nucleus scattering (CE νNS) cross sections on several nuclear targets using neutrinos produced at the Spallation Neutron Source (SNS) located at the Oak Ridge National Laboratory. The largest background of concern arises from beam-induced, fast neutrons that can mimic a nuclear recoil signal event in the detector. Multiple technologies of neutron detection have been employed at prospective experiment sites at the SNS. Analysis of these data have produced a consistent picture of the backgrounds expected for a CE νNS measurement. These background studies show that at suitable locations, the fast neutrons of concern arrive mainly in the prompt 1.3 μs window and the neutrons in the delayed window are primarily of lower energies that are relatively easier to shield.

  14. Evidence of Coherent K+ Meson Production in Neutrino-Nucleus Scattering

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Marshall, C. M.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Endress, E.; Felix, J.; Fields, L.; Fine, R.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Simon, C.; Solano Salinas, C. J.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Minerva Collaboration

    2016-08-01

    Neutrino-induced charged-current coherent kaon production νμA →μ-K+A is a rare, inelastic electroweak process that brings a K+ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K+, μ-, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. We find the first experimental evidence for the process at 3 σ significance.

  15. Evidence of Coherent K^{+} Meson Production in Neutrino-Nucleus Scattering.

    PubMed

    Wang, Z; Marshall, C M; Aliaga, L; Altinok, O; Bellantoni, L; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Budd, H; Cai, T; Carneiro, M F; da Motta, H; Dytman, S A; Díaz, G A; Eberly, B; Endress, E; Felix, J; Fields, L; Fine, R; Galindo, R; Gallagher, H; Ghosh, A; Golan, T; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kiveni, M; Kleykamp, J; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Martinez Caicedo, D A; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfín, J G; Mousseau, J; Naples, D; Nelson, J K; Norrick, A; Nuruzzaman; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Rakotondravohitra, L; Ramirez, M A; Ransome, R D; Ray, H; Ren, L; Rimal, D; Rodrigues, P A; Ruterbories, D; Schellman, H; Schmitz, D W; Simon, C; Solano Salinas, C J; Tice, B G; Valencia, E; Walton, T; Wolcott, J; Wospakrik, M; Zavala, G; Zhang, D

    2016-08-01

    Neutrino-induced charged-current coherent kaon production ν_{μ}A→μ^{-}K^{+}A is a rare, inelastic electroweak process that brings a K^{+} on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K^{+}, μ^{-}, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. We find the first experimental evidence for the process at 3σ significance. PMID:27541459

  16. Evidence of Coherent K^{+} Meson Production in Neutrino-Nucleus Scattering.

    PubMed

    Wang, Z; Marshall, C M; Aliaga, L; Altinok, O; Bellantoni, L; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Budd, H; Cai, T; Carneiro, M F; da Motta, H; Dytman, S A; Díaz, G A; Eberly, B; Endress, E; Felix, J; Fields, L; Fine, R; Galindo, R; Gallagher, H; Ghosh, A; Golan, T; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kiveni, M; Kleykamp, J; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Martinez Caicedo, D A; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfín, J G; Mousseau, J; Naples, D; Nelson, J K; Norrick, A; Nuruzzaman; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Rakotondravohitra, L; Ramirez, M A; Ransome, R D; Ray, H; Ren, L; Rimal, D; Rodrigues, P A; Ruterbories, D; Schellman, H; Schmitz, D W; Simon, C; Solano Salinas, C J; Tice, B G; Valencia, E; Walton, T; Wolcott, J; Wospakrik, M; Zavala, G; Zhang, D

    2016-08-01

    Neutrino-induced charged-current coherent kaon production ν_{μ}A→μ^{-}K^{+}A is a rare, inelastic electroweak process that brings a K^{+} on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K^{+}, μ^{-}, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. We find the first experimental evidence for the process at 3σ significance.

  17. Neutrino physics

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2008-09-01

    The field of neutrino physics has expanded greatly in recent years with the discovery that neutrinos change flavor and therefore have mass. Although there are many neutrino physics results since the last DIS workshop, these proceedings concentrate on recent neutrino physics results that either add to or depend on the understanding of Deep Inelastic Scattering. They also describe the short and longer term future of neutrino DIS experiments.

  18. Isospin-violating dark-matter-nucleon scattering via two-Higgs-doublet-model portals

    NASA Astrophysics Data System (ADS)

    Drozd, Aleksandra; Grzadkowski, Bohdan; Gunion, John F.; Jiang, Yun

    2016-10-01

    We show that in a multi-Higgs model in which one Higgs fits the LHC 125 GeV state, one or more of the other Higgs bosons can mediate DM-nucleon interactions with maximal DM isospin violation being possible for appropriate Higgs-quark couplings, independent of the nature of DM. We then consider the explicit example of a Type II two-Higgs-doublet model, identifying the h or H as the 125 GeV state while the H or h, respectively, mediates DM-nucleon interactions. Finally, we show that if a stable scalar, S, is added then it can be a viable light DM candidate with correct relic density while obeying all direct and indirect detection limits.

  19. Semi-inclusive polarised lepton-nucleon scattering and the anomalous gluon contribution

    NASA Astrophysics Data System (ADS)

    Güllenstern, St.; Veltri, M.; Górnicki, P.; Mankiewicz, L.; Schäfer, A.

    1993-08-01

    We discuss a new observable for semi-inclusive pion production in polarised lepton-nucleon collisions. This observable is sensitive to the polarised and unpolarised strange quark distribution and the anomalous gluon contribution, provided that their fragmentation functions into pions differ substantially from that of light quarks. From Monte Carlo data generated with our PEPSI code we conclude that HERMES might be able to decide whether the polarized strange quark and gluon distributions are large.

  20. Peripheral elastic and inelastic scattering of {sup 17,18}O on light targets at 12 MeV/nucleon

    SciTech Connect

    Carstoiu, F.; Al-Abdullah, T.; Gagliardi, C. A.; Trache, L.

    2015-02-24

    The elastic and inelastic scattering of {sup 17,18}O with light targets has been undertaken at 12 MeV/nucleon in order to determine the optical potentials needed for the transfer reaction {sup 13}C({sup 17}O,{sup 18}O){sup 12}C. Optical potentials in both incoming and outgoing channels have been determined in a single experiment. This transfer reaction was used to infer the direct capture rate to the {sup 17}F(p,γ){sup 18}Ne which is essential to estimate the production of {sup 18}F at stellar energies in ONe novae. We demonstrate the stability of the ANC method and OMP results using good quality elastic and inelastic scattering data with stable beams. The peripherality of our reaction is inferred from a semiclassical decomposition of the total scattering amplitude into barrier and internal barrier components. Comparison between elastic scattering of {sup 17}O, {sup 18}O and {sup 16}O projectiles is made.

  1. Investigation of quasielastic muon-neutrino scattering on nuclei at E{sub v} < 1 GeV

    SciTech Connect

    Agababyan, N. M.; Ammosov, V. V.; Atayan, M.; Grigoryan, N.; Gulkanyan, H.; Ivanilov, A. A. Karamyan, Zh.; Korotkov, B. A.

    2007-10-15

    Quasielastic muon-neutrino scattering on nuclei of propane-Freon mixture at energies in the range E{sub v} < 1 GeV is studied. The multiplicity, momentum, and emission-angle distributions of final protons are measured along with the dependence of the mean values for these distributions on the neutrino energy in the range 0.2 < E{sub v} < 1 GeV.

  2. Charge Coupled Devices for detection of coherent neutrino-nucleus scattering

    SciTech Connect

    Fernandez Moroni, Guillermo; Estrada, Juan; Paolini, Eduardo E.; Cancelo, Gustavo; Tiffenberg, Javier; Molina, Jorge

    2015-04-03

    In this article the feasibility of using charge coupled devices (CCD) to detect low-energy neutrinos through their coherent scattering with nuclei is analyzed. The detection of neutrinos through this standard model process has been elusive because of the small energy deposited in such interaction. Typical particle detectors have thresholds of a few keV, and most of the energy deposition expected from coherent scattering is well below this level. The CCD detectors discussed in this paper can operate at a threshold of approximately 30 eV, making them ideal for observing this signal. On a CCD array of 500 g located next to a power nuclear reactor the number of coherent scattering events expected is about 3000 events/year. Our results shows that a detection with a confidence level of 99% can be reached within 16 days of continuous operation; with the current 52 g detector prototype this time lapse extends to five months.

  3. Limits on dark matter proton scattering from neutrino telescopes using micrOMEGAs

    SciTech Connect

    Bélanger, G.; Silva, J. Da; Perrillat-Bottonet, T.; Pukhov, A.

    2015-12-17

    Limits on dark matter spin dependent elastic scattering cross section on protons derived from IceCube data are obtained for different dark matter annihilation channels using micrOMEGAs. The uncertainty on the derived limits, estimated by using different neutrino spectra, can reach a factor two. For all dark matter annihilation channels except for quarks, the limits on the spin dependent cross section are more stringent than those obtained in direct detection experiments. The new functions that allow to derive those limits are described.

  4. Dynamical Coupled-Channel Model of pi-N scattering in te W < 2 GeV Nucleon Resonane Region

    SciTech Connect

    Lee, T S.H.; Julia-diaz, B; Matsuyama, A; Sato, T

    2007-12-01

    As a first step to analyze the electromagnetic meson production reactions in the nucleon resonance region, the parameters of the hadronic interactions of a dynamical coupled-channel model, developed in {\\it Physics Reports 439, 193 (2007)}, are determined by fitting the empirical $\\pi N$ elastic scattering amplitudes of SAID up to 2 GeV. The channels included in the calculations are $\\pi N$, $\\eta N$ and $\\pi\\pi N$ which has $\\pi\\Delta$, $\\rho N$, and $\\sigma N$ resonant components. The non-resonant meson-baryon interactions of the model are derived from a set of Lagrangians by using a unitary transformation method. One or two bare excited nucleon states in each of $S$, $P$, $D$, and $F$ partial waves are included to generate the resonant amplitudes in the fits. The predicted total cross sections of $\\pi N$ reactions and $\\pi N\\rightarrow \\eta N$ reactions are in good agreement with the data. Applications of the constructed model in analyzing the electromagnetic meson production data as well as the future developments are discussed.

  5. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    SciTech Connect

    Adams, T.; Batra, P.; Bugel, Leonard G.; Camilleri, Leslie Loris; Conrad, Janet Marie; de Gouvea, A.; Fisher, Peter H.; Formaggio, Joseph Angelo; Jenkins, J.; Karagiorgi, Georgia S.; Kobilarcik, T.R.; /Fermilab /Texas U.

    2009-06-01

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics.

  6. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment:. NuSOnG

    NASA Astrophysics Data System (ADS)

    Adams, T.; Batra, P.; Bugel, L.; Camilleri, L.; Conrad, J. M.; de Gouvêa, A.; Fisher, P. H.; Formaggio, J. A.; Jenkins, J.; Karagiorgi, G.; Kobilarcik, T. R.; Kopp, S.; Kyle, G.; Loinaz, W. A.; Mason, D. A.; Milner, R.; Moore, R.; Morfín, J. G.; Nakamura, M.; Naples, D.; Nienaber, P.; Olness, F. I.; Owens, J. F.; Pate, S. F.; Pronin, A.; Seligman, W. G.; Shaevitz, M. H.; Schellman, H.; Schienbein, I.; Syphers, M. J.; Tait, T. M. P.; Takeuchi, T.; Tan, C. Y.; van de Water, R. G.; Yamamoto, R. K.; Yu, J. Y.

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDF's). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parametrized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of "Beyond the Standard Model" physics.

  7. Production of neutral strange particles in muon-nucleon scattering at 490 GeV

    NASA Astrophysics Data System (ADS)

    Adams, M. R.; Aderholz, M.; Aïd, S.; Anthony, P. L.; Baker, M. D.; Bartlett, J.; Bhatti, A. A.; Braun, H. M.; Busza, W.; Conrad, J. M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S. K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Figiel, J.; Gebauer, H. J.; Geesaman, D. F.; Gilman, R.; Green, M. C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V. W.; Jackson, H. E.; Jaffe, D. E.; Jancso, G.; Jansen, D. M.; Kadija, K.; Kaufman, S.; Kennedy, R. D.; Kirk, T.; Kobrak, H. G. E.; Krzywdzinski, S.; Kunori, S.; Lord, J. J.; Lubatti, H. J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Melanson, H.; Michael, D. G.; Mohr, W.; Montgomery, H. E.; Morfin, J. G.; Nickerson, R. B.; O'Day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F. M.; Ramberg, E. J.; Röser, A.; Ryan, J. J.; Salgado, C. W.; Salvarani, A.; Schellman, H.; Schmitt, M.; Schmitz, N.; Schüler, K. P.; Seyerlein, H. J.; Skuja, A.; Snow, G. A.; Söldner-Rembold, S.; Steinberg, P. H.; Stier, H. E.; Stopa, P.; Swanson, R. A.; Talaga, R.; Tentindo-Repond, S.; Trost, H. J.; Venkataramania, H.; Wilhelm, M.; Wilkes, J.; Wilson, R.; Wittek, W.; Wolbers, S. A.; Zhao, T.

    1994-12-01

    The production of K 0, Λ andbar Λ particles is studied in the E665 muon-nucleon experiment at Fermilab. The average multiplicities and squared transverse momenta are measured as a function of x F and W 2. Most features of the data can be well described by the Lund model. Within this model, the data on the K0/π± ratios and on the average K 0 multiplicity in the forward region favor a strangeness suppression factor s/u in the fragmentation process near 0.20. Clear evidence for QCD effects is seen in the average squared transverse momentum of K 0 and Λ particles.

  8. Sterile neutrinos and indirect dark matter searches in IceCube

    SciTech Connect

    Argüelles, Carlos A.; Kopp, Joachim E-mail: jkopp@fnal.gov

    2012-07-01

    If light sterile neutrinos exist and mix with the active neutrino flavors, this mixing will affect the propagation of high-energy neutrinos from dark matter annihilation in the Sun. In particular, new Mikheyev-Smirnov-Wolfenstein resonances can occur, leading to almost complete conversion of some active neutrino flavors into sterile states. We demonstrate how this can weaken IceCube limits on neutrino capture and annihilation in the Sun and how potential future conflicts between IceCube constraints and direct detection or collider data might be resolved by invoking sterile neutrinos. We also point out that, if the dark matter-nucleon scattering cross section and the allowed annihilation channels are precisely measured in direct detection and collider experiments in the future, IceCube can be used to constrain sterile neutrino models using neutrinos from the dark matter annihilation.

  9. Neutrinos

    NASA Astrophysics Data System (ADS)

    Winter, K.; Murdin, P.

    2000-11-01

    Neutrinos are electrically neutral ELEMENTARY PARTICLES which experience only the weak nuclear force and gravity. Their existence was introduced as a hypothesis by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in radioactive beta decay. Chadwick had discovered in 1914 that the energy spectrum of electrons emitted in beta decay was not monoenergetic but continuous...

  10. SciNOvA: A Measurement of Neutrino-Nucleus Scattering in a Narrow-Band Beam

    SciTech Connect

    Paley, J.; Djurcic, Z.; Harris, D.; Tesarek, R.; Feldman, G.; Corwin, L.; Messier, M.D.; Mayer, N.; Musser, J.; Paley, J.; Tayloe, R.; /Indiana U. /Iowa State U. /Minnesota U. /South Carolina U. /Wichita State U. /William-Mary Coll.

    2010-10-15

    We propose to construct and deploy a fine-grained detector in the Fermilab NOvA 2 GeV narrow-band neutrino beam. In this beam, the detector can make unique contributions to the measurement of quasi-elastic scattering, neutral-current elastic scattering, neutral-current {pi}{sup 0} production, and enhance the NOvA measurements of electron neutrino appearance. To minimize cost and risks, the proposed detector is a copy of the SciBar detector originally built for the K2K long baseline experiment and used recently in the SciBooNE experiment.

  11. Collaborative Research: Neutrinos & Nucleosynthesis in Hot Dense Matter

    SciTech Connect

    Reddy, Sanjay

    2013-09-06

    It is now firmly established that neutrinos, which are copiously produced in the hot and dense core of the supernova, play a role in the supernova explosion mechanism and in the synthesis of heavy elements through a phenomena known as r-process nucleosynthesis. They are also detectable in terrestrial neutrino experiments, and serve as a probe of the extreme environment and complex dynamics encountered in the supernova. The major goal of the UW research activity relevant to this project was to calculate the neutrino interaction rates in hot and dense matter of relevance to core collapse supernova. These serve as key input physics in large scale computer simulations of the supernova dynamics and nucleosynthesis being pursued at national laboratories here in the United States and by other groups in Europe and Japan. Our calculations show that neutrino production and scattering rate are altered by the nuclear interactions and that these modifications have important implications for nucleosynthesis and terrestrial neutrino detection. The calculation of neutrino rates in dense matter are difficult because nucleons in the dense matter are strongly coupled. A neutrino interacts with several nucleons and the quantum interference between scattering off different nucleons depends on the nature of correlations between them in dense matter. To describe these correlations we used analytic methods based on mean field theory and hydrodynamics, and computational methods such as Quantum Monte Carlo. We found that due to nuclear effects neutrino production rates at relevant temperatures are enhanced, and that electron neutrinos are more easily absorbed than anti-electron neutrinos in dense matter. The latter, was shown to favor synthesis of heavy neutron-rich elements in the supernova.

  12. Deuterium target data for precision neutrino-nucleus cross sections

    DOE PAGES

    Meyer, Aaron S.; Betancourt, Minerba; Gran, Richard; Hill, Richard J.

    2016-06-23

    Amplitudes derived from scattering data on elementary targets are basic inputs to neutrino-nucleus cross section predictions. A prominent example is the isovector axial nucleon form factor, FA(q2), which controls charged current signal processes at accelerator-based neutrino oscillation experiments. Previous extractions of FA from neutrino-deuteron scattering data rely on a dipole shape assumption that introduces an unquantified error. A new analysis of world data for neutrino-deuteron scattering is performed using a model-independent, and systematically improvable, representation of FA. A complete error budget for the nucleon isovector axial radius leads to rA2 = 0.46(22)fm2, with a much larger uncertainty than determined inmore » the original analyses. The quasielastic neutrino-neutron cross section is determined as σ(νμn → μ-p)|Ev=1GeV = 10.1(0.9)×10-39cm2. The propagation of nucleon-level constraints and uncertainties to nuclear cross sections is illustrated using MINERvA data and the GENIE event generator. Furthermore, these techniques can be readily extended to other amplitudes and processes.« less

  13. Rotational-vibrational Description of Nucleon Scattering on Actinide Nuclei Using a Dispersive Coupled-channel Optical Model

    NASA Astrophysics Data System (ADS)

    Quesada, J. M.; Capote, R.; Soukhovitskiı˜, E. Sh.; Chiba, S.

    2014-04-01

    Tamura's coupling formalism has been extended to consider low-lying rotational bands built on vibrational (single-particle) band heads in well-deformed even-even (odd) actinides. These additional excitations are introduced as a perturbation to the underlying rigid rotor structure that is known to describe well the ground state rotational band of major actinides. Coupling matrix elements needed in extended Tamura's formalism are derived for both even-even and odd actinides. Employed dispersive optical model (DCCOMP) replaces the incident proton energy Ep (for proton induced reactions) by the equivalent Coulomb subtracted energy in all potential terms including both the imaginary and real potentials with the corresponding dispersive corrections. Therefore, the optical potential becomes fully symmetric for protons and neutrons. This potential is used to fit simultaneously all the available optical experimental databases (including neutron strength functions) for nucleon scattering on 238U and 232Th (even even) nuclei. Quasi-elastic (p,n) scattering data to the isobaric analogue states of the target nuclei are also used to constrain the isovector part of the optical potential. Derived Lane-consistent DCCOMP is based on coupling of almost all levels below 1 MeV of excitation energy. The ground state, octupole, beta, gamma and non-axial rotational bands are considered for even nuclei, and rotational bands built on single-particle levels - for odd nuclei. Application of derived potential to odd targets based on a new coupling scheme is foreseen.

  14. Off-shell effects in the relativistic mean field model and their role in CC (anti)neutrino scattering at MiniBooNE kinematics

    NASA Astrophysics Data System (ADS)

    Ivanov, M. V.; González-Jiménez, R.; Caballero, J. A.; Barbaro, M. B.; Donnelly, T. W.; Udías, J. M.

    2013-11-01

    The relativistic mean field (RMF) model is used to describe nucleons in the nucleus and thereby to evaluate the effects of having dynamically off-shell spinors. Compared with free, on-shell nucleons as employed in some other models, within the RMF nucleons are described by relativistic spinors with strongly enhanced lower components. In this work it is seen that for MiniBooNE kinematics, neutrino charged-current quasielastic cross sections show some sensitivity to these off-shell effects, while for the antineutrino-nucleus case the total cross sections are seen to be essentially independent of the enhancement of the lower components. As was found to be the case when comparing the RMF results with the neutrino-nucleus data, the present impulse approximation predictions within the RMF also fall short of the MiniBooNE antineutrino-nucleus data.

  15. Consistent analysis of neutral- and charged-current (anti)neutrino scattering off carbon

    SciTech Connect

    Ankowski, Artur M.

    2015-05-15

    Good understanding of the cross sections for (anti)neutrino scattering off nuclear targets in the few-GeV energy region is a prerequisite for the correct interpretation of results of ongoing and planned oscillation experiments. To clarify a possible source of disagreement between recent measurements of the cross sections on carbon, we analyze the available data within an approach based on the realistic spectral function of carbon, treating neutral-current elastic (NCE) and charged-current quasielastic (CCQE) processes on equal footing. We show that the axial mass from the shape analysis of the MiniBooNE data is in good agreement with the results reported by the BNL E734 and NOMAD Collaborations. However, the combined analysis of the NCE and CCQE data does not seem to support the contribution of multinucleon final states being large enough to explain the normalization of the MiniBooNE-reported cross sections.

  16. Consistent analysis of neutral- and charged-current (anti)neutrino scattering off carbon

    NASA Astrophysics Data System (ADS)

    Ankowski, Artur M.

    2015-05-01

    Good understanding of the cross sections for (anti)neutrino scattering off nuclear targets in the few-GeV energy region is a prerequisite for the correct interpretation of results of ongoing and planned oscillation experiments. To clarify a possible source of disagreement between recent measurements of the cross sections on carbon, we analyze the available data within an approach based on the realistic spectral function of carbon, treating neutral-current elastic (NCE) and charged-current quasielastic (CCQE) processes on equal footing. We show that the axial mass from the shape analysis of the MiniBooNE data is in good agreement with the results reported by the BNL E734 and NOMAD Collaborations. However, the combined analysis of the NCE and CCQE data does not seem to support the contribution of multinucleon final states being large enough to explain the normalization of the MiniBooNE-reported cross sections.

  17. A proposal for a precision test of the standard model by neutrino-electron scattering (Large /hacek C/erenkov Detector Project)

    SciTech Connect

    Allen, R.C.; Lu, X-Q.; Gollwitzer, K.; Igo, G.J.; Gulmez, E.; Whitten, C.; VanDalen, G.; Layter, J.; Fung, Sun Yui; Shen, B.C.

    1988-04-01

    A precision measurement of neutrino-electron elastic scattering from a beam stop neutrino source at LAMPF is proposed. The total error in sin/sup 2/theta/sub W/ is estimated to be +-0.89/percent/. The experiment also will be sensitive to neutrino oscillations and supernova-neutrino bursts, and should set improved limits on the neutrino-charge radius and magnetic-dipole moment. The detector consists of a 2.5-million-gallon tank of water with approximately 14,000 photomultiplier tubes lining the surfaces of the tank. Neutrino-electron scattering events will be observed from the /hacek C/erenkov radiation emitted by the electrons in the water. 19 refs.

  18. Electroweak bremsstrahlung from neutron-neutron scattering

    SciTech Connect

    Li Yi; Liou, M. K.; Schreiber, W. M.

    2009-09-15

    Background: Nucleon-nucleon (NN) bremsstrahlung processes NN{gamma} (nn{gamma}, np{gamma}, and pp{gamma}) have been extensively investigated. Neutrino-pair bremsstrahlung processes from nucleon-nucleon scattering NN{nu}{nu} (nn{nu}{nu}, np{nu}{nu}, and pp{nu}{nu}) have recently attracted attention in studies of neutrino emission in neutron stars. The calculated NN{nu}{nu} cross sections (or emissivities) are found to be sensitive to the two-nucleon dynamical model used in the calculations. Purpose and Method: A realistic one-boson-exchange (ROBE) model for NN interactions is used to construct the electroweak bremsstrahlung amplitudes using the well-known nucleon electromagnetic and weak interaction vertices. The constructed nn{gamma} and nn{nu}{nu} amplitudes are investigated by applying them to calculate nn{gamma} and nn{nu}{nu} cross sections, respectively. Results: (i) The 190-MeV ROBE nn{gamma} cross sections agree well with those calculated using the TuTts amplitude, but they are in disagreement with those calculated using the Low amplitude. (ii) The calculated nn{nu}{nu} cross sections using the ROBE amplitude at the neutrino-pair energy {omega} = 1 MeV are in quantitative agreement with those calculated by Timmermans et al.[Phys. Rev. C 65, 064007 (2002)], who used the leading-order term of the soft neutrino-pair bremsstrahlung amplitude. Conclusions: The nn{gamma} amplitude in the ROBE approach, which obeys the soft-photon theorem, has a predictive power similar to that of the TuTts amplitude. The nn{nu}{nu} amplitude in the ROBE approach, which is consistent with the soft neutrino-pair bremsstrahlung theorem, has a predictive power similar to that of the soft neutrino-pair bremsstrahlung amplitude of Timmermans et al. in the low neutrino-pair energy region.

  19. Total cross sections for neutron scattering from few nucleon systems. II. Theoretical considerations.^.

    NASA Astrophysics Data System (ADS)

    Elster, Ch.; Abfalterer, W. P.; Bateman, F. B.; Dietrich, F. S.; Finlay, R. W.; Glöckle, W.; Golak, J.; Haight, R. C.; Hüber, D.; Morgan, G. L.; Witala, H.

    1998-04-01

    New high precision measurements of the difference in neutron total cross sections of deuterium and hydrogen (d-h) were performed for neutron energies between 10 and 600 MeV. The results are compared to state-of-the-art Faddeev calculations of the n+d total cross section between 10 and 300 MeV, which systematically underpredict the experiment above 100 MeV. This result is not very sensitive to the type of modern NN interaction employed. Further, the convergence of the Faddeev multiple scattering series is demonstrated. We therefore conclude that the Faddeev description is inadequate above 100 MeV projectile energy. We also consider the first and second order terms in the multiple scattering series in the high energy limit to study shadowing effects. [1mm] ^ This work is supported in part by the U.S. Department of Energy under Contracts W-7405-ENG-48 (LLNL), W-7405-ENG-36 (LANL), and DE-FG02-93ER40756 (Ohio U.), the Deutsche Forschungsgemeinschaft (DFG), the Ohio Supercomputer Center (OSC) and the HLRZ Jülich.

  20. Nucleon-nucleon interactions

    SciTech Connect

    Wiringa, R.B.

    1996-12-31

    Nucleon-nucleon interactions are at the heart of nuclear physics, bridging the gap between QCD and the effective interactions appropriate for the shell model. We discuss the current status of {ital NN} data sets, partial-wave analyses, and some of the issues that go into the construction of potential models. Our remarks are illustrated by reference to the Argonne {ital v}{sub 18} potential, one of a number of new potentials that fit elastic nucleon-nucleon data up to 350 MeV with a {Chi}{sup 2} per datum near 1. We also discuss the related issues of three-nucleon potentials, two-nucleon charge and current operators, and relativistic effects. We give some examples of calculations that can be made using these realistic descriptions of {ital NN} interactions. We conclude with some remarks on how our empirical knowledge of {ital NN} interactions may help constrain models at the quark level, and hence models of nucleon structure.

  1. Short-Range Nucleon-Nucleon Correlations

    SciTech Connect

    Douglas Higinbotham

    2011-10-01

    Valence-shell nucleon knock-out experiments, such as 12C(e,e'p)11B, measure less strength then is predicted by independent particle shell model calculations. The theoretical solution to this problem is to include the correlations between the nucleons in the nucleus in the calculations. Motivated by these results, many electron scattering experiments have tried to directly observe these correlations in order to gain new insight into the short-range part of the nucleon-nucleon potential. Unfortunately, many competing mechanisms can cause the same observable final-state as an initial-state correlation, making truly isolating the signal extremely challenging. This paper reviews the recent experimental evidence for short-range correlations, as well as explores the possibility that such correlations are responsible for the EMC effect in the 0.3 < xB < 0.7 deep inelastic scattering ratios.

  2. Neutron-proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon-nucleus scattering data within an isospin dependent optical model

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hua; Guo, Wen-Jun; Li, Bao-An; Chen, Lie-Wen; Fattoyev, Farrukh J.; Newton, William G.

    2015-04-01

    The neutron-proton effective mass splitting in asymmetric nucleonic matter of isospin asymmetry δ and normal density is found to be mn-p* ≡ (mn* - mp*) / m = (0.41 ± 0.15) δ from analyzing globally 1088 sets of reaction and angular differential cross sections of proton elastic scattering on 130 targets with beam energies from 0.783 MeV to 200 MeV, and 1161 sets of data of neutron elastic scattering on 104 targets with beam energies from 0.05 MeV to 200 MeV within an isospin dependent non-relativistic optical potential model. It sets a useful reference for testing model predictions on the momentum dependence of the nucleon isovector potential necessary for understanding novel structures and reactions of rare isotopes.

  3. Measurement of Neutrino and Antineutrino Charged-Current Inclusive Cross Sections with the MINERvA Detector

    SciTech Connect

    Devan, Joshua D.

    2015-01-01

    Neutrinos are a nearly massless, neutral particle in the Standard Model that only interact via the weak interaction. Experimental confirmation of neutrino oscillations, in which a neutrino created as a particular type (electron, muon or tau) can be observed as a different type after propagating some distance, earned the 2015 Nobel Prize in Physics. Neutrino oscillation experiments rely on accurate measurements of neutrino interactions with matter, such as that presented here. Neutrinos also provide a unique probe of the nucleus, complementary to electron scattering experiments. This thesis presents a measurement of the charged-current inclusive cross section for muon neutrinos and antineutrinos in the energy range 2 to 50 GeV with the MINERvA detector. MINERvA is a neutrino scattering experiment in the NuMI neutrino beam at Fermilab, near Chicago. A cross section measures the probability of an interaction occurring, measured here as a function of neutrino energy. To extract a cross section from data, the observed rate of interactions is corrected for detector efficiency and divided by the number of scattering nucleons in the target and the flux of neutrinos in the beam. The neutrino flux is determined with the low-$\

  4. Microscopic model analysis of {sup 11}Li+p elastic scattering at 62, 68.4, and 75 MeV/nucleon

    SciTech Connect

    Hassan, M. Y. M.; Farag, M. Y. H.; Esmael, E. H.; Maridi, H. M.

    2009-01-15

    {sup 11}Li+p elastic scattering data at three energies, 62, 68.4, and 75 MeV/nucleon, are analyzed with density-dependent M3Y and KH effective nucleon-nucleon (NN) interactions in the framework of the single folding model. The parameters of the density-dependent term are adjusted to fulfill saturation of nuclear matter. The optical potentials (OP's) and cross sections are calculated using four model densities of {sup 11}Li, G (one-parameter Gaussian), GG (Gaussian-Gaussian), GO (Gaussian- oscillator), and the COSMA (cluster orbital shell model approximation). Comparative studies are performed for real, imaginary, and spin-orbit potentials with the phenomenological and microscopic forms. The microscopic volume and surface imaginary potentials are constructed from both the renormalized folded potentials and their derivatives. The sensitivity of the differential cross section to the four densities is tested. It is found that the {sup 11}Li+p elastic scattering cross sections depend strongly upon the behavior of the corresponding potentials. The GG and GO densities obtained from analyzing the data, using Glauber multiple scattering theory at high energies, give good results at energies below 100 MeV/nucleon in the framework of the folding model. The OP's calculated in the microscopic form using few parameters give good agreement with the data. Thus, it is not necessary to introduce a large number of arbitrary fitting parameters as done in the phenomenological and semimicroscopic OP's. The KH effective interaction successfully describes {sup 11}Li+p elastic scattering as the popular M3Y interaction. The obtained results of the reaction cross section are in good agreement with previous calculations.

  5. [ital Q][sup 2] dependence of the average squared transverse energy of jets in deep-inelastic muon-nucleon scattering with comparison to perturbative QCD predictions

    SciTech Connect

    Adams, M.R.; Arndotied, S.; Anthony, P.L.; Baker, M.D.; Bartlett, J.; Bhatti, A.A.; Braun, H.M.; Busza, W.; Conrad, J.M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S.K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Figiel, J.; Gebauer, H.J.; Geesaman, D.F.; Gilman, R.; Green, M.C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V.W.; Jackson, H.E.; Jaffe, D.E.; Jancso, G.; Jansen, D.M.; Kaufman, S.; Kennedy, R.D.; Kirk, T.; Kobrak, H.G.E.; Krzywdzinski, S.; Kunori, S.; Lord, J.J.; Lubatti, H.J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Melanson, H.; Michael, D.G.; Mohr, W.; Montgomery, H.E.; Morfin, J.G.; Nickerson, R.B.; O'Day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F.M.; Ramberg, E.J.; Roeser, A.; Ryan, J.J.; Salgado, C.W.; Salvarani, A.; Schellman, H.; Schmitt, M.; Schmitz, N.; Schueler, K.P.; Skuja, A.; Snow, G.A.; Soeldner-Rembold, S.; Steinberg, P.H.; Stier, H.E.; Stopa, P.; S

    1994-01-24

    The average squared transverse energy of jets in deep-inelastic muon-nucleon scattering is measured as a function of the momentum transfer squared ([ital Q][sup 2]), in the range 3[lt][ital Q][sup 2][lt]25 GeV[sup 2]. Perturbative QCD predicts that the average squared parton transverse energy will depend upon the strong coupling constant ([alpha][sub [ital S

  6. MINERvA: A Dedicated neutrino scattering experiment at NuMI

    SciTech Connect

    McFarland, Kevin S.; /Rochester U.

    2006-05-01

    MINERvA is a dedicated neutrino cross-section experiment planned for the near detector hall of the NuMI neutrino beam at Fermilab. I summarize the detector design and physics capabilities of the experiment.

  7. Quasielastic scattering with the relativistic Green’s function approach

    SciTech Connect

    Meucci, Andrea; Giusti, Carlotta

    2015-05-15

    A relativistic model for quasielastic (QE) lepton-nucleus scattering is presented. The effects of final-state interactions (FSI) between the ejected nucleon and the residual nucleus are described in the relativistic Green’s function (RGF) model where FSI are consistently described with exclusive scattering using a complex optical potential. The results of the model are compared with experimental results of electron and neutrino scattering.

  8. Nucleon Electromagnetic Form Factors

    SciTech Connect

    Kees de Jager

    2004-08-01

    Although nucleons account for nearly all the visible mass in the universe, they have a complicated structure that is still incompletely understood. The first indication that nucleons have an internal structure, was the measurement of the proton magnetic moment by Frisch and Stern (1933) which revealed a large deviation from the value expected for a point-like Dirac particle. The investigation of the spatial structure of the nucleon, resulting in the first quantitative measurement of the proton charge radius, was initiated by the HEPL (Stanford) experiments in the 1950s, for which Hofstadter was awarded the 1961 Nobel prize. The first indication of a non-zero neutron charge distribution was obtained by scattering thermal neutrons off atomic electrons. The recent revival of its experimental study through the operational implementation of novel instrumentation has instigated a strong theoretical interest. Nucleon electro-magnetic form factors (EMFFs) are optimally studied through the exchange of a virtual photon, in elastic electron-nucleon scattering. The momentum transferred to the nucleon by the virtual photon can be selected to probe different scales of the nucleon, from integral properties such as the charge radius to scaling properties of its internal constituents. Polarization instrumentation, polarized beams and targets, and the measurement of the polarization of the recoiling nucleon have been essential in the accurate separation of the charge and magnetic form factors and in studies of the elusive neutron charge form factor.

  9. Measurement of the Muon Neutrino Inclusive Charged Current Cross Section on Iron using the MINOS Detector

    SciTech Connect

    Loiacono, Laura Jean

    2010-05-01

    The Neutrinos at the Main Injector (NuMI) facility at Fermi National Accelerator Laboratory (FNAL) produces an intense muon neutrino beam used by the Main Injector Neutrino Oscillation Search (MINOS), a neutrino oscillation experiment, and the Main INjector ExpeRiment v-A, (MINERv A), a neutrino interaction experiment. Absolute neutrino cross sections are determined via σv = N vv , where the numerator is the measured number of neutrino interactions in the MINOS Detector and the denominator is the flux of incident neutrinos. Many past neutrino experiments have measured relative cross sections due to a lack of precise measurements of the incident neutrino flux, normalizing to better established reaction processes, such as quasielastic neutrino-nucleon scattering. But recent measurements of neutrino interactions on nuclear targets have brought to light questions about our understanding of nuclear effects in neutrino interactions. In this thesis the vμ inclusive charged current cross section on iron is measured using the MINOS Detector. The MINOS detector consists of alternating planes of steel and scintillator. The MINOS detector is optimized to measure muons produced in charged current vμ interactions. Along with muons, these interactions produce hadronic showers. The neutrino energy is measured from the total energy the particles deposit in the detector. The incident neutrino flux is measured using the muons produced alongside the neutrinos in meson decay. Three ionization chamber monitors located in the downstream portion of the NuMI beamline are used to measure the muon flux and thereby infer the neutrino flux by relation to the underlying pion and kaon meson flux. This thesis describes the muon flux instrumentation in the NuMI beam, its operation over the two year duration of this measurement, and the techniques used to derive the neutrino flux.

  10. First Search for the EMC Effect and Nuclear Shadowing in Neutrino Nucleus Deep Inelastic Scattering at MINERvA

    SciTech Connect

    Mousseau, Joel A.

    2015-01-01

    Decades of research in electron-nucleus deep inelastic scattering (DIS) have provided a clear picture of nuclear physics at high momentum transfer. While these effects have been clearly demonstrated by experiment, the theoretical explanation of their origin in some kinematic regions has been lacking. Particularly, the effects in the intermediate regions of Bjorken-x, anti-shadowing and the EMC effect have no universally accepted quantum mechanical explanation. In addition, these effects have not been measured systematically with neutrino-nucleus deep inelastic scattering, due to experiments lacking multiple heavy targets.

  11. Enhanced sensitivity to dark matter self-annihilations in the Sun using neutrino spectral information

    NASA Astrophysics Data System (ADS)

    Rott, C.; Tanaka, T.; Itow, Y.

    2011-09-01

    Self-annihilating dark matter gravitationally captured by the Sun could yield observable neutrino signals at current and next generation neutrino detectors. By exploiting such signals, neutrino detectors can probe the spin-dependent scattering of weakly interacting massive particles (WIMPs) with nucleons in the Sun. We describe a method how to convert constraints on neutrino fluxes to a limit on the WIMP-nucleon scattering cross section. In this method all neutrino flavors can be treated in a very similar way. We study the sensitivity of neutrino telescopes for Solar WIMP signals using vertex contained events and find that this detection channel is of particular importance in the search for low mass WIMPs. We obtain highly competitive sensitivities with all neutrino flavor channels for a Megaton sized detector through the application of basic spectral selection criteria. Best results are obtained with the electron neutrino channel. We discuss associated uncertainties and provide a procedure how to treat them for analyses in a consistent way.

  12. Electron and Muon production cross-sections in quasielastic ν(ν¯)-Nucleus scattering for Eν < 1GeV

    NASA Astrophysics Data System (ADS)

    Akbar, F.; Alam, M. Rafi; Athar, M. Sajjad; Chauhan, S.; Singh, S. K.; Zaidi, F.

    2015-10-01

    In this paper, we have studied (anti)neutrino induced charged current quasielastic (CCQE) scattering from some nuclear targets in the energy region of Eν < 1GeV. Our aim is to confront electron and muon production cross-sections relevant for νμ↔νe or ν¯μ↔ν¯e oscillation experiments. The effects due to lepton mass and its kinematic implications, radiative corrections, second class currents (SCCs) and uncertainties in the axial and pseudoscalar form factors are calculated for (anti)neutrino induced reaction cross-sections on free nucleon as well as the nucleons bound in a nucleus where nuclear medium effects influence the cross-section. For the nuclear medium effects, we have taken some versions of Fermi gas model (FGM) available in the literature. The results for (anti)neutrino-nucleus scattering cross-section per interacting nucleons are compared with the corresponding results in free nucleon case.

  13. Electroweak higher-order effects and theoretical uncertainties in deep-inelastic neutrino scattering

    SciTech Connect

    Diener, K.-P.O.; Dittmaier, S.; Hollik, W.

    2005-11-01

    A previous calculation of electroweak O({alpha}) corrections to deep-inelastic neutrino scattering, as e.g. measured by NuTeV and NOMAD, is supplemented by higher-order effects. In detail, we take into account universal two-loop effects from {delta}{alpha} and {delta}{rho} as well as higher-order final-state photon radiation off muons in the structure function approach. Moreover, we make use of the recently released O({alpha})-improved parton distributions MRST2004QED and identify the relevant QED factorization scheme, which is DIS-like. As a technical by-product, we describe slicing and subtraction techniques for an efficient calculation of a new type of real corrections that are induced by the generated photon distribution. A numerical discussion of the higher-order effects suggests that the remaining theoretical uncertainty from unknown electroweak corrections is dominated by nonuniversal two-loop effects and is of the order 0.0003 when translated into a shift in sin{sup 2}{theta}{sub W}=1-M{sub W}{sup 2}/M{sub Z}{sup 2}. The O({alpha}) corrections implicitly included in the parton distributions lead to a shift of about 0.0004.

  14. Measurement of Muon Neutrino Quasielastic Scattering on a Hydrocarbon Target at Eν~3.5 GeV

    DOE PAGES

    Fiorentini, G. A.; Schmitz, D. W.; Rodrigues, P. A.; Aliaga, L.; Altinok, O.; Baldin, B.; Baumbaugh, A.; Bodek, A.; Boehnlein, D.; Boyd, S.; et al

    2013-07-11

    We report a study of νμ charged-current quasielastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a μ⁻ and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross section, dσ/dQ², and study the low energy particle content of the final state. Deviations are found between the measured dσ/dQ² and the expectations of a model of independent nucleons in a relativistic Fermi gas. We also observe an excess of energy near the vertex consistent with multiple protons inmore » the final state.« less

  15. Using neutrinos as a probe of the strong interaction

    SciTech Connect

    Morfin, J.G.; /Fermilab

    2005-01-01

    Neutrino scattering experiments have been studying QCD for over 30 years. From the Gargamelle experiments in the early 70's, through the subsequent bubble chamber and electronic detector experiments in the 80's and 90's, neutrino scattering experiments have steadily accumulated increasing statistics and minimized their systematic errors. While the most recent study of QCD with neutrinos is from the TeVatron neutrino beam (the NuTeV experiment with results presented by Martin Tzanov at this Workshop), near-future studies will shift to the Main Injector based NuMI facility also at Fermilab. The NuMI Facility at Fermilab provides an extremely intense beam of neutrinos making it an ideal place for high statistics (anti)neutrino-nucleon/nucleus scattering experiments. The MINERvA experiment at Fermilab is a collaboration of elementary-particle and nuclear physicists planning to use a fully active fine-grained solid scintillator detector to measure absolute exclusive cross-sections and nuclear effects in v - A interactions as well as a systematic study of the resonance-DIS transition region and DIS with an emphasis on the extraction of high-xBj parton distribution functions. Further in the future an intense proton source, the Fermilab Proton Driver, will increase neutrino interaction rates by a further factor of 5-20.

  16. Neutrinos from GRBs cannonballs

    NASA Astrophysics Data System (ADS)

    Hubbard, J. R.; Ferry, S.

    We present a new estimation of the production of prompt neutrinos in the Cannonball Model of Gamma Ray Bursts proposed by Dar and De Rújula. Interactions between nucleons in the cannonballs and nucleons in the supernova shell are calculated in the rest frame of the shocked matter produced by these interactions. We explore the neutrino yield as a function of the parameters of the model.

  17. First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section

    SciTech Connect

    Aguilar-Arevalo, A.A.; Anderson, C.E.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; Curioni, A.; /Yale U. /Columbia U.

    2010-02-01

    A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section (d{sup 2}{sigma}/dT{sub {mu}}d cos {theta}{sub {mu}}) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ({sigma}[E{sub {nu}}]) and the single differential cross section (d{sigma}/dQ{sup 2}) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.

  18. First measurement of the muon neutrino charged current quasielastic double differential cross section

    SciTech Connect

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Curioni, A.; Fleming, B. T.; Linden, S. K.; Soderberg, M.; Spitz, J.; Bazarko, A. O.; Laird, E. M.; Meyers, P. D.; Patterson, R. B.; Shoemaker, F. C.; Tanaka, H. A.; Brice, S. J.; Brown, B. C.; Finley, D. A.; Ford, R.; Garcia, F. G.; Kasper, P.; Kobilarcik, T.

    2010-05-01

    A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section ((d{sup 2{sigma}}/dT{sub {mu}d}cos{theta}{sub {mu}})) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ({sigma}[E{sub {nu}}]) and the single differential cross section ((d{sigma}/dQ{sup 2})) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.

  19. Nucleon elastic form factors

    SciTech Connect

    D. Day

    2007-03-01

    The nucleon form factors are still the subject of active investigation even after an experimental effort spanning 50 years. This is because they are of critical importance to our understanding of the electromagnetic properties of nuclei and provide a unique testing ground for QCD motivated models of nucleon structure. Progress in polarized beams, polarized targets and recoil polarimetry have allowed an important and precise set of data to be collected over the last decade. I will review the experimental status of elastic electron scattering from the nucleon along with an outlook for future progress.

  20. Q2 dependence of the average squared transverse energy of jets in deep-inelastic muon-nucleon scattering with comparison to perturbative QCD predictions

    NASA Astrophysics Data System (ADS)

    Adams, M. R.; Arndotïd, S.; Anthony, P. L.; Baker, M. D.; Bartlett, J.; Bhatti, A. A.; Braun, H. M.; Busza, W.; Conrad, J. M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S. K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Figiel, J.; Gebauer, H. J.; Geesaman, D. F.; Gilman, R.; Green, M. C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V. W.; Jackson, H. E.; Jaffe, D. E.; Jancso, G.; Jansen, D. M.; Kaufman, S.; Kennedy, R. D.; Kirk, T.; Kobrak, H. G.; Krzywdzinski, S.; Kunori, S.; Lord, J. J.; Lubatti, H. J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Melanson, H.; Michael, D. G.; Mohr, W.; Montgomery, H. E.; Morfin, J. G.; Nickerson, R. B.; O'day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F. M.; Ramberg, E. J.; Röser, A.; Ryan, J. J.; Salgado, C. W.; Salvarani, A.; Schellman, H.; Schmitt, M.; Schmitz, N.; Schüler, K. P.; Skuja, A.; Snow, G. A.; Söldner-Rembold, S.; Steinberg, P. H.; Stier, H. E.; Stopa, P.; Swanson, R. A.; Talaga, R.; Tentindo-Repond, S.; Trost, H.-J.; Venkataramania, H.; Wilhelm, M.; Wilkes, J.; Wilson, Richard; Wittek, W.; Wolbers, S. A.; Zhao, T.

    1994-01-01

    The average squared transverse energy of jets in deep-inelastic muon-nucleon scattering is measured as a function of the momentum transfer squared (Q2), in the range 3

  1. Analysis of charged-current neutrino-nucleus cross section

    SciTech Connect

    Megias, G.; Caballero, J. A.

    2013-06-10

    A study of the cross section for chaged-current quasielastic (CCQE) scattering on nuclei has been performed using a description of nuclear dynamics based on the Relativistic Fermi Gas model (RFG). The role played by different parametrizations for the weak nucleon form factors is analyzed taking into account the relevance of the axial mass value. The results obtained are compared with the recent data for neutrinos measured by the MiniBooNE Collaboration.

  2. Nuclear effects in Neutrino Nuclear Cross-sections

    SciTech Connect

    Singh, S. K.; Athar, M. Sajjad

    2008-02-21

    Nuclear effects in the quasielastic and inelastic scattering of neutrinos(antineutrinos) from nuclear targets have been studied. The calculations are done in the local density approximation which take into account the effect of nucleon motion as well as renormalisation of weak transition strengths in the nuclear medium. The inelastic reaction leading to production of pions is calculated in a {delta} dominance model taking into account the renormalization of {delta} properties in the nuclear medium.

  3. Kaon Production Off the Nucleon

    SciTech Connect

    Alam, M. Rafi; Athar, M. Sajjad; Simo, I. Ruiz; Vacas, M. J. Vicente

    2011-10-06

    We have studied the weak kaon production off the nucleon induced by neutrinos at the low and intermediate energies. The studied mechanisms are the main source of kaon production for neutrino energies up to 1.2 to 1.5 GeV for the various channels and the cross sections are large enough to be amenable to be measured by experiments such as MINERvA and T2K.

  4. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  5. Collective neutrino oscillations in supernovae

    SciTech Connect

    Duan, Huaiyu

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  6. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    SciTech Connect

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  7. Neutrino factory

    DOE PAGES

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; et al

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less

  8. Neutrino factory

    SciTech Connect

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R.J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A.C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  9. Neutrino factory

    NASA Astrophysics Data System (ADS)

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R. J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A. C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

    2014-12-01

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that θ13>0 . The measured value of θ13 is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti)neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO ν Design Study consortium. EURO ν coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO ν baseline accelerator facility will provide 1 021 muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  10. Electron-neutrino scattering off nuclei from two different theoretical perspectives

    NASA Astrophysics Data System (ADS)

    Martini, M.; Jachowicz, N.; Ericson, M.; Pandey, V.; Van Cuyck, T.; Van Dessel, N.

    2016-07-01

    We analyze charged-current electron-neutrino cross sections on carbon. We consider two different theoretical approaches, on one hand the continuum random phase approximation (CRPA) which allows a description of giant resonances and quasielastic excitations, on the other hand the RPA-based calculations which are able to describe multinucleon emission and coherent and incoherent pion production as well as quasielastic excitations. We compare the two approaches in the genuine quasielastic channel, and find a satisfactory agreement between them at large energies while at low energies the collective giant resonances show up only in the CRPA approach. We also compare electron-neutrino cross sections with the corresponding muon-neutrino ones in order to investigate the impact of the different charged-lepton masses. Finally, restricting to the RPA-based approach, we compare the sum of quasielastic, multinucleon emission, coherent, and incoherent one-pion production cross sections (folded with the electron-neutrino T2K flux) with the charged-current inclusive electron-neutrino differential cross sections on carbon measured by T2K. We find a good agreement with the data. The multinucleon component is needed in order to reproduce the T2K electron-neutrino inclusive cross sections.

  11. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    SciTech Connect

    Wolcott, Jeremy

    2015-10-28

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino cross section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino cross section, but to date there has been no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments. We present the first measurement of an exclusive reaction in few-GeV electron neutrino interactions, namely, the cross section for a CCQE-like process, made using the MINERvA detector. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^2$. We also compute the ratio to a muon neutrino cross-section in $Q^2$ from MINERvA. We find satisfactory agreement between this measurement and the predictions of the GENIE generator.

  12. Neutrino-flavoured sneutrino dark matter

    NASA Astrophysics Data System (ADS)

    March-Russell, John; McCabe, Christopher; McCullough, Matthew

    2010-03-01

    A simple theory of supersymmetric dark matter (DM) naturally linked to neutrino flavour physics is studied. The DM sector comprises a spectrum of mixed lhd-rhd sneutrino states where both the sneutrino flavour structure and mass splittings are determined by the associated neutrino masses and mixings. Prospects for indirect detection from solar capture are good due to a large sneutrino-nucleon cross-section afforded by the inelastic splitting (solar capture limits exclude an explanation of DAMA/LIBRA). We find parameter regions where all heavier states will have decayed, leaving only one flavour mixture of sneutrino as the candidate DM. Such regions have a unique ‘smoking gun’ signature — sneutrino annihilation in the Sun produces a pair of neutrino mass eigenstates free from vacuum oscillations, with the potential for detection at neutrino telescopes through the observation of a hard spectrum of ν μ and ν τ (for a normal neutrino hierarchy). Next generation direct detection experiments can explore much of the parameter space through both elastic and inelastic scattering. We show in detail that the observed neutrino masses and mixings can arise as a consequence of supersymmetry breaking effects in the sneutrino DM sector, consistent with all experimental constraints.

  13. Few-nucleon systems with state-of-the-art chiral nucleon-nucleon forces

    NASA Astrophysics Data System (ADS)

    Binder, S.; Calci, A.; Epelbaum, E.; Furnstahl, R. J.; Golak, J.; Hebeler, K.; Kamada, H.; Krebs, H.; Langhammer, J.; Liebig, S.; Maris, P.; Meißner, Ulf-G.; Minossi, D.; Nogga, A.; Potter, H.; Roth, R.; Skibiński, R.; Topolnicki, K.; Vary, J. P.; Witała, H.; Lenpic Collaboration

    2016-04-01

    We apply improved nucleon-nucleon potentials up to fifth order in chiral effective field theory, along with a new analysis of the theoretical truncation errors to study nucleon-deuteron (N d ) scattering and selected low-energy observables in 3H,4He , and 6Li. Calculations beyond second order differ from experiment well outside the range of quantified uncertainties, providing truly unambiguous evidence for missing three-nucleon forces within the employed framework. The sizes of the required three-nucleon-force contributions agree well with expectations based on Weinberg's power counting. We identify the energy range in elastic N d scattering best suited to study three-nucleon-force effects and estimate the achievable accuracy of theoretical predictions for various observables.

  14. Neutrino-nucleus interactions

    SciTech Connect

    Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  15. Study of scintillation, fluorescence and scattering in mineral oil for the MiniBooNE neutrino detector

    SciTech Connect

    Brown, Bruce C.; Brice, Stephen; Hawker, Eric; Maza, Shannon; Meyer, Hans-Otto; Pla-Dalmau, Anna; Tayloe, Rex; Tanaka, Hirohisa A.; Toptygin, Dmitri; /Fermilab /Western Illinois U. /Indiana U. /Princeton U. /Johns Hopkins U.

    2004-11-01

    The MiniBooNE neutrino detector at Fermilab (FNAL) is filled with 250,000 gallons of pure mineral oil. The principal signal for MiniBooNE is light observed in a prompt Cherenkov cone. Scattering and fluorescence modify our detection of this light. Scintillation is also created by ionization in the oil. Studies of fluorescence of this oil have been carried out over a wide spectrum of exciting light and time resolved fluorescence with a narrower range of excitation. Polarized scattering measurements have been carried out at longer wavelengths. Time resolved and spectrally resolved scintillation has been studied with a 200 MeV Proton beam at the Indiana University Cyclotron Facility. Results of these studies will be reported.

  16. First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE) Double Differential Cross Section

    SciTech Connect

    Katori, Teppei; /MIT, LNS

    2009-09-01

    Using a high statistics sample of muon neutrino charged current quasielastic (CCQE) events, we report the first measurement of the double differential cross section (d{sup 2}{sigma}/dT{sub {mu}}d cos {theta}{sub {mu}}) for this process. The result features reduced model dependence and supplies the most complete information on neutrino CCQE scattering to date. Measurements of the absolute cross section as a function of neutrino energy ({sigma}[E{sub v}{sup QE,RFG}]) and the single differential cross section (d{sigma}/dQ{sub QE}{sup 2}) are also provided, largely to facilitate comparison with prior measurements. This data is of particular use for understanding the axial-vector form factor of the nucleon as well as improving the simulation of low energy neutrino interactions on nuclear targets, which is of particular relevance for experiments searching for neutrino oscillations.

  17. Precision measurement of sin/sup 2/theta/sub W/ from semileptonic neutrino scattering

    SciTech Connect

    Abramowicz, H.; Belusevic, R.; Blondel, A.; Bluemer, H.; Boeckmann, P.; Brummel, H.D.; Buchholz, P.; Burkhardt, H.; Debu, P.; Duda, J.; Dydak, F.; Falkenburg, B.; Fiedler, M.; Geiges, R.; Geweniger, C.; Grant, A.L.; Guyot, C.; Hagelberg, R.; Hepp, V.; Hughes, E.W.; Kampschulte, B.; Keilwerth, H.; Kleinknecht, K.; Knobloch, J.; Krasny, M.; Kro-acute-accentlikowski, J.; Kurz, N.; Lipniacka, A.; Merlo, J.; Mueller, E.; Para, A.; Perez, P.; Perrier, F.; Pollman, D.; Ranjard, F.; Renk, B.; Schuller, J.; Taureg, H.; Tittel, K.; Turlay, R.; Vallage, B.; Wachsmuth, H.; Wotschack, J.

    1986-07-21

    The ratio R-italic/sub ..nu../ of the neutral- to charged-current cross sections of neutrinos in iron has been measured in an exposure of the CERN-Dortmund-Heidelberg-Saclay neutrino detector to a 160-GeV/c-italic neutrino narrow-band beam at the CERN Super Proton Synchrotron. The result is R-italic/sub ..nu../ = 0.3072 +- 0.0025(stat) +- 0.0020(syst), for hadronic energy greater than 10 GeV. The electroweak mixing parameter is sin/sup 2/theta/sub W/ = 0.225 +- 0.005(expt ) +- 0.003(theor)+0.013(m-italic/sub c-italic/-1. 5 GeV/c-italic/sup 2/), where m-italic/sub c-italic/ is the charm-quark mass.

  18. Nuclear tests for the strange charge from factor of the nucleon

    NASA Astrophysics Data System (ADS)

    Bernabéu, J.; Bilenky, S. M.; Segura, J.; Singh, S. K.

    1992-05-01

    It is shown that the measurements of elastic and inelastic scattering of neutrinos and parity-violating asymmetry of longitudinally polarized electrons on spin-isospin zero nuclei would yield model independent information about the strangeness charge form factor. Nunerical estimates of the contribution of this form factor are presented for 4He, 12C and 16O nuclei in impulse approximation using strangeness vector from factors of the nucleon recently suggested in the literature. A general relation between the P-odd asymmetry in electron scattering and the cross sections of neutrino and unpolarized electron scattering on spin zero nuclei is obtained. On leave of academic pursuit from Aligarh Muslim University, Aligarh 202 001, India.

  19. Deep and shallow inelastic scattering

    SciTech Connect

    Ray, Heather

    2015-05-15

    In this session we focused on the higher energy deep and shallow inelastic particle interactions, DIS and SIS. DIS interactions occur when the energy of the incident particle beam is so large that the beam is able to penetrate the nucleons inside of the target nuclei. These interactions occur at the smallest level possible, that of the quark-gluon, or parton, level. SIS interactions occur in an intermediate energy range, just below the energy required for DIS interactions. The DIS cross section formula contains structure functions that describe our understanding of the underlying parton structure of nature. The full description of DIS interactions requires three structure functions: two may be measured in charged lepton or neutrino scattering, but one can only be extracted from neutrino DIS data. There are reasons to expect that the impact of nuclear effects could be different for neutrinos engaging in the DIS interaction, vs those felt by leptons. In fact, fits by the nCTEQ collaboration have found that the neutrino-Fe structure functions appear to differ from those extracted from lepton scattering data [1]. To better understand the global picture of DIS and SIS, we chose a three-pronged attack that examined recent experimental results, data fits, and latest theory predictions. Experimental results from neutrino and lepton scattering, as well as collider experiments, were presented.

  20. Measurement of Electron Neutrino Quasielastic and Quasielasticlike Scattering on Hydrocarbon at ⟨Eν⟩=3.6 GeV

    NASA Astrophysics Data System (ADS)

    Wolcott, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Chvojka, J.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Muhlbeier, T.; Naples, D.; Nelson, J. K.; Norrick, A.; Osta, J.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Salazar, G.; Schellman, H.; Schmitz, D. W.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wospakrik, M.; Zavala, G.; Zegarra, A.; Zhang, D.; Ziemer, B. P.; Minerva Collaboration

    2016-02-01

    The first direct measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in the electron production angle, electron energy, and Q2 are presented. The ratio of the quasielastic, flux-integrated differential cross section in Q2 for νe with that of similarly selected νμ-induced events from the same exposure is used to probe assumptions that underpin conventional treatments of charged-current νe interactions used by long-baseline neutrino oscillation experiments. The data are found to be consistent with lepton universality and are well described by the predictions of the neutrino event generator GENIE.

  1. Measurement of Electron Neutrino Quasielastic and Quasielasticlike Scattering on Hydrocarbon at ⟨E_{ν}⟩=3.6  GeV.

    PubMed

    Wolcott, J; Aliaga, L; Altinok, O; Bellantoni, L; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Budd, H; Cai, T; Carneiro, M F; Chvojka, J; da Motta, H; Devan, J; Dytman, S A; Díaz, G A; Eberly, B; Felix, J; Fields, L; Fine, R; Gago, A M; Galindo, R; Gallagher, H; Ghosh, A; Golan, T; Gran, R; Harris, D A; Higuera, A; Kiveni, M; Kleykamp, J; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Marshall, C M; Martinez Caicedo, D A; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfín, J G; Mousseau, J; Muhlbeier, T; Naples, D; Nelson, J K; Norrick, A; Osta, J; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Rakotondravohitra, L; Ransome, R D; Ray, H; Ren, L; Rimal, D; Rodrigues, P A; Ruterbories, D; Salazar, G; Schellman, H; Schmitz, D W; Solano Salinas, C J; Tagg, N; Tice, B G; Valencia, E; Walton, T; Wospakrik, M; Zavala, G; Zegarra, A; Zhang, D; Ziemer, B P

    2016-02-26

    The first direct measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in the electron production angle, electron energy, and Q^{2} are presented. The ratio of the quasielastic, flux-integrated differential cross section in Q^{2} for ν_{e} with that of similarly selected ν_{μ}-induced events from the same exposure is used to probe assumptions that underpin conventional treatments of charged-current ν_{e} interactions used by long-baseline neutrino oscillation experiments. The data are found to be consistent with lepton universality and are well described by the predictions of the neutrino event generator GENIE.

  2. Measurement of Electron Neutrino Quasielastic and Quasielasticlike Scattering on Hydrocarbon at ⟨E_{ν}⟩=3.6  GeV.

    PubMed

    Wolcott, J; Aliaga, L; Altinok, O; Bellantoni, L; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Budd, H; Cai, T; Carneiro, M F; Chvojka, J; da Motta, H; Devan, J; Dytman, S A; Díaz, G A; Eberly, B; Felix, J; Fields, L; Fine, R; Gago, A M; Galindo, R; Gallagher, H; Ghosh, A; Golan, T; Gran, R; Harris, D A; Higuera, A; Kiveni, M; Kleykamp, J; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Marshall, C M; Martinez Caicedo, D A; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfín, J G; Mousseau, J; Muhlbeier, T; Naples, D; Nelson, J K; Norrick, A; Osta, J; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Rakotondravohitra, L; Ransome, R D; Ray, H; Ren, L; Rimal, D; Rodrigues, P A; Ruterbories, D; Salazar, G; Schellman, H; Schmitz, D W; Solano Salinas, C J; Tagg, N; Tice, B G; Valencia, E; Walton, T; Wospakrik, M; Zavala, G; Zegarra, A; Zhang, D; Ziemer, B P

    2016-02-26

    The first direct measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in the electron production angle, electron energy, and Q^{2} are presented. The ratio of the quasielastic, flux-integrated differential cross section in Q^{2} for ν_{e} with that of similarly selected ν_{μ}-induced events from the same exposure is used to probe assumptions that underpin conventional treatments of charged-current ν_{e} interactions used by long-baseline neutrino oscillation experiments. The data are found to be consistent with lepton universality and are well described by the predictions of the neutrino event generator GENIE. PMID:26967410

  3. Measurement of the total flux averaged neutrino induced neutral current elastic scattering cross section with the T2K Pi-Zero detector

    NASA Astrophysics Data System (ADS)

    Ruterbories, Daniel

    Tokai-to-Kamioka (T2K) is a second generation accelerator neutrino oscillation experiment. T2K uses a high intensity proton beam produced at the Japan Proton Accelerator Research Complex (J-PARC) incident on a carbon target and focused with three magnetic horns to produce a high intensity and nearly pure muon neutrino beam with a peak energy of 600 MeV at a 2.5º axis angle. The muon neutrino beam travels 295 km across Japan to the Super Kamiokande (SK) water Cherenkov detector in the Kamioka mine. The neutrino beam is also sampled by a complex of near detectors 280 m downstream of the carbon target located both on and off the beam axis. These detectors measure the neutrino beam before neutrino oscillations occur to provide input constraints to oscillation searches using SK. The off-axis near detector, ND280, is a composite detector made up of a tracker section and a Pi-Zero detector (POD), all surrounded by an electromagnetic calorimeter. The entire detector is enclosed in a dipole magnet with a field of 0.2 T. The primary purpose of the tracker section is to measure neutrino induced charged current events characterized by the production of muons. The POD is primarily designed to detect electromagnetic showers and to measure interactions on water through the use of a removable water target. In addition to these measurements, the ND280 detector is also used to study the cross sections of neutrino interactions on the various materials in the detectors. Limited knowledge of the cross sections in this neutrino energy regime are an important source of systematic error in neutrino oscillation measurements. This thesis presents a measurement of one neutrino interaction channel in the POD, neutral current elastic scattering (NCE). In this process a neutrino elastically scatters off a proton or neutron in the target nucleus producing a proton or neutron with higher energy. The signature of this process is a single proton track. A particle identification algorithm (PID) was

  4. Few-Nucleon Systems

    NASA Astrophysics Data System (ADS)

    Kievsky, A.

    2005-04-01

    Recent advances in the theoretical description of few-nucleon systems are reported. This research activity has been performed under the Italian project FISICA TEORICA DEL NUCLEO E DEI SISTEMI A MOLTI CORPI. Bound and scattering states as well as specific reactions are analyzed in connection with the current experimental activity.

  5. Expression of Interest for Neutrinos Scattering on Glass: NuSOnG

    SciTech Connect

    Adams, T.; Bugel, L.; Conrad, J.M.; Fisher, P.H.; Formaggio, J.A.; de Gouvea, A.; Loinaz, W.A.; Karagiorgi, G.; Kobilarcik, T.R.; Kopp, S.; Kyle, G.; /New Mexico State U. /Fermilab /MIT /Fermilab

    2009-07-01

    We propose a 3500 ton (3000 ton fiducial volume) SiO{sub 2} neutrino detector with sampling calorimetry, charged particle tracking, and muon spectrometers to run in a Tevatron Fixed Target Program. Improvements to the Fermilab accelerator complex should allow substantial increases in the neutrino flux over the previous NuTeV quad triplet beamline. With 4 x 10{sup 19} protons on target/year, a 5 year run would achieve event statistics more than 100 times higher than NuTeV. With 100 times the statistics of previous high energy neutrino experiments, the purely weak processes {nu}{sub {mu}} + e{sup -} {yields} {nu}{sub {mu}} + e{sup -} and {nu}{sub {mu}} + e{sup -} {yields} {nu}{sub e} + {mu}{sup -} (inverse muon decay) can be measured with high accuracy for the first time. The inverse muon decay process is independent of strong interaction effects and can be used to significantly improve the flux normalization for all other processes. The high neutrino and antineutrino fluxes also make new searches for lepton flavor violation and neutral heavy leptons possible. In this document, we give a first look at the physics opportunities, detector and beam design, and calibration procedures.

  6. Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment.

    PubMed

    Akerib, D S; Araújo, H M; Bai, X; Bailey, A J; Balajthy, J; Beltrame, P; Bernard, E P; Bernstein, A; Biesiadzinski, T P; Boulton, E M; Bradley, A; Bramante, R; Cahn, S B; Carmona-Benitez, M C; Chan, C; Chapman, J J; Chiller, A A; Chiller, C; Currie, A; Cutter, J E; Davison, T J R; de Viveiros, L; Dobi, A; Dobson, J E Y; Druszkiewicz, E; Edwards, B N; Faham, C H; Fiorucci, S; Gaitskell, R J; Gehman, V M; Ghag, C; Gibson, K R; Gilchriese, M G D; Hall, C R; Hanhardt, M; Haselschwardt, S J; Hertel, S A; Hogan, D P; Horn, M; Huang, D Q; Ignarra, C M; Ihm, M; Jacobsen, R G; Ji, W; Kazkaz, K; Khaitan, D; Knoche, R; Larsen, N A; Lee, C; Lenardo, B G; Lesko, K T; Lindote, A; Lopes, M I; Malling, D C; Manalaysay, A; Mannino, R L; Marzioni, M F; McKinsey, D N; Mei, D-M; Mock, J; Moongweluwan, M; Morad, J A; Murphy, A St J; Nehrkorn, C; Nelson, H N; Neves, F; O'Sullivan, K; Oliver-Mallory, K C; Ott, R A; Palladino, K J; Pangilinan, M; Pease, E K; Phelps, P; Reichhart, L; Rhyne, C; Shaw, S; Shutt, T A; Silva, C; Solovov, V N; Sorensen, P; Stephenson, S; Sumner, T J; Szydagis, M; Taylor, D J; Taylor, W; Tennyson, B P; Terman, P A; Tiedt, D R; To, W H; Tripathi, M; Tvrznikova, L; Uvarov, S; Verbus, J R; Webb, R C; White, J T; Whitis, T J; Witherell, M S; Wolfs, F L H; Yazdani, K; Young, S K; Zhang, C

    2016-04-22

    We present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4×10^{4}  kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σ_{n}=9.4×10^{-41}  cm^{2} (σ_{p}=2.9×10^{-39}  cm^{2}) at 33  GeV/c^{2}. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date. PMID:27152786

  7. Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bradley, A.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; de Viveiros, L.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Malling, D. C.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Ott, R. A.; Palladino, K. J.; Pangilinan, M.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2016-04-01

    We present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4 ×104 kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σn=9.4 ×10-41 cm2 (σp=2.9 ×10-39 cm2 ) at 33 GeV /c2 . The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.

  8. Results on the spin-dependent scattering of weakly interacting massive particles on nucleons from the Run 3 Data of the LUX Experiment

    DOE PAGES

    Akerib, D. S.

    2016-04-20

    Here, we present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4 × 104 kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σn = 9.4 × 10–41 cm2 (σp = 2.9 × 10–39 cm2) at 33 GeV/c2. Themore » spin-dependent WIMP-neutron limit is the most sensitive constraint to date.« less

  9. Determination of the gluon distribution function of the nucleon using energy-energy angular pattern in deep-inelastic muon-deuteron scattering

    NASA Astrophysics Data System (ADS)

    Adams, M. R.; Aïd, S.; Anthony, P. L.; Baker, M. D.; Bartlett, J.; Bhatti, A. A.; Braun, H. M.; Busza, W.; Carroll, T. J.; Conrad, J. M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S. K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Figiel, J.; Gebauer, H. J.; Geesaman, D. F.; Gilman, R.; Green, M. C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V. W.; Jackson, H. E.; Jancso, G.; Jansen, D. M.; Kaufman, S.; Kennedy, R. D.; Kirk, T.; Kobrak, H. G. E.; Krzywdzinski, S.; Kunori, S.; Lord, J. J.; Lubatti, H. J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Melanson, H.; Michael, D. G.; Mohr, W.; Montgomery, H. E.; Morfin, J. G.; Nickerson, R. B.; O'Day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F. M.; Ramberg, E. J.; Röser, A.; Ryan, J. J.; Salgado, C. W.; Salvarani, A.; Schellman, H.; Schmitt, M.; Schmitz, N.; Schüler, K. P.; Seyerlein, H. J.; Skuja, A.; Snow, G. A.; Söldner-Rembold, S.; Steinberg, P. H.; Stier, H. E.; Stopa, P.; Swanson, R. A.; Talaga, R.; Tentindo-Repond, S.; Trost, H. J.; Venkataramania, H.; Wilhelm, M.; Wilkes, J.; Wilson, Richard; Wittek, W.; Wolbers, S. A.; Zhao, T.

    1996-03-01

    We have used the energy-energy angular pattern of hadrons in inelastic muon-deuteron scattering to study perturbative QCD effects and to extract the gluon distribution function ηG( η) of the nucleon, where η is the fractional momentum carried by the gluon. The data were taken with the E665 spectrometer using the Fermilab Tevatron muon beam with a mean beam energy of 490 GeV. We present ηG( η) for 0.005< η<0.05 and at an average Q 2 of 8 GeV2 using this new technique. We find that ηG( η) in this region can be described by ηG( η) α ηλ with λ=-0.87±0.09( stat.)±{0.37/0.32}( sys.). We compare our results to expectations from various parametrizations of the parton distribution function and also to results from HERA.

  10. Acceptances for space-based and ground-based fluorescence detectors, and inference of the neutrino-nucleon cross-section above 1019eV

    NASA Astrophysics Data System (ADS)

    Palomares-Ruiz, Sergio; Irimia, Andrei; Weiler, Thomas J.

    2006-04-01

    Detection of ultrahigh energy neutrinos will be useful for unraveling the dynamics of the most violent sources in the cosmos and for revealing the neutrino cross-section at extreme energy. If there exists a Greisen-Zatsepin-Kuz’min (GZK) suppression of cosmic-ray events above EGZK˜5×1019eV, as predicted by theory, then the only messengers of energies beyond EGZK are neutrinos. Cosmic neutrino fluxes can initiate air-showers through interaction in the atmosphere, or in the Earth. Neutrino trajectories will be downgoing to nearly horizontal in the former case, and “Earth-skimming” in the latter case. Thus it is important to know the acceptances (event rate/flux) of proposed air-shower experiments for detecting both types of neutrino-initiated events. We calculate these acceptances for fluorescence detectors, both space-based as with the EUSO and OWL proposals, and ground-based, as with Auger, HiRes and Telescope Array. The neutrino cross-section σνNCC is unknown at energies above 5.2×1013eV. Although the popular QCD extrapolation of lower-energy physics offers the cross-section value of 0.54×10-31(Eν/1020eV)0.36cm2, new physics could raise or lower this value. Therefore, we present the acceptances of horizontal (HAS) and upgoing (UAS) air-showers as a function of σνNCC over the range 10-34 to 10-30cm2. The dependences of acceptances on neutrino energy, shower-threshold energy, shower length, and shower column density are also studied. We introduce a cloud layer, and study its effect on rates as viewed from space and from the ground. For UAS, we present acceptances for events over land (rock), and over the ocean (water). Acceptances over water are larger by about an order of magnitude, thus favoring space-based detectors. We revisit the idea of Kusenko and Weiler [Phys. Rev. Lett. 88, 161101 (2002)PRLTAO0031-900710.1103/PhysRevLett.88.161101] to infer σνNCC at Eν≳1020 from the ratio of HAS-to-UAS events, and obtain favorable results. Included in

  11. Acceptances for space-based and ground-based fluorescence detectors, and inference of the neutrino-nucleon cross-section above 10{sup 19} eV

    SciTech Connect

    Palomares-Ruiz, Sergio; Irimia, Andrei; Weiler, Thomas J.

    2006-04-15

    Detection of ultrahigh energy neutrinos will be useful for unraveling the dynamics of the most violent sources in the cosmos and for revealing the neutrino cross-section at extreme energy. If there exists a Greisen-Zatsepin-Kuz'min (GZK) suppression of cosmic-ray events above E{sub GZK}{approx}5x10{sup 19} eV, as predicted by theory, then the only messengers of energies beyond E{sub GZK} are neutrinos. Cosmic neutrino fluxes can initiate air-showers through interaction in the atmosphere, or in the Earth. Neutrino trajectories will be downgoing to nearly horizontal in the former case, and 'Earth-skimming' in the latter case. Thus it is important to know the acceptances (event rate/flux) of proposed air-shower experiments for detecting both types of neutrino-initiated events. We calculate these acceptances for fluorescence detectors, both space-based as with the EUSO and OWL proposals, and ground-based, as with Auger, HiRes and Telescope Array. The neutrino cross-section {sigma}{sub {nu}}{sub N}{sup CC} is unknown at energies above 5.2x10{sup 13} eV. Although the popular QCD extrapolation of lower-energy physics offers the cross-section value of 0.54x10{sup -31}(E{sub {nu}}/10{sup 20} eV){sup 0.36} cm{sup 2}, new physics could raise or lower this value. Therefore, we present the acceptances of horizontal (HAS) and upgoing (UAS) air-showers as a function of {sigma}{sub {nu}}{sub N}{sup CC} over the range 10{sup -34} to 10{sup -30} cm{sup 2}. The dependences of acceptances on neutrino energy, shower-threshold energy, shower length, and shower column density are also studied. We introduce a cloud layer, and study its effect on rates as viewed from space and from the ground. For UAS, we present acceptances for events over land (rock), and over the ocean (water). Acceptances over water are larger by about an order of magnitude, thus favoring space-based detectors. We revisit the idea of Kusenko and Weiler [Phys. Rev. Lett. 88, 161101 (2002)] to infer {sigma}{sub {nu

  12. Muons and neutrinos

    NASA Technical Reports Server (NTRS)

    Stanev, T.

    1986-01-01

    The first generation of large and precise detectors, some initially dedicated to search for nucleon decay has accumulated significant statistics on neutrinos and high-energy muons. A second generation of even better and bigger detectors are already in operation or in advanced construction stage. The present set of experimental data on muon groups and neutrinos is qualitatively better than several years ago and the expectations for the following years are high. Composition studies with underground muon groups, neutrino detection, and expected extraterrestrial neutrino fluxes are discussed.

  13. Measurements of Polarization Transfers in Real Compton Scattering by a proton target at JLAB. A new source of information on the 3D shape of the nucleon

    SciTech Connect

    Fanelli, Cristiano V.

    2015-03-01

    In this thesis work, results of the analysis of the polarization transfers measured in real Compton scattering (RCS) by the Collaboration E07-002 at the Je fferson Lab Hall-C are presented. The data were collected at large scattering angle (theta_cm = 70deg) and with a polarized incident photon beam at an average energy of 3.8 GeV. Such a kind of experiments allows one to understand more deeply the reaction mechanism, that involves a real photon, by extracting both Compton form factors and Generalized Parton Distributions (GPDs) (also relevant for possibly shedding light on the total angular momentum of the nucleon). The obtained results for the longitudinal and transverse polarization transfers K_LL and K_LT, are of crucial importance, since they confirm unambiguously the disagreement between experimental data and pQCD prediction, as it was found in E99-114 experiment, and favor the Handbag mechanism. The E99-114 and E07-002 results can contribute to attract new interest on the great yield of the Compton scattering by a nucleon target, as demonstrated by the recent approval of an experimental proposal submitted to the Jefferson Lab PAC 42 for a Wide-angle Compton Scattering experiment, at 8 and 10 GeV Photon Energies. The new experiments approved to run with the updated 12 GeV electron beam at JLab, are characterized by much higher luminosities, and a new GEM tracker is under development to tackle the challenging backgrounds. Within this context, we present a new multistep tracking algorithm, based on (i) a Neural Network (NN) designed for a fast and efficient association of the hits measured by the GEM detector which allows the track identification, and (ii) the application of both a Kalman filter and Rauch-Tung-Striebel smoother to further improve the track reconstruction. The full procedure, i.e. NN and filtering, appears very promising, with high performances in terms of both association effciency and reconstruction accuracy, and these preliminary results will

  14. Aspects of neutrino interactions (scatterings at the low Q{sup 2}-region)

    SciTech Connect

    Hoinka, T.; Paschos, E. A.; Thomas, L.

    2015-10-15

    The article begins with a description of chiral symmetry and its application to neutrino induced reactions. For small Q{sup 2} (forward direction) the process is dominated by the amplitute with helicity zero where the pion pole disappears when multiplied with the polarization vector. The remaining part of the amplitude is determined by PCAC. For E{sub ν} > 2 GeV the computed cross sections are in good agreement with data. In coherent pion production we expect equal yields for neutrinos and antineutrinos a relation which for E{sub ν} > 2 GeV is fulfilled. We discuss specific features of the data and suggest methods for improving them by presenting new estimates for the incoherent background.

  15. Neutrino physics with multi-ton scale liquid xenon detectors

    SciTech Connect

    Baudis, L.; Ferella, A.; Kish, A.; Manalaysay, A.; Undagoitia, T. Marrodán; Schumann, M. E-mail: alfredo.ferella@lngs.infn.it E-mail: aaronm@ucdavis.edu E-mail: marc.schumann@lhep.unibe.ch

    2014-01-01

    We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2–30 keV, where the sensitivity to solar pp and {sup 7}Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ∼ 2 × 10{sup −48} cm{sup 2} and WIMP masses around 50 GeV⋅c{sup −2}, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ∼ 6 GeV⋅c{sup −2} to cross sections above ∼ 4 × 10{sup −45}cm{sup 2}. DARWIN could reach a competitive half-life sensitivity of 5.6 × 10{sup 26} y to the neutrinoless double beta decay of {sup 136}Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.

  16. Towards a Microscopic Understanding of Nucleon Polarizabilities

    NASA Astrophysics Data System (ADS)

    Eichmann, Gernot

    2016-07-01

    We outline a microscopic framework to calculate nucleon Compton scattering from the level of quarks and gluons within the covariant Faddeev approach. We explain the connection with hadronic expansions of the Compton scattering amplitude and discuss the obstacles in maintaining electromagnetic gauge invariance. Finally we give preliminary results for the nucleon polarizabilities.

  17. Electroweak meson production reaction in the nucleon resonance region

    SciTech Connect

    Sato, Toru

    2015-10-15

    We report on our recent study of the the neutrino-nucleon reaction in the nucleon resonance region. The dynamical reaction model of meson production reaction on the nucleon for the pion and photon induced reaction has been developed in order to investigate the spectrum of nucleon excited state. We have extended this model in order to describe the weak meson production reactions with the πN, ηN, KΛ, KΣ and ππN final states. We also studied the role of the final state interaction in the photon and the neutrino induced pion production reaction on the deuteron around the Δ(1232) resonance region.

  18. A Regge Model for Nucleon-Nucleon Spin Dependent Amplitudes

    SciTech Connect

    William P. Ford, Jay Van Orden

    2013-01-01

    There are currently no models readily available that provide nucleon-nucleon spin dependent scattering amplitudes at high energies (s {ge} 6 GeV{sup 2}). This work aims to provide a model for calculating these high energy scattering amplitudes. The foundation of the model is Regge theory since it allows for a relativistic description and full spin dependence. We present our parameterization of the amplitudes, and show comparisons of our solutions to the data set we have collected. Overall the model works as intended, and provides an adequate description of the scattering amplitudes.

  19. Beyond nuclear "pasta" : Phase transitions and neutrino opacity of new "pasta" phases

    NASA Astrophysics Data System (ADS)

    Alcain, P. N.; Giménez Molinelli, P. A.; Dorso, C. O.

    2014-12-01

    In this work, we focus on different length scales within the dynamics of nucleons in conditions according to the neutron star crust, with a semiclassical molecular dynamics model, studying isospin symmetric matter at subsaturation densities. While varying the temperature, we find that a solid-liquid phase transition exists, which can be also characterized with a morphology transition. For higher temperatures, above this phase transition, we study the neutrino opacity, and find that in the liquid phase, the scattering of low momenta neutrinos remain high, even though the morphology of the structures differ significatively from those of the traditional nuclear pasta.

  20. Nucleon-Nucleon Interactions from the Quark Model

    SciTech Connect

    Downum, C.; Stone, J. R.; Barnes, T.; Swanson, E. S.; Vidana, I.

    2010-08-05

    We report on investigations of the applicability of non-relativistic constituent quark models to the low-energy nucleon-nucleon (NN) interaction. The major innovations of a resulting NN potential are the use of the {sup 3}P{sub 0} decay model and quark model wave functions to derive nucleon-nucleon-meson form-factors, and the use of a colored spin-spin contact hyperfine interaction to model the repulsive core rather than the phenomenological treatment common in other NN potentials. We present the results of the model for experimental free NN scattering phase shifts, S-wave scattering lengths and effective ranges and deuteron properties. Plans for future study are discussed.

  1. Monte Carlo neutrino oscillations

    SciTech Connect

    Kneller, James P.; McLaughlin, Gail C.

    2006-03-01

    We demonstrate that the effects of matter upon neutrino propagation may be recast as the scattering of the initial neutrino wave function. Exchanging the differential, Schrodinger equation for an integral equation for the scattering matrix S permits a Monte Carlo method for the computation of S that removes many of the numerical difficulties associated with direct integration techniques.

  2. How low-energy weak reactions can constrain three-nucleon forces and the neutron-neutron scattering length.

    PubMed

    Gårdestig, A; Phillips, D R

    2006-06-16

    We show that chiral symmetry and gauge invariance enforce relations between the short-distance physics that occurs in a number of electroweak and pionic reactions on light nuclei. Within chiral perturbation theory, this is manifested via the appearance of the same axial isovector two-body contact term in pi(-)d --> nngamma, p-wave pion production in NN collisions, tritium beta decay, pp fusion, nud scattering, and the hep reaction. Using a Gamow-Teller matrix element obtained from calculations of pp fusion as input, we compute the neutron spectrum obtained in pi(-)d --> nngamma. With the short-distance physics in this process controlled from pp --> de(=)nu(e), the theoretical uncertainty in the nn scattering length extracted from pi(-)d --> nngamma is reduced by a factor larger than 3, to approximately < or = 0.05 fm. PMID:16803373

  3. The COHERENT collaboration: an effort to observe coherent, elastic, neutral-current neutrino-nucleus scattering at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Rich, Grayson; Coherent Collaboration

    2014-09-01

    The phenomenon of coherent, neutral-current scattering of neutrinos from nuclei was first proposed by D.Z. Freedman in 1974, who posited that an effort to observe this effect experimentally ``may be an act of hubris'' owing to extreme experimental difficulties. Taking advantage of technologies which have come to maturity and new experience gained in the intervening 40 years, the newly-formed COHERENT collaboration seeks to measure for the first time coherent, elastic neutrino-nucleus scattering (CE ν NS). Using neutrinos created by stopped pions at the Spallation Neutron Source (SNS) of Oak Ridge National Laboratory, several detector systems will be deployed to limit systematic uncertainties and unambiguously observe the N2 -dependence on the cross section. The current status of the efforts of the collaboration will be addressed, focusing on detector technologies and calibration of these detectors for low-energy nuclear recoils. We will also discuss the longer-term physics goals of the collaboration, including astrophysical implications of the measurements and the use CE ν NS as a probe to search for non-standard neutrino interactions and as a way to measure the weak mixing angle.

  4. Nucleon Spin And Structure Studies With COMPASS

    SciTech Connect

    Platchkov, Stephane

    2006-07-11

    The COMPASS experiment at CERN investigates nucleon structure and spectroscopy with high-intensity muon and hadron beams. Between 2002 and 2004 COMPASS has mainly concentrated on the spin structure of the nucleon via deep-inelastic scattering of polarized muons on polarized nucleons. First results include measurements of the gluon contribution to the nucleon spin via charm production and high-pt pairs, {lambda} polarization, vector-meson production, Collins and Sivers asymmetries, inclusive and semi-inclusive deep-inelastic scattering asymmetries and a search for pentaquark states. A short overview of these results is presented.

  5. Neutrino and Anti-neutrino Cross Sections at MiniBooNE

    SciTech Connect

    Dharmapalan, Ranjan

    2011-10-06

    The MiniBooNE experiment has reported a number of high statistics neutrino and anti-neutrino cross sections -among which are the charged current quasi-elastic (CCQE) and neutral current elastic (NCE) neutrino scattering on mineral oil (CH{sub 2}). Recently a study of the neutrino contamination of the anti-neutrino beam has concluded and the analysis of the anti-neutrino CCQE and NCE scattering is ongoing.

  6. Bolometric detection of neutrinos

    NASA Technical Reports Server (NTRS)

    Cabrera, B.; Krauss, L. M.; Wilczek, F.

    1985-01-01

    Elastic neutrino scattering off electrons in crystalline silicon at 1-10 mK results in measurable temperature changes in macroscopic amounts of material, even for low-energy (less than 0.41-MeV) pp neutrinos from the sun. New detectors for bolometric measurement of low-energy neutrino interactions, including coherent nuclear elastic scattering, are proposed. A new and more sensitive search for oscillations of reactor antineutrinos is practical (about 100 kg of Si), and would lay the groundwork for a more ambitious measurement of the spectrum of pp, Be-7, and B-8 solar neutrinos, and of supernovae anywhere in the Galaxy (about 10 tons of Si).

  7. Measurement of Muon Neutrino Quasielastic Scattering on a Hydrocarbon Target at Eν~3.5 GeV

    SciTech Connect

    Fiorentini, G. A.; Schmitz, D. W.; Rodrigues, P. A.; Aliaga, L.; Altinok, O.; Baldin, B.; Baumbaugh, A.; Bodek, A.; Boehnlein, D.; Boyd, S.; Bradford, R.; Brooks, W. K.; Budd, H.; Butkevich, A.; Martinez Caicedo, D. A.; Castromonte, C. M.; Christy, M. E.; Chung, H.; Chvojka, J.; Clark, M.; da Motta, H.; Damiani, D. S.; Danko, I.; Datta, M.; Day, M.; DeMaat, R.; Devan, J.; Draeger, E.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Edmondson, D. A.; Felix, J.; Fields, L.; Fitzpatrick, T.; Gago, A. M.; Gallagher, H.; George, C. A.; Gielata, J. A.; Gingu, C.; Gobbi, B.; Gran, R.; Grossman, N.; Hanson, J.; Harris, D. A.; Heaton, J.; Higuera, A.; Howley, I. J.; Hurtado, K.; Jerkins, M.; Kafka, T.; Kaisen, J.; Kanter, M. O.; Keppel, C. E.; Kilmer, J.; Kordosky, M.; Krajeski, A. H.; Kulagin, S. A.; Le, T.; Lee, H.; Leister, A. G.; Locke, G.; Maggi, G.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Niculescu, G.; Niculescu, I.; Ochoa, N.; O’Connor, C. D.; Olsen, J.; Osmanov, B.; Osta, J.; Palomino, J. L.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Peña, C.; Rakotondravohitra, L.; Ransome, R. D.; Ray, H.; Ren, L.; Rude, C.; Sassin, K. E.; Schellman, H.; Schneider, R. M.; Schulte, E. C.; Simon, C.; Snider, F. D.; Snyder, M. C.; Sobczyk, J. T.; Solano Salinas, C. J.; Tagg, N.; Tan, W.; Tice, B. G.; Tzanakos, G.; Velásquez, J. P.; Walding, J.; Walton, T.; Wolcott, J.; Wolthuis, B. A.; Woodward, N.; Zavala, G.; Zeng, H. B.; Zhang, D.; Zhu, L. Y.; Ziemer, B. P.

    2013-07-11

    We report a study of νμ charged-current quasielastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a μ⁻ and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross section, dσ/dQ², and study the low energy particle content of the final state. Deviations are found between the measured dσ/dQ² and the expectations of a model of independent nucleons in a relativistic Fermi gas. We also observe an excess of energy near the vertex consistent with multiple protons in the final state.

  8. Possibility of narrow resonances in nucleon-nucleon channels

    SciTech Connect

    Krivoruchenko, M. I.

    2011-07-15

    Compound states manifest themselves as bound states, resonances, or primitives, and their character is determined by their interaction with the continuum. If the interaction experiences a perturbation, a compound state can change its manifestation. Phase analysis of nucleon-nucleon scattering indicates the existence of primitives in the {sup 3}S{sub 1}, {sup 1}S{sub 0}, and {sup 3}P{sub 0} channels. Electromagnetic interaction can shift primitives from the unitary cut, turning them into narrow resonances. We evaluate this effect on the {sup 1}S{sub 0} proton-proton scattering channel in the framework of the Simonov-Dyson model. We show that electromagnetic interaction turns a primitve with a mass of 2 000 MeV into a dibaryon resonance of approximately the same mass and a width of 260 keV. Narrow resonances of a similar nature may occur in other nucleon-nucleon channels. Experimental confirmation of the existence of narrow resonances would have important implications for the theory of nucleon-nucleon interaction.

  9. Panofsky Prize talk: The Structure of the Nucleon

    NASA Astrophysics Data System (ADS)

    Bodek, Arie

    2004-05-01

    Information about the quark distribution functions in nucleons and nuclei has been obtained from a range of experiments in various laboratories including electron-nucleon/nucleus, neutrino-nucleon/nucleus, and production of W and Z Bosons in proton-antiproton collisions. I review the the different experimental and theoretical tools that were developed to extract parton distribution functions from these experiments with very different probes.

  10. Two Nucleons on a Lattice

    SciTech Connect

    S.R. Beane; P.F.Bedaque; A. Parreno; M.J. Savage

    2004-04-01

    The two-nucleon sector is near an infrared fixed point of QCD and as a result the S-wave scattering lengths are unnaturally large compared to the effective ranges and shape parameters. It is usually assumed that a lattice QCD simulation of the two-nucleon sector will require a lattice that is much larger than the scattering lengths in order to extract quantitative information. In this paper we point out that this does not have to be the case: lattice QCD simulations on much smaller lattices will produce rigorous results for nuclear physics.

  11. Cosmology and neutrino physics

    NASA Astrophysics Data System (ADS)

    Steigman, Gary

    1982-05-01

    Constraints on cosmology and on neutrino physics are provided by the abundances of the light elements produced during the early evolution of the universe. The predictions of primordial nucleosynthesis depend on the nucleon to photon ratio ɛ and on the number of types of two component neutrinos Nν. A comparison between the big bang predictions and the observed abundances of D, 3He, 4He and 7Li shows that ɛ is constrained to a narrow range around 4×10-10 and Nν<~4. An important consequence of the derived value of ɛ is that the universal density of nucleon is small, raising the possibility that our Universe may be dominated by massive relic neutrinos. The constraint on Nn suggests that (almost) all lepton species are now known.

  12. Physics of neutrino flavor transformation through matter-neutrino resonances

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Ru; Duan, Huaiyu; Qian, Yong-Zhong

    2016-01-01

    In astrophysical environments such as core-collapse supernovae and neutron star-neutron star or neutron star-black hole mergers where dense neutrino media are present, matter-neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino-electron and neutrino-neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev-Smirnov-Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  13. Search for invisible nucleon decay in SNO + during commissioning phase

    NASA Astrophysics Data System (ADS)

    Coulter, Ian; SNO+ Collaboration

    2015-04-01

    The SNO + experiment aims to explore several topics in neutrino physics, including neutrinoless double beta decay and low energy solar neutrinos. For its initial commissioning phase, SNO + will fill its inner vessel with light water and run to evaluate the performance of the detector and electronics. During this water-fill phase, it will have a unique sensitivity to certain modes of invisible nucleon decay, where the nucleon decays to a mode in which the decay products are not detected, e.g. to 3 neutrinos. With just a couple of months of water running, SNO + is expected to set an improved model independent limit on the current bounds.

  14. Inner structure and outer limits: Precision QCD and electroweak tests from neutrino experiments

    NASA Astrophysics Data System (ADS)

    Fleming, Bonnie Tamminga

    Neutrinos are both excellent probes for discovering the secrets of QCD and elusive particles continually surprising us. This thesis reports first on a proton structure measurement, specifically the extraction of the proton structure function F2 from CCFR neutrino-nucleon differential cross sections. The F2 results are in good agreement with the F2 measured in muon scattering above Q2 = 1 GeV2. Comparison of the two sets of data below Q2 = 1 GeV2, which provides information on the axial vector contribution, is discussed. The thesis also addresses the nature of neutrinos. Do neutrinos have mass? Do they have other Beyond-the-Standard-Model properties that can give us clues to their nature? Recent evidence from neutrino oscillation experiments from around the world indicate that neutrinos may oscillate between their different flavors and therefore may have mass. The MiniBooNE experiment discussed here will be able to address this oscillation phenomenon as well as other possible beyond Standard Model neutrino properties.

  15. Readout strategies for directional dark matter detection beyond the neutrino background

    NASA Astrophysics Data System (ADS)

    O'Hare, Ciaran A. J.; Green, Anne M.; Billard, Julien; Figueroa-Feliciano, Enectali; Strigari, Louis E.

    2015-09-01

    The search for weakly interacting massive particles (WIMPs) by direct detection faces an encroaching background due to coherent neutrino-nucleus scattering. As the sensitivity of these experiments improves, the question of how to best distinguish a dark matter signal from neutrinos will become increasingly important. A proposed method of overcoming this so-called "neutrino floor" is to utilize the directional signature that both neutrino- and dark-matter-induced recoils possess. We show that directional experiments can indeed probe WIMP-nucleon cross sections below the neutrino floor with little loss in sensitivity due to the neutrino background. In particular we find at low WIMP masses (around 6 GeV) the discovery limits for directional detectors penetrate below the nondirectional limit by several orders of magnitude. For high WIMP masses (around 100 GeV), the nondirectional limit is overcome by a factor of a few. Furthermore we show that even for directional detectors which can only measure one- or two-dimensional projections of the three-dimensional recoil track, the discovery potential is only reduced by a factor of 3 at most. We also demonstrate that while the experimental limitations of directional detectors, such as sense recognition and finite angular resolution, have a detrimental effect on the discovery limits, it is still possible to overcome the ultimate neutrino background faced by nondirectional detectors.

  16. Nucleon measurements at the precision frontier

    SciTech Connect

    Carlson, Carl E.

    2013-11-07

    We comment on nucleon measurements at the precision frontier. As examples of what can be learned, we concentrate on three topics, which are parity violating scattering experiments, the proton radius puzzle, and the symbiosis between nuclear and atomic physics.

  17. Electromagnetic Form Factors of the Nucleon

    SciTech Connect

    Kees de Jager

    2004-06-01

    The experimental and theoretical status of elastic electron scattering from the nucleon is reviewed. As a consequence of new experimental facilities and new theoretical insights, this subject is advancing with unprecedented precision.

  18. Model-independent analysis of Airy structures in the {sup 16}O+{sup 12}C and {sup 16}O+{sup 16}O elastic scattering differential cross sections at 13-22 MeV/nucleon

    SciTech Connect

    Korda, V. Yu.; Molev, A. S.; Klepikov, V. F.; Korda, L. P.

    2009-02-15

    We present the results of the model-independent analysis of Airy structures in the {sup 16}O+{sup 12}C and {sup 16}O+{sup 16}O elastic scattering differential cross sections at 13-22 MeV/nucleon. The analysis has been performed with help of a procedure based on the application of the evolutionary algorithm, which enables us to extract the nuclear part of the scattering matrix S{sub N}(l) as a complex function of angular momentum directly from the scattering data. Contrary to the commonly used model approaches, our procedure gives the better fits and leads to the S{sub N}(l) representations defined by the moduli and the nuclear phases exhibiting smooth monotonic dependencies on l.

  19. Confronting electron and neutrino-nucleus interactions: Can the axial mass anomaly be resolved?

    NASA Astrophysics Data System (ADS)

    Benhar, Omar

    2014-04-01

    Comparison between electron- and neutrino-nucleus scattering data suggests that the so-called axial mass anomaly — i.e., the large disagreement between the value of the nucleon axial mass extracted from the analysis of neutrino interactions with carbon and oxygen and that obtained from deuteron data — is a manifestation of the difficulties in the interpretation of the flux averaged neutrino cross-sections. In this short review, I discuss the role of reaction mechanisms leading to the excitation of two particle-two hole final states of the target nucleus, which are believed to be responsible for the observed excess of quasielastic events, and argue that taking into account their effect may help to reconcile the sizeably different values of the axial mass reported by the MiniBooNe and NOMAD Collaborations.

  20. Dilepton production in nucleon-nucleon collisions revisited

    SciTech Connect

    Shyam, Radhey; Mosel, Ulrich

    2009-01-01

    We present a fully relativistic and gauge invariant framework for calculating the cross sections of dilepton production in nucleon-nucleon ($NN$) collisions which is based on the meson-exchange approximation for the $NN$ scattering amplitudes. Prediction of our model are compared with those of other covariant models that have been used earlier to describe this reaction. Our results are also compared with those of the semiclassical models of this reaction which are employed in the transport model calculations of the dilepton production in nucleus-nucleus collisions. It is found that cross sections obtained within the semiclassical and quantum mechanical models differ noticeably from each other.

  1. Neutrino and Antineutrino Cross sections at MiniBooNE

    SciTech Connect

    Dharmapalan, Ranjan; /Alabama U.

    2011-10-01

    The MiniBooNE experiment has reported a number of high statistics neutrino and anti-neutrino cross sections -among which are the charged current quasi-elastic (CCQE) and neutral current elastic (NCE) neutrino scattering on mineral oil (CH2). Recently a study of the neutrino contamination of the anti-neutrino beam has concluded and the analysis of the anti-neutrino CCQE and NCE scattering is ongoing.

  2. Neutrino Observations from the Sudbury Neutrino Observatory

    DOE R&D Accomplishments Database

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. Bühler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  3. Unparticle physics and neutrino phenomenology

    SciTech Connect

    Barranco, J.; Bolanos, A.; Miranda, O. G.; Moura, C. A.; Rashba, T. I.

    2009-04-01

    We have constrained unparticle interactions with neutrinos and electrons using available data on neutrino-electron elastic scattering and the four CERN LEP experiments data on mono photon production. We have found that, for neutrino-electron elastic scattering, the MUNU experiment gives better constraints than previous reported limits in the region d>1.5. The results are compared with the current astrophysical limits, pointing out the cases where these limits may or may not apply. We also discuss the sensitivity of future experiments to unparticle physics. In particular, we show that the measurement of coherent reactor neutrino scattering off nuclei could provide a good sensitivity to the couplings of unparticle interaction with neutrinos and quarks. We also discuss the case of future neutrino-electron experiments as well as the International Linear Collider.

  4. Weak η production off the nucleon

    SciTech Connect

    Alam, M. Rafi; Athar, M. Sajjad; Alvarez-Ruso, L.; Vacas, M. J. Vicente

    2015-05-15

    The weak η-meson production off the nucleon induced by (anti)neutrinos is studied at low and intermediate energies, the range of interest for several ongoing and future neutrino experiments. We consider Born diagrams and the excitation of N{sup *} (1535)S{sub 11} and N{sup *} (1650)S{sub 11} resonances. The vector part of the N-S{sub 11} transition form factors has been obtained from the MAID helicity amplitudes while the poorly known axial part is constrained with the help of the partial conservation of the axial current (PCAC) and assuming the pion-pole dominance of the pseudoscalar form factor.

  5. Identification of nuclear effects in neutrino-carbon interactions at low three-momentum transfer

    DOE PAGES

    Rodrigues, P. A.

    2016-02-17

    Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current νμ interactions is combined with muon kinematics to permit separation of the quasielastic and Δ(1232) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations. Second, additions to the event rate in the kinematic region between the quasielastic and Δ resonance processes are needed to describe the data. The data in this kinematic region also have an enhanced populationmore » of multiproton final states. Contributions predicted for scattering from a nucleon pair have both properties; the model tested in this analysis is a significant improvement but does not fully describe the data. We present the results as a double-differential cross section to enable further investigation of nuclear models. Furthermore, improved description of the effects of the nuclear environment are required by current and future neutrino oscillation experiments.« less

  6. Identification of Nuclear Effects in Neutrino-Carbon Interactions at Low Three-Momentum Transfer.

    PubMed

    Rodrigues, P A; Demgen, J; Miltenberger, E; Aliaga, L; Altinok, O; Bellantoni, L; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Budd, H; Cai, T; Carneiro, M F; Chvojka, J; Devan, J; Dytman, S A; Díaz, G A; Eberly, B; Elkins, M; Felix, J; Fields, L; Fine, R; Gago, A M; Galindo, R; Gallagher, H; Ghosh, A; Golan, T; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kiveni, M; Kleykamp, J; Kordosky, M; Le, T; Leistico, J R; Lovlein, A; Maher, E; Manly, S; Mann, W A; Marshall, C M; Martinez Caicedo, D A; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfín, J G; Mousseau, J; Muhlbeier, T; Naples, D; Nelson, J K; Norrick, A; Nuruzzaman; Osta, J; Paolone, V; Patrick, C E; Perdue, G N; Ramirez, M A; Ransome, R D; Ray, H; Ren, L; Rimal, D; Ruterbories, D; Schellman, H; Schmitz, D W; Solano Salinas, C J; Tagg, N; Tice, B G; Valencia, E; Walton, T; Wolcott, J; Wospakrik, M; Zavala, G; Zhang, D

    2016-02-19

    Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current ν_{μ} interactions is combined with muon kinematics to permit separation of the quasielastic and Δ(1232) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations. Second, additions to the event rate in the kinematic region between the quasielastic and Δ resonance processes are needed to describe the data. The data in this kinematic region also have an enhanced population of multiproton final states. Contributions predicted for scattering from a nucleon pair have both properties; the model tested in this analysis is a significant improvement but does not fully describe the data. We present the results as a double-differential cross section to enable further investigation of nuclear models. Improved description of the effects of the nuclear environment are required by current and future neutrino oscillation experiments.

  7. Identification of Nuclear Effects in Neutrino-Carbon Interactions at Low Three-Momentum Transfer

    NASA Astrophysics Data System (ADS)

    Rodrigues, P. A.; Demgen, J.; Miltenberger, E.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Chvojka, J.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Elkins, M.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Leistico, J. R.; Lovlein, A.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Muhlbeier, T.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Minerva Collaboration

    2016-02-01

    Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current νμ interactions is combined with muon kinematics to permit separation of the quasielastic and Δ (1232 ) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations. Second, additions to the event rate in the kinematic region between the quasielastic and Δ resonance processes are needed to describe the data. The data in this kinematic region also have an enhanced population of multiproton final states. Contributions predicted for scattering from a nucleon pair have both properties; the model tested in this analysis is a significant improvement but does not fully describe the data. We present the results as a double-differential cross section to enable further investigation of nuclear models. Improved description of the effects of the nuclear environment are required by current and future neutrino oscillation experiments.

  8. Identification of Nuclear Effects in Neutrino-Carbon Interactions at Low Three-Momentum Transfer.

    PubMed

    Rodrigues, P A; Demgen, J; Miltenberger, E; Aliaga, L; Altinok, O; Bellantoni, L; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Budd, H; Cai, T; Carneiro, M F; Chvojka, J; Devan, J; Dytman, S A; Díaz, G A; Eberly, B; Elkins, M; Felix, J; Fields, L; Fine, R; Gago, A M; Galindo, R; Gallagher, H; Ghosh, A; Golan, T; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kiveni, M; Kleykamp, J; Kordosky, M; Le, T; Leistico, J R; Lovlein, A; Maher, E; Manly, S; Mann, W A; Marshall, C M; Martinez Caicedo, D A; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfín, J G; Mousseau, J; Muhlbeier, T; Naples, D; Nelson, J K; Norrick, A; Nuruzzaman; Osta, J; Paolone, V; Patrick, C E; Perdue, G N; Ramirez, M A; Ransome, R D; Ray, H; Ren, L; Rimal, D; Ruterbories, D; Schellman, H; Schmitz, D W; Solano Salinas, C J; Tagg, N; Tice, B G; Valencia, E; Walton, T; Wolcott, J; Wospakrik, M; Zavala, G; Zhang, D

    2016-02-19

    Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current ν_{μ} interactions is combined with muon kinematics to permit separation of the quasielastic and Δ(1232) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations. Second, additions to the event rate in the kinematic region between the quasielastic and Δ resonance processes are needed to describe the data. The data in this kinematic region also have an enhanced population of multiproton final states. Contributions predicted for scattering from a nucleon pair have both properties; the model tested in this analysis is a significant improvement but does not fully describe the data. We present the results as a double-differential cross section to enable further investigation of nuclear models. Improved description of the effects of the nuclear environment are required by current and future neutrino oscillation experiments. PMID:26943528

  9. Neutrino Experiments

    SciTech Connect

    McKeown, R. D.

    2010-08-04

    Recent studies of neutrino oscillations have established the existence of finite neutrino masses and mixing between generations of neutrinos. The combined results from studies of atmospheric neutrinos, solar neutrinos, reactor antineutrinos and neutrinos produced at accelerators paint an intriguing picture that clearly requires modification of the standard model of particle physics. These results also provide clear motivation for future neutrino oscillation experiments as well as searches for direct neutrino mass and nuclear double-beta decay. I will discuss the program of new neutrino oscillation experiments aimed at completing our knowledge of the neutrino mixing matrix.

  10. Chiral perturbation theory with nucleons

    SciTech Connect

    Meissner, U.G.

    1991-09-01

    I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, {pi}N scattering and the {sigma}-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon.

  11. Multinucleon Ejection Model for Two Body Current Neutrino Interactions

    SciTech Connect

    Sobczyk, Jan T.; /Fermilab

    2012-06-01

    A model is proposed to describe nucleons ejected from a nucleus as a result of two-body-current neutrino interactions. The model can be easily implemented in Monte Carlo neutrino event generators. Various possibilities to measure the two-body-current contribution are discussed. The model can help identify genuine charge current quasielastic events and allow for a better determination of the systematic error on neutrino energy reconstruction in neutrino oscillation experiments.

  12. Measurement of Muon Antineutrino Quasielastic Scattering on a Hydrocarbon Target at Eν~3.5 GeV

    DOE PAGES

    Fields, L.; Chvojka, J.; Aliaga, L.; Altinok, O.; Baldin, B.; Baumbaugh, A.; Bodek, A.; Boehnlein, D.; Boyd, S.; Bradford, R.; et al

    2013-07-11

    We have isolated ν¯μ charged-current quasielastic (QE) interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross section, dσ/dQ², and compare to several theoretical models of QE scattering. Good agreement is obtained with a model where the nucleon axial mass, MA, is set to 0.99 GeV/c² but the nucleon vector form factors are modified to account for the observed enhancement, relative to the free nucleon case, of the cross section for the exchange of transversely polarized photons in electron-nucleus scattering. Our data at highermore » Q² favor this interpretation over an alternative in which the axial mass is increased.« less

  13. Role of nucleon strangeness in supernova explosions

    NASA Astrophysics Data System (ADS)

    Hobbs, T. J.; Alberg, Mary; Miller, Gerald A.

    2016-05-01

    Recent hydrodynamical simulations of core-collapse supernova (CCSN) evolution have highlighted the importance of thorough control over the microscopic physics responsible for such internal processes as neutrino heating. In particular, it has been suggested that modifications to the neutrino-nucleon elastic cross section can potentially play a crucial role in producing successful CCSN explosions. One possible source of such corrections can be found in a nonzero value for the nucleon's strange helicity content Δ s . In the present analysis, however, we show that theoretical and experimental progress over the past decade has suggested a comparatively small magnitude for Δ s , such that its sole effect is not sufficient to provide the physics leading to CCSN explosions.

  14. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  15. Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Bergström, L.; Hulth, P. O.; Botner, O.; Carlson, P.; Ohlsson, T.

    2006-03-01

    J. N. Bahcall (1934-2005) -- Preface -- List of participants -- Committees -- Nobel symposium on neutrino physics - program -- The history of neutrino oscillations / S. M. Bilenky -- Super-Kamiokande results on neutrino oscillations / Y. Suzuki -- Sudbury neutrino observatory results / A. B. McDonald -- Results from KamLAND reactor neutrino detection / A. Suzuki -- New opportunities for surprise / J. Conrad -- Solar models and solar neutrinos / J. N. Bahcall -- Atmospheric neutrino fluxes / T. K. Gaisser -- The MSW effect and matter effects in neutrino oscillations / A. Yu. Smirnov -- Three-flavour effects and CP- and T-violation in neutrino oscillations / E. Kh. Akhmedov -- Global analysis of neutrino data / M. C. Gonzalez-Garcia -- Future precision neutrino oscillation experiments and theoretical implications / M. Lindner -- Experimental prospects of neutrinoless double beta decay / E. Fiorini -- Theoretical prospects of neutrinoless double beta decay / S. T. Petcov -- Supernova neutrino oscillations / G. G. Raffelt -- High-energy neutrino astronomy / F. Halzen -- Neutrino astrophysics in the cold: Amanda, Baikal and IceCube / C. Spiering -- Status of radio and acoustic detection of ultra-high energy cosmic neutrinos and a proposal on reporting results / D. Saltzberg -- Detection of neutrino-induced air showers / A. A. Watson -- Prospect for relic neutrino searches / G. B. Gelmini -- Leptogenesis in the early universe / T. Yanagida -- Neutrinos and big bang nucleosynthesis / G. Steigman -- Extra galactic sources of high energy neutrinos / E. Waxman -- Cosmological neutrino bounds for non-cosmologists / M. Tegmark -- Neutrino intrinsic properties: the neutrino-antineutrino relation / B. Kayser -- NuTeV and neutrino properties / M. H. Shaevitz -- Absolute masses of neutrinos - experimental results and future possibilities / C. Weinheimer -- Flavor theories and neutrino masses / P. Ramond -- Neutrino mass models and leptogenesis / S. F. King -- Neutrino mass and

  16. Three-Nucleon Electroweak Capture Reactions

    SciTech Connect

    L.E. Marcucci; M. Viviani; A. Kievsky; S. Rosati; R. Schiavilla

    2002-10-01

    Recent advances in the study of the p-d radiative and mu-3he weak capture processes are presented and discussed. The three-nucleon bound and scattering states are obtained using the correlated-hyperspherical-harmonics method, with realistic Hamiltonians consisting of the Argonne v14 or Argonne v18 two-nucleon and Tucson-Melbourne or Urbana IX three-nucleon interactions. The electromagnetic and weak transition operators include one- and two-body contributions. The theoretical accuracy achieved in these calculations allows for interesting comparisons with experimental data.

  17. A Study of the Nuclear-Medium Influence on Transverse Momentum of Hadrons Produced in Deep-Inelastic Neutrino Scattering

    SciTech Connect

    Agababyan, N.M.; Ammosov, V.V.; Ivanilov, A.A.; Korotkov, V.A.; Atayan, M.; Grigoryan, N.; Gulkanyan, H.; Karamyan, Zh.

    2005-07-01

    The influence of nuclear effects on the transverse momentum (p{sub T}) of neutrino-produced hadrons is investigated using the data obtained with the SKAT propane-freon bubble chamber irradiated in the neutrino beam (with E{sub {nu}} = 3-30 GeV) at the Serpukhov accelerator. It has been observed that the nuclear effects cause an enhancement of of hadrons produced in the target fragmentation region at low invariant mass of the hadronic system (2 < W < 4 GeV) and at low energies transferred to the hadrons (2 < {nu} < 9 GeV). At higher W and {nu}, no influence of nuclear effects on is observed. Measurement results are compared with predictions of a simple model, incorporating secondary intranuclear interactions of hadrons, which qualitatively reproduces the main features of the data.

  18. Cosmic Neutrinos

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2008-02-01

    I recall the place of neutrinos in the electroweak theory and summarize what we know about neutrino mass and flavor change. I next review the essential characteristics expected for relic neutrinos and survey what we can say about the neutrino contribution to the dark matter of the Universe. Then I discuss the standard-model interactions of ultrahigh-energy neutrinos, paying attention to the consequences of neutrino oscillations, and illustrate a few topics of interest to neutrino observatories. I conclude with short comments on the remote possibility of detecting relic neutrinos through annihilations of ultrahigh-energy neutrinos at the Z resonance.

  19. Using Neutrinos as a Probe of the High-x{sub Bj} Region

    SciTech Connect

    Morfin, Jorge G.

    2011-09-21

    Neutrino scattering experiments have been studying the DIS region, including high-x{sub Bj}, for over 40 years. From the Gargamelle experiments in the early 70's, through the subsequent bubble chamber and electronic detector experiments neutrino scattering experiments have steadily accumulated increasing statistics and minimized their systematic errors. Recent completed studies of high-x{sub Bj} with neutrinos are from the the NuTeV experiment off Fe in the TeVatron neutrino beam and both the CHORUS experiment off Pb and the NOMAD experiment off C/Al in the CERN neutrino beam. The significant factor here is that all recent high-statistics neutrino experiments have been off high-A nucleus targets. The unknown nuclear effects mask the high-x{sub Bj} behavior of the bare neutrino-nucleon interaction. In order to address this problem, current on-going studies have shifted to the Main Injector based NuMI facility at Fermilab and the MINER{nu}A experiment. This experiment is a collaboration of elementary-particle and nuclear physicists planning to measure absolute exclusive and inclusive cross-sections and nuclear effects in {nu}- A interactions as well as a systematic study of the resonance-DIS transition region and DIS with an emphasis on the extraction of high-xBj parton distribution functions. The MINER{nu}A experiment also plans to propose the use of a liquid hydrogen target to go after a measurement of d/u quarks at high-x{sub Bj}.

  20. Recent developments in neutrino-nucleus interactions in 1 GeV energy region

    SciTech Connect

    Sobczyk, Jan T.

    2015-07-15

    Neutrino interactions in 1 GeV energy region are discussed. A role of nucleon-nucleon correlations in understanding recent quasi-elastic cross section measurements on nuclear target is explained. An importance of a correct treatment of two-body current contribution to the neutrino inclusive cross section is addressed.

  1. Massive Dirac neutrinos and SN 1987A

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Gandhi, Raj; Turner, Michael S.

    1992-01-01

    The wrong-helicity states of a Dirac neutrino can provide an important cooling mechanism for young neutron stars. Based on numerical models of the early cooling of the neutron star associated with SN 1987A which self-consistently incorporate wrong-helicity neutrino emission, it is argued that a Dirac neutrino of mass greater than 30 keV (25 keV if it is degenerate) leads to shortening of the neutrino burst that is inconsistent with the Irvine-Michigan-Brookhaven and Kamiokande II data. If pions are as abundant as nucleons in the cores of neutron stars, the present limit improves to 15 keV.

  2. Weak kaon production off the nucleon

    SciTech Connect

    Rafi Alam, M.; Sajjad Athar, M.; Ruiz Simo, I.; Vicente Vacas, M. J.

    2010-08-01

    The weak kaon production off the nucleon induced by neutrinos is studied at the low and intermediate energies of interest for some ongoing and future neutrino oscillation experiments. This process is also potentially important for the analysis of proton decay experiments. We develop a microscopical model based on the SU(3) chiral Lagrangians. The basic parameters of the model are f{sub {pi},} the pion decay constant, Cabibbo's angle, the proton and neutron magnetic moments, and the axial vector coupling constants for the baryons octet, D and F, that are obtained from the analysis of the semileptonic decays of neutron and hyperons. The studied mechanisms are the main source of kaon production for neutrino energies up to 1.2 to 1.5 GeV for the various channels and the cross sections are large enough to be amenable to be measured by experiments such as Minerva and T2K.

  3. Precision Nucleon-Nucleon Potential at Fifth Order in the Chiral Expansion.

    PubMed

    Epelbaum, E; Krebs, H; Meißner, U-G

    2015-09-18

    We present a nucleon-nucleon potential at fifth order in chiral effective field theory. We find a substantial improvement in the description of nucleon-nucleon phase shifts as compared to the fourth-order results utilizing a coordinate-space regularization. This provides clear evidence of the corresponding two-pion exchange contributions with all low-energy constants being determined from pion-nucleon scattering. The fifth-order corrections to nucleon-nucleon observables appear to be of a natural size, which confirms the good convergence of the chiral expansion for nuclear forces. Furthermore, the obtained results provide strong support for the novel way of quantifying the theoretical uncertainty due to the truncation of the chiral expansion proposed by the authors. Our work opens up new perspectives for precision ab initio calculations in few- and many-nucleon systems and is especially relevant for ongoing efforts towards a quantitative understanding of the structure of the three-nucleon force in the framework of chiral effective field theory.

  4. Precision Nucleon-Nucleon Potential at Fifth Order in the Chiral Expansion.

    PubMed

    Epelbaum, E; Krebs, H; Meißner, U-G

    2015-09-18

    We present a nucleon-nucleon potential at fifth order in chiral effective field theory. We find a substantial improvement in the description of nucleon-nucleon phase shifts as compared to the fourth-order results utilizing a coordinate-space regularization. This provides clear evidence of the corresponding two-pion exchange contributions with all low-energy constants being determined from pion-nucleon scattering. The fifth-order corrections to nucleon-nucleon observables appear to be of a natural size, which confirms the good convergence of the chiral expansion for nuclear forces. Furthermore, the obtained results provide strong support for the novel way of quantifying the theoretical uncertainty due to the truncation of the chiral expansion proposed by the authors. Our work opens up new perspectives for precision ab initio calculations in few- and many-nucleon systems and is especially relevant for ongoing efforts towards a quantitative understanding of the structure of the three-nucleon force in the framework of chiral effective field theory. PMID:26430990

  5. A search at Super-Kamiokande for low mass dark matter candidates in the T2K neutrino beam

    NASA Astrophysics Data System (ADS)

    Nantais, Corina; T2K Collaboration

    2015-04-01

    The T2K neutrino beam is produced by colliding 30 GeV protons with a graphite target, and some dark sector models predict that a dark matter candidate could be created in the collision. This massive and neutral particle could scatter off a nucleon in Super-Kamiokande, a 50 kilotonne water Cherenkov detector. Similar to the neutral-current quasielastic neutrino-oxygen interaction, the dark matter candidate could interact with the oxygen nucleus, kicking out a nucleon and leaving the nucleus in an excited state. As the nucleus deexcites, 6 MeV gamma-rays are emitted which can be efficiently detected by Super-Kamiokande. The longer time of flight for a dark matter candidate, compared to a neutrino, allows separation between the dark matter induced signal and the neutrino induced background. In the intense global effort to measure dark matter, this complementary search investigates the sub-GeV mass range where other experiments have reduced sensitivity.

  6. Neutrino-nucleus neutral current elastic interactions measurement in MiniBooNE

    SciTech Connect

    Perevalov, Denis

    2009-12-01

    The MiniBooNE experiment at the Fermi National Accelerator Laboratory (Fermilab) was designed to search for vμ → ve neutrino oscillations at Δm2 ~ 1 eV2 using an intense neutrino flux with an average energy Ev ~ 700 MeV. From 2002 to 2009 MiniBooNE has accumulated more than 1.0 x 1021 protons on target (POT) in both neutrino and antineutrino modes. MiniBooNE provides a perfect platform for detailed measurements of exclusive and semiinclusive neutrino cross-sections, for which MiniBooNE has the largest samples of events up to date, such as neutral current elastic (NCE), neutral current π0, charged current quasi-elastic (CCQE), charged current π+, and other channels. These measured cross-sections, in turn, allow to improve the knowledge of nucleon structure. This thesis is devoted to the study of NCE interactions. Neutrino-nucleus neutral current elastic scattering (vN → vN) accounts for about 18% of all neutrino interactions in MiniBooNE. Using a high-statistics, high purity sample of NCE interactions in MiniBooNE, the flux-averaged NCE differential cross-section has been measured and is being reported here. Further study of the NCE cross-section allowed for probing the structure of nuclei. The main interest in the NCE cross-section is that it may be sensitive to the strange quark contribution to the nucleon spin, Δs, this however requires a separation of NCE proton (vp → vp) from NCE neutron (vn → vn) events, which in general is a challenging task. MiniBooNE uses a Cherenkov detector, which imposes restrictions on the measured nucleon kinematic variables, mainly due to the impossibility to reconstruct the nucleon direction below the Cherenkov threshold. However, at kinetic energies above this threshold MiniBooNE is able to identify NCE proton events that do not experience final state interactions (FSI). These events were used for the Δs measurement. In this thesis

  7. The neutrino signal at HALO: learning about the primary supernova neutrino fluxes and neutrino properties

    SciTech Connect

    Väänänen, Daavid; Volpe, Cristina E-mail: volpe@ipno.in2p3.fr

    2011-10-01

    Core-collapse supernova neutrinos undergo a variety of phenomena when they travel from the high neutrino density region and large matter densities to the Earth. We perform analytical calculations of the supernova neutrino fluxes including collective effects due to the neutrino-neutrino interactions, the Mikheev-Smirnov-Wolfenstein (MSW) effect due to the neutrino interactions with the background matter and decoherence of the wave packets as they propagate in space. We predict the numbers of one- and two-neutron charged and neutral-current electron-neutrino scattering on lead events. We show that, due to the energy thresholds, the ratios of one- to two-neutron events are sensitive to the pinching parameters of neutrino fluxes at the neutrinosphere, almost independently of the presently unknown neutrino properties. Besides, such events have an interesting sensitivity to the spectral split features that depend upon the presence/absence of energy equipartition among neutrino flavors. Our calculations show that a lead-based observatory like the Helium And Lead Observatory (HALO) has the potential to pin down important characteristics of the neutrino fluxes at the neutrinosphere, and provide us with information on the neutrino transport in the supernova core.

  8. Effective field theory treatment of the neutrino background in direct dark matter detection experiments

    NASA Astrophysics Data System (ADS)

    Dent, James B.; Dutta, Bhaskar; Newstead, Jayden L.; Strigari, Louis E.

    2016-04-01

    Distinguishing a dark matter interaction from an astrophysical neutrino-induced interaction will be major challenge for future direct dark matter searches. In this paper, we consider this issue within nonrelativistic effective field theory (EFT), which provides a well-motivated theoretical framework for determining nuclear responses to dark matter scattering events. We analyze the nuclear energy recoil spectra from the different dark matter-nucleon EFT operators, and compare them to the nuclear recoil energy spectra that are predicted to be induced by astrophysical neutrino sources. We determine that for 11 of the 14 possible operators, the dark matter-induced recoil spectra can be cleanly distinguished from the corresponding neutrino-induced recoil spectra with moderate-size detector technologies that are now being pursued, e.g., these operators would require 0.5 tonne years to be distinguished from the neutrino background for low mass dark matter. Our results imply that in most models detectors with good energy resolution will be able to distinguish a dark matter signal from a neutrino signal, without the need for much larger detectors that must rely on additional information from timing or direction. In addition we calculate up-to-date exclusion limits in the EFT model space using data from the LUX experiment.

  9. Measurement of Muon Antineutrino Quasielastic Scattering on a Hydrocarbon Target at Eν~3.5 GeV

    SciTech Connect

    Fields, L.; Chvojka, J.; Aliaga, L.; Altinok, O.; Baldin, B.; Baumbaugh, A.; Bodek, A.; Boehnlein, D.; Boyd, S.; Bradford, R.; Brooks, W. K.; Budd, H.; Butkevich, A.; Martinez Caicedo, D. A.; Castromonte, C. M.; Christy, M. E.; Chung, H.; Clark, M.; da Motta, H.; Damiani, D. S.; Danko, I.; Datta, M.; Day, M.; DeMaat, R.; Devan, J.; Draeger, E.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Edmondson, D. A.; Felix, J.; Fitzpatrick, T.; Fiorentini, G. A.; Gago, A. M.; Gallagher, H.; George, C. A.; Gielata, J. A.; Gingu, C.; Gobbi, B.; Gran, R.; Grossman, N.; Hanson, J.; Harris, D. A.; Heaton, J.; Higuera, A.; Howley, I. J.; Hurtado, K.; Jerkins, M.; Kafka, T.; Kaisen, J.; Kanter, M. O.; Keppel, C. E.; Kilmer, J.; Kordosky, M.; Krajeski, A. H.; Kulagin, S. A.; Le, T.; Lee, H.; Leister, A. G.; Locke, G.; Maggi, G.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Niculescu, G.; Niculescu, I.; Ochoa, N.; O’Connor, C. D.; Olsen, J.; Osmanov, B.; Osta, J.; Palomino, J. L.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Peña, C.; Rakotondravohitra, L.; Ransome, R. D.; Ray, H.; Ren, L.; Rodrigues, P. A.; Rude, C.; Sassin, K. E.; Schellman, H.; Schmitz, D. W.; Schneider, R. M.; Schulte, E. C.; Simon, C.; Snider, F. D.; Snyder, M. C.; Sobczyk, J. T.; Solano Salinas, C. J.; Tagg, N.; Tan, W.; Tice, B. G.; Tzanakos, G.; Velásquez, J. P.; Walding, J.; Walton, T.; Wolcott, J.; Wolthuis, B. A.; Woodward, N.; Zavala, G.; Zeng, H. B.; Zhang, D.; Zhu, L. Y.; Ziemer, B. P.

    2013-07-11

    We have isolated ν¯μ charged-current quasielastic (QE) interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross section, dσ/dQ², and compare to several theoretical models of QE scattering. Good agreement is obtained with a model where the nucleon axial mass, MA, is set to 0.99 GeV/c² but the nucleon vector form factors are modified to account for the observed enhancement, relative to the free nucleon case, of the cross section for the exchange of transversely polarized photons in electron-nucleus scattering. Our data at higher Q² favor this interpretation over an alternative in which the axial mass is increased.

  10. Measurement of the Neutrino Neutral-Current Elastic Differential Cross Section

    SciTech Connect

    Aguilar-Arevalo, A.A.; Anderson, C.E.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; Curioni, A.; /Yale U. /Argonne

    2010-07-01

    We report a measurement of the flux-averaged neutral-current elastic differential cross section for neutrinos scattering on mineral oil (CH{sub 2}) as a function of four-momentum transferred squared, Q{sup 2}. It is obtained by measuring the kinematics of recoiling nucleons with kinetic energy greater than 50 MeV which are readily detected in MiniBooNE. This differential cross-section distribution is fit with fixed nucleon form factors apart from an axial mass, M{sub A}, that provides a best fit for M{sub A} = 1.39 {+-} 0.11 GeV. Using the data from the charged-current neutrino interaction sample, a ratio of neutral-current to charged-current quasi-elastic cross sections as a function of Q{sup 2} has been measured. Additionally, single protons with kinetic energies above 350 MeV can be distinguished from neutrons and multiple nucleon events. Using this marker, the strange quark contribution to the neutral-current axial vector form factor at Q{sup 2} = 0, {Delta}s, is found to be {Delta}s = 0.08{+-} 0.26.

  11. Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS)

    SciTech Connect

    Efremenko, Yuri; Hix, William Raphael

    2009-01-01

    In this paper we discuss opportunities for a neutrino program at the Spallation Neutrons Source (SNS) being commissioning at ORNL. Possible investigations can include study of neutrino-nuclear cross sections in the energy rage important for supernova dynamics and neutrino nucleosynthesis, search for neutrino-nucleus coherent scattering, and various tests of the standard model of electro-weak interactions.

  12. Detectors for Neutrino Physics at the First Muon Collider

    SciTech Connect

    Harris, D.A.; McFarland, K.S.

    1998-04-01

    We consider possible detector designs for short-baseline neutrino experiments using neutrino beams produced at the First Muon Collider complex. The high fluxes available at the muon collider make possible high statistics deep-inelastic scattering neutrino experiments with a low-mass target. A design of a low-energy neutrino oscillation experiment on the ``tabletop`` scale is also discussed.

  13. Unparticle effects in neutrino telescopes

    SciTech Connect

    Gonzalez-Sprinberg, G.; Martinez, R.; Sampayo, Oscar A.

    2009-03-01

    Recently H. Georgi has introduced the concept of unparticles in order to describe the low energy physics of a nontrivial scale invariant sector of an effective theory. We investigate its physical effects on the neutrino flux to be detected in a kilometer cubic neutrino telescope such as IceCube. We study the effects, on different observables, of the survival neutrino flux after through the Earth, and the regeneration originated in the neutral currents. We calculate the contribution of unparticle physics to the neutrino-nucleon interaction and, then, to the observables in order to evaluate detectable effects in IceCUbe. Our results are compared with the bounds obtained by other nonunderground experiments. Finally, the results are presented as an exclusion plot in the relevant parameters of the new physics stuff.

  14. Neutrino Physics

    DOE R&D Accomplishments Database

    Lederman, L. M.

    1963-01-09

    The prediction and verification of the neutrino are reviewed, together with the V A theory for its interactions (particularly the difficulties with the apparent existence of two neutrinos and the high energy cross section). The Brookhaven experiment confirming the existence of two neutrinos and the cross section increase with momentum is then described, and future neutrino experiments are considered. (D.C.W.)

  15. Nucleon Form Factor Experiments and the Pion Cloud

    SciTech Connect

    Kees de Jager

    2006-04-27

    The experimental and theoretical status of elastic electron scattering from the nucleon is reviewed. A wealth of new data of unprecedented precision, especially at small values of the momentum transfer, in parallel to new theoretical insights, has allowed sensitive tests of the influence of the pionic cloud surrounding the nucleon.

  16. DAMA confronts null searches in the effective theory of dark matter-nucleon interactions

    NASA Astrophysics Data System (ADS)

    Catena, Riccardo; Ibarra, Alejandro; Wild, Sebastian

    2016-05-01

    We examine the dark matter interpretation of the modulation signal reported by the DAMA experiment from the perspective of effective field theories displaying Galilean invariance. We consider the most general effective coupling leading to the elastic scattering of a dark matter particle with spin 0 or 1/2 off a nucleon, and we analyze the compatibility of the DAMA signal with the null results from other direct detection experiments, as well as with the non-observation of a high energy neutrino flux in the direction of the Sun from dark matter annihilation. To this end, we develop a novel semi-analytical approach for comparing experimental results in the high-dimensional parameter space of the non-relativistic effective theory. Assuming the standard halo model, we find a strong tension between the dark matter interpretation of the DAMA modulation signal and the null result experiments. We also list possible ways-out of this conclusion.

  17. MIGHTY MURINES: NEUTRINO PHYSICS AT VERY HIGH ENERGY MUON COLLIDERS

    SciTech Connect

    KING,B.J.

    2000-05-05

    An overview is given of the potential for neutrino physics studies through parasitic use of the intense high energy neutrino beams that would be produced at future many-TeV muon colliders. Neutrino experiments clearly cannot compete with the collider physics. Except at the very highest energy muon colliders, the main thrust of the neutrino physics program would be to improve on the measurements from preceding neutrino experiments at lower energy muon colliders, particularly in the fields of B physics, quark mixing and CP violation. Muon colliders at the 10 TeV energy scale might already produce of order 10{sup 8} B hadrons per year in a favorable and unique enough experimental environment to have some analytical capabilities beyond any of the currently operating or proposed B factories. The most important of the quark mixing measurements at these energies might well be the improved measurements of the important CKM matrix elements {vert_bar}V{sub ub}{vert_bar} and {vert_bar}V{sub cb}{vert_bar} and, possibly, the first measurements of {vert_bar}V{sub td}{vert_bar} in the process of flavor changing neutral current interactions involving a top quark loop. Muon colliders at the highest center-of-mass energies that have been conjectured, 100--1,000 TeV, would produce neutrino beams for neutrino-nucleon interaction experiments with maximum center-of-mass energies from 300--1,000 GeV. Such energies are close to, or beyond, the discovery reach of all colliders before the turn-on of the LHC. In particular, they are comparable to the 314 GeV center-of-mass energy for electron-proton scattering at the currently operating HERA collider and so HERA provides a convenient benchmark for the physics potential. It is shown that these ultimate terrestrial neutrino experiments, should they eventually come to pass, would have several orders of magnitude more luminosity than HERA. This would potentially open up the possibility for high statistics studies of any exotic particles, such as

  18. Measurement of the ratio {σ n}/{σ p} in inelastic muon-nucleon scattering at very low χ and Q2

    NASA Astrophysics Data System (ADS)

    Adams, M. R.; Aïd, S.; Anthony, P. L.; Baker, M. D.; Bartlett, J.; Bhatti, A. A.; Braun, H. M.; Busza, W.; Carroll, T. J.; Conrad, J. M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S. K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Figiel, J.; Gebauer, H. J.; Geesaman, D. F.; Gilman, R.; Green, M. C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V. W.; Jackson, H. E.; Jaffe, D. E.; Jancso, G.; Jansen, D. M.; Kaufman, S.; Kennedy, R. D.; Kirk, T.; Kobrak, H. G. E.; Krzywdzinski, S.; Kunori, S.; Lord, J. J.; Lubatti, H. J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Melanson, H.; Michael, D. G.; Mohr, W.; Montgomery, H. E.; Morfin, J. G.; Nickerson, R. B.; O'Day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F. M.; Ramberg, E. J.; Röser, A.; Ryan, J. J.; Salvarani, A.; Schellman, H.; Schmitt, M.; Schmitz, N.; Schüler, K. P.; Seyerlein, H. J.; Skuja, A.; Snow, G. A.; Söldner-Rembold, S.; Steinberg, P. H.; Stier, H. E.; Stopa, P.; Swanson, R. A.; Talaga, R.; Tentindo-Repond, S.; Trost, H.-J.; Venkataramania, H.; Vidal, M.; Wilhelm, M.; Wilkes, J.; Wilson, Richard; Wittek, W.; Wolbers, S. A.; Zhao, T.; Fermilab E665 Collaboration

    1993-07-01

    We present results on the cross-section ratio for inelastic muon scattering on neutrons and protons as a function of Bjorken chi;. The data extend to χ values two orders of magnitude smaller than in previous measurements, down to 2×10 -5, for Q2>0.01 GeV 2. The ratio is consistent with unity throughout this new range.

  19. MINERνA neutrino detector calibration

    SciTech Connect

    Patrick, Cheryl

    2015-05-15

    MINERνA is a neutrino scattering experiment that uses Fermilab’s NuMI beamline. Its goal is to measure cross-sections for neutrino scattering from different nuclei. Precise knowledge of these cross-sections is vital for current and future neutrino oscillation experiments. In order to measure these values to a high degree of accuracy, it is essential that the detector be carefully calibrated. Here, we describe in-situ calibration and cross-checks.

  20. E sub 6 leptoquarks and the solar neutrino problem

    NASA Technical Reports Server (NTRS)

    Roulet, Esteban

    1991-01-01

    The possibility that non-conventional neutrino oscillations take place in the superstring inspired E sub 6 models is considered. In this context, the influence of leptoquark mediated interactions of the neutrinos with nucleons in the resonant flavor conversion is discussed. It is shown that this effect can be significant for v sub e - v sub tau oscillations if these neutrinos have masses required in the ordinary Mikheyev-Smirnov-Wolfenstein (MSW) effect, and may lead to a solution of the solar neutrino problem even in the absence of vacuum mixings. On the other hand, this model cannot lead to a resonant behavior in the sun if the neutrinos are massless.

  1. A New Multi-energy Neutrino Radiation-Hydrodynamics Code in Full General Relativity and Its Application to the Gravitational Collapse of Massive Stars

    NASA Astrophysics Data System (ADS)

    Kuroda, Takami; Takiwaki, Tomoya; Kotake, Kei

    2016-02-01

    We present a new multi-dimensional radiation-hydrodynamics code for massive stellar core-collapse in full general relativity (GR). Employing an M1 analytical closure scheme, we solve spectral neutrino transport of the radiation energy and momentum based on a truncated moment formalism. Regarding neutrino opacities, we take into account a baseline set in state-of-the-art simulations, in which inelastic neutrino-electron scattering, thermal neutrino production via pair annihilation, and nucleon-nucleon bremsstrahlung are included. While the Einstein field equations and the spatial advection terms in the radiation-hydrodynamics equations are evolved explicitly, the source terms due to neutrino-matter interactions and energy shift in the radiation moment equations are integrated implicitly by an iteration method. To verify our code, we first perform a series of standard radiation tests with analytical solutions that include the check of gravitational redshift and Doppler shift. A good agreement in these tests supports the reliability of the GR multi-energy neutrino transport scheme. We then conduct several test simulations of core-collapse, bounce, and shock stall of a 15{M}⊙ star in the Cartesian coordinates and make a detailed comparison with published results. Our code performs quite well to reproduce the results of full Boltzmann neutrino transport especially before bounce. In the postbounce phase, our code basically performs well, however, there are several differences that are most likely to come from the insufficient spatial resolution in our current 3D-GR models. For clarifying the resolution dependence and extending the code comparison in the late postbounce phase, we discuss that next-generation Exaflops class supercomputers are needed at least.

  2. Low-energy neutrino-nucleus interactions and beta-beam neutrino

    SciTech Connect

    Jachowicz, N.; Pandey, V.

    2015-05-15

    We present an overview of neutrino-nucleus scattering at low energies with cross sections obtained within a continuum random phase approximation (CRPA) formalism. We highlight potential applications of beta-beam neutrino experiments for neutrino astrophysics. Our calculations are compared with MiniBooNe data at intermediate energies.

  3. Future directions for probing two and three nucleon short-range correlations at high energies

    SciTech Connect

    Frankfurt, Leonid; Sargsian, Misak; Strikman, Mark

    2008-10-13

    We summarize recent progress in the studies of the short-rang correlations (SRC) in nuclei in high energy electron and hadron nucleus scattering and suggest directions for the future high energy studies aimed at establishing detailed structure of two-nucleon SRCs, revealing structure of three nucleon SRC correlations and discovering non-nucleonic degrees of freedom in nuclei.

  4. Mapping High x Structure of the Nucleon: which data is missing?

    SciTech Connect

    Smirnov, G.I.

    2005-02-10

    The analysis of numerous experiments on lepton-nucleon and lepton-nucleus deep inelastic scattering reveals several non-trivial features of the nucleon structure, which are particularly interesting in the range of large Bjorken x (x > 0.8). It is shown that new data form the lightest nuclei can provide decisive information needed for the understanding of the nucleon structure.

  5. Electromagnetic interactions with nuclei and nucleons

    SciTech Connect

    Thornton, S.T.; Sealock, R.M.

    1990-11-10

    This report discusses the following topics: general LEGS work; photodisintegration of the deuteron; progress towards other experiments; LEGS instrumentation; major LEGS software projects; NaI detector system; nucleon detector system; waveshifting fibers; EGN prototype detector for CEBAF; photon beam facility at CEBAF; delta electroproduction in nuclei; quasielastic scattering and excitation of the Delta by {sup 4}He(e,e{prime}); and quasielastic scattering at high Q{sup 2}.

  6. Personal History of Nucleon Polarization Experiments

    DOE R&D Accomplishments Database

    Chamberlain, O.

    1984-09-01

    The history of nucleon scattering experiments is reviewed, starting with the observation of large proton polarizations in scattering from light elements such as carbon, and ending with the acceleration of polarized proton beams in high-energy synchrotrons. Special mention is made about significant contributions made by C.L. Oxley, L. Wolfenstein, R.D. Tripp, T. Ypsilantis, A. Abragam, M. Borghini, T. Niinikoski, Froissart, Stora, A.D. Krisch, and L.G. Ratner.

  7. Neutrino detection with CLEAN

    NASA Astrophysics Data System (ADS)

    McKinsey, D. N.; Coakley, K. J.

    2005-01-01

    This article describes CLEAN, an approach to the detection of low-energy solar neutrinos and neutrinos released from supernovae. The CLEAN concept is based on the detection of elastic scattering events (neutrino-electron scattering and neutrino-nuclear scattering) in liquified noble gases such as liquid helium, liquid neon, and liquid xenon, all of which scintillate brightly in the ultraviolet. Key to the CLEAN technique is the use of a thin film of wavelength-shifting fluor to convert the ultraviolet scintillation light to the visible, thereby allowing detection by conventional photomultipliers. Liquid neon is a particularly promising medium for CLEAN. Because liquid neon has a high scintillation yield, has no long-lived radioactive isotopes, and can be easily purified by use of cold traps, it is an ideal medium for the detection of rare nuclear events. In addition, neon is inexpensive, dense, and transparent to its own scintillation light, making it practical for use in a large self-shielding apparatus. The central region of a full-sized detector would be a stainless steel tank holding approximately 135 metric tons of liquid neon. Inside the tank and suspended in the liquid neon would be several thousand photomultipliers. Monte Carlo simulations of gamma ray backgrounds have been performed assuming liquid neon as both shielding and detection medium. Gamma ray events occur with high probability in the outer parts of the detector. In contrast, neutrino scattering events occur uniformly throughout the detector. We discriminate background gamma ray events from events of interest based on a spatial maximum likelihood method estimate of event location. Background estimates for CLEAN are presented, as well as an evaluation of the sensitivity of the detector for p-p neutrinos. Given these simulations, the physics potential of the CLEAN approach is evaluated.

  8. Remarks on the pion-nucleon σ-term

    NASA Astrophysics Data System (ADS)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.

    2016-09-01

    The pion-nucleon σ-term can be stringently constrained by the combination of analyticity, unitarity, and crossing symmetry with phenomenological information on the pion-nucleon scattering lengths. Recently, lattice calculations at the physical point have been reported that find lower values by about 3σ with respect to the phenomenological determination. We point out that a lattice measurement of the pion-nucleon scattering lengths could help resolve the situation by testing the values extracted from spectroscopy measurements in pionic atoms.

  9. Nucleon decay into a dark sector.

    PubMed

    Davoudiasl, Hooman

    2015-02-01

    A sub-GeV dark sector fermion X can have baryon-number-violating interactions induced by high-scale physics, leading to nucleon decay into X+meson and neutron→X+photon. Such processes can mimic standard search modes containing a neutrino, but have different kinematics and may have escaped detection. If a dark force mediated by a light vector Z(d) acts on X, depending on parameters, neutron→X+Z(d) can be important. In typical scenarios, Z(d) decays into ℓ(+)ℓ(-), where ℓ=e,μ, with an order unity branching fraction. Nucleon decay searches can potentially uncover new dark states that are otherwise inaccessible, due to their negligible coupling to ordinary matter or cosmological abundance. PMID:25699434

  10. Study of Generalized Parton Distributions and Deeply Virtual Compton Scattering on the nucleon with the CLAS and CLAS12 detectors at the Jefferson Laboratory

    SciTech Connect

    Guegan, Baptiste

    2012-11-01

    The exclusive leptoproduction of a real photon is considered to be the "cleanest" way to access the Generalized Parton Distribution (GPD). This process is called Deeply Virtual Compton Scattering (DVCS) lN {yields} lN{gamma} , and is sensitive to all the four GPDs. Measuring the DVCS cross section is one of the main goals of this thesis. In this thesis, we present the work performed to extract on a wide phase-space the DVCS cross-section from the JLab data at a beam energy of 6 GeV.

  11. Nucleon-nucleon bremsstrahlung: Anomalous magnetic moment effects

    SciTech Connect

    Timmermans, R.G.E.; Penninga, T.D.; Gibson, B.F.; Liou, M.K.

    2006-03-15

    Background: Two soft-photon amplitudes, the two-u-two-t special (TuTts) amplitude and the Low amplitude, are known to produce quantitatively similar np{gamma} cross sections, but they predict quite different pp{gamma} cross sections for those kinematic conditions in which the nucleon scattering angles are small (less than 25 deg.). Purpose: These two amplitudes have been applied to systematically investigate three different nucleon-nucleon bremsstrahlung (NN{gamma}) processes: pp{gamma},np{gamma}, and nn{gamma}. The nn{gamma} process is explored for the first time. The primary focus of this work is to investigate the contribution of the proton and the neutron anomalous magnetic moments to all three NN{gamma} processes for projectile energies above 150 MeV and for laboratory scattering angles ({theta}{sub 1} and {theta}{sub 2}) lying between 8 deg. and 40 deg.. Method: A special soft-photon expansion in which the TuTts amplitude is expanded in terms of the Low amplitude plus additional amplitudes is utilized to explore the relationship between the TuTts and Low amplitudes and the reasons why they agree and disagree. We also used the TuTts amplitude to calculate the NN{gamma} cross section with and without the anomalous magnetic moment contributions to explore the importance of that element of the electromagnetic current. Results: The TuTts amplitude describes well the available pp{gamma} cross-section data. The anomalous magnetic moment contribution is (i) significant in the pp{gamma} process when each scattering angle is less than 25 deg. but insignificant when each scattering angle is 40 deg. or greater and (ii) insignificant in the np{gamma} process for all scattering angles. The nn{gamma} cross sections for the TuTts and Low amplitudes differ substantially for the kinematics investigated. Conclusions: In general, the Low amplitude agrees well with the TuTts amplitude when anomalous magnetic moment effects are not significant, but the two amplitudes can yield

  12. Constraints on neutrino oscillations using 1258 days of Super-Kamiokande solar neutrino data.

    PubMed

    Fukuda, S; Fukuda, Y; Ishitsuka, M; Itow, Y; Kajita, T; Kameda, J; Kaneyuki, K; Kobayashi, K; Koshio, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Okada, A; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, H; Takeuchi, Y; Toshito, T; Totsuka, Y; Yamada, S; Desai, S; Earl, M; Kearns, E; Messier, M D; Scholberg, K; Stone, J L; Sulak, L R; Walter, C W; Goldhaber, M; Barszczak, T; Casper, D; Gajewski, W; Kropp, W R; Mine, S; Liu, D W; Price, L R; Smy, M B; Sobel, H W; Vagins, M R; Ganezer, K S; Keig, W E; Ellsworth, R W; Tasaka, S; Kibayashi, A; Learned, J G; Matsuno, S; Takemori, D; Hayato, Y; Ishii, T; Kobayashi, T; Nakamura, K; Obayashi, Y; Oyama, Y; Sakai, A; Sakuda, M; Kohama, M; Suzuki, A T; Inagaki, T; Nakaya, T; Nishikawa, K; Haines, T J; Blaufuss, E; Dazeley, S; Lee, K B; Svoboda, R; Goodman, J A; Guillian, G; Sullivan, G W; Turcan, D; Habig, A; Hill, J; Jung, C K; Martens, K; Malek, M; Mauger, C; McGrew, C; Sharkey, E; Viren, B; Yanagisawa, C; Mitsuda, C; Miyano, K; Saji, C; Shibata, T; Kajiyama, Y; Nagashima, Y; Nitta, K; Takita, M; Yoshida, M; Kim, H I; Kim, S B; Yoo, J; Okazawa, H; Ishizuka, T; Etoh, M; Gando, Y; Hasegawa, T; Inoue, K; Ishihara, K; Maruyama, T; Shirai, J; Suzuki, A; Koshiba, M; Hatakeyama, Y; Ichikawa, Y; Koike, M; Nishijima, K; Fujiyasu, H; Ishino, H; Morii, M; Watanabe, Y; Golebiewska, U; Kielczewska, D; Boyd, S C; Stachyra, A L; Wilkes, R J; Young, K K

    2001-06-18

    We report the result of a search for neutrino oscillations using precise measurements of the recoil electron energy spectrum and zenith angle variations of the solar neutrino flux from 1258 days of neutrino-electron scattering data in Super-Kamiokande. The absence of significant zenith angle variation and spectrum distortion places strong constraints on neutrino mixing and mass difference in a flux-independent way. Using the Super-Kamiokande flux measurement in addition, two allowed regions at large mixing are found.

  13. About Hydrotechnical Laboratory, Professor Smorodinsky, and Nucleon-Nucleon Scattering

    NASA Astrophysics Data System (ADS)

    Ryndin, R. M.

    2013-06-01

    Yakov Abramovich Smorodinsky... memory brings me back to those far-off days when we first met in March 1952. We saw each other for the first time at the Hydrotechnical Laboratory (GTL) of the Academy of Sciences of the USSR, , where I obtained a position after graduation from The Physics Department of Leningrad State University. Already a well known professor, Yakov Abramovich (Ya.A.) was only eleven years older than me, a beginning physicist. Today, I would say that we were almost of the same age. We immediately liked each other, and worked closely together for 18 years until I moved back to St. Petersburg, at that time Leningrad, of course. I learned a lot from Ya.A. during those years: his intrinsic desire and ability to share his knowledge was a peculiarity of his talent...

  14. Measurement of the inclusive electron neutrino charged current cross section on carbon with the T2K near detector.

    PubMed

    Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Berardi, V; Berger, B E; Berkman, S; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Escudero, L; Finch, A J; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kubo, H; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Larkin, E; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2014-12-12

    The T2K off-axis near detector ND280 is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ∼1  GeV as a function of electron momentum, electron scattering angle, and four-momentum transfer of the interaction. The total flux-averaged ν(e) charged current cross section on carbon is measured to be ⟨σ⟩(ϕ)=1.11±0.10(stat)±0.18(syst)×10⁻³⁸ cm²/nucleon. The differential and total cross-section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is 1.23×10⁻³⁸ cm²/nucleon and the GENIE prediction is 1.08×10⁻³⁸ cm²/nucleon. The total ν(e) charged current cross-section result is also in agreement with data from the Gargamelle experiment. PMID:25541766

  15. Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2010-01-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(10{sup 21}) muons/year. This prepares the way for a Neutrino Factory (NF) in which high energy muons decay within the straight sections of a storage ring to produce a beam of neutrinos and anti-neutrinos. The NF concept was proposed in 1997 at a time when the discovery that the three known types of neutrino ({nu}{sub e}, {nu}{sub {mu}}, {nu}{sub {tau}}) can change their flavor as they propagate through space (neutrino oscillations) was providing a first glimpse of physics beyond the Standard Model. This development prepares the way for a new type of neutrino source: a Neutrino Factory. This article reviews the motivation, design and R&D for a Neutrino Factory.

  16. Neutrino physics

    SciTech Connect

    Kayser, Boris; /Fermilab

    2005-06-01

    Thanks to compelling evidence that neutrinos can change flavor, we now know that they have nonzero masses, and that leptons mix. In these lectures, we explain the physics of neutrino flavor change, both in vacuum and in matter. Then, we describe what the flavor-change data have taught us about neutrinos. Finally, we consider some of the questions raised by the discovery of neutrino mass, explaining why these questions are so interesting, and how they might be answered experimentally.

  17. Time-Dependent Collective Neutrino Oscillations in Supernovae

    NASA Astrophysics Data System (ADS)

    Abbar, Sajad; Duan, Huaiyu

    2015-10-01

    Neutrinos can experience self-induced flavor conversion in core-collapse supernovae due to neutrino-neutrino forward scattering. Previously a stationary supernova model, the so called ``neutrino bulb model,'' was used exclusively to study collective neutrino oscillations in the core-collapse supernova. We show that even a small time-dependent perturbation in neutrino fluxes on the surface of the proto-neutron star can lead to fast varying collective oscillations at large radii. This result calls for time-dependent supernova models for the study of collective neutrino oscillations. This work was supported by DOE EPSCoR Grant DE-SC0008142 at UNM.

  18. Evaluation of neutron background in cryogenic Germanium target for WIMP direct detection when using reactor neutrino detector as neutron veto

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Lan, Jieqin; Bai, Ying; Gao, Weiwei

    2016-09-01

    A direct WIMP (Weakly Interacting Massive Particle) detector with a neutron veto system is designed to better reject neutrons. An experimental configuration is studied in the present paper: 984 Ge modules are placed inside a reactor neutrino detector. In order to discriminate between nuclear and electron recoil, both ionization and heat signatures are measured using cryogenic germanium detectors in this detection. The neutrino detector is used as a neutron veto device. The neutron background for the experimental design has been estimated using the Geant4 simulation. The results show that the neutron background can decrease to O(0.01) events per year per tonne of high purity Germanium. We calculate the sensitivity to spin-independent WIMP-nucleon elastic scattering. An exposure of one tonne × year could reach a cross-section of about 2×10-11 pb.

  19. Correlation among low-energy four-nucleon observables

    NASA Astrophysics Data System (ADS)

    Adhikari, Sadhan K.

    1981-07-01

    We study the correlation among s-wave low-energy four-nucleon observables by using a simplified dispersion theoretic (ND) approach. We find that the triton binding energy, its asymptotic normalization parameter, the deuteron exchange left-hand cut, and the nucleon-trinucleon (N-t) scattering length control the low-energy N-t system. The isospin one channel is insensitive to the asymptotic normalization parameter of the triton. The effective range function k δ for the isospin zero spin singlet N-t system has a pole whose position and residue are strongly correlated with the N-t scattering length. In this case the four-nucleon system (in our model) has an excited state whose binding energy and asymptotic normalization parameter are also correlated with the N-t scattering length. [NUCLEAR REACTIONS s-wave nucleon-trinucleon systems, spin-isospin channels, ND approach, low-energy correlations.

  20. Neutrino Factories

    NASA Astrophysics Data System (ADS)

    Geer, Steve

    2010-06-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(1021) muons/year. This development prepares the way for a new type of neutrino source : a Neutrino Factory. This article reviews the motivation, design and R&D for a Neutrino Factory.

  1. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  2. Cosmological and supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

    2014-06-01

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  3. Cosmological and supernova neutrinos

    SciTech Connect

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Suzuki, T.

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  4. Hypertriton calculation with meson-theoretical nucleon-nucleon and hyperon-nucleon interactions

    SciTech Connect

    Miyagawa, K.; Gloeckle, W. Faculty of Liberal Arts and Science, Okayama University of Science, Ridai-cho, Okayama 700 )

    1993-12-01

    Faddeev equations for the coupled [Lambda][ital NN] and [Sigma][ital NN] systems are solved precisely for meson-theoretical nucleon-nucleon and hyperon-nucleon interactions. In this force model the hypertriton is not bound.

  5. Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Palazzo, Antonio

    2016-05-01

    Several anomalies recorded in short-baseline neutrino experiments suggest the possibility that the standard 3-flavor framework may be incomplete and point towards a manifestation of new physics. Light sterile neutrinos provide a credible solution to these puzzling results. Here, we present a concise review of the status of the neutrino oscillations within the 3+1 scheme, the minimal extension of the standard 3-flavor framework endowed with one sterile neutrino species. We emphasize the potential role of LBL experiments in the searches of CP violation related to sterile neutrinos and their complementarity with the SBL experiments.

  6. Sea Quark Contribution to the Nucleon Spin

    NASA Astrophysics Data System (ADS)

    Benmokhtar, Fatiha

    2015-10-01

    The widespread belief is that proton and neutron, commonly known as nucleons, are each composed of three elementary particles called quarks. But in the last two decades experiments showed that the mass, momentum, spin and electromagnetic properties of the three quarks do not add up to the known proprieties of the nucleon. Theory predicts that a ``sea'' of virtual pairs of quarks and anti-quarks, along with the strong force carrier particles called gluons, should account for the difference. I will present ongoing work on the preparation of an experiment to isolate the contributions of the sea to the nucleon spin using semi-inclusive deep inelastic scattering technique at the Thomas Jefferson National Accelerator Facility.

  7. Parton and valon distributions in the nucleon

    SciTech Connect

    Hwa, R.C.; Sajjad Zahir, M.

    1981-06-01

    Structure functions of the nucleon are analyzed in the valon model in which a nucleon is assumed to be a bound state of three valence quark clusters (valons). At high Q/sup 2/ the structure of the valons is described by leading-order results in the perturbative quantum chromodynamics. From the experimental data on deep-inelastic scattering off protons and neutrons, the flavor-dependent valon distributions in the nucleon are determined. Predictions for the parton distributions are then made for high Q/sup 2/ without guesses concerning the quark and gluon distributions at low Q/sup 2/. The sea-quark and gluon distributions are found to have a sharp peak at very small x. Convenient parametrization is provided which interpolates between different numbers of flavors.

  8. Neutrino Processes in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2010-10-01

    The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities). The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong interaction effects can be

  9. Potential measurements of neutrino-deuterium interactions with the T2K near detectors

    NASA Astrophysics Data System (ADS)

    Mahn, Kendall; T2K Collaboration

    2015-04-01

    Uncertainties on neutrino interactions with matter are important for current and future generation neutrino long baseline experiments, which infer neutrino mixing parameters. Measurements of neutrinos on deuterium constrain neutrino-nucleon interaction models, such as axial form factors, and are relatively free of complicating nuclear effects. Existing measurements of neutrino interaction using deuterium bubble chambers suffer from low statistics and significant systematic uncertainty on neutrino flux production. This talk describes the possibility of modern neutrino-deuterium cross section measurements using modifications to the existing T2K experiment near detector complex. A comparison of data taken with deuterated water and normal water would provide a measurement of neutrino-deuteron interactions with high-intensity neutrino beam. T2K is supported by the Department of Energy.

  10. Neutral weak-current two-body contributions in inclusive scattering from {sup 12}C

    SciTech Connect

    Lovato, Alessandro; Gandolfi, Stefano; Carlson, Joseph; Pieper, S. C.; Schiavilla, Rocco

    2014-05-01

    An {\\it ab initio} calculation of the sum rules of the neutral weak response functions in $^{12}$C is reported, based on a realistic Hamiltonian, including two- and three-nucleon potentials, and on realistic currents, consisting of one- and two-body terms. We find that the sum rules of the response functions associated with the longitudinal and transverse components of the (space-like) neutral current are largest and that a significant portion ($\\simeq 30$\\%) of the calculated strength is due to two-body terms. This fact may have implications for the MiniBooNE and other neutrino quasi-elastic scattering data on nuclei.

  11. Weak production of strange particles off the nucleon

    SciTech Connect

    Alam, M. Rafi; Athar, M. Sajjad; Simo, I. Ruiz; Alvarez-Ruso, L.; Vacas, M. J. Vicente

    2015-05-15

    The strange particle production off the nucleon induced by neutrinos and antineutrinos is investigated at low and intermediate energies. We develop a microscopic model based on the SU(3) chiral Lagrangian. The studied mechanisms are the main source of single kaon production for (anti)neutrino energies up to 1.5 GeV. Using this model we have also studied the associated production of kaons and hyperons. The cross sections are large enough to be measured by experiments such as MINERνA, T2K and NOνA.

  12. Probing neutrino nature at Borexino detector with chromium neutrino source

    NASA Astrophysics Data System (ADS)

    Sobków, W.; Błaut, A.

    2016-10-01

    In this paper, we indicate a possibility of utilizing the intense chromium source (˜ 370 PBq) in probing the neutrino nature in low energy neutrino experiments with the ultra-low threshold and background real-time Borexino detector located near the source (˜ 8 m). We analyse the elastic scattering of electron neutrinos (Dirac or Majorana, respectively) on the unpolarised electrons in the relativistic neutrino limit. We assume that the incoming neutrino beam is the superposition of left-right chiral states produced by the chromium source. Left chiral neutrinos may be detected by the standard V - A and non-standard scalar S_L, pseudoscalar P_L, tensor T_L interactions, while right chiral ones partake only in the exotic V + A and S_R, P_R, T_R interactions. Our model-independent study is carried out for the flavour (current) neutrino eigenstates. We compute the expected event number for the standard V-A interaction of the left chiral neutrinos using the current experimental values of standard couplings and in the case of left-right chiral superposition. We show that the significant decrement in the event number due to the interference terms between the standard and exotic interactions for the Majorana neutrinos may appear. We also demonstrate how the presence of the exotic couplings affects the energy spectrum of outgoing electrons, both for the Dirac and Majorana cases. The 90~% C.L. sensitivity contours in the planes of corresponding exotic couplings are found. The presence of interferences in the Majorana case gives the stronger constraints than for the Dirac neutrinos, even if the neutrino source is placed outside the detector.

  13. Solar neutrinos, solar flares, solar activity cycle and the proton decay

    NASA Technical Reports Server (NTRS)

    Raychaudhuri, P.

    1985-01-01

    It is shown that there may be a correlation between the galactic cosmic rays and the solar neutrino data, but it appears that the neutrino flux which may be generated during the large solar cosmic ray events cannot in any way effect the solar neutrino data in Davis experiment. Only initial stage of mixing between the solar core and solar outer layers after the sunspot maximum in the solar activity cycle can explain the higher (run number 27 and 71) of solar neutrino data in Davis experiment. But solar flare induced atmospheric neutrino flux may have effect in the nucleon decay detector on the underground. The neutrino flux from solar cosmic rays may be a useful guide to understand the background of nucleon decay, magnetic monopole search, and the detection of neutrino flux in sea water experiment.

  14. Few-Nucleon Research at TUNL: Probing Two- and Three-Nucleon Interactions with Neutrons

    NASA Astrophysics Data System (ADS)

    Howell, C. R.; Tornow, W.; Witała, H.

    2016-03-01

    The central goal of few-nucleon research at the Triangle Universities Nuclear Laboratory (TUNL) is to perform measurements that contribute to advancing ab-initio calculations of nuclear structure and reactions. The program aims include evaluating theoretical treatments of few-nucleon reaction dynamics through strategically comparing theory predictions to data, determining properties of the neutron-neutron interaction that are not accessible in two-nucleon reactions, and searching for evidence of longrange features of three-nucleon interactions, e.g., spin and isospin dependence. This paper will review studies of three- and four-nucleon systems at TUNL conducted using unpolarized and polarized neutron beams. Measurements of neutron-induced reactions performed by groups at TUNL over the last six years are described in comparison with theory predictions. The results are discussed in the context of the program goals stated above. Measurements of vector analyzing powers for elastic scattering in A=3 and A=4 systems, differential cross sections for neutron-deuteron elastic scattering and neutrondeuteron breakup in several final-state configurations are described. The findings from these studies and plans for the coming three years are presented in the context of worldwide activities in this front, in particular, research presented in this session.

  15. Neutrino Oscillations With Two Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Kisslinger, Leonard S.

    2016-10-01

    This work estimates the probability of μ to e neutrino oscillation with two sterile neutrinos using a 5×5 U-matrix, an extension of the previous estimate with one sterile neutrino and a 4×4 U-matrix. The sterile neutrino-active neutrino mass differences and the mixing angles of the two sterile neutrinos with the three active neutrinos are taken from recent publications, and the oscillation probability for one sterile neutrino is compared to the previous estimate.

  16. Neutrino Oscillations With Two Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Kisslinger, Leonard S.

    2016-06-01

    This work estimates the probability of μ to e neutrino oscillation with two sterile neutrinos using a 5×5 U-matrix, an extension of the previous estimate with one sterile neutrino and a 4×4 U-matrix. The sterile neutrino-active neutrino mass differences and the mixing angles of the two sterile neutrinos with the three active neutrinos are taken from recent publications, and the oscillation probability for one sterile neutrino is compared to the previous estimate.

  17. Generalized Polarizabilities and the Chiral Structure of the Nucleon

    SciTech Connect

    Hemmert, T.R.; Knoechlein, G.; Holstein, B.R.; Knoechlein, G.; Scherer, S.

    1997-07-01

    We present results of the first chiral perturbation theory calculation for the generalized polarizabilities of the nucleon and discuss the response functions in virtual Compton scattering to be measured in the scheduled electron scattering experiments. {copyright} {ital 1997} {ital The American Physical Society}

  18. Solar Neutrinos

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  19. Nucleon Form Factors - A Jefferson Lab Perspective

    SciTech Connect

    John Arrington, Kees de Jager, Charles F. Perdrisat

    2011-06-01

    The charge and magnetization distributions of the proton and neutron are encoded in their elastic electromagnetic form factors, which can be measured in elastic electron--nucleon scattering. By measuring the form factors, we probe the spatial distribution of the proton charge and magnetization, providing the most direct connection to the spatial distribution of quarks inside the proton. For decades, the form factors were probed through measurements of unpolarized elastic electron scattering, but by the 1980s, progress slowed dramatically due to the intrinsic limitations of the unpolarized measurements. Early measurements at several laboratories demonstrated the feasibility and power of measurements using polarization degrees of freedom to probe the spatial structure of the nucleon. A program of polarization measurements at Jefferson Lab led to a renaissance in the field of study, and significant new insight into the structure of matter.

  20. Neutrino mass

    SciTech Connect

    Bowles, T.J.

    1994-04-01

    The existence of a finite neutrino mass would have important consequences in particle physics, astrophysics, and cosmology. Experimental sensitivities have continued to be pushed down without any confirmed evidence for a finite neutrino mass. Yet there are several observations of discrepancies between theoretical predictions and observations which might be possible indications of a finite neutrino mass. Thus, extensive theoretical and experimental work is underway to resolve these issues.

  1. Atmospheric neutrinos and discovery of neutrino oscillations.

    PubMed

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations.

  2. Atmospheric neutrinos and discovery of neutrino oscillations

    PubMed Central

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations. PMID:20431258

  3. Neutrino-Induced Meson Productions

    NASA Astrophysics Data System (ADS)

    Nakamura, Satoshi X.

    We develop a dynamical coupled-channels (DCC) model for neutrino-nucleon reactions in the resonance region, by extending the DCC model that we have previously developed through an analysis of π N,γ N to π N,η N,KΛ ,KΣ reaction data for W ≤ 2.1 GeV. We analyze electron-induced reaction data for both proton and neutron targets to determine the vector current form factors up to Q2 ≤ 3.0 (GeV/c)2. Axial-current matrix elements are derived in accordance with the Partially Conserved Axial Current (PCAC) relation to the πN interactions of the DCC model. As a result, we can uniquely determine the interference pattern between resonant and non-resonant amplitudes. Our calculated cross sections for neutrino-induced single-pion productions are compared with available data, and are found to be in reasonable agreement with the data. We also calculate the double-pion production cross sections in the resonance region, for the first time, with relevant resonance contributions and channel couplings. The result is compared with the double-pion production data. For a future development of a neutrino-nucleus reaction model and/or a neutrino event generator for analyses of neutrino experiments, the DCC model presented here can give a useful input.

  4. New Limits on Thermally Annihilating Dark Matter from Neutrino Telescopes

    NASA Astrophysics Data System (ADS)

    Lopes, J.; Lopes, I.

    2016-08-01

    We used a consistent and robust solar model to obtain upper limits placed by neutrino telescopes, such as IceCube and Super-Kamiokande, on the dark matter-nucleon scattering cross-section, for a general model of dark matter with a velocity dependent (p-wave) thermally averaged cross-section. In this picture, the Boltzmann equation for the dark matter abundance is numerically solved, satisfying the dark matter density measured from the cosmic microwave background. We show that for lower cross-sections and higher masses, the dark matter annihilation rate drops sharply, resulting in upper bounds on the scattering cross-section that are one order of magnitude above those derived from a velocity independent (s-wave) annihilation cross-section. Our results show that upper limits on the scattering cross-section obtained from dark matter annihilating in the Sun are sensible to the uncertainty in current standard solar models, fluctuating by a maximum of 20% depending on the annihilation channel.

  5. Measurement of the neutrino neutral-current elastic differential cross section on mineral oil at E{sub {nu}{approx}1} GeV

    SciTech Connect

    Aguilar-Arevalo, A. A.; Cao, J.; Anderson, C. E.; Curioni, A.; Fleming, B. T.; Linden, S. K.; Soderberg, M.; Spitz, J.; Bazarko, A. O.; Laird, E. M.; Meyers, P. D.; Patterson, R. B.; Shoemaker, F. C.; Tanaka, H. A.; Brice, S. J.; Brown, B. C.; Finley, D. A.; Ford, R.; Garcia, F. G.; Kasper, P.

    2010-11-01

    We report a measurement of the flux-averaged neutral-current elastic differential cross section for neutrinos scattering on mineral oil (CH{sub 2}) as a function of four-momentum transferred squared, Q{sup 2}. It is obtained by measuring the kinematics of recoiling nucleons with kinetic energy greater than 50 MeV which are readily detected in MiniBooNE. This differential cross-section distribution is fit with fixed nucleon form factors apart from an axial mass M{sub A} that provides a best fit for M{sub A}=1.39{+-}0.11 GeV. Using the data from the charged-current neutrino interaction sample, a ratio of neutral-current to charged-current quasielastic cross sections as a function of Q{sup 2} has been measured. Additionally, single protons with kinetic energies above 350 MeV can be distinguished from neutrons and multiple nucleon events. Using this marker, the strange quark contribution to the neutral-current axial vector form factor at Q{sup 2}=0, {Delta}s, is found to be {Delta}s=0.08{+-}0.26.

  6. Search for neutrinos from annihilation of captured low-mass dark matter particles in the sun by super-kamiokande.

    PubMed

    Choi, K; Abe, K; Haga, Y; Hayato, Y; Iyogi, K; Kameda, J; Kishimoto, Y; Miura, M; Moriyama, S; Nakahata, M; Nakano, Y; Nakayama, S; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Tomura, T; Wendell, R A; Irvine, T; Kajita, T; Kametani, I; Kaneyuki, K; Lee, K P; Nishimura, Y; Okumura, K; McLachlan, T; Labarga, L; Kearns, E; Raaf, J L; Stone, J L; Sulak, L R; Berkman, S; Tanaka, H A; Tobayama, S; Goldhaber, M; Carminati, G; Kropp, W R; Mine, S; Renshaw, A; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Hong, N; Kim, J Y; Lim, I T; Akiri, T; Himmel, A; Scholberg, K; Walter, C W; Wongjirad, T; Ishizuka, T; Tasaka, S; Jang, J S; Learned, J G; Matsuno, S; Smith, S N; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Bronner, C; Hirota, S; Huang, K; Ieki, K; Ikeda, M; Kikawa, T; Minamino, A; Nakaya, T; Suzuki, K; Takahashi, S; Fukuda, Y; Itow, Y; Mitsuka, G; Mijakowski, P; Hignight, J; Imber, J; Jung, C K; Yanagisawa, C; Ishino, H; Kibayashi, A; Koshio, Y; Mori, T; Sakuda, M; Yano, T; Kuno, Y; Tacik, R; Kim, S B; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Totsuka, Y; Yokoyama, M; Martens, K; Marti, Ll; Vagins, M R; Martin, J F; de Perio, P; Konaka, A; Wilking, M J; Chen, S; Zhang, Y; Wilkes, R J

    2015-04-10

    Super-Kamiokande (SK) can search for weakly interacting massive particles (WIMPs) by detecting neutrinos produced from WIMP annihilations occurring inside the Sun. In this analysis, we include neutrino events with interaction vertices in the detector in addition to upward-going muons produced in the surrounding rock. Compared to the previous result, which used the upward-going muons only, the signal acceptances for light (few-GeV/c^{2}-200-GeV/c^{2}) WIMPs are significantly increased. We fit 3903 days of SK data to search for the contribution of neutrinos from WIMP annihilation in the Sun. We found no significant excess over expected atmospheric-neutrino background and the result is interpreted in terms of upper limits on WIMP-nucleon elastic scattering cross sections under different assumptions about the annihilation channel. We set the current best limits on the spin-dependent WIMP-proton cross section for WIMP masses below 200  GeV/c^{2} (at 10  GeV/c^{2}, 1.49×10^{-39}  cm^{2} for χχ→bb[over ¯] and 1.31×10^{-40}  cm^{2} for χχ→τ^{+}τ^{-} annihilation channels), also ruling out some fraction of WIMP candidates with spin-independent coupling in the few-GeV/c^{2} mass range. PMID:25910107

  7. Search for neutrinos from annihilation of captured low-mass dark matter particles in the sun by super-kamiokande.

    PubMed

    Choi, K; Abe, K; Haga, Y; Hayato, Y; Iyogi, K; Kameda, J; Kishimoto, Y; Miura, M; Moriyama, S; Nakahata, M; Nakano, Y; Nakayama, S; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Tomura, T; Wendell, R A; Irvine, T; Kajita, T; Kametani, I; Kaneyuki, K; Lee, K P; Nishimura, Y; Okumura, K; McLachlan, T; Labarga, L; Kearns, E; Raaf, J L; Stone, J L; Sulak, L R; Berkman, S; Tanaka, H A; Tobayama, S; Goldhaber, M; Carminati, G; Kropp, W R; Mine, S; Renshaw, A; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Hong, N; Kim, J Y; Lim, I T; Akiri, T; Himmel, A; Scholberg, K; Walter, C W; Wongjirad, T; Ishizuka, T; Tasaka, S; Jang, J S; Learned, J G; Matsuno, S; Smith, S N; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Bronner, C; Hirota, S; Huang, K; Ieki, K; Ikeda, M; Kikawa, T; Minamino, A; Nakaya, T; Suzuki, K; Takahashi, S; Fukuda, Y; Itow, Y; Mitsuka, G; Mijakowski, P; Hignight, J; Imber, J; Jung, C K; Yanagisawa, C; Ishino, H; Kibayashi, A; Koshio, Y; Mori, T; Sakuda, M; Yano, T; Kuno, Y; Tacik, R; Kim, S B; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Totsuka, Y; Yokoyama, M; Martens, K; Marti, Ll; Vagins, M R; Martin, J F; de Perio, P; Konaka, A; Wilking, M J; Chen, S; Zhang, Y; Wilkes, R J

    2015-04-10

    Super-Kamiokande (SK) can search for weakly interacting massive particles (WIMPs) by detecting neutrinos produced from WIMP annihilations occurring inside the Sun. In this analysis, we include neutrino events with interaction vertices in the detector in addition to upward-going muons produced in the surrounding rock. Compared to the previous result, which used the upward-going muons only, the signal acceptances for light (few-GeV/c^{2}-200-GeV/c^{2}) WIMPs are significantly increased. We fit 3903 days of SK data to search for the contribution of neutrinos from WIMP annihilation in the Sun. We found no significant excess over expected atmospheric-neutrino background and the result is interpreted in terms of upper limits on WIMP-nucleon elastic scattering cross sections under different assumptions about the annihilation channel. We set the current best limits on the spin-dependent WIMP-proton cross section for WIMP masses below 200  GeV/c^{2} (at 10  GeV/c^{2}, 1.49×10^{-39}  cm^{2} for χχ→bb[over ¯] and 1.31×10^{-40}  cm^{2} for χχ→τ^{+}τ^{-} annihilation channels), also ruling out some fraction of WIMP candidates with spin-independent coupling in the few-GeV/c^{2} mass range.

  8. Scattering Of Light Nuclei

    SciTech Connect

    Quaglioni, S; Navratil, P; Roth, R

    2009-12-15

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.

  9. Generalized mass ordering degeneracy in neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Coloma, Pilar; Schwetz, Thomas

    2016-09-01

    We consider the impact of neutral-current (NC) nonstandard neutrino interactions (NSI) on the determination of the neutrino mass ordering. We show that in the presence of NSI there is an exact degeneracy which makes it impossible to determine the neutrino mass ordering and the octant of the solar mixing angle θ12 at oscillation experiments. The degeneracy holds at the probability level and for arbitrary matter density profiles, and hence solar, atmospheric, reactor, and accelerator neutrino experiments are affected simultaneously. The degeneracy requires order-1 corrections from NSI to the NC electron neutrino-quark interaction and can be tested in electron neutrino NC scattering experiments.

  10. RAY-TRACING ANALYSIS OF ANISOTROPIC NEUTRINO RADIATION FOR ESTIMATING GRAVITATIONAL WAVES IN CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Kotake, Kei; Yamada, Shoichi

    2009-10-20

    We propose a ray-tracing method to estimate gravitational waves (GWs) generated by anisotropic neutrino emission in supernova cores. To calculate the gravitational waveforms, we derive analytic formulae in a useful form, which are applicable also for three-dimensional computations. Pushed by evidence of slow rotation prior to core-collapse, we focus on asphericities in neutrino emission and matter motions outside the protoneutron star. Based on the two-dimensional models, which mimic standing accretion shock instability (SASI)-aided neutrino heating explosions, we compute the neutrino anisotropies via the ray-tracing method in a post-processing manner and calculate the resulting waveforms. For simplicity, neutrino absorption and emission by free nucleons, dominant processes outside the protoneutron stars, are only taken into account, while the neutrino scattering and the velocity-dependent terms in the transport equations are neglected. With these computations, it is found that the waveforms exhibit more variety in contrast to the ones previously estimated by the ray-by-ray analysis. In addition to a positively growing feature, which was predicted to determine the total wave amplitudes predominantly, the waveforms are shown to exhibit large negative growth for some epochs during the growth of SASI. These features are found to stem from the excess of neutrino emission in lateral directions, which can be precisely captured by the ray-tracing calculation. Reflecting the nature of SASI which grows chaotically with time, there is little systematic dependence of the input neutrino luminosities on the maximum wave amplitudes. Due to the negative contributions and the neutrino absorptions appropriately taken into account by the ray-tracing method, the wave amplitudes become more than one order of magnitude smaller than the previous estimation, thus making their detections very hard for a Galactic source. On the other hand, it is pointed out that the GW spectrum from matter

  11. Atmospheric neutrinos observed in underground detectors

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, T.

    1985-01-01

    Atmospheric neutrinos are produced when the primary cosmic ray beam hits the atmosphere and initiates atmospheric cascades. Secondary mesons decay and give rise to neutrinos. The neutrino production was calculated and compared with the neutrino fluxes detected in underground detectors. Contained neutrino events are characterized by observation of an interaction within the fiducial volume of the detector when the incoming particle is not observed. Both the neutrino flux and the containment requirement restrict the energy of the neutrinos observed in contained interactions to less than several GeV. Neutrinos interact with the rock surrounding the detector but only muon neutrino interactions can be observed, as the electron energy is dissipated too fast in the rock. The direction of the neutrino is preserved in the interaction and at energies above 1 TeV the angular resolution is restricted by the scattering of the muon in the rock. The muon rate reflects the neutrino spectrum above some threshold energy, determined by the detector efficiency for muons.

  12. Renormalization of the Brazilian chiral nucleon-nucleon potential

    SciTech Connect

    Da Rocha, Carlos A.; Timoteo, Varese S.

    2013-03-25

    In this work we present a renormalization of the Brazilian nucleon-nucleon (NN) potential using a subtractive method. We show that the exchange of correlated two pion is important for isovector channels, mainly in tensor and central potentials.

  13. Renormalization of the Brazilian chiral nucleon-nucleon potential

    NASA Astrophysics Data System (ADS)

    Da Rocha, Carlos A.; Timóteo, Varese S.

    2013-03-01

    In this work we present a renormalization of the Brazilian nucleon-nucleon (NN) potential using a subtractive method. We show that the exchange of correlated two pion is important for isovector channels, mainly in tensor and central potentials.

  14. Electromagnetic nucleon form factors

    SciTech Connect

    Bender, A.; Roberts, C.D.; Frank, M.R.

    1995-08-01

    The Dyson-Schwinger equation framework is employed to obtain expressions for the electromagnetic nucleon form factor. In generalized impulse approximation the form factor depends on the dressed quark propagator, the dressed quark-photon vertex, which is crucial to ensuring current conservation, and the nucleon Faddeev amplitude. The approach manifestly incorporates the large space-like-q{sup 2} renormalization group properties of QCD and allows a realistic extrapolation to small space-like-q{sup 2}. This extrapolation allows one to relate experimental data to the form of the quark-quark interaction at small space-like-q{sup 2}, which is presently unknown. The approach provides a means of unifying, within a single framework, the treatment of the perturbative and nonperturbative regimes of QCD. The wealth of experimental nucleon form factor data, over a large range of q{sup 2}, ensures that this application will provide an excellent environment to test, improve and extend our approach.

  15. Neutrino telescopes

    SciTech Connect

    Costantini, H.

    2012-09-15

    Neutrino astrophysics offers a new possibility to observe our Universe: high-energy neutrinos, produced by the most energetic phenomena in our Galaxy and in the Universe, carry complementary (if not exclusive) information about the cosmos: this young discipline extends in fact the conventional astronomy beyond the usual electromagnetic probe. The weak interaction of neutrinos with matter allows them to escape from the core of astrophysical objects and in this sense they represent a complementary messenger with respect to photons. However, their detection on Earth due to the small interaction cross section requires a large target mass. The aim of this article is to review the scientific motivations of the high-energy neutrino astrophysics, the detection principles together with the description of a running apparatus, the experiment ANTARES, the performance of this detector with some results, and the presentation of other neutrino telescope projects.

  16. Neutrino factories

    SciTech Connect

    Soler, F. J. P.

    2015-07-15

    The Neutrino Factory is a facility that produces neutrino beams with a well-defined flavour content and energy spectrum from the decay of intense, high-energy, stored muon beams to establish CP violation in the neutrino sector. The International Design Study for the Neutrino Factory (the IDS-NF) is providing a Reference Design Report (RDR) for the facility. The present design is optimised for the recent measurements of θ{sub 13}. The accelerator facility will deliver 10{sup 21} muon decays per year from 10 GeV stored muon beams. The straight sections of the storage ring point to a 100 kton Magnetised Iron Neutrino Detector (MIND) at a distance of 2000-2500 km from the source. The accuracy in the value of δ{sub CP} that a Neutrino Factory can achieve and the δ{sub CP} coverage is unrivalled by other future facilities. Staging scenarios for the Neutrino Factory deliver facilities that can carry out physics at each stage. In the context of Fermilab, such a scenario would imply in the first stage the construction of a small storage ring, nuSTORM, to carry out neutrino cross-section and sterile neutrino measurements and to perform a programme of 6D muon cooling R&D. The second stage is the construction of a 5 GeV Neutrino Factory (nuMAX) pointing to the Sanford Underground Research Facility at Homestake and the final stage would use many of the components of this facility to construct a Muon Collider, initially as a 126 GeV CM Higgs Factory, which may be upgraded to a multi-TeV Muon Collider if required.

  17. Effects of the rest mass of the neutrino (antineutrino) on the scattering of /gamma/ (/sup /approx///gamma/) by /sub 6/C/sup 12/

    SciTech Connect

    Samsonenko, N.V.; Katkhat, C.L.; El-Gavkhari, A.I.

    1989-01-01

    Expressions are obtained for the differential cross sections of the processes /gamma/ + /sub 6/C/sup 12/ /yields/ /sub 7/N/sup 12/ + e/sup /minus// and /sup /approx///gamma/ + /sub 6/C/sup 12/ /yields/ /sub 5/B/sup 12/ + e/sup +/ for the shell model of the nucleus and the harmonic oscillator model. The authors analyze the effect of the rest mass of the neutrino (antineutrino) on the degree of longitudinal polarization of the electrons (positrons), the angular electron-neutrino (positron-antineutrino) correlation coefficient, and the charge symmetry.

  18. Two-Nucleon Systems in a Finite Volume

    SciTech Connect

    Briceno, Raul

    2014-11-01

    I present the formalism and methodology for determining the nucleon-nucleon scattering parameters from the finite volume spectra obtained from lattice quantum chromodynamics calculations. Using the recently derived energy quantization conditions and the experimentally determined scattering parameters, the bound state spectra for finite volume systems with overlap with the 3S1-3D3 channel are predicted for a range of volumes. It is shown that the extractions of the infinite-volume deuteron binding energy and the low-energy scattering parameters, including the S-D mixing angle, are possible from Lattice QCD calculations of two-nucleon systems with boosts of |P| <= 2pi sqrt{3}/L in volumes with spatial extents L satisfying fm <~ L <~ 14 fm.

  19. Meson exchange current (MEC) models in neutrino interaction generators

    SciTech Connect

    Katori, Teppei

    2015-05-15

    Understanding of the so-called 2 particle-2 hole (2p-2h) effect is an urgent program in neutrino interaction physics for current and future oscillation experiments. Such processes are believed to be responsible for the event excesses observed by recent neutrino experiments. The 2p-2h effect is dominated by the meson exchange current (MEC), and is accompanied by a 2-nucleon emission from the primary vertex, instead of a single nucleon emission from the charged-current quasi-elastic (CCQE) interaction. Current and future high resolution experiments can potentially nail down this effect. For this reason, there are world wide efforts to model and implement this process in neutrino interaction simulations. In these proceedings, I would like to describe how this channel is modeled in neutrino interaction generators.

  20. Probing short-range nucleon-nucleon interactions with an electron-ion collider

    NASA Astrophysics Data System (ADS)

    Miller, Gerald A.; Sievert, Matthew D.; Venugopalan, Raju

    2016-04-01

    We derive the cross section for exclusive vector meson production in high-energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross section can be expressed in terms of a novel gluon transition generalized parton distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short-distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial- and final-state dynamics in the T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: In particular, we discuss the relative role of "pointlike" and "geometric" Fock configurations that control the parton dynamics of short-range nucleon-nucleon scattering. With the aid of exclusive J /ψ production data at the Hadron-Electron Ring Accelerator at DESY, as well as elastic nucleon-nucleon cross sections, we estimate rates for exclusive deuteron photodisintegration at a future Electron-Ion Collider (EIC). Our results, obtained using conservative estimates of EIC integrated luminosities, suggest that center-of-mass energies sNN˜12 GeV2 of the neutron-proton subsystem can be accessed. We argue that the high energies of the EIC can address outstanding dynamical questions regarding the short-range quark-gluon structure of nuclear forces by providing clean gluon probes of such "knockout" exclusive reactions in light and heavy nuclei.

  1. Evidence for neutrino oscillations in the Sudbury Neutrino Observatory

    SciTech Connect

    Marino, Alysia Diane

    2004-01-01

    The Sudbury Neutrino Observatory (SNO) is a large-volume heavy water Cerenkov detector designed to resolve the solar neutrino problem. SNO observes charged-current interactions with electron neutrinos, neutral-current interactions with all active neutrinos, and elastic-scattering interactions primarily with electron neutrinos with some sensitivity to other flavors. This dissertation presents an analysis of the solar neutrino flux observed in SNO in the second phase of operation, while ~2 tonnes of salt (NaCl) were dissolved in the heavy water. The dataset here represents 391 live days of data. Only the events above a visible energy threshold of 5.5 MeV and inside a fiducial volume within 550 cm of the center of the detector are studied. The neutrino flux observed via the charged-current interaction is [1.71 ± 0.065(stat.)±$0.065\\atop{0.068}$(sys.)±0.02(theor.)] x 106cm-2s-1, via the elastic-scattering interaction is [2.21±0.22(stat.)±$0.12\\atop{0.11}$(sys.)±0.01(theor.)] x 106cm-2s-1, and via the neutral-current interaction is [5.05±0.23(stat.)±$0.31\\atop{0.37}$(sys.)±0.06(theor.)] x 106cm-2s-1. The electron-only flux seen via the charged-current interaction is more than 7σ below the total active flux seen via the neutral-current interaction, providing strong evidence that neutrinos are undergoing flavor transformation as they travel from the core of the Sun to the Earth. The most likely origin of the flavor transformation is matter-induced flavor oscillation.

  2. Updating neutrino magnetic moment constraints

    NASA Astrophysics Data System (ADS)

    Cañas, B. C.; Miranda, O. G.; Parada, A.; Tórtola, M.; Valle, J. W. F.

    2016-02-01

    In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs), discussing both the constraints on the magnitudes of the three transition moments Λi and the role of the CP violating phases present both in the mixing matrix and in the NMM matrix. The scattering of solar neutrinos off electrons in Borexino provides the most stringent restrictions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit on the effective neutrino magnetic moment which follows from the most recent Borexino data is 3.1 ×10-11μB at 90% C.L. This corresponds to the individual transition magnetic moment constraints: |Λ1 | ≤ 5.6 ×10-11μB, |Λ2 | ≤ 4.0 ×10-11μB, and |Λ3 | ≤ 3.1 ×10-11μB (90% C.L.), irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM matrix. For this reason we also provide a global analysis including the case of reactor and accelerator neutrino sources, presenting the resulting constraints for different values of the relevant CP phases. Improved reactor and accelerator neutrino experiments will be needed in order to underpin the full profile of the neutrino electromagnetic properties.

  3. Nucleon Spin Structure: Longitudinal and Transverse

    SciTech Connect

    Jian-Ping Chen

    2011-02-01

    Inclusive Deep-Inelastic Scattering (DIS) experiments have provided us with the most extensive information on the unpolarized and longitudinal polarized parton (quark and gluon) distributions in the nucleon. It has becoming clear that transverse spin and transverse momentum dependent distributions (TMDs) study are crucial for a more complete understanding of the nucleon structure and the dynamics of the strong interaction. The transverse spin structure and the TMDs are the subject of increasingly intense theoretical and experimental study recently. With a high luminosity electron beam facility, JLab has played a major role in the worldwide effort to study both the longitudinal and transverse spin structure. Highlights of recent results will be presented. With 12-GeV energy upgrade, JLab will provide the most precise measurements in the valence quark region to close a chapter in longitudinal spin study. JLab will also perform a multi-dimensional mapping of the transverse spin structure and TMDs in the valence quark region through Semi-Inclusive DIS (SIDIS) experiments, providing a 3-d partonic picture of the nucleon in momentum space and extracting the u and d quark tensor charges of the nucleon. The precision mapping of TMDs will also allow a detailed study of the quark orbital motion and its dynamics.

  4. Some uncertainties of neutrino oscillation effect in the NOνA experiment

    NASA Astrophysics Data System (ADS)

    Kolupaeva, Lyudmila D.; Kuzmin, Konstantin S.; Petrova, Olga N.; Shandrov, Igor M.

    2016-04-01

    Uncertainties related to the effect of neutrino coherent forward scattering in Earth’s matter (MSW mechanism) and with the cross-sections of quasi-elastic (QE) neutrino scattering on nuclear targets of the NOνA detectors are studied. The NOνA sensitivity to the neutrino mass hierarchy and the CP violating phase is discussed.

  5. Weak charged and neutral current induced one pion production off the nucleon

    NASA Astrophysics Data System (ADS)

    Rafi Alam, M.; Sajjad Athar, M.; Chauhan, S.; Singh, S. K.

    2016-02-01

    We present a study of neutrino/antineutrino induced charged current (CC) and neutral current (NC) single pion production (SPP) off the nucleon. For this, we have considered P33(1232) resonance, nonresonant background (NRB) terms, other higher resonances like P11(1440), S11(1535), D13(1520), S11(1650) and P13(1720). For the NRB terms a microscopic approach based on SU(2) nonlinear sigma model has been used. The vector form factors for the resonances are obtained by using the relationship between the electromagnetic resonance form factors and helicity amplitudes provided by MAID. Axial coupling C5A(0) in the case of P33(1232) resonance is obtained by fitting the ANL and BNL ν-deuteron reanalyzed scattering data. The results are presented with and without deuteron effect for the total scattering cross-sections for all possible channels, viz. νl(ν¯l)+N → l-(l+)+N‧+πi and νl(ν¯l)+N → νl(ν¯l)+N‧ + πi, where N,N‧ = p,n, πi = π± or π0 and l = e,μ.

  6. Nucleon spin structure

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Ruan, Jianhong

    2015-10-01

    This paper contains three parts relating to the nucleon spin structure in a simple picture of the nucleon: (i) The polarized gluon distribution in the proton is dynamically predicted starting from a low scale by using a nonlinear quantum chromodynamics (QCD) evolution equation — the Dokshitzer-Gribov-Lipatov-Altarelli-Paris (DGLAP) equation with the parton recombination corrections, where the nucleon is almost consisted only of valence quarks. We find that the contribution of the gluon polarization to the nucleon spin structure is much larger than the predictions of most other theories. This result suggests that a significant orbital angular momentum of the gluons is required to balance the gluon spin momentum. (ii) The spin structure function g1p of the proton is studied, where the perturbative evolution of parton distributions and nonperturbative vector meson dominance (VMD) model are used. We predict g1p asymptotic behavior at small x from lower Q2 to higher Q2. The results are compatible with the data including the early HERA estimations and COMPASS new results. (iii) The generalized Gerasimov-Drell-Hearn (GDH) sum rule is understood based on the polarized parton distributions of the proton with the higher twist contributions. A simple parameterized formula is proposed to clearly present the contributions of different components in the proton to Γ 1p(Q2). The results suggest a possible extended objects with size 0.2-0.3 fm inside the proton.

  7. New Measurements of High-Momentum Nucleons and Short-Range Structures in Nuclei

    SciTech Connect

    Fomin, N.; Arrington, J.; Asaturyan, R.; Benmokhtar, F.; Boeglin, W.; Bosted, P.; Bruell, A.; Bukhari, M. H. S.; Christy, M. E.; Chudakov, E.; Clasie, B.; Connell, S. H.; Dalton, M. M.; Daniel, A.; Day, D. B.; Dutta, D.; Ent, R.; El Fassi, L.; Fenker, H.; Filippone, B. W.; Garrow, K.; Gaskell, D.; Hill, C.; Holt, R. J.; Horn, T.; Jones, M. K.; Jourdan, J.; Kalantarians, N.; Keppel, C. E.; Kiselev, D.; Kotulla, M.; Lindgren, R.; Lung, A. F.; Malace, S.; Markowitz, P.; McKee, P.; Meekins, D. G.; Mkrtchyan, H.; Navasardyan, T.; Niculescu, G.; Opper, A. K.; Perdrisat, C.; Potterveld, D. H.; Punjabi, V.; Qian, X.; Reimer, P. E.; Roche, J.; Rodriguez, V. M.; Rondon, O.; Schulte, E.; Seely, J.; Segbefia, E.; Slifer, K.; Smith, G. R.; Solvignon, P.; Tadevosyan, V.; Tajima, S.; Tang, L.; Testa, G.; Trojer, R.; Tvaskis, V.; Vulcan, W. F.; Wasko, C.; Wesselmann, F. R.; Wood, S. A.; Wright, J.; Zheng, X.

    2012-02-01

    We present new, high-Q2 measurements of inclusive electron scattering from high-momentum nucleons in nuclei. This yields an improved extraction of the strength of two-nucleon correlations for several nuclei, including light nuclei where clustering effects can, for the first time, be examined. The data extend to the kinematic regime where three-nucleon correlations are expected to dominate and we observe significantly greater strength in this region than previous measurements.

  8. New Measurements of High-Momentum Nucleons and Short-Range Structures in Nuclei

    DOE PAGES

    Fomin, N.; Arrington, J.; Asaturyan, R.; Benmokhtar, F.; Boeglin, W.; Bosted, P.; Bruell, A.; Bukhari, M. H. S.; Christy, M. E.; Chudakov, E.; et al

    2012-02-01

    We present new, high-Q2 measurements of inclusive electron scattering from high-momentum nucleons in nuclei. This yields an improved extraction of the strength of two-nucleon correlations for several nuclei, including light nuclei where clustering effects can, for the first time, be examined. The data extend to the kinematic regime where three-nucleon correlations are expected to dominate and we observe significantly greater strength in this region than previous measurements.

  9. High-energy single diffractive dissociation of nucleons and the 3P-model applicability range

    NASA Astrophysics Data System (ADS)

    Godizov, A. A.

    2016-11-01

    The adequacy of the triple-Pomeron interaction approximation (the 3P-model) for description of the high-energy single diffractive dissociation of nucleons is analyzed via application to the available experimental data on nucleon-nucleon scattering, including the recent results produced by CMS Collaboration which allow to estimate reliably the triple-Pomeron coupling value. It is argued that the total contribution of secondary Reggeon exchanges is not negligible up to the Tevatron energy.

  10. Generalized Sum Rules of the Nucleon

    NASA Astrophysics Data System (ADS)

    Gorshteyn, Mikhail; Szczepaniak, Adam

    2008-10-01

    We consider doubly virtual Compton scattering (VVCS) off the nucleon with the photon virtualities q1^2=q2^2=-Q^2 and formulate the low energy theorem (LET) for this process. We show that the LET can only be defined at finite momentum transfer t=-2Q^2 which is at variance with existing studies in the literature. Combining LET with dispersion relations for the forward VVCS amplitude, we obtain the new, correct version of the generalized sum rules of the nucleon that state a correspondence between the low energy constants of VVCS and the moments of the DIS structure functions. We notice that the t-channel unitarity is necessary to translate the forward dispersion relations to the low energy limit. This approach leads to a substantial modification of the generalized GDH sum rule at finite Q^2 that undergoes extensive studies at JLab. For the spin-independent VVCS amplitude, the new sum rule for the generalized magnetic susceptibility β(Q^2) is obtained. Our approach provides a consistent, Lorentz invariant formulation of LET for the most general VVCS process that removes inconsistencies that stain the previous studies of the generalized polarizabilities of virtual Compton scattering and the generalized sum rules of the nucleon.

  11. Coronal Neutrino Emission in Hypercritical Accretion Flows

    NASA Astrophysics Data System (ADS)

    Kawabata, R.; Mineshige, S.; Kawanaka, N.

    2008-03-01

    Hypercritical accretion flows onto stellar mass black holes (BHs) are commonly believed to be as a promising model of central engines of gamma-ray bursts (GRBs). In this model a certain fraction of the gravitational binding energy of accreting matter is deposited to the energy of relativistic jets via neutrino annihilation and/or magnetic fields. However, some recent studies have indicated that the energy deposition rate by neutrino annihilation is somewhat smaller than that needed to power a GRB. To overcome this difficulty, Ramirez-Ruiz and Socrates proposed that high-energy neutrinos from the hot corona above the accretion disk might enhance the efficiency of the energy deposition. We elucidate the disk corona model in the context of hypercritical accretion flows. From the energy balance in the disk and the corona, we can calculate the disk and coronal temperature, Td and Tc, and neutrino spectra, taking into account the neutrino cooling processes by neutrino-electron scatterings and neutrino pair productions. The calculated neutrino spectra consist of two peaks: one by the neutrino emission from the disk and the other by that from the corona. We find that the disk corona can enhance the efficiency of energy release but only by a factor of 1.5 or so, unless the height of the corona is very small, Hll r. This is because the neutrino emission is very sensitive to the temperature of the emitting region, and then the ratio Tc/Td cannot be very large.

  12. Dark matter and neutrino masses from a scale-invariant multi-Higgs portal

    NASA Astrophysics Data System (ADS)

    Karam, Alexandros; Tamvakis, Kyriakos

    2015-10-01

    We consider a classically scale invariant version of the Standard Model, extended by an extra dark S U (2 )X gauge group. Apart from the dark gauge bosons and a dark scalar doublet which is coupled to the Standard Model Higgs through a portal coupling, we incorporate right-handed neutrinos and an additional real singlet scalar field. After symmetry breaking à la Coleman-Weinberg, we examine the multi-Higgs sector and impose theoretical and experimental constraints. In addition, by computing the dark matter relic abundance and the spin-independent scattering cross section off a nucleon we determine the viable dark matter mass range in accordance with present limits. The model can be tested in the near future by collider experiments and direct detection searches such as XENON 1T.

  13. Neutrino oscillations.

    PubMed

    Thomson, Mark

    2002-05-15

    The wave theory of light, and in particular the principle of interference, was formulated by Thomas Young in 1801. In the 20th century, the principle of interference was extended to the quantum mechanical wave functions describing matter. The phenomenon of quantum mechanical interference of different neutrino states, neutrino oscillations, has provided one of the most exciting developments in high energy particle physics of the last decade. Observations of the flavour oscillations of neutrinos produced by distant sources, such as from the core of the Sun, provide compelling evidence that neutrinos have mass. This article describes the main features and the most significant experimental observations of this unusual application of the principle of interference.

  14. Momentum and coordinate space three-nucleon potentials

    SciTech Connect

    Coon, S.A.; Pena, M.T.

    1993-06-10

    In this paper we give explicit formulae in momentum and coordinate space for the three-nucleon potentials due to {rho} and {pi} meson exchange, derived from off-mass-shell meson-nucleon scattering amplitudes which are constrained by the symmetries of QCD and by the experimental data. Those potentials have already been applied to nuclear matter calculations. Here we display additional terms which appear to be the most important for nuclear structure. The potentials are decomposed in a way that separates the contributions of different physical mechanisms involved in the meson-nucleon amplitudes. The same type of decomposition is presented for the {pi} {minus} {pi} TM force: The {Delta} isobar, the chiral symmetry breaking and the nucleon pair terms are isolated.

  15. Evidence for new nucleon resonances from electromagnetic meson production

    SciTech Connect

    Volker Burkert

    2012-12-01

    The study of nucleon resonances in electromagnetic meson production with the CLAS detector is discussed. The electromagnetic interaction is complementary to pion scattering in the exploration of the nucleon excitation spectrum. Higher mass states often decouple from the N{pi} channel and are not seen in {pi} N --> {pi} N. Photoproduction of mesons, such as K {Lambda}, {omega} p and {eta}' p may be more sensitive to many of these states. The CLAS detector, combined with the use of energy-tagged polarized photons and polarized electrons, as well as po- larized targets and the measurement of recoil polarization, are the tools needed for a comprehensive nucleon resonance program. Some of the recently published high statistics data sets had significant impact on further clarifying the nucleon excitation spectrum.

  16. Sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Kopp, J.; Machado, P. A. N.; Maltoni, M.; Schwetz, T.

    2016-06-01

    We characterize statistically the indications of a presence of one or more light sterile neutrinos from MiniBooNE and LSND data, together with the reactor and gallium anomalies, in the global context. The compatibility of the aforementioned signals with null results from solar, atmospheric, reactor, and accelerator experiments is evaluated. We conclude that a severe tension is present in the global fit, and therefore the addition of eV-scale sterile neutrinos does not satisfactorily explain the anomalies.

  17. Spin and angular momentum in the nucleon

    SciTech Connect

    Franz Gross, Gilberto Ramalho, Teresa Pena

    2012-05-01

    Using the covariant spectator theory (CST), we present the results of a valence quark-diquark model calculation of the nucleon structure function f(x) measured in unpolarized deep inelastic scattering (DIS), and the structure functions g1(x) and g2(x) measured in DIS using polarized beams and targets. Parameters of the wave functions are adjusted to fit all the data. The fit fixes both the shape of the wave functions and the relative strength of each component. Two solutions are found that fit f(x) and g1(x), but only one of these gives a good description of g2(x). This fit requires the nucleon CST wave functions contain a large D-wave component (about 35%) and a small P-wave component (about 0.6%). The significance of these results is discussed.

  18. From Extraction of Nucleon Resonances to LQCD

    NASA Astrophysics Data System (ADS)

    Lee, T.-S. H.; Wu, Jia-jun; Kamano, Hiroyuki

    2016-10-01

    The intrinsic difficulties in extracting the hadron resonances from reaction data are illustrated by using several exactly soluble π π scattering models. The finite-volume Hamiltonian method is applied to predict spectra using two meson-exchange Hamiltonians of π N reactions. Within a three-channel model with π N, π Δ and σ N channels, we show the advantage of the finite-volume Hamiltonian method over the approach using the Lüscher formula to test Lattice QCD calculations aimed at predicting nucleon resonances. We discuss the necessary steps for using the ANL-Osaka eight-channel Hamiltonian to predict the spectra for testing the LQCD calculations for determining the excited nucleon states up to invariant mass W= 2 GeV.

  19. Determination of partial-wave inelasticities for elastic pion-nucleon scattering with the aid of experimental data on π N → ππ N processes in the beam-momentum range 300 < P beam < 500 MeV/ c

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, V. A.; Sherman, S. G.

    2008-11-01

    The partial-wave inelasticity parameters of the amplitude for elastic pion-nucleon scattering are determined with the aid of the phenomenological amplitude for inelastic π N → ππ N processes in the energy range extending to the threshold for the production of two pions. The resulting inelasticity parameters are compared with their counterparts derived from modern partial-wave analyses. The largest inelastic-scattering cross section in the P11 wave is in excellent agreement with the analogous value from the analysis performed at the George Washington University in 2006. For other waves, however, the present results differ in the majority of cases from respective values given by partial-wave analyses (the distinctions are especially large for the isospin-3/2 amplitudes).

  20. Nucleon resonances in exclusive reactions of photo- and electroproduction of mesons

    SciTech Connect

    Skorodumina, Iu. A.; Burkert, V. D.; Golovach, E. N.; Gothe, R. W.; Isupov, E. L.; Ishkhanov, B. S.; Mokeev, V. I.; Fedotov, G. V.

    2015-11-01

    Methods for extracting nucleon resonance parameters from experimental data are reviewed. The formalism for the description of exclusive reactions of meson photo- and electroproduction off nucleons is discussed. Recent experimental data on exclusive meson production in the scattering of electrons and photons off protons are analyzed.

  1. Ultrahigh energy neutrinos and nonlinear QCD dynamics

    SciTech Connect

    Machado, Magno V.T.

    2004-09-01

    The ultrahigh energy neutrino-nucleon cross sections are computed taking into account different phenomenological implementations of the nonlinear QCD dynamics. Based on the color dipole framework, the results for the saturation model supplemented by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution as well as for the Balitskii-Fadin-Kuraev-Lipatov (BFKL) formalism in the geometric scaling regime are presented. They are contrasted with recent calculations using next-to-leading order DGLAP and unified BFKL-DGLAP formalisms.

  2. Scientific Opportunities with the Long-Baseline Neutrino Experiment

    SciTech Connect

    Adams, C.; et al.,

    2013-07-28

    In this document, we describe the wealth of science opportunities and capabilities of LBNE, the Long-Baseline Neutrino Experiment. LBNE has been developed to provide a unique and compelling program for the exploration of key questions at the forefront of particle physics. Chief among the discovery opportunities are observation of CP symmetry violation in neutrino mixing, resolution of the neutrino mass hierarchy, determination of maximal or near-maximal mixing in neutrinos, searches for nucleon decay signatures, and detailed studies of neutrino bursts from galactic supernovae. To fulfill these and other goals as a world-class facility, LBNE is conceived around four central components: (1) a new, intense wide-band neutrino source at Fermilab, (2) a fine-grained `near' neutrino detector just downstream of the source, (3) the Sanford Underground Research Facility (SURF) in Lead, South Dakota at an optimal distance (~1300 km) from the neutrino source, and (4) a massive liquid argon time-projection chamber (LArTPC) deployed there as a 'far' detector. The facilities envisioned are expected to enable many other science opportunities due to the high event rates and excellent detector resolution from beam neutrinos in the near detector and atmospheric neutrinos in the far detector. This is a mature, well developed, world class experiment whose relevance, importance, and probability of unearthing critical and exciting physics has increased with time.

  3. Ground-state properties of closed-shell nucleus {sup 56}Ni with realistic nucleon-nucleon interactions

    SciTech Connect

    Gad, Kh.

    2012-10-15

    We have calculated the ground-state energy of the doubly magic nucleus {sup 56}Ni within the framework of the Green's function using the CD-Bonn and N{sup 3}LO nucleon-nucleon potentials. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. Both the continuous and conventional choices of single particle energies are used. Additional binding energy is obtained from the inclusion of the hole-hole scattering term within the framework of the Green function approach. In this study, comparison of the calculated ground-state energies, obtained by using the Brueckner-Hartree-Fock approach using continuous choice and different nucleon-nucleon potentials, with the experimental value is accomplished. The results show good agreement between the calculated values and the experimental one for the {sup 56}Ni nucleus. The sensitivity of our results to the choice of the model space is examined.

  4. Precise measurement of neutrino and anti-neutrino differential cross sections

    SciTech Connect

    Tzanov, M.; Naples, D.; Boyd, S.; McDonald, J.; Radescu, V.; Adams, T.; Alton, A.; Avvakumov, S.; deBarbaro, L.; deBarbaro, P.; Bernstein, R.H.; Bodek, A.; Bolton, T.; Brau, J.; Buchholz, D.; Budd, H.; Bugel, L.; Conrad, J.; Drucker, R.B.; Fleming, B.T.; Frey, R.; /Pittsburgh U. /Cincinnati U. /Columbia U. /Fermilab /Kansas State U. /Northwestern U. /Oregon U. /Rochester U.

    2005-09-01

    The NuTeV experiment at Fermilab has obtained a unique high statistics sample of neutrino and anti-neutrino interactions using its high-energy sign-selected beam. We present a measurement of the differential cross section for charged-current neutrino and anti-neutrino scattering from iron. Structure functions, F{sub 2}(x,Q{sup 2}) and xF{sub 3}(x,Q{sup 2}), are determined by fitting the inelasticity, y, dependence of the cross sections. This measurement has significantly improved systematic precision as a consequence of more precise understanding of hadron and muon energy scales.

  5. An SO(10) × SO(10)' model for common origin of neutrino masses, ordinary and dark matter-antimatter asymmetries

    SciTech Connect

    Gu, Pei-Hong

    2014-12-01

    We propose an SO(10) × SO(10)' model to simultaneously realize a seesaw for Dirac neutrino masses and a leptogenesis for ordinary and dark matter-antimatter asymmetries. A (16 × 1-bar 6-bar '){sub H} scalar crossing the SO(10) and SO(10)' sectors plays an essential role in this seesaw-leptogenesis scenario. As a result of lepton number conservation, the lightest dark nucleon as the dark matter particle should have a determined mass around 15 GeV to explain the comparable fractions of ordinary and dark matter in the present universe. The (16 × 1-bar 6-bar '){sub H} scalar also mediates a U(1){sub em} × U(1)'{sub em} kinetic mixing after the ordinary and dark left-right symmetry breaking so that we can expect a dark nucleon scattering in direct detection experiments and/or a dark nucleon decay in indirect detection experiments. Furthermore, we can impose a softly broken mirror symmetry to simplify the parameter choice.

  6. Probing the nucleon structure with SIDIS at Jefferson Lab

    SciTech Connect

    Pereira, Sergio Anafalos

    2013-01-01

    In recent years, measurements of azimuthal moments of polarized hadronic cross sections in hard processes have emerged as a powerful tool to probe nucleon structure. Many experiments worldwide are currently trying to pin down various effects related to nucleon structure through Semi-Inclusive Deep-Inelastic Scattering (SIDIS). Azimuthal distributions of final-state particles in semi-inclusive deep inelastic scattering, in particular, are sensitive to the orbital motion of quarks and play an important role in the study of Transverse Momentum Dependent parton distribution functions (TMDs) of quarks in the nucleon. The CLAS spectrometer, installed in Hall-B at Jefferson Lab, has collected semi-inclusive data using the CEBAF 6 GeV polarized electron beam on polarized solid NH{sub 3} and ND{sub 3} targets. An overview of these measurements is presented.

  7. Invited Parallel Talk: Forward pion-nucleon charge exchange reaction and Regge constraints

    NASA Astrophysics Data System (ADS)

    Huang, Fei; Sibirtsev, A.; Krewald, S.; Hanhart, C.; Haidenbauer, J.; Meißner, U.-G.

    2009-12-01

    We present our recent study of pion-nucleon charge exchange amplitudes above 2 GeV. We analyze the forward pion-nucleon charge exchange reaction data in a Regge model and compare the resulting amplitudes with those from the Karlsruhe-Helsinki and George-Washington-University partial-wave analyses. We explore possible high-energy constraints for theoretical baryon resonance analyses in the energy region above 2 GeV. Our results show that for the pion-nucleon charge exchange reaction, the appropriate energy region for matching meson-nucleon dynamics to diffractive scattering should be around 3 GeV for the helicity flip amplitude.

  8. Very low-energy neutrino interactions

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio

    2015-05-01

    Neutrino-nucleus reaction cross sections are now evaluated rather accurately by shell-model (SM) or SM+RPA calculations based on recent advances in nuclear structure studies. Due to these achievements, reliable constraints on super-nova neutrino temperatures as well as neutrino oscillation parameters become possible. Supernova neutrino tempeatures are constrained from abundances of elements obtained by using new ν-nucleus reaction cross sections. A possibility of constructing supernova neutrino spectrum from beta-beam measurements is pointed out. Neutrino mass hierarchy and mixing angle θ13 can be determined from abundance ratio of 7Li/11B, which is sensitive to the MSW matter oscillation effects in supernova explosions. Inverted mass hierarchy is shown to be statistically more favored based on a recent analysis of presolar grains. Effects of neutrino-neutrino interactions are also shown to play important roles in r-process nucleosynthesis. Importance and possibilities of direct measurements of ν-induced cross sections on 40Ar and 208Pb are discussed for future supernova neutrino detections. Recent calculations of the cross sections for ν-40Ar are presented. The need for new theoretical evaluations of the cross sections for ν-208Pb is pointed out. Challenges to experiments on coherent elastic scattering are presented.

  9. Very low-energy neutrino interactions

    SciTech Connect

    Suzuki, Toshio

    2015-05-15

    Neutrino-nucleus reaction cross sections are now evaluated rather accurately by shell-model (SM) or SM+RPA calculations based on recent advances in nuclear structure studies. Due to these achievements, reliable constraints on super-nova neutrino temperatures as well as neutrino oscillation parameters become possible. Supernova neutrino tempeatures are constrained from abundances of elements obtained by using new ν-nucleus reaction cross sections. A possibility of constructing supernova neutrino spectrum from beta-beam measurements is pointed out. Neutrino mass hierarchy and mixing angle θ{sub 13} can be determined from abundance ratio of {sup 7}Li/{sup 11}B, which is sensitive to the MSW matter oscillation effects in supernova explosions. Inverted mass hierarchy is shown to be statistically more favored based on a recent analysis of presolar grains. Effects of neutrino-neutrino interactions are also shown to play important roles in r-process nucleosynthesis. Importance and possibilities of direct measurements of ν-induced cross sections on {sup 40}Ar and {sup 208}Pb are discussed for future supernova neutrino detections. Recent calculations of the cross sections for ν-{sup 40}Ar are presented. The need for new theoretical evaluations of the cross sections for ν-{sup 208}Pb is pointed out. Challenges to experiments on coherent elastic scattering are presented.

  10. Four-nucleon potential due to exchange of pions

    SciTech Connect

    Robilotta, M.R.

    1985-03-01

    A four-body force due to the exchange of pions has been derived by means of It includes effects corresponding to pion-pion scattering, pion production, and pion-nucleon rescattering. The strength parameters of this four-body potential are typically one order of magnitude smaller than those of the two-pion-exchange three-body force.

  11. EXPLORING THE POLARIZATION OF GLUONS IN THE NUCLEON.

    SciTech Connect

    STRATMANN,M.; VOGELSANG,W.

    2007-10-22

    We give an overview of the current status of investigations of the polarization of gluons in the nucleon. We describe some of the physics of the spin-dependent gluon parton distribution and its phenomenology in high-energy polarized hadronic scattering. We also review the recent experimental results.

  12. Few-nucleon experiments with fast polarized neutrons

    SciTech Connect

    Klages, H.O.; Aures, R.; Brady, F.P.; Doll, P.; Finckh, E.; Hansmeyer, J.; Heeringa, W.; Hiebert, J.C.; Hofmann, K.; Krupp, H.

    1985-01-20

    At the Karlsruhe cyclotron few-nucleon systems are studied in scattering experiments of polarized fast neutrons on very light nuclei. The continuous energy distribution of the neutron beam from POLKA enables one to measure spin-dependent observables in the energy range from 15 to 50 Me simultaneously.

  13. Study of excited nucleon states at EBAC: status and plans

    SciTech Connect

    Hiroyuki Kamano

    2009-12-01

    We present an overview of a research program for the excited nucleon states in Excited Baryon Analysis Center (EBAC) at Jefferson Lab. Current status of our analysis of the meson production reactions based on the unitary dynamical coupled-channels model is summarized, and the N* pole positions extracted from the constructed scattering amplitudes are presented. Our plans for future developments are also discussed.

  14. Galactic sources of high energy neutrinos

    NASA Astrophysics Data System (ADS)

    Aharonian, Felix

    2011-12-01

    The undisputed galactic origin of cosmic rays at energies below the so-called knee implies an existence of a nonthemal population of galactic objects which effectively accelerate protons and nuclei to TeV-PeV energies. The distinct signatures of these cosmic PeVatrons are high energy neutrinos and γ-rays produced through hadronic interactions. While γ-rays can be produced also by directly accelerated electrons, high energy neutrinos provide the most straightforward and unambiguous information about the nucleonic component of accelerated particles. The planned km3-volume class high energy neutrino detectors are expected to be sensitive enough to provide the first astrophysically meaningful probes of potential VHE neutrino sources. This optimistic prediction is based on the recent discovery of high energy γ-ray sources with hard energy spectra extending to 10 TeV and beyond. Amongst the best-bet candidates are two young shell-type supernova remnants - RXJ 1713.7-4946 and RXJ 0852.0-4622, and perhaps also two prominent plerions - the Crab Nebula and Vela X. Because of strong absorption of TeV γ-rays, one may expect detectable neutrino fluxes also from (somewhat fainter) compact TeV γ-ray emitters like the binary systems LS 5039 and LS I+61 303, and, hopefully, also from hypothetical "hidden" or "orphan" neutrino sources.

  15. Electromagnetic studies of nucleon and nuclear structure

    SciTech Connect

    Heisenberg, J.H.; Calarco, J.R.; Hersman, F.W.; Dawson, J.F.

    1993-06-01

    Important objectives of the group are the study of subatomic structure through experimental measurements and the interpretation of the data through modeling. The common theme that unifies the studies of strong interactions and hadronic systems is the effort to determine the electromagnetic response as completely as possible. The general approach is coincidence detection of exclusive final states and determination of the dependence on the spin variables using polarized beams and targets and outgoing nucleon polarimetry. Direct reaction and giant resonance studies of electron quasi-elastic scattering on {sup 12}C and {sup 16}O are reported, as well as work on nuclear structure models and instrumentation development.

  16. Hyperon-Nucleon Interactions from QCD

    NASA Astrophysics Data System (ADS)

    Savage, Martin

    2012-10-01

    Low-energy neutron-Sigma- interactions determine, in part, the role of the strange quark in dense matter, such as that found in astrophysical environments. The scattering phase shifts for this system are obtained from Lattice QCD calculations, performed at a pion mass of 389 MeV in two large lattice volumes and at one lattice spacing, and are extrapolated to the physical pion mass using effective field theory. The interactions determined from QCD are consistent with those extracted from hyperon-nucleon experimental data within uncertainties.

  17. Feasibility of determining diffuse ultra-high energy cosmic neutrino flavor ratio through ARA neutrino observatory

    SciTech Connect

    Wang, Shi-Hao; Chen, Pisin; Nam, Jiwoo; Huang, Melin E-mail: pisinchen@phys.ntu.edu.tw E-mail: phmelin@snolab.ca

    2013-11-01

    The flavor composition of ultra-high energy cosmic neutrinos (UHECN) carries precious information about the physical properties of their sources, the nature of neutrino oscillations and possible exotic physics involved during the propagation. Since UHECN with different incoming directions would propagate through different amounts of matter in Earth and since different flavors of charged leptons produced in the neutrino-nucleon charged-current (CC) interaction would have different energy-loss behaviors in the medium, measurement of the angular distribution of incoming events by a neutrino observatory can in principle be employed to help determine the UHECN flavor ratio. In this paper we report on our investigation of the feasibility of such an attempt. Simulations were performed, where the detector configuration was based on the proposed Askaryan Radio Array (ARA) Observatory at the South Pole, to investigate the expected event-direction distribution for each flavor. Assuming ν{sub μ}-ν{sub τ} symmetry and invoking the standard oscillation and the neutrino decay scenarios, the probability distribution functions (PDF) of the event directions are utilized to extract the flavor ratio of cosmogenic neutrinos on Earth. The simulation results are summarized in terms of the probability of flavor ratio extraction and resolution as functions of the number of observed events and the angular resolution of neutrino directions. We show that it is feasible to constrain the UHECN flavor ratio using the proposed ARA Observatory.

  18. Report on solar-neutrino experiments

    SciTech Connect

    Davis, R. Jr.

    1982-01-01

    This report on solar neutrino experiments will include a summary of the results of the chlorine detector, and an account of our plans to build a gallium solar neutrino experiment. In addition to discussing the experimental side of the solar neutrino problem I would like to relate our experiences during the last 15 years in working in the Homestake Gold Mine. In the course of our work at Homestake a number of independent groups have asked to use our facilities and, because of the cooperative and helpful attitude of the Mine management, these experimentalists could be easily accommodated. A brief account of these experiences may be useful for the main business of this workshop, building large particle detectors for observing nucleon decay, and the related question of the need for a national underground physics facility.

  19. Neutrino Oscillations and the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wark, David

    2001-04-01

    When the existence of the neutrino was almost apologetically first proposed by Wolfgang Pauli it was intended to explain the mysterious apparent absence of energy and momentum in beta decay. 70 years later the neutrino has indeed solved that mystery, but it has generated still more of its own. Are neutrinos massive? Is it possible to create a neutrino with its spin in the same direction as its momentum? What fraction of the mass of the Universe is made up of neutrinos? Are the flavour labels which we put on neutrinos, like electron and muon, really fixed or can they change? Why does no experiment see the predicted flux of neutrinos from the Sun? Why do there appear to be roughly equal numbers of muon and electron neutrinos created in our atmosphere, rather than the 2:1 ratio we would expect? Many of these questions were coupled when Bruno Pontecorvo first suggested that the shortfall in solar neutrino measurements were caused by neutrino oscillations - neutrinos spontaneously changing flavour as they travel from the Sun. 30 years later we still await definitive proof of that conjecture, and providing that proof is the reason for the Sudbury Neutrino Observatory. The talk will discuss the current state of neutrino oscillations studies, and show how the unique capabilities of the Sudbury Neutrino Observatory can provide definitive proof of whether neutrino oscillations are the long-sought answer to the solar neutrino problem.

  20. Nucleon-decay-like signatures of hylogenesis

    NASA Astrophysics Data System (ADS)

    Demidov, S. V.; Gorbunov, D. S.

    2016-02-01

    We consider nucleon-decay-like signatures of hylogenesis, a variant of the antibaryonic dark matter model. For the interaction between visible and dark matter sectors through the neutron portal, we calculate the rates of dark matter scatterings off a neutron which mimic neutron-decay processes n →ν γ and n →ν e+e- with richer kinematics. We obtain bounds on the model parameters from nonobservation of the neutron decays by applying the kinematical cuts adopted in the experimental analyses. The bounds are generally (much) weaker than those coming from the recently performed study of events with a single jet of high transverse momentum and missing energy observed at the LHC. Then we suggest several new nucleon-decay-like processes with two mesons in the final state and estimate (accounting for the LHC constraints) the lower limits on the nucleon lifetime with respect to these channels. The obtained values appear to be promising for probing the antibaryonic dark matter at future underground experiments like HyperK and DUNE.

  1. Electromagnetic interactions of extended nucleons

    SciTech Connect

    Ohta, K. )

    1989-09-01

    An electromagnetic current operator is deduced from the most general form of the extended pion-nucleon vertex function using the minimal substitution prescription. It is proved that the sum of the obtained current operator and the isolated-pole contribution satisfies the Ward-Takahashi identity derived for the pion photoproduction. The minimal-coupling interaction is applied to the calculation of the one-pion exchange current regularized by the pion-nucleon form factors. It is found that the one-pion exchange current operator including hadronic and electromagnetic form factors satisfies the Ward-Takahashi equation for the nucleon-nucleon interaction.

  2. Neutrino masses, neutrino oscillations, and cosmological implications

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1982-01-01

    Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.

  3. Solar neutrino physics with low-threshold dark matter detectors

    NASA Astrophysics Data System (ADS)

    Billard, J.; Strigari, L. E.; Figueroa-Feliciano, E.

    2015-05-01

    Dark matter detectors will soon be sensitive to Solar neutrinos via two distinct channels: coherent neutrino-nucleus and neutrino-electron elastic scatterings. We establish an analysis method for extracting Solar model properties and neutrino properties from these measurements, including the possible effects of sterile neutrinos which have been hinted at by some reactor experiments and cosmological measurements. Even including sterile neutrinos, through the coherent scattering channel, a 1 ton-year exposure with a low-threshold background free Germanium detector could improve on the current measurement of the normalization of the B 8 Solar neutrino flux down to 3% or less. Combining with the neutrino-electron elastic scattering data will provide constraints on both the high- and low-energy survival probability and will improve on the uncertainty on the active-to-sterile mixing angle by a factor of 2. This sensitivity to active-to-sterile transitions is competitive and complementary to forthcoming dedicated short baseline sterile neutrino searches with nuclear decays. Finally, we show that such solar neutrino physics potentials can be reached as long as the signal-to-noise ratio is better than 0.1.

  4. The two-nucleon system at next-to-next-to-next-to-leading order

    SciTech Connect

    Evgeny Epelbaum; Walter Gloeckle; Ulf-G. Meissner

    2005-01-01

    We consider the two-nucleon system at next-to-next-to-next-to-leading order (N{sup 3}LO) in chiral effective field theory. The two--nucleon potential at N{sup 3}LO consists of one-, two- and three-pion exchanges and a set of contact interactions with zero, two and four derivatives. In addition, one has to take into account various isospin--breaking and relativistic corrections. We employ spectral function regularization for the multi--pion exchanges. Within this framework, it is shown that the three-pion exchange contribution is negligibly small. The low--energy constants (LECs) related to pion-nucleon vertices are taken consistently from studies of pion-nucleon scattering in chiral perturbation theory. The total of 26 four--nucleon LECs has been determined by a combined fit to some np and pp phase shifts from the Nijmegen analysis together with the nn scattering length.

  5. Intra Nucleon Cascade Program

    1998-08-18

    The package consists of three programs ISABEL, EVA, and PACE-2. ISABEL and PACE-2 are part of the LAHET code. ISABEL is an intra-nucleon cascade program. The output cascades are used as directly as input files to the two evaporation programs EVA and PACE-2. EVA ignores the effect of the angular momentum of the excited nuclei on the deexcitation and also ignores the possibility of gamma emission as long as particle emission is energetically allowed. PACE-2more » takes full account of angular momentum effects including irast levels and gamma emission at all stages of the evaporation chain.« less

  6. Future Long-Baseline Neutrino Oscillations: View from North America

    SciTech Connect

    Wilson, R. J.

    2015-06-01

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE), that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  7. Future long-baseline neutrino oscillations: View from North America

    SciTech Connect

    Wilson, Robert J.

    2015-07-15

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE) that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  8. Extension of the minimal three-nucleon model to the unphysical sheet of energy

    SciTech Connect

    Frederico, T.; Goldman, I.D.; Delfino, A.

    1988-02-01

    In the framework of the three-nucleon zero-range theory, we have calculated the correlation between the energy of the virtual state of the triton and the doublet neutron-deuteron scattering length. Our results show that the Girard-Fuda plot for the energy of the virtual state as a function of the doublet n-d scattering length is reproduced by this model. We also observe that the plot remains essentially unchanged when the nucleon-nucleon singlet input is varied.

  9. The nucleon spin structure at short distance

    NASA Astrophysics Data System (ADS)

    Seidl, Ralf

    2008-10-01

    The spin structure of the nucleon has been the basis of several surprises in the past. After the EMC experiment showed that the quark spin contribution to the nucleon spin was small, several experiments were performed to further investigate this ``spin crisis.'' Deep inelastic scattering (DIS) experiments at CERN, SLAC, and DESY successfully confirmed the low quark spin contribution to the nucleon. Using semi-inclusive DIS, SMC, HERMES and COMPASS were also able to obtain flavor separated quark polarizations. DIS experiments are only sensitive to gluon polarization at NLO via the QCD evolution of the structure function g1, or through di-jet/hadron production in photon-gluon fusion processes. Proton-proton collisions are sensitive to the gluon polarization at leading order. The RHIC experiments PHENIX and STAR have measured inclusive pion and jet asymmetries which exclude huge gluon polarizations but a substantial contribution to the spin of the nucleon is still possible. Another aspect of spin measurements are transverse spin phenomena. Once deemed to be vanishing in perturbative QCD recent nonzero transverse single spin asymmetries observed at RHIC and HERMES could be explained in the framework of transverse momentum dependent (TMD) distribution and fragmentation functions. One is the so-called Sivers function which requires a nonzero parton orbital angular momentum. Early global analysises were able to combine the data obtained at RHIC, COMPASS and HERMES. Another TMD function is the Collins fragmentation function, first measured at BELLE, which serves as a transverse spin analyzer to extract the quark transverse spin distribution from the SIDIS experiments. Also here a first global analysis of SIDIS and BELLE data has been successfully performed. An overview on recent spin related measurements at short distance, performed at PHENIX, STAR, BRAHMS, HERMES, COMPASS and Belle will be given.

  10. Soudan nucleon decay program

    SciTech Connect

    Ayres, D.S.

    1981-01-01

    The Soudan nucleon decay program is being carried out in the Soudan iron mine in northeastern Minnesota, at a depth of 2000 m of water equivalent. A 30-ton prototype experiment, Soudan 1, has been built and is now being operated by a University of Minnesota - Argonne National Laboratory collaboration. The detector is a block of iron-loaded concrete instrumented with 3456 gas proportional tubes. It can detect nucleon decay at the 2 x 10/sup 30/ year level, and will measure cosmic-ray induced backgrounds. Soudan 1 is also obtaining data on very high energy cosmic-ray interactions. Monte-Carlo predictions of performance have been checked by calibration of a detector module in a charged-particle test beam. A proposal to build a 1000-ton experiment, Soudan 2, has been submitted to funding agencies in the USA and the UK by a Minnesota - Argonne - Oxford University collaboration. The proposed detector utilizes drift chambers with 50-cm drifts to obtain very fine-grained ionization and tracking information at low cost. This tracking-calorimeter detector has a fiducial mass of 650 tons, and could be operating in 1985. A drifting scheme utilizing 50 cm x 5 m x 1 cm planar chambers has been shown feasible, and prototypes of alternate drifting structures are also being studied. A plan to provide expandability to an eventual 5000 tons has been developed.

  11. Single-nucleon experiments

    SciTech Connect

    Deur, Alexandre

    2009-12-01

    We discuss the Jefferson Lab low momentum transfer data on moments of the nucleon spin structure functions $g_1$ and $g_2$ and on single charged pion electroproduction off polarized proton and polarized neutron. A wealth of data is now available, while more is being analyzed or expected to be taken in the upcoming years. Given the low momentum transfer selected by the experiments, these data can be compared to calculations from Chiral Perturbation theory, the effective theory of strong force that should describe it at low momentum transfer. The data on various moments and the respective calculations do not consistently agree. In particular, experimental data for higher moments disagree with the calculations.The absence of contribution from the $\\Delta$ resonance in the various observables was expected to facilitate the calculations and hence make the theory predictions either more robust or valid over a larger $Q^2$ range. Such expectation is verified only for the Bjorken sum, but not for other observables in which the $\\Delta$ is suppressed. Preliminary results on pion electroproduction off polarized nucleons are also presented and compared to phenomenological models for which contributions from different resonances are varied. Chiral Perturbation calculations of these observables, while not yet available, would be valuable and, together with these data, would provide an extensive test of the effective theory.

  12. Nucleon Resonance Physics

    NASA Astrophysics Data System (ADS)

    Burkert, Volker D.

    2016-10-01

    Recent results of meson photo-production at the existing electron machines with polarized real photon beams and the measurement of polarization observables of the final state baryons have provided high precision data that led to the discovery of new excited nucleon and Δ states using multi-channel partial wave analyses procedures. The internal structure of several prominent excited states has been revealed employing meson electroproduction processes. On the theoretical front, lattice QCD is now predicting the baryon spectrum with very similar characteristics as the constituent quark model, and continuum QCD, such as is represented in the Dyson-Schwinger equations approach and in light front relativistic quark models, describes the non-perturbative behavior of resonance excitations at photon virtuality of Q^2 > 1.5 GeV^2. In this talk I discuss the need to continue a vigorous program of nucleon spectroscopy and the study of the internal structure of excited states as a way to reveal the effective degrees of freedom underlying the excited states and their dependence on the distance scale probed.

  13. Scattering calculations and confining interactions

    NASA Technical Reports Server (NTRS)

    Buck, Warren W.; Maung, Khin M.

    1993-01-01

    Most of the research work performed under this grant were concerned with strong interaction processes ranging from kaon-nucleon interaction to proton-nucleus scattering calculations. Research performed under this grant can be categorized into three groups: (1) parametrization of fundamental interactions, (2) development of formal theory, and (3) calculations based upon the first two. Parametrizations of certain fundamental interactions, such as kaon-nucleon interaction, for example, were necessary because kaon-nucleon scattering amplitude was needed to perform kaon-nucleus scattering calculations. It was possible to calculate kaon-nucleon amplitudes from the first principle, but it was unnecessary for the purpose of the project. Similar work was also done for example for anti-protons and anti-nuclei. Formal developments to some extent were also pursued so that consistent calculations can be done.

  14. Hermes results on 3D imaging of the nucleon

    NASA Astrophysics Data System (ADS)

    Pappalardo, Luciano L.

    2016-05-01

    The study of the quantum phase-space distribution of quarks and gluons inside nucleons in terms of TMDs and GPDs has become, in the last decade, a cutting-edge research field in hadron physics. These non-perturbative objects, respectively measurable in semi-inclusive deep-inelastic scattering and exclusive processes, allow to obtain 3-dimensional representations of the nucleon in the momentum and spatial coordinates as well as indirect insights into the still unknown parton orbital angular momentum. The HERMES experiment at HERA has been a precursor in this field. A selection of HERMES results sensitive to both TMDs and GPDs is presented.

  15. Nucleon and Deuteron Form Factors from BLAST

    SciTech Connect

    Hasell, D. K.

    2009-12-17

    The BLAST experiment was designed to study in a systematic manner the spin-dependent, electromagnetic interaction on hydrogen and deuterium. Measuring only asymmetries in electron scattering with respect to the beam helicity, target spin, or both; the BLAST experiment was able to extract information on nucleon and deuteron form factors independent of beam intensity or target density. By further forming 'super-ratios' of asymmetries, measurements were possible independent of beam and target polarization thus reducing uncertainties due to these quantities as well. Some of the form factor results from BLAST will be briefly presented here. Also, in response to observed discrepancies between polarization measurements and those obtained using traditional Rosenbluth separation techniques a proposed experiment, OLYMPUS, which will use the BLAST detector to measure the two photon contribution to elastic electron scattering will also be presented.

  16. Neutrino refraction by the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Díaz, J. S.; Klinkhamer, F. R.

    2016-03-01

    We have determined the dispersion relation of a neutrino test particle propagating in the cosmic neutrino background. Describing the relic neutrinos and antineutrinos from the hot big bang as a dense medium, a matter potential or refractive index is obtained. The vacuum neutrino mixing angles are unchanged, but the energy of each mass state is modified. Using a matrix in the space of neutrino species, the induced potential is decomposed into a part which produces signatures in beta-decay experiments and another part which modifies neutrino oscillations. The low temperature of the relic neutrinos makes a direct detection extremely challenging. From a different point of view, the identified refractive effects of the cosmic neutrino background constitute an ultralow background for future experimental studies of nonvanishing Lorentz violation in the neutrino sector.

  17. Three pion nucleon coupling constants

    NASA Astrophysics Data System (ADS)

    Ruiz Arriola, E.; Amaro, J. E.; Navarro Pérez, R.

    2016-08-01

    There exist four pion nucleon coupling constants, fπ0pp, - fπ0nn, fπ+pn/2 and fπ-np/2 which coincide when up and down quark masses are identical and the electron charge is zero. While there is no reason why the pion-nucleon-nucleon coupling constants should be identical in the real world, one expects that the small differences might be pinned down from a sufficiently large number of independent and mutually consistent data. Our discussion provides a rationale for our recent determination fp2 = 0.0759(4),f 02 = 0.079(1),f c2 = 0.0763(6), based on a partial wave analysis of the 3σ self-consistent nucleon-nucleon Granada-2013 database comprising 6713 published data in the period 1950-2013.

  18. Three pion nucleon coupling constants

    NASA Astrophysics Data System (ADS)

    Ruiz Arriola, E.; Amaro, J. E.; Navarro Pérez, R.

    2016-08-01

    There exist four pion nucleon coupling constants, fπ0pp, ‑ fπ0nn, fπ+pn/2 and fπ‑np/2 which coincide when up and down quark masses are identical and the electron charge is zero. While there is no reason why the pion-nucleon-nucleon coupling constants should be identical in the real world, one expects that the small differences might be pinned down from a sufficiently large number of independent and mutually consistent data. Our discussion provides a rationale for our recent determination fp2 = 0.0759(4),f 02 = 0.079(1),f c2 = 0.0763(6), based on a partial wave analysis of the 3σ self-consistent nucleon-nucleon Granada-2013 database comprising 6713 published data in the period 1950-2013.

  19. Gravitational form factors and nucleon spin structure

    NASA Astrophysics Data System (ADS)

    Teryaev, O. V.

    2016-10-01

    Nucleon scattering by the classical gravitational field is described by the gravitational (energy-momentum tensor) form factors (GFFs), which also control the partition of nucleon spin between the total angular momenta of quarks and gluons. The equivalence principle (EP) for spin dynamics results in the identically zero anomalous gravitomagnetic moment, which is the straightforward analog of its electromagnetic counterpart. The extended EP (ExEP) describes its (approximate) validity separately for quarks and gluons and, in turn, results in equal partition of the momentum and total angular momentum. It is violated in quantum electrodynamics and perturbative quantum chromodynamics (QCD), but may be restored in nonperturbative QCD because of confinement and spontaneous chiral symmetry breaking, which is supported by models and lattice QCD calculations. It may, in principle, be checked by extracting the generalized parton distributions from hard exclusive processes. The EP for spin-1 hadrons is also manifested in inclusive processes (deep inelastic scattering and the Drell-Yan process) in sum rules for tensor structure functions and parton distributions. The ExEP may originate in either gravity-proof confinement or in the closeness of the GFF to its asymptotic values in relation to the mediocrity principle. The GFFs in time-like regions reveal some similarity between inflation and annihilation.

  20. Some measurements for determining strangeness matrix elements in the nucleon

    SciTech Connect

    Henley, E.M.; Pollock, S.J.; Ying, S.; Frederico, T.; Krein,; Williams, A.G.

    1991-12-31

    Some experiments to measure strangeness matrix elements of the proton are proposed. Two of these suggestions are described in some detail, namely electro-production of phi mesons and the difference between neutrino and antineutrino scattering for isospin zero targets such as deuterium.

  1. Some measurements for determining strangeness matrix elements in the nucleon

    SciTech Connect

    Henley, E.M.; Pollock, S.J.; Ying, S. ); Frederico, T. , Sao Jose dos Campos, SP . Inst. de Estudos Avancados); Krein, . Inst. de Fisica Teorica); Williams, A.G. )

    1991-01-01

    Some experiments to measure strangeness matrix elements of the proton are proposed. Two of these suggestions are described in some detail, namely electro-production of phi mesons and the difference between neutrino and antineutrino scattering for isospin zero targets such as deuterium.

  2. Why Are Neutrinos Light? -- An Alternative

    SciTech Connect

    Hall, Lawrence J.; Oliver, Steven J.

    2004-09-23

    We review the recent proposal that neutrinos are light because their masses are proportional to a low scale, f, of lepton flavor symmetry breaking. This mechanism is testable because the resulting pseudo-Goldstone bosons, of mass m_G, couple strongly with the neutrinos, affecting the acoustic oscillations during the eV era of the early universe that generate the peaks in the CMB radiation. Characteristic signals result over a very wide range of (f, m_G) because of a change in the total relativistic energy density and because the neutrinos scatter rather than free-stream. Thermodynamics allows a precise calculation of the signal, so that observations would not only confirm the late-time neutrino mass mechanism, but could also determine whether the neutrino spectrum is degenerate, inverted or hierarchical and whether the neutrinos are Dirac or Majorana. The flavor symmetries could also give light sterile states. If the masses of the sterile neutrinos turn on after the MeV era, the LSND oscillations can be explained without upsetting big bang nucleosynthesis, and, since the sterile states decay to lighter neutrinos and pseudo-Goldstones, without giving too much hot dark matter.

  3. Low energy neutrinos in Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Sekiya, Hiroyuki

    2016-05-01

    Super-Kamiokande (SK), a 50 kton water Cherenkov detector, observes 8B solar neutrinos via neutrino-electron elastic scattering. The analysis threshold was successfully lowered to 3.5 MeV (recoil electron kinetic energy) in SK-IV. To date SK has observed solar neutrinos for 18 years. An analysis regarding possible correlations between the solar neutrino flux and the 11 year solar activity cycle is shown. With large statistics, SK searches for distortions of the solar neutrino energy spectrum caused by the MSW resonance in the core of the sun. SK also searches for a day/night solar neutrino flux asymmetry induced by the matter in the Earth. The Super-Kamiokande Gd (SK-Gd) project is the upgrade of the SK detector via the addition of water-soluble gadolinium (Gd) salt. This modification will enable it to efficiently identify low energy anti-neutrinos. SK-Gd will pursue low energy physics currently inaccessible to SK due to backgrounds. The most important will be the world’s first observation of the diffuse supernova neutrino background. The main R&D program towards SK-Gd is EG ADS: a 200 ton, fully instrumented tank built in a new cavern in the Kamioka mine.

  4. The nuclear response of molybdenum to supernova neutrinos

    SciTech Connect

    Ydrefors, E.; Suhonen, J.

    2011-12-16

    Neutrino-nucleus interactions play a prominent role in many astrophysical applications. Knowledge about nuclear responses to neutrinos is therefore of paramount importance. We present cross sections for neutral-current neutrino-nucleus scattering off the stable (A = 92,94,95,96,97,98,100) molybdenum isotopes. The nuclear responses for these nuclei are additionally computed by folding the computed cross sections with a Fermi-Dirac distribution.

  5. Nucleon Electromagnetic Form Factors

    SciTech Connect

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  6. Strangeness in Nucleon

    SciTech Connect

    Benaoum, Hachemi

    2008-04-01

    Results of the parity violating asymmetry APV for longitudinally polarized 3 GeV electrons from both hydrogen and helium cryogenic targets, at small scatteting angle thetalab~6 ° are presented. The asymmetry for hydrogen is a function of a linear combination of GEs and GMs, the strange quark contributions to the electric and magnetic form factors of the nucleon respectively, and that for 4He is a function solely of GEs. The combination of the two results therefore allows GEs and GMs to be separately determined.

  7. Neutrinos: Theory and Phenomenology

    SciTech Connect

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  8. Neutron Measurements and the Weak Nucleon-Nucleon Interaction

    PubMed Central

    Snow, W. M.

    2005-01-01

    The weak interaction between nucleons remains one of the most poorly-understood sectors of the Standard Model. A quantitative description of this interaction is needed to understand weak interaction phenomena in atomic, nuclear, and hadronic systems. This paper summarizes briefly what is known about the weak nucleon-nucleon interaction, tries to place this phenomenon in the context of other studies of the weak and strong interactions, and outlines a set of measurements involving low energy neutrons which can lead to significant experimental progress. PMID:27308120

  9. A Study of Charged Current Single Charged Pion Productions on Carbon in a Few-GeV Neutrino Beam

    SciTech Connect

    Hiraide, Katsuki

    2009-01-01

    Understanding single charged pion production via neutrino-nucleus charged current interaction in the neutrino energy region of a few GeV is essential for future neutrino oscillation experiments since this process is a dominant background for vμ → vx oscillation measurements. There are two contributions to this process: single pion production via baryonic resonance (vμN → μ-+) and coherent pion production interacting with the entire nucleus (vμA → μ-+), where N is nucleon in the nucleus and A is the nucleus. The purpose of the study presented in this thesis is a precise measurement of charged current single charged pion productions, resonant and coherent pion productions, with a good final state separation in the neutrino energy region of a few GeV. In this thesis, we focus on the study of charged current coherent pion production from muon neutrinos scattering on carbon, vμ 12C → μ-12+, in the SciBooNE experiment. This is motivated by the fact that without measuring this component first, the precise determination of resonant pion production cross section can not be achieved since the contribution of coherent pion production in the region of small muon scattering angle is not small. Furthermore, the coherent process is particularly interesting because it is deeply rooted in fundamental physics via Adler's partially conserved axial-vector current theorem. We took data from June 2007 until August 2008, in both the neutrino and antineutrino beam. In total, 2.52 x 1020 protons on target were collected. We have performed a search for charged current coherent pion production by using SciBooNE's full neutrino data set, corresponding to 0.99 x 1020 protons on target. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio of charged

  10. Finite volume effects for nucleon and heavy meson masses

    SciTech Connect

    Colangelo, Gilberto; Fuhrer, Andreas; Lanz, Stefan

    2010-08-01

    We apply the resummed version of the Luescher formula to analyze finite volume corrections to the mass of the nucleon and of heavy mesons. We show that by applying the subthreshold expansion of the scattering amplitudes one can express the finite volume corrections in terms of only a few physical observables and the size of the box. In the case of the nucleon, the available information about the quark mass dependence of these physical quantities is discussed and used to assess the finite volume corrections to the nucleon mass as a function of the quark mass including a detailed analysis of the remaining uncertainties. For heavy mesons, the Luescher formula is derived both fully relativistically and in a nonrelativistic approximation and a first attempt at a numerical analysis is made.

  11. High Energy Atmospheric Neutrino Fluxes From a Realistic Primary Spectrum

    NASA Astrophysics Data System (ADS)

    Campos Penha, Felipe; Dembinski, Hans; Gaisser, Thomas K.; Tilav, Serap

    2016-03-01

    Atmospheric neutrino fluxes depend on the energy spectrum of primary nucleons entering the top of the atmosphere. Before the advent of AMANDA and the IceCube Neutrino Observatory, measurements of the neutrino fluxes were generally below ~ 1TeV , a regime in which a simple energy power law sufficed to describe the primary spectrum. Now, IceCube's muon neutrino data extends beyond 1PeV , including a combination of neutrinos from astrophysical sources with background from atmospheric neutrinos. At such high energies, the steepening at the knee of the primary spectrum must be accounted for. Here, we describe a semi-analytical approach for calculating the atmospheric differential neutrino fluxes at high energies. The input is a realistic primary spectrum consisting of 4 populations with distinct energy cutoffs, each with up to 7 representative nuclei, where the parameters were extracted from a global fit. We show the effect of each component on the atmospheric neutrino spectra, above 10TeV . The resulting features follow directly from recent air shower measurements included in the fit. Felipe Campos Penha gratefully acknowledges financial support from CAPES (Processo BEX 5348/14-5), CNPq (Processo 142180/2012-2), and the Bartol Research Institute.

  12. Measuring neutrino-nucleus interactions with MINERνA

    SciTech Connect

    Rodrigues, P. A.

    2015-07-15

    We present results from the MINERνA experiment for neutrino-nucleus scattering in the few-GeV energy region. These measurements cover a range of processes that must be modeled correctly in neutrino oscillation experiments, and in which recent results from other experiments have suggested deficiencies in the models currently used.

  13. The Intermediate Neutrino Program

    SciTech Connect

    Adams, C.; et al.

    2015-03-23

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  14. Microscopic optical potentials for He4 scattering

    NASA Astrophysics Data System (ADS)

    Egashira, Kei; Minomo, Kosho; Toyokawa, Masakazu; Matsumoto, Takuma; Yahiro, Masanobu

    2014-06-01

    We present a reliable double-folding (DF) model for He4-nucleus scattering, using the Melbourne g-matrix nucleon-nucleon interaction that explains nucleon-nucleus scattering with no adjustable parameter. In the DF model, only the target density is taken as the local density in the Melbourne g matrix. For He4 elastic scattering from Ni58 and Pb208 targets in a wide range of incident energies from 20 to 200 MeV/nucleon, the DF model with the target-density approximation (TDA) yields much better agreement with the experimental data than the usual DF model with the frozen-density approximation in which the sum of projectile and target densities is taken as the local density. We also discuss the relation between the DF model with the TDA and the conventional folding model in which the nucleon-nucleus potential is folded with the He4 density.

  15. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies

    SciTech Connect

    Not Available

    1990-10-01

    This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988--91. Most of these studies have involved investigations of neutron-proton and pion-nucleus interactions. The neutron-proton research is part of a program of studies of interactions between polarized nucleons that we have been involved with for more than ten years. Its purpose has been to help complete the determination of the full set of ten complex nucleon-nucleon amplitudes at energies up to 800 MeV, as well as to continue investigating the possibility of the existence of dibaryon resonances. The give complex isospin-one amplitudes have been fairly well determined, partly as a result of this work. Our work in this period has involved measurements and analysis of data on elastic scattering and total cross sections for polarized neutrons on polarized protons. The pion-nucleus research continues our studies of this interaction in regions where it has not been well explored. One set of experiments includes studies of pion elastic and double-charge-exchange scattering at energies between 300 and 550 MeV, where our data is unique. Another involves elastic and single-charge-exchange scattering of pions from polarized nuclear targets, a new field of research which will give the first extensive set of information on spin-dependent pion-nucleus amplitudes. Still another involves the first set of detailed studies of the kinematic correlations among particles emitted following pion absorption in nuclei.

  16. Neutrino decay and solar neutrino seasonal effect

    NASA Astrophysics Data System (ADS)

    Picoreti, R.; Guzzo, M. M.; de Holanda, P. C.; Peres, O. L. G.

    2016-10-01

    We consider the possibility of solar neutrino decay as a sub-leading effect on their propagation between production and detection. Using current oscillation data, we set a new lower bound to the ν2 neutrino lifetime at τ2 /m2 ≥ 7.2 ×10-4s .eV-1 at 99% C.L. Also, we show how seasonal variations in the solar neutrino data can give interesting additional information about neutrino lifetime.

  17. Kaon-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Hong, Byungsik; Maung, Khin Maung; Wilson, John W.; Buck, Warren W.

    1989-01-01

    The derivations of the Lippmann-Schwinger equation and Watson multiple scattering are given. A simple optical potential is found to be the first term of that series. The number density distribution models of the nucleus, harmonic well, and Woods-Saxon are used without t-matrix taken from the scattering experiments. The parameterized two-body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to the imaginary part of the forward elastic scattering amplitude, are presented. The eikonal approximation was chosen as our solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.

  18. Overview of the nucleon spin studies at COMPASS

    NASA Astrophysics Data System (ADS)

    Franco, Celso

    2014-04-01

    The COMPASS experiment [1] at CERN is one of the leading experiments studying the spin structure of the nucleon. These studies are being carried on since 2002, by measuring hadrons produced in deep inelastic scattering (DIS) of 160 GeV/c polarised muons off different polarised targets (NH3 for polarised protons and 6LiD for polarised deuterons). One of the main goals is to determine how the total longitudinal spin projection of the nucleon, 1/2, is distributed among its constituents, quarks and gluons. We review here the recent results on the quark and gluon helicities obtained by COMPASS, using a longitudinally polarised target. However, the understanding of the nucleon (spin) structure based only on the parton helicities is not in any way complete. It basically provides us with a one-dimensional picture in a longitudinal momentum space. Therefore, COMPASS also studies the transverse momentum dependent parton distributions (TMDs) with a transversely polarised target. Concerning the TMDs, the latest results on the Collins and Sivers asymmetries will be shown. The former is sensitive to the transverse spin structure of the nucleon, while the latter reflects the correlations between the quarks transverse momentum and the nucleon spin.

  19. Nucleon structure and the high energy interactions

    NASA Astrophysics Data System (ADS)

    Selyugin, O. V.

    2015-06-01

    On the basis of the representation of the generalized structure of nucleons a new model of the hadron interaction at high energies is presented. A new t dependence of the generalized parton distributions is obtained from the comparative analysis of different sets of the parton distribution functions, based on the description of the entire set of experimental data for the electromagnetic form factors of the proton and neutron. Taking into account the different moments of the generalized parton distributions of the hadron, quantitative descriptions of all existing experimental data of the proton-proton and proton-antiproton elastic scatterings from √{s }=9.8 GeV to 8 TeV, including the Coulomb range and large momentum transfers up to -t =15 GeV2 , are obtained with a few free high-energy fitting parameters. The real part of the hadronic elastic scattering amplitude is determined only through the complex s that satisfies the dispersion relations. The negligible contributions of the hard Pomeron and the presence of the non-small contributions of the maximal Odderon are obtained. The non-dying form of the spin-flip amplitude is examined as well. The structures of the Born term and unitarized scattering amplitude are analyzed. It is shown that the black disk limit for the elastic scattering amplitude is not reached at LHC energies. Predictions for LHC energies are made.

  20. Symmetry energy of cold nucleonic matter within a relativistic mean field model encapsulating effects of high-momentum nucleons induced by short-range correlations

    NASA Astrophysics Data System (ADS)

    Cai, Bao-Jun; Li, Bao-An

    2016-01-01

    It is well known that short-range nucleon-nucleon correlations (SRC) from the tensor components and/or the repulsive core of nuclear forces lead to a high- (low-)momentum tail (depletion) in the single-nucleon momentum distribution above (below) the nucleon Fermi surface in cold nucleonic matter. Significant progress was made recently in constraining the isospin-dependent parameters characterizing the SRC-modified single-nucleon momentum distribution in neutron-rich nucleonic matter using both experimental data and microscopic model calculations. Using the constrained single-nucleon momentum distribution in a nonlinear relativistic mean field (RMF) model, we study the equation of state (EOS) of asymmetric nucleonic matter (ANM), especially the density dependence of nuclear symmetry energy Esym(ρ ) . First, as a test of the model, the average nucleon kinetic energy extracted recently from electron-nucleus scattering experiments using a neutron-proton dominance model is well reproduced by the RMF model incorporating effects of the SRC-induced high-momentum nucleons, while it is significantly under predicted by the RMF model using a step function for the single-nucleon momentum distribution as in free Fermi gas (FFG) models. Second, consistent with earlier findings within nonrelativistic models, the kinetic symmetry energy of quasinucleons is found to be Esymkin(ρ0) =-16.94 ±13.66 MeV which is dramatically different from the prediction of Esymkin(ρ0) ≈12.5 MeV by FFG models at nuclear matter saturation density ρ0=0.16 fm-3 . Third, comparing the RMF calculations with and without the high-momentum nucleons using two sets of model parameters both reproducing identically all empirical constraints on the EOS of symmetric nuclear matter (SNM) and the symmetry energy of ANM at ρ0, the SRC-modified single-nucleon momentum distribution is found to make the Esym(ρ ) more concave around ρ0 by softening it significantly at both subsaturation and suprasaturation

  1. Ultrahigh energy tau neutrino flux regeneration while skimming the Earth

    SciTech Connect

    Bigas, Oscar Blanch

    2008-09-15

    The detection of Earth-skimming tau neutrinos has turned into a very promising strategy for the observation of ultra-high-energy cosmic neutrinos. The sensitivity of this channel crucially depends on the parameters of the propagation of the tau neutrinos through the terrestrial crust, which governs the flux of emerging tau leptons that can be detected. One of the characteristics of this propagation is the possibility of regeneration through multiple {nu}{sub {tau}}{r_reversible}{tau} conversions, which are often neglected in the standard picture. In this paper, we solve the transport equations governing the {nu}{sub {tau}} propagation and compare the flux of emerging tau leptons obtained allowing regeneration or not. We discuss the validity of the approximation of neglecting the {nu}{sub {tau}} regeneration using different scenarios for the neutrino-nucleon cross sections and the tau energy losses.

  2. One-pion production in neutrino-nucleus collisions

    SciTech Connect

    Hernández, E.; Nieves, J.; Vicente-Vacas, J. M.

    2015-05-15

    We use our model for neutrino pion production on the nucleon to study pion production on a nucleus. The model is conveniently modified to include in-medium corrections and its validity is extended up to 2 GeV neutrino energies by the inclusion of new resonant contributions in the production process. Our results are compared with recent MiniBooNE data measured in mineral oil. Our total cross sections are below data for neutrino energies above ≈ 1 GeV. As with other theoretical calculations, the agreement with data improves if we neglect pion final state interaction. This is also the case for differential cross sections convoluted over the neutrino flux.

  3. Neutrino probes of the nature of light dark matter

    SciTech Connect

    Agarwalla, Sanjib Kumar; Mena, Olga; Blennow, Mattias; Martinez, Enrique Fernandez E-mail: blennow@mppmu.mpg.de E-mail: omena@ific.uv.es

    2011-09-01

    Dark matter particles gravitationally trapped inside the Sun may annihilate into Standard Model particles, producing a flux of neutrinos. The prospects of detecting these neutrinos in future multi-kt neutrino detectors designed for other physics searches are explored here. We study the capabilities of a 34/100 kt liquid argon detector and a 100 kt magnetized iron calorimeter detector. These detectors are expected to determine the energy and the direction of the incoming neutrino with unprecedented precision allowing for tests of the dark matter nature at very low dark matter masses, in the range of 10–25 GeV. By suppressing the atmospheric background with angular cuts, these techniques would be sensitive to dark matter-nucleon spin-dependent cross sections at the fb level, reaching down to a few ab for the most favorable annihilation channels and detector technology.

  4. A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE. II. RELATIVISTIC EXPLOSION MODELS OF CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Mueller, Bernhard; Janka, Hans-Thomas; Marek, Andreas E-mail: thj@mpa-garching.mpg.de

    2012-09-01

    We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the COCONUT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the space-time metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 M{sub Sun} progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared with Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong nonradial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models, the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50%-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.

  5. A New Multi-dimensional General Relativistic Neutrino Hydrodynamics Code for Core-collapse Supernovae. II. Relativistic Explosion Models of Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Müller, Bernhard; Janka, Hans-Thomas; Marek, Andreas

    2012-09-01

    We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the COCONUT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the space-time metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 M ⊙ progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared with Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong nonradial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models, the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50%-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.

  6. Neutrino in Cosmology

    NASA Astrophysics Data System (ADS)

    Kirilova, D.

    2010-09-01

    The relic neutrinos from the Big Bang or the Cosmic Neutrino Background (CNB) neutrinos are expected to be the most abundant particles in our universe after the relic photons of the Cosmic Microwave Background (CMB). They carry precious information from the early epoch when our universe was only 1 sec old. Although not yet directly detected, CNB may be revealed indirectly through cosmological observations due to their important cosmological influence. I review the cosmological role of neutrinos and the present cosmological constraints on neutrino characteristics. Namely, I discuss the impact of neutrinos in the cosmic expansion, neutrino decoupling, the role of neutrinos in the primordial production of light elements, their effect on CMB anisotropies, LSS formation, the possible neutrino contribution to the Dark Matter in the universe, leptogenesis, etc. Due to the considerable cosmological influence of neutrinos, cosmological bounds on neutrino properties from observational data exist. I review the cosmological constraints on the neutrino characteristics, such as the effective number of neutrino species, neutrino mass and mixing parameters, lepton number of the universe, gravitational clustering of neutrinos, presence of sterile neutrino, etc.

  7. Neutrinos in Nuclear Physics

    SciTech Connect

    McKeown, Bob

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  8. Low-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Ludhova, Livia

    2016-05-01

    There exist several kinds of sources emitting neutrinos in the MeV energy range. These low-energy neutrinos from different sources can be often detected by the same multipurpose detectors. The status-of-art of the field of solar neutrinos, geoneutrinos, and the search for sterile neutrino with artificial neutrino sources is provided here; other neutrino sources, as for example reactor or high-energy neutrinos, are described elsewhere. For each of these three fields, the present-day motivation and open questions, as well as the latest experimental results and future perspectives are discussed.

  9. Neutrino dynamics below the electroweak crossover

    NASA Astrophysics Data System (ADS)

    Ghiglieri, J.; Laine, M.

    2016-07-01

    We estimate the thermal masses and damping rates of active (m < eV) and sterile (M ~ GeV) neutrinos with thermal momenta k~ 3T at temperatures below the electroweak crossover (5 GeV < T < 160 GeV) . These quantities fix the equilibration or ``washout'' rates of Standard Model lepton number densities. Sterile neutrinos interact via direct scatterings mediated by Yukawa couplings, and via their overlap with active neutrinos. Including all leading-order reactions we find that the washout rate generally exceeds the Hubble rate for 5 GeV < T < 30 GeV . Therefore it is challenging to generate a large lepton asymmetry facilitating dark matter computations operating at T < 5 GeV, whereas the generation of a baryon asymmetry at T > 130 GeV remains an option. Our differential rates are tabulated in a form suitable for studies of specific scenarios with given neutrino Yukawa matrices.

  10. Atmospheric neutrino oscillations for Earth tomography

    NASA Astrophysics Data System (ADS)

    Winter, Walter

    2016-07-01

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  11. Prospects for future experiments to search for nucleon decay

    SciTech Connect

    Ayres, D.S.; Heller, K.; LoSecco, J.; Mann, A.K.; Marciano, W.; Shrock, R.E.; Thornton, R.K.

    1982-01-01

    We review the status of theoretical expectations and experimental searches for nucleon decay, and predict the sensitivities which could be reached by future experiments. For the immediate future, we concur with the conclusions of the 1982 Summer Workshop on Proton Decay Experiments: all detectors now in operation or construction will be relatively insensitive to some potentially important decay modes. Next-generation experiments must therefore be designed to search for these modes, and should be undertaken whether or not present experiments detect nucleon decay in other modes. These future experiments should be designed to push the lifetime limits on all decay modes to the levels at which irreducible cosmic-ray neutrino-induced backgrounds become important. Since the technology for these next-generation experiments is available now, the timetable for starting work on them will be determined by funding constraints and not by the need for extensive development of detectors. Efforts to develop advanced detector techniques should also be pursued, in order to mount more sensitive searches than can be envisioned using current technology, or to provide the most precise measurements possible of the properties of the nucleon decay interaction if it should occur at a detectable rate.

  12. Systematics of meson-Skyrmion scattering

    SciTech Connect

    Mattis, M.P.

    1986-02-01

    The S-matrix characterizing the scattering of pions from nucleons is calculated in the context of skyrmion models of the nucleon. These are models in which the nucleon is considered a soliton in the field of pions. The spectrum of nucleon and delta resonances in the Skyrme model is calculated and found to be in overall good agreement with Nature. Model-independent sum rules between amplitudes in the same partial wave are derived and examined. An extension of the formalism to the case of three light flavors is presented. 31 refs., 26 figs., 6 tabs.

  13. Charged current quasi-elastic neutrino analysis at MINERνA

    SciTech Connect

    Fiorentini, G. A.

    2015-05-15

    MINERνA (Main INjector Experiment for ν-A) is a neutrino scattering experiment in the NuMI high-intensity neutrino beam at the Fermi National Accelerator Laboratory. MINERvA was designed to make precision measurements of low energy neutrino and antineutrino cross sections on a variety of different materials (plastic scintillator, C, Fe, Pb, He and H2O). We present the current status of the charged current quasi-elastic scattering in plastic scintillator.

  14. Nucleon-to-{delta} axial transition form factors in relativistic baryon chiral perturbation theory

    SciTech Connect

    Geng, L. S.; Camalich, J. Martin; Alvarez-Ruso, L.; Vacas, M. J. Vicente

    2008-07-01

    We report a theoretical study of the axial nucleon-to-delta (1232) (N{yields}{delta}) transition form factors up to one-loop order in relativistic baryon chiral perturbation theory. We adopt a formalism in which the {delta} couplings obey the spin-3/2 gauge symmetry and, therefore, decouple the unphysical spin-1/2 fields. We compare the results with phenomenological form factors obtained from neutrino bubble-chamber data and in quark models.

  15. Electroexcitation of nucleon resonances

    SciTech Connect

    Inna Aznauryan, Volker D. Burkert

    2012-01-01

    We review recent progress in the investigation of the electroexcitation of nucleon resonances, both in experiment and in theory. The most accurate results have been obtained for the electroexcitation amplitudes of the four lowest excited states, which have been measured in a range of Q2 up to 8 and 4.5 GeV2 for the Delta(1232)P33, N(1535)S11 and N(1440)P11, N(1520)D13, respectively. These results have been confronted with calculations based on lattice QCD, large-Nc relations, perturbative QCD (pQCD), and QCD-inspired models. The amplitudes for the Delta(1232) indicate large pion-cloud contributions at low Q2 and don't show any sign of approaching the pQCD regime for Q2<7 GeV2. Measured for the first time, the electroexcitation amplitudes of the Roper resonance, N(1440)P11, provide strong evidence for this state as a predominantly radial excitation of a three-quark (3q) ground state, with additional non-3-quark contributions needed to describe the low Q2 behavior of the amplitudes. The longitudinal transition amplitude for the N(1535)S11 was determined and has become a challenge for quark models. Explanations may require large meson-cloud contributions or alternative representations of this state. The N(1520)D13 clearly shows the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q2 > 0.5 GeV2, confirming a long-standing prediction of the constituent quark model. The interpretation of the moments of resonance transition form factors in terms of transition transverse charge distributions in infinite momentum frame is presented.

  16. Dark matter signals at neutrino telescopes in effective theories

    SciTech Connect

    Catena, Riccardo

    2015-04-29

    We constrain the effective theory of one-body dark matter-nucleon interactions using neutrino telescope observations. We derive exclusion limits on the 28 coupling constants of the theory, exploring interaction operators previously considered in dark matter direct detection only, and using new nuclear response functions recently derived through nuclear structure calculations. We determine for what interactions neutrino telescopes are superior to current direct detection experiments, and show that Hydrogen is not the most important element in the exclusion limit calculation for the majority of the spin-dependent operators.

  17. Unpolarized nucleon structure studies utilizing polarized electromagnetic probes.

    SciTech Connect

    Arrington, J.; Physics

    2009-08-15

    By the mid-1980s, measurements of the nucleon form factors had reached a stage where only slow, incremental progress was possible using unpolarized electron scattering. The development of high quality polarized beams, polarized targets, and recoil polarimeters led to a renaissance in the experimental program. I provide an overview of the changes in the field in the last ten years, which were driven by the dramatically improved data made possible by a new family of tools to measure polarization observables.

  18. Charmonium-Nucleon Interaction from Quenched Lattice QCD with Relativistic Heavy Quark Action

    NASA Astrophysics Data System (ADS)

    Kawanai, Taichi; Sasaki, Shoichi; Hatsuda, Tetsuo

    2009-10-01

    Low energy charmonium-nucleon interaction is of particular interest in this talk. A heavy quarkonium state like the charmonium does not share the same quark flavor with the nucleon so that cc-nucleon interaction might be described by the gluonic van der Waals interaction, which is weak but attractive. Therefore, the information of the strength of cc-nucleon interaction is vital for considering the possibility of the formation of charmonium bound to nuclei. We will present the preliminary results for the scattering length and the interaction range of charmonium-nucleon s-wave scattering from quenched lattice QCD. These low-energy quantities can provide useful constraints on the phenomenological cc-nucleon potential, which is required for precise prediction of the binding energy of nuclear-bound charmonium in exact few body calculations. Our simulations are performed at a lattice cutoff of 1/a=2.0 GeV with the nonperturbatively O(a) improved Wilson action for the light quark and a relativistic heavy quark action for the charm quark. A new attempt of calculating the cc-nucleon potential through the Bethe-Salpeter wave function will be also discussed.

  19. Three Dimensional Imaging of the Nucleon — TMD (Theory and Phenomenology)

    NASA Astrophysics Data System (ADS)

    Liang, Zuo-Tang

    2016-02-01

    This is intend to provide an overview of the theory and phenomenology parts of the TMD (Transverse Momentum Dependent parton distribution and fragmentation functions) studies. By comparing with the theoretical framework that we have for the inclusive deep inelastic lepton-nucleon scattering and the one-dimensional imaging of the nucleon, I try to outline what we need to do in order to construct a comprehensive theoretical framework for semi-inclusive reactions and the three dimensional imaging of the nucleon. After that, I try to give an overview of what we have already achieved and make an outlook for the future.

  20. Hadron production measurements to constrain accelerator neutrino beams

    SciTech Connect

    Korzenev, Alexander

    2015-07-15

    A precise prediction of expected neutrino fluxes is required for a long-baseline accelerator neutrino experiment. The flux is used to measure neutrino cross sections at the near detector, while at the far detector it provides an estimate of the expected signal for the study of neutrino oscillations. In the talk several approaches to constrain the ν flux are presented. The first is the traditional one when an interaction chain for the neutrino parent hadrons is stored to be weighted later with real measurements. In this approach differential hadron cross sections are used which, in turn, are measured in ancillary hadron production experiments. The approach is certainly model dependent because it requires an extrapolation to different incident nucleon momenta assuming x{sub F} scaling as well as extrapolation between materials having different atomic numbers. In the second approach one uses a hadron production yields off a real target exploited in the neutrino beamline. Yields of neutrino parent hadrons are parametrized at the surface of the target, thus one avoids to trace the particle interaction history inside the target. As in the case of the first approach, a dedicated ancillary experiment is mandatory. Recent results from the hadron production experiments – NA61/SHINE at CERN (measurements for T2K) and MIPP at Fermilab (measurements for NuMI) – are reviewed.