Science.gov

Sample records for neutrino scattering measurements

  1. Measurement of neutrino flux from neutrino-electron elastic scattering

    NASA Astrophysics Data System (ADS)

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration

    2016-06-01

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  2. Measurement of neutrino flux from neutrino-electron elastic scattering

    SciTech Connect

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman,; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.

    2016-06-10

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  3. Measurement of neutrino flux from neutrino-electron elastic scattering

    SciTech Connect

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman,; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.

    2016-06-10

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  4. Measurement of neutrino flux from neutrino-electron elastic scattering

    DOE PAGES

    Park, J.; Aliaga, L.; Altinok, O.; ...

    2016-06-10

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9%more » to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.« less

  5. Coherent scattering of cosmic neutrinos

    NASA Technical Reports Server (NTRS)

    Opher, R.

    1974-01-01

    It is shown that cosmic neutrino scattering can be non-negligible when coherence effects previously neglected are taken into account. The coherent neutrino scattering cross section is derived and the neutrino index of refraction evaluated. As an example of coherent neutrino scattering, a detector using critical reflection is described which in principle can detect the low energy cosmic neutrino background allowed by the measured cosmological red shift.

  6. Measurement of Nuclear Dependence in Inclusive Charged Current Neutrino Scattering

    SciTech Connect

    Tice, Brian George

    2014-01-01

    Neutrino experiments use heavy nuclei (C, Fe, Pb) to achieve necessary statistics. However, the use of heavy nuclei exposes these experiments to the nuclear dependence of neutrino-nucleus cross sections, which are poorly known and difficult to model. This dissertation presents an analysis of the nuclear dependence of inclusive chargedcurrent neutrino scattering using events in carbon, iron, lead, and scintillator targets of the MINERvA detector. MINERvA (Main INjector ExpeRiment for -A) is a few-GeV neutrinonucleus scattering experiment at Fermilab.

  7. Measurement of the Solar Neutrino Energy Spectrum Using Neutrino-Electron Scattering

    SciTech Connect

    Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Inoue, K.; Ishihara, K.; Ishino, H.; Itow, Y.; Kajita, T.; Kameda, J.; Kasuga, S.; Kobayashi, K.; Kobayashi, Y.; Koshio, Y.; Miura, M.; Nakahata, M.; Nakayama, S.; Okada, A.; Okumura, K.; Sakurai, N.; Shiozawa, M.; Suzuki, Y.; Takeuchi, Y.; .Totsuka, Y.; Yamada, S.; Earl, M.; Habig, A.; Kearns, E.; Messier, M.D.; Scholberg, K.; Stone, J.L.; Sulak, L.R.; Walter, C.; Goldhaber, M.; Barszczak, T.; Casper, D.; Gajewski, W.; Halverson, P.G.; Hsu, J.; Kropp, W.R.; Price, L.R.; Reines, F.; Smy, M.; Sobel, H.W.; Vagins, M.R.; Haines, T.J.; Kielczewska, D.; Ganezer, K.S.; Keig, W.E.; Ellsworth, R.W.; Tasaka, S.; Flanagan, J.W.; Kibayashi, A.; Learned, J.G.; Matsuno, S.; Stenger, V.J.; Takemori, D.; Ishii, T.; Kanzaki, J.; Kobayashi, T.; Mine, S.; Nakamura, K.; Nishikawa, K.; Oyama, Y.; Sakai, A.; Sakuda, M.; Sasaki, O.; Echigo, S.; Kohama, M.; Suzuki, A.T.; Haines, T.J.; and others

    1999-03-01

    A measurement of the energy spectrum of recoil electrons from solar neutrino scattering in the Super-Kamiokande detector is presented. The results shown here were obtained from 504 days of data taken between 31 May 1996 and 25 March 1998. The shape of the measured spectrum is compared with the expectation for solar {sup 8}B neutrinos. The comparison takes into account both kinematic and detector related effects in the measurement process. The spectral shape comparison between the observation and the expectation gives a {chi}{sup 2} of 25.3 with 15 degrees of freedom, corresponding to a 4.6{percent} confidence level. {copyright} {ital 1999} {ital The American Physical Society}

  8. Projections for Measuring the Size of the Solar Core with Neutrino-Electron Scattering.

    PubMed

    Davis, Jonathan H

    2016-11-18

    We quantify the amount of data needed in order to measure the size and position of the ^{8}B neutrino production region within the solar core, for experiments looking at elastic scattering between electrons and solar neutrinos. The directions of the electrons immediately after scattering are strongly correlated with the incident directions of the neutrinos; however, this is degraded significantly by the subsequent scattering of these electrons in the detector medium. We generate distributions of such electrons for different neutrino production profiles, and use a maximum likelihood analysis to make projections for future experimental sensitivity. We find that with approximately 20 years worth of data the Super Kamiokande experiment could constrain the central radius of the shell in which ^{8}B neutrinos are produced to be less than 0.22 of the total solar radius at 95% confidence.

  9. Neutrino Scattering from 12C

    NASA Astrophysics Data System (ADS)

    Hayes, Anna

    2017-01-01

    Neutrino scattering cross-sections from 12C, which have been measure for pion decay-at-rest and pion decay-in-flight neutrino energies, are difficult to reproduce theoretically. In this talk I discuss the physics issues involved and show the importance of a proper treatment of the conservation of the vector current.

  10. A precise measurement of the weak mixing angle in neutrino-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Zeller, Geralyn P.

    This dissertation reports a precise determination of the weak mixing angle, sin2 thetaW, from measurement of the ratios of neutral current to charged current neutrino deep inelastic cross sections. High statistics samples of separately collected neutrino and antineutrino events, resulting from exposure to the Fermilab neutrino beam during the period from 1996 to 1997, allowed the reduction of systematic errors associated with charm production and other sources. The final value, sin 2 thetaW(on shell) = 0.2277 +/- 0.0013 (stat) +/- 0.0009 (syst), lies three standard deviations above the standard model prediction. The measurement is currently the most precise determination of sin2 theta W in neutrino-nucleon scattering, surpassing its predecessors by a factor of two in precision. A model independent analysis recasts the same data into a measurement of effective left and right handed neutral current quark couplings.

  11. Solar Neutrinos with Exotic Scattering

    NASA Astrophysics Data System (ADS)

    Pulido, João

    The possibility of unconventional neutrino scattering in the Sun via flavor changing neutral currents as a possible source of the solar neutrino deficit is investigated. If the effect is really significant, a resonant process will occur. Taking into account the neutrino deficit reported by the solar neutrino experiments (Kamiokande II, SAGE Gallex), one finds Δ2m21 = (0.6-1.4) × 10-5 eV2 with no vacuum mixing and 0.16 ≤ fex ≤ 0.34 where fex is the lepton violating coupling. Our understanding of the neutrino phenomenon in the Sun may be improved through accuracy improvements in experiments measuring νee- elastic scattering or others searching for exotic lepton decays.

  12. Measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon at $\\langle E_{\

    SciTech Connect

    Wolcott, J.

    2016-02-25

    The first direct measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in the electron production angle, electron energy, and Q2 are presented. The ratio of the quasielastic, flux-integrated differential cross section in Q2 for νe with that of similarly selected νμ-induced events from the same exposure is used to probe assumptions that underpin conventional treatments of charged-current νe interactions used by long-baseline neutrino oscillation experiments. Furthermore, the data are found to be consistent with lepton universality and are well described by the predictions of the neutrino event generator GENIE.

  13. Measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon at $$\\langle E_{\

    DOE PAGES

    Wolcott, J.

    2016-02-25

    The first direct measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in the electron production angle, electron energy, and Q2 are presented. The ratio of the quasielastic, flux-integrated differential cross section in Q2 for νe with that of similarly selected νμ-induced events from the same exposure is used to probe assumptions that underpin conventional treatments of charged-current νe interactions used by long-baseline neutrino oscillation experiments. Furthermore, the data are found tomore » be consistent with lepton universality and are well described by the predictions of the neutrino event generator GENIE.« less

  14. Cross section measurements for quasi-elastic neutrino-nucleus scattering with the MINOS near detector

    SciTech Connect

    Dorman, Mark Edward

    2008-04-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment based at the Fermi National Accelerator Laboratory (FNAL) in Chicago, Illinois. MINOS measures neutrino interactions in two large iron-scintillator tracking/sampling calorimeters; the Near Detector on-site at FNAL and the Far Detector located in the Soudan mine in northern Minnesota. The Near Detector has recorded a large number of neutrino interactions and this high statistics dataset can be used to make precision measurements of neutrino interaction cross sections. The cross section for charged-current quasi-elastic scattering has been measured by a number of previous experiments and these measurements disagree by up to 30%. A method to select a quasi-elastic enriched sample of neutrino interactions in the MINOS Near Detector is presented and a procedure to fit the kinematic distributions of this sample and extract the quasi-elastic cross section is introduced. The accuracy and robustness of the fitting procedure is studied using mock data and finally results from fits to the MINOS Near Detector data are presented.

  15. A method for measuring coherent elastic neutrino-nucleus scattering at a far off-axis high-energy neutrino beam target

    NASA Astrophysics Data System (ADS)

    Brice, S. J.; Cooper, R. L.; DeJongh, F.; Empl, A.; Garrison, L. M.; Hime, A.; Hungerford, E.; Kobilarcik, T.; Loer, B.; Mariani, C.; Mocko, M.; Muhrer, G.; Pattie, R.; Pavlovic, Z.; Ramberg, E.; Scholberg, K.; Tayloe, R.; Thornton, R. T.; Yoo, J.; Young, A.

    2014-04-01

    We present an experimental method for measuring the process of coherent elastic neutrino-nucleus scattering (CENNS). This method uses a detector situated transverse to a high-energy neutrino beam production target. This detector would be sensitive to the low-energy neutrinos arising from decay-at-rest pions in the target. We discuss the physics motivation for making this measurement and outline the predicted backgrounds and sensitivities using this approach. We report a measurement of neutron backgrounds as found in an off-axis surface location of the Fermilab Booster Neutrino Beam (BNB) target. The results indicate that the Fermilab BNB target is a favorable location for a CENNS experiment.

  16. A method for measuring coherent elastic neutrino-nucleus scattering at a far off-axis high-energy neutrino beam target

    SciTech Connect

    Brice, S. J.; Cooper, R. L.; DeJongh, F.; Empl, A.; Garrison, L. M.; Hime, A.; Hungerford, E.; Kobilarcik, T.; Loer, B.; Mariani, C.; Mocko, M.; Muhrer, G.; Pattie, R.; Pavlovic, Z.; Ramberg, E.; Scholberg, K.; Tayloe, R.; Thornton, R. T.; Yoo, J.; Young, A.

    2014-04-03

    We present an experimental method for measuring the process of coherent elastic neutrino-nucleus scattering (CENNS). This method uses a detector situated transverse to a high-energy neutrino beam production target. This detector would be sensitive to the low-energy neutrinos arising from decay-at-rest pions in the target. We discuss the physics motivation for making this measurement and outline the predicted backgrounds and sensitivities using this approach. We report a measurement of neutron backgrounds as found in an off-axis surface location of the Fermilab Booster Neutrino Beam (BNB) target. The results indicate that the Fermilab BNB target is a favorable location for a CENNS experiment.

  17. Spectral Study of a Broad Energy HPGe Detector for First Measurement of Coherent Neutrino Scattering

    NASA Astrophysics Data System (ADS)

    Surbrook, Jason; Green, Matthew

    2014-09-01

    Intense neutrino flux at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) in the energy domain below Eν = 50 MeV makes SNS a suitable location for measurement of Coherent Neutrino Scattering. Coherent scattering is assumed to occupy vital roles in supernovae (SN) events and measurement offers promising insight into SN mechanics and advancements in SN- ν detection. Furthermore, this interaction is well-calculable and therefore, a strong test of the Standard Model. P-Type Point Contact High-purity germanium detectors are excellent candidates for this measurement due to their sensitivity to low-energy nuclear recoils. One such, a Canberra Broad Energy HPGe detector, was tested for quality degradation from exposure to fast neutrons in the SNS target building, to assess usefulness in a future coherent scattering experiment. Analysis of the lead-shielded spectra was handled using tools developed for the Majorana Demonstrator neutrinoless double-beta decay experiment. Broad spectrum energy resolution and 68Ge decay rates were calculated. This poster will present findings that will help determine this detector's eligibility and exposure limitations for measurement in a future coherent neutrino scattering experiment at the SNS.

  18. Neutrino oscillations and the modulation of neutrino-electron scattering

    SciTech Connect

    Rosen, S.P.; Kayser, B.

    1981-02-01

    Neutrino flavor oscillations modulate the cross section for neutrino-electron scattering. This modulation can seriously affect the interpretation of the present data on reactor-neutrino--electron scattering, and can greatly amplify the effective cross section for accelerator neutrinos.

  19. Measurement of sin2θw and ϱ in deep inelastic neutrino-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Reutens, P. G.; Merritt, F. S.; Macfarlane, D. B.; Messner, R. L.; Novikoff, D. B.; Purohit, M. V.; Blair, R. E.; Sciulli, F. J.; Shaevitz, M. H.; Fisk, H. E.; Fukushima, Y.; Jin, B. N.; Kondo, T.; Rapidis, P. A.; Yovanovitch, D. D.; Bodek, A.; Coleman, R. N.; Marsh, W. L.; Fackler, O. D.; Jenkins, K. A.

    1985-03-01

    We describe a high statistics measurement from deep inelastic neutrino-nucleon scattering of the electroweak parameters ϱ and sin2θw, performed in the Fermilab narrow-band neutrino beam. Our measurement uses a radius-dependent cut in y = EH/Ev which reduces the systematic error in sin2θw, and incorporates electromagnetic and electroweak radiative corrections. In a renormalization scheme where sin2θw ≡ 1-m2W/m2Z, a value of sin2θw = 0.242+/-0.011+/-0.005 is obtained fixing ϱ = 1. If both sin2θw and ϱ are allowed to vary in a fit to our data, we measure ϱ = 0.991 +/- 0.025 +/- 0.009. Present address: IBM Thomas J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598, USA.

  20. Coherent neutrino-nucleus scattering and new neutrino interactions

    NASA Astrophysics Data System (ADS)

    Lindner, Manfred; Rodejohann, Werner; Xu, Xun-Jie

    2017-03-01

    We investigate the potential to probe new neutrino physics with future experiments measuring coherent neutrino-nucleus scattering. Experiments with high statistics should become feasible soon and allow to constrain parameters with unprecedented precision. Using a benchmark setup for a future experiment probing reactor neutrinos, we study the sensitivity on neutrino non-standard interactions and new exotic neutral currents (scalar, tensor, etc). Compared to Fermi interaction, percent and permille level strengths of the new interactions can be probed, superseding for some observables the limits from future neutrino oscillation experiments by up to two orders of magnitude.

  1. Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS

    NASA Astrophysics Data System (ADS)

    Markoff, Diane; Coherent Collaboration

    2015-10-01

    The COHERENT collaboration has proposed to measure coherent, elastic neutrino-nucleus scattering (CE νNS) cross sections on several nuclear targets using neutrinos produced at the Spallation Neutron Source (SNS) located at the Oak Ridge National Laboratory. The largest background of concern arises from beam-induced, fast neutrons that can mimic a nuclear recoil signal event in the detector. Multiple technologies of neutron detection have been employed at prospective experiment sites at the SNS. Analysis of these data have produced a consistent picture of the backgrounds expected for a CE νNS measurement. These background studies show that at suitable locations, the fast neutrons of concern arrive mainly in the prompt 1.3 μs window and the neutrons in the delayed window are primarily of lower energies that are relatively easier to shield.

  2. Prospects for using coherent elastic neutrino-nucleus scattering to measure the nuclear neutron form factor

    NASA Astrophysics Data System (ADS)

    Patton, Kelly; McLaughlin, Gail; Scholberg, Kate; Engel, Jon; Schunck, Nicolas

    2017-01-01

    Coherent elastic neutrino-nucleus scattering is a potential probe of nuclear neutron form factors. We show that the neutron root-mean-square (RMS) radius can be measured with tonne-scale detectors of argon, germanium, or xenon. In addition, the fourth moment of the neutron distribution can be studied experimentally using this method. The impacts of both detector size and detector shape uncertainty on such a measurement were considered. The important limiting factor was found to be the detector shape uncertainty. In order to measure the neutron RMS radius to 5%, comparable to current experimental uncertainties, the detector shape uncertainty needs to be known to 1% or better.

  3. Neutrino oscillations and neutrino-electron scattering

    SciTech Connect

    Kayser, B.; Rosen, S.P.

    1980-10-01

    Neutrino flavor oscillations can significantly alter the cross section for neutrino-electron scattering. As a result, such oscillations can affect the comparison between existing reactor data and theories of neutral-current processes. They may also lead to strikingly large effects in high-energy accelerator experiments.

  4. Measuring the Low Energy Nuclear Quenching Factor in Liquid Argon for a Coherent Neutrino Scatter Detector

    NASA Astrophysics Data System (ADS)

    Foxe, M.; Bernstein, A.; Hagmann, C.; Joshi, T.; Jovanovic, I.; Kazkaz, K.; Sangiorgio, S.

    2012-08-01

    Coherent neutrino-nucleus scattering (CNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model [D. Freedman, Phys. Rev. D 9 (5) (1974) 1389-1392]. One of the primary reasons the CNS interaction has yet to be observed is the very low energy depositions (less than 1 keV for MeV-energy neutrinos) [A. Drukier, L. Stodolsky, Phys. Rev. D 30 (11) (1984) 2295-2309]. An additional challenge in detecting CNS is nuclear quenching, which is a phenomenon encountered in many detection materials in which nuclear recoils produce less observable energy per unit energy deposited than electronic recoils. The ratio observed signal for nuclear recoils to electronic recoils or nuclear ionization quench factor, is presently unknown in argon at typical CNS energies [C. Hagmann, A. Bernstein, IEEE Trans. on Nucl. Sci. 51 (5) (2004) 2151-2155]. Here we present plans for using the Gamma or Neutron Argon Recoils Resulting in Liquid Ionization (G/NARRLI) detector to measure the nuclear ionization quench factor at ˜8 keV.

  5. The MINERvA Neutrino Scattering Experiment

    NASA Astrophysics Data System (ADS)

    Le, Trung

    2010-11-01

    MINERvA is a neutrino scattering experiment at the NuMI beamline of FNAL which began data taking in fall 2009. MINERvA is a high resolution, fully active detector designed to study the interaction of neutrinos with nuclei. The active volume of the detector consists of 3 tons of plastic scintillator. In addition, targets of 4He, C, H2O, Fe, and Pb will allow detailed studies of the A dependence of neutrino cross sections. Some of the objectives of MINERvA are to measure the axial form factor of the neutron with unprecedented precision, measure nuclear shadowing of F2 and compare with muon scattering, study quark-hadron duality with neutrino scattering in comparison with electron scattering, and measure coherent pion production. We present an overview of the physics objectives, estimated uncertainties of the measurements, along with a description of the detector and a sample of the first measurements.

  6. Comparison of the structure function F2 as measured by charged lepton and neutrino scattering from iron targets

    NASA Astrophysics Data System (ADS)

    Kalantarians, N.; Keppel, C.; Christy, M. E.

    2017-09-01

    A comparison study of world data for the structure function F2 for iron, as measured by both charged lepton and neutrino scattering experiments, is presented. Consistency of results for both charged lepton and neutrino scattering is observed for the full global data set in the valence regime. Consistency is also observed at low x for the various neutrino data sets, as well as for the charged lepton data sets, independently. However, data from the two probes exhibit differences on the order of 15% in the shadowing-antishadowing transition region where the Bjorken scaling variable x is <0.15 . This observation is indicative that neutrino probes of nucleon structure might be sensitive to different nuclear effects than charged lepton probes. Details and results of the data comparison are presented here.

  7. Comparison of the structure function F2 as measured by charged lepton and neutrino scattering from iron targets

    DOE PAGES

    Kalantarians, N.; Keppel, C.; Christy, M. E.

    2017-09-12

    A comparison study of world data for the structure function F2 for Iron, as measured by both charged lepton and neutrino scattering experiments, is presented. Consistency of results for both charged lepton and neutrino scattering is observed for the full global data set in the valence regime. Consistency is also observed at low x for the various neutrino data sets, as well as for the charged lepton data sets, independently. However, data from the two probes exhibit differences on the order of 15% in the shadowing/anti-shadowing transition region where the Bjorken scaling variable x is < 0.15. This observation ismore » indicative that neutrino probes of nucleon structure might be sensitive to different nuclear effects than charged lepton probes. Details and results of the data comparison are here presented.« less

  8. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    SciTech Connect

    Adams, T.; Batra, P.; Bugel, Leonard G.; Camilleri, Leslie Loris; Conrad, Janet Marie; de Gouvea, A.; Fisher, Peter H.; Formaggio, Joseph Angelo; Jenkins, J.; Karagiorgi, Georgia S.; Kobilarcik, T.R.; /Fermilab /Texas U.

    2009-06-01

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics.

  9. SciNOvA: A Measurement of Neutrino-Nucleus Scattering in a Narrow-Band Beam

    SciTech Connect

    Paley, J.; Djurcic, Z.; Harris, D.; Tesarek, R.; Feldman, G.; Corwin, L.; Messier, M.D.; Mayer, N.; Musser, J.; Paley, J.; Tayloe, R.; /Indiana U. /Iowa State U. /Minnesota U. /South Carolina U. /Wichita State U. /William-Mary Coll.

    2010-10-15

    We propose to construct and deploy a fine-grained detector in the Fermilab NOvA 2 GeV narrow-band neutrino beam. In this beam, the detector can make unique contributions to the measurement of quasi-elastic scattering, neutral-current elastic scattering, neutral-current {pi}{sup 0} production, and enhance the NOvA measurements of electron neutrino appearance. To minimize cost and risks, the proposed detector is a copy of the SciBar detector originally built for the K2K long baseline experiment and used recently in the SciBooNE experiment.

  10. Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA

    NASA Astrophysics Data System (ADS)

    Mousseau, J.; Wospakrik, M.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Zavala, G.; Zhang, D.; Minerν A Collaboration

    2016-04-01

    The MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5-50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy. However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x <0.1 . This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice et al. (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.

  11. Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA

    DOE PAGES

    Mousseau, J.

    2016-04-19

    Here, the MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5–50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy.more » However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x < 0.1. This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.« less

  12. Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA

    SciTech Connect

    Mousseau, J.

    2016-04-19

    Here, the MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5–50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy. However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x < 0.1. This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.

  13. Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA

    SciTech Connect

    Mousseau, J.

    2016-04-19

    Here, the MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5–50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy. However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x < 0.1. This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.

  14. Demonstration of Key Elements of a Dual Phase Argon Detection System Suitable for Measurement of Coherent Neutrino-Nucleus Scattering

    SciTech Connect

    Adam, B; Celeste, W; Christian, H; Wolfgang, S; Norman, M

    2007-04-16

    This feasibility study sought to demonstrate several necessary steps in a research program whose ultimate goal is to detect coherent scattering of reactor antineutrinos in dual-phase noble liquid detectors. By constructing and operating a Argon gas-phase drift and scintillation test-bed, the study confirmed important expectations about sensitivity of these detectors, and thereby met the goals set forth in our original proposal. This work has resulted in a successful Lab-Wide LDRD for design and deployment of a coherent scatter detector at a nuclear reactor, and strong interest by DOE Office of Science. In recent years, researchers at LLNL and elsewhere have converged on a design approach for a new generation of very low noise, low background particle detectors known as two-phase noble liquid/noble gas ionization detectors. This versatile class of detector can be used to detect coherent neutrino scattering-an as yet unmeasured prediction of the Standard Model of particle physics. Using the dual phase technology, our group would be the first to verify the existence of this process. Its (non)detection would (refute)validate central tenets of the Standard Model. The existence of this process is also important in astrophysics, where coherent neutrino scattering is assumed to play an important role in energy transport within nascent neutron stars. The potential scientific impact after discovery of coherent neutrino-nuclear scattering is large. This phenomenon is flavor-blind (equal cross-sections of interaction for all three neutrino types), raising the possibility that coherent scatter detectors could be used as total flux monitors in future neutrino oscillation experiments. Such a detector could also be used to measure the flavor-blind neutrino spectrum from the next nearby (d {approx} 10kpc) type Ia supernova explosion. The predicted number of events [integrated over explosion time] for a proposed dual-phase argon coherent neutrino scattering detector is 10000 nuclear

  15. Neutrino-Electron Scattering in MINERvA for Constraining the NuMI Neutrino Flux

    SciTech Connect

    Park, Jaewon

    2013-01-01

    Neutrino-electron elastic scattering is used as a reference process to constrain the neutrino flux at the Main Injector (NuMI) beam observed by the MINERvA experiment. Prediction of the neutrino flux at accelerator experiments from other methods has a large uncertainty, and this uncertainty degrades measurements of neutrino oscillations and neutrino cross-sections. Neutrino-electron elastic scattering is a rare process, but its cross-section is precisely known. With a sample corresponding to $3.5\\times10^{20}$ protons on target in the NuMI low-energy neutrino beam, a sample of $120$ $\

  16. Measurement of Neutrino-Nucleon Neutral-Current Elastic Scattering Cross-section at SciBooNE

    SciTech Connect

    Takei, Hideyuki

    2009-02-01

    In this thesis, results of neutrino-nucleon neutral current (NC) elastic scattering analysis are presented. Neutrinos interact with other particles only with weak force. Measurement of cross-section for neutrino-nucleon reactions at various neutrino energy are important for the study of nucleon structure. It also provides data to be used for beam flux monitor in neutrino oscillation experiments. The cross-section for neutrino-nucleon NC elastic scattering contains the axial vector form factor GA(Q2) as well as electromagnetic form factors unlike electromagnetic interaction. GA is propotional to strange part of nucleon spin (Δs) in Q2 → 0 limit. Measurement of NC elastic cross-section with smaller Q2 enables us to access Δs. NC elastic cross-sections of neutrino-nucleon and antineutrino-nucleon were measured earlier by E734 experiment at Brookheaven National Laboratory (BNL) in 1987. In this experiment, cross-sections were measured in Q2 > 0.4 GeV2 region. Result from this experiment was the only published data for NC elastic scattering cross-section published before our experiment. SciBooNE is an experiment for the measurement of neutrino-nucleon scattering cross-secitons using Booster Neutrino Beam (BNB) at FNAL. BNB has energy peak at 0.7 GeV. In this energy region, NC elastic scattering, charged current elastic scattering, charged current pion production, and neutral current pion production are the major reaction branches. SciBar, electromagnetic calorimeter, and Muon Range Detector are the detectors for SciBooNE. The SciBar consists of finely segmented scintillators and 14336 channels of PMTs. It has a capability to reconstruct particle track longer than 8 cm and separate proton from muons and pions using energy deposit information. Signal of NC elastic scattering is a single proton track. In vp → vp process, the recoil proton is detected. On the other hand, most of vn → vn is

  17. Measurement of Coherent π+ Production in Low Energy Neutrino-Carbon Scattering

    NASA Astrophysics Data System (ADS)

    Abe, K.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Ban, S.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berkman, S.; Bhadra, S.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buizza Avanzini, M.; Calland, R. G.; Campbell, T.; Cao, S.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Collazuol, G.; Coplowe, D.; Cremonesi, L.; Dabrowska, A.; De Rosa, G.; Dealtry, T.; Denner, P. F.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duffy, K. E.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, D.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S. G.; Giganti, C.; Gizzarelli, F.; Gonin, M.; Grant, N.; Hadley, D. R.; Haegel, L.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Harada, J.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Helmer, R. L.; Hierholzer, M.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Hogan, M.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ikeda, M.; Imber, J.; Insler, J.; Intonti, R. A.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, H.; Kim, J.; King, S.; Kisiel, J.; Knight, A.; Knox, A.; Kobayashi, T.; Koch, L.; Koga, T.; Konaka, A.; Kondo, K.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Lasorak, P.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Liptak, Z. J.; Litchfield, R. P.; Li, X.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Lu, X.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Ma, W. Y.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakamura, K. D.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Novella, P.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Patel, N. D.; Pavin, M.; Payne, D.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pickering, L.; Pinzon Guerra, E. S.; Pistillo, C.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radermacher, T.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reinherz-Aronis, E.; Riccio, C.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Shirahige, T.; Short, S.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Stewart, T.; Stowell, P.; Suda, Y.; Suvorov, S.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Terhorst, D.; Terri, R.; Thakore, T.; Thompson, L. F.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vallari, Z.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Wilson, J. R.; Wilson, R. J.; Yamada, Y.; Yamamoto, K.; Yamamoto, M.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2016-11-01

    We report the first measurement of the flux-averaged cross section for charged current coherent π+ production on carbon for neutrino energies less than 1.5 GeV, and with a restriction on the final state phase space volume in the T2K near detector, ND280. Comparisons are made with predictions from the Rein-Sehgal coherent production model and the model by Alvarez-Ruso et al., the latter representing the first implementation of an instance of the new class of microscopic coherent models in a neutrino interaction Monte Carlo event generator. We observe a clear event excess above background, disagreeing with the null results reported by K2K and SciBooNE in a similar neutrino energy region. The measured flux-averaged cross sections are below those predicted by both the Rein-Sehgal and Alvarez-Ruso et al. models.

  18. Measurement of Coherent π^{+} Production in Low Energy Neutrino-Carbon Scattering.

    PubMed

    Abe, K; Andreopoulos, C; Antonova, M; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Ban, S; Barbi, M; Barker, G J; Barr, G; Bartet-Friburg, P; Batkiewicz, M; Bay, F; Berardi, V; Berkman, S; Bhadra, S; Blondel, A; Bolognesi, S; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buizza Avanzini, M; Calland, R G; Campbell, T; Cao, S; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Chikuma, N; Christodoulou, G; Clifton, A; Coleman, J; Collazuol, G; Coplowe, D; Cremonesi, L; Dabrowska, A; De Rosa, G; Dealtry, T; Denner, P F; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Dolan, S; Drapier, O; Duffy, K E; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Feusels, T; Finch, A J; Fiorentini, G A; Friend, M; Fujii, Y; Fukuda, D; Fukuda, Y; Furmanski, A P; Galymov, V; Garcia, A; Giffin, S G; Giganti, C; Gizzarelli, F; Gonin, M; Grant, N; Hadley, D R; Haegel, L; Haigh, M D; Hamilton, P; Hansen, D; Harada, J; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayashino, T; Hayato, Y; Helmer, R L; Hierholzer, M; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Hogan, M; Holeczek, J; Horikawa, S; Hosomi, F; Huang, K; Ichikawa, A K; Ieki, K; Ikeda, M; Imber, J; Insler, J; Intonti, R A; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Izmaylov, A; Jacob, A; Jamieson, B; Jiang, M; Johnson, S; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kim, H; Kim, J; King, S; Kisiel, J; Knight, A; Knox, A; Kobayashi, T; Koch, L; Koga, T; Konaka, A; Kondo, K; Kopylov, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Larkin, E; Lasorak, P; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Liptak, Z J; Litchfield, R P; Li, X; Longhin, A; Lopez, J P; Ludovici, L; Lu, X; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martins, P; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Ma, W Y; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Mefodiev, A; Metelko, C; Mezzetto, M; Mijakowski, P; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K G; Nakamura, K; Nakamura, K D; Nakayama, S; Nakaya, T; Nakayoshi, K; Nantais, C; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; Novella, P; Nowak, J; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Ovsyannikova, T; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Patel, N D; Pavin, M; Payne, D; Perkin, J D; Petrov, Y; Pickard, L; Pickering, L; Pinzon Guerra, E S; Pistillo, C; Popov, B; Posiadala-Zezula, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radermacher, T; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reinherz-Aronis, E; Riccio, C; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Rychter, A; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shah, R; Shaikhiev, A; Shaker, F; Shaw, D; Shiozawa, M; Shirahige, T; Short, S; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Stewart, T; Stowell, P; Suda, Y; Suvorov, S; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Terhorst, D; Terri, R; Thakore, T; Thompson, L F; Tobayama, S; Toki, W; Tomura, T; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vallari, Z; Vasseur, G; Wachala, T; Wakamatsu, K; Walter, C W; Wark, D; Warzycha, W; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Wilson, J R; Wilson, R J; Yamada, Y; Yamamoto, K; Yamamoto, M; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yoo, J; Yoshida, K; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2016-11-04

    We report the first measurement of the flux-averaged cross section for charged current coherent π^{+} production on carbon for neutrino energies less than 1.5 GeV, and with a restriction on the final state phase space volume in the T2K near detector, ND280. Comparisons are made with predictions from the Rein-Sehgal coherent production model and the model by Alvarez-Ruso et al., the latter representing the first implementation of an instance of the new class of microscopic coherent models in a neutrino interaction Monte Carlo event generator. We observe a clear event excess above background, disagreeing with the null results reported by K2K and SciBooNE in a similar neutrino energy region. The measured flux-averaged cross sections are below those predicted by both the Rein-Sehgal and Alvarez-Ruso et al.

  19. Theoretical challenges in neutrino scattering studies

    NASA Astrophysics Data System (ADS)

    Nieves, J.

    2017-09-01

    New and more precise measurements of neutrino cross sections in the few GeV energy region have renewed interest in a better understanding of electroweak interactions on nucleons and nuclei. This interest comes from neutrino oscillation experiments and their need to reduce systematic errors. Neutrino fluxes used in contemporary long and short baseline experiments (K2K, T2K, MINOS, NOvA, MiniBooNE, MINERvA, …) are peaked in the 1–5 GeV energy domain. In this context, I will present some details about the theoretical development in the description of (anti)neutrino-induced quasielastic scattering and the role of multi-nucleon mechanisms.

  20. Neutrino scattering and flavor transformation in supernovae.

    PubMed

    Cherry, John F; Carlson, J; Friedland, Alexander; Fuller, George M; Vlasenko, Alexey

    2012-06-29

    We argue that the small fraction of neutrinos that undergo direction-changing scattering outside of the neutrinosphere could have significant influence on neutrino flavor transformation in core-collapse supernova environments. We show that the standard treatment for collective neutrino flavor transformation is adequate at late times but could be inadequate in early epochs of core-collapse supernovae, where the potentials that govern neutrino flavor evolution are affected by the scattered neutrinos. Taking account of this effect, and the way it couples to entropy and composition, will require a new approach in neutrino flavor transformation modeling.

  1. Low-energy neutral-current neutrino scattering on nuclei

    SciTech Connect

    Tsakstara, V.; Kosmas, T. S.; Wambach, J.

    2011-12-16

    Inelastic cross-sections of neutral current neutrino scattering on the {sup 40}Ar isotope, detector-medium of the ongoing ICARUS experiment, are computed in the context of the quasi-particle random phase approximation by utilizing realistic two-nucleon forces. ICARUS is a multipurpose neutrino physics experiment that includes in its objectives low-energy neutrino detection. The incoming neutrino energy range adopted in our calculations ({epsilon}{sub {nu}}{<=}100 MeV), covers the laboratory low-energy beta-beam-neutrinos and pion-muon stopped neutrino-beams operating or planned to be conducted at future neutron spallation sources. One of the main goals of these neutrino beams is to measure neutrino-nucleus cross sections at low-energies.

  2. Measurement of the total flux averaged neutrino induced neutral current elastic scattering cross section with the T2K Pi-Zero detector

    NASA Astrophysics Data System (ADS)

    Ruterbories, Daniel

    Tokai-to-Kamioka (T2K) is a second generation accelerator neutrino oscillation experiment. T2K uses a high intensity proton beam produced at the Japan Proton Accelerator Research Complex (J-PARC) incident on a carbon target and focused with three magnetic horns to produce a high intensity and nearly pure muon neutrino beam with a peak energy of 600 MeV at a 2.5º axis angle. The muon neutrino beam travels 295 km across Japan to the Super Kamiokande (SK) water Cherenkov detector in the Kamioka mine. The neutrino beam is also sampled by a complex of near detectors 280 m downstream of the carbon target located both on and off the beam axis. These detectors measure the neutrino beam before neutrino oscillations occur to provide input constraints to oscillation searches using SK. The off-axis near detector, ND280, is a composite detector made up of a tracker section and a Pi-Zero detector (POD), all surrounded by an electromagnetic calorimeter. The entire detector is enclosed in a dipole magnet with a field of 0.2 T. The primary purpose of the tracker section is to measure neutrino induced charged current events characterized by the production of muons. The POD is primarily designed to detect electromagnetic showers and to measure interactions on water through the use of a removable water target. In addition to these measurements, the ND280 detector is also used to study the cross sections of neutrino interactions on the various materials in the detectors. Limited knowledge of the cross sections in this neutrino energy regime are an important source of systematic error in neutrino oscillation measurements. This thesis presents a measurement of one neutrino interaction channel in the POD, neutral current elastic scattering (NCE). In this process a neutrino elastically scatters off a proton or neutron in the target nucleus producing a proton or neutron with higher energy. The signature of this process is a single proton track. A particle identification algorithm (PID) was

  3. Neutrino-electron scattering. Progress report

    SciTech Connect

    White, D.H.

    1982-01-01

    We present here a progress report on an experiment to measure the cross section for nu/sub ..mu../e scattering at the Brookhaven AGS. A wide band focussing horn is used with a neutrino beam energy centered at 1.5 GeV. We have in hand measurements with nu/sub ..mu../ and anti nu/sub ..mu../ beams but we present preliminary data on the nu/sub ..mu../ beam running only. We also measure the reactions: nu/sub ..mu../ + n ..-->.. ..mu../sup -/ + p and nu/sub e/ + n ..-->.. e/sup -/ + p which will be used in normalization and in background estimation.

  4. Measurement of Electron Neutrino Quasielastic and Quasielasticlike Scattering on Hydrocarbon at ⟨Eν⟩=3.6 GeV

    NASA Astrophysics Data System (ADS)

    Wolcott, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Chvojka, J.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Muhlbeier, T.; Naples, D.; Nelson, J. K.; Norrick, A.; Osta, J.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Salazar, G.; Schellman, H.; Schmitz, D. W.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wospakrik, M.; Zavala, G.; Zegarra, A.; Zhang, D.; Ziemer, B. P.; Minerva Collaboration

    2016-02-01

    The first direct measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in the electron production angle, electron energy, and Q2 are presented. The ratio of the quasielastic, flux-integrated differential cross section in Q2 for νe with that of similarly selected νμ-induced events from the same exposure is used to probe assumptions that underpin conventional treatments of charged-current νe interactions used by long-baseline neutrino oscillation experiments. The data are found to be consistent with lepton universality and are well described by the predictions of the neutrino event generator GENIE.

  5. Measurement of Electron Neutrino Quasielastic and Quasielasticlike Scattering on Hydrocarbon at ⟨E_{ν}⟩=3.6  GeV.

    PubMed

    Wolcott, J; Aliaga, L; Altinok, O; Bellantoni, L; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Budd, H; Cai, T; Carneiro, M F; Chvojka, J; da Motta, H; Devan, J; Dytman, S A; Díaz, G A; Eberly, B; Felix, J; Fields, L; Fine, R; Gago, A M; Galindo, R; Gallagher, H; Ghosh, A; Golan, T; Gran, R; Harris, D A; Higuera, A; Kiveni, M; Kleykamp, J; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Marshall, C M; Martinez Caicedo, D A; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfín, J G; Mousseau, J; Muhlbeier, T; Naples, D; Nelson, J K; Norrick, A; Osta, J; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Rakotondravohitra, L; Ransome, R D; Ray, H; Ren, L; Rimal, D; Rodrigues, P A; Ruterbories, D; Salazar, G; Schellman, H; Schmitz, D W; Solano Salinas, C J; Tagg, N; Tice, B G; Valencia, E; Walton, T; Wospakrik, M; Zavala, G; Zegarra, A; Zhang, D; Ziemer, B P

    2016-02-26

    The first direct measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in the electron production angle, electron energy, and Q^{2} are presented. The ratio of the quasielastic, flux-integrated differential cross section in Q^{2} for ν_{e} with that of similarly selected ν_{μ}-induced events from the same exposure is used to probe assumptions that underpin conventional treatments of charged-current ν_{e} interactions used by long-baseline neutrino oscillation experiments. The data are found to be consistent with lepton universality and are well described by the predictions of the neutrino event generator GENIE.

  6. Nuclear Effects in Neutrino Scattering at MINERvA

    NASA Astrophysics Data System (ADS)

    Tice, Brian

    2014-09-01

    MINERvA is a neutrino cross section experiment in the NuMI beamline at Fermilab. The MINERvA detector employs fine-grained plastic scintillator (CH) for tracking and calorimetry, and is capable of reconstructing exclusive final states. The detector includes nuclear targets of carbon, iron, lead, liquid helium, and water, with which MINERvA can measure the nuclear dependence of neutrino interactions. Neutrino scattering measurements complement those done with charged leptons, because neutrino scattering directly probes axial structure and is sensitive to the deep inelastic structure function F3. In addition, precise neutrino-nucleus measurements will reduce the significant nuclear model uncertainties incurred by using heavy nuclear targets to obtain high statistics in neutrino experiments. Such nuclear effects include both changes to the interaction cross section and alterations to the final state products through their interactions in the target nucleus. These uncertainties have implications for the utilization of neutrino deep inelastic scattering data in fitting parton distribution functions and for the extraction of neutrino oscillation parameters. We present three recent results from MINERvA that address this need for better knowledge of nuclear effects in neutrino scattering. First, measurements of νμ and νμ quasielastic cross sections. Then, a measurement of charged pion production from inclusive νμ interactions. Lastly, the first measurements of inclusive νμ cross section ratios of carbon, iron, and lead to scintillator as functions of neutrino energy and Bjorken-x. MINERvA is a neutrino cross section experiment in the NuMI beamline at Fermilab. The MINERvA detector employs fine-grained plastic scintillator (CH) for tracking and calorimetry, and is capable of reconstructing exclusive final states. The detector includes nuclear targets of carbon, iron, lead, liquid helium, and water, with which MINERvA can measure the nuclear dependence of neutrino

  7. Hadronic energy flow in charged-current neutrino scattering

    NASA Astrophysics Data System (ADS)

    Kinnel, Timothy Scott

    1998-11-01

    We investigate hadronic energy flow in charged-current deep-inelastic scattering, using neutrinos of 30-600 GeV incident on a steel target with a fiducial mass of 625 tonnes. The target was instrumented with flash ADC- readout drift chambers which enabled us to measure the characteristic transverse energy depositions of the shower. In a data sample containing both neutrinos and antineutrinos, we observe /langle pT2/rangle and the transverse energy of the shower to increase with W2 and log Q2. Our observations, which are in a heretofore untested kinematic region for neutrino scattering, are consistent with QCD predictions.

  8. Optical scattering lengths in large liquid-scintillator neutrino detectors.

    PubMed

    Wurm, M; von Feilitzsch, F; Göger-Neff, M; Hofmann, M; Lachenmaier, T; Lewke, T; Marrodán Undagoitia, T; Meindl, Q; Möllenberg, R; Oberauer, L; Potzel, W; Tippmann, M; Todor, S; Traunsteiner, C; Winter, J

    2010-05-01

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  9. Optical scattering lengths in large liquid-scintillator neutrino detectors

    SciTech Connect

    Wurm, M.; Feilitzsch, F. von; Goeger-Neff, M.; Hofmann, M.; Lewke, T.; Meindl, Q.; Moellenberg, R.; Oberauer, L.; Potzel, W.; Tippmann, M.; Todor, S.; Winter, J.; Lachenmaier, T.; Traunsteiner, C.; Undagoitia, T. Marrodan

    2010-05-15

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  10. Measuring the neutrino mass using intense photon and neutrino beams

    NASA Astrophysics Data System (ADS)

    Dicus, Duane A.; Repko, Wayne W.; Vega, Roberto

    2000-11-01

    We compute the cross section for neutrino-photon scattering taking into account a neutrino mass. We explore the possibility of using intense neutrino beams, such as those available at proposed muon colliders, together with high powered lasers to probe the neutrino mass in photon-neutrino collisions.

  11. Neutrino Exclusive Charged Current Quasi-Elastic Scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Walton, Tammy

    2012-10-01

    MINERvA part 3. The MINERvA experiment will measure neutrino and antineutrino quasi-elastic scattering on helium, water, carbon, iron, and lead for neutrinos in the few GeV range. We will present an overview and status of the analysis for neutrino exclusive charged current quasi-elastic scattering on lead, iron, and carbon.

  12. Neutrino Exclusive Charged Current Quasi-Elastic Scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Walton, Tammy

    2012-03-01

    The MINERvA experiment will measure neutrino and antineutrino quasi-elastic scattering on helium, water, carbon, iron, and lead for neutrinos in the few GeV range. We will present an overview of MINERvA analysis plan for neutrino exclusive charged current quasi-elastic scattering on lead, iron, and carbon.

  13. Measurement of nuclear effects in neutrino interactions with minimal dependence on neutrino energy

    NASA Astrophysics Data System (ADS)

    Lu, X.-G.; Pickering, L.; Dolan, S.; Barr, G.; Coplowe, D.; Uchida, Y.; Wark, D.; Wascko, M. O.; Weber, A.; Yuan, T.

    2016-07-01

    We present a phenomenological study of nuclear effects in neutrino charged-current interactions, using transverse kinematic imbalances in exclusive measurements. Novel observables with minimal dependence on neutrino energy are proposed to study quasielastic scattering and especially resonance production. They should be able to provide direct constraints on nuclear effects in neutrino- and antineutrino-nucleus interactions.

  14. CosI: Coherent Neutrino Scattering with Cesium Iodide

    NASA Astrophysics Data System (ADS)

    Fields, Nicole; Collar, Juan; Hossbach, Todd; Orrell, John; Perumpilly, Gopakumar

    2014-03-01

    Coherent neutrino scattering is a process predicted by the standard model of particle physics that has not yet been observed. For low enough energy neutrinos, O (10 MeV , their scattering cross section is predicted to increase with the square of the number of neutrons in a nucleus. Several difficulties must be overcome in order to observe coherent neutrino scattering, including finding a high-intensity source of these medium-energy neutrinos, a detector with a low enough threshold, and a low enough background. The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is a convenient source of medium-energy neutrinos and has the added benefit of a neutrino source with known time structure. CsI(Na) is an inorganic scintillator with a relatively high light yield of 39,000 photons/MeV and its emission spectrum is well matched with commonly used biakali photomultiplier tubes (PMTs). Background measurements of a 2 kg CsI(Na) crystal show that these crystals can be grown and encapsulated in a radioclean way.

  15. Direct neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Weinheimer, Christian

    2013-03-01

    Direct neutrino mass experiments are complementary to searches for neutrinoless double β-decay and to analyses of cosmological data. The previous tritium beta decay experiments at Mainz and at Troitsk have achieved upper limits on the neutrino mass of about 2 eV/c2 . The KATRIN experiment under construction will improve the neutrino mass sensitivity down to 200 meV/c2 by increasing strongly the statistics and—at the same time—reducing the systematic uncertainties. Huge improvements have been made to operate the system extremely stably and at very low background rate. The latter comprises new methods to reject secondary electrons from the walls as well as to avoid and to eject electrons stored in traps. As an alternative to tritium β-decay experiments cryo-bolometers investigating the endpoint region of 187Re β-decay or the electron capture of 163Ho are being developed. This article briefly reviews the current status of the direct neutrino mass measurements.

  16. Coherent Elastic Neutrino Nucleus Scattering (CENNS) Experiment at the Fermilab Booster Neutrino Beam

    NASA Astrophysics Data System (ADS)

    Tayloe, Rex; Cenns Collaboration

    2015-04-01

    The coherent elastic neutrino-nucleus scattering (CENNS) process is important to understand supernovae, nuclear form factors, and low-energy behavior of the Standard Model. It will also become more important as a background in direct-detection dark matter experiments. The process has yet to be observed because of the low-energy detection thresholds and neutron background reduction required. Recent advances in cryogenic detector technology now make it possible. The CENNS collaboration proposes to deploy a 1-ton-scale, single-phase, liquid argon scintillation detector near the Fermilab Booster Neutrino Beam (BNB) for a first measurement. A detector near the neutrino production target at 90 degrees off-axis will observe a low-energy flux of 10-50 MeV stopped-pion neutrinos for CENNS. The details of this effort including prototype detectors and neutron background measurements will be presented.

  17. Charged current neutrino scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Ransome, R. D.; Minerva Collaboration

    2012-09-01

    MINERvA is a neutrino detector in the NuMI beamline of FNAL, with a central fully active scintillator detector and targets of iron, lead, carbon, water, and LHe upstream of the central detection region. MINERvA began operations in late 2009 with a partially compete detector and has been fully operational since early 2010. Data have been taken with both neutrino and anti-neutrino beams. The objective is to measure inclusive and exclusive cross sections for neutrino-nuclear interactions with unprecedented statistics and detail off a wide range of nuclear targets. We will present preliminary results for ratios of Pb/Fe/scintillator inclusive and charged current quasi-elastic scattering kinematic distributions.

  18. Can neutrino-electron scattering tell us whether neutrinos are Dirac or Majorana particles

    SciTech Connect

    Kayser, B.

    1988-04-01

    There has recently been interest in the possibility that neutrino-electron scattering experiments could determine whether neutrinos are Dirac or Majorana particles by providing information on their electromagnetic structure. We try to explain why studies of neutrino electromagnetic structure actually cannot distinguish between Dirac and Majorana neutrinos. 9 refs.

  19. The MINERvA Neutrino Scattering Experiment

    NASA Astrophysics Data System (ADS)

    Ransome, Ronald

    2012-10-01

    MINERvA part 1. MINERvA is a neutrino scattering experiment in the NuMI beamline at Fermilab. MINERvA began taking data in November, 2009. The detector is fully active and includes targets of helium, carbon, iron, and water upstream of the active region. We will describe the detector and its capabilities, including tracking resolution, energy resolution, and particle identification, and brief overview of physics objectives.

  20. Electromagnetic properties of massive neutrinos in low-energy elastic neutrino-electron scattering

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2017-03-01

    A thorough account of electromagnetic interactions of massive neutrinos in the theoretical formulation of low-energy elastic neutrino-electron scattering is given. The formalism of neutrino charge, magnetic, electric, and anapole form factors defined as matrices in the mass basis is employed under the assumption of three-neutrino mixing. The flavor change of neutrinos traveling from the source to the detector is taken into account and the role of the source-detector distance is inspected. The effects of neutrino flavor-transition millicharges and charge radii in the scattering experiments are pointed out.

  1. Direct neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Drexlin, G.

    2008-11-01

    Direct neutrino mass measurements are based on high precision spectroscopy studies close to the kinematic end-point of low-energy β-emitters such as 3H and 187Re. Relying only on energy-momentum conservation in β-decay, they offer the only model-independent method to measure the absolute ν-mass scale with sub-eV sensitivity. The two most sensitive detection principles, electrostatic retarding spectrometers and microbolometers, are complementary to each other, and two experiments are currently being prepared to explore ν-masses down to m(ν) = 200 meV. β-spectroscopy will thus allow to constrain the role of neutrino hot dark matter in structure formation, as well as to explore the parameter region of ν-mass scenarios with quasi-degenerate pattern. The MARE project will investigate the β-decay of 187Re with bolometers based on metallic Re and AgReO4 in a two-staged approach: in a phase-I set-up a sensitivity of m(ν) = 2 eV is expected, forming the basis for a later sub-eV phase-II. The Karlsruhe Tritium Neutrino (KATRIN) experiment is currently being set-up on the site of Tritium Laboratory at KIT. The experiment will combine an ultra-luminous windowless gaseous tritium source with a high resolution electrostatic spectrometer and offer an unprecedented precision in β-decay studies, pushing this technique to its technological limits. First KATRIN measurements with 3H after successful system integration are expected for mid-2011. This contribution gives a status report and outlook for both experiments and discusses the impact of direct ν-mass experiments on astroparticle physics.

  2. Anti-Neutrino Quasi-Elastic Scattering at MINERvA

    NASA Astrophysics Data System (ADS)

    Maher, Emily

    2012-10-01

    Quasi-elastic neutrino scattering provides a means of measuring the axial form factor of the nucleon, and is a valuable tool for determining the neutrino beam energy in oscillation experiments. There are disagreements between measurements for neutrino energies below 1 GeV on scintillator and those at higher energies. MINERvA provides a bridge between the two regimes. Preliminary results for charge current quasi-elastic scattering results for anti-neutrinos (νμ+ p ->&+circ;+ n) on scintillator will be presented.

  3. Neutrino flux predictions for cross section measurements

    SciTech Connect

    Hartz, Mark

    2015-05-15

    Experiments that measure neutrino interaction cross sections using accelerator neutrino sources require a prediction of the neutrino flux to extract the interaction cross section from the measured neutrino interaction rate. This article summarizes methods of estimating the neutrino flux using in-situ and ex-situ measurements. The application of these methods by current and recent experiments is discussed.

  4. Neutrino-induced reactions and neutrino scattering with nuclei in low and high neutrino energy

    SciTech Connect

    Cheoun, Myung-Ki Ha, Eunja; Yang, Ghil-Seok; Kim, K. S.; Kajino, T.

    2016-06-21

    We reviewed present status regarding theoretical approaches for neutrino-induced reactions and neutrino scattering. With a short introduction of relevant data, our recent calculations by distorted-wave Born approximation (DWBA) for quasielastic region are presented for MiniBooNE data. We also discussed that one step-process estimated by the DWBA is comparable to the two-step process, which has been usually used in the neutrino-nucleosynthesis. For much higher energy neutrino data, such as NOMAD data, elementary process approach was shown to be useful instead of using complicated nuclear models. But, in the low energy region, detailed nuclear structure model, such as QRPA and shell model, turn out to be inescapable to explain the reaction data.

  5. Measurement of Muon Neutrino Quasielastic Scattering on a Hydrocarbon Target at Eν~3.5 GeV

    DOE PAGES

    Fiorentini, G. A.; Schmitz, D. W.; Rodrigues, P. A.; ...

    2013-07-11

    We report a study of νμ charged-current quasielastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a μ⁻ and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross section, dσ/dQ², and study the low energy particle content of the final state. Deviations are found between the measured dσ/dQ² and the expectations of a model of independent nucleons in a relativistic Fermi gas. We also observe an excess of energy near the vertex consistent with multiple protons inmore » the final state.« less

  6. Direct neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Thümmler, T.

    2011-07-01

    The determination of the neutrino rest mass plays an important role at the intersections of cosmology, particle physics and astroparticle physics. This topic is currently being addressed by two complementary approaches in laboratory experiments. Neutrinoless double beta decay experiments probe whether neutrinos are Majorana particles and determine an effective neutrino mass value. Single beta decay experiments such as KATRIN and MARE investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Owing to neutrino flavour mixing, the neutrino mass parameter appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. Applying an ultra-luminous molecular windowless gaseous tritium source and an integrating high-resolution spectrometer of MAC-E filter type, it allows β-spectroscopy close to the T 2 end-point with unprecedented precision and will reach a sensitivity of 200 meV/ c 2 (90% C.L.) on the neutrino rest mass.

  7. Background studies for the MINER Coherent Neutrino Scattering reactor experiment

    NASA Astrophysics Data System (ADS)

    Agnolet, G.; Baker, W.; Barker, D.; Beck, R.; Carroll, T. J.; Cesar, J.; Cushman, P.; Dent, J. B.; De Rijck, S.; Dutta, B.; Flanagan, W.; Fritts, M.; Gao, Y.; Harris, H. R.; Hays, C. C.; Iyer, V.; Jastram, A.; Kadribasic, F.; Kennedy, A.; Kubik, A.; Lang, K.; Mahapatra, R.; Mandic, V.; Marianno, C.; Martin, R. D.; Mast, N.; McDeavitt, S.; Mirabolfathi, N.; Mohanty, B.; Nakajima, K.; Newhouse, J.; Newstead, J. L.; Ogawa, I.; Phan, D.; Proga, M.; Rajput, A.; Roberts, A.; Rogachev, G.; Salazar, R.; Sander, J.; Senapati, K.; Shimada, M.; Soubasis, B.; Strigari, L.; Tamagawa, Y.; Teizer, W.; Vermaak, J. I. C.; Villano, A. N.; Walker, J.; Webb, B.; Wetzel, Z.; Yadavalli, S. A.

    2017-05-01

    The proposed Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at the Nuclear Science Center at Texas A&M University will search for coherent elastic neutrino-nucleus scattering within close proximity (about 2 m) of a 1 MW TRIGA nuclear reactor core using low threshold, cryogenic germanium and silicon detectors. Given the Standard Model cross section of the scattering process and the proposed experimental proximity to the reactor, as many as 5-20 events/kg/day are expected. We discuss the status of preliminary measurements to characterize the main backgrounds for the proposed experiment. Both in situ measurements at the experimental site and simulations using the MCNP and GEANT4 codes are described. A strategy for monitoring backgrounds during data taking is briefly discussed.

  8. Theory and phenomenology of coherent neutrino-nucleus scattering

    SciTech Connect

    McLaughlin, Gail

    2015-07-15

    We review the theory and phenomenology of coherent elastic neutrino-nucleus scattering (CEνNS). After a brief introduction, we summarize the places where CEνNS is already in use and then turn to future physics opportunities from CEνNS. CEνNS has been proposed as a way to limit or discover beyond the standard model physics, measure the nuclear-neutron radius and constrain the Weinberg angle.

  9. Nuclear PDFs from neutrino deep inelastic scattering

    SciTech Connect

    I. Schienbein; J. Y. Yu; C. Keppel; J. G. Morfin; F. Olness; J.F. Owens

    2007-11-13

    We study nuclear effects in charged current deep inelastic neutrino--iron scattering in the framework of a chi^2-analysis of parton distribution functions. We extract a set of iron PDFs and show that under reasonable assumptions it is possible to constrain the valence, light sea and strange quark distributions. We compare our results with nuclear parton distribution functions from the literature and find good agreement. Our iron PDFs are used to compute nuclear correction factors which are required in global analyses of free nucleon PDFs.

  10. Neutrino-atom collisions

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-05-01

    Neutrino-atom scattering provides a sensitive tool for probing nonstandard interactions of massive neutrinos in laboratory measurements. The ionization channel of this collision process plays an important role in experiments searching for neutrino magnetic moments. We discuss some theoretical aspects of atomic ionization by massive neutrinos. We also outline possible manifestations of neutrino electromagnetic properties in coherent elastic neutrino-nucleus scattering.

  11. Measuring neutrino-nucleus interactions with MINERνA

    SciTech Connect

    Rodrigues, P. A.

    2015-07-15

    We present results from the MINERνA experiment for neutrino-nucleus scattering in the few-GeV energy region. These measurements cover a range of processes that must be modeled correctly in neutrino oscillation experiments, and in which recent results from other experiments have suggested deficiencies in the models currently used.

  12. Atmospheric neutrinos in ice and measurement of neutrino oscillation parameters

    SciTech Connect

    Fernandez-Martinez, Enrique; Giordano, Gerardo; Mocioiu, Irina; Mena, Olga

    2010-11-01

    The main goal of the IceCube Deep Core array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show that the very high statistics atmospheric neutrino data can be used to obtain precise measurements of the main oscillation parameters.

  13. Proposed geological solar neutrino measurement

    SciTech Connect

    Cowan, G.A.; Haxton, W.C.

    1982-01-01

    It may be possible to measure the boron-8 solar neutrino flux, averaged over the past several million years, from the concentration of technetium-98 in molybdenum-rich ore. This geochemical experiment could provide the first test of nonstandard solar models that suggest a relation between the chlorine-37 solar neutrino puzzle and the most recent glacial epoch. The necessary conditions for achieving a meaningful measurement are identified and discussed.

  14. Direct measurements of neutrino mass

    SciTech Connect

    Robertson, R.G.H.

    1991-01-01

    Some recent developments in the experimental search for neutrino mass are discussed. New data from Los Alamos on the electron neutrino mass as measured in tritium beta decay give an upper limit of 9.3 eV at the 95% confidence level. This result is not consistent with the long-standing ITEP result of 26(5) eV within a model-independent'' range of 17 to 40 eV. It now appears that the electron neutrino is not sufficiently massive to close the universe by itself. Hime and Jelley report finding new evidence for a 17-keV neutrino in the {Beta} decay of {sup 35}S and {sup 63}Ni. Many other experiments are being reported and the situation is still unresolved. 56 refs., 1 fig., 3 tabs.

  15. A letter of intent for a neutrino scattering experiment on the booster neutrino meanline: FINeSSE

    SciTech Connect

    Fleming, B.T.; Tayloe, R.; /Indiana U. /Yale U.

    2005-03-01

    The experiment described in this Letter of Intent provides a decisive measurement of {Delta}s, the spin of the nucleon carried by strange quarks. This is crucial as, after more than thirty years of study, the spin contribution of strange quarks to the nucleon is still not understood. The interpretation of {Delta}s measurements from inclusive Deep Inelastic Scattering (DIS) experiments using charged leptons suffers from two questionable techniques; an assumption of SU(3)-flavor symmetry, and an extrapolation into unmeasured kinematic regions, both of which provide ample room for uncertain theoretical errors in the results. The results of recent semi-inclusive DIS data from HERMES paint a somewhat different picture of the contribution of strange quarks to the nucleon spin than do the inclusive results, but since HERMES does not make use of either of the above-mentioned techniques, then the results are somewhat incomparable. What is required is a measurement directly probing the spin contribution of the strange quarks in the nucleon. Neutrino experiments provide a theoretically clean and robust method of determining {Delta}s by comparing the neutral current interaction, which is isoscalar plus isovector, to the charged current interaction, which is strictly isovector. A past experiment, E734, performed at Brookhaven National Laboratory, has pioneered this effort. Building on what they have learned, we present an experiment which achieves a measurement to {+-} 0.025 using neutrino scattering, and {+-} 0.04 using anti-neutrino scattering, significantly better than past measurements. The combination of the neutrino and anti-neutrino data, when combined with the results of the parity-violating electron-nucleon scattering data, will produce the most significant result for {Delta}s. This experiment can also measure neutrino cross sections in the energy range required for accelerator-based precision oscillation measurements. Accurate measurements of cross sections have been

  16. Nuclear Effects in Neutrino-Nucleus Interactions and the MINERvA Neutrino Nucleus Scattering Program

    NASA Astrophysics Data System (ADS)

    Morfín, Jorge G.

    2011-09-01

    Nuclear effects of charged current deep inelastic neutrino-iron scattering have been studied in the frame-work of a χ2 analysis of parton distribution functions (PDFs)1. A set of iron PDFs have been extracted which are then used to compute xBj-dependent and Q2-dependent nuclear correction factors for iron structure functions which are required in global analyses of free nucleon PDFs. Upon comparing our results with nuclear correction factors from neutrino-nucleus scattering models and correction factors for l±-iron scattering we find that, except for very high xBj, our correction factors differ in both shape and magnitude from the correction factors of the models and charged-lepton scattering. The MINERvA neutrino-nucleus scattering experiment at Fermilab, will systematically study neutrino nuclear effects off of He, C, Fe and Pb for a more thorough A-dependent study of nuclear PDFs and these correction factors.

  17. Muon Neutrino Disappearance Measurement at MINOS+

    NASA Astrophysics Data System (ADS)

    Carroll, Thomas; Minos+ Collaboration

    2017-01-01

    The MINOS experiment ran from 2003 until 2012 and produced some of the best precision measurements of the atmospheric neutrino oscillation parameters Δm322 and θ23 using muon neutrino disappearance of beam and atmospheric neutrinos and electron neutrino appearance of beam neutrinos. The MINOS+ experiment succeeded MINOS in September 2013. For almost three years MINOS+ collected data from the Medium Energy NuMI neutrino beam at Fermilab. Results of the muon neutrino disappearance analysis from the first two years of MINOS+ data will be presented. These results will be compared to and combined with the MINOS measurement.

  18. Precision Solar Neutrino Measurements with the Sudbury Neutrino Observatory

    SciTech Connect

    Oblath, Noah

    2007-10-26

    The Sudbury Neutrino Observatory (SNO) is the first experiment to measure the total flux of active, high-energy neutrinos from the sun. Results from SNO have solved the long-standing 'Solar Neutrino Problem' by demonstrating that neutrinos change flavor. SNO measured the total neutrino flux with the neutral-current interaction of solar neutrinos with 1000 tonnes of D{sub 2}O. In the first two phases of the experiment we detected the neutron from that interaction by capture on deuterium and capture on chlorine, respectively. In the third phase an array of {sup 3}He proportional counters was deployed in the detector. This allows a measurement of the neutral-current neutrons that is independent of the Cherenkov light detected by the PMT array. We are currently developing a unique, detailed simulation of the current pulses from the proportional-counter array that will be used to help distinguish signal and background pulses.

  19. Quasi-Elastic Scattering with Neutrinos in MINERvA

    NASA Astrophysics Data System (ADS)

    Osta, Jyotsna; Hurtado, Kenyi; Minerva Collaboration

    2014-09-01

    MINERvA is a few GeV neutrino-nucleus scattering experiment designed to study low energy neutrino interactions both in support of neutrino oscillation experiments as well as a pure weak probe of the nuclear medium. The experiment uses a fine-grained, high resolution detector. The active region is composed of plastic scintillator with additional targets of helium, carbon, iron, lead and water placed upstream of the active region. We present preliminary results from the double differential cross section analysis that aims to study quasi-elastic scattering of neutrinos in the phase space of the muon transverse and longitudinal momenta. This analysis uses the low energy neutrino dataset recorded from November 2009 to April 2012.

  20. Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Capone, A.; Cârloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fehn, K.; Fermani, P.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Hallewell, G.; Hamal, M.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Petrovic, J.; Piattelli, P.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Vallage, B.; Vallée, C.; van Elewyck, V.; Vecchi, M.; Vernin, P.; Visser, E.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration

    2012-08-01

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximal mixing, a mass difference of Δ m322 = (3.1 ± 0.9) ṡ10-3eV2 is obtained, in good agreement with the world average value.

  1. Low-energy neutral-current neutrino scattering on {sup 128,130}Te isotopes

    SciTech Connect

    Tsakstara, V.; Kosmas, T. S.

    2011-05-15

    Differential, total, and cumulative cross section calculations for neutral current neutrino scattering on {sup 128,130}Te isotopes are performed in the context of the quasiparticle random phase approximation by utilizing realistic two-nucleon forces. These isotopes are the main contents of detectors of ongoing experiments with multiple neutrino physics goals (COBRA and CUORE at Gran Sasso), including potential low-energy astrophysical neutrino (solar, supernova, geoneutrinos) detection. The incoming neutrino energy range adopted in our calculations ({epsilon}{sub {nu}{<=}1}00 MeV) covers the low-energy {beta}-beam neutrinos and the pion-muon stopped neutrino beams existing or planned to be conducted at future neutron spallation sources. The aim of these facilities is to measure neutrino-nucleus cross sections at low and intermediate neutrino energies with the hope of shedding light on open problems in neutrino-induced reactions on nuclei and neutrino astrophysics. Such probes motivate theoretical studies on weak responses of various nuclear systems; thus the evaluated cross sections may be useful in this direction.

  2. Effects of inelastic neutrino-nucleus scattering on supernova dynamics and radiated neutrino spectra.

    PubMed

    Langanke, K; Martínez-Pinedo, G; Müller, B; Janka, H-Th; Marek, A; Hix, W R; Juodagalvis, A; Sampaio, J M

    2008-01-11

    Based on the shell model for Gamow-Teller and the random phase approximation for forbidden transitions, we calculate cross sections for inelastic neutrino-nucleus scattering (INNS) under supernova (SN) conditions, assuming a matter composition given by nuclear statistical equilibrium. The cross sections are incorporated into state-of-the-art stellar core-collapse simulations with detailed energy-dependent neutrino transport. While no significant effect on the SN dynamics is observed, INNS increases the neutrino opacities noticeably and strongly reduces the high-energy tail of the neutrino spectrum emitted in the neutrino burst at shock breakout. Relatedly the expected event rates for the observation of such neutrinos by earthbound detectors are reduced by up to about 60%.

  3. Effects of Inelastic Neutrino-Nucleus Scattering on Supernova Dynamics and Radiated Neutrino Spectra

    SciTech Connect

    Langanke, K.; Martinez-Pinedo, G.; Mueller, B.; Janka, H.-Th.; Marek, A.; Hix, W. R.; Juodagalvis, A.; Sampaio, J. M.

    2008-01-11

    Based on the shell model for Gamow-Teller and the random phase approximation for forbidden transitions, we calculate cross sections for inelastic neutrino-nucleus scattering (INNS) under supernova (SN) conditions, assuming a matter composition given by nuclear statistical equilibrium. The cross sections are incorporated into state-of-the-art stellar core-collapse simulations with detailed energy-dependent neutrino transport. While no significant effect on the SN dynamics is observed, INNS increases the neutrino opacities noticeably and strongly reduces the high-energy tail of the neutrino spectrum emitted in the neutrino burst at shock breakout. Relatedly the expected event rates for the observation of such neutrinos by earthbound detectors are reduced by up to about 60%.

  4. Anti-Neutrino Quasi-Elastic Scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Chvojka, Jesse; Minerva Collaboration

    2011-04-01

    We present recent measurements of anti-neutrino quasi-elastic scattering (nubar_mu+p- >mu+n) at energies of a few GeV which is an important interaction channel and energy range for measuring leptonic CP violation with neutrino oscillation. The interactions were observed in the NuMI beam at Fermilab by the MINERvA detector. We discuss sample selection and reconstruction techniques and show data and simulation comparisons.

  5. Measurements of The Neutrino Flux Using Fine-Grained Tracker

    NASA Astrophysics Data System (ADS)

    Tian, Xinchun; Mishra, Sanjib; Petti, Roberto; Duyang, Hongyue; LBNE Collaboration

    2015-04-01

    The reference design of the near detector for the LBNE/F experiment is a high-resolution Fine-Grained Tracker (FGT) capable of precisely measuring all four species of neutrinos: νμ, νe, νμ and νe. The goals of the FGT is to constrain the systematic errors, below the corresponding statistical error in the far detector, for all oscillation studies; and to conduct a panoply of precision measurements and searches in neutrino physics. We present sensitivity studies - critical to constraining the systematics in oscillation searches - of measurements of the absolute and relative neutrino flux using the various techniques: 1) neutrino electron NC (CC) scattering, 2) νμ proton QE scattering, 3) Coherent ρ production for absolute flux and 4) Low- ν method for relative flux.

  6. Neutrino scattering rates in neutron star matter with {delta} isobars

    SciTech Connect

    Chen Yanjun; Guo Hua; Liu Yuxin

    2007-03-15

    We take the {delta}-isobar degrees of freedom into account in neutron star matter and evaluate their contributions to neutrino scattering cross sections and mean free paths. The neutron star matter is described by means of an effective hadronic model in the relativistic mean-field approximation. It is found that {delta} isobars may be present in neutron stars. The electron chemical potential does not decrease and the neutrino abundance does not increase with the increase of the density when neutrinos are trapped in the matter with {delta} isobars. The large vector coupling constant between the {delta}{sup -} and neutrino and the high spin of the {delta} influence significantly the neutrino scattering cross section and lead the contribution of the {delta}{sup -} to the dominance of the scattering rates. In neutrino-trapped case, the presence of {delta}s causes the neutrino mean free path to decrease drastically compared to that in the matter in which baryons are only nucleons.

  7. Anti-Neutrino Charged Current Quasi-Elastic Scattering in MINER$\

    SciTech Connect

    Chvojka, Jesse John

    2012-01-01

    The phenomenon of neutrino oscillation is becoming increasingly understood with results from accelerator-based and reactor-based experiments, but unanswered questions remain. The proper ordering of the neutrino mass eigenstates that compose the neutrino avor eigenstates is not completely known. We have yet to detect CP violation in neutrino mixing, which if present could help explain the asymmetry between matter and anti-matter in the universe. We also have not resolved whether sterile neutrinos, which do not interact in any Standard Model interaction, exist. Accelerator-based experiments appear to be the most promising candidates for resolving these questions; however, the ability of present and future experiments to provide answers is likely to be limited by systematic errors. A significant source of this systematic error comes from limitations in our knowledge of neutrino-nucleus interactions. Errors on cross-sections for such interactions are large, existing data is sometimes contradictory, and knowledge of nuclear effects is incomplete. One type of neutrino interaction of particular interest is charged current quasi-elastic (CCQE) scattering, which yields a final state consisting of a charged lepton and nucleon. This process, which is the dominant interaction near energies of 1 GeV, is of great utility to neutrino oscillation experiments since the incoming neutrino energy and the square of the momentum transferred to the final state nucleon, Q2, can be reconstructed using the final state lepton kinematics. To address the uncertainty in our knowledge of neutrino interactions, many experiments have begun making dedicated measurements. In particular, the MINER A experiment is studying neutrino-nucleus interactions in the few GeV region. MINERvA is a fine-grained, high precision, high statistics neutrino scattering experiment that will greatly improve our understanding of neutrino cross-sections and nuclear effects that affect the final state particles

  8. Neutrino-nucleon cross section measurements in NOMAD

    NASA Astrophysics Data System (ADS)

    Wu, Qun

    The NOMAD (Neutrino Oscillation MAgnetic Detector) experiment, using the SPS (Super Proton Syncrotron) neutrino beam (1 GeV < E nu < 200 GeV) at CERN (European Organization for Nuclear Research), has collected more than 1.7 million neutrino induced charged and neutral current (CC and NC) events. This data is the largest high resolution neutrino nucleon scattering data to date and is ideal for precision measurements and searches in neutrino-physics. This thesis presents the precise measurement of the inclusive neutrino CC cross section in 2.5 GeV < E nu < 150 GeV region. The linear dependence of the inclusive CC cross section ( snCC ) versus the incoming neutrino energy (Enu ) is observed in the high energy region of 30 GeV < E nu < 150 GeV. Especially, the measurement in 2.5 GeV < Enu < 30 GeV region provides the first precise determination of snCC . The significant deviation from the linear dependence for snCC versus neutrino energy (Enu) is determined in the energy region less than 20 GeV. This thesis also presents an empirical measurement of NC/CC ratio dependence on hadronic energy in 2.5 GeV < EHad < 30 GeV. Likelihood techniques exploiting full event kinematics were developed. It gives the best neutral current and charged current separation in a traditional neutrino-nucleon scattering experiment. This measurement is going to give a better understanding of the neutral current background in current and future neutrino oscillation experiments.

  9. The State of the Art of Neutrino Cross Section Measurements

    SciTech Connect

    Harris, Deborah A.

    2015-06-08

    The study of neutrino interactions has recently experienced a renaissance, motivated by the fact that neutrino oscillation experiments depend critically on an accurate models of neutrino interactions. These models have to predict not only the signal and background populations that oscillation experiments see at near and far detectors, but they must also predict how the neutrino's energy which enters a nucleus gets transferred to energies of the particles that leave the nucleus after the neutrino interacts. Over the past year there have been a number of new results on many different neutrino (and antineutrino) interaction channels using several different target nuclei. These results are often not in agreement with predictions extraolated from charged lepton scattering measurements, or even from predictions anchored to neutrino measurements on deuterium. These new measurements are starting to give the community the handles needed to improve the theoretical description of neutrino interactions, which ultimately pave the way for precision oscillation measurements. This report briefly summarizes recent results and points out where those results differ from the predictions based on current models.

  10. Neutrino-Nucleon Deep Inelastic Scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Norrick, Anne; Minerva Collaboration

    2015-04-01

    Neutrino-Nucleon Deep Inelastic Scattering (DIS) events provide a probe into the structure of the nucleus that cannot be accessed via charged lepton-nucleon interactions. The MINERvA experiment is stationed in the Neutrinos from the Main Injector (NuMI) beam line at Fermi National Accelerator Laboratory. The projected sensitivity of nuclear structure function analyses using MINERvA's suite of nuclear targets (C, CH, Fe and Pb) in the upgraded 6 GeV neutrino energy NuMI beam will be explored, and their impact discussed.

  11. Scattering of low-energy neutrinos on atomic shells

    NASA Astrophysics Data System (ADS)

    Babič, Andrej; Šimkovic, Fedor

    2015-10-01

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  12. Scattering of low-energy neutrinos on atomic shells

    SciTech Connect

    Babič, Andrej; Šimkovic, Fedor

    2015-10-28

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  13. Recent advances and open questions in neutrino-induced quasi-elastic scattering and single photon production

    NASA Astrophysics Data System (ADS)

    Garvey, G. T.; Harris, D. A.; Tanaka, H. A.; Tayloe, R.; Zeller, G. P.

    2015-06-01

    The study of neutrino-nucleus interactions has recently seen rapid development with a new generation of accelerator-based neutrino experiments employing medium and heavy nuclear targets for the study of neutrino oscillations. A few unexpected results in the study of quasi-elastic scattering and single photon production have spurred a revisiting of the underlying nuclear physics and connections to electron-nucleus scattering. A thorough understanding and resolution of these issues is essential for future progress in the study of neutrino oscillations. A recent workshop hosted by the Institute of Nuclear Theory at the University of Washington (INT-13-54W) examined experimental and theoretical developments in neutrino-nucleus interactions and related measurements from electron and pion scattering. We summarize the discussions at the workshop pertaining to the aforementioned issues in quasi-elastic scattering and single photon production, particularly where there was consensus on the highest priority issues to be resolved and the path towards resolving them.

  14. The MINERvA Neutrino Scattering Experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Schmitz, David W.

    2011-11-01

    The MINERνA experiment at Fermilab is aimed at precision measurements of neutrino interactions in nuclei for energies up to a few GeV. MINERνA makes use of a fine-grained, fully active detector design and a range of nuclear target materials. The experiment began taking data in the NuMI neutrino beam at Fermilab in late 2009 and will collect data in both the neutrino and antineutrino configurations of the beamline.

  15. Measuring neutrino oscillation parameters using $\

    SciTech Connect

    Backhouse, Christopher James

    2011-01-01

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δmatm2 and sin2atm). The oscillation signal consists of an energy-dependent deficit of vμ interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the vμ-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the vμ-disappearance analysis, incorporating this new estimator were: Δm2 = 2.32-0.08+0.12 x 10-3 eV2, sin 2 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$μ beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36-0.40+0.46(stat.) ± 0.06(syst.)) x 10-3eV2, sin2 2$\\bar{θ}$ = 0.86-0.12_0.11

  16. Measuring supernova neutrino temperatures using lead perchlorate

    SciTech Connect

    Elliott, S. R.

    2000-12-01

    Neutrino interactions with lead produce neutrons in numbers that depend on neutrino energy and type. A detector based on lead perchlorate, for example, would be able to measure the energy deposited by electrons and gammas in coincidence with the number of neutrons produced. Sorting the electron energy spectra by the number of coincident neutrons permits the identification of the neutrino type that induced the reaction. This separation allows an analysis which can determine the temperatures of {nu}{sub e} and {bar {nu}}{sub e} from a supernova in one experiment. The neutrino reaction signatures of lead perchlorate, and the fundamentals of using this material as a neutrino detector, are described.

  17. Measuring supernova neutrino temperatures using lead perchlorate

    NASA Astrophysics Data System (ADS)

    Elliott, S. R.

    2000-12-01

    Neutrino interactions with lead produce neutrons in numbers that depend on neutrino energy and type. A detector based on lead perchlorate, for example, would be able to measure the energy deposited by electrons and gammas in coincidence with the number of neutrons produced. Sorting the electron energy spectra by the number of coincident neutrons permits the identification of the neutrino type that induced the reaction. This separation allows an analysis which can determine the temperatures of νe and ν¯e from a supernova in one experiment. The neutrino reaction signatures of lead perchlorate, and the fundamentals of using this material as a neutrino detector, are described.

  18. Measurement of the Muon Neutrino Inclusive Charged Current Cross Section on Iron using the MINOS Detector

    SciTech Connect

    Loiacono, Laura Jean

    2010-05-01

    The Neutrinos at the Main Injector (NuMI) facility at Fermi National Accelerator Laboratory (FNAL) produces an intense muon neutrino beam used by the Main Injector Neutrino Oscillation Search (MINOS), a neutrino oscillation experiment, and the Main INjector ExpeRiment v-A, (MINERv A), a neutrino interaction experiment. Absolute neutrino cross sections are determined via σv = N vv , where the numerator is the measured number of neutrino interactions in the MINOS Detector and the denominator is the flux of incident neutrinos. Many past neutrino experiments have measured relative cross sections due to a lack of precise measurements of the incident neutrino flux, normalizing to better established reaction processes, such as quasielastic neutrino-nucleon scattering. But recent measurements of neutrino interactions on nuclear targets have brought to light questions about our understanding of nuclear effects in neutrino interactions. In this thesis the vμ inclusive charged current cross section on iron is measured using the MINOS Detector. The MINOS detector consists of alternating planes of steel and scintillator. The MINOS detector is optimized to measure muons produced in charged current vμ interactions. Along with muons, these interactions produce hadronic showers. The neutrino energy is measured from the total energy the particles deposit in the detector. The incident neutrino flux is measured using the muons produced alongside the neutrinos in meson decay. Three ionization chamber monitors located in the downstream portion of the NuMI beamline are used to measure the muon flux and thereby infer the neutrino flux by relation to the underlying pion and kaon meson flux. This thesis describes the muon flux instrumentation in the NuMI beam, its operation over the two year duration of this measurement, and the techniques used to derive the neutrino flux.

  19. Neutrinos

    NASA Astrophysics Data System (ADS)

    Murthy, P. V. R.

    The astrophysics and high energy physics of neutrinos are discussed. The former includes the topics of solar neutrinos, gravitational stellar collapses, neutrinos at high and superhigh energies, and DUMAND and related topics. Experimental results from the Homestake mine chlorine-37 experiment on solar neutrinos are shown. The solar neutrino puzzle is assessed, the economic aspects of DUMAND are discussed, and expectations for related projects are examined. For high energy physics, the discussion includes DUMAND and related projects, neutrino oscillations, the resolution of the puzzles of the measurement of the stopping muon flux and of the cosmic ray event time intervals, and the proton decay experiments.

  20. Electroweak radiative corrections to neutrino-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Park, Kwangwoo

    The main subject of this thesis is to study the impact of electroweak O (alpha) corrections on neutrino-nucleon scattering processes, in particular on the extraction of electroweak parameters at the NuTeV experiment. The Standard Model (SM) represents the best current understanding of electroweak and strong interactions of elementary particles. In recent years it has been impressively confirmed experimentally through the precise determination of W and Z boson properties at the CERN LEP and the Stanford Linear e+e - colliders, and the discovery of the top quark at the Fermilab Tevatron pp collider. The W boson mass (MW) is one of the fundamental parameters in electroweak theory. A precise measurement of MW does not only provide a further precisely known SM input parameter, but significantly improves the indirect limit on the Higgs-boson mass obtained by comparing SM predictions with electroweak precision data. MW is measured directly at the CERN LEP2 e+e- and the Fermilab Tevatron pp colliders. A measurement of MW can also be extracted from a measurement of the sine squared of the weak mixing angle, i.e. sin 2 thetaW, via the well-known relation between the W and Z boson mass, M2W=M2Z (1 - sin2 thetaW). The NuTeV collaboration [20] extracts sin2 theta W, and thus MW, from the ratio of neutral and charged-current neutrino and anti-neutrino cross sections. Their result differs from direct measurements performed at LEP2 and the Fermilab Tevatron by about 3sigma. Much effort both experimental and theoretical has gone into understanding this discrepancy. These efforts include QCD corrections, parton distribution functions, and nuclear structure [21]. However, the effect of electroweak radiative corrections has not been fully studied yet. In the extraction of MW from NuTeV data, only part of the electroweak corrections have been included [20]. Although the complete calculation of these corrections is available in [17] and [18], their impact on the NuTeV measurement of MW

  1. Possibility of measuring Adler angles in charged current single pion neutrino-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Sánchez, F.

    2016-05-01

    Uncertainties in modeling neutrino-nucleus interactions are a major contribution to systematic errors in long-baseline neutrino oscillation experiments. Accurate modeling of neutrino interactions requires additional experimental observables such as the Adler angles which carry information about the polarization of the Δ resonance and the interference with nonresonant single pion production. The Adler angles were measured with limited statistics in bubble chamber neutrino experiments as well as in electron-proton scattering experiments. We discuss the viability of measuring these angles in neutrino interactions with nuclei.

  2. Measuring anisotropies in the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Lisanti, Mariangela; Safdi, Benjamin R.; Tully, Christopher G.

    2014-10-01

    Neutrino capture on tritium has emerged as a promising method for detecting the cosmic neutrino background (C ν B ). We show that relic neutrinos are captured most readily when their spin vectors are antialigned with the polarization axis of the tritium nuclei and when they approach along the direction of polarization. As a result, C ν B observatories may measure anisotropies in the cosmic neutrino velocity and spin distributions by polarizing the tritium targets. A small dipole anisotropy in the C ν B is expected due to the peculiar velocity of the lab frame with respect to the cosmic frame and due to late-time gravitational effects. The PTOLEMY experiment, a tritium observatory currently under construction, should observe a nearly isotropic background. This would serve as a strong test of the cosmological origin of a potential signal. The polarized-target measurements may also constrain nonstandard neutrino interactions that would induce larger anisotropies and help discriminate between Majorana versus Dirac neutrinos.

  3. Experimental Measurement of Low Energy Neutrino Interactions

    SciTech Connect

    Scholberg, Kate

    2011-11-23

    Neutrino interactions in the few to few tens of MeV range are of importance for several physics topics, including solar, supernova and reactor neutrinos, as well as future proposed oscillation and Standard Model test experiments. Although interaction cross-sections for some simple targets are well understood, very little experimental data exist for interactions with nuclei. This talk will discuss the motivation for measuring low energy neutrino interactions, the state of knowledge, and possible future strategies.

  4. The measurement of the solar neutrino flux with the sudbury neutrino observatory's neutron capture detector

    NASA Astrophysics Data System (ADS)

    Jamieson, B.

    2008-06-01

    Phase III of the Sudbury Neutrino Observatory (SNO) experiment began after the installation of the Neutral-Current Detector (NCD) array in the D2O-filled acrylic vessel. This unique phase provides a measurement of the Neutral-Current (NC) flux that can be statistically and systematically separated from the Elastic-Scattering (ES) and Charged-Current (CC) fluxes by simply counting the number of solar-induced dissociated neutrons captured in the NCD array. The measurement with NCDs will provide increased precision on the CC and NC fluxes, and thus on the solar neutrino mixing parameters. This poster presents the status of the analysis of the SNO phase III solar neutrino fluxes.

  5. Meson Productions in Neutrino-Nucleon Scattering

    NASA Astrophysics Data System (ADS)

    Nakamura, Satoshi X.

    A dynamical coupled-channels (DCC) model for neutrino-nucleon reactions in the resonance region is developed. This is an extension of the DCC model that we have previously developed through an analysis of πN, γp → πN, ηN, KΛ, KΣ reaction data for W ≤ 2.1 GeV. The vector current form factors up to Q2 ≤ 3.0 (GeV/c)2 are determined by analyzing electron-induced reaction data for both proton and neutron targets. Within the DCC model, axial-current matrix elements and the πN interactions are related by the Partially Conserved Axial Current (PCAC). As a result, the interference pattern between resonant and non-resonant amplitudes is uniquely fixed. We find that neutrino-induced single-pion production cross sections from the DCC model are consistent with available data. Double-pion production cross sections in the resonance region are also calculated, for the first time, with relevant resonance contributions and channel couplings.

  6. Sensitivity to Z -prime and nonstandard neutrino interactions from ultralow threshold neutrino-nucleus coherent scattering

    NASA Astrophysics Data System (ADS)

    Dutta, Bhaskar; Mahapatra, Rupak; Strigari, Louis E.; Walker, Joel W.

    2016-01-01

    We discuss prospects for probing Z -prime and nonstandard neutrino interactions using neutrino-nucleus coherent scattering with ultralow energy (˜10 eV ) threshold Si and Ge detectors. The analysis is performed in the context of a specific and contemporary reactor-based experimental proposal, developed in cooperation with the Nuclear Science Center at Texas A&M University, and referencing available technology based upon economical and scalable detector arrays. For expected exposures, we show that sensitivity to the Z -prime mass is on the order of several TeV and is complementary to the LHC search with low-mass detectors in the near term. This technology is also shown to provide sensitivity to the neutrino magnetic moment, at a level that surpasses terrestrial limits, and is competitive with more stringent astrophysical bounds. We demonstrate the benefits of combining silicon and germanium detectors for distinguishing between classes of models of new physics and for suppressing correlated systematic uncertainties.

  7. Neutrino scattering on atomic electrons in searches for the neutrino magnetic moment.

    PubMed

    Voloshin, M B

    2010-11-12

    The scattering of a neutrino on atomic electrons is considered in the situation where the energy transferred to the electrons is comparable to the characteristic atomic energies, as relevant to the current experimental search for the neutrino magnetic moment. The process is induced by the standard electroweak interaction as well as by the possible neutrino magnetic moment. Quantum-mechanical sum rules are derived for the inclusive cross section at a fixed energy deposited in the atomic system, and it is shown that the differential over the energy transfer cross section is given, modulo very small corrections, by the same expression as for free electrons, once all possible final states of the electronic system are taken into account. Thus, the atomic effects effectively cancel in the inclusive process.

  8. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    NASA Astrophysics Data System (ADS)

    Wolcott, Jeremy

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter for electron neutrino appearance oscillation experiments. Current experiments typically begin with the muon neutrino cross section and apply theoretical corrections to obtain a prediction for the electron neutrino cross section. However, at present no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments exists. We present the cross sections for a CCQE-like process determined using the MINERvA detector, which are the first measurements of any exclusive reaction in few-GeV electron neutrino interactions. The result is given as differential cross-sections vs the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, Q2. We also compute the ratio to a muon neutrino cross-section in Q2 from MINERvA. We find satisfactory agreement between these measurements and the predictions of the GENIE generator. We furthermore report on a photon-like background unpredicted by the generator which we interpret as neutral-coherent diffractive scattering from hydrogen.

  9. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    SciTech Connect

    Wolcott, J.

    2015-12-31

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter for electron neutrino appearance oscillation experiments. Current experiments typically begin with the muon neutrino cross section and apply theoretical corrections to obtain a prediction for the electron neutrino cross section. However, at present no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments exists. We present the cross sections for a CCQE-like process determined using the MINERvA detector, which are the first measurements of any exclusive reaction in few-GeV electron neutrino interactions. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^{2}$. We also compute the ratio to a muon neutrino cross-section in $Q^{2}$ from MINERvA. We find satisfactory agreement between these measurements and the predictions of the GENIE generator. We furthermore report on a photon-like background unpredicted by the generator which we interpret as neutral-coherent diffractive scattering from hydrogen.

  10. Neutrino-pair bremsstrahlung from nucleon-nucleon scattering

    DOE PAGES

    Li, Yi; Liou, M. K.; Schreiber, W. M.; ...

    2015-07-22

    Background: Neutrino-pair bremsstrahlung processes from nucleon-nucleon scattering ΝΝνν¯ (nnvv¯, ppvv¯, and npvv¯) have recently attracted attention in studies of neutrino emission in neutron stars, because of the implications for the neutron star cooling. The calculated ΝΝνν¯ emissivities within the neutron star environment are relatively insensitive to the two-nucleon dynamical model used in the calculations, but differ significantly from those obtained using an OPE model. Purpose: To investigate the free ΝΝνν¯ cross sections using a realistic nucleon-nucleon scattering amplitude, comparing the relative sizes of the cross sections for the three processes nnvv¯, ppvv¯, and npvv¯.

  11. First measurement of the flux of solar neutrinos from the sun at the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wittich, Peter

    2000-12-01

    The Sudbury Neutrino Observatory (SNO) is a second generation solar neutrino detector. SNO is the first experiment that is able to measure both the electron neutrino flux and a flavor-blind flux of all active neutrino types, allowing a model-independent determination if the deficit of solar neutrinos known as the solar neutrino problem is due to neutrino oscillation. The Sudbury Neutrino Observatory started taking production data in November, 1999. A measurement of the charged current rate will be the first indication if SNO too sees a suppression of the solar neutrino signal relative to the theoretical predictions. Such a confirmation is the first step in SNO's ambitious science program. In this thesis, we present evidence that SNO is seeing solar neutrinos and a preliminary ratio of the measured vs predicted rate of electrons as induced by 8B neutrinos in the νe, + d --> p + p + e charged-current (CC) reaction.

  12. Measurement of Neutrino and Antineutrino Charged-Current Inclusive Cross Sections with the MINERvA Detector

    NASA Astrophysics Data System (ADS)

    Devan, Joshua D.

    Neutrinos are a nearly massless, neutral particle in the Standard Model that only interact via the weak interaction. Experimental confirmation of neutrino oscillations, in which a neutrino created as a particular type (electron, muon or tau) can be observed as a different type after propagating some distance, earned the 2015 Nobel Prize in Physics. Neutrino oscillation experiments rely on accurate measurements of neutrino interactions with matter, such as that presented here. Neutrinos also provide a unique probe of the nucleus, complementary to electron scattering experiments. This thesis presents a measurement of the charged-current inclusive cross section for muon neutrinos and antineutrinos in the energy range 2 to 50 GeV with the MINERvA detector. MINERvA is a neutrino scattering experiment in the NuMI neutrino beam at Fermilab, near Chicago. A cross section measures the probability of an interaction occurring, measured here as a function of neutrino energy. To extract a cross section from data, the observed rate of interactions is corrected for detector efficiency and divided by the number of scattering nucleons in the target and the flux of neutrinos in the beam. The neutrino flux is determined with the low- v method, which relies on the principle that the cross section for interactions with very low recoil energy is nearly constant as a function of neutrino energy. The measured cross section is compared with world data.

  13. Quark Models of Duality in Electron and Neutrino Scattering

    SciTech Connect

    Wally Melnitchouk

    2006-02-01

    Results of recent analyses of electromagnetic structure functions in the resonance region suggest that duality-violating higher twists are small above Q^2 ~ 1 GeV^2. We analyze the systematics of local duality within a quark model framework for various modes of spin-flavor symmetry breaking. On the basis of these models we discuss expectations for the workings of duality in neutrino scattering.

  14. Neutrino Scattering Uncertainties and their Role in Long Baseline Oscillation Experiments

    SciTech Connect

    D.A. Harris; G. Blazey; Arie Bodek; D. Boehnlein; S. Boyd; William Brooks; Antje Bruell; Howard S. Budd; R. Burnstein; D. Casper; A. Chakravorty; Michael Christy; Jesse Chvojka; M.A.C. Cummings; P. deBarbaro; D. Drakoulakos; J. Dunmore; Rolf Ent; Hugh Gallagher; David Gaskell; Ronald Gilman; Charles Glashausser; Wendy Hinton; Xiaodong Jiang; T. Kafka; O. Kamaev; Cynthia Keppel; M. Kostin; Sergey Kulagin; Gerfried Kumbartzki; Steven Manly; W.A. Mann; Kevin Mcfarland-porter; Wolodymyr Melnitchouk; Jorge Morfin; D. Naples; John Nelson; Gabriel Niculescu; Maria-ioana Niculescu; W. Oliver; Michael Paolone; Emmanuel Paschos; A. Pla-Dalmau; Ronald Ransome; C. Regis; P. Rubinov; V. Rykalin; Willis Sakumoto; P. Shanahan; N. Solomey; P. Spentzouris; P. Stamoulis; G. Tzanakos; Stephen Wood; F.X. Yumiceva; B. Ziemer; M. Zois

    2004-10-01

    The field of oscillation physics is about to make an enormous leap forward in statistical precision: first through the MINOS experiment in the coming year, and later through the NOvA and T2K experiments. Because of the relatively poor understanding of neutrino interactions in the energy ranges of these experiments, there are systematics that can arise in interpreting far detector data that can be as large as or even larger than the expected statistical uncertainties. We describe how these systematic errors arise, and how specific measurements in a dedicated neutrino scattering experiment like MINERvA can reduce the cross section systematic errors to well below the statistical errors.

  15. Measurement of Muon Neutrino Quasielastic Scattering on a Hydrocarbon Target at Eν~3.5 GeV

    SciTech Connect

    Fiorentini, G. A.; Schmitz, D. W.; Rodrigues, P. A.; Aliaga, L.; Altinok, O.; Baldin, B.; Baumbaugh, A.; Bodek, A.; Boehnlein, D.; Boyd, S.; Bradford, R.; Brooks, W. K.; Budd, H.; Butkevich, A.; Martinez Caicedo, D. A.; Castromonte, C. M.; Christy, M. E.; Chung, H.; Chvojka, J.; Clark, M.; da Motta, H.; Damiani, D. S.; Danko, I.; Datta, M.; Day, M.; DeMaat, R.; Devan, J.; Draeger, E.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Edmondson, D. A.; Felix, J.; Fields, L.; Fitzpatrick, T.; Gago, A. M.; Gallagher, H.; George, C. A.; Gielata, J. A.; Gingu, C.; Gobbi, B.; Gran, R.; Grossman, N.; Hanson, J.; Harris, D. A.; Heaton, J.; Higuera, A.; Howley, I. J.; Hurtado, K.; Jerkins, M.; Kafka, T.; Kaisen, J.; Kanter, M. O.; Keppel, C. E.; Kilmer, J.; Kordosky, M.; Krajeski, A. H.; Kulagin, S. A.; Le, T.; Lee, H.; Leister, A. G.; Locke, G.; Maggi, G.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Niculescu, G.; Niculescu, I.; Ochoa, N.; O’Connor, C. D.; Olsen, J.; Osmanov, B.; Osta, J.; Palomino, J. L.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Peña, C.; Rakotondravohitra, L.; Ransome, R. D.; Ray, H.; Ren, L.; Rude, C.; Sassin, K. E.; Schellman, H.; Schneider, R. M.; Schulte, E. C.; Simon, C.; Snider, F. D.; Snyder, M. C.; Sobczyk, J. T.; Solano Salinas, C. J.; Tagg, N.; Tan, W.; Tice, B. G.; Tzanakos, G.; Velásquez, J. P.; Walding, J.; Walton, T.; Wolcott, J.; Wolthuis, B. A.; Woodward, N.; Zavala, G.; Zeng, H. B.; Zhang, D.; Zhu, L. Y.; Ziemer, B. P.

    2013-07-11

    We report a study of νμ charged-current quasielastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a μ⁻ and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross section, dσ/dQ², and study the low energy particle content of the final state. Deviations are found between the measured dσ/dQ² and the expectations of a model of independent nucleons in a relativistic Fermi gas. We also observe an excess of energy near the vertex consistent with multiple protons in the final state.

  16. Can one measure the Cosmic Neutrino Background?

    NASA Astrophysics Data System (ADS)

    Faessler, Amand; Hodák, Rastislav; Kovalenko, Sergey; Šimkovic, Fedor

    The Cosmic Microwave Background (CMB) yields information about our Universe at around 380,000 years after the Big Bang (BB). Due to the weak interaction of the neutrinos with matter, the Cosmic Neutrino Background (CNB) should give information about a much earlier time of our Universe, around one second after the BB. Probably, the most promising method to "see" the CNB is the capture of the electron neutrinos from the Background by Tritium, which then decays into 3He and an electron with the energy of the the Q-value = 18.562 keV plus the electron neutrino rest mass. The "KArlsruhe TRItium Neutrino" (KATRIN) experiment, which is in preparation, seems presently the most sensitive proposed method for measuring the electron antineutrino mass. At the same time, KATRIN can also look by the reaction νe(˜1.95K) + 3H → 3He + e-(Q = 18.6keV + mνec2). The capture of the Cosmic Background Neutrinos (CNB) should show in the electron spectrum as a peak by the electron neutrino rest mass above Q. Here, the possibility to see the CNB with KATRIN is studied. A detection of the CNB by KATRIN seems not to be possible at the moment. But KATRIN should be able to determine an upper limit for the local electron neutrino density of the CNB.

  17. Impact of Neutrino Oscillation Measurements on Theory

    SciTech Connect

    Murayama, Hitoshi

    2003-11-30

    Neutrino oscillation data had been a big surprise to theorists, and indeed they have ongoing impact on theory. I review what the impact has been, and what measurements will have critical impact on theory in the future.

  18. Measurement of Neutrino and Antineutrino Charged-Current Inclusive Cross Sections with the MINERvA Detector

    SciTech Connect

    Devan, Joshua D.

    2015-01-01

    Neutrinos are a nearly massless, neutral particle in the Standard Model that only interact via the weak interaction. Experimental confirmation of neutrino oscillations, in which a neutrino created as a particular type (electron, muon or tau) can be observed as a different type after propagating some distance, earned the 2015 Nobel Prize in Physics. Neutrino oscillation experiments rely on accurate measurements of neutrino interactions with matter, such as that presented here. Neutrinos also provide a unique probe of the nucleus, complementary to electron scattering experiments. This thesis presents a measurement of the charged-current inclusive cross section for muon neutrinos and antineutrinos in the energy range 2 to 50 GeV with the MINERvA detector. MINERvA is a neutrino scattering experiment in the NuMI neutrino beam at Fermilab, near Chicago. A cross section measures the probability of an interaction occurring, measured here as a function of neutrino energy. To extract a cross section from data, the observed rate of interactions is corrected for detector efficiency and divided by the number of scattering nucleons in the target and the flux of neutrinos in the beam. The neutrino flux is determined with the low-$\

  19. Exclusive Neutrino Charged Current Coherent Pion Production Cross Section Measurements in MINERvA

    NASA Astrophysics Data System (ADS)

    Higuera, A.

    2012-03-01

    MINERvA (Main Injector Experiment for v-A) is a neutrino scattering experiment in the 1-10 GeV energy range in the NuMI high-intensity neutrino beam at Fermi National Accelerator Laboratory. MINERvA is measuring neutrino/antineutrino scattering off a variety of different nuclear materials (C, Fe, Pb, He, H2O) and plans to measure the A-dependence of the Charged Current Coherent Pion Production cross section. We provide an outline of this measurement including the expected event rates and our methods for differentiating signal from background.

  20. Inclusive Neutrino Cross Section Measurements at MINERvA

    NASA Astrophysics Data System (ADS)

    Tice, Brian

    2012-10-01

    MINERvA part 4. The knowledge of inclusive neutrino cross sections is valuable for neutrino oscillation experiments. Determination of the A dependence of the cross section can help determine the role of nuclear effects in neutrino scattering, which is poorly known and difficult to model. Preliminary ratios of cross sections on carbon, iron and lead will be shown.

  1. Solar neutrino measurements in Super-Kamiokande-IV

    NASA Astrophysics Data System (ADS)

    Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Marti, Ll.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, T.; Nakayama, S.; Orii, A.; Sekiya, H.; Shiozawa, M.; Sonoda, Y.; Takeda, A.; Tanaka, H.; Takenaga, Y.; Tasaka, S.; Tomura, T.; Ueno, K.; Yokozawa, T.; Akutsu, R.; Irvine, T.; Kaji, H.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Lee, K. P.; Nishimura, Y.; McLachlan, T.; Okumura, K.; Richard, E.; Labarga, L.; Fernandez, P.; Blaszczyk, F. d. M.; Gustafson, J.; Kachulis, C.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Tobayama, S.; Goldhaber, M.; Bays, K.; Carminati, G.; Griskevich, N. J.; Kropp, W. R.; Mine, S.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Weatherly, P.; Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Keig, W. E.; Hong, N.; Kim, J. Y.; Lim, I. T.; Park, R. G.; Akiri, T.; Albert, J. B.; Himmel, A.; Li, Z.; O'Sullivan, E.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Nakamura, T.; Jang, J. S.; Choi, K.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Friend, M.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Nishikawa, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Nakano, Y.; Suzuki, A. T.; Takeuchi, Y.; Yano, T.; Cao, S. V.; Hayashino, T.; Hiraki, T.; Hirota, S.; Huang, K.; Ieki, K.; Jiang, M.; Kikawa, T.; Minamino, A.; Murakami, A.; Nakaya, T.; Patel, N. D.; Suzuki, K.; Takahashi, S.; Wendell, R. A.; Fukuda, Y.; Itow, Y.; Mitsuka, G.; Muto, F.; Suzuki, T.; Mijakowski, P.; Frankiewicz, K.; Hignight, J.; Imber, J.; Jung, C. K.; Li, X.; Palomino, J. L.; Santucci, G.; Taylor, I.; Vilela, C.; Wilking, M. J.; Yanagisawa, C.; Fukuda, D.; Ishino, H.; Kayano, T.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Takeuchi, J.; Yamaguchi, R.; Kuno, Y.; Tacik, R.; Kim, S. B.; Okazawa, H.; Choi, Y.; Ito, K.; Nishijima, K.; Koshiba, M.; Totsuka, Y.; Suda, Y.; Yokoyama, M.; Bronner, C.; Calland, R. G.; Hartz, M.; Martens, K.; Obayashi, Y.; Suzuki, Y.; Vagins, M. R.; Nantais, C. M.; Martin, J. F.; de Perio, P.; Tanaka, H. A.; Konaka, A.; Chen, S.; Sui, H.; Wan, L.; Yang, Z.; Zhang, H.; Zhang, Y.; Connolly, K.; Dziomba, M.; Wilkes, R. J.; Super-Kamiokande Collaboration

    2016-09-01

    Upgraded electronics, improved water system dynamics, better calibration and analysis techniques allowed Super-Kamiokande-IV to clearly observe very low-energy 8B solar neutrino interactions, with recoil electron kinetic energies as low as ˜3.5 MeV . Super-Kamiokande-IV data-taking began in September of 2008; this paper includes data until February 2014, a total livetime of 1664 days. The measured solar neutrino flux is (2.308 ±0.020 (stat)-0.040 +0.039(syst ))×1 06/(cm2 sec ) assuming no oscillations. The observed recoil electron energy spectrum is consistent with no distortions due to neutrino oscillations. An extended maximum likelihood fit to the amplitude of the expected solar zenith angle variation of the neutrino-electron elastic scattering rate in SK-IV results in a day/night asymmetry of (-3.6 ±1.6 (stat )±0.6 (syst ))% . The SK-IV solar neutrino data determine the solar mixing angle as sin2θ12=0.327-0.031+0.026 , all SK solar data (SK-I, SK-II, SK III and SK-IV) measures this angle to be sin2θ12=0.334-0.023+0.027 , the determined mass-squared splitting is Δ m212=4.8-0.8+1.5×10-5 eV2 .

  2. Investigation of quasielastic muon-neutrino scattering on nuclei at E{sub v} < 1 GeV

    SciTech Connect

    Agababyan, N. M.; Ammosov, V. V.; Atayan, M.; Grigoryan, N.; Gulkanyan, H.; Ivanilov, A. A. Karamyan, Zh.; Korotkov, B. A.

    2007-10-15

    Quasielastic muon-neutrino scattering on nuclei of propane-Freon mixture at energies in the range E{sub v} < 1 GeV is studied. The multiplicity, momentum, and emission-angle distributions of final protons are measured along with the dependence of the mean values for these distributions on the neutrino energy in the range 0.2 < E{sub v} < 1 GeV.

  3. Can one measure the Cosmic Neutrino Background?

    NASA Astrophysics Data System (ADS)

    Faessler, Amand; Hodák, Rastislav; Kovalenko, Sergey; Šimkovic, Fedor

    The Cosmic Microwave Background (CMB) yields information about our Universe at around 380,000 years after the Big Bang (BB). Due to the weak interaction of the neutrinos with matter, the Cosmic Neutrino Background (CNB) should give information about a much earlier time of our Universe, around one second after the BB. Probably, the most promising method to “see” the CNB is the capture of the electron neutrinos from the Background by Tritium, which then decays into 3He and an electron with the energy of the the Q-value = 18.562keV plus the electron neutrino rest mass. The “KArlsruhe TRItium Neutrino” (KATRIN) experiment, which is in preparation, seems presently the most sensitive proposed method for measuring the electron antineutrino mass. At the same time, KATRIN can also look by the reaction νe(˜ 1.95K) +3H →3He + e‑(Q = 18.6keV + m νec2). The capture of the Cosmic Background Neutrinos (CNB) should show in the electron spectrum as a peak by the electron neutrino rest mass above Q. Here, the possibility to see the CNB with KATRIN is studied. A detection of the CNB by KATRIN seems not to be possible at the moment. But KATRIN should be able to determine an upper limit for the local electron neutrino density of the CNB.

  4. Precision Measurement of the Beryllium-7 Solar Neutrino Interaction Rate in Borexino

    NASA Astrophysics Data System (ADS)

    Saldanha, Richard Nigel

    Solar neutrinos, since their first detection nearly forty years ago, have revealed valuable information regarding the source of energy production in the Sun, and have demonstrated that neutrino oscillations are well described by the Large Mixing Angle (LMA) oscillation parameters with matter interactions due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. This thesis presents a precision measurement of the 7Be solar neutrino interaction rate within Borexino, an underground liquid scintillator detector that is designed to measure solar neutrino interactions through neutrino-electron elastic scattering. The thesis includes a detailed description of the analysis techniques developed and used for this measurement as well as an evaluation of the relevant systematic uncertainties that affect the precision of the result. The rate of neutrino-electron elastic scattering from 0.862 MeV 7Be neutrinos is determined to be 45.4 +/- 1.6 (stat) +/- 1.5 (sys) counts/day/100 ton. Due to extensive detector calibrations and improved analysis methods, the systematic uncertainty in the interaction rate has been reduced by more than a factor of two from the previous evaluation. In the no-oscillation hypothesis, the interaction rate corresponds to a 0.862 MeV 7Be electron neutrino flux of (2.75 +/- 0.13) x 10 9 cm-2 sec-1. Including the predicted neutrino flux from the Standard Solar Model yields an electron neutrino survival probability of Pee 0.51 +/- 0.07 and rules out the no-oscillation hypothesis at 5.1sigma The LMA-MSW neutrino oscillation model predicts a transition in the solar Pee value between low (< 1 MeV) and high (> 10 MeV) energies which has not yet been experimentally confirmed. This result, in conjunction with the Standard Solar Model, represents the most precise measurement of the electron neutrino survival probability for solar neutrinos at sub-MeV energies.

  5. Proposal to perform a high - statisics neutrino scattering experiment using a fine - grained detector in the NuMI Beam

    SciTech Connect

    Morfin, J.G.; McFarland, K.; /Rochester U.

    2003-12-01

    The NuMI facility at Fermilab will provide an extremely intense beam of neutrinos for the MINOS neutrino-oscillation experiment. The spacious and fully-outfitted MINOS near detector hall will be the ideal venue for a high-statistics, high-resolution {nu} and {bar {nu}}-nucleon/nucleus scattering experiment. The experiment described here will measure neutrino cross-sections and probe nuclear effects essential to present and future neutrino-oscillation experiments. Moreover, with the high NuMI beam intensity, the experiment will either initially address or significantly improve our knowledge of a wide variety of neutrino physics topics of interest and importance to the elementary-particle and nuclear-physics communities.

  6. Atmospheric neutrino oscillations from upward throughgoing muon multiple scattering in MACRO

    NASA Astrophysics Data System (ADS)

    MACRO Collaboration; Ambrosio, M.; Antolini, R.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Chiarusi, T.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kumar, A.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Manzoor, S.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Mikheyev, S.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.

    2003-07-01

    The energy of atmospheric neutrinos detected by MACRO was estimated using multiple Coulomb scattering of upward throughgoing muons. This analysis allows a test of atmospheric neutrino oscillations, relying on the distortion of the muon energy distribution. These results have been combined with those coming from the upward throughgoing muon angular distribution only. Both analyses are independent of the neutrino flux normalization and provide strong evidence, above the /4σ level, in favour of neutrino oscillations.

  7. Neutrino-pair bremsstrahlung from nucleon-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Li, Yi; Liou, M. K.; Schreiber, W. M.; Gibson, B. F.

    2015-07-01

    Background: Neutrino-pair bremsstrahlung processes from nucleon-nucleon scattering N N ν ν ¯ (n n ν ν ¯ ,p p ν ν ¯ , and n p ν ν ¯ ) have recently attracted attention in studies of neutrino emission in neutron stars, because of the implications for the neutron star cooling. The calculated N N ν ν ¯ emissivities within the neutron star environment are relatively insensitive to the two-nucleon dynamical model used in the calculations, but differ significantly from those obtained using an one-pion-exchange (OPE) model. Purpose: We investigate the free N N ν ν ¯ cross sections using a realistic nucleon-nucleon scattering amplitude, comparing the relative sizes of the cross sections for the three processes n n ν ν ¯ ,p p ν ν ¯ , and n p ν ν ¯ . Method: We employ a realistic one-boson-exchange (ROBE) model for N N scattering and combine those strong scattering amplitudes with the well-known nucleon weak interaction vertices to construct weak bremsstrahlung amplitudes. Using the resulting N N ν ν ¯ amplitudes we investigate the relative importance of the vector (ΓVμ) , axial vector (ΓAμ) , and tensor (ΓTμ) terms. The ROBE model bremsstrahlung amplitudes are also used as a two-nucleon dynamical model with which we calculate the cross sections d/σ d ω for n n ν ν ¯ ,p p ν ν ¯ , and n p ν ν ¯ . Results: The three free N N ν ν ¯ cross sections d/σ d ω are of similar order of magnitude. Each increases with increasing neutrino-pair energy ω . For the neutrino-pair energy of ω =1 MeV our n n ν ν ¯ results are in quantitative agreement with those previously reported by Timmermans et al. [Phys. Rev. C 65, 064007 (2002), 10.1103/PhysRevC.65.064007], who used the leading-order term of the soft-neutrino-pair bremsstrahlung amplitude to calculate the cross sections. Differences between the n n ν ν ¯ and p p ν ν ¯ cross section are not discernible over the nucleon-nucleon incident energy region considered, due to the

  8. Constraints on dark photon from neutrino-electron scattering experiments

    NASA Astrophysics Data System (ADS)

    Bilmiş, S.; Turan, I.; Aliev, T. M.; Deniz, M.; Singh, L.; Wong, H. T.

    2015-08-01

    A possible manifestation of an additional light gauge boson A', named a dark photon, associated with a group U (1 )B -L , is studied in neutrino-electron scattering experiments. The exclusion plot on the coupling constant gB -L and the dark photon mass MA' is obtained. It is shown that the contributions of interference terms between the dark photon and the Standard Model are important. The interference effects are studied and compared with data sets from TEXONO, GEMMA, BOREXINO, and LSND, as well as CHARM II experiments. Our results provide more stringent bounds to some regions of parameter space.

  9. Detectability of galactic supernova neutrinos coherently scattered on xenon nuclei in XMASS

    NASA Astrophysics Data System (ADS)

    Abe, K.; Hiraide, K.; Ichimura, K.; Kishimoto, Y.; Kobayashi, K.; Kobayashi, M.; Moriyama, S.; Nakagawa, K.; Nakahata, M.; Norita, T.; Ogawa, H.; Sekiya, H.; Takachio, O.; Takeda, A.; Yamashita, M.; Yang, B. S.; Kim, N. Y.; Kim, Y. D.; Tasaka, S.; Liu, J.; Martens, K.; Suzuki, Y.; Fujita, R.; Hosokawa, K.; Miuchi, K.; Oka, N.; Onishi, Y.; Takeuchi, Y.; Kim, Y. H.; Lee, J. S.; Lee, K. B.; Lee, M. K.; Fukuda, Y.; Itow, Y.; Kegasa, R.; Kobayashi, K.; Masuda, K.; Takiya, H.; Uchida, H.; Nishijima, K.; Fujii, K.; Murayama, I.; Nakamura, S.; Xmass Collaboration

    2017-03-01

    The coherent elastic neutrino-nucleus scattering (CEvNS) plays a crucial role at the final evolution of stars. The detection of it would be of importance in astroparticle physics. Among all available neutrino sources, galactic supernovae give the highest neutrino flux in the MeV range. Among all liquid xenon dark matter experiments, XMASS has the largest sensitive volume and light yield. The possibility to detect galactic supernova via the CEvNS-process on xenon nuclei in the current XMASS detector was investigated. The total number of events integrated in about 18 s after the explosion of a supernova 10 kpc away from the Earth was expected to be from 3.5 to 21.1, depending on the supernova model used to predict the neutrino flux, while the number of background events in the same time window was measured to be negligible. All lead to very high possibility to detect CEvNS experimentally for the first time utilizing the combination of galactic supernovae and the XMASS detector. In case of a supernova explosion as close as Betelgeuse, the total observable events can be more than ∼ 104, making it possible to distinguish different supernova models by examining the evolution of neutrino event rate in XMASS.

  10. Measurement of neutrino masses from relative velocities.

    PubMed

    Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Inman, Derek; Yu, Yu

    2014-09-26

    We present a new technique to measure neutrino masses using their flow field relative to dark matter. Present day streaming motions of neutrinos relative to dark matter and baryons are several hundred km/s, comparable with their thermal velocity dispersion. This results in a unique dipole anisotropic distortion of the matter-neutrino cross power spectrum, which is observable through the dipole distortion in the cross correlation of different galaxy populations. Such a dipole vanishes if not for this relative velocity and so it is a clean signature for neutrino mass. We estimate the size of this effect and find that current and future galaxy surveys may be sensitive to these signature distortions.

  11. Measurement of Neutrino Induced Quasi-Elastic Cross Section

    NASA Astrophysics Data System (ADS)

    Kim, Jae

    2006-04-01

    The measurement of the weak mixing angle is the goal, using the data collected in the NOMAD experiment at CERN. Studying the neutrino induced Quasi-Elastic (QE) scattering, in which neutrino hits neutron and results in a muon and a proton, would enhance our understanding of the `higher-twist effect' -- an effect that parameterizes the weak mixing angle. Toward this, I developed a likelihood probability density function that enabled me to eliminate a significant portion of the background, resonance and deep inelastic scattering events. As the Monte Carlo (MC) is only reliable to a precision not better than 15 -- 20 percent, I developed several techniques to make sure that MC and DATA agreed around 5 percent. The axial mass and QE cross section can then be calculated. Techniques and the preliminary results relevant to the calculation will be presented.

  12. Sensitivity to oscillation with a sterile fourth generation neutrino from ultralow threshold neutrino-nucleus coherent scattering

    NASA Astrophysics Data System (ADS)

    Dutta, Bhaskar; Gao, Yu; Kubik, Andrew; Mahapatra, Rupak; Mirabolfathi, Nader; Strigari, Louis E.; Walker, Joel W.

    2016-11-01

    We discuss prospects for probing short-range sterile neutrino oscillation using neutrino-nucleus coherent scattering with ultralow energy (˜10 - 100 eV ) recoil threshold cryogenic Ge detectors. The analysis is performed in the context of a specific and contemporary reactor-based experimental proposal, developed in cooperation with the Nuclear Science Center at Texas A&M University, and references developing technology based upon economical and scalable detector arrays. The baseline of the experiment is substantially shorter than existing measurements, as near as about 2 m from the reactor core, and is moreover variable, extending continuously up to a range of about 10 m. This proximity and variety combine to provide extraordinary sensitivity to a wide spectrum of oscillation scales, while facilitating the tidy cancellation of leading systematic uncertainties in the reactor source and environment. With 100 eV sensitivity, for exposures on the order of 200 kg .y , we project an estimated sensitivity to first and fourth neutrino oscillation with a mass gap Δ m2˜1 eV2 at an amplitude sin22 θ ˜10-1, or Δ m2˜0.2 eV2 at unit amplitude. Larger exposures, around 5000 kg .y , together with 10 eV sensitivity are capable of probing more than an additional order of magnitude in amplitude.

  13. First measurements of inclusive muon neutrino charged current differential cross sections on argon.

    PubMed

    Anderson, C; Antonello, M; Baller, B; Bolton, T; Bromberg, C; Cavanna, F; Church, E; Edmunds, D; Ereditato, A; Farooq, S; Fleming, B; Greenlee, H; Guenette, R; Haug, S; Horton-Smith, G; James, C; Klein, E; Lang, K; Laurens, P; Linden, S; McKee, D; Mehdiyev, R; Page, B; Palamara, O; Partyka, K; Patch, A; Rameika, G; Rebel, B; Rossi, B; Soderberg, M; Spitz, J; Szelc, A M; Weber, M; Yang, T; Zeller, G

    2012-04-20

    The ArgoNeuT Collaboration presents the first measurements of inclusive muon neutrino charged current differential cross sections on argon. Obtained in the NuMI neutrino beam line at Fermilab, the flux-integrated results are reported in terms of outgoing muon angle and momentum. The data are consistent with the Monte Carlo expectation across the full range of kinematics sampled, 0°<θ(μ)<36° and 0neutrino detection, the measurements allow tests of low-energy neutrino scattering models important for interpreting results from long baseline neutrino oscillation experiments designed to investigate CP violation and the orientation of the neutrino mass hierarchy.

  14. Measurement of light scattering in deep sea

    NASA Astrophysics Data System (ADS)

    Maragos, N.; Balasi, K.; Domvoglou, T.; Kiskiras, I.; Lenis, D.; Maniatis, M.; Stavropoulos, G.

    2016-04-01

    The deep-sea neutrino telescope in the Mediterranean Sea, being prepared by the KM3NET collaboration, will contain thousands of optical sensors to readout. The accurate knowledge of the optical properties of deep-sea water is of great importance for the neutrino event reconstruction process. In this study we describe our progress in designing an experimental setup and studying a method to measure the parameters describing the absorption and scattering characteristics of deep-sea water. Three PMTs will be used to measure in situ the scattered light emitted from six laser diodes in three different wavelengths covering the Cherenkov radiation spectrum. The technique for the evaluation of the parameters is based on Monte Carlo simulations and our results show that we are able to determine these parameters with satisfying precision.

  15. Future atmospheric neutrino measurements with PINGU

    SciTech Connect

    Grant, D.

    2015-07-15

    Neutrino oscillations, first measured in 1998 via atmospheric neutrinos, have provided the only current direct evidence for physics beyond the Standard Model of Elementary Particles. The full neutrino mixing, described by six parameters, has been measured in the last decade with the exception of the charge-parity phase and the ordering of the mass eigenstates (the neutrino mass hierarchy – NMH). A relatively large mixing-angle between the first and third mass eigenstates has opened the possibility of measuring the mass hierarchy via atmospheric neutrinos using very large volume detectors. A leading proposal to perform this measurement is the future low-energy extension to the IceCube–DeepCore detector, called PINGU (the Precision IceCube Next Generation Upgrade). By increasing the photocathode density in the DeepCore region, it is possible to lower the energy threshold in the fiducial volume to the region that is affected by the MSW [1, 2], and thus permits extraction of the hierarchy. Here we discuss the design of the PINGU detector, its sensitivity to the mass hierarchy (approximately 3σ in 3.5 years) and measurements of ν{sub μ} disappearance and ν{sub τ} appearance.

  16. Hadron production measurements for neutrino physics

    SciTech Connect

    Panman, Jaap

    2008-02-21

    One of the limiting factors for the precision of neutrino oscillation experiments is the uncertainty in the composition and spectrum of the neutrino flux. Recently, dedicated hadron production experiments have been taking data and are being planned to supply measurements which can significantly reduce these uncertainties. The HARP experiment has presented results on the measurements of the double-differential production cross-section of charged pions in proton interactions with beryllium, carbon, aluminium, copper, tin, tantalum and lead targets. These results are relevant for a detailed understanding of neutrino flux in accelerator neutrino experiments K2K (p-Al data) and MiniBooNE/SciBooNE (p-Be data), for a better prediction of atmospheric neutrino fluxes (p-C, {pi}{sup +}-C and {pi}{sup -}-C data) as well as for a systematic improvement of hadron production models. The E910 experiment at BNL has recently published their p-Be data. NA49 has measured pion production spectra in p-C interactions and a new experiment, NA61, is starting to take data using essentially the same detector. NA61 plans to measure production spectra for the T2K experiment and for the calculation of extended air showers. MIPP has taken data with a copy of the NuMI target and is progressing in the analysis of these data. An upgrade of the readout of this experiment can greatly increase its potential.

  17. First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section

    SciTech Connect

    Aguilar-Arevalo, A.A.; Anderson, C.E.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; Curioni, A.; /Yale U. /Columbia U.

    2010-02-01

    A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section (d{sup 2}{sigma}/dT{sub {mu}}d cos {theta}{sub {mu}}) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ({sigma}[E{sub {nu}}]) and the single differential cross section (d{sigma}/dQ{sup 2}) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.

  18. Measuring the Disappearance of Muon Neutrinos with the MINOS Detector

    SciTech Connect

    Radovic, Alexander

    2013-08-01

    MINOS is a long baseline neutrino oscillation experiment. It measures the flux from the predominately muon neutrino NuMI beam first 1 km from beam start and then again 735 km later using a pair of steel scintillator tracking calorimeters. The comparison of measured neutrino energy spectra at our Far Detector with the prediction based on our Near Detector measurement allows for a measurement of the parameters which define neutrino oscillations. This thesis will describe the most recent measurement of muon neutrino disappearance in the NuMI muon neutrino beam using the MINOS experiment.

  19. A proposal for a precision test of the standard model by neutrino-electron scattering (Large /hacek C/erenkov Detector Project)

    SciTech Connect

    Allen, R.C.; Lu, X-Q.; Gollwitzer, K.; Igo, G.J.; Gulmez, E.; Whitten, C.; VanDalen, G.; Layter, J.; Fung, Sun Yui; Shen, B.C.

    1988-04-01

    A precision measurement of neutrino-electron elastic scattering from a beam stop neutrino source at LAMPF is proposed. The total error in sin/sup 2/theta/sub W/ is estimated to be +-0.89/percent/. The experiment also will be sensitive to neutrino oscillations and supernova-neutrino bursts, and should set improved limits on the neutrino-charge radius and magnetic-dipole moment. The detector consists of a 2.5-million-gallon tank of water with approximately 14,000 photomultiplier tubes lining the surfaces of the tank. Neutrino-electron scattering events will be observed from the /hacek C/erenkov radiation emitted by the electrons in the water. 19 refs.

  20. Results for quasi-elastic anti-neutrino scattering on scintillator from the MINERvA experiment

    NASA Astrophysics Data System (ADS)

    Schellman, Heidi; Minerva Collaboration

    2016-09-01

    We present a new preliminary measurement of the charge-current quasi-elastic scattering cross section for anti-neutrinos on scintillator (CH) over the energy range 1.5-10 GeV. The data were taken with the MINERvA detector in the NuMI beamline at Fermilab and cover the energy range of interest for the proposed DUNE long-baseline neutrino oscillation experiment and of JLAB elastic scattering experiments. Of particular interest to the nuclear community are possible signatures for short range correlations and/or meson exchange currents in these data. We present comparisons to a range of nuclear models.

  1. Heavy quark production in neutrino deep-inelastic scattering

    SciTech Connect

    Johnson, J.A.; Vakili, M.; Wu, V.; Bazarko, A.O.; Conrad, J.M.; Formaggio, J.A.; Kim, J.H.; King, B.J.; Koutsoliotas, S.; McNulty, C.; Mishra, S.R.; Romosan, A.; Sculli, F.J.; Seligman, W.G.; Shaevitz, M.H.; Spentzouris, P.; Stern, E.G.; Tamminga, B.M.; Vaitaitis, A.; Bugel, L.; Lamm, M.J.; Marsh, M.; Nienaber, P.; Yu, J.; Alton, A.; Bolton, T.; Goldman, J.; Goncharov, M.; Naples, D.; Buchholz, D.; Harris, D.A.; Schellman, H.M.; Zeller, G.P.; Drucker, R.B.; Frey, R.; Mason, D.; de Barbaro, P.; Bodek, A.; Budd, H.; McFarland, K.S.; Sakumoto, W.K.; Yang, U.K.; Smith, W.H.

    1999-02-01

    Charm production by neutrino charged-current interactions produces two muon (dimuon) events which are easily identified. This signal provides an important method to measure the strange sea and the mass of the charm quark. Several experiments, including CCFR, CDHS and CHARM II, have performed analyses of such events. The results of these analyses are summarized with emphasis on CCFR and improvements made by NuTeV. {copyright} {ital 1999 American Institute of Physics.}

  2. Heavy quark production in neutrino deep-inelastic scattering

    SciTech Connect

    Adams, T.; Alton, A.; Bolton, T.; Goldman, J.; Goncharov, M.; Naples, D.; Arroyo, C. G.; Bazarko, A. O.; Conrad, J. M.; Formaggio, J. A.; Kim, J. H.; King, B. J.; Koutsoliotas, S.; McNulty, C.; Mishra, S. R.; Romosan, A.; Sculli, F. J.; Seligman, W. G.; Shaevitz, M. H.; Spentzouris, P.

    1999-02-17

    Charm production by neutrino charged-current interactions produces two muon (dimuon) events which are easily identified. This signal provides an important method to measure the strange sea and the mass of the charm quark. Several experiments, including CCFR, CDHS and CHARM II, have performed analyses of such events. The results of these analyses are summarized with emphasis on CCFR and improvements made by NuTeV.

  3. Measurement of muon plus proton final states in muon neutrinos interactions on CH at 4.2 GeV

    NASA Astrophysics Data System (ADS)

    Rakotondravohitra, Laza; Minerva Collaboration

    2015-04-01

    MINERvA (Main INjector Experiment for v-A) is a neutrino scattering experiment in Fermilab's NuMI high-intensity neutrino beam. MINERvA was designed to make precision measurements of neutrino and antineutrino cross sections on a variety of materials including plastic scintillator(CH), C, Fe, Pb, He and water. We present a result of charged-current muon neutrino scattering on hydrocarbon (CH) at an average neutrino energy of 4.2 GeV in which the final state includes a muon, at least one proton, and no pions exiting the nucleus . Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from both quasielastic and inelastic processes where pions are absorbed in the nucleus.

  4. KamLAND's precision neutrino oscillation measurements

    DOE PAGES

    Decowski, M. P.

    2016-04-13

    The KamLAND experiment started operation in the Spring of 2002 and is operational to this day. The experiment observes signals from electron antineutrinos from distant nuclear reactors. The program, spanning more than a decade, allowed the determination of LMA-MSW as the solution to the solar neutrino transformation results (under the assumption of CPT invariance) and the measurement of various neutrino oscillation parameters. In particular, the solar mass-splitting Δm221 was determined to high precision. Besides the study of neutrino oscillation, KamLAND started the investigation of geologically produced antineutrinos (geo-ν¯e). As a result, the collaboration also reported on a variety of othermore » topics related to particle and astroparticle physics.« less

  5. KamLAND's precision neutrino oscillation measurements

    NASA Astrophysics Data System (ADS)

    Decowski, M. P.

    2016-07-01

    The KamLAND experiment started operation in the Spring of 2002 and is operational to this day. The experiment observes signals from electron antineutrinos from distant nuclear reactors. The program, spanning more than a decade, allowed the determination of LMA-MSW as the solution to the solar neutrino transformation results (under the assumption of CPT invariance) and the measurement of various neutrino oscillation parameters. In particular, the solar mass-splitting Δ m212 was determined to high precision. Besides the study of neutrino oscillation, KamLAND started the investigation of geologically produced antineutrinos (geo-ν‾e). The collaboration also reported on a variety of other topics related to particle and astroparticle physics.

  6. Atmospheric neutrino flux measurement using upgoing muons

    NASA Astrophysics Data System (ADS)

    Ahlen, S.; Ambrosio, M.; Antolini, R.; Auriemma, G.; Baker, R.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Castellano, M.; Cecchini, S.; Cei, F.; Celio, P.; Chiarella, V.; Cormack, R.; Corona, A.; Coutu, S.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; Diehl, E.; de Mitri, I.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Grassi, M.; Green, P.; Grillo, A.; Guarino, F.; Guarnaccia, P.; Gustavino, C.; Habig, A.; Hanson, K.; Hawthorne, A.; Heinz, R.; Hong, J. T.; Iarocci, E.; Katsavounidis, E.; Kearns, E.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Liu, G.; Liu, R.; Longley, N. P.; Longo, M. J.; Lu, Y.; Ludlam, G.; Mancarella, G.; Mandrioli, G.; Margiotta-Neri, A.; Marin, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Mikheyev, S.; Miller, L.; Mittelbrunn, M.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicoló, D.; Nolty, R.; Nutter, S.; Okada, C.; Orth, C.; Osteria, G.; Palamara, O.; Parlati, S.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Petrakis, J.; Petrera, S.; Pignatano, N. D.; Pistilli, P.; Popa, V.; Rainó, A.; Reynoldson, J.; Ronga, F.; Sanzgiri, A.; Sartogo, F.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra-Lugaresi, P.; Severi, M.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlé, G.; Togo, V.; Valente, V.; Walter, C. W.; Webb, R.; Worstell, W.; MACRO Collaboration

    1995-02-01

    We report on the first measurement of the flux of upgoing muons resulting from interactions of atmospheric neutrinos in the rock below MACRO. The ratio of the observed to the expected number of events integrated over all nadir angles is 0.73 ± .09 stat. ± .06 sys. ± .12 theor.. The flux of upgoing muons as a function of nadir angle is presented and compared to Monte Carlo expectations. At the 90% confidence level, the data are consistent with no neutrino oscillations or some possible oscillation hypothese with the parameters suggested by the Kamiokande contained-event analysis.

  7. Be7 solar neutrino measurement with KamLAND

    DOE PAGES

    Gando, A.; Gando, Y.; Hanakago, H.; ...

    2015-11-30

    In this article, we report a measurement of the neutrino-electron elastic scattering rate of 862 keV 7Be solar neutrinos based on a 165.4 kt d exposure of KamLAND. The observed rate is 582 ± 94 (kt d)-1, which corresponds to an 862-keV 7Be solar neutrino flux of (3.26 ± 0.52) × 109 cm-2s-1, assuming a pure electron-flavor flux. Comparing this flux with the standard solar model prediction and further assuming three-flavor mixing, a νe survival probability of 0.66 ± 0.15 is determined from the KamLAND data. Utilizing a global three-flavor oscillation analysis, we obtain a total 7Be solar neutrino fluxmore » of (5.82 ± 1.02) × 109 cm-2s-1, which is consistent with the standard solar model predictions.« less

  8. Measuring neutrino mass imprinted on the anisotropic galaxy clustering

    NASA Astrophysics Data System (ADS)

    Oh, Minji; Song, Yong-Seon

    2017-04-01

    The anisotropic galaxy clustering of large scale structure observed by the Baryon Oscillation Spectroscopic Survey Data Release 11 is analyzed to probe the sum of neutrino masses in the small mν lesssim 1 eV limit in which the early broadband shape determined before the last scattering surface is immune from the variation of mν. The signature of mν is imprinted on the altered shape of the power spectrum at later epoch, which provides an opportunity to access the non-trivial mν through the measured anisotropic correlation function in redshift space (hereafter RSD instead of Redshift Space Distortion). The non-linear RSD corrections with massive neutrinos in the quasi linear regime are approximately estimated using one-loop order terms. We suggest an approach to probe mν simultaneously with all other distance measures and coherent growth functions, exploiting this deformation of the early broadband shape of the spectrum at later epoch. If the origin of cosmic acceleration is unknown, mν is poorly determined after marginalizing over all other observables. However, we find that the measured distances and coherent growth functions are minimally affected by the presence of mild neutrino mass. Although the standard model of cosmic acceleration is assumed to be the cosmological constant, the constraint on mν is little improved. Interestingly, the measured Cosmic Microwave Background (hereafter CMB) distance to the last scattering surface sharply slices the degeneracy between the matter content and mν, and the mν is observed to be mν = 0.19+0.28-0.17 eV which is different from massless neutrino at 68% confidence.

  9. CAPTAIN-Minerνa. Neutrino-Argon Scattering in a Medium-Energy Neutrino Beam

    SciTech Connect

    Mauger, Christopher M.

    2015-10-29

    The NuMI facility at Fermilab is currently providing an extremely intense beam of neutrinos for the NOνA, MINERνA and MINOS+ experiments. By installing the 5-ton CAPTAIN liquid argon TPC in front of the MINERνA detector in the NuMI beamline and combining the data from the CAPTAIN, MINERνA and MINOS+ detectors, a broad program of few-GeV neutrino cross section measurements on argon can be pursued. These measurements will be extremely helpful for future oscillation experiments. By directly comparing the cross sections on argon to MINERνA’s scintillator (CH) target, a new level of precision can be achieved in the measurements of the effects of the nucleus on neutrino interactions. These effects are of interest to not only the particle physics but also the nuclear physics community. This document describes in detail the physics goals of the CAPTAIN-MINERνA experiment, in addition to a first estimate of the technical resources required to install, commission and operate the CAPTAIN detector in front of the MINERVA detector.

  10. Prospects for Precision Neutrino Cross Section Measurements

    SciTech Connect

    Harris, Deborah A.

    2016-01-28

    The need for precision cross section measurements is more urgent now than ever before, given the central role neutrino oscillation measurements play in the field of particle physics. The definition of precision is something worth considering, however. In order to build the best model for an oscillation experiment, cross section measurements should span a broad range of energies, neutrino interaction channels, and target nuclei. Precision might better be defined not in the final uncertainty associated with any one measurement but rather with the breadth of measurements that are available to constrain models. Current experience shows that models are better constrained by 10 measurements across different processes and energies with 10% uncertainties than by one measurement of one process on one nucleus with a 1% uncertainty. This article describes the current status of and future prospects for the field of precision cross section measurements considering the metric of how many processes, energies, and nuclei have been studied.

  11. Influence of short-range correlations in neutrino-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Van Cuyck, T.; Jachowicz, N.; González-Jiménez, R.; Martini, M.; Pandey, V.; Ryckebusch, J.; Van Dessel, N.

    2016-08-01

    Background: Nuclear short-range correlations (SRCs) are corrections to mean-field wave functions connected with the short-distance behavior of the nucleon-nucleon interaction. These SRCs provide corrections to lepton-nucleus cross sections as computed in the impulse approximation (IA). Purpose: We want to investigate the influence of SRCs on the one-nucleon (1 N ) and two-nucleon (2 N ) knockout channels for muon-neutrino induced processes on a 12 target at energies relevant for contemporary measurements. Method: The model adopted in this work corrects the impulse approximation for SRCs by shifting the complexity induced by the SRCs from the wave functions to the operators. Due to the local character of the SRCs, it is argued that the expansion of these operators can be truncated at a low order. Results: The model is compared with electron-scattering data, and two-particle two-hole responses are presented for neutrino scattering. The contributions from the vector and axial-vector parts of the nuclear current as well as the central, tensor, and spin-isospin parts of the SRCs are studied. Conclusions: Nuclear SRCs affect the 1 N knockout channel and give rise to 2 N knockout. The exclusive neutrino-induced 2 N knockout cross section of SRC pairs is shown and the 2 N knockout contribution to the QE signal is calculated. The strength occurs as a broad background which extends into the dip region.

  12. Measurement of theta{sub 13} with reactor neutrinos

    SciTech Connect

    Heeger, Karsten M.; Freedman, Stuart J.; Kadel, Richard W.; Luk, Kam-Biu

    2004-07-13

    Recent experimental results have provided unambiguous evidence that neutrinos have a small but finite mass and mix from one type into another. The phenomenon of neutrino mixing is characterized by the coupling between the neutrino flavor (nu{sub e,mu,tau}) and mass eigenstates (nu{sub 1,2,3}) and the associated mixing angles. Previous neutrino oscillation experiments have determined two of the three mixing angles in the neutrino mixing matrix, U{sub MNSP}. Using multiple neutrino detectors placed at different distances from a nuclear power plant, a future reactor neutrino experiment has the potential to discover and measure the coupling of the electron neutrino flavor to the third mass eigenstate, U{sub e3}, the last undetermined element of the neutrino mixing matrix.

  13. Measurements of muon multiple scattering in MICE

    NASA Astrophysics Data System (ADS)

    Bayes, R.; MICE Collaboration

    2017-09-01

    Neutrino factories have been identified as the best facility for making precision measurements of neutrino oscillation physics. To fully realize this technology, a demonstration of the reduction of the phase space of a muon beam must be presented. The Muon Ionization Cooling Experiment (MICE) is tasked with providing such a demonstration. Ionization cooling uses the energy loss in a low Z material followed by acceleration in RF cavities to reduce the phase space of a beam on a time scale many times less than the time scale of muon decay. Multiple coulomb scattering (MCS) simultaneously inflates the muon beam and so the interplay between energy loss and MCS must be well understood. Unfortunately MCS is not well simulated in the materials of interest in the GEANT Monte Carlo program. A programme has commenced for MICE to measure MCS in several materials of interest including lithium hydride, liquid hydrogen, and gaseous xenon. The experimental methods and early results will be presented.

  14. Measuring the Cross-Section of Charged-Current Neutrino Interactions in Sodium Iodide

    NASA Astrophysics Data System (ADS)

    Suh, Benjamin; Coherent Collaboration

    2017-01-01

    An array of twenty-four 7.7 kg sodium iodide (NaI[Tl]) scintillating detectors has been deployed to the basement of the Spallation Neutron Source at Oak Ridge National Laboratory in order to observe and measure the cross-section of charged-current neutrino interactions on 127I. Preliminary results and testing of these detectors will be presented herein. In addition, potential applications for observing coherent elastic neutrino-nucleus scattering (CEvNS) will be discussed.

  15. Charged-current neutrino-nucleus scattering off 95,97Mo

    NASA Astrophysics Data System (ADS)

    Ydrefors, E.; Suhonen, J.

    2013-03-01

    Background: Reliable cross sections for the neutrino-nucleus scattering off relevant nuclei for supernova neutrinos are essential for various applications in neutrino physics and astrophysics (e.g., supernova mechanisms). Studies of the nuclear responses for the stable molybdenum isotopes are of great interest for the planned MOON (Mo Observatory of Neutrinos) experiment.Purpose: The purpose of the present work is, thus, to perform a detailed study of the charged-current nuclear responses to supernova neutrinos for the stable odd molybdenum isotopes. A special effort will be devoted to discuss in detail the structures of the most relevant final states in the corresponding proton-odd nucleus.Method: The cross sections are computed by using the well-established framework for studies of semileptonic processes in nuclei developed by Donnelly and Walecka. The nuclear wave functions of the initial and the final nuclear states are computed by using the microscopic quasiparticle-phonon model. The nuclear responses to supernova neutrinos are subsequently estimated by folding the cross sections with realistic energy profiles for the incoming neutrinos.Results: We present results for the cross sections of the charged-current neutrino and antineutrino scatterings off 95Mo and 97Mo. Nuclear responses to supernova neutrinos (both nonoscillating and oscillating ones) are also given. The inclusion of neutrino oscillations enhances significantly the neutrino and antineutrino cross sections.Conclusions: We have found that the most important transitions are the Gamow-Teller-like ones which are mediated by the 1+ multipole. Furthermore, the three-quasiparticle degrees of freedom are essential in order to describe quantitatively the neutrino-nucleus scattering off odd open-shell nuclei.

  16. QCD analysis of neutrino charged current structure function F2 in deep inelastic scattering

    NASA Technical Reports Server (NTRS)

    Saleem, M.; Aleem, F.

    1985-01-01

    An analytic expression for the neutrino charged current structure function F sub 2 (x, Q sup 2) in deep inelastic scattering, consistent with quantum chromodynamics, is proposed. The calculated results are in good agreement with experiment.

  17. QCD analysis of neutrino charged current structure function F2 in deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Saleem, M.; Aleem, F.

    1985-08-01

    An analytic expression for the neutrino charged current structure function F2 (x, Q2) in deep inelastic scattering, consistent with quantum chromodynamics, is proposed. The calculated results are in good agreement with experiment.

  18. Inelastic neutrino scattering off stable even-even Mo isotopes at low and intermediate energies

    NASA Astrophysics Data System (ADS)

    Balasi, K. G.; Kosmas, T. S.; Divari, P. C.

    2010-04-01

    Inelastic neutrino scattering cross sections for the even-even Mo isotopes (contents of the MOON detector at Japan), at low and intermediate electron neutrino energies ( ɛi≤100 MeV), are calculated. MOON is a next-generation double beta and neutrino-less double-beta-decay experiment which is also a promising facility for low-energy neutrino detection. The nuclear wave functions required in this work have been constructed in the context of the quasi-particle random phase approximation (QRPA) and the results presented refer to 92Mo, 94Mo, 96Mo, 98Mo and 100Mo isotopes.

  19. Measureable characteristics of extraterrestrial sources of high energy neutrinos

    NASA Technical Reports Server (NTRS)

    Learned, J.; Stecker, F. W.

    1979-01-01

    Calculations were carried out to determine the characteristics of extraterrestial neutrino sources that could be observed in a high energy ( 1 TeV) neutrino detector given an adequate source intensity. Measureable quantities such as y and the ratio of muonless to muon containing events can, potentially, reveal source characteristics such as charge state (matter or antimatter), density, and local particle spectrum. Comparisons were made with the flux of atmospheric neutrinos including the effects of prompt neutrinos.

  20. CNO and pep solar neutrino measurements and perspectives in Borexino

    NASA Astrophysics Data System (ADS)

    Davini, S.; Agostini, M.; Appel, S.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chepurnov, A.; D'Angelo, D.; Derbin, A.; Di Noto, L.; Drachnev, I.; Etenko, A.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vishneva, A.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-02-01

    The detection of neutrinos emitted in the CNO reactions in the Sun is one of the ambitious goals of Borexino Phase-II. A measurement of CNO neutrinos would be a milestone in astrophysics, and would allow to solve serious issues in current solar models. A precise measurement of the rate of neutrinos from the pep reaction would allow to investigate neutrino oscillations in the MSW transition region. The pep and CNO solar neutrino physics, the measurement in Borexino Phase-I and the perspectives for the new phase are reviewed in this proceeding.

  1. A study of quasi-elastic muon neutrino and antineutrino scattering in the NOMAD experiment

    NASA Astrophysics Data System (ADS)

    Lyubushkin, V.; Popov, B.; Kim, J. J.; Camilleri, L.; Levy, J.-M.; Mezzetto, M.; Naumov, D.; Alekhin, S.; Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Cardini, A.; Cattaneo, P. W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; de Santo, A.; Dignan, T.; di Lella, L.; Do Couto E Silva, E.; Dumarchez, J.; Ellis, M.; Feldman, G. J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kulagin, S.; Kustov, D.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Ling, J.; Linssen, L.; Ljubičić, A.; Long, J.; Lupi, A.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mishra, S. R.; Moorhead, G. F.; Nédélec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L. S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Poulsen, C.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Samoylov, O.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Seaton, M.; Sevior, M.; Sillou, D.; Soler, F. J. P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G. N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S. N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K. E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F. V.; Weisse, T.; Wilson, F. F.; Winton, L. J.; Wu, Q.; Yabsley, B. D.; Zaccone, H.; Zuber, K.; Zuccon, P.

    2009-10-01

    We have studied the muon neutrino and antineutrino quasi-elastic (QEL) scattering reactions ( ν μ n→ μ - p and bar{ν }_{μ}ptoμ+n ) using a set of experimental data collected by the NOMAD Collaboration. We have performed measurements of the cross-section of these processes on a nuclear target (mainly carbon) normalizing it to the total ν μ ( bar{ν}_{μ} ) charged-current cross section. The results for the flux-averaged QEL cross sections in the (anti)neutrino energy interval 3-100 GeV are < σ_{qel}rangle_{ν_{μ}}=(0.92±0.02(stat)±0.06(syst))×10^{-38} cm2 and <σ_{qel}rangle_{bar{ν}_{μ}}=(0.81±0.05(stat)±0.09(syst))×10^{-38} cm2 for neutrino and antineutrino, respectively. The axial mass parameter M A was extracted from the measured quasi-elastic neutrino cross section. The corresponding result is M A =1.05±0.02(stat)±0.06(syst) GeV. It is consistent with the axial mass values recalculated from the antineutrino cross section and extracted from the pure Q 2 shape analysis of the high purity sample of ν μ quasi-elastic 2-track events, but has smaller systematic error and should be quoted as the main result of this work. Our measured M A is found to be in good agreement with the world average value obtained in previous deuterium filled bubble chamber experiments. The NOMAD measurement of M A is lower than those recently published by K2K and MiniBooNE Collaborations. However, within the large errors quoted by these experiments on M A , these results are compatible with the more precise NOMAD value.

  2. A study of quasi-elastic muon (anti)neutrino scattering in he NOMAD experiment

    NASA Astrophysics Data System (ADS)

    Lyubushkin, Vladimir

    2009-11-01

    We have studied the muon neutrino and antineutrino quasi-elastic (QEL) scattering reactions (vμn→μ-p and v¯μp→μ+n using a set of experimental data collected by the NOMAD collaboration. We have performed measurements of the cross-section of these processes on a nuclear target (mainly Carbon) normalizing it to the total vμ (v¯μ) charged current cross-section. The results for the flux averaged QEL cross-sections in the (anti)neutrino energy interval 3-100 GeV are <σqel>vμ = (0.92±0.02(stat)±0.06(syst))×10-38 cm2 and <σqel>v¯μ = (0.81±0.05(stat)±0.09(syst))×10-38 cm2 for neutrino and antineutrino, respectively. The axial mass parameter MA was extracted from the measured quasi-elastic neutrino cross-section. The corresponding result is MA = 1.05±0.02(stat)±0.06(syst) GeV. It is consistent with the axial mass values recalculated from the antineutrino cross-section and extracted from the pure Q2 shape analysis of the high purity sample of vμ quasi-elastic 2-track events, but has smaller systematic error and should be quoted as the main result of this work. Our measured MA is found to be in good agreement with the world average value obtained in previous deuterium filled bubble chamber experiments. The NOMAD measurement of MA is lower than those recently published by K2K and MiniBooNE collaborations. However, within the large errors quoted by these experiments on MA, these results are compatible with the more precise NOMAD value.

  3. Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam

    SciTech Connect

    Not Available

    2007-06-01

    The velocity of a {approx}3 GeV neutrino beam is measured by comparing detection times at the Near and Far detectors of the MINOS experiment, separated by 734 km. A total of 473 Far Detector neutrino events was used to measure (v -c)/c = 5.1{+-}2.9x10{sup -5} (at 68% C.L.). By correlating the measured energies of 258 charged-current neutrino events to their arrival times at the Far Detector, a limit is imposed on the neutrino mass of m{sub v} < 50 MeV/c{sup 2} (99% C.L.).

  4. Measuring neutrino masses with weak lensing

    SciTech Connect

    Wong, Yvonne Y. Y.

    2006-11-17

    Weak gravitational lensing of distant galaxies by large scale structure (LSS) provides an unbiased way to map the matter distribution in the low redshift universe. This technique, based on the measurement of small distortions in the images of the source galaxies induced by the intervening LSS, is expected to become a key cosmological probe in the future. We discuss how future lensing surveys can probe the sum of the neutrino masses at the 0 05 eV level.

  5. Precision Measurements of Long-Baseline Neutrino Oscillation at LBNF

    DOE PAGES

    Worcester, Elizabeth

    2015-08-06

    In a long-baseline neutrino oscillation experiment, the primary physics objectives are to determine the neutrino mass hierarchy, to determine the octant of the neutrino mixing angle θ23, to search for CP violation in neutrino oscillation, and to precisely measure the size of any CP-violating effect that is discovered. This presentation provides a brief introduction to these measurements and reports on efforts to optimize the design of a long-baseline neutrino oscillation experiment, the status of LBNE, and the transition to an international collaboration at LBNF.

  6. Precision Measurements of Long-Baseline Neutrino Oscillation at LBNF

    SciTech Connect

    Worcester, Elizabeth

    2015-08-06

    In a long-baseline neutrino oscillation experiment, the primary physics objectives are to determine the neutrino mass hierarchy, to determine the octant of the neutrino mixing angle θ23, to search for CP violation in neutrino oscillation, and to precisely measure the size of any CP-violating effect that is discovered. This presentation provides a brief introduction to these measurements and reports on efforts to optimize the design of a long-baseline neutrino oscillation experiment, the status of LBNE, and the transition to an international collaboration at LBNF.

  7. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    SciTech Connect

    Coleman, Stephen James

    2011-05-01

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting Δm232 = (2.32-0.08+0.12) x 10-3 eV2/c4 and the mixing angle sin2(2θ32) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2σ and the neutrino quantum decoherence hypothesis is disfavored at 9.0σ.

  8. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    NASA Astrophysics Data System (ADS)

    Coleman, Stephen James

    2011-12-01

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MI-NOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting Dm223=(2.32+0.12 -0.08) x 10-3 eV²/c4 and the mixing angle sin²(2theta32) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2sigma and the neutrino quantum decoherence hypothesis is disfavored at 9.0sigma.

  9. Upper bound on neutrino mass based on T2K neutrino timing measurements

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haegel, L.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, R. A.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; King, S.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Koga, T.; Kolaceke, A.; Konaka, A.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Riccio, C.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaker, F.; Shaw, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2016-01-01

    The Tokai to Kamioka (T2K) long-baseline neutrino experiment consists of a muon neutrino beam, produced at the J-PARC accelerator, a near detector complex and a large 295-km-distant far detector. The present work utilizes the T2K event timing measurements at the near and far detectors to study neutrino time of flight as a function of derived neutrino energy. Under the assumption of a relativistic relation between energy and time of flight, constraints on the neutrino rest mass can be derived. The sub-GeV neutrino beam in conjunction with timing precision of order tens of ns provide sensitivity to neutrino mass in the few MeV /c2 range. We study the distribution of relative arrival times of muon and electron neutrino candidate events at the T2K far detector as a function of neutrino energy. The 90% C.L. upper limit on the mixture of neutrino mass eigenstates represented in the data sample is found to be mν2<5.6 MeV2/c4 .

  10. Coherent neutrino-nucleus scattering detection with a CsI[Na] scintillator at the SNS spallation source

    NASA Astrophysics Data System (ADS)

    Collar, J. I.; Fields, N. E.; Hai, M.; Hossbach, T. W.; Orrell, J. L.; Overman, C. T.; Perumpilly, G.; Scholz, B.

    2015-02-01

    We study the possibility of using CsI[Na] scintillators as an advantageous target for the detection of coherent elastic neutrino-nucleus scattering (CENNS), using the neutrino emissions from the SNS spallation source at Oak Ridge National Laboratory. The response of this material to low-energy nuclear recoils like those expected from this process is characterized. Backgrounds are studied using a 2 kg low-background prototype crystal in a dedicated radiation shield. The conclusion is that a planned 14 kg detector should measure approximately 550 CENNS events per year above a demonstrated ~ 7 keVnr low-energy threshold, with a signal-to-background ratio sufficient for a first measurement of the CENNS cross-section. The cross-section for the 208Pb(νe ,e-)208Bi reaction, of interest for future supernova neutrino detection, can be simultaneously obtained.

  11. Detailed study of the neutral-current neutrino-nucleus scattering off the stable Mo isotopes

    NASA Astrophysics Data System (ADS)

    Ydrefors, E.; Balasi, K. G.; Kosmas, T. S.; Suhonen, J.

    2012-12-01

    For neutrino detection and for various applications in astrophysics the knowledge of the nuclear responses to astrophysical neutrinos is crucial. Recent studies of neutrino interactions with the 100Mo nucleus and the other stable molybdenum isotopes are important for the planned MOON (Mo Observatory of Neutrinos) detector. To this aim, in the present work we perform detailed nuclear structure calculations for the neutral-current neutrino-nucleus scattering off the stable molybdenum isotopes. We focus on the differential and total neutrino-nucleus cross sections as well as on flux averaged cross sections to various supernova neutrino spectra. We also propose a more efficient method for the computations of the corresponding nuclear matrix elements. By employing this method we extend our previous calculations for the odd isotopes (95Mo and 97Mo) where also couplings to high-lying QRPA (quasiparticle random-phase approximation) phonons are included in the quasiparticle-phonon basis. It is established in this work that the inclusion of high-lying QRPA excitations are essential for the description of the neutrino-nucleus scattering off open-shell odd-mass nuclei.

  12. Measurement of the 8B Solar Neutrino Flux with KamLAND

    SciTech Connect

    Abe, S.; Furuno, K.; Gando, A.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kimura, W.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Morikawa, T.; Nagai, N.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Narita, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takahashi, H.; Takahashi, N.; Takemoto, Y.; Tamae, K.; Watanabe, H.; Xu, B.D.; Yabumoto, H.; Yonezawa, E.; Yoshida, H.; Yoshida, S.; Enomoto, S.; Kozlov, A.; Murayama, H.; Grant, C.; Keefer, G.; McKee, D.; Piepke, A.; Banks, T.I.; Bloxham, T.; Detwiler, J.A.; Freedman, S.J.; Fujikawa, B.K.; Han, K.; Kadel, R.; O'Donnell, T.; Steiner, H.M.; Winslow, L.A.; Dwyer, D.A.; Mauger, C.; McKeown, R.D.; Zhang, C.; Berger, B.E.; Lane, C.E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J.G.; Matsuno, S.; Pakvasa, S.; Sakai, M.; Horton-Smith, G.A.; Tang, A.; Downum, K.E.; Gratta, G.; Tolich, K.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H.J.; Markoff, D.M.; Tornow, W.; Heeger, K.M.; Piquemal, F.; Ricol, J.-S.; Decowski, M.P.

    2011-06-04

    We report a measurement of the neutrino-electron elastic scattering rate from {sup 8}B solar neutrinos based on a 123 kton-day exposure of KamLAND. The background-subtracted electron recoil rate, above a 5.5-MeV analysis threshold is 1.49 {+-} 0.14(stat) {+-} 0.17(syst) events per kton-day. Interpreted as due to a pure electron flavor flux with a {sup 8}B neutrino spectrum, this corresponds to a spectrum integrated flux of 2.77 {+-} 0.26(stat) {+-} 0.32(syst) x 10{sup 6} cm{sup -2}s{sup -1}. The analysis threshold is driven by {sup 208}Tl present in the liquid scintillator, and the main source of systematic uncertainty is due to background from cosmogenic {sup 11}Be. The measured rate is consistent with existing measurements and with standard solar model predictions which include matter-enhanced neutrino oscillation.

  13. A combined view of sterile-neutrino constraints from CMB and neutrino oscillation measurements

    NASA Astrophysics Data System (ADS)

    Bridle, Sarah; Elvin-Poole, Jack; Evans, Justin; Fernandez, Susana; Guzowski, Pawel; Söldner-Rembold, Stefan

    2017-01-01

    We perform a comparative analysis of constraints on sterile neutrinos from the Planck experiment and from current and future neutrino oscillation experiments (MINOS, IceCube, SBN). For the first time, we express joint constraints on Neff and meffsterile from the CMB in the Δm2, sin2 ⁡ 2 θ parameter space used by oscillation experiments. We also show constraints from oscillation experiments in the Neff, meffsterile cosmology parameter space. In a model with a single sterile neutrino species and using standard assumptions, we find that the Planck 2015 data and the oscillation experiments measuring muon-neutrino (νμ) disappearance have similar sensitivity.

  14. Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters.

    PubMed

    Ahmad, Q R; Allen, R C; Andersen, T C; Anglin, J D; Barton, J C; Beier, E W; Bercovitch, M; Bigu, J; Biller, S D; Black, R A; Blevis, I; Boardman, R J; Boger, J; Bonvin, E; Boulay, M G; Bowler, M G; Bowles, T J; Brice, S J; Browne, M C; Bullard, T V; Bühler, G; Cameron, J; Chan, Y D; Chen, H H; Chen, M; Chen, X; Cleveland, B T; Clifford, E T H; Cowan, J H M; Cowen, D F; Cox, G A; Dai, X; Dalnoki-Veress, F; Davidson, W F; Doe, P J; Doucas, G; Dragowsky, M R; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Ferraris, A P; Ford, R J; Formaggio, J A; Fowler, M M; Frame, K; Frank, E D; Frati, W; Gagnon, N; Germani, J V; Gil, S; Graham, K; Grant, D R; Hahn, R L; Hallin, A L; Hallman, E D; Hamer, A S; Hamian, A A; Handler, W B; Haq, R U; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Hepburn, J D; Heron, H; Hewett, J; Hime, A; Howe, M; Hykawy, J G; Isaac, M C P; Jagam, P; Jelley, N A; Jillings, C; Jonkmans, G; Kazkaz, K; Keener, P T; Klein, J R; Knox, A B; Komar, R J; Kouzes, R; Kutter, T; Kyba, C C M; Law, J; Lawson, I T; Lay, M; Lee, H W; Lesko, K T; Leslie, J R; Levine, I; Locke, W; Luoma, S; Lyon, J; Majerus, S; Mak, H B; Maneira, J; Manor, J; Marino, A D; McCauley, N; McDonald, A B; McDonald, D S; McFarlane, K; McGregor, G; Meijer Drees, R; Mifflin, C; Miller, G G; Milton, G; Moffat, B A; Moorhead, M; Nally, C W; Neubauer, M S; Newcomer, F M; Ng, H S; Noble, A J; Norman, E B; Novikov, V M; O'Neill, M; Okada, C E; Ollerhead, R W; Omori, M; Orrell, J L; Oser, S M; Poon, A W P; Radcliffe, T J; Roberge, A; Robertson, B C; Robertson, R G H; Rosendahl, S S E; Rowley, J K; Rusu, V L; Saettler, E; Schaffer, K K; Schwendener, M H; Schülke, A; Seifert, H; Shatkay, M; Simpson, J J; Sims, C J; Sinclair, D; Skensved, P; Smith, A R; Smith, M W E; Spreitzer, T; Starinsky, N; Steiger, T D; Stokstad, R G; Stonehill, L C; Storey, R S; Sur, B; Tafirout, R; Tagg, N; Tanner, N W; Taplin, R K; Thorman, M; Thornewell, P M; Trent, P T; Tserkovnyak, Y I; Van Berg, R; Van de Water, R G; Virtue, C J; Waltham, C E; Wang, J-X; Wark, D L; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wittich, P; Wouters, J M; Yeh, M

    2002-07-01

    The Sudbury Neutrino Observatory (SNO) has measured day and night solar neutrino energy spectra and rates. For charged current events, assuming an undistorted 8B spectrum, the night minus day rate is 14.0%+/-6.3%(+1.5%)(-1.4%) of the average rate. If the total flux of active neutrinos is additionally constrained to have no asymmetry, the nu(e) asymmetry is found to be 7.0%+/-4.9%(+1.3%)(-1.2%). A global solar neutrino analysis in terms of matter-enhanced oscillations of two active flavors strongly favors the large mixing angle solution.

  15. A measurement of coherent neutral pion production in neutrino neutral current interactions in the NOMAD experiment

    NASA Astrophysics Data System (ADS)

    Kullenberg, C. T.; Mishra, S. R.; Seaton, M. B.; Kim, J. J.; Tian, X. C.; Scott, A. M.; Kirsanov, M.; Petti, R.; Alekhin, S.; Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P. W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Degaudenzi, H.; De Santo, A.; Del Prete, T.; Di Lella, L.; do Couto e Silva, E.; Dumarchez, J.; Ellis, M.; Feldman, G. J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kulagin, S.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Ling, J.; Linssen, L.; Ljubičić, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Moorhead, G. F.; Naumov, D.; Nédélec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L. S.; Pennacchio, E.; Pessard, H.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Poulsen, C.; Popov, B.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Samoylov, O.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Sevior, M.; Sillou, D.; Soler, F. J. P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G. N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S. N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K. E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F. V.; Weisse, T.; Wilson, F. F.; Winton, L. J.; Wu, Q.; Yabsley, B. D.; Zaccone, H.; Zuber, K.; Zuccon, P.

    2009-11-01

    We present a study of exclusive neutral pion production in neutrino-nucleus Neutral Current interactions using data from the NOMAD experiment at the CERN SPS. The data correspond to 1.44 ×106 muon-neutrino Charged Current interactions in the energy range 2.5 ⩽Eν ⩽ 300 GeV. Neutrino events with only one visible π0 in the final state are expected to result from two Neutral Current processes: coherent π0 production, ν + A → ν + A +π0 and single π0 production in neutrino-nucleon scattering. The signature of coherent π0 production is an emergent π0 almost collinear with the incident neutrino while π0's produced in neutrino-nucleon deep inelastic scattering have larger transverse momenta. In this analysis all relevant backgrounds to the coherent π0 production signal are measured using data themselves. Having determined the backgrounds, and using the Rein-Sehgal model for the coherent π0 production to compute the detection efficiency, we obtain 4630 ± 522 (stat) ± 426 (syst) corrected coherent-π0 events with Eπ0 ⩾ 0.5 GeV. We measure σ (νA → νAπ0) = [ 72.6 ± 8.1 (stat) ± 6.9 (syst) ] ×10-40 cm2 /nucleus. This is the most precise measurement of the coherent π0 production to date.

  16. Neutrino factory

    SciTech Connect

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R.J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A.C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  17. Neutrino factory

    DOE PAGES

    Bogomilov, M.; Matev, R.; Tsenov, R.; ...

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less

  18. Determination of sin/sup 2/THETA/sub w/ and rho in deep inelastic neutrino-nucleon scattering

    SciTech Connect

    Bogert, D.; Burnstein, R.; Fisk, R.; Fuess, S.; Morfin, J.; Ohska, T.; Stutte, L.; Walker, J.K.; Bofill, J.; Busza, W.

    1985-06-01

    We have determined the electroweak parameters sin/sup 2/THETA/sub w/ and rho by a measurement of deep inelastic neutrino-nucleon scattering using a fine grained neutrino detector exposed to a narrow band neutrino beam at Fermilab. The unique sampling properties of our detector have permitted neutral current and charged current events to be unambiguously identified over a wide kinematic range, thereby allowing a determination of sin/sup 2/THETA/sub w/ and rho to be made with good statistics and small systematic errors. We have found sin/sup 2/THETA/sub w/ = 0.246 +- 0.012 +- 0.013 in a single parameter fit. The details of the experimental and theoretical systematic errors are given. 17 refs., 2 figs., 2 tabs.

  19. Measurement of the High Energy Neutrino-Nucleon Cross Section with IceCube

    NASA Astrophysics Data System (ADS)

    Xu, Yiqian; Kiryluk, Joanna; IceCube Collaboration

    2015-04-01

    IceCube is a 1km3 neutrino detector located at the South Pole. It detects all-sky neutrinos of all flavors. IceCube has measured atmospheric muon and electron neutrino fluxes, and has recently discovered a flux of high energy extraterrestrial diffuse neutrinos. We present a novel analysis method and performance studies to determine the neutrino-nucleon cross section at high energies. It uses atmospheric and extraterrestrial neutrino-induced electromagnetic and hadronic showers (cascades) in the TeV-PeV energy range. In this method, uncertainties associated with the flux are canceled by using the ratio of yields from the Southern and Northern hemispheres in the Sky. At the energies in this study, the yields are sensitive to the deep-inelastic scattering cross-section and nucleon structure in a region of kinematic overlap with HERA and with the LHC. Their actual measurement forms a valuable proof-of-concept towards future measurements in the Extremely-High-Energy regime, which will provide sensitivity to new physics with unique neutrino probes. We have performed and will present an initial sensitivity study for determining the cross section from 5 years of data with the complete IceCube detector, as well as for the proposed IceCube-Gen2 high-energy extension. This work is supported by the National Science Foundation Grant No. 1205796.

  20. Measurement of Charged Current Coherent Pion Production by Neutrinos on Carbon at MINER$\

    SciTech Connect

    Mislivec, Aaron Robert

    2017-01-01

    Neutrino-nucleus coherent pion production is a rare neutrino scattering process where the squared four-momentum transferred to the nucleus is small, a lepton and pion are produced in the forward direction, and the nucleus remains in its initial state. This process is an important background in neutrino oscillation experiments. Measurements of coherent pion production are needed to constrain models which are used to predict coherent pion production in oscillation experiments. This thesis reports measurements of νµ and νµ charged current coherent pion production on carbon for neutrino energies in the range 2 < Eν < 20 GeV. The measurements were made using data from MINERνA, which is a dedicated neutrino-nucleus scattering experiment that uses a fi scintillator tracking detector in the high-intensity NuMI neutrino beam at Fermilab. Coherent interactions were isolated from the data using only model-independent signatures of the reaction, which are a forward muon and pion, no evidence of nuclear breakup, and small four-momentum transfer to the nucleus. The measurements were compared to the coherent pion production model used by oscillation experiments. The data and model agree in the total interaction rate and are similar in the dependence of the interaction rate on the squared four- momentum transferred from the neutrino. The data and model disagree significantly in the pion kinematics. The measured νµ and νµ interaction rates are consistent, which supports model predictions that the neutrino and antineutrino interaction rates are equal.

  1. Electron events from the scattering with solar neutrinos in the search of keV scale sterile neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Liao, Wei; Wu, Xiao-Hong; Zhou, Hang

    2014-05-01

    In a previous work, we showed that it is possible to detect keV scale sterile neutrino dark matter νs in a β decay experiment using radioactive sources such as T3 or Ru106. The signals of this dark matter candidate are monoenergetic electrons produced in the neutrino capture process νs+ N'→N+e-. These electrons have energy greater than the maximum energy of the electrons produced in the associated decay process N'→N+e-+ν ¯e. Hence, signal electron events are well beyond the end point of the β decay spectrum and are not polluted by the β decay process. Another possible background, which is a potential threat to the detection of νs dark matter, is the electron event produced by the scattering of solar neutrinos with electrons in target matter. In this article, we study in detail this possible background and discuss its implications for the detection of keV scale sterile neutrino dark matter. In particular, bound state features of electrons in Ru atoms are considered with care in the scattering process when the kinetic energy of the final electron is the same order of magnitude of the binding energy.

  2. A Measurement of Neutrino Charged Current Interactions and a Search for Muon Neutrino Disappearance with the Fermilab Booster Neutrino Beam

    SciTech Connect

    Nakajima, Yasuhiro

    2011-01-01

    In this thesis, we report on a measurement of muon neutrino inclusive charged current interactions on carbon in the few GeV region, using the Fermilab Booster Neutrino Beam. The all neutrino mode data collected in the SciBooNE experiment is used for this analysis. We collected high-statistics CC interaction sample at SciBooNE, and extracted energy dependent inclusive charged current interaction rates and cross sections for a wide energy range from 0.25 GeV to ~3 GeV. We measure the interaction rates with 6-15% precision, and the cross sections with 10-30% precision. We also made an energy integrated measurements, with the precisions of 3% for the rate, and 8% for the cross section measurements. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. This inclusive interaction measurement is nearly free from effects of hadron re-interactions in the nucleus. Hence, it is complementary to other exclusive cross section measurements, and essential to understand the neutrino interaction cross sections in the few GeV region, which is relevant to ongoing and future neutrino oscillation experiments. This analysis also provides the normalization for SciBooNE's previous cross section ratio measurements for charged current coherent pion production and neutral current neutral pion production. Then, a precise comparison between our previous measurements and the model predictions becomes possible. The result of the interaction rate measurement is used to constrain the product of the neutrino flux and the cross section at the other experiment on the Fermilab Booster Neutrino Beam: Mini-BooNE. We conducted a search for short-baseline muon neutrino disappearance using data both from SciBooNE and MiniBooNE, to test a possible neutrino oscillation with sterile neutrinos which is suggested by the LSND experiment. With this constraint by SciBooNE, we significantly reduced the flux and the cross section uncertainties at MiniBooNE, and achieved the world

  3. Measurement of the Velocity of the Neutrino with MINOS

    DTIC Science & Technology

    2012-01-01

    44 th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting 119 Measurement of the Velocity of the Neutrino with MINOS P...uses a beam of predominantly muon-type neutrinos generated using protons from the Main Injector at Fermilab in Batavia, IL, and travelling 735 km...the neutrino time of flight to be made. The time structure of the parent proton pulse is measured in the beamline after extraction from the Main

  4. Mini-LENS: developing a charged-current approach to measuring CNO and pp solar neutrinos

    NASA Astrophysics Data System (ADS)

    Vogelaar, R. Bruce

    2014-03-01

    The Low-Energy Neutrino Spectroscopy (LENS) experiment is based on neutrino detection via a charged-current interaction with 115In and offers the ability to cleanly observe both pp and CNO neutrinos. In contrast, elastic-scattering detectors, such as Borexino and SNO + suffer from virtually inseparable backgrounds. Thus, LENS might be uniquely positioned to resolve the solar metallicity question via measurement of the CNO neutrino flux, as well as test the predicted equivalence of solar luminosity as measured by photons versus neutrinos The mini-LENS program is testing the performance of the optically-segmented 3D lattice geometry unique to LENS. This first-of-a-kind lattice design is also suited for a range of other applications where high segmentation and large light collection are required (eg: sterile neutrinos with sources, double beta decay, and surface detection of reactor neutrinos). The current status and recent design changes of miniLENS at KURF will be presented. funded by NSF: 1001394.

  5. The neutrino mass hierarchy measurement with a neutrino telescope in the Mediterranean Sea: A feasibility study

    SciTech Connect

    Tsirigotis, A. G.; Collaboration: KM3NeT Collaboration

    2014-11-18

    With the measurement of a non zero value of the θ{sub 13} neutrino mixing parameter, interest in neutrinos as source of the baryon asymmetry of the universe has increased. Among the measurements of a rich and varied program in near future neutrino physics is the determination of the mass hierarchy. We present the status of a study of the feasibility of using a densely instrumented undersea neutrino detector to determine the mass hierarchy, utilizing the Mikheyev-Smirnov-Wolfenstein (MSW) effect on atmospheric neutrino oscillations. The detector will use technology developed for KM3NeT. We present the systematic studies of the optimization of a detector in the required 5–10 GeV energy regime. These studies include new tracking and interaction identification algorithms as well as geometrical optimizations of the detector.

  6. The Inclusive Neutrino Charged Current Cross Section Measured in NOMAD

    NASA Astrophysics Data System (ADS)

    Godley, Andrew; Wu, Qun; Mishra, Sanjib

    2007-04-01

    The inclusive charged current cross section of muon neutrino interactions is measured as a function of energy using the NOMAD data. The significance of this measurement is its precision below 30 GeV, a region not previously well covered and of importance to current and proposed neutrino experiments. The procedure and results of the measurement will be presented.

  7. Measurement of neutrino oscillation parameters from muon neutrino disappearance with an off-axis beam.

    PubMed

    Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S W; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, F D M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Curioni, A; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, A J; Frank, E; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Gaudin, A; Giffin, S; Giganti, C; Gilje, K; Golan, T; Gomez-Cadenas, J J; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Ives, S J; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Joo, K K; Jung, C K; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kim, S B; Kisiel, J; Kitching, P; Kobayashi, T; Kogan, G; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Laveder, M; Lawe, M; Lazos, M; Lee, K P; Licciardi, C; Lim, I T; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Lopez, G D; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Masliah, P; Mathie, E L; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Naples, D; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Otani, M; Owen, R A; Oyama, Y; Pac, M Y; Palladino, V; Paolone, V; Payne, D; Pearce, G F; Perevozchikov, O; Perkin, J D; Petrov, Y; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, P A; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Taylor, I J; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2013-11-22

    The T2K Collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.01×10(20) protons on target. In the absence of neutrino oscillations, 205±17 (syst) events are expected to be detected while only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum, assuming three neutrino flavors and normal mass hierarchy yields a best-fit mixing angle sin2(θ23)=0.514±0.082 and mass splitting |Δm(32)(2)|=2.44(-0.15)(+0.17)×10(-3) eV2/c4. Our result corresponds to the maximal oscillation disappearance probability.

  8. Measurement of Neutrino Oscillation Parameters from Muon Neutrino Disappearance with an Off-Axis Beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Frank, E.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Joo, K. K.; Jung, C. K.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kim, S. B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Licciardi, C.; Lim, I. T.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, G. D.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Pac, M. Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Taylor, I. J.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2013-11-01

    The T2K Collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.01×1020 protons on target. In the absence of neutrino oscillations, 205±17 (syst) events are expected to be detected while only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum, assuming three neutrino flavors and normal mass hierarchy yields a best-fit mixing angle sin⁡2(θ23)=0.514±0.082 and mass splitting |Δm322|=2.44-0.15+0.17×10-3eV2/c4. Our result corresponds to the maximal oscillation disappearance probability.

  9. Neutrino scattering off the stable even-even Mo isotopes

    NASA Astrophysics Data System (ADS)

    Balasi, K. G.; Kosmas, T. S.; Divari, P. C.

    2009-11-01

    Inelastic neutrino-nucleus reaction cross sections are studied focusing on the neutral current processes. Particularly, we investigate the angular and initial neutrino-energy dependence of the differential and integrated cross sections for low and intermediate energies of the incoming neutrino. The nuclear wave functions for the initial and final nuclear states are constructed in the context of the quasi-particle random phase approximation (QRPA) tested on the reproducibility of the low-lying energy spectrum. The results presented here refer to the isotopes Mo92, Mo94, Mo96, Mo98 and Mo100. These isotopes could play a significant role in supernova neutrino detection in addition to their use in double-beta and neutrinoless double-beta decay experiments (e.g. MOON, NEMO III).

  10. Measurement of the Charged-Current Quasi-Elastic Cross-Section for Electron Neutrinos on a Hydrocarbon Target

    SciTech Connect

    Wolcott, Jeremy

    2016-01-01

    Appearance-type neutrino oscillation experiments, which observe the transition from muon neutrinos to electron neutrinos, promise to help answer some of the fundamental questions surrounding physics in the post-Standard-Model era. Because they wish to observe the interactions of electron neutrinos in their detectors, and because the power of current results is typically limited by their systematic uncertainties, these experiments require precise estimates of the cross-section for electron neutrino interactions. Of particular interest is the charged-current quasi-elastic (CCQE) process, which gures signi cantly in the composition of the reactions observed at the far detector. However, no experimental measurements of this crosssection currently exist for electron neutrinos; instead, current experiments typically work from the abundance of muon neutrino CCQE cross-section data and apply corrections from theoretical arguments to obtain a prediction for electron neutrinos. Veri cation of these predictions is challenging due to the di culty of constructing an electron neutrino beam, but the advent of modern high-intensity muon neutrino beams|together with the percent-level electron neutrino impurity inherent in these beams| nally presents the opportunity to make such a measurement. We report herein the rst-ever measurement of a cross-section for an exclusive state in electron neutrino scattering, which was made using the MINER A detector in the NuMI neutrino beam at Fermilab. We present the electron neutrino CCQE di erential cross-sections, which are averaged over neutrinos of energies 1-10 GeV (with mean energy of about 3 GeV), in terms of various kinematic variables: nal-state electron angle, nal-state electron energy, and the square of the fourmomentum transferred to the nucleus by the neutrino , Q2. We also provide a total cross-section vs. neutrino energy. While our measurement of this process is found to be in agreement with the predictions of the GENIE

  11. Measurement of Neutrino Induced, Charged Current, Charged Pion Production

    SciTech Connect

    Wilking, Michael Joseph

    2009-05-01

    Neutrinos are among the least understood particles in the standard model of particle physics. At neutrino energies in the 1 GeV range, neutrino properties are typically determined by observing the outgoing charged lepton produced in a charged current quasi-elastic interactions. The largest charged current background to these measurements comes from charged current pion production interactions, for which there is very little available data.

  12. First Search for the EMC Effect and Nuclear Shadowing in Neutrino Nucleus Deep Inelastic Scattering at MINERvA

    SciTech Connect

    Mousseau, Joel A.

    2015-01-01

    Decades of research in electron-nucleus deep inelastic scattering (DIS) have provided a clear picture of nuclear physics at high momentum transfer. While these effects have been clearly demonstrated by experiment, the theoretical explanation of their origin in some kinematic regions has been lacking. Particularly, the effects in the intermediate regions of Bjorken-x, anti-shadowing and the EMC effect have no universally accepted quantum mechanical explanation. In addition, these effects have not been measured systematically with neutrino-nucleus deep inelastic scattering, due to experiments lacking multiple heavy targets.

  13. Neutrino scattering from hydrodynamic modes in hot and dense neutron matter

    NASA Astrophysics Data System (ADS)

    Shen, Gang; Reddy, Sanjay

    2014-03-01

    We calculate the scattering rate of low-energy neutrinos in hot and dense neutron matter encountered in neutrons stars and supernovae in the hydrodynamic regime. We find that the Brillouin peak, associated with the sound mode, and the Rayleigh peak, associated with the thermal diffusion mode, dominate the dynamic structure factor. Although the total scattering cross section is constrained by the compressibility sum rule, the differential cross section calculated using the hydrodynamic response function differs from results obtained in approximate treatments often used in astrophysics such as random phase approximations. We identified these differences and discuss their implications for neutrino transport in supernovae.

  14. Why black hole production in scattering of cosmic ray neutrinos is generically suppressed.

    PubMed

    Stojkovic, Dejan; Starkman, Glenn D; Dai, De-Chang

    2006-02-03

    It has been argued that neutrinos originating from ultrahigh energy cosmic rays can produce black holes deep in the atmosphere in models with TeV-scale quantum gravity. Such black-hole events could be observed at the Auger Observatory. However, any phenomenologically viable model with a low scale of quantum gravity must explain how to preserve protons from rapid decay. We argue that the suppression of proton decay will also suppress lepton-nucleon scattering and hence black-hole production by scattering of ultrahigh energy cosmic ray neutrinos in the atmosphere. We discuss explicitly the split fermion solution to the problem of fast proton decay.

  15. Charged current quasi elastic scattering of muon neutrino with nuclei

    NASA Astrophysics Data System (ADS)

    Saraswat, Kapil; Shukla, Prashant; Kumar, Vineet; Singh, Venktesh

    2017-08-01

    We present a study on the charge current quasi elastic scattering of ν _μ from nucleon and nuclei which gives a charged muon in the final state. To describe nuclei, the Fermi Gas model has been used with proposed Pauli suppression factor. The diffuseness parameter of the Fermi distribution has been obtained using experimental data. We also investigate different parametrizations for electric and magnetic Sach's form factors of nucleons. Calculations have been made for CCQES total and differential cross-sections for the cases of ν _{μ }-N , ν _{μ }-{^{12}}C and ν _{μ }-{^{56}}Fe scatterings and are compared with the data for different values of the axial mass. The present model gives excellent description of measured differential cross-section for all the systems.

  16. Bolometric detection of neutrinos

    NASA Technical Reports Server (NTRS)

    Cabrera, B.; Krauss, L. M.; Wilczek, F.

    1985-01-01

    Elastic neutrino scattering off electrons in crystalline silicon at 1-10 mK results in measurable temperature changes in macroscopic amounts of material, even for low-energy (less than 0.41-MeV) pp neutrinos from the sun. New detectors for bolometric measurement of low-energy neutrino interactions, including coherent nuclear elastic scattering, are proposed. A new and more sensitive search for oscillations of reactor antineutrinos is practical (about 100 kg of Si), and would lay the groundwork for a more ambitious measurement of the spectrum of pp, Be-7, and B-8 solar neutrinos, and of supernovae anywhere in the Galaxy (about 10 tons of Si).

  17. Measurement of neutrino induced charged current neutral pion production cross section at SciBooNE

    SciTech Connect

    Catala-Perez, Juan

    2014-01-01

    SciBooNE is a neutrino scattering experiment located in the Booster Neutrino Beam at Fermilab. It collected data from June 2007 to August 2008 to accurately measure muon neutrino and anti-neutrino cross sections on carbon around 1 GeV neutrino energy. In this thesis we present the results on the measurement of the muon neutrino cross section resulting in a μ- plus a single π0 final state (CC- π0 channel). The present work will show the steps taken to achieve this result: from the reconstruction improvements to the background extraction. The flux-averaged CC - π0 production cross section measurement obtained in this thesis < σCC- π0 > Φ = (5.6 ± 1.9fit ± 0.7beam ± 0.5int - 0.7det) × 10-40 cm2/N at an average energy of 0.89 GeV is found to agree well both with the expectation from the Monte Ca

  18. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    DOE R&D Accomplishments Database

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  19. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    SciTech Connect

    SNO collaboration; Aharmim, B.; Ahmed, S.N.; Andersen, T.C.; Anthony, A.E.; Barros, N.; Beier, E.W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S.D.; Boudjemline, K.; Boulay, M.G.; Burritt, T.H.; Cai, B.; Chan, Y.D.; Chen, M.; Chon, M.C.; Cleveland, B.T.; Cox-Mobrand, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P.J.; Dosanjh, R.S.; Doucas, G.; Drouin, P.-L.; Duncan, F.A.; Dunford, M.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Gagnon, N.; Goon, J.TM.; Grant, D.R.; Guillian, E.; Habib, S.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hargrove, C.K.; Harvey, P.J.; Harvey, P.J.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hemingway, R.J.; Henning, R.; Hime, A.; Howard, C.; Howe, M.A.; Huang, M.; Jamieson, B.; Jelley, N.A.; Klein, J.R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C.B.; Kutter, T.; Kyba, C.C.M.; Lange, R.; Law, J.; Lawson, I.T.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald, A.B.; McGee, S.; Mifflin, C.; Miller, M.L.; Monreal, B.; Monroe, J.; Noble, A.J.; Oblath, N.S.; Okada, C.E.; O?Keeffe, H.M.; Opachich, Y.; Orebi Gann, G.D.; Oser, S.M.; Ott, R.A.; Peeters, S.J.M.; Poon, A.W.P.; Prior, G.; Rielage, K.; Robertson, B.C.; Robertson, R.G.H.; Rollin, E.; Schwendener, M.H.; Secrest, J.A.; Seibert, S.R.; Simard, O.; Simpson, J.J.; Sinclair, D.; Skensved, P.; Smith, M.W.E.; Sonley, T.J.; Steiger, T.D.; Stonehill, L.C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R.G.; VanDevender, B.A.; Virtue, C.J.; Waller, D.; Waltham, C.E.; Wan Chan Tseung, H.; Wark, D.L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J.F.; Wilson, J.R.; Wouters, J.M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-02-16

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  20. Measurement of the cosmic ray and neutrino-induced muon flux at the Sudbury neutrino observatory

    SciTech Connect

    Aharmim, B.; Farine, J.; Fleurot, F.; Hallman, E. D.; Krueger, A.; Luoma, S.; Schwendener, M. H.; Virtue, C. J.; Ahmed, S. N.; Cai, B.; Chen, M.; Evans, H. C.; Ewan, G. T.; Guillian, E.; Harvey, P. J.; Kos, M.; Kraus, C.; Leslie, J. R.; MacLellan, R.; Mak, H. B.

    2009-07-01

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and unoscillated portion of the neutrino flux. A total of 514 muonlike events are measured between -1{<=}cos{theta}{sub zenith}{<=}0.4 in a total exposure of 2.30x10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22{+-}0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos{theta}{sub zenith}>0.4 is measured to be (3.31{+-}0.01(stat){+-}0.09(sys))x10{sup -10} {mu}/s/cm{sup 2}.

  1. Agreement of neutrino deep inelastic scattering data with global fits of parton distributions.

    PubMed

    Paukkunen, Hannu; Salgado, Carlos A

    2013-05-24

    The compatibility of neutrino-nucleus deep inelastic scattering data within the universal, factorizable nuclear parton distribution functions has been studied independently by several groups in the past few years. The conclusions are contradictory, ranging from a violation of the universality up to a good agreement, most of the controversy originating from the use of the neutrino-nucleus data from the NuTeV Collaboration. Here, we pay attention to non-negligible differences in the absolute normalization between different neutrino data sets. We find that such variations are large enough to prevent a tensionless fit to all data simultaneously and could therefore misleadingly point towards nonuniversal nuclear effects. We propose a concrete method to deal with the absolute normalization and show that an agreement between independent neutrino data sets is established.

  2. Inclusive neutrino cross section measurements at MINERvA

    NASA Astrophysics Data System (ADS)

    Ratchford, Jasmine; Minerva Collaboration

    2011-10-01

    The MINERvA experiment is a precision neutrino experiment designed to improve our understanding of the neutrino-nucleus interaction. The experiment uses a fully active scintillation detector to allow full event reconstruction and includes passive targets helium, water, carbon, iron and lead. Preliminary measurements of inclusive cross section ratios of lead to iron will be shown.

  3. Coherent Scatter Imaging Measurements

    NASA Astrophysics Data System (ADS)

    Ur Rehman, Mahboob

    In conventional radiography, anatomical information of the patients can be obtained, distinguishing different tissue types, e.g. bone and soft tissue. However, it is difficult to obtain appreciable contrast between two different types of soft tissues. Instead, coherent x-ray scattering can be utilized to obtain images which can differentiate between normal and cancerous cells of breast. An x-ray system using a conventional source and simple slot apertures was tested. Materials with scatter signatures that mimic breast cancer were buried in layers of fat of increasing thickness and imaged. The result showed that the contrast and signal to noise ratio (SNR) remained high even with added fat layers and short scan times.

  4. Measurement of Day and Night Neutrino Energy Spectra at SNO and Constraints on Neutrino Mixing Parameters

    NASA Astrophysics Data System (ADS)

    Ahmad, Q. R.; Allen, R. C.; Andersen, T. C.; Anglin, J. D.; Barton, J. C.; Beier, E. W.; Bercovitch, M.; Bigu, J.; Biller, S. D.; Black, R. A.; Blevis, I.; Boardman, R. J.; Boger, J.; Bonvin, E.; Boulay, M. G.; Bowler, M. G.; Bowles, T. J.; Brice, S. J.; Browne, M. C.; Bullard, T. V.; Bühler, G.; Cameron, J.; Chan, Y. D.; Chen, H. H.; Chen, M.; Chen, X.; Cleveland, B. T.; Clifford, E. T.; Cowan, J. H.; Cowen, D. F.; Cox, G. A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W. F.; Doe, P. J.; Doucas, G.; Dragowsky, M. R.; Duba, C. A.; Duncan, F. A.; Dunford, M.; Dunmore, J. A.; Earle, E. D.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Ferraris, A. P.; Ford, R. J.; Formaggio, J. A.; Fowler, M. M.; Frame, K.; Frank, E. D.; Frati, W.; Gagnon, N.; Germani, J. V.; Gil, S.; Graham, K.; Grant, D. R.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hamer, A. S.; Hamian, A. A.; Handler, W. B.; Haq, R. U.; Hargrove, C. K.; Harvey, P. J.; Hazama, R.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hepburn, J. D.; Heron, H.; Hewett, J.; Hime, A.; Howe, M.; Hykawy, J. G.; Isaac, M. C.; Jagam, P.; Jelley, N. A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P. T.; Klein, J. R.; Knox, A. B.; Komar, R. J.; Kouzes, R.; Kutter, T.; Kyba, C. C.; Law, J.; Lawson, I. T.; Lay, M.; Lee, H. W.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H. B.; Maneira, J.; Manor, J.; Marino, A. D.; McCauley, N.; McDonald, A. B.; McDonald, D. S.; McFarlane, K.; McGregor, G.; Meijer Drees, R.; Mifflin, C.; Miller, G. G.; Milton, G.; Moffat, B. A.; Moorhead, M.; Nally, C. W.; Neubauer, M. S.; Newcomer, F. M.; Ng, H. S.; Noble, A. J.; Norman, E. B.; Novikov, V. M.; O'Neill, M.; Okada, C. E.; Ollerhead, R. W.; Omori, M.; Orrell, J. L.; Oser, S. M.; Poon, A. W.; Radcliffe, T. J.; Roberge, A.; Robertson, B. C.; Robertson, R. G.; Rosendahl, S. S.; Rowley, J. K.; Rusu, V. L.; Saettler, E.; Schaffer, K. K.; Schwendener, M. H.; Schülke, A.; Seifert, H.; Shatkay, M.; Simpson, J. J.; Sims, C. J.; Sinclair, D.; Skensved, P.; Smith, A. R.; Smith, M. W.; Spreitzer, T.; Starinsky, N.; Steiger, T. D.; Stokstad, R. G.; Stonehill, L. C.; Storey, R. S.; Sur, B.; Tafirout, R.; Tagg, N.; Tanner, N. W.; Taplin, R. K.; Thorman, M.; Thornewell, P. M.; Trent, P. T.; Tserkovnyak, Y. I.; van Berg, R.; van de Water, R. G.; Virtue, C. J.; Waltham, C. E.; Wang, J.-X.; Wark, D. L.; West, N.; Wilhelmy, J. B.; Wilkerson, J. F.; Wilson, J. R.; Wittich, P.; Wouters, J. M.; Yeh, M.

    2002-07-01

    The Sudbury Neutrino Observatory (SNO) has measured day and night solar neutrino energy spectra and rates. For charged current events, assuming an undistorted (sup 8)B spectrum, the night minus day rate is 14.0%[plus-or-minus]6.3%(sup +1.5)-1.4 % of the average rate. If the total flux of active neutrinos is additionally constrained to have no asymmetry, the [nu]e asymmetry is found to be 7.0%[plus-or-minus]4.9%(sup +1.3)-1.2% . A global solar neutrino analysis in terms of matter-enhanced oscillations of two active flavors strongly favors the large mixing angle solution.

  5. Electron-neutrino charged-current quasi-elastic scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Wolcott, Jeremy

    2014-03-01

    The electron-neutrino charged-current quasi-elastic (CCQE) cross-section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino CCQE cross-section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino CCQE cross-section, but to date there has been no precise experimental verification of these estimates at an energy scale appropriate to such experiments. We present the current status of a direct measurement of the electron neutrino CCQE differential cross-section as a function of the squared four-momentum transfer to the nucleus, Q2, in MINERvA. This talk will discuss event selection, background constraints, and the flux prediction used in the calculation.

  6. First search for the EMC effect and nuclear shadowing in neutrino nucleus deep inelastic scattering at MINERVA

    NASA Astrophysics Data System (ADS)

    Mousseau, Joel A.

    Decades of research in electron-nucleus deep inelastic scattering (DIS) have provided a clear picture of nuclear physics at high momentum transfer. While these effects have been clearly demonstrated by experiment, the theoretical explanation of their origin in some kinematic regions has been lacking. Particularly, the effects in the intermediate regions of Bjorken-x, anti-shadowing and the EMC effect have no universally accepted quantum mechanical explanation. In addition, these effects have not been measured systematically with neutrino-nucleus deep inelastic scattering, due to experiments lacking multiple heavy targets. The MINERνA (Main Injector Experiment ν-A) experiment, located in the Neutrinos at the Main Injector (NuMI) facility at Fermilab, is designed explicitly to measure these kind of effects with neutrinos. MINEνA is equipped with solid targets of graphite, iron, lead and plastic scintillator. The plastic scintillator region provides excellent particle tracking capabilities, and the MINOS (Main Injector Neutrino Oscillation Search) near detector is used as a downstream muon spectrometer. The exposure of multiple nuclear targets to an identical neutrino beam allows for a systematic study of these nuclear effects. An analysis of the MINERνA DIS data on carbon, iron, lead and plastic scintillator has been conducted in the energy region 5 ≤ E ν < 50 GeV and thetamu < 17°. The data are presented as ratios of the total cross section (sigma(E ν)) as well as the differential cross section with respect to Bjorken-x (dsigma/dxbj) of carbon, iron and lead to scintillator. The total cross section data is useful for deciphering gross nuclear effects which effect neutrino energy reconstruction. No significant differences between simulation and MINνA DIS data are observed in the total cross section. The ratios of the xbj differential ratios however, may provide clues for decoding long standing questions about the EMC effect. The MINERνA data tend to

  7. Hadron production measurements to constrain accelerator neutrino beams

    NASA Astrophysics Data System (ADS)

    Korzenev, Alexander

    2015-07-01

    A precise prediction of expected neutrino fluxes is required for a long-baseline accelerator neutrino experiment. The flux is used to measure neutrino cross sections at the near detector, while at the far detector it provides an estimate of the expected signal for the study of neutrino oscillations. In the talk several approaches to constrain the ν flux are presented. The first is the traditional one when an interaction chain for the neutrino parent hadrons is stored to be weighted later with real measurements. In this approach differential hadron cross sections are used which, in turn, are measured in ancillary hadron production experiments. The approach is certainly model dependent because it requires an extrapolation to different incident nucleon momenta assuming xF scaling as well as extrapolation between materials having different atomic numbers. In the second approach one uses a hadron production yields off a real target exploited in the neutrino beamline. Yields of neutrino parent hadrons are parametrized at the surface of the target, thus one avoids to trace the particle interaction history inside the target. As in the case of the first approach, a dedicated ancillary experiment is mandatory. Recent results from the hadron production experiments - NA61/SHINE at CERN (measurements for T2K) and MIPP at Fermilab (measurements for NuMI) - are reviewed.

  8. Hadron production measurements to constrain accelerator neutrino beams

    SciTech Connect

    Korzenev, Alexander

    2015-07-15

    A precise prediction of expected neutrino fluxes is required for a long-baseline accelerator neutrino experiment. The flux is used to measure neutrino cross sections at the near detector, while at the far detector it provides an estimate of the expected signal for the study of neutrino oscillations. In the talk several approaches to constrain the ν flux are presented. The first is the traditional one when an interaction chain for the neutrino parent hadrons is stored to be weighted later with real measurements. In this approach differential hadron cross sections are used which, in turn, are measured in ancillary hadron production experiments. The approach is certainly model dependent because it requires an extrapolation to different incident nucleon momenta assuming x{sub F} scaling as well as extrapolation between materials having different atomic numbers. In the second approach one uses a hadron production yields off a real target exploited in the neutrino beamline. Yields of neutrino parent hadrons are parametrized at the surface of the target, thus one avoids to trace the particle interaction history inside the target. As in the case of the first approach, a dedicated ancillary experiment is mandatory. Recent results from the hadron production experiments – NA61/SHINE at CERN (measurements for T2K) and MIPP at Fermilab (measurements for NuMI) – are reviewed.

  9. Measuring Neutrino Oscillations with Nuclear Reactors

    SciTech Connect

    McKeown, R. D.

    2007-10-26

    Since the first direct observations of antineutrino events by Reines and Cowan in the 1950's, nuclear reactors have been an important tool in the study of neutrino properties. More recently, the study of neutrino oscillations has been a very active area of research. The pioneering observation of oscillations by the KamLAND experiment has provided crucial information on the neutrino mixing matrix. New experiments to study the remaining unknown mixing angle are currently under development. These recent studies and potential future developments will be discussed.

  10. Superscaling in electron-nucleus scattering and its link to CC and NC QE neutrino-nucleus scattering

    SciTech Connect

    Barbaro, M. B.; Amaro, J. E.; Caballero, J. A.; González-Jiménez, R.; Donnelly, T. W.; Ivanov, M.; Udías, J. M.

    2015-05-15

    The superscaling approach (SuSA) to neutrino-nucleus scattering, based on the assumed universality of the scaling function for electromagnetic and weak interactions, is reviewed. The predictions of the SuSA model for bot CC and NC differential and total cross sections are presented and compared with the MiniBooNE data. The role of scaling violations, in particular the contribution of meson exchange currents in the two-particle two-hole sector, is explored.

  11. Superscaling in electron-nucleus scattering and its link to CC and NC QE neutrino-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Barbaro, M. B.; Amaro, J. E.; Caballero, J. A.; Donnelly, T. W.; González-Jiménez, R.; Ivanov, M.; Udías, J. M.

    2015-05-01

    The superscaling approach (SuSA) to neutrino-nucleus scattering, based on the assumed universality of the scaling function for electromagnetic and weak interactions, is reviewed. The predictions of the SuSA model for bot CC and NC differential and total cross sections are presented and compared with the MiniBooNE data. The role of scaling violations, in particular the contribution of meson exchange currents in the two-particle two-hole sector, is explored.

  12. Measuring leptonic CP violation by low energy neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Minakata, H.; Nunokawa, H.

    2000-12-01

    We uncover an interesting phenomenon that neutrino flavor transformation in slowly varying matter density imitates almost exactly that of vacuum neutrino oscillation under suitably chosen experimental parameters. It allows us to have relatively large CP violating measure ΔP≡P(νμ-->νe)- P(ν¯μ-->ν¯e) which is essentially free from matter effect contamination. We utilize this phenomenon to design a low-energy long-baseline neutrino oscillation experiment to measure the leptonic CP violating phase.

  13. Coherent neutrino scattering with low temperature bolometers at Chooz reactor complex

    NASA Astrophysics Data System (ADS)

    Billard, J.; Carr, R.; Dawson, J.; Figueroa-Feliciano, E.; Formaggio, J. A.; Gascon, J.; Heine, S. T.; De Jesus, M.; Johnston, J.; Lasserre, T.; Leder, A.; Palladino, K. J.; Sibille, V.; Vivier, M.; Winslow, L.

    2017-10-01

    We present the potential sensitivity of a future recoil detector for a first detection of the process of coherent elastic neutrino nucleus scattering (CEνNS). We use the Chooz reactor complex in France as our luminous source of reactor neutrinos. Leveraging the ability to cleanly separate the rate correlated with the reactor thermal power against (uncorrelated) backgrounds, we show that a 10 kg cryogenic bolometric array with 100 eV threshold should be able to extract a CEνNS signal within one year of running.

  14. A phenomenological study of photon production in low energy neutrino nucleon scattering

    SciTech Connect

    Jenkins, James P; Goldman, Terry J

    2009-01-01

    Low energy photon production is an important background to many current and future precision neutrino experiments. We present a phenomenological study of t-channel radiative corrections to neutral current neutrino nucleus scattering. After introducing the relevant processes and phenomenological coupling constants, we will explore the derived energy and angular distributions as well as total cross-section predictions along with their estimated uncertainties. This is supplemented throughout with comments on possible experimental signatures and implications. We conclude with a general discussion of the analysis in the context of complimentary methodologies. This is based on a talk presented at the DPF 2009 meeting in Detroit MI.

  15. Measurement of neutrino oscillations in MACRO experiment

    NASA Technical Reports Server (NTRS)

    Musser, J.

    1985-01-01

    The possibility of investigating neutrino oscillations in the proposed MACRO experiment are considered. Its sensitivity taking into account the theoretical uncertainties coming from flux calculations, geomagnetic effects and propagation through matter, and the experimental limitations.

  16. Neutrino Mass Measurement Using a Directed Mono-Energetic Beam

    NASA Astrophysics Data System (ADS)

    Tsifrinovich, Vladimir; Folan, Lorcan

    2015-04-01

    It was shown that a directed mono-energetic neutrino beam can be generated by electron capture beta-decay in a sample with a strong hyperfine field at the radioactive nuclei. We study the conditions required to measure the neutrino rest mass using the recoil force produced by a directed neutrino beam. We consider the displacement of an atomic force microscope cantilever due to such a recoil force. We find the change in the cantilever displacement associated with the non-zero neutrino mass, as a function of nuclear half-life T1 / 2, cantilever spring constant, and temperature. We consider the opportunity to increase the sensitivity of the neutrino mass measurement using averaging of the measurement signal. We show that the optimal time for the signal accumulation is, approximately, 1.8T1 / 2. We compute the optimal signal-to-noise ratio for 119Sb nuclei decaying to 119Sn with a decrease in the nuclear spin from I = 5/2 to I = 3/2, and T1 / 2 = 38.2 hours. Finally, we present the parameters values required for detection of sub-eV neutrino rest mass, and estimate the angular distribution of neutrino radiation as a function of temperature.

  17. Neutrinos

    PubMed Central

    Besson, Dave; Cowen, Doug; Selen, Mats; Wiebusch, Christopher

    1999-01-01

    Neutrinos represent a new “window” to the Universe, spanning a large range of energy. We discuss the science of neutrino astrophysics and focus on two energy regimes. At “lower” energies (≈1 MeV), studies of neutrinos born inside the sun, or produced in interactions of cosmic rays with the atmosphere, have allowed the first incontrovertible evidence that neutrinos have mass. At energies typically one thousand to one million times higher, sources further than the sun (both within the Milky Way and beyond) are expected to produce a flux of particles that can be detected only through neutrinos. PMID:10588680

  18. Exploring the hidden interior of the Earth with directional neutrino measurements.

    PubMed

    Leyton, Michael; Dye, Stephen; Monroe, Jocelyn

    2017-07-10

    Roughly 40% of the Earth's total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here we present a method for measuring previously unresolved components of Earth's radiogenic heating using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors. We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth.

  19. Exploring the hidden interior of the Earth with directional neutrino measurements

    NASA Astrophysics Data System (ADS)

    Leyton, Michael; Dye, Stephen; Monroe, Jocelyn

    2017-07-01

    Roughly 40% of the Earth's total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here we present a method for measuring previously unresolved components of Earth's radiogenic heating using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors. We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth.

  20. Exploring the hidden interior of the Earth with directional neutrino measurements

    PubMed Central

    Leyton, Michael; Dye, Stephen; Monroe, Jocelyn

    2017-01-01

    Roughly 40% of the Earth’s total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here we present a method for measuring previously unresolved components of Earth’s radiogenic heating using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors. We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth. PMID:28691700

  1. CosI: Development of a low threshold detector for the observation of coherent elastic neutrino-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Fields, Nicole Elizabeth

    I present the development of an experimental setup designed to measure CENNS (coherent elastic neutrino-nucleus scattering), a process that has never been experimentally observed. CosI (Coherent Neutrino Scattering with Cesium Iodide) uses a sodium doped cesium iodide detector intended to be able to observe CENNS at the SNS (Spallation Neutron Source) in Oak Ridge, TN. This thesis describes the experimental design and construction of the CosI apparatus, while sited at the University of Chicago. This thesis also presents the screening of materials for radioactivity in conjunction with simulations of the background contributions from various experimental components to CosI. Background measurements were performed at the University of Chicago with a 2 kg prototype CosI crystal, and those results are presented here. I also present neutrino signal calculations for the full size 15 kg CosI crystal which is to be installed at the SNS. Finally, the feasibility of a CENNS detection at the SNS using the CosI apparatus is discussed. This thesis also makes a contribution to the ongoing search for WIMP (weakly interacting massive particle) dark matter. I present a data-driven method for applying a surface event correction to CoGeNT (Coherent Germanium Neutrino Technology) data. After applying this correction, I then calculate new dark matter limits using the 807 day CoGeNT data set. In addition, I also perform a two dimensional maximum likelihood analysis of low energy CDMS (Cryogenic Dark Matter Search) data. The maximum likelihood analysis reveals a strong preference for a population of nuclear recoil events in the CDMS data set.

  2. Neutrino-nucleon scattering in supernova matter from the virial expansion

    NASA Astrophysics Data System (ADS)

    Horowitz, C. J.; Caballero, O. L.; Lin, Zidu; O'Connor, Evan; Schwenk, A.

    2017-02-01

    We extend our virial approach to study the neutral-current neutrino response of nuclear matter at low densities. In the long-wavelength limit, the virial expansion makes model-independent predictions for neutrino-nucleon scattering rates and the density SV and spin SA responses. We find that SA is significantly reduced from one even at low densities. We provide a simple fit SAf(n ,T ,Yp) of the axial response as a function of density n , temperature T , and proton fraction Yp, which can be incorporated into supernova simulations in a straightforward manner. This fit reproduces our virial results at low densities and the Burrows and Sawyer random-phase approximation (RPA) model calculations at high densities. Preliminary one-dimensional supernova simulations suggest that the virial reduction in the axial response may enhance neutrino heating rates in the gain region during the accretion phase of a core-collapse supernovae.

  3. Measurement of the intrinsic electron neutrino component in the T2K neutrino beam with the ND280 detector

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Floetotto, L.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iwai, E.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-05-01

    The T2K experiment has reported the first observation of the appearance of electron neutrinos in a muon neutrino beam. The main and irreducible background to the appearance signal comes from the presence in the neutrino beam of a small intrinsic component of electron neutrinos originating from muon and kaon decays. In T2K, this component is expected to represent 1.2% of the total neutrino flux. A measurement of this component using the near detector (ND280), located 280 m from the target, is presented. The charged current interactions of electron neutrinos are selected by combining the particle identification capabilities of both the time projection chambers and electromagnetic calorimeters of ND280. The measured ratio between the observed electron neutrino beam component and the prediction is 1.01±0.10 providing a direct confirmation of the neutrino fluxes and neutrino cross section modeling used for T2K neutrino oscillation analyses. Electron neutrinos coming from muons and kaons decay are also separately measured, resulting in a ratio with respect to the prediction of 0.68±0.30 and 1.10±0.14, respectively.

  4. Measurement of atmospheric neutrino oscillations with IceCube.

    PubMed

    Aartsen, M G; Abbasi, R; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Bechet, S; Becker Tjus, J; Becker, K-H; Bell, M; Benabderrahmane, M L; Benzvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Bertrand, D; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H-P; Brown, A M; Bruijn, R; Brunner, J; Carson, M; Casey, J; Casier, M; Chirkin, D; Christov, A; Christy, B; Clark, K; Clevermann, F; Coenders, S; Cohen, S; Cowen, D F; Cruz Silva, A H; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Desiati, P; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Groß, A; Ha, C; Haj Ismail, A; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Köhne, J-H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Krings, K; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Palazzo, A; Paul, L; Pepper, J A; Pérez de los Heros, C; Pfendner, C; Pieloth, D; Pinat, E; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H-G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tešić, G; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Wasserman, R; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M

    2013-08-23

    We present the first statistically significant detection of neutrino oscillations in the high-energy regime (>20 GeV) from an analysis of IceCube Neutrino Observatory data collected in 2010 and 2011. This measurement is made possible by the low-energy threshold of the DeepCore detector (~20 GeV) and benefits from the use of the IceCube detector as a veto against cosmic-ray-induced muon background. The oscillation signal was detected within a low-energy muon neutrino sample (20-100 GeV) extracted from data collected by DeepCore. A high-energy muon neutrino sample (100 GeV-10 TeV) was extracted from IceCube data to constrain systematic uncertainties. The disappearance of low-energy upward-going muon neutrinos was observed, and the nonoscillation hypothesis is rejected with more than 5σ significance. In a two-neutrino flavor formalism, our data are best described by the atmospheric neutrino oscillation parameters |Δm(32)(2)|=(2.3(-0.5)(+0.6))×10(-3) eV(2) and sin(2)(2θ(23))>0.93, and maximum mixing is favored.

  5. Measurement of Atmospheric Neutrino Oscillations with IceCube

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Bertrand, D.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohaichuk, S.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Bruijn, R.; Brunner, J.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Clevermann, F.; Coenders, S.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; De Ridder, S.; Desiati, P.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eisch, J.; Ellsworth, R. W.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grandmont, D. T.; Grant, D.; Groß, A.; Ha, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Krings, K.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leute, J.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Palazzo, A.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Sheremata, C.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tešić, G.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Wasserman, R.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.

    2013-08-01

    We present the first statistically significant detection of neutrino oscillations in the high-energy regime (>20GeV) from an analysis of IceCube Neutrino Observatory data collected in 2010 and 2011. This measurement is made possible by the low-energy threshold of the DeepCore detector (˜20GeV) and benefits from the use of the IceCube detector as a veto against cosmic-ray-induced muon background. The oscillation signal was detected within a low-energy muon neutrino sample (20-100 GeV) extracted from data collected by DeepCore. A high-energy muon neutrino sample (100 GeV-10 TeV) was extracted from IceCube data to constrain systematic uncertainties. The disappearance of low-energy upward-going muon neutrinos was observed, and the nonoscillation hypothesis is rejected with more than 5σ significance. In a two-neutrino flavor formalism, our data are best described by the atmospheric neutrino oscillation parameters |Δm322|=(2.3-0.5+0.6)×10-3eV2 and sin⁡2(2θ23)>0.93, and maximum mixing is favored.

  6. Measuring $\\theta_{13}$ via Muon Neutrino to Electron Neutrino Oscillations in the MINOS Experiment

    SciTech Connect

    Toner, Ruth B.

    2011-01-01

    One of the primary goals in neutrino physics at the present moment is to make a measurement of the neutrino oscillation parameter $\\theta_{13}$. This parameter, in addition to being unknown, could potentially allow for the introduction of CP violation into the lepton sector. The MINOS long-baseline neutrino oscillation experiment has the ability to make a measurement of this parameter, by looking for the oscillation of muon neutrinos to electron neutrinos between a Near and Far Detector over a distance of 735 km. This thesis discusses the development of an analysis framework to search for this oscillation mode. Two major improvements to pre-existing analysis techniques have been implemented by the author. First, a novel particle ID technique based on strip topology, known as the Library Event Matching (LEM) method, is optimized for use in MINOS. Second, a multiple bin likelihood method is developed to fit the data. These two improvements, when combined, increase MINOS' sensitivity to $\\sin^2(2\\theta_{13})$ by 27\\% over previous analyses. This thesis sees a small excess over background in the Far Detector. A Frequentist interpretation of the data rules out $\\theta_{13}=0$ at 91\\%. A Bayesian interpretation of the data is also presented, placing the most stringent upper boundary on the oscillation parameter to date, at $\\sin^2(2\\theta_{13})<0.09(0.015)$ for the Normal (Inverted) Hierarchy and $\\delta_{CP}=0$.

  7. RED-100 detector for the first observation of the elastic coherent neutrino scattering off xenon nuclei

    NASA Astrophysics Data System (ADS)

    Akimov, D. Yu; Berdnikova, A. K.; Belov, V. A.; Bolozdynya, A. I.; Burenkov, A. A.; Efremenko, Yu V.; Gusakov, Yu V.; Etenko, A. V.; Kaplin, V. A.; Khromov, A. V.; Konovalov, A. M.; Kovalenko, A. G.; Kozlova, E. S.; Kumpan, A. V.; Krakhmalova, T. D.; Melikyan, Yu A.; Naumov, P. P.; Rudik, D. G.; Shafigullin, R. R.; Shakirov, A. V.; Simakov, G. E.; Sosnovtsev, V. V.; Stekhanov, V. N.; Tobolkin, A. A.; Tolstukhin, I. A.

    2016-02-01

    The RED-100 (Russian Emission Detector) is being constructed for the experiment to search for elastic coherent neutrino scattering off atomic nuclei. This fundamental process was predicted several decades ago by the Standard Model of electroweak interactions but has not been discovered yet. The RED-100 is a two-phase emission xenon detector containing ∼200 kg of the liquid Xe (∼ 100 kg of that is in a fiducial volume). One of the possible sites to carry out the experiment is the SNS (Spallation Neutron Source) facility at Oak Ridge National Laboratory, USA. SNS is the world's most intense pulsed source of neutrinos and unique place to study neutrino properties. The energy spectrum of neutrinos produced at the SNS extends up to ∼ 50 MeV and satisfies coherence condition. These neutrinos give kinetic energies of Xe recoils up to a few tens of keV where the response of nuclear recoils is well-known from neutron calibrations of dark matter detectors. The detector will be deployed in the basement under the experimental hall at a distance of ∼30 meters from the SNS target. The expected signal and background (neutron and gamma) are estimated for this specific location. The detector details, current status and future plans are provided.

  8. Neutrinos help reconcile Planck measurements with the local universe.

    PubMed

    Wyman, Mark; Rudd, Douglas H; Vanderveld, R Ali; Hu, Wayne

    2014-02-07

    Current measurements of the low and high redshift Universe are in tension if we restrict ourselves to the standard six-parameter model of flat ΛCDM. This tension has two parts. First, the Planck satellite data suggest a higher normalization of matter perturbations than local measurements of galaxy clusters. Second, the expansion rate of the Universe today, H0, derived from local distance-redshift measurements is significantly higher than that inferred using the acoustic scale in galaxy surveys and the Planck data as a standard ruler. The addition of a sterile neutrino species changes the acoustic scale and brings the two into agreement; meanwhile, adding mass to the active neutrinos or to a sterile neutrino can suppress the growth of structure, bringing the cluster data into better concordance as well. For our fiducial data set combination, with statistical errors for clusters, a model with a massive sterile neutrino shows 3.5σ evidence for a nonzero mass and an even stronger rejection of the minimal model. A model with massive active neutrinos and a massless sterile neutrino is similarly preferred. An eV-scale sterile neutrino mass--of interest for short baseline and reactor anomalies--is well within the allowed range. We caution that (i) unknown astrophysical systematic errors in any of the data sets could weaken this conclusion, but they would need to be several times the known errors to eliminate the tensions entirely; (ii) the results we find are at some variance with analyses that do not include cluster measurements; and (iii) some tension remains among the data sets even when new neutrino physics is included.

  9. Superscaling Predictions for Neutral Current Quasielastic Neutrino-Nucleus Scattering

    SciTech Connect

    Martinez, M. C.; Udias, J. M.; Caballero, J. A.; Donnelly, T. W.

    2008-02-08

    The application of superscaling ideas to predict neutral-current (NC) quasielastic (QE) neutrino cross sections is investigated. The relativistic impulse approximation (RIA) using the same relativistic mean field potential (RMF) for both initial and final nucleons -- a model that reproduces the experimental (e,e{sup '}) scaling function -- is used to illustrate our findings. While NC reactions are apparently not well suited for scaling analyses, to a large extent, the RIA-RMF predictions do exhibit superscaling. Independence of the scaled response on the nuclear species is very well fulfilled. The RIA-RMF NC superscaling function is in good agreement with the experimental (e,e{sup '}) one. The idea that electroweak processes can be described with a universal scaling function, provided that mild restrictions on the kinematics are assumed, is shown to be valid.

  10. Measurement of electron neutrino appearance with the MINOS experiment

    SciTech Connect

    Boehm, Joshua Adam Alpern

    2009-05-01

    MINOS is a long-baseline two-detector neutrino oscillation experiment that uses a high intensity muon neutrino beam to investigate the phenomena of neutrino oscillations. By measuring the neutrino interactions in a detector near the neutrino source and again 735 km away from the production site, it is possible to probe the parameters governing neutrino oscillation. The majority of the vμ oscillate to vτ but a small fraction may oscillate instead to ve. This thesis presents a measurement of the ve appearance rate in the MINOS far detector using the first two years of exposure. Methods for constraining the far detector backgrounds using the near detector measurements is discussed and a technique for estimating the uncertainty on the background and signal selection are developed. A 1.6σ excess over the expected background rate is found providing a hint of ve appearance.

  11. Model independent extraction of the axial mass parameter in CCQE anti neutrino-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Grebe, Heather

    2013-10-01

    Neutrino oscillation studies depend on a consistent value for the axial mass. For this reason, a model-independent extraction of this parameter from quasielastic (anti)neutrino-nucleon scattering data is vital. While most studies employ a model-dependent extraction using the dipole model of the axial form factor, we present a model-independent description using the z expansion of the axial form factor. Quasielastic antineutrino scattering data on C-12 from the MiniBooNE experiment are analyzed using this model-independent description. The value found, mA = 0 .85-0 . 06 + 0 . 13 +/- 0 . 13 GeV, differs significantly from the value utilized by the MiniBooNE Collaboration, mA = 1 . 35 GeV. Advisor: Dr. Gil Paz Wayne State Univerity.

  12. Neutrino measurements from the Sun and Earth: Results from Borexino

    SciTech Connect

    Bellini, G.; Caccianiga, B.; D’Angelo, D.; Giammarchi, M.; Lombardi, P.; Ludhova, L.; Meroni, E.; Miramonti, L.; Ranucci, G. Re, A.; Benziger, J.; Bick, D.; Hagner, C.; Meyer, M.; Bonfini, G.; Cavalcante, P.; Gabriele, F.; Gazzana, S.; Ianni, Aldo; Laubenstein, M.; and others

    2015-07-15

    Important neutrino results came recently from Borexino, a massive, calorimetric liquid scintillator detector installed at the underground Gran Sasso Laboratory. With its unprecedented radiopurity levels achieved in the core of the detection medium, it is the only experiment in operation able to study in real time solar neutrino interactions in the challenging sub-MeV energy region. The recently achieved breakthrough observation of the fundamental pp flux, the precise measurement of the {sup 7}Be solar neutrino flux, and the results concerning the pep, {sup 8}B and CNO fluxes, together with their physics implications, are described in this work. Moreover, the detector has also provided a clean detection of terrestrial neutrinos, from which they emerge as a new probe of the interior of the Earth.

  13. Measurement of atmospheric neutrino composition with the IMB-3 detector

    SciTech Connect

    Casper, D.; Becker-Szendy, R.; Bratton, C.B.; Cady, D.R.; Claus, R.; Dye, S.T.; Gajewski, W.; Goldhaber, M.; Haines, T.J.; Halverson, P.G.; Jones, T.W.; Kielczewska, D.; Kropp, W.R.; Learned, J.G.; LoSecco, J.M.; McGrew, C.; Matsuno, S.; Matthews, J.; Mudan, M.S.; Price, L.; Reines, F.; Schultz, J.; Sinclair, D.; Sobel, H.W.; Stone, J.L.; Sulak, L.R.; Svoboda, R.; Thornton, G.; van der Velde, J.C. The University of Michigan, Ann Arbor, Michigan 48109 Brookhaven National Laboratory, Upton, New York 11973 Boston University, Boston, Massachusetts 02215 The University of Hawaii, Honolulu, Hawaii 96822 University College, London, WC1E F6BT, United Kingdom Warsaw University, Warsaw, Poland Cleveland State University, Cleveland, Ohio 44115 The University of Notre Dame, Notre Dame, Indiana 46556 Lousiana State University, Baton Rouge, Lousisiana 70803 The University of Maryland, College Park, Maryland 20742)

    1991-05-20

    The atmospheric neutrino flux is measured using a 3.4-kt yr exposure of the IMB-3 detector. Single-ring events are classified as showering or nonshowering using the geometry of the {hacek C}erenkov pattern. A simulation of neutrino interactions and three models of atmospheric neutrino production are used to predict the composition of the sample. Showering-nonshowering character is strongly correlated with the flavor of the neutrino parent. In the lepton momentum range {ital p}{lt}1500 MeV/{ital c}, we find that nonshowering events comprise (41{plus minus}3{plus minus}2syst)% of the total. The fraction expected is (51{plus minus}5(syst))%.

  14. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    SciTech Connect

    Wolcott, Jeremy

    2015-10-28

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino cross section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino cross section, but to date there has been no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments. We present the first measurement of an exclusive reaction in few-GeV electron neutrino interactions, namely, the cross section for a CCQE-like process, made using the MINERvA detector. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^2$. We also compute the ratio to a muon neutrino cross-section in $Q^2$ from MINERvA. We find satisfactory agreement between this measurement and the predictions of the GENIE generator.

  15. Recent Advances and Open Questions in Neutrino-induced Quasi-elastic Scattering and Single Photon Production

    SciTech Connect

    Garvey, G. T.; Harris, D. A.; Tanaka, H. A.; Tayloe, R.; Zeller, G. P.

    2015-06-15

    The study of neutrino–nucleus interactions has recently seen rapid development with a new generation of accelerator-based neutrino experiments employing medium and heavy nuclear targets for the study of neutrino oscillations. A few unexpected results in the study of quasi-elastic scattering and single photon production have spurred a revisiting of the underlying nuclear physics and connections to electron–nucleus scattering. A thorough understanding and resolution of these issues is essential for future progress in the study of neutrino oscillations.

  16. Measurement of the Rate of νe + d --> p + p + e- Interactions Produced by 8B Solar Neutrinos at the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Ahmad, Q. R.; Allen, R. C.; Andersen, T. C.; Anglin, J. D.; Bühler, G.; Barton, J. C.; Beier, E. W.; Bercovitch, M.; Bigu, J.; Biller, S.; Black, R. A.; Blevis, I.; Boardman, R. J.; Boger, J.; Bonvin, E.; Boulay, M. G.; Bowler, M. G.; Bowles, T. J.; Brice, S. J.; Browne, M. C.; Bullard, T. V.; Burritt, T. H.; Cameron, K.; Cameron, J.; Chan, Y. D.; Chen, M.; Chen, H. H.; Chen, X.; Chon, M. C.; Cleveland, B. T.; Clifford, E. T.; Cowan, J. H.; Cowen, D. F.; Cox, G. A.; Dai, Y.; Dai, X.; Dalnoki-Veress, F.; Davidson, W. F.; Doe, P. J.; Doucas, G.; Dragowsky, M. R.; Duba, C. A.; Duncan, F. A.; Dunmore, J.; Earle, E. D.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Ferraris, A. P.; Ford, R. J.; Fowler, M. M.; Frame, K.; Frank, E. D.; Frati, W.; Germani, J. V.; Gil, S.; Goldschmidt, A.; Grant, D. R.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hamer, A.; Hamian, A. A.; Haq, R. U.; Hargrove, C. K.; Harvey, P. J.; Hazama, R.; Heaton, R.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hepburn, J. D.; Heron, H.; Hewett, J.; Hime, A.; Howe, M.; Hykawy, J. G.; Isaac, M. C.; Jagam, P.; Jelley, N. A.; Jillings, C.; Jonkmans, G.; Karn, J.; Keener, P. T.; Kirch, K.; Klein, J. R.; Knox, A. B.; Komar, R. J.; Kouzes, R.; Kutter, T.; Kyba, C. C.; Law, J.; Lawson, I. T.; Lay, M.; Lee, H. W.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Locke, W.; Lowry, M. M.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H. B.; Marino, A. D.; McCauley, N.; McDonald, A. B.; McDonald, D. S.; McFarlane, K.; McGregor, G.; McLatchie, W.; Drees, R. Meijer; Mes, H.; Mifflin, C.; Miller, G. G.; Milton, G.; Moffat, B. A.; Moorhead, M.; Nally, C. W.; Neubauer, M. S.; Newcomer, F. M.; Ng, H. S.; Noble, A. J.; Norman, E. B.; Novikov, V. M.; O'Neill, M.; Okada, C. E.; Ollerhead, R. W.; Omori, M.; Orrell, J. L.; Oser, S. M.; Poon, A. W.; Radcliffe, T. J.; Roberge, A.; Robertson, B. C.; Robertson, R. G.; Rowley, J. K.; Rusu, V. L.; Saettler, E.; Schaffer, K. K.; Schuelke, A.; Schwendener, M. H.; Seifert, H.; Shatkay, M.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, A. R.; Smith, M. W.; Starinsky, N.; Steiger, T. D.; Stokstad, R. G.; Storey, R. S.; Sur, B.; Tafirout, R.; Tagg, N.; Tanner, N. W.; Taplin, R. K.; Thorman, M.; Thornewell, P.; Trent, P. T.; Tserkovnyak, Y. I.; van Berg, R.; van de Water, R. G.; Virtue, C. J.; Waltham, C. E.; Wang, J.-X.; Wark, D. L.; West, N.; Wilhelmy, J. B.; Wilkerson, J. F.; Wilson, J.; Wittich, P.; Wouters, J. M.; Yeh, M.

    2001-08-01

    Solar neutrinos from 8B decay have been detected at the Sudbury Neutrino Observatory via the charged current (CC) reaction on deuterium and the elastic scattering (ES) of electrons. The flux of νe's is measured by the CC reaction rate to be φCC(νe) = 1.75+/-0.07(stat)+0.12- 0.11(syst)+/-0.05(theor)×106 cm-2 s-1. Comparison of φCC(νe) to the Super-Kamiokande Collaboration's precision value of the flux inferred from the ES reaction yields a 3.3σ difference, assuming the systematic uncertainties are normally distributed, providing evidence of an active non- νe component in the solar flux. The total flux of active 8B neutrinos is determined to be 5.44+/-0.99×106 cm-2 s-1.

  17. Measurement of the rate of nu(e) + d --> p + p + e(-) interactions produced by (8)B solar neutrinos at the Sudbury Neutrino Observatory.

    PubMed

    Ahmad, Q R; Allen, R C; Andersen, T C; Anglin, J D; Bühler, G; Barton, J C; Beier, E W; Bercovitch, M; Bigu, J; Biller, S; Black, R A; Blevis, I; Boardman, R J; Boger, J; Bonvin, E; Boulay, M G; Bowler, M G; Bowles, T J; Brice, S J; Browne, M C; Bullard, T V; Burritt, T H; Cameron, K; Cameron, J; Chan, Y D; Chen, M; Chen, H H; Chen, X; Chon, M C; Cleveland, B T; Clifford, E T; Cowan, J H; Cowen, D F; Cox, G A; Dai, Y; Dai, X; Dalnoki-Veress, F; Davidson, W F; Doe, P J; Doucas, G; Dragowsky, M R; Duba, C A; Duncan, F A; Dunmore, J; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Ferraris, A P; Ford, R J; Fowler, M M; Frame, K; Frank, E D; Frati, W; Germani, J V; Gil, S; Goldschmidt, A; Grant, D R; Hahn, R L; Hallin, A L; Hallman, E D; Hamer, A; Hamian, A A; Haq, R U; Hargrove, C K; Harvey, P J; Hazama, R; Heaton, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Hepburn, J D; Heron, H; Hewett, J; Hime, A; Howe, M; Hykawy, J G; Isaac, M C; Jagam, P; Jelley, N A; Jillings, C; Jonkmans, G; Karn, J; Keener, P T; Kirch, K; Klein, J R; Knox, A B; Komar, R J; Kouzes, R; Kutter, T; Kyba, C C; Law, J; Lawson, I T; Lay, M; Lee, H W; Lesko, K T; Leslie, J R; Levine, I; Locke, W; Lowry, M M; Luoma, S; Lyon, J; Majerus, S; Mak, H B; Marino, A D; McCauley, N; McDonald, A B; McDonald, D S; McFarlane, K; McGregor, G; McLatchie, W; Meijer Drees, R; Mes, H; Mifflin, C; Miller, G G; Milton, G; Moffat, B A; Moorhead, M; Nally, C W; Neubauer, M S; Newcomer, F M; Ng, H S; Noble, A J; Norman, E B; Novikov, V M; O'Neill, M; Okada, C E; Ollerhead, R W; Omori, M; Orrell, J L; Oser, S M; Poon, A W; Radcliffe, T J; Roberge, A; Robertson, B C; Robertson, R G; Rowley, J K; Rusu, V L; Saettler, E; Schaffer, K K; Schuelke, A; Schwendener, M H; Seifert, H; Shatkay, M; Simpson, J J; Sinclair, D; Skensved, P; Smith, A R; Smith, M W; Starinsky, N; Steiger, T D; Stokstad, R G; Storey, R S; Sur, B; Tafirout, R; Tagg, N; Tanner, N W; Taplin, R K; Thorman, M; Thornewell, P; Trent, P T; Tserkovnyak, Y I; Van Berg, R; Van de Water, R G; Virtue, C J; Waltham, C E; Wang, J X; Wark, D L; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J; Wittich, P; Wouters, J M; Yeh, M

    2001-08-13

    Solar neutrinos from (8)B decay have been detected at the Sudbury Neutrino Observatory via the charged current (CC) reaction on deuterium and the elastic scattering (ES) of electrons. The flux of nu(e)'s is measured by the CC reaction rate to be straight phi(CC)(nu(e)) = 1.75 +/- 0.07(stat)(+0.12)(-0.11)(syst) +/- 0.05(theor) x 10(6) cm(-2) s(-1). Comparison of straight phi(CC)(nu(e)) to the Super-Kamiokande Collaboration's precision value of the flux inferred from the ES reaction yields a 3.3 sigma difference, assuming the systematic uncertainties are normally distributed, providing evidence of an active non- nu(e) component in the solar flux. The total flux of active 8B neutrinos is determined to be 5.44+/-0.99 x 10(6) cm(-2) s(-1).

  18. Potential measurements of neutrino-deuterium interactions with the T2K near detectors

    NASA Astrophysics Data System (ADS)

    Mahn, Kendall; T2K Collaboration

    2015-04-01

    Uncertainties on neutrino interactions with matter are important for current and future generation neutrino long baseline experiments, which infer neutrino mixing parameters. Measurements of neutrinos on deuterium constrain neutrino-nucleon interaction models, such as axial form factors, and are relatively free of complicating nuclear effects. Existing measurements of neutrino interaction using deuterium bubble chambers suffer from low statistics and significant systematic uncertainty on neutrino flux production. This talk describes the possibility of modern neutrino-deuterium cross section measurements using modifications to the existing T2K experiment near detector complex. A comparison of data taken with deuterated water and normal water would provide a measurement of neutrino-deuteron interactions with high-intensity neutrino beam. T2K is supported by the Department of Energy.

  19. Gaseous detector of ionizing radiation for registration of coherent neutrino scattering on nuclei

    NASA Astrophysics Data System (ADS)

    Kopylov, A. V.; Orekhov, I. V.; Petukhov, V. V.; Solomatin, A. E.

    2014-03-01

    A method for registration of the coherent scattering reactor antineutrino on nuclei using a three-section low-background proportional counter was proposed. It is planned to use argon and xenon as the working substance. As has been shown on a test bench, pulse shape discrimination can effectively suppress the background from electromagnetic interference and microphonic effects in the energy range from 20 to 100 eV where the effect of coherent scattering of neutrinos on nuclei is expected with a factor of about 103. Problems of the neutron background generated by cosmic-ray muons are analyzed. The scheme of the experimental setup is presented.

  20. Intense and exciting: current and future accelerator-based measurements of neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Whitehead, Lisa

    2017-01-01

    Accelerator-based experiments have been crucial in our understanding of neutrino oscillations. In this talk, I will give an overview of current accelerator-based neutrino oscillation experiments, which have observed electron neutrino appearance and made precision measurements of the parameters governing muon neutrino disappearance. I will discuss what the current set of experiments can contribute to the remaining questions in neutrino oscillation physics, including measuring the CP violating phase, determining the mass hierarchy, resolving the θ23 octant, and searching for sterile neutrinos. Finally, I will describe the plans and physics goals for future accelerator-based neutrino experiments.

  1. Muon Neutrino on Electron Elastic Scattering in the NOvA Near Detector and its Applications Beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    Wang, Biao; Bian, Jianming; Coan, Thomas E.; Kotelnikov, Sergey; Duyang, Hongyue; Hatzikoutelis, Athanasios; NOvA Collaboration

    2017-09-01

    Using the NuMI beam at Fermilab and the NOvA near detector, we study the process by which a muon neutrino elastically scatters off an electron in the detector to produce a very forward going electromagnetic shower. By comparing dE/dx for various particle hypotheses for both longitudinal and transverse directions in a multilayer perceptron neural network, we trained a Particle ID algorithm to identify the scattered electron in an inclusive dataset. Muon-neutrino-on-e elastic scattering provides a clean, purely leptonic process free from nuclear effects for understanding neutral current scattering and constraining the NuMI beam flux. Also, this technique can be applied in two broad areas of beyond the standard model physics: a large neutrino transition magnetic moment and light dark matter particles produced in the NuMI target, both of which would create an energy dependent enhancement in the elastic scattering cross section.

  2. Interferometric Rayleigh Scattering Measurement System

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel (Inventor); Danehy, Paul M. (Inventor); Lee, Joseph W. (Inventor)

    2008-01-01

    A method and apparatus for performing simultaneous multi-point measurements of multiple velocity components in a gas flow is described. Pulses of laser light are directed to a measurement region of unseeded gas to produce Rayleigh or Mie scattered light in a plurality of directions. The Rayleigh or Mie scattered light is collected from multiple directions and combined in a single collimated light beam. The Rayleigh or Mie scattered light is then mixed together with a reference laser light before it is passed through a single planar Fabry-Perot interferometer for spectral analysis. At the output of the interferometer, a high-sensitivity CCD camera images the interference fringe pattern. This pattern contains the spectral and spatial information from both the Rayleigh scattered light and the reference laser light. Interferogram processing software extracts and analyzes spectral profiles to determine the velocity components of the gas flow at multiple points in the measurement region. The Rayleigh light rejected by the interferometer is recirculated to increase the accuracy and the applicability of the method for measurements at high temperatures without requiring an increase in the laser energy.

  3. Electroweak higher-order effects and theoretical uncertainties in deep-inelastic neutrino scattering

    SciTech Connect

    Diener, K.-P.O.; Dittmaier, S.; Hollik, W.

    2005-11-01

    A previous calculation of electroweak O({alpha}) corrections to deep-inelastic neutrino scattering, as e.g. measured by NuTeV and NOMAD, is supplemented by higher-order effects. In detail, we take into account universal two-loop effects from {delta}{alpha} and {delta}{rho} as well as higher-order final-state photon radiation off muons in the structure function approach. Moreover, we make use of the recently released O({alpha})-improved parton distributions MRST2004QED and identify the relevant QED factorization scheme, which is DIS-like. As a technical by-product, we describe slicing and subtraction techniques for an efficient calculation of a new type of real corrections that are induced by the generated photon distribution. A numerical discussion of the higher-order effects suggests that the remaining theoretical uncertainty from unknown electroweak corrections is dominated by nonuniversal two-loop effects and is of the order 0.0003 when translated into a shift in sin{sup 2}{theta}{sub W}=1-M{sub W}{sup 2}/M{sub Z}{sup 2}. The O({alpha}) corrections implicitly included in the parton distributions lead to a shift of about 0.0004.

  4. Study of scintillation, fluorescence and scattering in mineral oil for the MiniBooNE neutrino detector

    SciTech Connect

    Brown, Bruce C.; Brice, Stephen; Hawker, Eric; Maza, Shannon; Meyer, Hans-Otto; Pla-Dalmau, Anna; Tayloe, Rex; Tanaka, Hirohisa A.; Toptygin, Dmitri; /Fermilab /Western Illinois U. /Indiana U. /Princeton U. /Johns Hopkins U.

    2004-11-01

    The MiniBooNE neutrino detector at Fermilab (FNAL) is filled with 250,000 gallons of pure mineral oil. The principal signal for MiniBooNE is light observed in a prompt Cherenkov cone. Scattering and fluorescence modify our detection of this light. Scintillation is also created by ionization in the oil. Studies of fluorescence of this oil have been carried out over a wide spectrum of exciting light and time resolved fluorescence with a narrower range of excitation. Polarized scattering measurements have been carried out at longer wavelengths. Time resolved and spectrally resolved scintillation has been studied with a 200 MeV Proton beam at the Indiana University Cyclotron Facility. Results of these studies will be reported.

  5. Theoretical study of neutrino scattering off the stable even Mo isotopes at low and intermediate energies

    NASA Astrophysics Data System (ADS)

    Balasi, K. G.; Ydrefors, E.; Kosmas, T. S.

    2011-10-01

    A systematic study of the cross sections of neutral-current neutrino scattering off the stable even Mo isotopes (mass number A=92,94,96,98,100), at low and intermediate neutrino energies ( E⩽130 MeV), is presented and discussed. The required wave functions for the initial (ground state) and all accessible final nuclear states are constructed in the context of the quasi-particle random-phase approximation (QRPA) and tested against data on the low-lying energy spectra of the isotopes in question. The individual contributions coming from the polar-vector and axial-vector components of the hadronic current for the coherent and incoherent channels of each isotope are investigated. The studied Mo isotopes are contents of the detector of the MOON experiment operating at Japan with a hybrid aim to search for neutrinoless double beta decay events and to detect low- and intermediate-energy astrophysical neutrinos (solar, supernova, geo-neutrinos), and also of the NEMO neutrinoless double beta decay detector in Modane at France. For such purposes our cross section calculations are of significant importance.

  6. Inverse Compton Scattering on Solar Photons, Heliospheric Modulation, and Neutrino Astrophysics

    SciTech Connect

    Moskalenko, Igor V.; Porter, Troy A.; Digel, Seth W.; /SLAC

    2006-08-01

    We study the inverse Compton scattering of solar photons by Galactic cosmic-ray electrons. We show that the {gamma}-ray emission from this process is significant with the maximum flux in the direction of the Sun; the angular distribution of the emission is broad. This previously neglected foreground should be taken into account in studies of the diffuse Galactic and extragalactic {gamma}-ray emission. Furthermore, observations by GLAST can be used to monitor the heliosphere and determine the electron spectrum as a function of position from distances as large as Saturn's orbit down to close proximity of the Sun, thus enabling studies of solar modulation in the most extreme case. This paves the way for the determination of other Galactic cosmic-ray species, primarily protons, near the solar surface leading to accurate predictions of {gamma}-rays from pp-interactions in the solar atmosphere. These albedo {gamma}-rays will be observable by GLAST, allowing the study of deep atmospheric layers, magnetic field(s), and cosmic-ray cascade development. The latter is necessary to calculate the neutrino flux from pp-interactions at higher energies (>1 TeV). The corresponding neutrino flux from the Sun can be used as a ''standard candle'' for upcoming km{sup 3} neutrino detectors, such as IceCube. Since the solar core is opaque for very high-energy neutrinos, it may be possible to directly study the mass distribution of the Sun.

  7. Measurement of the Weinberg angle in neutrino interactions

    NASA Astrophysics Data System (ADS)

    Dore, Ubaldo; Ferruccio Loverre, Pier; Ludovici, Lucio

    2016-06-01

    Neutrino physics with high energy neutrino beams has played a crucial role in establishing the Standard Model of the electroweak interaction, in particular with repeated measurements of increasing precision of the fundamental parameter sin2 θW which defines the electroweak mixing. This paper relates the history of these measurements, from the discovery of the neutral current interaction in 1973 until the latest high precision measurements in the years 2000. The review discusses in chronological order the important experiments performed at CERN, Fermilab and Brookhaven during the last thirty years of the 20th century.

  8. Measurement of Neutrino Induced Exclusive Quasi-Elastic Cross Section in NOMAD

    NASA Astrophysics Data System (ADS)

    Kim, Jae

    2007-04-01

    The measurement of neutrino induced charged current Quasi-Elastic (QE) cross section using the NOMAD data will be presented. The signature of the νμ QE interaction is an outgoing -circ and a proton. I developed a likelihood probability density function to separate QE from background - two track resonance and deep inelastic scattering events. Data themselves were used to help constrain the background estimate. By kinematic comparison to the measured QE data, the axial mass was also measured. This preliminary result is among the most precise measurements of the QE process.

  9. Neutrino physics

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2008-09-01

    The field of neutrino physics has expanded greatly in recent years with the discovery that neutrinos change flavor and therefore have mass. Although there are many neutrino physics results since the last DIS workshop, these proceedings concentrate on recent neutrino physics results that either add to or depend on the understanding of Deep Inelastic Scattering. They also describe the short and longer term future of neutrino DIS experiments.

  10. The Angra Neutrino Project: precise measurement of {theta}{sub 13} and safeguards applications of neutrino detectors

    SciTech Connect

    Casimiro, E.; Anjos, J. C.

    2009-04-20

    We present an introduction to the Angra Neutrino Project. The goal of the project is to explore the use of neutrino detectors to monitor the reactor activity. The Angra Project, willl employ as neutrino sources the reactors of the nuclear power complex in Brazil, located in Angra dos Reis, some 150 Km south from the city of Rio de Janeiro. The Angra collaboration will develop and operate a low-mass neutrino detector to monitor the nuclear reactor activity, in particular to measure the reactor thermal power and the reactor fuel isotopic composition.

  11. DESI and other Dark Energy experiments in the era of neutrino mass measurements

    SciTech Connect

    Font-Ribera, Andreu; McDonald, Patrick; Mostek, Nick; Reid, Beth A.; Seo, Hee-Jong; Slosar, Anže E-mail: PVMcDonald@lbl.gov E-mail: BAReid@lbl.gov E-mail: anze@bnl.gov

    2014-05-01

    We present Fisher matrix projections for future cosmological parameter measurements, including neutrino masses, Dark Energy, curvature, modified gravity, the inflationary perturbation spectrum, non-Gaussianity, and dark radiation. We focus on DESI and generally redshift surveys (BOSS, HETDEX, eBOSS, Euclid, and WFIRST), but also include CMB (Planck) and weak gravitational lensing (DES and LSST) constraints. The goal is to present a consistent set of projections, for concrete experiments, which are otherwise scattered throughout many papers and proposals. We include neutrino mass as a free parameter in most projections, as it will inevitably be relevant — DESI and other experiments can measure the sum of neutrino masses to ∼ 0.02 eV or better, while the minimum possible sum is ∼ 0.06 eV. We note that constraints on Dark Energy are significantly degraded by the presence of neutrino mass uncertainty, especially when using galaxy clustering only as a probe of the BAO distance scale (because this introduces additional uncertainty in the background evolution after the CMB epoch). Using broadband galaxy power becomes relatively more powerful, and bigger gains are achieved by combining lensing survey constraints with redshift survey constraints. We do not try to be especially innovative, e.g., with complex treatments of potential systematic errors — these projections are intended as a straightforward baseline for comparison to more detailed analyses.

  12. DESI and other Dark Energy experiments in the era of neutrino mass measurements

    SciTech Connect

    Font-Ribera, Andreu; McDonald, Patrick; Mostek, Nick; Reid, Beth A.; Seo, Hee-Jong; Slosar, Anže

    2014-05-19

    Here we present Fisher matrix projections for future cosmological parameter measurements, including neutrino masses, Dark Energy, curvature, modified gravity, the inflationary perturbation spectrum, non-Gaussianity, and dark radiation. We focus on DESI and generally redshift surveys (BOSS, HETDEX, eBOSS, Euclid, and WFIRST), but also include CMB (Planck) and weak gravitational lensing (DES and LSST) constraints. The goal is to present a consistent set of projections, for concrete experiments, which are otherwise scattered throughout many papers and proposals. We include neutrino mass as a free parameter in most projections, as it will inevitably be relevant $-$ DESI and other experiments can measure the sum of neutrino masses to ~ 0.02 eV or better, while the minimum possible sum is 0.06 eV. We note that constraints on Dark Energy are significantly degraded by the presence of neutrino mass uncertainty, especially when using galaxy clustering only as a probe of the BAO distance scale (because this introduces additional uncertainty in the background evolution after the CMB epoch). Using broadband galaxy power becomes relatively more powerful, and bigger gains are achieved by combining lensing survey constraints with redshift survey constraints. Finally, we do not try to be especially innovative, e.g., with complex treatments of potential systematic errors $-$ these projections are intended as a straightforward baseline for comparison to more detailed analyses.

  13. The COHERENT collaboration: an effort to observe coherent, elastic, neutral-current neutrino-nucleus scattering at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Rich, Grayson; Coherent Collaboration

    2014-09-01

    The phenomenon of coherent, neutral-current scattering of neutrinos from nuclei was first proposed by D.Z. Freedman in 1974, who posited that an effort to observe this effect experimentally ``may be an act of hubris'' owing to extreme experimental difficulties. Taking advantage of technologies which have come to maturity and new experience gained in the intervening 40 years, the newly-formed COHERENT collaboration seeks to measure for the first time coherent, elastic neutrino-nucleus scattering (CE ν NS). Using neutrinos created by stopped pions at the Spallation Neutron Source (SNS) of Oak Ridge National Laboratory, several detector systems will be deployed to limit systematic uncertainties and unambiguously observe the N2 -dependence on the cross section. The current status of the efforts of the collaboration will be addressed, focusing on detector technologies and calibration of these detectors for low-energy nuclear recoils. We will also discuss the longer-term physics goals of the collaboration, including astrophysical implications of the measurements and the use CE ν NS as a probe to search for non-standard neutrino interactions and as a way to measure the weak mixing angle.

  14. Evidence of Coherent K+ Meson Production in Neutrino-Nucleus Scattering

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Marshall, C. M.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Endress, E.; Felix, J.; Fields, L.; Fine, R.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Simon, C.; Solano Salinas, C. J.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Minerva Collaboration

    2016-08-01

    Neutrino-induced charged-current coherent kaon production νμA →μ-K+A is a rare, inelastic electroweak process that brings a K+ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K+, μ-, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. We find the first experimental evidence for the process at 3 σ significance.

  15. Evidence of coherent $$K^{+}$$ meson production in neutrino-nucleus scattering

    DOE PAGES

    Wang, Z.

    2016-08-05

    Neutrino-induced charged-current coherent kaon production νμA→μ-K+A is a rare, inelastic electroweak process that brings a K+ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K+, μ-, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which ismore » a model-independent characteristic of coherent scattering. Furthermore, we find the first experimental evidence for the process at 3σ significance.« less

  16. Evidence of coherent $K^{+}$ meson production in neutrino-nucleus scattering

    SciTech Connect

    Wang, Z.

    2016-08-05

    Neutrino-induced charged-current coherent kaon production νμA→μ-K+A is a rare, inelastic electroweak process that brings a K+ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K+, μ-, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. Furthermore, we find the first experimental evidence for the process at 3σ significance.

  17. Evidence of Coherent K^{+} Meson Production in Neutrino-Nucleus Scattering.

    PubMed

    Wang, Z; Marshall, C M; Aliaga, L; Altinok, O; Bellantoni, L; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Budd, H; Cai, T; Carneiro, M F; da Motta, H; Dytman, S A; Díaz, G A; Eberly, B; Endress, E; Felix, J; Fields, L; Fine, R; Galindo, R; Gallagher, H; Ghosh, A; Golan, T; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kiveni, M; Kleykamp, J; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Martinez Caicedo, D A; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfín, J G; Mousseau, J; Naples, D; Nelson, J K; Norrick, A; Nuruzzaman; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Rakotondravohitra, L; Ramirez, M A; Ransome, R D; Ray, H; Ren, L; Rimal, D; Rodrigues, P A; Ruterbories, D; Schellman, H; Schmitz, D W; Simon, C; Solano Salinas, C J; Tice, B G; Valencia, E; Walton, T; Wolcott, J; Wospakrik, M; Zavala, G; Zhang, D

    2016-08-05

    Neutrino-induced charged-current coherent kaon production ν_{μ}A→μ^{-}K^{+}A is a rare, inelastic electroweak process that brings a K^{+} on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K^{+}, μ^{-}, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. We find the first experimental evidence for the process at 3σ significance.

  18. Evidence of coherent $K^{+}$ meson production in neutrino-nucleus scattering

    SciTech Connect

    Wang, Z.

    2016-08-05

    Neutrino-induced charged-current coherent kaon production νμA→μ-K+A is a rare, inelastic electroweak process that brings a K+ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K+, μ-, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. Furthermore, we find the first experimental evidence for the process at 3σ significance.

  19. Unparticle physics and neutrino phenomenology

    SciTech Connect

    Barranco, J.; Bolanos, A.; Miranda, O. G.; Moura, C. A.; Rashba, T. I.

    2009-04-01

    We have constrained unparticle interactions with neutrinos and electrons using available data on neutrino-electron elastic scattering and the four CERN LEP experiments data on mono photon production. We have found that, for neutrino-electron elastic scattering, the MUNU experiment gives better constraints than previous reported limits in the region d>1.5. The results are compared with the current astrophysical limits, pointing out the cases where these limits may or may not apply. We also discuss the sensitivity of future experiments to unparticle physics. In particular, we show that the measurement of coherent reactor neutrino scattering off nuclei could provide a good sensitivity to the couplings of unparticle interaction with neutrinos and quarks. We also discuss the case of future neutrino-electron experiments as well as the International Linear Collider.

  20. Data Driven Study of Neutron Response Using Quasielastic Neutrino Scattering in the Minerva Experiment

    NASA Astrophysics Data System (ADS)

    Peters, Evan; Minerva Collaboration

    2016-09-01

    Understanding how particles behave in detectors is a critical part of analyzing data from neutrino experiments, but neutral particles are difficult to characterize. The purpose of this project was to calibrate the neutron response in Quasielastic antineutrino scattering (QE) events in the Minerva detector. We applied quasi-elastic assumptions to estimate the outgoing neutron kinematics in QE scattering, and then added modifications to improve the model's predictions for neutron response in data. We compared these kinematic predictions of neutron energy and angle to Monte Carlo simulations of QE scattering and to the behavior of reconstructed energy ``blobs'' that characterize neutral particle behavior in simulated and real Minerva data. Filtering events for neutron energy, angle, and distance from the interaction vertex, we derive calibration functions for both the simulation and real data. Future work will include potential changes to the blobbing algorithms and refinement of the calibration technique using rigorous statistical methods.

  1. First neutrino oscillation measurements in NOvA

    DOE PAGES

    Messier, M. D.

    2016-04-20

    In this study, the NOvA experiment uses the Fermilab NuMI neutrino beam and a newly constructed 14 kt detector to address several open questions in neutrino oscillations including the neutrino mass hierarchy, the precise value of the angle θ23, and the CP-violating phase δCP. The experiment has been running since 2014 and has recently released its first results from an equivalent exposure of 2.74 × 1020 protons-on-target equal to 8% of the eventual data set. Measurements of νμ → νμ oscillations find Δm232 = (2.52+0.2–0.18) × 10-3 eV2 and 0.38 < sin2θ23 < 0.65 for the normal neutrino mass hierarchy.more » The experiment has observed νμ → νe oscillations at 3.3 σ C.L. in this early data and disfavors the inverted neutrino mass hierarchy in the range 0.1π < δCP < 0.5π at the 90% C.L.« less

  2. Search for periodicities in the {sup 8}B solar neutrino flux measured by the Sudbury Neutrino Observatory

    SciTech Connect

    Aharmim, B.; Farine, J.; Fleurot, F.; Hallman, E.D.; Krueger, A.; Luoma, S.; Schwendener, M.H.; Tafirout, R.; Virtue, C.J.; Ahmed, S.N.; Chen, M.; Duncan, F.A.; Earle, E.D.; Evans, H.C.; Ewan, G.T.; Fulsom, B.G.; Graham, K.; Hallin, A.L.; Handler, W.B.; Harvey, P.J.

    2005-09-01

    A search has been made for sinusoidal periodic variations in the {sup 8}B solar neutrino flux using data collected by the Sudbury Neutrino Observatory over a 4-year time interval. The variation at a period of 1 yr is consistent with modulation of the {sup 8}B neutrino flux by the Earth's orbital eccentricity. No significant sinusoidal periodicities are found with periods between 1 d and 10 years with either an unbinned maximum likelihood analysis or a Lomb-Scargle periodogram analysis. The data are inconsistent with the hypothesis that the results of the recent analysis by Sturrock et al., based on elastic scattering events in Super-Kamiokande, can be attributed to a 7% sinusoidal modulation of the total {sup 8}B neutrino flux.

  3. Angle resolved scatter measurement of bulk scattering in transparent ceramics

    NASA Astrophysics Data System (ADS)

    Sharma, Saurabh; Miller, J. Keith; Shori, Ramesh K.; Goorsky, Mark S.

    2015-02-01

    Bulk scattering in polycrystalline laser materials (PLM), due to non-uniform refractive index across the bulk, is regarded as the primary loss mechanism leading to degradation of laser performance with higher threshold and lower output power. The need for characterization techniques towards identifying bulk scatter and assessing the quality. Assessment of optical quality and the identification of bulk scatter have been by simple visual inspection of thin samples of PLMs, thus making the measurements highly subjective and inaccurate. Angle Resolved Scatter (ARS) measurement allows for the spatial mapping of scattered light at all possible angles about a sample, mapping the intensity for both forward scatter and back-scatter regions. The cumulative scattered light intensity, in the forward scatter direction, away from the specular beam is used for the comparison of bulk scattering between samples. This technique employ the detection of scattered light at all angles away from the specular beam directions and represented as a 2-D polar map. The high sensitivity of the ARS technique allows us to compare bulk scattering in different PLM samples which otherwise had similar transmitted beam wavefront distortions.

  4. Determining neutrino mass hierarchy by precision measurements in electron and muon neutrino disappearance experiments

    SciTech Connect

    Minakata, H.; Nunokawa, H.; Parke, S.J.; Zukanovich Funchal, R.; /Sao Paulo U.

    2006-07-01

    Recently a new method for determining the neutrino mass hierarchy by comparing the effective values of the atmospheric {Delta}m{sup 2} measured in the electron neutrino disappearance channel, {Delta}m{sup 2}(ee), with the one measured in the muon neutrino disappearance channel, {Delta}m{sup 2}({mu}{mu}), was proposed. If {Delta}m{sup 2}(ee) is larger (smaller) than {Delta}m{sup 2} ({mu}{mu}) the hierarchy is of the normal (inverted) type. We re-examine this proposition in the light of two very high precision measurements: {Delta}m{sup 2}({mu}{mu}) that may be accomplished by the phase II of the Tokai-to-Kamioka (T2K) experiment, for example, and {Delta}m{sup 2}(ee) that can be envisaged using the novel Moessbauer enhanced resonant {bar {nu}}{sub e} absorption technique. Under optimistic assumptions for the systematic uncertainties of both measurements, we estimate the parameter region of ({theta}{sub 13}, {delta}) in which the mass hierarchy can be determined. If {theta}{sub 13} is relatively large, sin{sup 2} 2{theta}{sub 13} {approx}> 0.05, and both of {Delta}m{sup 2}(ee) and {Delta}m{sup 2}({mu}{mu}) can be measured with the precision of {approx} 0.5 % it is possible to determine the neutrino mass hierarchy at > 95% CL for 0.3{pi} {approx}< {delta} {approx}< 1.7 {pi} for the current best fit values of all the other oscillation parameters.

  5. Charged-current quasielastic scattering of muon antineutrino and neutrino in the MINERvA experiment

    NASA Astrophysics Data System (ADS)

    Ankowski, Artur M.

    2015-07-01

    One of the largest sources of systematic uncertainties in ongoing neutrino-oscillation measurements is the description of nuclear effects. Its considerable reduction is expected thanks to the dedicated studies of (anti)neutrino-nucleus interactions in the MINERvA experiment. In this article, the calculations within the spectral function approach are compared to the charged-current quasielastic cross sections reported from MINERvA. The obtained results show that the effect of final-state interactions on the (anti)muon kinematics plays a pivotal role in reproducing the experimental data.

  6. Neutrino and antineutrino CCQE scattering in the SuperScaling Approximation from MiniBooNE to NOMAD energies

    NASA Astrophysics Data System (ADS)

    Megias, G. D.; Amaro, J. E.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.

    2013-08-01

    We compare the predictions of the SuperScaling model for charged-current quasielastic muonic neutrino and antineutrino scattering from 12C with experimental data spanning an energy range up to 100 GeV. We discuss the sensitivity of the results to different parametrizations of the nucleon vector and axial-vector form factors. Finally, we show the differences between electron and muon (anti)neutrino cross sections relevant for the νSTORM facility.

  7. Neutrino Oscillations with Reactor Neutrinos

    NASA Astrophysics Data System (ADS)

    Cabrera, Anatael

    2007-06-01

    Prospect measurements of neutrino oscillations with reactor neutrinos are reviewed in this document. The following items are described: neutrinos oscillations status, reactor neutrino experimental strategy, impact of uncertainties on the neutrino oscillation sensitivity and, finally, the experiments in the field. This is the synthesis of the talk delivered during the NOW2006 conference at Otranto (Italy) during September 2006.

  8. DESI and other Dark Energy experiments in the era of neutrino mass measurements

    DOE PAGES

    Font-Ribera, Andreu; McDonald, Patrick; Mostek, Nick; ...

    2014-05-19

    Here we present Fisher matrix projections for future cosmological parameter measurements, including neutrino masses, Dark Energy, curvature, modified gravity, the inflationary perturbation spectrum, non-Gaussianity, and dark radiation. We focus on DESI and generally redshift surveys (BOSS, HETDEX, eBOSS, Euclid, and WFIRST), but also include CMB (Planck) and weak gravitational lensing (DES and LSST) constraints. The goal is to present a consistent set of projections, for concrete experiments, which are otherwise scattered throughout many papers and proposals. We include neutrino mass as a free parameter in most projections, as it will inevitably be relevant $-$ DESI and other experiments can measuremore » the sum of neutrino masses to ~ 0.02 eV or better, while the minimum possible sum is 0.06 eV. We note that constraints on Dark Energy are significantly degraded by the presence of neutrino mass uncertainty, especially when using galaxy clustering only as a probe of the BAO distance scale (because this introduces additional uncertainty in the background evolution after the CMB epoch). Using broadband galaxy power becomes relatively more powerful, and bigger gains are achieved by combining lensing survey constraints with redshift survey constraints. Finally, we do not try to be especially innovative, e.g., with complex treatments of potential systematic errors $-$ these projections are intended as a straightforward baseline for comparison to more detailed analyses.« less

  9. Neutrino-driven Explosion of a 20 Solar-mass Star in Three Dimensions Enabled by Strange-quark Contributions to Neutrino-Nucleon Scattering

    NASA Astrophysics Data System (ADS)

    Melson, Tobias; Janka, Hans-Thomas; Bollig, Robert; Hanke, Florian; Marek, Andreas; Müller, Bernhard

    2015-08-01

    Interactions with neutrons and protons play a crucial role for the neutrino opacity of matter in the supernova core. Their current implementation in many simulation codes, however, is rather schematic and ignores not only modifications for the correlated nuclear medium of the nascent neutron star, but also free-space corrections from nucleon recoil, weak magnetism, or strange quarks, which can easily add up to changes of several 10% for neutrino energies in the spectral peak. In the Garching supernova simulations with the Prometheus-Vertex code, such sophistications have been included for a long time except for the strange-quark contributions to the nucleon spin, which affect neutral-current neutrino scattering. We demonstrate on the basis of a 20 {M}⊙ progenitor star that a moderate strangeness-dependent contribution of {g}{{a}}{{s}}=-0.2 to the axial-vector coupling constant {g}{{a}}≈ 1.26 can turn an unsuccessful three-dimensional (3D) model into a successful explosion. Such a modification is in the direction of current experimental results and reduces the neutral-current scattering opacity of neutrons, which dominate in the medium around and above the neutrinosphere. This leads to increased luminosities and mean energies of all neutrino species and strengthens the neutrino-energy deposition in the heating layer. Higher nonradial kinetic energy in the gain layer signals enhanced buoyancy activity that enables the onset of the explosion at ˜300 ms after bounce, in contrast to the model with vanishing strangeness contributions to neutrino-nucleon scattering. Our results demonstrate the close proximity to explosion of the previously published, unsuccessful 3D models of the Garching group.

  10. Charge coupled devices for detection of coherent neutrino-nucleus scattering

    SciTech Connect

    Fernandez Moroni, Guillermo; Estrada, Juan; Paolini, Eduardo E.; Cancelo, Gustavo; Tiffenberg, Javier; Molina, Jorge

    2015-04-01

    In this article the feasibility of using charge coupled devices (CCD) to detect low-energy neutrinos through their coherent scattering with nuclei is analyzed. The detection of neutrinos through this standard model process has been elusive because of the small energy deposited in such interaction. Typical particle detectors have thresholds of a few keV, and most of the energy deposition expected from coherent scattering is well below this level. The CCD detectors discussed in this paper can operate at a threshold of approximately 30 eV, making them ideal for observing this signal. On a CCD array of 500 g located next to a power nuclear reactor the number of coherent scattering events expected is about 3000 events/year. Our results shows that a detection with a confidence level of 99% can be reached within 16 days of continuous operation; with the current 52 g detector prototype this time lapse extends to five months.

  11. MINERνA neutrino detector calibration

    SciTech Connect

    Patrick, Cheryl

    2015-05-15

    MINERνA is a neutrino scattering experiment that uses Fermilab’s NuMI beamline. Its goal is to measure cross-sections for neutrino scattering from different nuclei. Precise knowledge of these cross-sections is vital for current and future neutrino oscillation experiments. In order to measure these values to a high degree of accuracy, it is essential that the detector be carefully calibrated. Here, we describe in-situ calibration and cross-checks.

  12. Limits on dark matter proton scattering from neutrino telescopes using micrOMEGAs

    SciTech Connect

    Bélanger, G.; Silva, J. Da; Perrillat-Bottonet, T.; Pukhov, A.

    2015-12-17

    Limits on dark matter spin dependent elastic scattering cross section on protons derived from IceCube data are obtained for different dark matter annihilation channels using micrOMEGAs. The uncertainty on the derived limits, estimated by using different neutrino spectra, can reach a factor two. For all dark matter annihilation channels except for quarks, the limits on the spin dependent cross section are more stringent than those obtained in direct detection experiments. The new functions that allow to derive those limits are described.

  13. Inclusive neutrino scattering off the deuteron at low energies in chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Baroni, A.; Schiavilla, R.

    2017-07-01

    Cross sections for inclusive neutrino scattering off the deuteron induced by neutral and charge-changing weak currents are calculated from threshold up to 150 MeV energies in a chiral effective field theory including high orders in the power counting. Contributions beyond leading order (LO) in the weak current are found to be small, and increase the cross sections obtained with the LO transition operators by a couple of percent over the whole energy range 0-150 MeV. The cutoff dependence is negligible, and the predicted cross sections are within ˜2 % of, albeit consistently larger than, corresponding predictions obtained in conventional meson-exchange frameworks.

  14. Limits on dark matter proton scattering from neutrino telescopes using micrOMEGAs

    SciTech Connect

    Bélanger, G.; Perrillat-Bottonet, T.; Silva, J. Da; Pukhov, A. E-mail: dasilva@lapth.cnrs.fr E-mail: pukhov@lapth.cnrs.fr

    2015-12-01

    Limits on dark matter spin dependent elastic scattering cross section on protons derived from IceCube data are obtained for different dark matter annihilation channels using micrOMEGAs. The uncertainty on the derived limits, estimated by using different neutrino spectra, can reach a factor two. For all dark matter annihilation channels except for quarks, the limits on the spin dependent cross section are more stringent than those obtained in direct detection experiments. The new functions that allow to derive those limits are described.

  15. Limit on the muon neutrino magnetic moment and a measurement of the CCPIP to CCQE cross section ratio

    SciTech Connect

    Ouedraogo, Serge Aristide

    2008-12-01

    A search for the muon neutrino magnetic moment was conducted using the Mini-BooNE low energy neutrino data. The analysis was performed by analyzing the elastic scattering interactions of muon neutrinos on electrons. The analysis looked for an excess of elastic scattering events above the Standard Model prediction from which a limit on the neutrino magnetic could be set. In this thesis, we report an excess of 15.3 ± 6.6(stat)±4.1(syst) vμe events above the expected background. At 90% C.L., we derived a limit on the muon neutrino magnetic moment of 12.7 x 10-10 μB. The other analysis reported in this thesis is a measurement of charged current single pion production (CCπ+) to charged current quasi elastic (CCQE) interactions cross sections ratio. This measurement was performed with two different fitting algorithms and the results from both fitters are consistent with each other.

  16. Measuring the 13 neutrino mixing angle and the CP phase with neutrino telescopes.

    PubMed

    Serpico, P D; Kachelriess, M

    2005-06-03

    The observed excess of high-energy cosmic rays from the Galactic plane in the energy range around 10(18) eV may be explained by neutron primaries generated in the photodissociation of heavy nuclei. In this scenario, lower-energy neutrons decay before reaching the Earth and produce a detectable flux in a 1 km(3) neutrino telescope. The initial flavor composition of the neutrino flux, phi(nu(e)):phi(nu(mu)):phi(nu(tau))=1:0:0, permits a combined nu(mu)/nu(tau) appearance and nu(e) disappearance experiment. The observable flux ratio phi(nu(mu))/phi(nu(e)+nu(tau) at Earth depends on the 13 mixing angle theta(13) and the leptonic CP phase delta(CP), thus opening a new way to measure these two quantities.

  17. First result for the neutrino magnetic moment from measurements with the GEMMA spectrometer

    NASA Astrophysics Data System (ADS)

    Beda, A. G.; Brudanin, V. B.; Demidova, E. V.; Vylov, C.; Gavrilov, M. G.; Egorov, V. G.; Starostin, A. S.; Shirchenko, M. V.

    2007-11-01

    The first result obtained in the measurements of the neutrino magnetic moment at the Kalinin nuclear power plant with the GEMMA spectrometer is presented. A high-purity germanium detector of mass 1.5 kg placed at a distance of 13.9 m from the reactor core is used in the spectrometer. The antineutrino flux at the detector position is 2.73 × 1013 bar ν /(cm2 s). The differential method is used to select events of electromagnetic antineutrino-electron scattering. The spectra taken in the reactor-on and reactor-off modes over 6200 and 2064 h, respectively, are compared. On the basis of a data analysis, an upper limit of 5.8 × 10-11 μB was set on the neutrino magnetic moment μ ν at a 90% C.L.

  18. First result for the neutrino magnetic moment from measurements with the GEMMA spectrometer

    SciTech Connect

    Beda, A. G.; Brudanin, V. B.; Demidova, E. V.; Vylov, C.; Gavrilov, M. G.; Egorov, V. G.; Starostin, A. S.; Shirchenko, M. V.

    2007-11-15

    The first result obtained in the measurements of the neutrino magnetic moment at the Kalinin nuclear power plant with the GEMMA spectrometer is presented. A high-purity germanium detector of mass 1.5 kg placed at a distance of 13.9 m from the reactor core is used in the spectrometer. The antineutrino flux at the detector position is 2.73 x 10{sup 13{nu}}-bar/(cm{sup 2} s). The differential method is used to select events of electromagnetic antineutrino-electron scattering. The spectra taken in the reactor-on and reactor-off modes over 6200 and 2064 h, respectively, are compared. On the basis of a data analysis, an upper limit of 5.8 x 10{sup -11} {mu}B was set on the neutrino magnetic moment {mu}{sub {nu}}at a 90% C.L.

  19. Neutrinos

    NASA Astrophysics Data System (ADS)

    Winter, K.; Murdin, P.

    2000-11-01

    Neutrinos are electrically neutral ELEMENTARY PARTICLES which experience only the weak nuclear force and gravity. Their existence was introduced as a hypothesis by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in radioactive beta decay. Chadwick had discovered in 1914 that the energy spectrum of electrons emitted in beta decay was not monoenergetic but continuous...

  20. Measuring neutrino masses with a future galaxy survey

    SciTech Connect

    Hamann, Jan; Hannestad, Steen; Wong, Yvonne Y.Y. E-mail: sth@phys.au.dk

    2012-11-01

    We perform a detailed forecast on how well a EUCLID-like photometric galaxy and cosmic shear survey will be able to constrain the absolute neutrino mass scale. Adopting conservative assumptions about the survey specifications and assuming complete ignorance of the galaxy bias, we estimate that the minimum mass sum of Σm{sub ν} ≅ 0.06 eV in the normal hierarchy can be detected at 1.5σ to 2.5σ significance, depending on the model complexity, using a combination of galaxy and cosmic shear power spectrum measurements in conjunction with CMB temperature and polarisation observations from PLANCK. With better knowledge of the galaxy bias, the significance of the detection could potentially reach 5.4σ. Interestingly, neither PLANCK+shear nor PLANCK+galaxy alone can achieve this level of sensitivity; it is the combined effect of galaxy and cosmic shear power spectrum measurements that breaks the persistent degeneracies between the neutrino mass, the physical matter density, and the Hubble parameter. Notwithstanding this remarkable sensitivity to Σm{sub ν}, EUCLID-like shear and galaxy data will not be sensitive to the exact mass spectrum of the neutrino sector; no significant bias ( < 1σ) in the parameter estimation is induced by fitting inaccurate models of the neutrino mass splittings to the mock data, nor does the goodness-of-fit of these models suffer any significant degradation relative to the true one (Δχ{sub eff}{sup 2} < 1)

  1. Axial-vector dominance predictions in quasielastic neutrino-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Amaro, J. E.; Ruiz Arriola, E.

    2016-03-01

    The axial form factor plays a crucial role in quasielastic neutrino-nucleus scattering, but the error of the theoretical cross section due to uncertainties of GA remains to be established. Conversely, the extraction of GA from the neutrino nucleus cross section suffers from large systematic errors due to nuclear model dependencies, while the use of single-parameter dipole fits underestimates the errors and prevents an identification of the relevant kinematics for this determination. We propose to use a generalized axial-vector-meson dominance in conjunction with large-Nc and high-energy QCD constraints to model the nucleon axial form factor, as well as the half-width rule as an a priori uncertainty estimate. The minimal hadronic ansatz comprises the sum of two monopoles corresponding to the lightest axial-vector mesons being coupled to the axial current. The parameters of the resulting axial form factor are the masses and widths of the two axial mesons as obtained from the averaged Particle Data Group values. By applying the half-width rule in a Monte Carlo simulation, a distribution of theoretical predictions can then be generated for the neutrino-nucleus quasielastic cross section. We test the model by applying it to the (νμ,μ ) quasielastic cross section from 12 for the kinematics of the MiniBooNE experiment. The resulting predictions have no free parameters. We find that the relativistic Fermi gas model globally reproduces the experimental data, giving χ2/# bins=0.81 . A Q2-dependent error analysis of the neutrino data shows that the uncertainties in the axial form factor GA(Q2) are comparable to the ones induced by the a priori half-width rule. We identify the most sensitive region to be in the range 0.2 ≲Q2≲0.6 GeV2 .

  2. Exchange current corrections to neutrino-nucleus scattering. I. Nuclear matter

    NASA Astrophysics Data System (ADS)

    Umino, Y.; Udias, J. M.

    1995-12-01

    Relativistic exchange current corrections to the impulse approximation in low and intermediate energy neutrino-nucleus scattering are presented assuming nonvanishing strange quark form factors for constituent nucleons. Two-body exchange current operators which treat all SU(3) vector and axial currents on an equal footing are constructed by generalizing the soft-pion dominance method of Chemtob and Rho. For charged current reactions, exchange current corrections can reduce the impulse approximation results by 5 to 10 % depending on the nuclear density. A finite strange quark form factor may change the total cross section for neutral current scattering by 20% while exchange current corrections are found to be sensitive to the nuclear density. Implications on the current LSND experiment to extract the strange quark axial form factor of the nucleon are discussed.

  3. Constraints on nonstandard intermediate boson exchange models from neutrino-electron scattering

    NASA Astrophysics Data System (ADS)

    Sevda, B.; Şen, A.; Demirci, M.; Deniz, M.; Agartioglu, M.; Ajjaq, A.; Kerman, S.; Singh, L.; Sonay, A.; Wong, H. T.; Zeyrek, M.

    2017-08-01

    Constraints on couplings of several beyond-Standard-Model-physics scenarios, mediated by massive intermediate particles including (1) an extra Z-prime, (2) a new light spin-1 boson, and (3) a charged Higgs boson, are placed via the neutrino-electron scattering channel to test the Standard Model at a low energy-momentum transfer regime. Data on ν¯e-e and νe-e scattering from the TEXONO and LSND, respectively, are used. Upper bounds to coupling constants of the flavor-conserving and flavor-violating new light spin-1 boson and the charged Higgs boson with respect to different mediator masses are determined. The relevant parameter spaces are extended by allowing light mediators. New lower mass limits for extra Z-prime gauge boson models are also placed.

  4. Low-energy ionization yield in liquid argon for a coherent neutrino-nucleus scatter detector

    NASA Astrophysics Data System (ADS)

    Foxe, Michael P.

    A mode of interaction predicted by the Standard Model of particle physics, but not yet observed, is coherent neutrino-nucleus scattering (CNNS). CNNS results from the neutrino (or antineutrino) scattering coherently with the entire nucleus rather than a single nucleon. The leading challenge in detecting CNNS is the resulting sub-keV nuclear recoil energies, producing little ionization in the detector medium. In order to detect the CNNS interaction, it is beneficial to first measure the nuclear ionization yield for the chosen detector medium. The ionization yield represents the expected number of electrons produced by a nuclear recoil, and it depends both on the recoil energy and on the detector medium in which the recoil occurs. Additionally, the ionization yield depends on the applied electron drift electric field, and for this reason it should be measured directly in the detector type anticipated for future CNNS measurements. This dissertation is focused on making the prediction and measurement of the ionization yield in LAr using a dual-phase Ar detector. Due to the complexity of measuring the ionization yield at various energies, it is beneficial to also construct a predictive model for the ionization yield. In this dissertation, the prediction of the ionization yield is made on the basis of a simulation of a two-stage process. The number of ionizations generated from Ar recoil of a given energy is simulated using a Monte Carlo atomic collision model, along with the cross sections for ionization and excitation in Ar + Ar collisions. After the electrons are generated, a fraction of them recombine with the initially generated ion cloud. The electron recombination fraction is simulated by assigning the emitted electrons either 1 or 10 eV of initial kinetic energy and transporting the electrons under the influence of Coulomb forces of the ion cloud and an applied external electric field. The simulation predicts the energy dependent ionization yield, with a value of

  5. Neutrino Observations from the Sudbury Neutrino Observatory

    DOE R&D Accomplishments Database

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. Bühler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  6. Neutrino observations from the Sudbury Neutrino Observatory

    SciTech Connect

    Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton,J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler,M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Buhler, G.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Clifford, E.T.H.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Doe, P.J.; Doucas, G.; Dragowsky,M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon, N.; Germani, J.V.; Gil, S.; Graham, K.; Grant, D.R.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime, A.; Hykawy, J.G.; Isaac,M.C.P.; Jagam, P.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Klein, J.R.; Knox, A.B.; Komar, R.J.; Kouzes, R.; Kutter,T.; Kyba, C.C.M.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H.B.; Maneira, J.; Manor, J.; Marino, A.D.; McCauley, N.; McDonald,D.S.; McDonald, A.B.; McFarlane, K.; McGregor, G.; Meijer, R.; Mifflin,C.; Miller, G.G.; Milton, G.; Moffat, B.A.; Moorhead, M.; Nally, C.W.; Neubauer, M.S.; Newcomer, F.M.; Ng, H.S.; Noble, A.J.; Norman, E.B.; Novikov, V.M.; O'Neill, M.; Okada, C.E.; Ollerhead, R.W.; Omori, M.; Orrell, J.L.; Oser, S.M.; Poon, A.W.P.; Radcliffe, T.J.; Roberge, A.; Robertson, B.C.; Robertson, R.G.H.; Rosendahl, S.S.E.; Rowley, J.K.; Rusu, V.L.; Saettler, E.; Schaffer, K.K.; Schwendener,M.H.; Schulke, A.; Seifert, H.; Shatkay, M.; Simpson, J.J.; Sims, C.J.; et al.

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  7. Expression of Interest for Neutrinos Scattering on Glass: NuSOnG

    SciTech Connect

    Adams, T.; Bugel, L.; Conrad, J.M.; Fisher, P.H.; Formaggio, J.A.; de Gouvea, A.; Loinaz, W.A.; Karagiorgi, G.; Kobilarcik, T.R.; Kopp, S.; Kyle, G.; /New Mexico State U. /Fermilab /MIT /Fermilab

    2009-07-01

    We propose a 3500 ton (3000 ton fiducial volume) SiO{sub 2} neutrino detector with sampling calorimetry, charged particle tracking, and muon spectrometers to run in a Tevatron Fixed Target Program. Improvements to the Fermilab accelerator complex should allow substantial increases in the neutrino flux over the previous NuTeV quad triplet beamline. With 4 x 10{sup 19} protons on target/year, a 5 year run would achieve event statistics more than 100 times higher than NuTeV. With 100 times the statistics of previous high energy neutrino experiments, the purely weak processes {nu}{sub {mu}} + e{sup -} {yields} {nu}{sub {mu}} + e{sup -} and {nu}{sub {mu}} + e{sup -} {yields} {nu}{sub e} + {mu}{sup -} (inverse muon decay) can be measured with high accuracy for the first time. The inverse muon decay process is independent of strong interaction effects and can be used to significantly improve the flux normalization for all other processes. The high neutrino and antineutrino fluxes also make new searches for lepton flavor violation and neutral heavy leptons possible. In this document, we give a first look at the physics opportunities, detector and beam design, and calibration procedures.

  8. Low Temperature Magnetic Calorimeters For Neutrino Mass Direct Measurement

    NASA Astrophysics Data System (ADS)

    Gastaldo, L.; Porst, J. P.; von Seggern, F.; Kirsch, A.; Ranitzsch, P.; Fleischmann, A.; Enss, C.; Seidel, G. M.

    2009-12-01

    In the last years the mixing of the three neutrino flavor eigenstates through a unitary matrix has been experimentally proved. Presently one of the greatest challenges in neutrino physics is to establish the absolute value of the masses of the three neutrino mass eigenstates. The kinematic determination of electron neutrino and antineutrino mass by means of the analysis of calorimetric spectra of isotopes which undergo a beta or electron-capture decay, with especially low energy available for the decay itself, represents an interesting method. In fact this method is less affected by theoretical models defining branching ratio among different decay modes. For the beta decay the isotope with the lowest Q-value present in nature is the 187Re (Q about 2.5 keV) while for the electron capture decay the best candidate known is the 163Ho (Q about 2.5 keV). Since those experiments need to be extremely precise, they might suffer from unexpected systematic errors. It is therefore important to investigate in detail the performance of the detectors and the calorimetric spectrum. We present our results obtained with low temperature magnetic calorimeters designed for measuring low energy beta and electron capture spectra. We also discuss problematic and the possibly present systematic uncertainties using this kind of detectors.

  9. Direct Measurement of Nuclear Dependence of Charged Current Quasielasticlike Neutrino Interactions Using MINERvA

    NASA Astrophysics Data System (ADS)

    Betancourt, M.; Ghosh, A.; Walton, T.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Bodek, A.; Bravar, A.; Cai, T.; Martinez Caicedo, D. A.; Carneiro, M. F.; Dytman, S. A.; Díaz, G. A.; Felix, J.; Fields, L.; Fine, R.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman, Patrick, C. E.; Perdue, G. N.; Ramírez, M. A.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Sobczyk, J. T.; Solano Salinas, C. J.; Sánchez Falero, S.; Valencia, E.; Wolcott, J.; Wospakrik, M.; Yaeggy, B.; Minerva Collaboration

    2017-08-01

    Charged-current νμ interactions on carbon, iron, and lead with a final state hadronic system of one or more protons with zero mesons are used to investigate the influence of the nuclear environment on quasielasticlike interactions. The transferred four-momentum squared to the target nucleus, Q2, is reconstructed based on the kinematics of the leading proton, and differential cross sections versus Q2 and the cross-section ratios of iron, lead, and carbon to scintillator are measured for the first time in a single experiment. The measurements show a dependence on the atomic number. While the quasielasticlike scattering on carbon is compatible with predictions, the trends exhibited by scattering on iron and lead favor a prediction with intranuclear rescattering of hadrons accounted for by a conventional particle cascade treatment. These measurements help discriminate between different models of both initial state nucleons and final state interactions used in the neutrino oscillation experiments.

  10. Direct Measurement of Nuclear Dependence of Charged Current Quasielasticlike Neutrino Interactions Using MINERvA.

    PubMed

    Betancourt, M; Ghosh, A; Walton, T; Altinok, O; Bellantoni, L; Bercellie, A; Bodek, A; Bravar, A; Cai, T; Martinez Caicedo, D A; Carneiro, M F; Dytman, S A; Díaz, G A; Felix, J; Fields, L; Fine, R; Galindo, R; Gallagher, H; Ghosh, A; Golan, T; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kiveni, M; Kleykamp, J; Le, T; Maher, E; Manly, S; Mann, W A; Marshall, C M; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfín, J G; Mousseau, J; Naples, D; Nelson, J K; Norrick, A; Nuruzzaman; Patrick, C E; Perdue, G N; Ramírez, M A; Ren, L; Rimal, D; Rodrigues, P A; Ruterbories, D; Schellman, H; Sobczyk, J T; Solano Salinas, C J; Sánchez Falero, S; Valencia, E; Wolcott, J; Wospakrik, M; Yaeggy, B

    2017-08-25

    Charged-current ν_{μ} interactions on carbon, iron, and lead with a final state hadronic system of one or more protons with zero mesons are used to investigate the influence of the nuclear environment on quasielasticlike interactions. The transferred four-momentum squared to the target nucleus, Q^{2}, is reconstructed based on the kinematics of the leading proton, and differential cross sections versus Q^{2} and the cross-section ratios of iron, lead, and carbon to scintillator are measured for the first time in a single experiment. The measurements show a dependence on the atomic number. While the quasielasticlike scattering on carbon is compatible with predictions, the trends exhibited by scattering on iron and lead favor a prediction with intranuclear rescattering of hadrons accounted for by a conventional particle cascade treatment. These measurements help discriminate between different models of both initial state nucleons and final state interactions used in the neutrino oscillation experiments.

  11. Neutrino-nucleus neutral current elastic interactions measurement in MiniBooNE

    SciTech Connect

    Perevalov, Denis

    2009-12-01

    The MiniBooNE experiment at the Fermi National Accelerator Laboratory (Fermilab) was designed to search for vμ → ve neutrino oscillations at Δm2 ~ 1 eV2 using an intense neutrino flux with an average energy Ev ~ 700 MeV. From 2002 to 2009 MiniBooNE has accumulated more than 1.0 x 1021 protons on target (POT) in both neutrino and antineutrino modes. MiniBooNE provides a perfect platform for detailed measurements of exclusive and semiinclusive neutrino cross-sections, for which MiniBooNE has the largest samples of events up to date, such as neutral current elastic (NCE), neutral current π0, charged current quasi-elastic (CCQE), charged current π+, and other channels. These measured cross-sections, in turn, allow to improve the knowledge of nucleon structure. This thesis is devoted to the study of NCE interactions. Neutrino-nucleus neutral current elastic scattering (vN → vN) accounts for about 18% of all neutrino interactions in MiniBooNE. Using a high-statistics, high purity sample of NCE interactions in MiniBooNE, the flux-averaged NCE differential cross-section has been measured and is being reported here. Further study of the NCE cross-section allowed for probing the structure of nuclei. The main interest in the NCE cross-section is that it may be sensitive to the strange quark contribution to the nucleon spin, Δs, this however requires a separation of NCE proton (vp → vp) from NCE neutron (vn → vn) events, which in general is a challenging task. MiniBooNE uses a Cherenkov detector, which imposes restrictions on the measured nucleon kinematic variables, mainly due to the impossibility to reconstruct the nucleon direction below the Cherenkov threshold. However, at kinetic energies above this threshold MiniBooNE is able to identify NCE proton events that do not experience final state interactions (FSI). These events were used for the Δs measurement. In this thesis

  12. Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments

    NASA Astrophysics Data System (ADS)

    Kosmas, T. S.; Papoulias, D. K.; Tórtola, M.; Valle, J. W. F.

    2017-09-01

    We investigate the impact of a fourth sterile neutrino at reactor and Spallation Neutron Source neutrino detectors. Specifically, we explore the discovery potential of the TEXONO and COHERENT experiments to subleading sterile neutrino effects through the measurement of the coherent elastic neutrino-nucleus scattering event rate. Our dedicated χ2-sensitivity analysis employs realistic nuclear structure calculations adequate for high purity sub-keV threshold Germanium detectors.

  13. First Neutrino Observations from the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    McDonald, A. B.; Boulay, M. G.; Bovin, E.; Chen, M.; Duncan, F. A.; Earle, E. D.; Evans, H. C.; Ewan, G. T.; Ford, R. J.; Hallin, A. L.; Harvey, P. J.; Hepburn, J. D.; Jillings, C.; Lee, H. W.; Leslie, J. R.; Mak, H. B.; McDonald, A. B.; McLatchie, W.; Moffat, B. A.; Robertson, B. C.; Skensved, P.; Sur, B.; Blevis, I.; Dalnoki-Veress, F.; Davidson, W.; Farine, J.; Grant, D. R.; Hargrove, C. K.; Levine, I.; McFarlane, K.; Noble, T.; Novikov, V. M.; O'Neill, M.; Shatkay, M.; Shewchuk, C.; Sinclair, D.; Andersen, T.; Chon, M. C.; Jagam, P.; Law, J.; Lawson, I. T.; Ollerhead, R. W.; Simpson, J. J.; Tagg, N.; Wang, J. X.; Bigu, J.; Cowan, J. H. M.; Hallman, E. D.; Haq, R. U.; Hewett, J.; Hykawy, J. G.; Jonkmans, G.; Roberge, A.; Saettler, E.; Schwendener, M. H.; Seifert, H.; Tafirout, R.; Virtue, C. J.; Gil, S.; Heise, J.; Helmer, R.; Komar, R. J.; Kutter, T.; Nally, C. W.; Ng, H. S.; Schubank, R.; Tserkovnyak, Y.; Waltham, C. E.; Beier, E. W.; Cowen, D. F.; Frank, E. D.; Frati, W.; Keener, P. T.; Klein, J. R.; Kyba, C.; McDonald, D. S.; Neubauer, M. S.; Newcomer, F. M.; Rusu, V.; Van Berg, R.; Van de Water, R. G.; Wittich, P.; Bowles, T. J.; Brice, S. J.; Dragowsky, M.; Fowler, M. M.; Goldschmidt, A.; Hamer, A.; Hime, A.; Kirch, K.; Wilhelmy, J. B.; Wouters, J. M.; Chan, Y. D.; Chen, X.; Isaac, M. C. P.; Lesko, K. T.; Marino, A. D.; Norman, E. B.; Okada, C. E.; Poon, A. W. P.; Smith, A. R.; Schuelke, A.; Stokstad, R. G.; Ahmad, Q. R.; Browne, M. C.; Bullard, T. V.; Doe, P. J.; Duba, C. A.; Elliott, S. R.; Fardon, R.; Germani, J. V.; Hamian, A. A.; Heeger, K. M.; Drees, R. Meijer; Orrell, J.; Robertson, R. G. H.; Schaffer, K.; Smith, M. W. E.; Steiger, T. D.; Wilkerson, J. F.; Barton, J. C.; Biller, S.; Black, R.; Boardman, R.; Bowler, M.; Cameron, J.; Cleveland, B.; Doucas, G.; Ferraris; Fergami, H.; Frame, K.; Heron, H.; Howard, C.; Jelley, N. A.; Knox, A. B.; Lay, M.; Locke, W.; Lyon, J.; McCaulay, N.; Majerus, S.; MacGregor, G.; Moorhead, M.; Omori, M.; Tanner, N. W.; Taplin, R.; Thorman, M.; Trent, P. T.; Wark, D. L.; West, N.; Boger, J.; Hahn, R. L.; Rowley, J. K.; Yeh, M.; Allen, R. G.; Buhler, G.; Chen, H. H.

    The first neutrino observations from the Sudbury Neutrino Observatory are presented from preliminary analyses. Based on energy, direction and location, the data in the region of interest appear to be dominated by 8B solar neutrinos, detected by the charged current reaction on deuterium and elastic scattering from electrons, with very little background. Measurements of radioactive backgrounds indicate that the measurement of all active neutrino types via the neutral current reaction on deuterium will be possible with small systematic uncertainties. Quantitative results for the fluxes observed with these reactions will be provided when further calibrations have been completed.

  14. Measurement of ratios of νμ charged-current cross sections on C, Fe, and Pb to CH at neutrino energies 2-20 GeV.

    PubMed

    Tice, B G; Datta, M; Mousseau, J; Aliaga, L; Altinok, O; Barrios Sazo, M G; Betancourt, M; Bodek, A; Bravar, A; Brooks, W K; Budd, H; Bustamante, M J; Butkevich, A; Martinez Caicedo, D A; Castromonte, C M; Christy, M E; Chvojka, J; da Motta, H; Devan, J; Dytman, S A; Díaz, G A; Eberly, B; Felix, J; Fields, L; Fiorentini, G A; Gago, A M; Gallagher, H; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Jerkins, M; Kafka, T; Kordosky, M; Kulagin, S A; Le, T; Maggi, G; Maher, E; Manly, S; Mann, W A; Marshall, C M; Martin Mari, C; McFarland, K S; McGivern, C L; McGowan, A M; Miller, J; Mislivec, A; Morfín, J G; Muhlbeier, T; Naples, D; Nelson, J K; Norrick, A; Osta, J; Palomino, J L; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Rakotondravohitra, L; Ransome, R D; Ray, H; Ren, L; Rodrigues, P A; Savage, D G; Schellman, H; Schmitz, D W; Simon, C; Snider, F D; Solano Salinas, C J; Tagg, N; Valencia, E; Velásquez, J P; Walton, T; Wolcott, J; Zavala, G; Zhang, D; Ziemer, B P

    2014-06-13

    We present measurements of ν(μ) charged-current cross section ratios on carbon, iron, and lead relative to a scintillator (CH) using the fine-grained MINERvA detector exposed to the NuMI neutrino beam at Fermilab. The measurements utilize events of energies 2scattering angle less than 17° to extract ratios of inclusive total cross sections as a function of neutrino energy E(ν) and flux-integrated differential cross sections with respect to the Bjorken scaling variable x. These results provide the first high-statistics direct measurements of nuclear effects in neutrino scattering using different targets in the same neutrino beam. Measured cross section ratios exhibit a relative depletion at low x and enhancement at large x. Both become more pronounced as the nucleon number of the target nucleus increases. The data are not reproduced by GENIE, a conventional neutrino-nucleus scattering simulation, or by the alternative models for the nuclear dependence of inelastic scattering that are considered.

  15. Measurement of Neutrino-Induced Coherent Pion Production and the Diffractive Background in MINERvA

    NASA Astrophysics Data System (ADS)

    Gomez, Alicia; Minerva Collaboration

    2015-04-01

    Neutrino-induced coherent charged pion production is a unique neutrino-nucleus scattering process in which a muon and pion are produced while the nucleus is left in its ground state. The MINERvA experiment has made a model-independent differential cross section measurement of this process on carbon by selecting events with a muon and a pion, no evidence of nuclear break-up, and small momentum transfer to the nucleus | t | . A similar process which is a background to the measurement on carbon is diffractive pion production off the free protons in MINERvA's scintillator. This process is not modeled in the neutrino event generator GENIE. At low | t | these events have a similar final state to the aforementioned process. A study to quantify this diffractive event contribution to the background is done by emulating these diffractive events by reweighting all other GENIE-generated background events to the predicted | t | distribution of diffractive events, and then scaling to the diffractive cross section.

  16. Measurement of the atmospheric neutrino flavour composition in Soudan 2

    NASA Astrophysics Data System (ADS)

    Allison, W. W. M.; Alner, G. J.; Ayres, D. S.; Barrett, W. L.; Bode, C.; Border, P. M.; Brooks, C. B.; Cobb, J. H.; Cockerill, D. J. A.; Cotton, R. J.; Courant, H.; Demuth, D. M.; Fields, T. H.; Gallagher, H. R.; Garcia-Garcia, C.; Goodman, M. C.; Gray, R. N.; Johns, K.; Kafka, T.; Kasahara, S. M. S.; Leeson, W.; Litchfield, P. J.; Longley, N. P.; Lowe, M. J.; Mann, W. A.; Marshak, M. L.; May, E. N.; Milburn, R. H.; Miller, W. H.; Mualem, L.; Napier, A.; Oliver, W.; Pearce, G. F.; Perkins, D. H.; Peterson, E. A.; Petyt, D. A.; Price, L. E.; Roback, D. M.; Ruddick, K.; Schmid, D. J.; Schneps, J.; Schub, M. H.; Seidlein, R. V.; Shupe, M. A.; Stassinakis, A.; Sundaralingam, N.; Thomas, J.; Thron, J. L.; Vassiliev, V.; Villaume, G.; Wakely, S. P.; Wall, D.; Werkema, S. J.; West, N.; Wielgosz, U. M.

    1997-02-01

    The atmospheric neutrino flavour ratio measured using a 1.52 kton-year exposure of Soudan 2 is found to be 0.72 +/- 0.19+0.05-0.07 relative to the expected value from a Monte Carlo calculation. The possible background of interactions of neutrons and photons produced in muon interactions in the rock surrounding the detector has been investigated and is shown not to produce low values of the ratio.

  17. The future of reactor neutrino experiments: A novel approach to measuring theta{sub 13}

    SciTech Connect

    Heeger, Karsten M.; Freedman, Stuart J.; Luk, Kam-Biu

    2003-08-24

    Results from non-accelerator neutrino oscillation experiments have provided evidence for the oscillation of massive neutrinos. The subdominant oscillation, the coupling of the electron neutrino flavor to the third mass eigenstate, has not been measured yet. The size of this coupling U{sub e3} and its corresponding mixing angle theta{sub 13} are critical for CP violation searches in the lepton sector and will define the future of accelerator neutrino physics. The current best limit on U{sub e3} comes from the CHOOZ reactor neutrino disappearance experiment. In this talk we review proposals for future measurements of theta-13 with reactor antineutrinos.

  18. Scattering measurements on natural and model trees

    NASA Technical Reports Server (NTRS)

    Rogers, James C.; Lee, Sung M.

    1990-01-01

    The acoustical back scattering from a simple scale model of a tree has been experimentally measured. The model consisted of a trunk and six limbs, each with 4 branches; no foliage or twigs were included. The data from the anechoic chamber measurements were then mathematically combined to construct the effective back scattering from groups of trees. Also, initial measurements have been conducted out-of-doors on a single tree in an open field in order to characterize its acoustic scattering as a function of azimuth angle. These measurements were performed in the spring, prior to leaf development. The data support a statistical model of forest scattering; the scattered signal spectrum is highly irregular but with a remarkable general resemblance to the incident signal spectrum. Also, the scattered signal's spectra showed little dependence upon scattering angle.

  19. a Search for Neutrino-Electron Elastic Scattering at the LAMPF Beam Stop.

    NASA Astrophysics Data System (ADS)

    Brooks, George Alfred

    Neutrino-electron elastic scattering reactions play an important role in tests of weak interaction theory. The four reactions which may be considered are:. (nu)(,e) + e('-) (--->) (nu)(,e) + e('-). (nu)(,e)(' )+ e('-) (--->) (nu)(,e) + e('-). (nu)(,(mu)) + e('-) (--->) (nu)(,(mu)) + e('-). (nu)(,(mu))(' )+ e('-) (--->) (nu)(,(mu)) + e(' -). The experimental study of these purely leptonic interactions severely tests basic theoretical ideas, and the reaction with (nu)(,e) has not yet been observed. The characteristics of Los Alamos Meson Physics Facility. (LAMPF) are such that (nu)(,e) is rarely produced, whereas (nu)(,e),(nu)(,(mu)), and(' ). (nu)(,(mu)) are present in equal numbers. Thus, data on all three processes(' ). will be collected simultaneously, but the (nu)(,e) reaction is expected to dominate. However, such studies are exceedingly difficult. The main problem arises from the nature of the event signature (an undetected particle enters the detector producing a single recoil electron) coupled with the miniscule cross sections expected (and therefore low event rates) amid numerous sources of background events. To learn how to reduce the rates of such backgrounds, the UCI Neutrino Group installed in the Neutrino Facility in 1974 a small scale detector system consisting of a sandwich of optical spark chambers and plastic scintillator slabs (0.38 metric tons) which was shielded by 2 1/2" of Pb and enclosed by tanks of liquid scintillator used as an anticoincidence. Electronics and instrumentation, including a CAMAC system interfaced with a PDP-11/05 computer, were housed in a nearby trailer. The 1974 study was carried out with the LAMPF Neutrino Facility shielded against cosmic rays by Fe walls 3' thick and a 4' Fe roof. Nevertheless, stopping cosmic ray muons appeared to give rise to the substantial number of background electron events observed. Several techniques were invoked to reduce the potential background for neutrino -electron elastic scattering to (1

  20. Inclusive neutrino scattering off the deuteron at low energies in chiral effective field theory

    DOE PAGES

    Baroni, A.; Schiavilla, R.

    2017-07-19

    Cross sections for inclusive neutrino scattering off deuteron induced by neutral and charge-changing weak currents are calculated from threshold up to 150 MeV energies in a chiral effective field theory including high orders in the power counting. The contributions beyond leading order (LO) in the weak current are found to be small, and increase the cross sections obtained with the LO transition operators by a couple of percent over the whole energy range (0--150) MeV. Furthermore, the cutoff dependence is negligible, and the predicted cross sections are within ~2% of, albeit consistently larger than, corresponding predictions obtained in conventional meson-exchangemore » frameworks.« less

  1. Data integrity and electronic calibrations for the Neutral Current Detector phase measurement of the 8B solar neutrino flux at the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Cox-Mobrand, Gary A.

    The Sudbury Neutrino Observatory (SNO) is a heavy water Cherenkov detector that observed solar neutrinos via elastic-scattering, charge-current and neutral-current interactions. SNO was designed to measure the flux the total 8B solar neutrino flux in three separate phases, making each measurement under a different set of detector conditions and detection mechanisms. In the third phase, an array of 3He proportional counters was installed, called Neutral Current Detectors (NCDs), which detected neutrons liberated in the neutral-current interactions with deuterium. The neutrino flux can be measured in the NCD phase by identification of neutron capture events via pulse-shape analysis techniques. To accomplish this, the transformation of the neutron capture signals caused by the NCD electronics and data acquisition system (NCD DAQ) must be well known. The NCD DAQ electronics model was developed and quantified, resulting in a small contribution to the systematic uncertainties of neutron identification. Of the four currently proposed neutron identification methods, the parameters which characterize the logarithmic amplification of pulse shapes contribute 1.65%, 0.65%, 0.05% and 0.0% to the systematic uncertainty in the number of identified neutrons. A mechanical problem in two NCDs was discovered that caused the detectors to disconnect from the signal cable with little evidence of being disconnected. The work presented here identified two NCDs that suffered from this mechanical problem and estimated the amount of time that each NCD was disconnected. The remaining NCDs are shown to be unaffected by this problem and an upper limit on the amount of time disconnected was estimated. This was accomplished by an analysis of the rate of thermal noise triggers, an instrumental background noise event. The detected rates of background alphas were also measured to test for anomalously low rates. It was determined that these two NCDs should be removed from the final neutrino flux

  2. Preliminary results from the Russian-American gallium experiment Cr-neutrino source measurement

    SciTech Connect

    Elliott, S.R.; Abdurashitov, J.N.; Bowles, T.J.

    1995-12-31

    The Russian-American Gallium Experiment has been collecting solar neutrino data since early 1990. The flux measurement of solar neutrinos is well below that expected from solar models. We discuss the initial results of a measurement of experimental efficiencies by exposing the gallium target to neutrinos from an artificial source. The capture rate of neutrinos from this source is very close to that which is expected. The result can be expressed as a ratio of the measured capture rate to the anticipated rate from the source activity. This ratio is 0.93 + 0.15, {minus}0.17 where the systematic and statistical errors have been combined. To first order the experimental efficiencies are in agreement with those determined during solar neutrino measurements and in previous auxiliary measurements. One must conclude that the discrepancy between the measured solar neutrino flux and that predicted by the solar models can not arise from an experimental artifact. 17 refs., 3 figs., 1 tab.

  3. The ν -cleus experiment: a gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Strauss, R.; Rothe, J.; Angloher, G.; Bento, A.; Gütlein, A.; Hauff, D.; Kluck, H.; Mancuso, M.; Oberauer, L.; Petricca, F.; Pröbst, F.; Schieck, J.; Schönert, S.; Seidel, W.; Stodolsky, L.

    2017-08-01

    We discuss a small-scale experiment, called ν -cleus, for the first detection of coherent neutrino-nucleus scattering by probing nuclear-recoil energies down to the 10 eV regime. The detector consists of low-threshold CaWO_4 and Al_2O_3 calorimeter arrays with a total mass of about 10 g and several cryogenic veto detectors operated at millikelvin temperatures. Realizing a fiducial volume and a multi-element target, the detector enables active discrimination of γ , neutron and surface backgrounds. A first prototype Al_2O_3 device, operated above ground in a setup without shielding, has achieved an energy threshold of {˜ }20 eV and further improvements are in reach. A sensitivity study for the detection of coherent neutrino scattering at nuclear power plants shows a unique discovery potential (5σ ) within a measuring time of {≲ }2 weeks. Furthermore, a site at a thermal research reactor and the use of a radioactive neutrino source are investigated. With this technology, real-time monitoring of nuclear power plants is feasible.

  4. Going low: measurement of Solar pp-neutrino flux with liquid scintillator detector

    NASA Astrophysics Data System (ADS)

    Smirnov, O. Yu; Borexino collaboration

    2017-09-01

    Recently Borexino collaboration announced the first direct measurement of the low-energy neutrino flux from the pp-reaction in the Sun. Together with previous measurements of solar neutrino fluxes from 7Be, 8B and pep reactions the measurement completes the study of the neutrino fluxes from the pp-chain of solar reactions. Technical details of the analysis are presented, and results and implications are discussed.

  5. Determining neutrino mass hierarchy by precise measurements of two delta m**2 in electron-neutrino and muon-neutrino disappearance experiments

    SciTech Connect

    Minakata, H.; Nunokawa, H.; Parke, Stephen J.; Zukanovich Funchal, R.; /Sao Paulo U.

    2006-09-01

    In this talk, the authors discuss the possibility of determining the neutrino mass hierarchy by comparing the two effective atmospheric neutrino mass squared differences measured, respectively, in electron, and in muon neutrino disappearance oscillation experiments. if the former, is larger (smaller) than the latter, the mass hierarchy is of normal (inverted) type. They consider two very high precision (a few per mil) measurements of such mass squared differences by the phase II of the T2K (Tokai-to-Kamioka) experiment and by the novel Moessbauer enhanced resonant {bar {nu}}{sub e} absorption technique. Under optimistic assumptions for the systematic errors of both measurements, they determine the region of sensitivities where the mass hierarchy can be distinguished. Due to the tight space limitation, they present only the general idea and show a few most important plots.

  6. Precision Measurement of Neutrino Oscillation Parameters with KamLAND

    SciTech Connect

    O'Donnell, Thomas

    2011-12-01

    This dissertation describes a measurement of the neutrino oscillation parameters m2 21, θ12 and constraints on θ13 based on a study of reactor antineutrinos at a baseline of ~ 180 km with the KamLAND detector. The data presented here was collected between April 2002 and November 2009, and amounts to a total exposure of 2.64 ± 0.07 × 1032 proton-years. For this exposure we expect 2140 ± 74(syst) antineutrino candidates from reactors, assuming standard model neutrino behavior, and 350±88(syst) candidates from background. The number observed is 1614. The ratio of background-subtracted candidates observed to expected is (NObs - NBkg)/ (NExp) = 0.59 ± 0.02(stat) ± 0.045(syst) which confirms reactor neutrino disappearance at greater than 5σ significance. Interpreting this deficit as being due to neutrino oscillation, the best-fit oscillation parameters from a three-flavor analysis are m2 21= 7.60+0.20 -0.19×10-5eV2, θ12 = 32.5 ± 2.9 degrees and sin2 θ13 = 0.025+0.035 -0.035, the 95% confidence-level upper limit on sin2 θ13 is sin2 θ13 < 0.083. Assuming CPT invariance, a combined analysis of KamLAND and solar neutrino data yields best-fit values: m2 21 = 7.60+0.20 -0.20 × 10-5eV2, θ12 = 33.5+1.0 -1.1 degrees, and sin2 θ13 = 0.013 ± 0.028 or sin2 θ13 < 0.06 at the 95% confidence level.

  7. MINERvA: A Dedicated neutrino scattering experiment at NuMI

    SciTech Connect

    McFarland, Kevin S.; /Rochester U.

    2006-05-01

    MINERvA is a dedicated neutrino cross-section experiment planned for the near detector hall of the NuMI neutrino beam at Fermilab. I summarize the detector design and physics capabilities of the experiment.

  8. Measurement of the nue and Total 8B Solar Neutrino Fluxes with theSudbury Neutrino Observatory Phase I Data Set

    SciTech Connect

    Aharmim, B.; Ahmad, Q.R.; Ahmed, S.N.; Allen, R.C.; Andersen,T.C.; Anglin, J.D.; Buehler, G.; Barton, J.C.; Beier, E.W.; Bercovitch,M.; Bergevin, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler, M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Burritt, T.H.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Deng, H.; DiMarco, M.; Doe, P.J.; Doucas, G.; Dragowsky, M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon,N.; Germani, J.V.; Gil, S.; Goldschmidt, A.; Goon, J.T.M.; Graham, K.; Grant, D.R.; Guillian, E.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Henning, R.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime,A.; Howard, C.; Howe, M.A.; Huang, M.; Hykawy, J.G.; Isaac, M.C.P.; Jagam, P.; Jamieson, B.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Kirch, K.; Klein, J.R.; Knox, A.B.; Komar,R.J.; Kormos, L.L.; Kos, M.; Kouzes, R.; Krueger, A.; Kraus, C.; Krauss,C.B.; Kutter, T.; Kyba, C.C.M.; Labranche, H.; Lange, R.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Locke, W.; Luoma, S.; Lyon, J.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald,A.B.; McDonald, D.S.; McFarlane, K.; McGee, S.; McGregor, G.; MeijerDrees, R.; Mes, H.; Mifflin, C.; Miknaitis, K.K.S.; Miller, M.L.; Milton,G.; Moffat, B.A.; Monreal, B.; Moorhead, M.; Morrissette, B.; Nally,C.W.; Neubauer, M.S.; et al.

    2007-02-01

    This article provides the complete description of resultsfrom the Phase I data set of the Sudbury Neutrino Observatory (SNO). ThePhase I data set is based on a 0.65 kt-year exposure of heavy water tothe solar 8B neutrino flux. Included here are details of the SNO physicsand detector model, evaluations of systematic uncertainties, andestimates of backgrounds. Also discussed are SNO's approach tostatistical extraction of the signals from the three neutrino reactions(charged current, neutral current, and elastic scattering) and theresults of a search for a day-night asymmetry in the ?e flux. Under theassumption that the 8B spectrum is undistorted, the measurements fromthis phase yield a solar ?e flux of ?(?e) =1.76+0.05?0.05(stat.)+0.09?0.09 (syst.) x 106 cm?2 s?1, and a non-?ecomponent ?(? mu) = 3.41+0.45?0.45(stat.)+0.48?0.45 (syst.) x 106 cm?2s?1. The sum of these components provides a total flux in excellentagreement with the predictions of Standard Solar Models. The day-nightasymmetry in the ?e flux is found to be Ae = 7.0 +- 4.9 (stat.)+1.3?1.2percent (sys.), when the asymmetry in the total flux is constrained to bezero.

  9. An autonomous underwater telescope for measuring the scattering of light in the deep sea

    NASA Astrophysics Data System (ADS)

    Balasi, K. G.; Domvoglou, T.; Kiskiras, I.; Lenis, D.; Maniatis, M.; Maragos, N.; Stavropoulos, G.

    2016-05-01

    The KM3NeT research infrastructure will be a deep sea multidisciplinary observatory in the Mediterranean Sea housing a neutrino telescope. Accurate knowledge of the optical properties of the sea water is important for the performance evaluation of the telescope. In this work we describe the deployment of the equipment that we had previously examined by Monte Carlo (MC) simulationsl, in the context of the scattering experiment in order to evaluate the parameters describing the scattering characteristics of the sea water. Four photomultipliers (PMTs) were used to measure in situ the scattered light emitted by six laser diodes in three different wavelengths covering the Cherenkov radiation spectrum.

  10. Supernova neutrinos

    SciTech Connect

    John Beacom

    2003-01-23

    We propose that neutrino-proton elastic scattering, {nu} + p {yields} {nu} + p, can be used for the detection of supernova neutrinos. Though the proton recoil kinetic energy spectrum is soft, with T{sub p} {approx_equal} 2E{sub {nu}}{sup 2}/M{sub p}, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from {bar {nu}}{sub e} + p {yields} e{sup +} + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy release and temperature of {nu}{sub {mu}}, {nu}{sub {tau}}, {bar {nu}}{sub {mu}}, and {bar {nu}}{sub {tau}}. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.

  11. Emission of neutron-proton and proton-proton pairs in neutrino scattering

    NASA Astrophysics Data System (ADS)

    Ruiz Simo, I.; Amaro, J. E.; Barbaro, M. B.; De Pace, A.; Caballero, J. A.; Megias, G. D.; Donnelly, T. W.

    2016-11-01

    We use a recently developed model of relativistic meson-exchange currents to compute the neutron-proton and proton-proton yields in (νμ ,μ-) scattering from 12C in the 2p-2h channel. We compute the response functions and cross sections with the relativistic Fermi gas model for different kinematics from intermediate to high momentum transfers. We find a large contribution of neutron-proton configurations in the initial state, as compared to proton-proton pairs. In the case of charge-changing neutrino scattering the 2p-2h cross section of proton-proton emission (i.e., np in the initial state) is much larger than for neutron-proton emission (i.e., two neutrons in the initial state) by a (ω , q)-dependent factor. The different emission probabilities of distinct species of nucleon pairs are produced in our model only by meson-exchange currents, mainly by the Δ isobar current. We also analyze other effects including exchange contributions and the effect of the axial and vector currents.

  12. Impact of low-energy nuclear excitations on neutrino-nucleus scattering at MiniBooNE and T2K kinematics

    NASA Astrophysics Data System (ADS)

    Pandey, V.; Jachowicz, N.; Martini, M.; González-Jiménez, R.; Ryckebusch, J.; Van Cuyck, T.; Van Dessel, N.

    2016-11-01

    Background: Meticulous modeling of neutrino-nucleus interactions is essential to achieve the unprecedented precision goals of present and future accelerator-based neutrino-oscillation experiments. Purpose: Confront our calculations of charged-current quasielastic cross sections with the measurements of MiniBooNE and T2K, and to quantitatively investigate the role of nuclear-structure effects, in particular, low-energy nuclear excitations in forward muon scattering. Method: The model takes the mean-field approach as the starting point, and solves Hartree-Fock (HF) equations using a Skyrme (SkE2) nucleon-nucleon interaction. Long-range nuclear correlations are taken into account by means of the continuum random-phase approximation (CRPA) framework. Results: We present our calculations on flux-folded double differential, and flux-unfolded total cross sections off 12C and compare them with MiniBooNE and (off-axis) T2K measurements. We discuss the importance of low-energy nuclear excitations for the forward bins. Conclusions: The HF and CRPA predictions describe the gross features of the measured cross sections. They underpredict the data (more in the neutrino than in the antineutrino case) because of the absence of processes beyond pure quasielastic scattering in our model. At very forward muon scattering, low-energy HF-CRPA nuclear excitations (ω <50 MeV) account for nearly 50% of the flux-folded cross section. This extra low-energy strength is a feature of the detailed microscopic nuclear model used here, that is not accessed in a Fermi-gas based approach.

  13. Precision measurement of the speed of propagation of neutrinos using the MINOS detectors

    DOE PAGES

    Adamson, P.

    2015-09-17

    We report a two-detector measurement of the propagation speed of neutrinos over a baseline of 734 km. The measurement was made with the NuMI beam at Fermilab between the near and far MINOS detectors. Furthermore, the fractional difference between the neutrino speed and the speed of light is determined to be (v/c-1)=(1.0±1.1)×10-6, consistent with relativistic neutrinos.

  14. Precision measurement of the speed of propagation of neutrinos using the MINOS detectors

    NASA Astrophysics Data System (ADS)

    Adamson, P.; Anghel, I.; Ashby, N.; Aurisano, A.; Barr, G.; Bishai, M.; Blake, A.; Bock, G. J.; Bogert, D.; Bumgarner, R.; Cao, S. V.; Castromonte, C. M.; Childress, S.; Coelho, J. A. B.; Corwin, L.; Cronin-Hennessy, D.; de Jong, J. K.; Devan, A. V.; Devenish, N. E.; Diwan, M. V.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Fonville, B.; Frohne, M. V.; Gallagher, H. R.; Gomes, R. A.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grzelak, K.; Habig, A.; Hahn, S. R.; Hartnell, J.; Hatcher, R.; Hirschauer, J.; Holin, A.; Huang, J.; Hylen, J.; Irwin, G. M.; Isvan, Z.; James, C.; Jefferts, S. R.; Jensen, D.; Kafka, T.; Kasahara, S. M. S.; Koizumi, G.; Kordosky, M.; Kreymer, A.; Lang, K.; Ling, J.; Litchfield, P. J.; Lucas, P.; Mann, W. A.; Marshak, M. L.; Matsakis, D.; Mayer, N.; McKinley, A.; McGivern, C.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Miller, W. H.; Mishra, S. R.; Mitchell, S.; Moed Sher, S.; Moore, C. D.; Mualem, L.; Musser, J.; Naples, D.; Nelson, J. K.; Newman, H. B.; Nichol, R. J.; Nowak, J. A.; O'Connor, J.; Orchanian, M.; Pahlka, R. B.; Paley, J.; Parker, T. E.; Patterson, R. B.; Pawloski, G.; Perch, A.; Phan-Budd, S.; Plunkett, R. K.; Poonthottathil, N.; Powers, E.; Qiu, X.; Radovic, A.; Rebel, B.; Ridl, K.; Römisch, S.; Rosenfeld, C.; Rubin, H. A.; Sanchez, M. C.; Schneps, J.; Schreckenberger, A.; Schreiner, P.; Sharma, R.; Sousa, A.; Tagg, N.; Talaga, R. L.; Thomas, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Tognini, S. C.; Toner, R.; Torretta, D.; Urheim, J.; Vahle, P.; Viren, B.; Weber, A.; Webb, R. C.; White, C.; Whitehead, L.; Whitehead, L. H.; Wojcicki, S. G.; Wright, J.; Zhang, V.; Zwaska, R.; Minos Collaboration, Nist,; Usno

    2015-09-01

    We report a two-detector measurement of the propagation speed of neutrinos over a baseline of 734 km. The measurement was made with the NuMI beam at Fermilab between the near and far MINOS detectors. The fractional difference between the neutrino speed and the speed of light is determined to be (v /c -1 )=(1.0 ±1.1 )×10-6 , consistent with relativistic neutrinos.

  15. Precision measurement of the speed of propagation of neutrinos using the MINOS detectors

    SciTech Connect

    Adamson, P.

    2015-09-17

    We report a two-detector measurement of the propagation speed of neutrinos over a baseline of 734 km. The measurement was made with the NuMI beam at Fermilab between the near and far MINOS detectors. Furthermore, the fractional difference between the neutrino speed and the speed of light is determined to be (v/c-1)=(1.0±1.1)×10-6, consistent with relativistic neutrinos.

  16. Potential of geo-neutrino measurements at JUNO

    NASA Astrophysics Data System (ADS)

    Han, Ran; Li, Yu-Feng; Zhan, Liang; McDonough, William, F.; Cao, Jun; Ludhova, Livia

    2016-03-01

    The flux of geoneutrinos at any point on the Earth is a function of the abundance and distribution of radioactive elements within our planet. This flux has been successfully detected by the 1-kt KamLAND and 0.3-kt Borexino detectors, with these measurements being limited by their low statistics. The planned 20-kt JUNO detector will provide an exciting opportunity to obtain a high statistics measurement, which will provide data to address several questions of geological importance. This paper presents the JUNO detector design concept, the expected geo-neutrino signal and corresponding backgrounds. The precision level of geo-neutrino measurements at JUNO is obtained with the standard least-squares method. The potential of the Th/U ratio and mantle measurements is also discussed. Supported in part by National Natural Science Foundation of China (11405056, 11305193, 11205176, 21504063), National Science Foundation of U.S. (EAR 1067983/1068097), Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDA10010100 and CAS Center for Excellence in Particle Physics (CCEPP)

  17. Measurement of the antineutrino to neutrino charged-current interaction cross section ratio in MINERvA

    DOE PAGES

    Ren, L.; Aliaga, L.; Altinok, O.; ...

    2017-04-14

    Here, we present measurements of the neutrino and antineutrino total charged-current cross sections on carbon and their ratio using the MINERvA scintillator-tracker. The measurements span the energy range 2-22 GeV and were performed using forward and reversed horn focusing modes of the Fermilab low-energy NuMI beam to obtain large neutrino and antineutrino samples. The flux is obtained using a sub-sample of charged-current events at low hadronic energy transfer along with precise higher energy external neutrino cross section data overlapping with our energy range between 12-22 GeV. We also report on the antineutrino-neutrino cross section ratio, Rcc, which does not rely on external normalization information. Our ratio measurement, obtained within the same experiment using the same technique, benefits from the cancellation of common sample systematic uncertainties and reaches a precision of 5% at low energy. Our results for the antineutrino-nucleus scattering cross section and for Rcc are the most precise to date in the energy rangemore » $$E_{\

  18. Measurement of the antineutrino to neutrino charged-current interaction cross section ratio in MINERvA

    NASA Astrophysics Data System (ADS)

    Ren, L.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Endress, E.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Han, J. Y.; Harris, D. A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman, Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Ramírez, M. A.; Ransome, R. D.; Ray, H.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Sultana, M.; Sánchez Falero, S.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Yaeggy, B.; MinerνA Collaboration

    2017-04-01

    We present measurements of the neutrino and antineutrino total charged-current cross sections on carbon and their ratio using the MINERvA scintillator-tracker. The measurements span the energy range 2-22 GeV and were performed using forward and reversed horn focusing modes of the Fermilab low-energy NuMI beam to obtain large neutrino and antineutrino samples. The flux is obtained using a subsample of charged-current events at low hadronic energy transfer along with precise higher energy external neutrino cross section data overlapping with our energy range between 12-22 GeV. We also report on the antineutrino-neutrino cross section ratio, RCC , which does not rely on external normalization information. Our ratio measurement, obtained within the same experiment using the same technique, benefits from the cancellation of common sample systematic uncertainties and reaches a precision of ˜5 % at low energy. Our results for the antineutrino-nucleus scattering cross section and for RCC are the most precise to date in the energy range Eν<6 GeV .

  19. Measurement of the total active 8B solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity.

    PubMed

    Ahmed, S N; Anthony, A E; Beier, E W; Bellerive, A; Biller, S D; Boger, J; Boulay, M G; Bowler, M G; Bowles, T J; Brice, S J; Bullard, T V; Chan, Y D; Chen, M; Chen, X; Cleveland, B T; Cox, G A; Dai, X; Dalnoki-Veress, F; Doe, P J; Dosanjh, R S; Doucas, G; Dragowsky, M R; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Formaggio, J A; Fowler, M M; Frame, K; Fulsom, B G; Gagnon, N; Graham, K; Grant, D R; Hahn, R L; Hall, J C; Hallin, A L; Hallman, E D; Hamer, A S; Handler, W B; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Hemingway, R J; Hime, A; Howe, M A; Jagam, P; Jelley, N A; Klein, J R; Kos, M S; Krumins, A V; Kutter, T; Kyba, C C M; Labranche, H; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Levine, I; Luoma, S; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Marino, A D; McCauley, N; McDonald, A B; McGee, S; McGregor, G; Mifflin, C; Miknaitis, K K S; Miller, G G; Moffat, B A; Nally, C W; Nickel, B G; Noble, A J; Norman, E B; Oblath, N S; Okada, C E; Ollerhead, R W; Orrell, J L; Oser, S M; Ouellet, C; Peeters, S J M; Poon, A W P; Robertson, B C; Robertson, R G H; Rollin, E; Rosendahl, S S E; Rusu, V L; Schwendener, M H; Simard, O; Simpson, J J; Sims, C J; Sinclair, D; Skensved, P; Smith, M W E; Starinsky, N; Stokstad, R G; Stonehill, L C; Tafirout, R; Takeuchi, Y; Tesić, G; Thomson, M; Thorman, M; Van Berg, R; Van de Water, R G; Virtue, C J; Wall, B L; Waller, D; Waltham, C E; Tseung, H Wan Chan; Wark, D L; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wouters, J M; Yeh, M; Zuber, K

    2004-05-07

    The Sudbury Neutrino Observatory has precisely determined the total active (nu(x)) 8B solar neutrino flux without assumptions about the energy dependence of the nu(e) survival probability. The measurements were made with dissolved NaCl in heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.21 +/- 0.27(stat)+/-0.38(syst) x 10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of these and other solar and reactor neutrino results yields Deltam(2)=7.1(+1.2)(-0.6) x 10(-5) eV(2) and theta=32.5(+2.4)(-2.3) degrees. Maximal mixing is rejected at the equivalent of 5.4 standard deviations.

  20. Measurement of the Neutrino Neutral-Current Elastic Differential Cross Section

    SciTech Connect

    Aguilar-Arevalo, A.A.; Anderson, C.E.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; Curioni, A.; /Yale U. /Argonne

    2010-07-01

    We report a measurement of the flux-averaged neutral-current elastic differential cross section for neutrinos scattering on mineral oil (CH{sub 2}) as a function of four-momentum transferred squared, Q{sup 2}. It is obtained by measuring the kinematics of recoiling nucleons with kinetic energy greater than 50 MeV which are readily detected in MiniBooNE. This differential cross-section distribution is fit with fixed nucleon form factors apart from an axial mass, M{sub A}, that provides a best fit for M{sub A} = 1.39 {+-} 0.11 GeV. Using the data from the charged-current neutrino interaction sample, a ratio of neutral-current to charged-current quasi-elastic cross sections as a function of Q{sup 2} has been measured. Additionally, single protons with kinetic energies above 350 MeV can be distinguished from neutrons and multiple nucleon events. Using this marker, the strange quark contribution to the neutral-current axial vector form factor at Q{sup 2} = 0, {Delta}s, is found to be {Delta}s = 0.08{+-} 0.26.

  1. Analog measurement of scattered optical fluctuations

    NASA Astrophysics Data System (ADS)

    Smith, P. R.; Green, D. A.

    1995-12-01

    A statistical model that describes the analog measurement of a fluctuating light intensity that arises from a non-Gaussian scattering process is developed. The higher-order statistical moments are derived for a p-i-n diode receiver model and gamma-distributed intensity fluctuations. Criteria for the accurate measurement of the scattering fluctuations are found, and these are used to analyze data derived from an on-line scatterometer system. Implications for future on-line measurement technology are discussed.

  2. Precise measurement of the neutrino mixing parameter θ23 from muon neutrino disappearance in an off-axis beam.

    PubMed

    Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S W; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, A J; Floetotto, L; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Ives, S J; Iwai, E; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Lamont, I; Laveder, M; Lawe, M; Lazos, M; Lee, K P; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Mathie, E L; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Naples, D; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Owen, R A; Oyama, Y; Palladino, V; Palomino, J; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2014-05-09

    New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter θ23. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57×10(20) protons on target, T2K has fit the energy-dependent νμ oscillation probability to determine oscillation parameters. The 68% confidence limit on sin(2)(θ23) is 0.514(-0.056)(+0.055) (0.511±0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Δm32(2)=(2.51±0.10)×10(-3)  eV(2)/c(4) (inverted hierarchy: Δm13(2)=(2.48±0.10)×10(-3)  eV(2)/c(4)). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.

  3. Precise Measurement of the Neutrino Mixing Parameter θ23 from Muon Neutrino Disappearance in an Off-Axis Beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Floetotto, L.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iwai, E.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-05-01

    New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter θ23. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57×1020 protons on target, T2K has fit the energy-dependent νμ oscillation probability to determine oscillation parameters. The 68% confidence limit on sin2(θ23) is 0.514-0.056+0.055 (0.511±0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Δm322=(2.51±0.10)×10-3 eV2/c4 (inverted hierarchy: Δm132=(2.48±0.10)×10-3 eV2/c4). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.

  4. Flux Measurement at a Neutrino Factory Near Detector for Neutrino Oscillations

    SciTech Connect

    Laing, A.; Soler, F. J. P.

    2008-02-21

    It is well established that a Near Detector positioned within 1 km of the muon decay pipe at a Neutrino Factory is essential for a true determination of the neutrino flux, necessary for the neutrino oscillation signal. Here we present a method for the the extraction of the oscillation probability parameters using the Near Detector, in combination with a long baseline Far Detector and demonstrate that by using this method, the sensitivity to oscillation parameters is maintained down values of {theta}{sub 13} one order of magnitude lower than the current world limit.

  5. Improvement in Rayleigh Scattering Measurement Accuracy

    NASA Technical Reports Server (NTRS)

    Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.

    2012-01-01

    Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous velocity, density, and temperature measurements. The Fabry-Perot interferometer or etalon is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating these flow properties. This paper investigates the use of an acousto-optic frequency shifting device to improve measurement accuracy in Rayleigh scattering experiments at the NASA Glenn Research Center. The frequency shifting device is used as a means of shifting the incident or reference laser frequency by 1100 MHz to avoid overlap of the Rayleigh and reference signal peaks in the interference pattern used to obtain the velocity, density, and temperature measurements, and also to calibrate the free spectral range of the Fabry-Perot etalon. The measurement accuracy improvement is evaluated by comparison of Rayleigh scattering measurements acquired with and without shifting of the reference signal frequency in a 10 mm diameter subsonic nozzle flow.

  6. Measurement of the solar B8 neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector

    NASA Astrophysics Data System (ADS)

    Bellini, G.; Benziger, J.; Bonetti, S.; Buizza Avanzini, M.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Carraro, C.; Chavarria, A.; Chepurnov, A.; Dalnoki-Veress, F.; D'Angelo, D.; Davini, S.; de Kerret, H.; Derbin, A.; Etenko, A.; Fomenko, K.; Franco, D.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Guardincerri, E.; Hardy, S.; Ianni, Aldo; Ianni, Andrea; Joyce, M.; Korga, G.; Kryn, D.; Laubenstein, M.; Leung, M.; Lewke, T.; Litvinovich, E.; Loer, B.; Lombardi, P.; Ludhova, L.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Meindl, Q.; Meroni, E.; Miramonti, L.; Misiaszek, M.; Montanari, D.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Perasso, S.; Pocar, A.; Raghavan, R. S.; Ranucci, G.; Razeto, A.; Re, A.; Risso, P.; Romani, A.; Rountree, D.; Sabelnikov, A.; Saldanha, R.; Salvo, C.; Schönert, S.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Vignaud, D.; Vogelaar, R. B.; von Feilitzsch, F.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Xu, J.; Zaimidoroga, O.; Zavatarelli, S.; Zuzel, G.; Borexino Collaboration

    2010-08-01

    We report the measurement of ν-e elastic scattering from B8 solar neutrinos with 3 MeV energy threshold by the Borexino detector in Gran Sasso (Italy). The rate of solar neutrino-induced electron scattering events above this energy in Borexino is 0.22±0.04(stat)±0.01(syst)cpd/100t, which corresponds to ΦB8ES=2.4±0.4±0.1×106cm-2s-1, in good agreement with measurements from SNO and SuperKamiokaNDE. Assuming the B8 neutrino flux predicted by the high metallicity standard solar model, the average B8 νe survival probability above 3 MeV is measured to be 0.29±0.10. The survival probabilities for Be7 and B8 neutrinos as measured by Borexino differ by 1.9σ. These results are consistent with the prediction of the MSW-LMA solution of a transition in the solar νe survival probability Pee between the low-energy vacuum-driven and the high-energy matter-enhanced solar neutrino oscillation regimes.

  7. Comparison of anti-neutrino reactor spectrum models with the Bugey 3 measurements

    NASA Astrophysics Data System (ADS)

    Achkar, B.; Aleksan, R.; Avenier, M.; Bagieu, G.; Bouchez, J.; Brissot, R.; Cavaignac, J. F.; Collot, J.; Cousinou, M.-C.; Cussonneau, J. P.; Declais, Y.; Dufour, Y.; Favier, J.; Garciaz, F.; Kajfasz, E.; de Kerret, H.; Koang, D. H.; Lefièvre, B.; Lesquoy, E.; Mallet, J.; Metref, A.; Nagy, E.; Obolensky, M.; Pessard, H.; Pierre, F.; Stutz, A.; Wuthrick, J. P.

    1996-02-01

    The Bugey 3 neutrino oscillation experiment has provided high statistics neutrino energy spectra recorded at 15 and 40 meters from a nuclear reactor core. Assuming no oscillations, the measured spectra favor a model of reactor spectrum based on the beta spectra measured at ILL.

  8. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    SciTech Connect

    Asner, David M.; Burns, Kimberly A.; Campbell, Luke W.; Greenfield, Bryce A.; Kos, Marek S.; Orrell, John L.; Schram, Malachi; VanDevender, Brent A.; Wood, Lynn S.; Wootan, David W.

    2015-03-01

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  9. On the measurement of the neutrino magnetic moment

    NASA Astrophysics Data System (ADS)

    Beda, A. G.; Demidova, E. V.; Starostin, A. S.; Gavrilov, M. G.; Brudanin, V. B.; Egorov, V. G.

    2002-07-01

    The present status of searches for the neutrino magnetic moment (NMM) down to 3×10 -11 μ B is briefly discussed. The low background Ge-NaI spectrometer GEMMA constructed in ITEP for NMM measurement is described and the results of the test background measurements at a small depth of 5 m.w.e in ITEP are reported. The analysis of these results shows that the limit on NMM at the level (2 ÷ 3)·10 -11 μ B can be achieved during 2 year duration of measurements with spectrometer GEMMA at Kalininskaya Nuclear Power Plant (KNPP). The prospects of breakthrough to the limit on NMM about 10 -12 μ B are outlined.

  10. First measurement of pp neutrinos in real time in the Borexino detector

    NASA Astrophysics Data System (ADS)

    Mosteiro, Pablo

    2014-09-01

    The Sun is fueled by a series of nuclear reactions that produce the energy that makes it shine. Neutrinos (nu) produced by these nuclear reactions exit the Sun and reach Earth within minutes, providing us with key information about what goes on at the core of our star. For over twenty years since the first detection of solar neutrinos in the late 1960's, an apparent deficit in their detection rate was known as the Solar Neutrino Problem. Today, the Mikheyev-Smirnov-Wolfenstein (MSW) effect is the accepted mechanism by which neutrinos oscillate inside the Sun, arriving at Earth as a mixture of nue, numu and nutau, the latter two of which were invisible to early detectors. Several experiments have now confirmed the observation of neutrino oscillations. These experiments, when their results are combined together, have demonstrated that neutrino oscillations are well described by the Large Mixing Angle (LMA) solution of the MSW effect. This thesis presents the first measurement of pp neutrinos in the Borexino detector, which is another validation of the LMA-MSW model of neutrino oscillations. In addition, it is one more step towards the completion of the spectroscopy of pp chain neutrinos in Borexino, leaving only the extremely faint hep neutrinos undetected. This advance validates the experiment itself and its previous results. This is, furthermore, the first direct real-time measurement of pp neutrinos. We find a pp neutrino detection rate of 143+/-16 (stat)+/-10 (syst) cpd/100 t in the Borexino experiment, which translates, according to the LMA-MSW model, to (6.42+/-0.85)x1010 cm -2 s-1. We also report on a measurement of neutrons in a dedicated system within the Borexino detector, which resulted in an improved understanding of neutron rates in liquid scintillator detectors at Gran Sasso depths. This result is crucial to the development of novel direct dark matter detection experiments.

  11. Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD.

    PubMed

    Berger, Edmond L; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing

    2016-05-27

    We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon.

  12. First Measurement of $\

    SciTech Connect

    Palomino Gallo, Jose Luis

    2012-12-01

    Understanding of the $\\pi^0$ production via anti-neutrino-nucleus charged current interaction in the neutrino energy region of 1-10 GeV is essential for neutrino oscillation experiments. In this thesis, we present a measurement of charged current $\\pi^0$ production from anti-muon neutrinos scattering on a polystyrene scintillator (CH) target in the MINER$\

  13. The Measurement of the Number of Light Neutrino Species at LEP

    NASA Astrophysics Data System (ADS)

    Mele, Salvatore

    2015-07-01

    Within weeks of the start of the data taking at the LEP accelerator, the ALEPH, DELPHI, L3 and OPAL experiments were able to confirm the existence of just three light neutrino species. This measurement relies on the Standard Model relation between the `invisible' width of the Z-boson and the cross-sections for Z-boson production and subsequent decay into hadrons. The full data sample collected by the experiments at and around the Z-boson resonance allows a high-precision measurement of the number of light neutrino species as 2.9840 ± 0.0082. The uncertainty is mostly due to the understanding of the low-angle Bhabha scattering process used to determine the experimental luminosity. This result is independently confirmed by the elegant direct observation of the e^-e^+ to ν bar{ν}γ process, through the detection of an initial-state-radiation photon in otherwise empty detectors. This result confirms expectations from the existence of three charged leptons species, and contributes to the fields of astrophysics and cosmology. Alongside other LEP achievements, the precision of this result is a testament to the global cooperation underpinning CERN's fourth decade. LEP saw the onset of large-scale collaboration across experiments totaling over 2000 scientists, together with a strong partnership within the wider high-energy physics community: from accelerator operations to the understanding of theoretical processes.

  14. Introduction to direct neutrino mass measurements and KATRIN

    NASA Astrophysics Data System (ADS)

    Thümmler, T.; Katrin Collaboration

    2012-08-01

    The properties of neutrinos and especially their rest mass play an important role at the intersections of cosmology, particle physics and astroparticle physics. At present there are two complementary approaches to address this topic in laboratory experiments. The search for neutrinoless double beta decay probes whether neutrinos are Majorana particles and determines an effective neutrino mass value. On the other hand experiments such as MARE, KATRIN and the recently proposed Project 8 will investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Here, because of neutrino flavour mixing, the neutrino mass appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. It combines an ultra-luminous molecular windowless gaseous tritium source with an integrating high-resolution spectrometer of MAC-E filter type. It will investigate the neutrino rest mass with 0.2 eV/c (90% C.L.) sensitivity and allow β spectroscopy close to the T endpoint at 18.6 keV with unprecedented precision.

  15. Measurements of Parity Violation in Electron Scattering

    NASA Astrophysics Data System (ADS)

    Paschke, Kent

    2016-09-01

    The measurement of the violation of parity symmetry in electron scattering has proven to be a powerful technique for exploring nuclear matter and for the search for new fundamental forces. A successful history with the experimental technique has set the stage for a series of high precision measurements to be made over the next decade. Scattering from heavy, spinless targets will measure the neutron skin of heavy nuclei, providing a valuable calibration for the equation-of-state in neutron-rich nuclear systems. Searches for new neutral-current interactions will be performed in ultra-high precision measurements of scattering from protons and electrons at very low momentum transfer Q2 . In the DIS regime, scattering from deuterium will extend this search for new physics while also providing a unique window on nucleon partonic structure. The physics implications of recent results and development of the next generation of experiments will be reviewed.

  16. INTRA - BEAM SCATTERING MEASUREMENTS IN RHIC.

    SciTech Connect

    FISCHER,W.; CONNOLLY,R.; TEPIKIAN,S.; VAN ZEIJTS,J.; ZENO,K.

    2002-06-02

    RHIC in gold operation shows significant intra-beam scattering due to the high charge state of the stored ions. Intra-beam scattering leads to longitudinal and transverse emittance growth. The longitudinal emittance growth causes debunching in operation; the transverse emittance growth contributes to the reduction of the beam and luminosity lifetimes. The longitudinal and transverse beam growth was measured. Beam growth measurement are compared with computations.

  17. Measuring Muon-Neutrino Charged-Current Differential Cross Sections with a Liquid Argon Time Projection Chamber

    SciTech Connect

    Spitz, Joshua B.

    2011-01-01

    More than 80 years after its proposed existence, the neutrino remains largely mysterious and elusive. Precision measurements of the neutrino's properties are just now beginning to take place. Such measurements are required in order to determine the mass of the neutrino, how many neutrinos there are, if neutrinos are different than anti-neutrinos, and more. Muon-neutrino charged-current differential cross sections on an argon target in terms of the outgoing muon momentum and angle are presented. The measurements have been taken with the ArgoNeuT Liquid Argon Time Projection Chamber (LArTPC) experiment. ArgoNeuT is the first LArTPC to ever take data in a low energy neutrino beam, having collected thousands of neutrino and anti-neutrino events in the NuMI beamline at Fermilab. The results are relevant for long baseline neutrino oscillation experiments searching for non-zero $\\theta_{13}$, CP-violation in the lepton sector, and the sign of the neutrino mass hierarchy, among other things. Furthermore, the differential cross sections are important for understanding the nature of the neutrino-nucleus interaction in general. These measurements represent a significant step forward for LArTPC technology as they are among the first neutrino physics results with such a device.

  18. Relativistic model of 2p-2h meson exchange currents in (anti)neutrino scattering

    NASA Astrophysics Data System (ADS)

    Ruiz Simo, I.; E Amaro, J.; Barbaro, M. B.; De Pace, A.; Caballero, J. A.; Donnelly, T. W.

    2017-06-01

    We develop a model of relativistic, charged meson-exchange currents (MEC) for neutrino-nucleus interactions. The two-body current is the sum of seagull, pion-in-flight, pion-pole and Δ-pole operators. These operators are obtained from the weak pion-production amplitudes for the nucleon derived in the nonlinear σ-model together with weak excitation of the {{Δ }}(1232) resonance and its subsequent decay into Nπ . With these currents we compute the five 2p-2h response functions contributing to ({ν }l,{l}-) and ({\\overline{ν }}l,{l}+) reactions in the relativistic Fermi gas model. The total current is the sum of vector and axial two-body currents. The vector current is related to the electromagnetic MEC operator that contributes to electron scattering. This allows one to check our model by comparison with the results of De Pace et al (2003 Nucl. Phys. A 726 303). Thus, our model is a natural extension of that model to the weak sector with the addition of the axial MEC operator. The dependences of the response functions on several ingredients of the approach are analyzed. Specifically we discuss relativistic effects, quantify the size of the direct-exchange interferences, and the relative importance of the axial versus vector current.

  19. Off-Axis Neutrino Scattering in Gamma-Ray Burst Central Engines

    NASA Astrophysics Data System (ADS)

    Miller, Warner A.; George, Nathan D.; Kheyfets, Arkady; McGhee, John M.

    2003-02-01

    The search for an understanding of an energy source great enough to explain the gamma-ray burst (GRB) phenomenon has attracted much attention from the astrophysical community since its discovery. In this paper we extend the work of Asano and Fukuyama, and Salmonson and Wilson and analyze the off-axis contributions to the energy-momentum deposition rate (MDR) from the ν-ν collisions above a rotating black hole/thin accretion disk system. Our calculations are performed by imaging the accretion disk at a specified observer using the full geodesic equations and calculating the cumulative MDR from the scattering of all pairs of neutrinos and antineutrinos arriving at the observer. Our results shed light on the beaming efficiency of GRB models of this kind. Although we confirm Asano and Fukuyama's conjecture as to the constancy of the beaming for small angles away from the axis, we find that the dominant contribution to the MDR comes from near the surface of the disk with a tilt of approximately π/4 in the direction of the disk's rotation. We find that the MDR at large radii is directed outward in a conic section centered around the symmetry axis and is larger by a factor of 10-20 than the on-axis values. By including this off-axis disk source, we find a linear dependence of the MDR on the black hole angular momentum.

  20. Measurement of Charged Pions from Neutrino-produced Nuclear Resonance

    SciTech Connect

    Simon, Clifford N.

    2014-01-01

    A method for identifying stopped pions in a high-resolution scintillator bar detector is presented. I apply my technique to measure the axial mass MΔAfor production of the Δ(1232) resonance by neutrino, with the result MΔA = 1.16±0.20 GeV (68% CL) (limited by statistics). The result is produced from the measured spectrum of reconstructed momentum-transfer Q2. I proceed by varying the value of MΔA in a Rein-Sehgal-based Monte Carlo to produce the best agreement, using shape only (not normalization). The consistency of this result with recent reanalyses of previous bubble-chamber experiments is discussed.

  1. Direct measurement of the 7Be solar neutrino flux with 192 days of borexino data.

    PubMed

    Arpesella, C; Back, H O; Balata, M; Bellini, G; Benziger, J; Bonetti, S; Brigatti, A; Caccianiga, B; Cadonati, L; Calaprice, F; Carraro, C; Cecchet, G; Chavarria, A; Chen, M; Dalnoki-Veress, F; D'Angelo, D; de Bari, A; de Bellefon, A; de Kerret, H; Derbin, A; Deutsch, M; di Credico, A; di Pietro, G; Eisenstein, R; Elisei, F; Etenko, A; Fernholz, R; Fomenko, K; Ford, R; Franco, D; Freudiger, B; Galbiati, C; Gatti, F; Gazzana, S; Giammarchi, M; Giugni, D; Goeger-Neff, M; Goldbrunner, T; Goretti, A; Grieb, C; Hagner, C; Hampel, W; Harding, E; Hardy, S; Hartman, F X; Hertrich, T; Heusser, G; Ianni, Aldo; Ianni, Andrea; Joyce, M; Kiko, J; Kirsten, T; Kobychev, V; Korga, G; Korschinek, G; Kryn, D; Lagomarsino, V; Lamarche, P; Laubenstein, M; Lendvai, C; Leung, M; Lewke, T; Litvinovich, E; Loer, B; Lombardi, P; Ludhova, L; Machulin, I; Malvezzi, S; Manecki, S; Maneira, J; Maneschg, W; Manno, I; Manuzio, D; Manuzio, G; Martemianov, A; Masetti, F; Mazzucato, U; McCarty, K; McKinsey, D; Meindl, Q; Meroni, E; Miramonti, L; Misiaszek, M; Montanari, D; Monzani, M E; Muratova, V; Musico, P; Neder, H; Nelson, A; Niedermeier, L; Oberauer, L; Obolensky, M; Orsini, M; Ortica, F; Pallavicini, M; Papp, L; Parmeggiano, S; Perasso, L; Pocar, A; Raghavan, R S; Ranucci, G; Rau, W; Razeto, A; Resconi, E; Risso, P; Romani, A; Rountree, D; Sabelnikov, A; Saldanha, R; Salvo, C; Schimizzi, D; Schönert, S; Shutt, T; Simgen, H; Skorokhvatov, M; Smirnov, O; Sonnenschein, A; Sotnikov, A; Sukhotin, S; Suvorov, Y; Tartaglia, R; Testera, G; Vignaud, D; Vitale, S; Vogelaar, R B; von Feilitzsch, F; von Hentig, R; von Hentig, T; Wojcik, M; Wurm, M; Zaimidoroga, O; Zavatarelli, S; Zuzel, G

    2008-08-29

    We report the direct measurement of the 7Be solar neutrino signal rate performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso. The interaction rate of the 0.862 MeV 7Be neutrinos is 49+/-3stat+/-4syst counts/(day.100 ton). The hypothesis of no oscillation for 7Be solar neutrinos is inconsistent with our measurement at the 4sigma C.L. Our result is the first direct measurement of the survival probability for solar nu(e) in the transition region between matter-enhanced and vacuum-driven oscillations. The measurement improves the experimental determination of the flux of 7Be, pp, and CNO solar nu(e), and the limit on the effective neutrino magnetic moment using solar neutrinos.

  2. Measurement of Neutral Current Neutral Pion Production on Carbon in a Few-GeV Neutrino Beam

    SciTech Connect

    Kurimoto, Yoshinori

    2010-01-01

    Understanding of the π0 production via neutrino-nucleus neutral current interaction in the neutrino energy region of a few GeV is essential for the neutrino oscillation experiments. In this thesis, we present a study of neutral current π0 production from muon neutrinos scattering on a polystyrene (C8H8) target in the SciBooNE experiment. All neutrino beam data corresponding to 0.99 × 1020 protons on target have been analyzed. We have measured the cross section ratio of the neutral current π0 production to the total charge current interaction and the π0 kinematic distribution such as momentum and direction. We obtain [7.7 ± 0.5(stat.) ± 0.5(sys.)] × 10-2 as the ratio of the neutral current neutral pion production to total charged current cross section; the mean energy of neutrinos producing detected neutral pions is 1.1 GeV. The result agrees with the Rein- Sehgal model, which is generally used for the Monte Carlo simulation by many neutrino oscillation experiments. We achieve less than 10 % uncertainty which is required for the next generation search for νµ → νe oscillation. The spectrum shape of the π0 momentum and the distribution of the π0 emitted angle agree with the prediction, which means that not only the Rein-Sehgal model but also the intra-nuclear interaction models describe our data well. We also measure the ratio of the neutral current coherent pion production to total charged current cross section to be (1.17 ± 0.23 ) × 10-2 based on the Rein and Sehgal model. The result gives the evidence for non-zero coherent pion production via neutral current interaction at the mean neutrino energy of 1.0 GeV.

  3. Precision measurement of the (7)Be solar neutrino interaction rate in Borexino.

    PubMed

    Bellini, G; Benziger, J; Bick, D; Bonetti, S; Bonfini, G; Buizza Avanzini, M; Caccianiga, B; Cadonati, L; Calaprice, F; Carraro, C; Cavalcante, P; Chavarria, A; D'Angelo, D; Davini, S; Derbin, A; Etenko, A; Fomenko, K; Franco, D; Galbiati, C; Gazzana, S; Ghiano, C; Giammarchi, M; Goeger-Neff, M; Goretti, A; Grandi, L; Guardincerri, E; Hardy, S; Ianni, Aldo; Ianni, Andrea; Kobychev, V; Korablev, D; Korga, G; Koshio, Y; Kryn, D; Laubenstein, M; Lewke, T; Litvinovich, E; Loer, B; Lombardi, F; Lombardi, P; Ludhova, L; Machulin, I; Manecki, S; Maneschg, W; Manuzio, G; Meindl, Q; Meroni, E; Miramonti, L; Misiaszek, M; Montanari, D; Mosteiro, P; Muratova, V; Oberauer, L; Obolensky, M; Ortica, F; Pallavicini, M; Papp, L; Peña-Garay, C; Perasso, L; Perasso, S; Pocar, A; Raghavan, R S; Ranucci, G; Razeto, A; Re, A; Romani, A; Sabelnikov, A; Saldanha, R; Salvo, C; Schönert, S; Simgen, H; Skorokhvatov, M; Smirnov, O; Sotnikov, A; Sukhotin, S; Suvorov, Y; Tartaglia, R; Testera, G; Vignaud, D; Vogelaar, R B; von Feilitzsch, F; Winter, J; Wojcik, M; Wright, A; Wurm, M; Xu, J; Zaimidoroga, O; Zavatarelli, S; Zuzel, G

    2011-09-30

    The rate of neutrino-electron elastic scattering interactions from 862 keV (7)Be solar neutrinos in Borexino is determined to be 46.0±1.5(stat)(-1.6)(+1.5)(syst) counts/(day·100  ton). This corresponds to a ν(e)-equivalent (7)Be solar neutrino flux of (3.10±0.15)×10(9)  cm(-2) s(-1) and, under the assumption of ν(e) transition to other active neutrino flavours, yields an electron neutrino survival probability of 0.51±0.07 at 862 keV. The no flavor change hypothesis is ruled out at 5.0 σ. A global solar neutrino analysis with free fluxes determines Φ(pp)=6.06(-0.06)(+0.02)×10(10)  cm(-2) s(-1) and Φ(CNO)<1.3×10(9)  cm(-2) s(-1) (95% C.L.). These results significantly improve the precision with which the Mikheyev-Smirnov-Wolfenstein large mixing angle neutrino oscillation model is experimentally tested at low energy.

  4. Wave space resolution in ultrasonic scattering measurements.

    PubMed

    Mast, T D; Waag, R C

    1995-12-01

    The spatial-frequency spectra of the spatial properties of a scattering medium can be determined from measurements of scattering over a number of angles or frequencies. In such measurements, the spatial localization associated with transducer beam patterns and time gates causes an uncertainty in the measured spatial-frequency domain properties of the scatterer. This uncertainty is analyzed using an analytic and computational model in which system effects are represented by a spatial-frequency domain function. Wave space resolution in a particular direction is shown to be inversely proportional to the spatial-frequency spread of the system function in that direction. In the backscatter case, wave space resolution is limited in the direction of the scattering vector by a convolution of the emitted pulse and the detector time gate, and resolution in the lateral direction depends mainly on the transducer aperture, increasing approximately in proportion to the aperture diameter. In the case of backscatter measurements, smooth aperture apodization improves lateral resolution somewhat but has little effect on resolution in the direction of the scattering vector. For angular scattering measurements, resolution in all directions depends on both the aperture size and (for sufficiently short time gates) on the time gates employed. Illustration of the practical importance of wave space resolution is provided using analysis of two previously published tissue characterization experiments.

  5. Preliminary Measurement of Neutrino Oscillation Parameters By NuMI/MINOS and Calibration Studies for Improving this Measurement

    SciTech Connect

    Symes, Philip Andrew

    2005-11-01

    This thesis explains the origins of neutrinos and their interactions, and the phenomenon of neutrino oscillations. Experiments for measuring neutrino oscillations are mentioned and the experiment investigated in this thesis, the ''Main Injector Neutrino Oscillation Search'', and its neutrino beam, the Fermi National Accelerator Laboratory's ''Neutrinos At The Main Injector'', are described. MINOS is a long baseline (735 km) neutrino oscillation experiment with a near and a far detector, intended to make precision measurements of the atmospheric sector neutrino oscillation parameters. A measurement is made of the ''atmospheric'' neutrino oscillation parameters, Δm$2\\atop{23}$ and sin2(2θ23), using neutrinos from the NuMI beam. The results of this analysis are compared to measurements at MINOS using neutrinos from the atmosphere and with other experiments. A more detailed method of beam neutrino analysis is discussed, and the extra calibrations needed to perform that analysis properly are described, with special attention paid to two aspects of the calibration, which comprise the bulk of work for this thesis. The light injection calibration system uses LEDs to illuminate the detector readout and provides a normalization of the stability of the detector over time. The hardware and different modi operandi of the system are described. There is a description of installation and commissioning of the system at one of the MINOS detectors. The response normalization of each detector with cosmic ray muons is described. Special attention is paid to the explanation of necessary corrections that must be made to the muon sample in order for the sample to be used to calibrate each detector to the specified accuracy. The performance of the calibration is shown.

  6. Ultrasonic trap for light scattering measurement

    NASA Astrophysics Data System (ADS)

    Barton, Petr; Pavlu, Jiri

    2017-04-01

    Light scattering is complex phenomenon occurring widely in space environments, including the dense dusty clouds, nebulas or even the upper atmosphere of the Earth. However, when the size of the dust (or of other scattering center) is close to the incident light wavelength, theoretical determination is difficult. In such case, Mie theory is to be used but there is a lack of the material constants for most space-related materials. For experimental measurement of light scattering, we designed unique apparatus, based on ultrasonic trap. Using acoustic levitation we are able to capture the dust grain in midair, irradiate it with laser, and observe scattering directly with goniometer-mounted photodiode. Advantage of this approach is ability to measure directly in the air (thus, no need for the carrier medium) and possibility to study non-spherical particles. Since the trap development is nearly finished and initial experiments are carried out, the paper presents first tests on water droplets.

  7. A measurement of neutrino-induced charged-current neutral pion production

    NASA Astrophysics Data System (ADS)

    Nelson, Robert H.

    This work presents the first comprehensive measurement of neutrino-induced charged-current neutral pion production (CCpi0) off a nuclear target. The Mini Booster Neutrino Experiment (MiniBooNE) and Booster Neutrino Beam (BNB) are discussed in detail. MiniBooNE is a high-statistics (˜1,000,000 interactions) low-energy (Enu ∈ 0.5--2.0 GeV) neutrino experiment located at Fermilab. The method for selecting and reconstructing CCpi0 events is presented. The pi0 and mu - are fully reconstructed in the final state allowing for the measurement of, among other things, the neutrino energy. The total observable CCpi 0 cross-section is presented as a function of neutrino energy, along with five differential cross-sections in terms of the final state kinematics and Q2. The results are combined to yield a flux-averaged total cross-section of phi = (9.2 +/- 0.3stat. +/- 1.5 syst.) x 10--39 cm 2/CH2 at energy 965 MeV. These measurements will aid future neutrino experiments with the prediction of their neutrino interaction rates.

  8. A Measurement of Neutrino-Induced Charged-Current Neutral Pion Production

    SciTech Connect

    Nelson, Robert H.

    2010-01-01

    This work presents the first comprehensive measurement of neutrino-induced charged-current neutral pion production (CCπ0) off a nuclear target. The Mini Booster Neutrino Experiment (MiniBooNE) and Booster Neutrino Beam (BNB) are discussed in detail. MiniBooNE is a high-statistics (~ 1, 000, 000 interactions) low-energy (Evϵ 2 0.5 - 2.0 GeV) neutrino experiment located at Fermilab. The method for selecting and reconstructing CCπ0 events is presented. The π0 and μ- are fully reconstructed in the final state allowing for the measurement of, among other things, the neutrino energy. The total observable CCπ0 cross-section is presented as a function of neutrino energy, along with five differential cross-sections in terms of the final state kinematics and Q2. The results are combined to yield a flux-averaged total cross-section of <σ>Φ = (9.2 ± 0.3stat. ± 1.5syst.) × 10-39 cm2/CH2 at energy 965 MeV. These measurements will aid future neutrino experiments with the prediction of their neutrino interaction rates.

  9. Measurement of low-energy neutrino cross-sections with the PEANUT experiment

    NASA Astrophysics Data System (ADS)

    Aoki, S.; Ariga, A.; Arrabito, L.; Autiero, D.; Besnier, M.; Bozza, C.; Buontempo, S.; Carrara, E.; Consiglio, L.; Cozzi, M.; D'Ambrosio, N.; De Lellis, G.; Déclais, Y.; De Serio, M.; Di Capua, F.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Duchesneau, D.; Ereditato, A.; Esposito, L. S.; Fukuda, T.; Giacomelli, G.; Giorgini, M.; Grella, G.; Hamada, K.; Ieva, M.; Juget, F.; Kitagawa, N.; Knuesel, J.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Laktineh, I.; Longhin, A.; Lundberg, B.; Lutter, G.; Mandrioli, G.; Marotta, A.; Meisel, F.; Migliozzi, P.; Morishima, K.; Muciaccia, M. T.; Naganawa, N.; Nakamura, M.; Nakano, T.; Niwa, K.; Nonoyama, Y.; Paolone, V.; Pastore, A.; Patrizii, L.; Pistillo, C.; Pozzato, M.; Pupilli, F.; Rameika, R.; Rescigno, R.; Rosa, G.; Russo, A.; Sato, O.; Scotto Lavina, L.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Strolin, P.; Tenti, M.; Tioukov, V.; Yoshida, J.; Yoshioka, T.

    2010-11-01

    The PEANUT experiment was designed to study the NuMi neutrino beam at Fermilab. The detector uses a hybrid technique, being made of nuclear emulsions and scintillator trackers. Emulsion films act as a micrometric tracking device and are interleaved with lead plates used as passive material. The detector is designed to precisely reconstruct the topology of neutrino interactions and hence to measure the different contributions to the cross section. We present here the full reconstruction and analysis of 147 neutrino interactions and the measurement of the quasi-elastic, resonance and deep-inelastic contributions to the total charged current cross section at the energies of the NuMi neutrino beam. This technique could be applied for beam monitoring in future neutrino facilities, and this paper shows its proof-of-principle.

  10. First Measurement of Neutrino Interactions in MicroBooNE

    SciTech Connect

    Hamilton, Pip

    2016-11-02

    The MicroBooNE detector has recently completed its first year of neutrino beam data-taking in the Booster Neutrino Beam at Fermilab, having collected approximately half of its intended data ($3.4\\times10^{20}$ of $6.6\\times10^{20}$ protons on target). We present kinematic distributions of neutrino interactions observed from a small subset of this data (equivalent to $5\\times10^{19}$ protons on target), both as a first step towards a charged-current muon neutrino cross-section on argon, and as an exploration of the capabilities and operational challenges of large liquid argon time projection chambers as neutrino detectors. These distributions have been assessed using fully automated event selection and reconstruction.

  11. New bounds on neutrino electric millicharge from limits on neutrino magnetic moment

    NASA Astrophysics Data System (ADS)

    Studenikin, Alexander I.

    2014-07-01

    Using the new limit on the neutrino anomalous magnetic moment recently obtained by the GEMMA experiment on measurements of the cross-section for the reactor antineutrino scattering on free electrons, we get, by comparing the neutrino magnetic moment and millicharge contributions to the total cross-section at the electron recoil energy threshold of the experiment, an order-of-magnitude estimation for a possible new direct upper bound on the neutrino electric millicharge \\mid q_{\

  12. Collective neutrino oscillations in supernovae

    SciTech Connect

    Duan, Huaiyu

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  13. Atmospheric temperature measurements by Raman laser scattering

    NASA Technical Reports Server (NTRS)

    Masica, W. J.; Salzman, J. A.; Coney, T. A.

    1973-01-01

    System makes continuous synoptic measurement of air temperatures and temperature profiles from the ground in real time. Development is based on principle that intensity distribution of Raman scattered laser light is a function of temperature and it is theoretically possible to measure air temperature by analyzing its Raman spectrum.

  14. Measurement of the neutrino velocity with the OPERA detector in the CNGS beam

    NASA Astrophysics Data System (ADS)

    Adam, T.; Agafonova, N.; Aleksandrov, A.; Altinok, O.; Alvarez Sanchez, P.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Autiero, D.; Badertscher, A.; Ben Dhahbi, A.; Bertolin, A.; Bozza, C.; Brugière, T.; Brugnera, R.; Brunet, F.; Brunetti, G.; Buontempo, S.; Carlus, B.; Cavanna, F.; Cazes, A.; Chaussard, L.; Chernyavsky, M.; Chiarella, V.; Chukanov, A.; Colosimo, G.; Crespi, M.; D'Ambrosio, N.; De Lellis, G.; De Serio, M.; Déclais, Y.; del Amo Sanchez, P.; Di Capua, F.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Dmitrievsky, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Efthymiopoulos, I.; Egorov, O.; Ereditato, A.; Esposito, L. S.; Favier, J.; Ferber, T.; Fini, R. A.; Fukuda, T.; Garfagnini, A.; Giacomelli, G.; Giorgini, M.; Giovannozzi, M.; Girerd, C.; Goldberg, J.; Göllnitz, C.; Golubkov, D.; Goncharova, L.; Gornushkin, Y.; Grella, G.; Grianti, F.; Gschwendtner, E.; Guerin, C.; Guler, A. M.; Gustavino, C.; Hagner, C.; Hamada, K.; Hara, T.; Enikeev, R.; Hierholzer, M.; Hollnagel, A.; Ieva, M.; Ishida, H.; Ishiguro, K.; Jakovcic, K.; Jollet, C.; Jones, M.; Juget, F.; Kamiscioglu, M.; Kawada, J.; Kim, S. H.; Kimura, M.; Kiritsis, E.; Kitagawa, N.; Klicek, B.; Knuesel, J.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Lazzaro, C.; Lenkeit, J.; Ljubicic, A.; Longhin, A.; Malgin, A.; Mandrioli, G.; Marteau, J.; Matsuo, T.; Matveev, V.; Mauri, N.; Mazzoni, A.; Medinaceli, E.; Meisel, F.; Meregaglia, A.; Migliozzi, P.; Mikado, S.; Missiaen, D.; Monacelli, P.; Morishima, K.; Moser, U.; Muciaccia, M. T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Nakatsuka, Y.; Naumov, D.; Nikitina, V.; Nitti, F.; Ogawa, S.; Okateva, N.; Olchevsky, A.; Palamara, O.; Paoloni, A.; Park, B. D.; Park, I. G.; Pastore, A.; Patrizii, L.; Pennacchio, E.; Pessard, H.; Pistillo, C.; Polukhina, N.; Pozzato, M.; Pretzl, K.; Pupilli, F.; Rescigno, R.; Riguzzi, F.; Roganova, T.; Rokujo, H.; Rosa, G.; Rostovtseva, I.; Rubbia, A.; Russo, A.; Ryasny, V.; Ryazhskaya, O.; Sato, O.; Sato, Y.; Sahnoun, Z.; Schembri, A.; Schuler, J.; Scotto Lavina, L.; Serrano, J.; Shakiryanova, I.; Sheshukov, A.; Shibuya, H.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Song, J. S.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S.; Stipcevic, M.; Strauss, T.; Takahashi, S.; Tenti, M.; Terranova, F.; Tezuka, I.; Tioukov, V.; Tolun, P.; Trani, N. T.; Tufanli, S.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J.-L.; Wilquet, G.; Wonsak, B.; Wurtz, J.; Yakushev, V.; Yoon, C. S.; Yoshida, J.; Zaitsev, Y.; Zemskova, S.; Zghiche, A.

    2012-10-01

    The OPERA neutrino experiment at the underground Gran Sasso Laboratory has measured the velocity of neutrinos from the CERN CNGS beam over a baseline of about 730 km. The measurement is based on data taken by OPERA in the years 2009, 2010 and 2011. Dedicated upgrades of the CNGS timing system and of the OPERA detector, as well as a high precision geodesy campaign for the measurement of the neutrino baseline, allowed reaching comparable systematic and statistical accuracies. An arrival time of CNGS muon neutrinos with respect to the one computed assuming the speed of light in vacuum of ( {6.5± 7.4( {stat.} )_{-8.0}^{+8.3}( {sys.} )} )ns was measured corresponding to a relative difference of the muon neutrino velocity with respect to the speed of light {{{( {\\upsilon -c} )}} / {c} .}=( {2.7± 3.1( {stat.} )_{-3.3}^{+3.4}( {sys.} )} )× {10^{-6 }} . The above result, obtained by comparing the time distributions of neutrino interactions and of protons hitting the CNGS target in 10.5 μs long extractions, was confirmed by a test performed at the end of 2011 using a short bunch beam allowing to measure the neutrino time of flight at the single interaction level.

  15. Measurement of the relative neutrino flux using low-nu method

    NASA Astrophysics Data System (ADS)

    Ling, Jiajie; Rahaman, Azizur; Mishra, Sanjib

    2010-02-01

    MINOS is a long-baseline neutrino oscillation experiment employing the NuMI neutrino beam. We present an analysis of the NuMI neutrino flux using the low-nu (low hadronic energy) events in the MINOS Near Detector. The analysis provides an empirical parameterization of tuning the simulation of production spectra of secondary hadrons produced in the 120 GeV proton-NuMI target collisions by fitting the spectra of muon neutrino and antineutrino charged-current events at low-nu. The principal goal of this empirical parameterization analysis is to provide an accurate neutrino flux measurement for the oscillation studies. Preliminary results will be shown and they will be compared with other flux methods used by MINOS. )

  16. Measurement of the neutrino mass splitting and flavor mixing by MINOS.

    PubMed

    Adamson, P; Andreopoulos, C; Armstrong, R; Auty, D J; Ayres, D S; Backhouse, C; Barr, G; Bishai, M; Blake, A; Bock, G J; Boehnlein, D J; Bogert, D; Cavanaugh, S; Cherdack, D; Childress, S; Choudhary, B C; Coelho, J A B; Coleman, S J; Corwin, L; Cronin-Hennessy, D; Danko, I Z; de Jong, J K; Devenish, N E; Diwan, M V; Dorman, M; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grant, N; Grzelak, K; Habig, A; Harris, D; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Huang, X; Hylen, J; Ilic, J; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Lefeuvre, G; Ling, J; Litchfield, P J; Litchfield, R P; Loiacono, L; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGowan, A M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, W H; Mishra, S R; Mitchell, J; Moore, C D; Morfín, J; Mualem, L; Mufson, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Oliver, W P; Orchanian, M; Ospanov, R; Paley, J; Patterson, R B; Pawloski, G; Pearce, G F; Petyt, D A; Phan-Budd, S; Plunkett, R K; Qiu, X; Ratchford, J; Raufer, T M; Rebel, B; Rodrigues, P A; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreiner, P; Shanahan, P; Smith, C; Sousa, A; Stamoulis, P; Strait, M; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tinti, G; Toner, R; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Wojcicki, S G; Yang, T; Zwaska, R

    2011-05-06

    Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of 7.25×10(20) protons on target. A fit to neutrino oscillations yields values of |Δm(2)|=(2.32(-0.08)(+0.12))×10(-3) eV(2) for the atmospheric mass splitting and sin(2)(2θ)>0.90 (90% C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively.

  17. Measurement of the Neutrino Mass Splitting and Flavor Mixing by MINOS

    SciTech Connect

    Adamson, P.

    2011-05-01

    Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of 7.25 x 10$^{20}$ protons on target. A fit to neutrino oscillations yields values of |Δm$^{2}$| = (2.32$^{+0.12}_{-0.08}$) x 10$^{-3}$ eV$^{2}$ for the atmospheric mass splitting and sin $^{2}$(2θ) > 0.90 (90% C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively.

  18. Measurement of low energy neutrino cross sections with the PEANUT experiment

    SciTech Connect

    Russo, A.

    2011-11-23

    The PEANUT experiment was designed to study neutrino interactions in the few GeV range using the NuMi beam at Fermilab. The detector uses a hybrid technique, being made of nuclear emulsions and scintillator trackers. Emulsion films act as a tracking device and they are interleaved with lead plates used as neutrino target. The detector is designed to reconstruct the topology of neutrino interactions at the single particle level. We present here the full reconstruction and analysis of a sample of 147 neutrino interactions occurred in the PEANUT detector and the measurement of the quasi-elastic, resonance and deep-inelastic contributions to the total charged current cross-section. This technique could be applied for the beam monitoring for future neutrino facilities.

  19. Measurement of low energy neutrino cross sections with the PEANUT experiment

    NASA Astrophysics Data System (ADS)

    Russo, A.

    2011-11-01

    The PEANUT experiment was designed to study neutrino interactions in the few GeV range using the NuMi beam at Fermilab. The detector uses a hybrid technique, being made of nuclear emulsions and scintillator trackers. Emulsion films act as a tracking device and they are interleaved with lead plates used as neutrino target. The detector is designed to reconstruct the topology of neutrino interactions at the single particle level. We present here the full reconstruction and analysis of a sample of 147 neutrino interactions occurred in the PEANUT detector and the measurement of the quasi-elastic, resonance and deep-inelastic contributions to the total charged current cross-section. This technique could be applied for the beam monitoring for future neutrino facilities.

  20. Neutron spin echo scattering angle measurement (SESAME)

    SciTech Connect

    Pynn, R.; Fitzsimmons, M.R.; Fritzsche, H.; Gierlings, M.; Major, J.; Jason, A.

    2005-05-15

    We describe experiments in which the neutron spin echo technique is used to measure neutron scattering angles. We have implemented the technique, dubbed spin echo scattering angle measurement (SESAME), using thin films of Permalloy electrodeposited on silicon wafers as sources of the magnetic fields within which neutron spins precess. With 30-{mu}m-thick films we resolve neutron scattering angles to about 0.02 deg. with neutrons of 4.66 A wavelength. This allows us to probe correlation lengths up to 200 nm in an application to small angle neutron scattering. We also demonstrate that SESAME can be used to separate specular and diffuse neutron reflection from surfaces at grazing incidence. In both of these cases, SESAME can make measurements at higher neutron intensity than is available with conventional methods because the angular resolution achieved is independent of the divergence of the neutron beam. Finally, we discuss the conditions under which SESAME might be used to probe in-plane structure in thin films and show that the method has advantages for incident neutron angles close to the critical angle because multiple scattering is automatically accounted for.

  1. Recent developments in neutrino physics

    NASA Astrophysics Data System (ADS)

    Garvey, G. T.

    I shall attempt to summarize recent developments in the experimental situation in neutrino physics. The paper will deal with recent results, drawing on either published work or research that has been presented in preprint form. The discussion of the theoretical implication of these experimental results will be presented in the following paper by Boris Kayser. The topics to be covered in this presentation are: direct measurements of bar-nu(sub e) mass via beta endpoint studies; status of solar neutrino observations; status of '17 keV neutrino' reports; and the use of (nu)p elastic scattering to determine the 'strange quark' content of the proton.

  2. Measurement of Solar pp-neutrino flux with Borexino: results and implications

    NASA Astrophysics Data System (ADS)

    Smirnov, O. Yu; Agostini, M.; Appel, S.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chepurnov, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Etenko, A.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, O.; Manecki, S.; Maneschg, W.; Marcocci, S.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vishneva, A.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-02-01

    Measurement of the Solar pp-neutrino flux completed the measurement of Solar neutrino fluxes from the pp-chain of reactions in Borexino experiment. The result is in agreement with the prediction of the Standard Solar Model and the MSW/LMA oscillation scenario. A comparison of the total neutrino flux from the Sun with Solar luminosity in photons provides a test of the stability of the Sun on the 105 years time scale, and sets a strong limit on the power production by the unknown energy sources in the Sun.

  3. Neutrino Intensity Interferometry: Measuring Protoneutron Star Radii During Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Wright, Warren P.; Kneller, James P.

    2017-08-01

    Intensity interferometry is a technique that has been used to measure the size of sources ranging from the quark-gluon plasma formed in heavy ion collisions to the radii of stars. We investigate using the same technique to measure protoneutron star (PNS) radii with the neutrino signal received from a core-collapse supernovae. Using a full wave-packet analysis, including the neutrino mass for the first time, we derive criteria where the effect can be expected to provide the desired signal, and find that neutrinos from the next Galactic supernova should contain extractable PNS radius information.

  4. The LEM Experiment:. Measurement of Low Energy Spectrum at J-PARC On-Axis Neutrino Beam

    NASA Astrophysics Data System (ADS)

    Kaji, H.

    2013-03-01

    The LEM experiment measures the flux of J-PARC neutrino beam. We newly constructed the neutrino monitor, LEM, and installed at the J-PARC ND280 hall. We measure neutrino flux in the low energy part of on-axis direction. This part of the neutrino beam cannot be measured by any of T2K detectors. Therefore we can help further understandings of the J-PARC neutrino flux. The detailed design of detector is shown. In addition, the status of construction and installation at the ND280 hall is reported.

  5. Rayleigh scattering measurements of several fluorocarbon gases.

    PubMed

    Zadoo, Serena; Thompson, Jonathan E

    2011-11-01

    Integrating nephelometers are commonly used to monitor airborne particulate matter. However, they must be calibrated prior to use. The Rayleigh scattering coefficients (b(RS), Mm(-1)), scattering cross sections (σ(RS), cm(2)), and Rayleigh multipliers for tetrafluoromethane (R-14), sulfur hexafluoride, pentafluoroethane (HFC-125), hexafluoropropene (HFC-216), 1,1,1,2,3,3,3,-heptafluoropropane (HFC-227ea), and octafluorocyclobutane (C-318) are reported from measurements made using a Radiance Research M903 integrating nephelometer operating at λ = 530 nm and calibration with gases of known scattering constants. Rayleigh multipliers (±90% conf. int.) were found to be 2.6 ± 0.5, 6.60 ± 0.07, 7.5 ± 1, 14.8 ± 0.9, 15.6 ± 0.5, and 22.3 ± 0.8 times that of air, respectively. To the best of our knowledge, these are the first reported values for R-14, HFC-216, HFC-125, and C-318. Experimental accuracy is supported through measurements of values for SF(6) and HFC-227ea which agree to within 3% of previous literature reports. In addition to documenting fundamental Rayleigh scattering data for the first time, the information presented within will find use for calibration of optical scattering sensors such as integrating nephelometers.

  6. High resolution X-ray scattering measurements

    NASA Technical Reports Server (NTRS)

    Zombeck, M. V.; Braeuninger, H.; Ondrusch, A.; Predehl, P.

    1982-01-01

    The results of high angular resolution grazing incidence scattering measurements of highly polished, coated optical flats in the X-ray spectral range of 1.5 to 6.4 keV are reported. The interpretation of these results in terms of surface microtopography is presented and the implications for grazing incidence X-ray imaging are discussed.

  7. Neutrino-nucleus interactions

    SciTech Connect

    Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  8. Solar neutrinos and neutrino physics

    NASA Astrophysics Data System (ADS)

    Maltoni, Michele; Smirnov, Alexei Yu.

    2016-04-01

    Solar neutrino studies triggered and largely motivated the major developments in neutrino physics in the last 50 years. The theory of neutrino propagation in different media with matter and fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true solution of the solar neutrino problem. Parameters θ_{12} and Δ m 2 21 have been measured; θ_{13} extracted from the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3 ν paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. These searches allow us to get stringent, and in some cases unique bounds on new physics. We summarize the results on physics of propagation, neutrino properties and physics beyond the standard model obtained from studies of solar neutrinos.

  9. Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector

    NASA Astrophysics Data System (ADS)

    Abe, K.; Abgrall, N.; Ajima, Y.; Aihara, H.; Albert, J. B.; Andreopoulos, C.; Andrieu, B.; Anerella, M. D.; Aoki, S.; Araoka, O.; Argyriades, J.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Badertscher, A.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S.; Berardi, V.; Berger, B. E.; Bertram, I.; Besnier, M.; Beucher, J.; Beznosko, D.; Bhadra, S.; Blaszczyk, F. d. M.; Blocki, J.; Blondel, A.; Bojechko, C.; Bouchez, J.; Boyd, S. B.; Bravar, A.; Bronner, C.; Brook-Roberge, D. G.; Buchanan, N.; Budd, H.; Calvet, D.; Cartwright, S. L.; Carver, A.; Castillo, R.; Catanesi, M. G.; Cazes, A.; Cervera, A.; Chavez, C.; Choi, S.; Christodoulou, G.; Coleman, J.; Collazuol, G.; Coleman, W.; Connolly, K.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davies, G. S.; Davis, S.; Day, M.; De Rosa, G.; de André, J. P. A. M.; de Perio, P.; Dealtry, T.; Delbart, A.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Dinh Tran, P.; Dobson, J.; Dore, U.; Drapier, O.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Dziomba, M.; Emery, S.; Ereditato, A.; Escallier, J. E.; Escudero, L.; Esposito, L. S.; Fechner, M.; Ferrero, A.; Finch, A. J.; Frank, E.; Fujii, Y.; Fukuda, Y.; Galymov, V.; Ganetis, G. L.; Gannaway, F. C.; Gaudin, A.; Gendotti, A.; George, M.; Giffin, S.; Giganti, C.; Gilje, K.; Ghosh, A. K.; Golan, T.; Goldhaber, M.; Gomez-Cadenas, J. J.; Gomi, S.; Gonin, M.; Grant, N.; Grant, A.; Gumplinger, P.; Guzowski, P.; Haesler, A.; Haigh, M. D.; Hamano, K.; Hansen, C.; Hansen, D.; Hara, T.; Harrison, P. F.; Hartfiel, B.; Hartz, M.; Haruyama, T.; Hasegawa, T.; Hastings, N. C.; Hatzikoutelis, A.; Hayashi, K.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Henderson, R.; Higashi, N.; Hignight, J.; Hillairet, A.; Hirose, E.; Holeczek, J.; Horikawa, S.; Hyndman, A.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Iida, M.; Ikeda, M.; Ilic, J.; Imber, J.; Ishida, T.; Ishihara, C.; Ishii, T.; Ives, S. J.; Iwasaki, M.; Iyogi, K.; Izmaylov, A.; Jamieson, B.; Johnson, R. A.; Joo, K. K.; Jover-Manas, G. V.; Jung, C. K.; Kaji, H.; Kajita, T.; Kakuno, H.; Kameda, J.; Kaneyuki, K.; Karlen, D.; Kasami, K.; Kato, I.; Kawamuko, H.; Kearns, E.; Khabibullin, M.; Khanam, F.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, J.; Kim, J. Y.; Kim, S. B.; Kimura, N.; Kirby, B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Koike, S.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kouzuma, Y.; Kowalik, K.; Kravtsov, V.; Kreslo, I.; Kropp, W.; Kubo, H.; Kubota, J.; Kudenko, Y.; Kulkarni, N.; Kurimoto, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Laveder, M.; Lee, K. P.; Le, P. T.; Levy, J. M.; Licciardi, C.; Lim, I. T.; Lindner, T.; Litchfield, R. P.; Litos, M.; Longhin, A.; Lopez, G. D.; Loverre, P. F.; Ludovici, L.; Lux, T.; Macaire, M.; Mahn, K.; Makida, Y.; Malek, M.; Manly, S.; Marchionni, A.; Marino, A. D.; Marone, A. J.; Marteau, J.; Martin, J. F.; Maruyama, T.; Maryon, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matsumura, C.; Matsuoka, K.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCauley, N.; McFarland, K. S.; McGrew, C.; McLachlan, T.; Messina, M.; Metcalf, W.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A. D.; Mituka, G.; Miura, M.; Mizouchi, K.; Monfregola, L.; Moreau, F.; Morgan, B.; Moriyama, S.; Muir, A.; Murakami, A.; Muratore, J. F.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagai, N.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakajima, K.; Nakamoto, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Naples, D.; Navin, M. L.; Nelson, B.; Nicholls, T. C.; Nielsen, C.; Nishikawa, K.; Nishino, H.; Nitta, K.; Nobuhara, T.; Nowak, J. A.; Obayashi, Y.; Ogitsu, T.; Ohhata, H.; Okamura, T.; Okumura, K.; Okusawa, T.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Ozaki, T.; Pac, M. Y.; Palladino, V.; Paolone, V.; Paul, P.; Payne, D.; Pearce, G. F.; Perkin, J. D.; Pettinacci, V.; Pierre, F.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Qian, W.; Raaf, J. L.; Radicioni, E.; Ratoff, P. N.; Raufer, T. M.; Ravonel, M.; Raymond, M.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rondio, E.; Roney, J. M.; Rossi, B.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sabouri, S.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sarrat, A.; Sasaki, K.; Scholberg, K.; Schwehr, J.; Scott, M.; Scully, D. I.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Shibata, M.; Shimizu, Y.; Shiozawa, M.; Short, S.; Siyad, M.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Stahl, A.; Stamoulis, P.; Steinmann, J.; Still, B.; Stone, J.; Stodulski, M.; Strabel, C.; Sulej, R.; Suzuki, A.; Suzuki, K.; Suzuki, S.; Suzuki, S. Y.; Suzuki, Y.; Suzuki, Y.; Swierblewski, J.; Szeglowski, T.; Szeptycka, M.; Tacik, R.; Tada, M.; Taguchi, M.; Takahashi, S.; Takeda, A.; Takenaga, Y.; Takeuchi, Y.; Tanaka, K.; Tanaka, H. A.; Tanaka, M.; Tanaka, M. M.; Tanimoto, N.; Tashiro, K.; Taylor, I.; Terashima, A.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Toki, W.; Tobayama, S.; Tomaru, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Walding, J. J.; Waldron, A. V.; Walter, C. W.; Wanderer, P. J.; Wang, J.; Ward, M. A.; Ward, G. P.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; West, N.; Whitehead, L. H.; Wikström, G.; Wilkes, R. J.; Wilking, M. J.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, S.; Yamada, Y.; Yamamoto, A.; Yamamoto, K.; Yamanoi, Y.; Yamaoka, H.; Yamauchi, T.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Zmuda, J.; T2K Collaboration

    2012-12-01

    Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. The module has a sandwich structure of iron target plates and scintillator trackers. INGRID directly monitors the muon neutrino beam profile center and intensity using the number of observed neutrino events in each module. The neutrino beam direction is measured with accuracy better than 0.4 mrad from the measured profile center. The normalized event rate is measured with 4% precision.

  10. Measurement of Coherent Production of π± in Neutrino and Antineutrino Beams on Carbon from Eν of 1.5 to 20 GeV

    NASA Astrophysics Data System (ADS)

    Higuera, A.; Mislivec, A.; Aliaga, L.; Altinok, O.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Brooks, W. K.; Budd, H.; Butkevich, A.; Carneiro, M. F.; Castromonte, C. M.; Christy, M. E.; Chvojka, J.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Fiorentini, G. A.; Gallagher, H.; Gomez, A.; Gran, R.; Harris, D. A.; Hurtado, K.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Morfín, J. G.; Mousseau, J.; Muhlbeier, T.; Naples, D.; Nelson, J. K.; Norrick, A.; Osta, J.; Palomino, J. L.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Ransome, R. D.; Ray, H.; Ren, L.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Snider, F. D.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Ziemer, B. P.; Minerva Collaboration

    2014-12-01

    Neutrino-induced coherent charged pion production on nuclei ν(-) μA →μ±π∓A is a rare, inelastic interaction in which a small squared four-momentum |t | is transferred to the recoil nucleus, leaving it intact in the reaction. In the scintillator tracker of MINERvA, we remove events with evidence of particles from nuclear breakup and reconstruct |t | from the final-state pion and muon. We select low |t | events to isolate a sample rich in coherent candidates. By selecting low |t | events, we produce a model-independent measurement of the differential cross section for coherent scattering of neutrinos and antineutrinos on carbon. We find poor agreement with the predicted kinematics in neutrino generators used by current oscillation experiments.

  11. Measurement of coherent production of π(±) in neutrino and antineutrino beams on carbon from Eν of 1.5 to 20 GeV.

    PubMed

    Higuera, A; Mislivec, A; Aliaga, L; Altinok, O; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Brooks, W K; Budd, H; Butkevich, A; Carneiro, M F; Castromonte, C M; Christy, M E; Chvojka, J; da Motta, H; Devan, J; Dytman, S A; Díaz, G A; Eberly, B; Felix, J; Fields, L; Fine, R; Fiorentini, G A; Gallagher, H; Gomez, A; Gran, R; Harris, D A; Hurtado, K; Kleykamp, J; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Marshall, C M; Martinez Caicedo, D A; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Morfín, J G; Mousseau, J; Muhlbeier, T; Naples, D; Nelson, J K; Norrick, A; Osta, J; Palomino, J L; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Ransome, R D; Ray, H; Ren, L; Rodrigues, P A; Ruterbories, D; Schellman, H; Schmitz, D W; Snider, F D; Solano Salinas, C J; Tagg, N; Tice, B G; Valencia, E; Walton, T; Wolcott, J; Wospakrik, M; Zavala, G; Zhang, D; Ziemer, B P

    2014-12-31

    Neutrino-induced coherent charged pion production on nuclei νμA→μ(±)π(∓)A is a rare, inelastic interaction in which a small squared four-momentum |t| is transferred to the recoil nucleus, leaving it intact in the reaction. In the scintillator tracker of MINERvA, we remove events with evidence of particles from nuclear breakup and reconstruct |t| from the final-state pion and muon. We select low |t| events to isolate a sample rich in coherent candidates. By selecting low |t| events, we produce a model-independent measurement of the differential cross section for coherent scattering of neutrinos and antineutrinos on carbon. We find poor agreement with the predicted kinematics in neutrino generators used by current oscillation experiments.

  12. Measurement of coherent production of π± in neutrino and antineutrino beams on carbon from Eν of 1.5 to 20 GeV

    DOE PAGES

    Higuera, A.

    2014-12-23

    Neutrino-induced coherent charged pion production on nuclei ν(–)μA → μ±π∓A is a rare, inelastic interaction in which a small squared four-momentum |t| is transferred to the recoil nucleus, leaving it intact in the reaction. In the scintillator tracker of MINERvA, we remove events with evidence of particles from nuclear breakup and reconstruct |t| from the final-state pion and muon. In addition, we select low |t| events to isolate a sample rich in coherent candidates. By selecting low |t| events, we produce a model-independent measurement of the differential cross section for coherent scattering of neutrinos and antineutrinos on carbon. We findmore » poor agreement with the predicted kinematics in neutrino generators used by current oscillation experiments.« less

  13. Using Neutrino Nucleus Interactions as a Probe of the Strong Interaction

    SciTech Connect

    Morfin, Jorge G.

    2011-11-23

    Neutrino scattering experiments have been studying QCD for over 30 years. From the Gargamelle experiments in the early 70's, through the subsequent bubble chamber and electronic detector experiments in the 80's and 90's, neutrino scattering experiments have steadily accumulated increasing statistics and minimized their systematic errors. An example of the more recent studies of QCD with neutrinos is from the TeVatron neutrino beam--the NuTeV {nu}-Fe experiment. The problem the community faces in trying to study QCD with modern neutrino data is that there is no experimentally verified way to scale neutrino-nucleus (for example, Fe) results to the equivalent neutrino-nucleon values making it difficult to combine neutrino nucleus scattering data with charged-lepton nucleus and nucleon scattering data in QCD global fits to extract parton distribution functions. This is particularly crucial since there is now indications that nuclear effects in neutrino nucleus interactions are different than those measured in charged-lepton nucleus scattering. To better understand this situation, the MINER{nu}A neutrino-nucleus scattering experiment at Fermilab, a collaboration of elementary-particle and nuclear physicists, is systematically studying neutrino nuclear effects off of He, C, Fe and Pb for a more thorough A-dependent study of nuclear PDFs and these correction factors.

  14. First demonstration of a scintillating xenon bubble chamber for detecting dark matter and coherent elastic neutrino-nucleus scattering

    DOE PAGES

    Baxter, D.; Chen, C. J.; Crisler, M.; ...

    2017-06-08

    A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to amore » $$^{252}$$Cf neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is $$19\\pm6$$ keV (1$$\\sigma$$ uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of $$6.3\\times10^{-7}$$ bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF$$_3$$I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils while nuclear recoils nucleate bubbles as usual. Finally, these measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering.« less

  15. First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering

    NASA Astrophysics Data System (ADS)

    Baxter, D.; Chen, C. J.; Crisler, M.; Cwiok, T.; Dahl, C. E.; Grimsted, A.; Gupta, J.; Jin, M.; Puig, R.; Temples, D.; Zhang, J.

    2017-06-01

    A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a Cf 252 neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19 ±6 keV (1 σ uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3 ×10-7 bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF3 I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils, while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering.

  16. First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering.

    PubMed

    Baxter, D; Chen, C J; Crisler, M; Cwiok, T; Dahl, C E; Grimsted, A; Gupta, J; Jin, M; Puig, R; Temples, D; Zhang, J

    2017-06-09

    A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a ^{252}Cf neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19±6  keV (1σ uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3×10^{-7} bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF_{3}I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils, while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering.

  17. Measurements of cross-section of charge current inclusive of antineutrino scattering off nucleons using carbon, iron, lead and scintillator at MINER$\

    SciTech Connect

    Rakotondravohitra, Laza

    2015-08-18

    Neutrino physics is one of the most active fields in the domaine of high energy physics during the last century. The need of precise measurement of neutrino-nucleus interactions required by the neutrino oscillation experiments is a an exiting step. These measurements of cross-section are more than essential for neutrino oscillation experiment. Over the year, many measurements from varieties of experiments have been presented. MINERνA is one of the world leaders in measuring cross-section of neutrino and antineutrino -nucleus interactions. MINERνA is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. In order to study nuclear dependence, MINERνA is endowed with different types of solid nuclear targets as well are liquid targets such as helium and water. This thesis presents measurements of cross-section of antineutrino scattering off nucleons using a variety of solid nuclear targets, carbon, iron, lead and also polystyrene scintillator (CH). The data set of antineutrino used for this analysis was taken between March and July 2010 with a total of 1.60X1020 protons on target. Charged current inclusive interactions were selected by requiring a positive muon and kinematics limitation of acceptance of the muon spectrometer are applied. The analysis requires neutrino energy between 2GeV et 20GeV and the angle of muon θmu < 17degree . The absolute cross-section # as function of neutrino energy and the differential cross-section dσ/ dxbj measured and shown the corresponding systematics for each nuclear targets. Data results are compared with prediction of the models implemented in the neutrino events generators GENIE 2.6.2 used by the experiment.

  18. Recent results from COMPASS muon scattering measurements

    NASA Astrophysics Data System (ADS)

    Capozza, Luigi; Compass Collaboration

    2012-10-01

    A sample of recent results in muon scattering measurements from the COMPASS experiment at CERN will be reviewed. These include high energy processes with longitudinally polarised proton and deuteron targets. High energy polarised measurements provide important constraints for studying the nucleon spin structure and thus permit to test the applicability of the theoretical framework of factorisation theorems and perturbative QCD. Specifically, latest results on longitudinal quark polarisation, quark helicity densities and gluon polarisation will be reviewed.

  19. Recent results from COMPASS muon scattering measurements

    SciTech Connect

    Capozza, Luigi [Irfu Collaboration: COMPASS Collaboration

    2012-10-23

    A sample of recent results in muon scattering measurements from the COMPASS experiment at CERN will be reviewed. These include high energy processes with longitudinally polarised proton and deuteron targets. High energy polarised measurements provide important constraints for studying the nucleon spin structure and thus permit to test the applicability of the theoretical framework of factorisation theorems and perturbative QCD. Specifically, latest results on longitudinal quark polarisation, quark helicity densities and gluon polarisation will be reviewed.

  20. KM3NeT - ORCA: measuring the neutrino mass ordering in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Kouchner, Antoine

    2016-05-01

    ORCA (Oscillations Research with Cosmics in the Abyss) is the low-energy branch of KM3NeT, the underwater Cherenkov neutrino detector in the Mediterranean. Its primary goal is to resolve the long-standing unsolved question of the neutrino mass ordering by measuring matter oscillation effects in atmospheric neutrinos. To be deployed at the French KM3NeT site, ORCA’s multi-PMT optical modules will exploit the excellent optical properties of deep seawater to reconstruct cascade and track events with a few GeV of energy. This contribution reviews the methods and technology, and discusses the current expected performances.

  1. Solar neutrino physics with low-threshold dark matter detectors

    NASA Astrophysics Data System (ADS)

    Billard, J.; Strigari, L. E.; Figueroa-Feliciano, E.

    2015-05-01

    Dark matter detectors will soon be sensitive to Solar neutrinos via two distinct channels: coherent neutrino-nucleus and neutrino-electron elastic scatterings. We establish an analysis method for extracting Solar model properties and neutrino properties from these measurements, including the possible effects of sterile neutrinos which have been hinted at by some reactor experiments and cosmological measurements. Even including sterile neutrinos, through the coherent scattering channel, a 1 ton-year exposure with a low-threshold background free Germanium detector could improve on the current measurement of the normalization of the B 8 Solar neutrino flux down to 3% or less. Combining with the neutrino-electron elastic scattering data will provide constraints on both the high- and low-energy survival probability and will improve on the uncertainty on the active-to-sterile mixing angle by a factor of 2. This sensitivity to active-to-sterile transitions is competitive and complementary to forthcoming dedicated short baseline sterile neutrino searches with nuclear decays. Finally, we show that such solar neutrino physics potentials can be reached as long as the signal-to-noise ratio is better than 0.1.

  2. Measurements Of Scattered Light From Asbestos Particulate

    NASA Astrophysics Data System (ADS)

    Riis, P.; Ballik, E. A.

    1987-09-01

    Light-scattering techniques are potentially very important for the low-level detection and identification of particulate species such as asbestos in aerosol and liquid suspensions. Low-level detection is essential because asbestos is a known carcinogen, even at very-low exposure levels. At present, most asbestos particulate monitoring is used on optical microscopy. If detailed analysis is required, then electron microscopy is employed. Both of these methods are labour intensive. Furthermore, the optical microscopy method is not very reliable. Although the light-scattering techniques described here have general applicability, the emphasis is on asbestos measurements. Ordinary measurements of Mie scattering from asbestos suspensions can provide only limited information on asbestos content. owever, a more sophisticated technique can be employed which relies on the fact that asbestos particulate is fibrous rather than spherical in shape, and that the fibres align in a strong magnetic field (approximately 0.5 T). Particulate other than asbestos is generally non-fibrous in shape. Measurements have been carried out on liquid suspensions of asbestos contained in a small cell placed between the poles of a rotating magnet. The aligned fibres, which rotate about their centre of mass as they follow the field, are illuminated using a laser source. The Mie-scattering intensity is measured as a function of rotation angle, and the resulting data is then analysed with the aid of a microcomputer. Intensity maxima and minima provide reliable information on asbestos concentration, even in the presence of strong scattering from other particulate. In addition, the angular location of the intensity peaks provides information on the type of asbestos present. Each type has a characteristic alignment behaviour in a strong magnetic field. Using relatively-simple equipment, chrysotile asbestos (the most commonly-used type) has been detected at levels below 30 ng/l.

  3. Improved Determination of {ital {alpha}}{sub {ital s}} From Neutrino-Nucleon Scattering

    SciTech Connect

    Johnson, R.A.; Vakili, M.; Seligman, W.G.; Arroyo, C.G.; Bazarko, A.O.; Conrad, J.; Kim, J.H.; King, B.J.; Lefmann, W.C.; McNulty, C.; Mishra, S.R.; Quintas, P.Z.; Romosan, A.; Sciulli, F.J.; Shaevitz, M.H.; Spentzouris, P.; Stern, E.G.; Bernstein, R.H.; Lamm, M.J.; Marsh, W.; McFarland, K.S.; Yu, J.; Bolton, T.; Naples, D.; de Barbaro, L.; Schellman, H.; de Barbaro, P.; Bodek, A.; Budd, H.; Harris, D.A.; Sakumoto, W.K.; Yang, U.K.; Kinnel, T.; Smith, W.H.

    1997-08-01

    We present an improved determination of the proton structure functions F{sub 2} and xF{sub 3} from the Columbia-Chicago-Fermilab-Rochester Collaboration {nu}{minus}Fe deep inelastic scattering experiment. Comparisons to corrected high-statistics charged-lepton scattering results for F{sub 2} from the NMC, E665, SLAC, and BCDMS experiments indicate good agreement for x{gt}0.1 but some discrepancy at lower x . The Q{sup 2} evolution of both the F{sub 2} and xF{sub 3} structure functions yields a value of the strong coupling constant at the scale of mass of the Z boson of {alpha}{sub s}(M{sup 2}{sub Z})=0 .119{plus_minus}0.002(expt){plus_minus}0.004( theory) . This is one of the most precise measurements of this quantity. {copyright} {ital 1997} {ital The American Physical Society}

  4. Future long-baseline neutrino oscillations: View from North America

    NASA Astrophysics Data System (ADS)

    Wilson, Robert J.

    2015-07-01

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE) that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  5. Future Long-Baseline Neutrino Oscillations: View from North America

    SciTech Connect

    Wilson, R. J.

    2015-06-01

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE), that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  6. Future long-baseline neutrino oscillations: View from North America

    SciTech Connect

    Wilson, Robert J.

    2015-07-15

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE) that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  7. Neutrino physics with DARWIN

    NASA Astrophysics Data System (ADS)

    Benabderrahmane, M. L.

    2017-09-01

    DARWIN (DARk matter WImp search with liquid xenoN) will be a multi-ton dark matter detector with the primary goal of exploring the entire experimentally accessible parameter space for weakly interacting massive particles (WIMPs) over a wide mass-range. With its 40 tonne active liquid xenon target, low-energy threshold and ultra-low background level, DARWIN can also search for other rare interactions. Here we present its sensitivity to low-energy solar neutrinos and to neutrinoless double beta decay. In a low-energy window of 2-30 keV a rate of 105/year, from pp and 7Be neutrinos can be reached. Such a measurement, with 1% precision will allow testing neutrinos models. DARWIN could also reach a competitive half-life sensitivity of 8.5 · 1027 y to the neutrinoless double beta decay (0νββ) of 136Xe after an exposure of 140 t×y of natural xenon. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below 5 GeV/c2, and the event rate from 8B neutrinos would range from a few to a few tens of events per tonne and year, depending on the energy threshold of the detector. Deviations from the predicted but yet unmeasured neutrino flux would be an indication for physics beyond the Standard Model

  8. Measurement of spin coherence using Raman scattering

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Delteil, A.; Faelt, S.; Imamoǧlu, A.

    2016-06-01

    Ramsey interferometry provides a natural way to determine the coherence time of most qubit systems. Recent experiments on quantum dots, however, demonstrated that dynamical nuclear spin polarization can strongly influence the measurement process, making it difficult to extract the T2* coherence time using standard optical Ramsey pulses. Here, we demonstrate an alternative method for spin coherence measurement that is based on first-order coherence of photons generated in spin-flip Raman scattering. We show that if a quantum emitter is driven by a weak monochromatic laser, Raman coherence is determined exclusively by spin coherence, allowing for a direct determination of spin T2* time. When combined with coherence measurements on Rayleigh scattered photons, our technique enables us to identify coherent and incoherent contributions to resonance fluorescence, and to minimize the latter. We verify the validity of our technique by comparing our results to those determined from Ramsey interferometry for electron and heavy-hole spins.

  9. The Fermilab main injector neutrino program

    SciTech Connect

    Morfin, Jorge G.; /Fermilab

    2007-01-01

    The NuMI Facility at Fermilab provides an extremely intense beam of neutrinos making it an ideal place for the study of neutrino oscillations as well as high statistics (anti)neutrino-nucleon/nucleus scattering experiments. The MINOS neutrino oscillation {nu}{mu} disappearance experiment is currently taking data and has published first results. The NO{nu}A {nu}e appearance experiment is planning to begin taking data at the start of the next decade. For the study of neutrino scattering, the MINER{nu}A experiment at Fermilab is a collaboration of elementary-particle and nuclear physicists planning to use a fully active fine-grained solid scintillator detector. The overall goals of the experiment are to measure absolute exclusive cross-sections, nuclear effects in {nu} - A interactions, a systematic study of the resonance-DIS transition region and the high-xBj - low Q2 DIS region.

  10. Precision Neutrino Oscillation Measurements using Simultaneous High-Power, Low-Energy Project-X Beams

    SciTech Connect

    Bishai, M.; Diwan, M.; Kettell, S.; Stewart, J.; Viren, B.; Worcester, E.; Tschirhart, R.; Whitehead, L.

    2013-07-02

    The first phase of the long-baseline neutrino experiment, LBNE10, will use a broadband, high-energy neutrino beam with a 10-kt liquid argon TPC at 1300 km to study neutrino oscillation. In this paper, we describe potential upgrades to LBNE10 that use Project X to produce high-intensity, low-energy neutrino beams. Simultaneous, high-power operation of 8- and 60-GeV beams with a 200-kt water Cerenkov detector would provide sensitivity to nu_mu to nu_e oscillations at the second oscillation maximum. We find that with ten years of data, it would be possible to measure sin2(2theta_13) with precision comparable to that expected from reactor antineutrino disappearance and to measure the value of the CP phase, delta_CP, with an uncertainty of (5-10) degrees. This document is submitted for inclusion in Snowmass 2013.

  11. What can we learn from high precision measurements of neutrino mixing angles?

    NASA Astrophysics Data System (ADS)

    Mohapatra, R. N.

    2004-12-01

    Many experiments are being planned to measure the neutrino mixing angles more precisely. In this note, the theoretical significance of a high precision measurement of these parameters is discussed. It is emphasized that they can provide crucial information about different ways to understand the origin of large atmospheric neutrino mixing and move us closer towards determining the neutrino mass matrix. They may also be able to throw light on the question of lepton-quark unification as well as the existence of any leptonic symmetries. For instance if exact m i symmetry in the neutrino mass matrix is assumed to be the reason for maximal nm-ni mixing, one gets q13 = 0 and theta_{13} simeq sqrt{Delta m_{dotcircle}^2/Delta_A^2} or theta_{13} simeq Delta m_{dotcircle}^2/Delta_A^2 can provide information about the way the m i symmetry breaking manifests in the case of normal hierarchy.

  12. High precision 7Be solar neutrinos measurement and day night effect obtained with Borexino

    NASA Astrophysics Data System (ADS)

    Testera, G.; Bellini, G.; Benziger, J.; Bick, D.; Bonetti, S.; Bonfini, G.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Carraro, C.; Chavarria, A.; D'Angelo, D.; Derbin, A.; Etenko, A.; Fomenko, K.; Franco, D.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Grandi, L.; Guardincerri, E.; Hardy, S.; Ianni, Aldo; Ianni, Andrea; Korablev, D.; Kobychev, V.; Korga, G.; Koshio, Y.; Kryn, D.; Laubenstein, M.; Leung, M.; Lewke, T.; Litvinovich, E.; Loer, B.; Lombardi, P.; Lombardi, F.; Ludhova, L.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Meindl, Q.; Meroni, E.; Miramonti, L.; Misiaszek, M.; Montanari, D.; Mosteiro, P.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Pena-Garay, C.; Perasso, L.; Perasso, S.; Pocar, A.; Raghavan, R. S.; Ranucci, G.; Razeto, A.; Romani, A.; Sabelnikov, A.; Saldanha, R.; Salvo, C.; Schönert, S.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Vignaud, D.; Vogelaar, R. B.; von Feilitzsch, F.; Winter, J.; Wojcik, M.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuzel, G.

    2012-11-01

    We report the direct measurement of the 7Be solar neutrino signal rate performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso and the search for a day-night asymmetry of this interaction rate. The interaction rate of the 0.862 MeV 7Be neutrinos is 46±1.6(stat)-1.6+1.5(syst) counts/(day · 100 ton). The hypothesis of no oscillation for this solar neutrinos is inconsistent with our measurement at the 5.8σ C.L. Our result is the first direct measurement of solar neutrinos with an accuracy better than 5%. We report the survival probability for solar νe in the transition region between matter-enhanced and vacuum-driven oscillations. The measured day night asymmetry is Adn=0.001±0.012 (stat)±0.007 (syst), in agreement with the predicition of MSW-LMA neutrino [13] oscillations. This result discourages MSW oscillations with mixing parameters in the LOW region at more than 8.5σ, meaning that this region is, for the first time, strongly rejected without the assumption of CPT symmetry. The result can also be used to constrain some neutrino oscillation scenarios involving new physics.

  13. Leptonic CP Violation measurement at the neutrino factory

    NASA Astrophysics Data System (ADS)

    Burguet Castell, J.; Mena, O.

    2003-05-01

    In this talk, based on the work [J. Burguet Castell, et al., Nucl. Phys. B 608 (2001) 301], we refine our previous analysis [A. Cervera, et al., Nucl. Phys. B 579 (2000) 17] of the sensitivity to leptonic CP violation and θ13 at a neutrino factory in the LMA-MSW scenario, by exploring the full range of these two parameters. We have discovered that there exist, at fixed neutrino energy, Eν, and baseline, L, degenerate solutions. Although the spectral analysis helps in disentangling fake from true solutions, a leftover product of this degeneracy remains for a realistic detector, which we analyse. Furthermore, we take into account the expected uncertainties on the solar and atmospheric oscillation parameters and in the average Earth matter density along the neutrino path. An intermediate baseline of O(3000) km is still the best option to tackle CP violation, although a combination of two baselines turns out to be very important in resolving degeneracies.

  14. Measurement of muon neutrino and antineutrino induced single neutral pion production cross sections

    SciTech Connect

    Anderson, Colin E.

    2011-05-01

    Elucidating the nature of neutrino oscillation continues to be a goal in the vanguard of the efforts of physics experiment. As neutrino oscillation searches seek an increasingly elusive signal, a thorough understanding of the possible backgrounds becomes ever more important. Measurements of neutrino-nucleus interaction cross sections are key to this understanding. Searches for νμ → νe oscillation - a channel that may yield insight into the vanishingly small mixing parameter θ13, CP violation, and the neutrino mass hierarchy - are particularly susceptible to contamination from neutral current single π0 (NC 1π0) production. Unfortunately, the available data concerning NC 1π0 production are limited in scope and statistics. Without satisfactory constraints, theoretical models of NC 1π0 production yield substantially differing predictions in the critical Eν ~ 1 GeV regime. Additional investigation of this interaction can ameliorate the current deficiencies. The Mini Booster Neutrino Experiment (MiniBooNE) is a short-baseline neutrino oscillation search operating at the Fermi National Accelerator Laboratory (Fermilab). While the oscillation search is the principal charge of the MiniBooNE collaboration, the extensive data (~ 106 neutrino events) offer a rich resource with which to conduct neutrino cross section measurements. This work concerns the measurement of both neutrino and antineutrino NC 1π0 production cross sections at MiniBooNE. The size of the event samples used in the analysis exceeds that of all other similar experiments combined by an order of magnitude. We present the first measurements of the absolute NC 1π0 cross section as well as the first differential cross sections in both neutrino and antineutrino mode. Specifically, we measure single differential cross sections with respect to pion momentum and pion angle. We find the

  15. Compton scattering measurements from dense plasmas

    DOE PAGES

    Glenzer, S. H.; Neumayer, P.; Doppner, T.; ...

    2008-06-12

    Here, Compton scattering techniques have been developed for accurate measurements of densities and temperatures in dense plasmas. One future challenge is the application of this technique to characterize compressed matter on the National Ignition Facility where hydrogen and beryllium will approach extremely dense states of matter of up to 1000 g/cc. In this regime, the density, compressibility, and capsule fuel adiabat may be directly measured from the Compton scattered spectrum of a high-energy x-ray line source. Specifically, the scattered spectra directly reflect the electron velocity distribution. In non-degenerate plasmas, the width provides an accurate measure of the electron temperatures, whilemore » in partially Fermi degenerate systems that occur in laser-compressed matter it provides the Fermi energy and hence the electron density. Both of these regimes have been accessed in experiments at the Omega laser by employing isochorically heated solid-density beryllium and moderately compressed beryllium foil targets. In the latter experiment, compressions by a factor of 3 at pressures of 40 Mbar have been measured in excellent agreement with radiation hydrodynamic modeling.« less

  16. Measuring scattering lengths of gaseous samples

    NASA Astrophysics Data System (ADS)

    Huber, M. G.; Black, T. C.; Haun, R.; Pushin, D. A.; Shahi, C. B.; Weitfeldt, F. E.

    2016-03-01

    Neutron interferometry represents one of the most precise techniques for measuring the coherent scattering lengths (bc) of particular nuclear isotopes. Currently bc for helium-4 is known only to 1% relative uncertainty; a factor of ten higher than precision measurements of other light isotopes. Scattering lengths are measured using a neutron interferometer and by comparing the phase shift a neutron acquires as it passes through a gaseous sample relative to that of a neutron passing through vacuum. The density of the gas is determined by continuous monitoring of the sample's temperature and pressure. Challenges for these types of experiments include achieving the necessary long-term phase stability and accurate determination of the phase shift caused by the aluminum cell used to hold the gas; a phase shift many times greater than that of the sample. The present status on the effort to measure the n-4He scattering length at the NIST center for Neutron Research will be given. Financial support provided by the NSERC `Create' and `Discovery' programs, CERC, NIST and NSF Grant PHY-1205342.

  17. Neutrino-pair bremsstrahlung from nucleon-α versus nucleon-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Sharma, Rishi; Bacca, Sonia; Schwenk, A.

    2015-04-01

    We study the impact of the nucleon-α P -wave resonances on neutrino-pair bremsstrahlung. Because of the noncentral spin-orbit interaction, these resonances lead to an enhanced contribution to the nucleon spin structure factor for temperatures T ≲4 MeV. If the α -particle fraction is significant and the temperature is in this range, this contribution is competitive with neutron-neutron bremsstrahlung. This may be relevant for neutrino production in core-collapse supernovae or other dense astrophysical environments. Similar enhancements are expected for resonant noncentral nucleon-nucleus interactions.

  18. Correct optical measurement of scattering samples

    SciTech Connect

    Ferber, J.; Platzer, W.

    1994-12-31

    Advanced glazing materials are used in many different applications. Honeycomb structures, aerogels, thermotropic layers, selective coatings are just a few examples. Light scattering is often observed in these materials, sometimes unwanted and at a rather low level, sometimes intended, e.g., in architectural glass with white diffusion patterns. In order to develop and use such kinds of materials efficiently, it is of great importance to know their optical properties. Errors in performing optical measurements of scattering samples are analyzed. Measurements are described from a Perkin-Elmer Lambda-9 spectrophotometer with an integrating sphere of 15 cm diameter for spectral data between 300 and 2,500 nm and from a 65 cm integrating sphere for broadband data on larger samples. The influence of the size of the illuminated sample area, the size of the sphere ports and sample thickness are investigated. Results are compared with Monte Carlo simulations.

  19. Fiber optic probe for light scattering measurements

    DOEpatents

    Nave, S.E.; Livingston, R.R.; Prather, W.S.

    1993-01-01

    This invention is comprised of a fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman- scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  20. Fiber optic probe for light scattering measurements

    DOEpatents

    Nave, Stanley E.; Livingston, Ronald R.; Prather, William S.

    1995-01-01

    A fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman-scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  1. Supernovae neutrino pasta interaction

    NASA Astrophysics Data System (ADS)

    Lin, Zidu; Horowitz, Charles; Caplan, Matthew; Berry, Donald; Roberts, Luke

    2017-01-01

    In core-collapse supernovae, the neutron rich matter is believed to have complex structures, such as spherical, slablike, and rodlike shapes. They are collectively called ``nuclear pasta''. Supernovae neutrinos may scatter coherently on the ``nuclear pasta'' since the wavelength of the supernovae neutrinos are comparable to the nuclear pasta scale. Consequently, the neutrino pasta scattering is important to understand the neutrino opacity in the supernovae. In this work we simulated the ``nuclear pasta'' at different temperatures and densities using our semi-classical molecular dynamics and calculated the corresponding static structure factor that describes ν-pasta scattering. We found the neutrino opacities are greatly modified when the ``pasta'' exist and may have influence on the supernovae neutrino flux and average energy. Our neutrino-pasta scattering effect can finally be involved in the current supernovae simulations and we present preliminary proto neutron star cooling simulations including our pasta opacities.

  2. Measurement of neutrino interactions in gaseous argon with T2K

    NASA Astrophysics Data System (ADS)

    Koch, L.; T2K collaboration

    2017-09-01

    The T2K near-detector, ND280, employs three large argon gas TPCs (Time Projection Chambers) for particle tracking and identification. The gas inside the TPCs can be used as an active target to study the neutrino interactions in great detail. The low density of the gas leads to very low track energy thresholds, allowing the reconstruction of very low momentum tracks, e.g. protons with kinetic energies down to O(1 MeV). Since different nuclear interaction models vary considerably in their predictions of those low momentum track multiplicities, this makes neutrino interactions on gases a powerful probe to test those models. The TPCs operate with an argon-based gas mixture (95% by volume) and have been exposed to the T2K neutrino beam since the beginning of the experiment in 2010. Due to the low total mass of the gas, neutrino argon interactions happen only rarely, compared to the surrounding scintillator-based detectors. We expect about 600 such events in the recorded data so far (about 200 in the fiducial volume). We are able to separate those events from the background and thus demonstrate the viability of using gaseous argon as a target for a neutrino beam. This enables us to do a cross-section measurement on gaseous argon, the first measurement of this kind. All previous neutrino cross-section measurements on argon were performed in liquid argon TPCs.

  3. Light scattering measurement of sodium polyacrylate products

    NASA Astrophysics Data System (ADS)

    Lama, Nisha; Norwood, David; Boone, Steven; Massie-Boyer, Valerie

    2015-03-01

    In the presentation, we will describe the use of a multi-detector HPLC incorporating the DAWN EOS multi-angle laser light scattering (MALLS) detector to measure the properties such as molecular weight, RMS radius, contour and persistence length and polydispersity of sodium polyacrylate products. The samples of sodium polyacrylate are used in various industries as thickening agents, coating dispersants, artificial snow, laundry detergent and disposable diapers. Data and results obtained from the experiment will be presented.

  4. Neutrino mass, a status report

    SciTech Connect

    Robertson, R.G.H.

    1993-08-01

    Experimental approaches to neutrino mass include kinematic mass measurements, neutrino oscillation searches at rectors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing.

  5. Experimental Neutrino Physics: Final Report

    SciTech Connect

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  6. Rayleigh scattering measurements in supersonic facilities

    NASA Technical Reports Server (NTRS)

    Shirinzadeh, B.; Balla, R. Jeffrey; Hillard, M. E.

    1996-01-01

    Using a narrow-band, pulsed, ArF excimer laser and a single-intensified CCD camera, planar laser Rayleigh scattering measurements were performed to obtain quantitative density measurements both in the free stream and in a model flow field. These measurements were conducted in the 15-inch, Mach 6 high temperature facility at NASA Langley Research Center. This facility is capable of achieving stagnation temperatures up to 700 K (800 F) over a range of stagnation pressures from 0.35 to 2.07 MPa (50 to 300 psia). The high temperature capability of this facility eliminates the clustering effect observed in earlier Mach 6 studies, and allows quantitative density measurements in the free stream over a range of stagnation pressures from 0.35 to 1.75 MPa (50 to 250 psia). Model flow field measurements were obtained on 38.1 mm diameter cylinder. Measurement locations include the free stream, the region behind the bow shock in front of the model, and the region behind the model including the wake. The densities deduced from the Rayleigh scattering measurements in the model flow field are compared with CFD computations. Measurement uncertainties and the detection limit are discussed.

  7. A measurement of neutrino induced quasi-elastic cross section in NOMAD

    NASA Astrophysics Data System (ADS)

    Kim, Jae

    NOMAD (Neutrino Oscillation MAgnetic Detector) is a short baseline neutrino experiment at CERN (the European Laboratory for Particle physics) West Area Neutrino Facility (WANF) with a neutrino beam provided by the super proton synchrotron (SPS) accelerator [98]. In this dissertation, we present a measurement of the muon-neutrino induced quasi-elastic (QEL), nu mu + n → mu- + p, cross-section off an isoscalar target in the NOMAD detector. The incident neutrino energy in NOMAD experiment spans from 2.5 to 300 GeV. The measurement of the cross-section is conducted in a two-track topology where both a muon and a proton are fully reconstructed, and a one-track topology where only a muon is reconstructed. The QEL cross-section as a function of the incoming neutrino energy is consistent for the two different topologies, and within errors, constant as a function of the neutrino energy. We determine the energy-averaged cross-section, sigma = 0:908 +/- 0:012 (stat) +/-0:035 (syst) 10-38cm2, where the first is the averaged energy-dependent error (statistical error is dominant one), and the second is the energy-independent, or overall, error. From the shape-comparisons of kinematics of QEL events, the axial mass parameter is determined. It is in good agreement with the result from the measurement of QEL cross-section. Using the chi2 of the shapes of four independent kinematic variables between data and MC, we determine MA = 1:03 +/- 0:05 GeV. The cross-section and the axial mass presented in this thesis have the best precision to date.

  8. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE PAGES

    Cheng, G.

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2σ/dpdΩ = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared tomore » Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.« less

  9. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    SciTech Connect

    Cheng, G.

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2σ/dpdΩ = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.

  10. Measurement of K+ production cross section by 8 GeV protons using high-energy neutrino interactions in the SciBooNE detector

    NASA Astrophysics Data System (ADS)

    Cheng, G.; Mariani, C.; Alcaraz-Aunion, J. L.; Brice, S. J.; Bugel, L.; Catala-Perez, J.; Conrad, J. M.; Djurcic, Z.; Dore, U.; Finley, D. A.; Franke, A. J.; Giganti, C.; Gomez-Cadenas, J. J.; Guzowski, P.; Hanson, A.; Hayato, Y.; Hiraide, K.; Jover-Manas, G.; Karagiorgi, G.; Katori, T.; Kobayashi, Y. K.; Kobilarcik, T.; Kubo, H.; Kurimoto, Y.; Louis, W. C.; Loverre, P. F.; Ludovici, L.; Mahn, K. B. M.; Masuike, S.; Matsuoka, K.; McGary, V. T.; Metcalf, W.; Mills, G. B.; Mitsuka, G.; Miyachi, Y.; Mizugashira, S.; Moore, C. D.; Nakajima, Y.; Nakaya, T.; Napora, R.; Nienaber, P.; Orme, D.; Otani, M.; Russell, A. D.; Sanchez, F.; Shaevitz, M. H.; Shibata, T.-A.; Sorel, M.; Stefanski, R. J.; Takei, H.; Tanaka, H.-K.; Tanaka, M.; Tayloe, R.; Taylor, I. J.; Tesarek, R. J.; Uchida, Y.; van de Water, R.; Walding, J. J.; Wascko, M. O.; White, H. B.; Yokoyama, M.; Zeller, G. P.; Zimmerman, E. D.

    2011-07-01

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high-energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure (d2σ)/(dpdΩ)=(5.34±0.76)mb/(GeV/c×sr) for p+Be→K++X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85±0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.

  11. First Measurement of the Muon Anti-Neutrino Charged Current Quasielastic Double-Differential Cross-Section

    SciTech Connect

    Grange, Joseph M.

    2013-01-01

    This dissertation presents the first measurement of the muon antineutrino charged current quasi-elastic double-differential cross section. These data significantly extend the knowledge of neutrino and antineutrino interactions in the GeV range, a region that has recently come under scrutiny due to a number of conflicting experimental results. To maximize the precision of this measurement, three novel techniques were employed to measure the neutrino background component of the data set. Representing the first measurements of the neutrino contribution to an accelerator-based antineutrino beam in the absence of a magnetic field, the successful execution of these techniques carry implications for current and future neutrino experiments.

  12. Comparative Analyses of Brookhaven National Laboratory Nuclear Decay Measurements and Super-Kamiokande Solar Neutrino Measurements: Neutrinos and Neutrino-Induced Beta-Decays as Probes of the Deep Solar Interior

    NASA Astrophysics Data System (ADS)

    Sturrock, P. A.; Fischbach, E.; Scargle, J. D.

    2016-12-01

    An experiment carried out at the Brookhaven National Laboratory over a period of almost 8 years acquired 364 measurements of the beta-decay rates of a sample of {}^{32}Si and, for comparison, of a sample of {}^{36}Cl. The experimenters reported finding " small periodic annual deviations of the data points from an exponential decay … of uncertain origin". We find that power-spectrum and spectrogram analyses of these datasets show evidence not only of the annual oscillations, but also of transient oscillations with frequencies near 11 year-1 and 12.5 year-1. Similar analyses of 358 measurements of the solar neutrino flux acquired by the Super-Kamiokande neutrino observatory over a period of about 5 years yield evidence of an oscillation near 12.5 year-1 and another near 9.5 year-1. An oscillation near 12.5 year-1 is compatible with the influence of rotation of the radiative zone. We suggest that an oscillation near 9.5 year-1 may be indicative of rotation of the solar core, and that an oscillation near 11 year-1 may have its origin in a tachocline between the core and the radiative zone. Modulation of the solar neutrino flux may be attributed to an influence of the Sun's internal magnetic field by the Resonant Spin Flavor Precession (RSFP) mechanism, suggesting that neutrinos and neutrino-induced beta decays can provide information about the deep solar interior.

  13. Charged current quasi-elastic neutrino analysis at MINERνA

    NASA Astrophysics Data System (ADS)

    Fiorentini, G. A.

    2015-05-01

    MINERνA (Main INjector Experiment for ν-A) is a neutrino scattering experiment in the NuMI high-intensity neutrino beam at the Fermi National Accelerator Laboratory. MINERvA was designed to make precision measurements of low energy neutrino and antineutrino cross sections on a variety of different materials (plastic scintillator, C, Fe, Pb, He and H2O). We present the current status of the charged current quasi-elastic scattering in plastic scintillator.

  14. Charged current quasi-elastic neutrino analysis at MINERνA

    SciTech Connect

    Fiorentini, G. A.

    2015-05-15

    MINERνA (Main INjector Experiment for ν-A) is a neutrino scattering experiment in the NuMI high-intensity neutrino beam at the Fermi National Accelerator Laboratory. MINERvA was designed to make precision measurements of low energy neutrino and antineutrino cross sections on a variety of different materials (plastic scintillator, C, Fe, Pb, He and H2O). We present the current status of the charged current quasi-elastic scattering in plastic scintillator.

  15. Industrial Particle Size Measurement Using Light Scattering

    NASA Astrophysics Data System (ADS)

    Muly, E. C.; Frock, H. N.

    1980-12-01

    The precise knowledge of particle size and particle size distribution is fundamental to the control of a wide variety of industrial processes. Processing steps as diverse as crystallization, grinding, emulsification, and atomization, produce particles in the size range .1 to 1000 micrometers in diameter. While the object of some processes may be the production of particles of specified sizes, e.g., abrasives and glass beads, other processes may require particle size control for process efficiency, e.g., crystallization, and still others for control of final product quality, e.g., minerals, cement, and ceramics. In many processes more than one of these reasons may be important. A line of instruments has been developed using light scattering to measure various parameters of particulate distributions. These instruments employ laser illumination of a flowing stream of particles, producing Fraunhofer diffraction patterns which are processed both optically and electronically with unique, proprietary techniques. Various parameters of the particle size distribution are measured. The measurement is both rapid and precise. This paper will cover the importance of particle size measurements in various processes, different types of measurement methods, and the application of light scattering technology to size determinations in wet slurries and dry powders. A number of specific applications will be discussed encompassing minerals grinding, Portland cement, and rolling mill emulsions. Some references will be made to energy savings through automation.

  16. Measurement of θ13 using RENO reactor neutrino events with neutron capture on hydrogen

    NASA Astrophysics Data System (ADS)

    Shin, ChangDong; RENO Collaboration

    2017-09-01

    RENO has been taking data since August, 2011 and successfully measured the smallest neutrino mixing angle, theta13. This measurement was based on observed reactor neutrino events with neutron captures on gadolinium (n-Gd) in the target detector region. RENO also successfully measures the mixing angle from a reactor neutrino sample with neutron captures on hydrogen (n-H) in the gamma-catcher region. Due to a large accidental background in the n-H data sample, the analysis requires additional reduction of backgrounds. This independent measurement provides a valuable systematic cross-check of the θ13 measurement using the n-Gd sample. In this paper, we present the results from the n-H analysis using the 500 days of data sample.

  17. Neutrino interactions on nuclei at MINERvA

    NASA Astrophysics Data System (ADS)

    Carneiro, M. F.; Minerva Collaboration

    2016-07-01

    Here we present analysis results from the MINERvA experiment for scattering of neutrinos on nucleus in an energy region of few GeV. These results cover a plethora of processes important for high precision neutrino oscillation measurements in which recent results have suggested that the currently used models are insufficient.

  18. Quasi-Elastic Neutrino Cross Sections with MINERvA

    NASA Astrophysics Data System (ADS)

    Walding, Joe; Minerva Collaboration

    2011-10-01

    The MINERvA experiment will measure neutrino and antineutrino quasi-elastic scattering on helium, water, carbon, iron, and lead for neutrinos in the few GeV range. We will present preliminary results for quasi-elastic cross sections in the few GeV range on carbon. Supported in part by the US NSF.

  19. Assessment of molecular effects on neutrino mass measurements from tritium β decay

    NASA Astrophysics Data System (ADS)

    Bodine, L. I.; Parno, D. Â. S.; Robertson, R. Â. G. Â. H.

    2015-03-01

    The β decay of molecular tritium currently provides the highest sensitivity in laboratory-based neutrino mass measurements. The upcoming Karlsruhe Tritium Neutrino (KATRIN) experiment will improve the sensitivity to 0.2 eV, making a percent-level quantitative understanding of molecular effects essential. The modern theoretical calculations available for neutrino mass experiments agree with spectroscopic data. Moreover, when neutrino mass experiments performed in the 1980s with gaseous tritium are reevaluated using these modern calculations, the extracted neutrino mass squared values are consistent with zero instead of being significantly negative. However, the calculated molecular final-state branching ratios are in conflict with dissociation experiments performed in the 1950s. We reexamine the theory of the final-state spectrum of molecular-tritium decay and its effect on the determination of the neutrino mass, with an emphasis on the role of the vibrational- and rotational-state distribution in the ground electronic state. General features can be reproduced quantitatively from considerations of kinematics and zero-point motion. We summarize the status of validation efforts and suggest means for resolving the apparent discrepancy in dissociation rates.

  20. A Study of the Nuclear-Medium Influence on Transverse Momentum of Hadrons Produced in Deep-Inelastic Neutrino Scattering

    SciTech Connect

    Agababyan, N.M.; Ammosov, V.V.; Ivanilov, A.A.; Korotkov, V.A.; Atayan, M.; Grigoryan, N.; Gulkanyan, H.; Karamyan, Zh.

    2005-07-01

    The influence of nuclear effects on the transverse momentum (p{sub T}) of neutrino-produced hadrons is investigated using the data obtained with the SKAT propane-freon bubble chamber irradiated in the neutrino beam (with E{sub {nu}} = 3-30 GeV) at the Serpukhov accelerator. It has been observed that the nuclear effects cause an enhancement of of hadrons produced in the target fragmentation region at low invariant mass of the hadronic system (2 < W < 4 GeV) and at low energies transferred to the hadrons (2 < {nu} < 9 GeV). At higher W and {nu}, no influence of nuclear effects on is observed. Measurement results are compared with predictions of a simple model, incorporating secondary intranuclear interactions of hadrons, which qualitatively reproduces the main features of the data.

  1. NEUTRINO FACTORIES - PHYSICS POTENTIALS.

    SciTech Connect

    PARSA,Z.

    2001-02-16

    The recent results from Super-Kamiokande atmospheric and solar neutrino observations opens a new era in neutrino physics and has sparked a considerable interest in the physics possibilities with a Neutrino Factory based on the muon storage ring. We present physics opportunities at a Neutrino Factory, and prospects of Neutrino oscillation experiments. Using the precisely known flavor composition of the beam, one could envision an extensive program to measure the neutrino oscillation mixing matrix, including possible CP violating effects. These and Neutrino Interaction Rates for examples of a Neutrino Factory at BNL (and FNAL) with detectors at Gran Sasso, SLAC and Sudan are also presented.

  2. Measurement, entanglement, and collapse, in atom-photon scattering

    NASA Astrophysics Data System (ADS)

    Ozeri, Roee; Glickman, Yinnon; Kotler, Shlomi; Akerman, Nitzan

    2013-05-01

    Photon scattering is a common tool in atomic physics experiments. We show how, entanglement, measurement and decoherence are intertwined in the process of photon scattering by a single trapped ion. We preform quantum process tomography on the spin of a single trapped 88Sr+ ion, undergoing resonant photon scattering. We observe that, following the scattering and detection of a single photon, a spin measurement basis emerges. The measurement basis is aligned with the scattered photon direction and its state are invariant under photon scattering. We also find that, while the measurement basis states themselves are classically correlated with the scattered photon polarization, superpositions of these basis state become entangled with the scattered photon. Quantum feedback, based on photon polarization measurement, can be used to reverse photon scattering decoherence.

  3. Aspects of neutrino interactions (scatterings at the low Q{sup 2}-region)

    SciTech Connect

    Hoinka, T.; Paschos, E. A.; Thomas, L.

    2015-10-15

    The article begins with a description of chiral symmetry and its application to neutrino induced reactions. For small Q{sup 2} (forward direction) the process is dominated by the amplitute with helicity zero where the pion pole disappears when multiplied with the polarization vector. The remaining part of the amplitude is determined by PCAC. For E{sub ν} > 2 GeV the computed cross sections are in good agreement with data. In coherent pion production we expect equal yields for neutrinos and antineutrinos a relation which for E{sub ν} > 2 GeV is fulfilled. We discuss specific features of the data and suggest methods for improving them by presenting new estimates for the incoherent background.

  4. Muon momentum measurement in ICARUS-T600 LAr-TPC via multiple scattering in few-GeV range

    NASA Astrophysics Data System (ADS)

    Antonello, M.; Baibussinov, B.; Bellini, V.; Benetti, P.; Boffelli, F.; Bubak, A.; Calligarich, E.; Centro, S.; Cervi, T.; Cesana, A.; Cieslik, K.; Cocco, A. G.; Dabrowska, A.; Dermenev, A.; Falcone, A.; Farnese, C.; Fava, A.; Ferrari, A.; Gibin, D.; Gninenko, S.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Janik, M.; Kirsanov, M.; Kisiel, J.; Kochanek, I.; Lagoda, J.; Menegolli, A.; Meng, G.; Montanari, C.; Otwinowski, S.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G. L.; Rossella, M.; Rubbia, C.; Sala, P.; Scaramelli, A.; Sergiampietri, F.; Spanu, M.; Stefan, D.; Sulej, R.; Szarska, M.; Terrani, M.; Torti, M.; Tortorici, F.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H.; Yang, X.; Zalewska, A.; Zani, A.; Zaremba, K.

    2017-04-01

    The measurement of muon momentum by Multiple Coulomb Scattering is a crucial ingredient to the reconstruction of νμ CC events in the ICARUS-T600 liquid argon TPC in absence of magnetic field, as in the search for sterile neutrinos at Fermilab where ICARUS will be exposed to ~ 1 GeV Booster neutrino beam. A sample of ~ 1000 stopping muons produced by charged current interactions of CNGS νμ in the surrounding rock at the INFN Gran Sasso underground Laboratory provides an ideal benchmark in the few-GeV range since their momentum can be directly and independently obtained by the calorimetric measurement. Stopping muon momentum in the 0.5-4.5 GeV/c range has been reconstructed via Multiple Coulomb Scattering with resolution ranging from 10 to 25% depending on muon energy, track length and uniformity of the electric field in the drift volume.

  5. Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

    SciTech Connect

    Nakajima, Y.; Kubo, H.; Matsuoka, K.; Nakaya, T.; Orme, D.; Otani, M.; Yokoyama, M.; Alcaraz-Aunion, J. L.; Jover-Manas, G.; Sanchez, F.; Brice, S. J.; Finley, D. A.; Kobilarcik, T.; Moore, C. D.; Russell, A. D.; Stefanski, R. J.; Tesarek, R. J.; White, H. B.; Zeller, G. P.; Bugel, L.

    2011-01-01

    We report a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6%-15% for the energy dependent and 3% for the energy integrated analyses. We also extract charged current inclusive interaction cross sections from the observed rates, with a precision of 10%-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the charged current inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross-section ratio measurements to absolute cross-section values.

  6. Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

    SciTech Connect

    Nakajima, Y.; jima, Y.Naka; Alcaraz-Aunion, J.L.; Brice, S.J.; Bugel, L.; Catala-Perez, J.; Cheng, G.; Conrad, J.M.; Djurcic, Z.; Dore, U.; Finley, D.A.; /Kyoto U. /Barcelona, IFAE /Fermilab /MIT /Valencia U. /Columbia U. /MIT /Columbia U. /INFN, Rome /Rome U. /Fermilab /Columbia U. /INFN, Rome /Rome U.

    2010-11-01

    The SciBooNE Collaboration reports a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6-15% for the energy dependent and 3% for the energy integrated analyses. We also extract CC inclusive interaction cross sections from the observed rates, with a precision of 10-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross section ratio measurements to absolute cross section values.

  7. Neutrino Oscillations and the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wark, David

    2001-04-01

    When the existence of the neutrino was almost apologetically first proposed by Wolfgang Pauli it was intended to explain the mysterious apparent absence of energy and momentum in beta decay. 70 years later the neutrino has indeed solved that mystery, but it has generated still more of its own. Are neutrinos massive? Is it possible to create a neutrino with its spin in the same direction as its momentum? What fraction of the mass of the Universe is made up of neutrinos? Are the flavour labels which we put on neutrinos, like electron and muon, really fixed or can they change? Why does no experiment see the predicted flux of neutrinos from the Sun? Why do there appear to be roughly equal numbers of muon and electron neutrinos created in our atmosphere, rather than the 2:1 ratio we would expect? Many of these questions were coupled when Bruno Pontecorvo first suggested that the shortfall in solar neutrino measurements were caused by neutrino oscillations - neutrinos spontaneously changing flavour as they travel from the Sun. 30 years later we still await definitive proof of that conjecture, and providing that proof is the reason for the Sudbury Neutrino Observatory. The talk will discuss the current state of neutrino oscillations studies, and show how the unique capabilities of the Sudbury Neutrino Observatory can provide definitive proof of whether neutrino oscillations are the long-sought answer to the solar neutrino problem.

  8. A mechanical rotator for neutron scattering measurements

    NASA Astrophysics Data System (ADS)

    Thaler, A.; Northen, E.; Aczel, A. A.; MacDougall, G. J.

    2016-12-01

    We have designed and built a mechanical rotation system for use in single crystal neutron scattering experiments at low temperatures. The main motivation for this device is to facilitate the application of magnetic fields transverse to a primary training axis, using only a vertical cryomagnet. Development was done in the context of a triple-axis neutron spectrometer, but the design is such that it can be generalized to a number of different instruments or measurement techniques. Here, we discuss some of the experimental constraints motivating the design, followed by design specifics, preliminary experimental results, and a discussion of potential uses and future extension possibilities.

  9. Very low-energy neutrino interactions

    SciTech Connect

    Suzuki, Toshio

    2015-05-15

    Neutrino-nucleus reaction cross sections are now evaluated rather accurately by shell-model (SM) or SM+RPA calculations based on recent advances in nuclear structure studies. Due to these achievements, reliable constraints on super-nova neutrino temperatures as well as neutrino oscillation parameters become possible. Supernova neutrino tempeatures are constrained from abundances of elements obtained by using new ν-nucleus reaction cross sections. A possibility of constructing supernova neutrino spectrum from beta-beam measurements is pointed out. Neutrino mass hierarchy and mixing angle θ{sub 13} can be determined from abundance ratio of {sup 7}Li/{sup 11}B, which is sensitive to the MSW matter oscillation effects in supernova explosions. Inverted mass hierarchy is shown to be statistically more favored based on a recent analysis of presolar grains. Effects of neutrino-neutrino interactions are also shown to play important roles in r-process nucleosynthesis. Importance and possibilities of direct measurements of ν-induced cross sections on {sup 40}Ar and {sup 208}Pb are discussed for future supernova neutrino detections. Recent calculations of the cross sections for ν-{sup 40}Ar are presented. The need for new theoretical evaluations of the cross sections for ν-{sup 208}Pb is pointed out. Challenges to experiments on coherent elastic scattering are presented.

  10. CNO and pep neutrino spectroscopy in Borexino: Measurement of the deep-underground production of cosmogenic C11 in an organic liquid scintillator

    NASA Astrophysics Data System (ADS)

    Back, H.; Balata, M.; Bellini, G.; Benziger, J.; Bonetti, S.; Caccianiga, B.; Calaprice, F.; D'Angelo, D.; de Bellefon, A.; de Kerret, H.; Derbin, A.; Etenko, A.; Ford, R.; Franco, D.; Galbiati, C.; Gazzana, S.; Giammarchi, M.; Goretti, A.; Grieb, C.; Harding, E.; Heusser, G.; Ianni, A.; Ianni, A. M.; Kobychev, V. V.; Korga, G.; Kozlov, Y.; Kryn, D.; Laubenstein, M.; Lendvai, C.; Leung, M.; Litvinovich, E.; Lombardi, P.; Machulin, I.; Maneira, J.; Manuzio, D.; Manuzio, G.; Masetti, F.; Mazzucato, U.; McCarty, K.; Meroni, E.; Miramonti, L.; Monzani, M. E.; Muratova, V.; Niedermeier, L.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Raghavan, R. S.; Ranucci, G.; Razeto, A.; Sabelnikov, A.; Salvo, C.; Schoenert, S.; Shutt, T.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tarasenkov, V.; Tartaglia, R.; Vignaud, D.; Vogelaar, R. B.; von Feilitzsch, F.; Vyrodov, V.; Wójcik, M.; Zaimidoroga, O.; Zuzel, G.

    2006-10-01

    Borexino is an experiment for low-energy neutrino spectroscopy at the Gran Sasso underground laboratories. It is designed to measure the monoenergetic Be7 solar neutrino flux in real time, via neutrino-electron elastic scattering in an ultrapure organic liquid scintillator. Borexino has the potential to also detect neutrinos from the pep fusion process and the CNO cycle. For this measurement to be possible, radioactive contamination in the detector must be kept extremely low. Once sufficiently clean conditions are met, the main background source is C11, produced in reactions induced by the residual cosmic muon flux on C12. In the process, a free neutron is almost always produced. C11 can be tagged on an event-by-event basis by looking at the threefold coincidence with the parent muon track and the subsequent neutron capture on protons. This coincidence method has been implemented on the Borexino Counting Test Facility data. We report on the first event-by-event identification of in situ muon-induced C11 in a large underground scintillator detector. We measure a C11 production rate of 0.130 ± 0.026(stat) ± 0.014(syst) day-1 ton-1, in agreement with predictions from both experimental studies performed with a muon beam on a scintillator target and ab initio estimations based on the C11 producing nuclear reactions.

  11. Attachment to spextrophotometers for measuring scattering patterns

    SciTech Connect

    Fsel'son, M.P.; Krikum, A.Z.; Sivyakov, Y.A.; Spivak, R.Y.

    1986-02-01

    The authors have developed a simple attachment to the Shimadsu MPS 50L spectrophotometer for measuring scattering patterns. The attachment is mounted directly at the cuvette section of the spectrophotometer. The radiation detector of the attachment is formed by an FR1-4 photoresistor disposed on the vertical section of a gamma-shaped bar adapted to be inclined by plus or minus 90 degrees with respect to the direction of the radiation beam. When the attachment is used, its radiation detector is connected into the measuring circuit of the spectrophotometer in place of the spectrophotometer's detector. When the spectrophotometer alone is used the detector of the attachment is moved out of the beam and the detector of the spectrophotometer proper is inserted into the measuring circuit.

  12. Constraints on the neutrino flux in NOvA using the near detector data

    SciTech Connect

    Maan, Kuldeep K.

    2016-12-19

    NOvA, a long-baseline neutrino oscillation experiment at Fermilab, is designed to measure electron-neutrino appearance and muon-neutrino disappearance in the NuMI beam. NOvA comprises of two finely segmented liquid scintillator detectors at 14 mrad off-axis in the NuMI beam. An accurate prediction of the neutrino flux is needed for precision oscillation and cross-section measurements. Data from the hadron-production experiments and, importantly, from the NOvA Near Detector provide powerful constraints on the muon-neutrino and electron-neutrino fluxes. In particular, the measurement of the neutrino-electron elastic scattering provides an in situ constraint on the absolute flux. Lastly, this poster presents the data-driven predictions of the NOvA muonneutrino and electron-neutrino flux, and outlines future improvements in the flux determination.

  13. Constraints on the neutrino flux in NOvA using the near detector data

    DOE PAGES

    Maan, Kuldeep K.

    2016-12-19

    NOvA, a long-baseline neutrino oscillation experiment at Fermilab, is designed to measure electron-neutrino appearance and muon-neutrino disappearance in the NuMI beam. NOvA comprises of two finely segmented liquid scintillator detectors at 14 mrad off-axis in the NuMI beam. An accurate prediction of the neutrino flux is needed for precision oscillation and cross-section measurements. Data from the hadron-production experiments and, importantly, from the NOvA Near Detector provide powerful constraints on the muon-neutrino and electron-neutrino fluxes. In particular, the measurement of the neutrino-electron elastic scattering provides an in situ constraint on the absolute flux. Lastly, this poster presents the data-driven predictions ofmore » the NOvA muonneutrino and electron-neutrino flux, and outlines future improvements in the flux determination.« less

  14. Measuring the mass of a sterile neutrino with a very short baseline reactor experiment

    NASA Astrophysics Data System (ADS)

    Latimer, D. C.; Escamilla, J.; Ernst, D. J.

    2007-04-01

    An analysis of the world's neutrino oscillation data, including sterile neutrinos, [M. Sorel, C. M. Conrad, and M. H. Shaevitz, Phys. Rev. D 70, 073004 (2004)] found a peak in the allowed region at a mass-squared difference Δm2≅0.9eV2. We trace its origin to harmonic oscillations in the electron survival probability Pee as a function of L/E, the ratio of baseline to neutrino energy, as measured in the near detector of the Bugey experiment. We find a second occurrence for Δm2≅1.9eV2. We point out that the phenomenon of harmonic oscillations of Pee as a function of L/E, as seen in the Bugey experiment, can be used to measure the mass-squared difference associated with a sterile neutrino in the range from a fraction of an eV2 to several eV2 (compatible with that indicated by the LSND experiment), as well as measure the amount of electron-sterile neutrino mixing. We observe that the experiment is independent, to lowest order, of the size of the reactor and suggest the possibility of a small reactor with a detector sitting at a very short baseline.

  15. Measuring the mass of a sterile neutrino with a very short baseline reactor experiment

    SciTech Connect

    Latimer, D. C.; Escamilla, J.; Ernst, D. J.

    2007-04-15

    An analysis of the world's neutrino oscillation data, including sterile neutrinos, [M. Sorel, C. M. Conrad, and M. H. Shaevitz, Phys. Rev. D 70, 073004 (2004)] found a peak in the allowed region at a mass-squared difference {delta}m{sup 2} congruent with 0.9 eV{sup 2}. We trace its origin to harmonic oscillations in the electron survival probability P{sub ee} as a function of L/E, the ratio of baseline to neutrino energy, as measured in the near detector of the Bugey experiment. We find a second occurrence for {delta}m{sup 2} congruent with 1.9 eV{sup 2}. We point out that the phenomenon of harmonic oscillations of P{sub ee} as a function of L/E, as seen in the Bugey experiment, can be used to measure the mass-squared difference associated with a sterile neutrino in the range from a fraction of an eV{sup 2} to several eV{sup 2} (compatible with that indicated by the LSND experiment), as well as measure the amount of electron-sterile neutrino mixing. We observe that the experiment is independent, to lowest order, of the size of the reactor and suggest the possibility of a small reactor with a detector sitting at a very short baseline.

  16. Measurement of the velocity of neutrinos from the CNGS beam with the large volume detector.

    PubMed

    Agafonova, N Yu; Aglietta, M; Antonioli, P; Ashikhmin, V V; Bari, G; Bertoni, R; Bressan, E; Bruno, G; Dadykin, V L; Fulgione, W; Galeotti, P; Garbini, M; Ghia, P L; Giusti, P; Kemp, E; Mal'gin, A S; Miguez, B; Molinario, A; Persiani, R; Pless, I A; Ryasny, V G; Ryazhskaya, O G; Saavedra, O; Sartorelli, G; Shakyrianova, I R; Selvi, M; Trinchero, G C; Vigorito, C; Yakushev, V F; Zichichi, A; Razeto, A

    2012-08-17

    We report the measurement of the time of flight of ∼17 GeV ν(μ) on the CNGS baseline (732 km) with the Large Volume Detector (LVD) at the Gran Sasso Laboratory. The CERN-SPS accelerator has been operated from May 10th to May 24th 2012, with a tightly bunched-beam structure to allow the velocity of neutrinos to be accurately measured on an event-by-event basis. LVD has detected 48 neutrino events, associated with the beam, with a high absolute time accuracy. These events allow us to establish the following limit on the difference between the neutrino speed and the light velocity: -3.8 × 10(-6) < (v(ν)-c)/c < 3.1 × 10(-6) (at 99% C.L.). This value is an order of magnitude lower than previous direct measurements.

  17. Determination of particle size using measurement of scatter

    NASA Technical Reports Server (NTRS)

    Scott, R. L., Jr.

    1978-01-01

    A literature search was conducted to determine the state of the art particle size measurement by the light scatter technique. This technique may involve diffraction pattern analysis, location of minima and maxima in angular dependence of scattered light, magnitude of intensity verses angle, forward lobe scattered intensity ratio using two small angles, forward scatter in a small cone, and total scatter. Some of the more modern recordings and detection systems are video, holographic, and systems using optical processing.

  18. Measurement of the inclusive electron neutrino charged current cross section on carbon with the T2K near detector.

    PubMed

    Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Berardi, V; Berger, B E; Berkman, S; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Escudero, L; Finch, A J; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kubo, H; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Larkin, E; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2014-12-12

    The T2K off-axis near detector ND280 is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ∼1  GeV as a function of electron momentum, electron scattering angle, and four-momentum transfer of the interaction. The total flux-averaged ν(e) charged current cross section on carbon is measured to be ⟨σ⟩(ϕ)=1.11±0.10(stat)±0.18(syst)×10⁻³⁸ cm²/nucleon. The differential and total cross-section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is 1.23×10⁻³⁸ cm²/nucleon and the GENIE prediction is 1.08×10⁻³⁸ cm²/nucleon. The total ν(e) charged current cross-section result is also in agreement with data from the Gargamelle experiment.

  19. Measurement of the Inclusive Electron Neutrino Charged Current Cross Section on Carbon with the T2K Near Detector

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-12-01

    The T2K off-axis near detector ND280 is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ˜1 GeV as a function of electron momentum, electron scattering angle, and four-momentum transfer of the interaction. The total flux-averaged νe charged current cross section on carbon is measured to be ⟨σ ⟩ϕ =1.11 ±0.10 (stat)±0.18 (syst)×1 0-38 cm2/nucleon . The differential and total cross-section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is 1.23 ×1 0-38 cm2/nucleon and the GENIE prediction is 1.08 ×1 0-38 cm2/nucleon . The total νe charged current cross-section result is also in agreement with data from the Gargamelle experiment.

  20. Measurements of muon neutrino charged-current interactions by the MicroBooNE experiment

    NASA Astrophysics Data System (ADS)

    Devitt, D.; Lister, A.; MicroBooNE collaboration

    2017-09-01

    MicroBooNE is a 170 ton Liquid Argon Time Projection Chamber (LArTPC) experiment located at Fermi National Accelerator Laboratory. It has been operating in the Booster neutrino beam since October 2015 and is already demonstrating the superb imaging capabilities of LArTPC detectors. MicroBooNE is the first large LArTPC detector to be exposed to a high-intensity neutrino beam. Among its primary physics goals are precise measurements of muon neutrino charged-current (CC) interactions on argon. In order to analyse its high-statistics data, a suite of fully automated techniques have been developed that reconstruct the LArTPC images and separate muon neutrino CC interactions from their cosmic-ray and neutral current backgrounds. These proceedings will describe the reconstruction and selection of muon neutrino CC event candidates, and present measured distributions of the observed events based on 5e19 protons on target from the first MicroBooNE data-taking period.

  1. Neutrino and antineutrino inclusive charged-current cross section measurement with the MINOS near detector

    SciTech Connect

    Bhattacharya, Debdatta

    2009-01-01

    This thesis presents the measurement of energy dependence of the neutrino-nucleon inclusive charged current cross section on an isoscalar target in the range 3-50 GeV for neutrinos and 5-50 GeV energy range for antineutrinos. The data set was collected with the MINOS Near Detector using the wide band NuMI beam at Fermilab. The size of the charged current sample is 1.94 x 106 neutrino events and 1.60 x 105 antineutrino events. The flux has been extracted using a low hadronic energy sub-sample of the charged current events. The energy dependence of the cross section is obtained by dividing the charged current sample with the extracted flux. The neutrino and antineutrino cross section exhibits a linear dependence on energy at high energy but shows deviations from linear behavior at low energy. We also present a measurement of the ratio of antineutrino to neutrino inclusive cross section.

  2. Are AMS 7Be measurements for a lithium solar neutrino detector practical?

    NASA Astrophysics Data System (ADS)

    Fireman, E. L.; Litherland, A. E.; Rowley, J. K.

    1987-11-01

    An efficient, low-background method of measuring 7Be is necessary to make a solar neutrino detector using lithium practical. Accelerator mass spectrometric 7Be measurements with BeO sputter sources are inefficient because of the small molecule (atom) to ion conversion. By collecting the sputtered BeO, that has not been accelerated, on an aluminum electrode and preparing additional sources from the collected Be, the overall efficiency might be raised sufficiently so that a lithium solar neutrino detector would be practical.

  3. Implications of new GALLEX results for the Mikheyev-Smirnov-Wolfenstein solution of the solar neutrino problem

    NASA Technical Reports Server (NTRS)

    Gelb, James M.; Kwong, Waikwok; Rosen, S. P.

    1992-01-01

    We compare the implications for Be-7 and pp neutrinos of the two Mikheyev-Smirnov-Wolfenstein fits to the new GALLEX solar neutrino measurements. Small-mixing-angle solutions tend to suppress the former as electron neutrinos, but not the latter, and large-angle solutions tend to reduce both by about a factor of two. The consequences for BOREXINO and similar solar neutrino-electron scattering experiments are discussed.

  4. Measurement of the solar neutrino capture rate with gallium metal, part III

    SciTech Connect

    Elliott, Steven Ray

    2008-01-01

    The Russian-American experiment SAGE began to measure the solar neutrino capture rate with a target of gallium metal in December 1989. Measurements have continued with only a few brief interruptions since that time. In this article we present the experimental improvements in SAGE since its last published data summary in December 2001. Assuming the solar neutrino production rate was constant during the period of data collection, combined analysis of 168 extractions through December 2007 gives a capture rate of solar neutrinos with energy more than 233 keY of 65.4{sup +3.1}{sub 3.0} (stat) {sup +2.6}{sub -2.8} (syst) SNU. The weighted average of the results of all three Ga solar neUlrino experiments, SAGE, Gallex, and GNO, is now 66.1 {+-} 3.1 SNU, where statistical and systematic uncertainties have been combined in quadrature. During the recent period of data collection a new test of SAGE was made with a reactor-produced {sup 37}Ar neutrino source. The ratio of observed to calculated rates in this experiment, combined with the measured rates in the three prior {sup 51}Cr neutrino-source experiments with Ga, is 0.88 {+-} 0.05. A probable explanation for this low result is that the cross section for neutrino capture by the two lowest-lying excited states in {sup 71}Ge has been overestimated. If we assume these cross sections are zero, then the standard solar model including neutrino oscillations predicts a total capture rate in Ga in the range of 63--67 SNU with an uncertainly of about 5%, in good agreement with experiment. We derive the current value of the pp neutrino flux produced in the Sun to be {phi}{sup {circle_dot}}{sub pp} = (6.1 {+-} 0.8) x 10{sup 10}/(cm{sup 2} s), which agrees well with the flux predicted by the standard solar model. Finally, we make several tests and show that the data are consistent with the assumption that the solar neutrino production rate is constant in time.

  5. Angular scattering from optical interference coatings: scalar scattering predictions and measurements.

    PubMed

    Zavislan, J M

    1991-06-01

    A scalar scattering theory is developed that predicts the angular distribution of light scattered and the total integrated scatter from a randomly rough or inhomogeneous optical interference coating. Three types of random variation are considered: uncorrelated roughness, additive roughness, and uncorrelated index inhomogeneity. The scattering calculations are formulated so that the output of any conventional thin film analysis program along with a coating's surface or index statistics could be used to calculate the scattering distribution of a coating. The scattering calculations are compared to experimental measurements from a sixteen-layer high reflector coating with small additive roughness sigma = 2.4 A and large correlated roughness sigma = 93 A.

  6. Measurement of gamow-teller strength for 176Yb --> 176Lu and the efficiency of a solar neutrino detector

    PubMed

    Bhattacharya; Goodman; Raghavan; Palarczyk; Garcia; Rapaport; van Heerden IJ; Zupranski

    2000-11-20

    We report a 0 degrees 176Yb(p,n)176Lu measurement at IUCF where we used 120 and 160 MeV protons and the energy dependence method to determine Gamow-Teller (GT) matrix elements relative to the model independent Fermi matrix element. The data show that there is an isolated concentration of GT strength in the low-lying 1(+) states making the proposed Low Energy Neutrino Spectroscopy detector (based on neutrino captures on 176Yb) sensitive to pp and 7Be neutrinos and a promising detector to resolve the solar neutrino problem.

  7. Measurement of Gamow-Teller Strength for 176Yb --> 176Lu and the Efficiency of a Solar Neutrino Detector

    NASA Astrophysics Data System (ADS)

    Bhattacharya, M.; Goodman, C. D.; Raghavan, R. S.; Palarczyk, M.; García, A.; Rapaport, J.; van Heerden, I. J.; Zupranski, P.

    2000-11-01

    We report a 0° 176Yb\\(p,n\\)176Lu measurement at IUCF where we used 120 and 160 MeV protons and the energy dependence method to determine Gamow-Teller (GT) matrix elements relative to the model independent Fermi matrix element. The data show that there is an isolated concentration of GT strength in the low-lying 1+ states making the proposed Low Energy Neutrino Spectroscopy detector (based on neutrino captures on 176Yb) sensitive to pp and 7Be neutrinos and a promising detector to resolve the solar neutrino problem.

  8. Measuring the low energy solar neutrino spectrum with the LENS experiment

    NASA Astrophysics Data System (ADS)

    Tayloe, Rex

    2008-10-01

    The Low-Energy Neutrino Spectroscopy (LENS) experiment is designed for a precision measurement in real time of the fluxes of low energy solar neutrinos (pp, ^7Be, pep, and CNO, comprising > 99 % of the solar neutrino energy) via charged-current capture on Indium-115 (with threshold of 114 keV). LENS will allow a comparison of the neutrino and photon luminosities of the sun that will test the basic assumptions of solar astrophysics and the overall validity of the MSW-LMA neutrino model. The individual flux results will improve limits on θ12 and the pp spectrum can directly probe the temperature profile of fusion energy production. A detector technology, utilizing a novel optical segmentation method with indium-loaded liquid scintillator has been developed. A modest 1 m^3 prototype (miniLENS), in development for installation in the Kimballton Underground Research Facility (KURF), will demonstrate experimental feasibility and will allow for optimization for a 200 ton, full-scale LENS experiment.

  9. Precise Measurements of Oscillation Parameters and Search for a Light Sterile Neutrino at Daya Bay

    NASA Astrophysics Data System (ADS)

    Wong, Hin Lok Henoch; Daya Bay Collaboration

    2017-01-01

    The Daya Bay Reactor Neutrino Experiment is designed to precisely measure the neutrino oscillation parameter θ13, via the relative comparison of antineutrino rates and energy spectra at different baselines. The experiment's unique configuration of multiple baselines from six 2.9 GWth nuclear reactors serving as intense νe sources to eight functionally identical detectors deployed in two near (effective baselines 500 m and 600 m) and one far ( 1600 m) underground experimental halls also makes it possible to look for oscillations with a fourth (sterile) neutrino in the 10-3 eV2 < | Δm412 | < 0 . 3 eV2 range. In this talk, I will present Daya Bay's latest results. A three-flavor oscillation model analysis based on 1230 days of data has yielded the most precise determination of the flavour-mixing angle sin2 2θ13 and the neutrino mass-squared difference Δm322 . In addition, the search for a light sterile neutrino using 621 days of data did not show a significant preference towards a four-flavor oscillation model. The resulting limits on sin2 2θ14 constitute the world's best in most of the sub-eV mass region.

  10. An atmospheric muon neutrino disappearance measurement with the MINOS far detector

    SciTech Connect

    Gogos, Jeremy Peter

    2007-12-01

    It is now widely accepted that the Standard Model assumption of massless neutrinos is wrong, due primarily to the observation of solar and atmospheric neutrino flavor oscillations by a small number of convincing experiments. The MINOS Far Detector, capable of observing both the outgoing lepton and associated showering products of a neutrino interaction, provides an excellent opportunity to independently search for an oscillation signature in atmospheric neutrinos. To this end, a MINOS data set from an 883 live day, 13.1 kt-yr exposure collected between July, 2003 and April, 2007 has been analyzed. 105 candidate charged current muon neutrino interactions were observed, with 120.5 ± 1.3 (statistical error only) expected in the absence of oscillation. A maximum likelihood analysis of the observed log(L/E) spectrum shows that the null oscillation hypothesis is excluded at over 96% confidence and that the best fit oscillation parameters are sin223 = 0.95 -0.32 and Δm$2\\atop{23}$ = 0.93$+3.94\\atop{ -0.44}$ x 10-3 eV2. This measurement of oscillation parameters is consistent with the best fit values from the Super-Kamiokande experiment at 68% confidence.

  11. Double Beta Decay in Xenon-136. Measuring the Neutrino-Emitting Mode and Searching for Majoron-Emitting Modes

    SciTech Connect

    Herrin, Steven

    2013-06-01

    Observations of neutrino flavor oscillations have demonstrated that neutrinos have mass. Since the discovery of these oscillations, much progress has been made at mea- suring the neutrino mass-squared differences and lepton mixing angles that character- ize them. However, the origin and absolute scale of neutrino masses remain unknown. Unique among fermions, neutrinos can be Majorana particles, which could provide an explanation for neutrino masses. Discovery of a hypothetical process known as neutrinoless double beta decay would show that neutrinos are Majorana particles and determine the mass scale for neutrinos. The Enriched Xenon Observatory (EXO) is a series of experiments searching for the neutrinoless double beta decay of 136Xe. The first experiment, EXO-200, began operation in 2011 and makes use of 200 kg of xenon enriched to 80.6% in 136Xe. The analysis presented here makes use of data from EXO-200 to obtain a more precise measurement of the half-life for the two-neutrino-emitting mode of double beta decay than previously reported. The analysis also sets limits on the half-lives for exotic, Majoron-emitting modes of neutrinoless double beta decay. Data from EXO-200 is also used to produce a measurement of the cosmic muon flux at the WIPP under- ground site where EXO-200 is located.

  12. MINERvA Measurement of Neutrino Charged-Current Cross Section Ratios of Nuclei C, Fe, and Pb to CH at Energies of a Few GeV

    SciTech Connect

    Gran, Richard

    2016-06-02

    The MINERvA experiment is designed to measure neutrino cross sections for different nuclei using substantially similar fiducial and tracking environments. This allows for reduced systematics in the ratio to better see the evolution of the cross section with the size of the nucleus. The first such result is an inclusive charged current cross section ratio as a function of energy from and the kinematic quantity Bjorken x for nuclei Pb, Fe, and C relative to plastic scintillator CH. The measurement is made for neutrino energies from 2 to 20 GeV. In the past, charged lepton scattering ratios of heavier nuclei to deuterium have revealed interesting structure such as the EMC effect. These ratios were restricted to purely deep inelastic scattering data whereas these ratios to different nuclei in MINERvA are sensitive to the elastic scattering as well as resonance production regions. Significant deviations from the baseline scattering model are observed, and suggest new theory work to investigate these ratios.

  13. MINERvA measurement of neutrino charged-current cross section ratios of nuclei C, Fe, and Pb to CH at energies of a few GeV

    NASA Astrophysics Data System (ADS)

    Gran, Richard; MINERvA Collaboration

    2016-04-01

    The MINERvA experiment is designed to measure neutrino cross sections for different nuclei using substantially similar fiducial and tracking environments. This allows for reduced systematics in the ratio to better see the evolution of the cross section with the size of the nucleus. The first such result is an inclusive charged current cross section ratio as a function of energy from and the kinematic quantity Bjorken x for nuclei Pb, Fe, and C relative to plastic scintillator CH. The measurement is made for neutrino energies from 2 to 20 GeV. In the past, charged lepton scattering ratios of heavier nuclei to deuterium have revealed interesting structure such as the EMC effect. These ratios were restricted to purely deep inelastic scattering data whereas these ratios to different nuclei in MINERvA are sensitive to the elastic scattering as well as resonance production regions. Significant deviations from the baseline scattering model are observed, and suggest new theory work to investigate these ratios.

  14. On the measurement of the electron-neutrino correlation in neutron beta decay

    SciTech Connect

    Bowman, J. D.

    2004-01-01

    A new approach to the measurement of A, the electron-neutrino correlation, in neutron beta decay is presented. A precise measurement of A can lead to a precise determination of G{sub A}/G{sub V}. Coincidences between electrons and protons are detected in a field-expansion spectrometer. Both electrons and protons are detected in segmented Si detectors. The spectrometer configuration has a long, {approx} 1 meter, drift distance for the proton. The electron energy and time of flight between the electron and proton are measured. We show that by sorting the data on proton time of flight and electron energy, A can be determined with a statistical accuracy of {approx} 5.1/{radical}n, where n is the number of decays observed. The approach has a number of advantages. Thin-dead-layer segmented Si detectors are commercially available. There are no material apertures to determine the acceptance of the apparatus. The charged particles interact only with electric and magnetic fields before striking the detectors. Coincident detection of electrons and protons reduces backgrounds, and allows the in situ determination of backgrounds. In the analysis, it is not necessary to sort on the relative electron and proton direction and hence electron back scattering does not cause systematic uncertainties. A time of flight spectrum is obtained for each electron energy. Different parts of the spectra have different sensitivities to A. The parts of the spectra that are insensitive to A can be used to verify the accuracy of the electric and magnetic field determinations.

  15. Beta Decay in the Field of an Electromagnetic Wave and Experiments on Measuring the Neutrino Mass

    SciTech Connect

    Dorofeev, O.F.; Lobanov, A.E.

    2005-06-01

    Investigations of the effect of an electromagnetic wave field on the beta-decay process are used to analyze the tritium-decay experimental data on the neutrino mass. It is shown that the electromagnetic wave can distort the beta spectrum, shifting the end point to the higher energy region. This phenomenon is purely classical and it is associated with the electron acceleration in the radiation field. Since strong magnetic fields exist in setups for precise measurement of the neutrino mass, the indicated field can appear owing to the synchrotron radiation mechanism. The phenomenon under consideration can explain the experimentally observed anomalies in the spectrum of the decay electrons; in particular, the effect of the 'negative square of the neutrino mass'.

  16. Solar neutrino measurement from the second phase of the Super-Kamiokande experiment

    NASA Astrophysics Data System (ADS)

    Cravens, John Parker

    The second phase of the Super-Kamiokande experiment aimed at the continuation of the solar neutrino measurement after the 1496-day first phase. However, the second phase operated with a photocathode coverage 47% of the first phase's. This reduction in sensitivity prompted the development of new analysis tools and created larger estimations of systematic errors. Despite these changes, the second phase solar neutrino data showed consistency with the first phase and no indication of systematic tendencies between the two phases was present. An oscillation analysis of the second phase resulted in reduced exclusion power of the neutrino mixing angle and mass difference parameter set. However, a rate constrained combined oscillation analysis of both phases continues to favor the Large Mixing Angle solution at 95% confidence level.

  17. Be7 solar neutrino measurement with KamLAND

    SciTech Connect

    Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, H.; Kishimoto, Y.; Koga, M.; Matsuda, R.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakajima, K.; Nakamura, K.; Obata, A.; Oki, A.; Oki, Y.; Otani, M.; Shimizu, I.; Shirai, J.; Suzuki, A.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamada, S.; Yamauchi, Y.; Yoshida, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Grant, C.; Keefer, G.; McKee, D. W.; Piepke, A.; Banks, T. I.; Bloxham, T.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Hsu, L.; Ichimura, K.; Murayama, H.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D.; Mauger, C.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Learned, J. G.; Sakai, M.; Horton-Smith, G. A.; Tang, A.; Downum, K. E.; Tolich, K.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Heeger, K.; Decowski, M. P.

    2015-11-30

    We report a measurement of the neutrino-electron elastic scattering rate of 862 keV 7Be solar neutrinos based on a 165.4 kt d exposure of KamLAND. The observed rate is 582±94(kt d)₋1, which corresponds to an 862-keV 7Be solar neutrino flux of (3.26±0.52)×109cm₋2s₋1, assuming a pure electron-flavor flux. Comparing this flux with the standard solar model prediction and further assuming three-flavor mixing, a νe survival probability of 0.66±0.15 is determined from the KamLAND data. Lastly, utilizing a global three-flavor oscillation analysis, we obtain a total 7Be solar neutrino flux of (5.82±1.02)×109cm₋2s₋1, which is consistent with the standard solar model predictions.

  18. Be7 solar neutrino measurement with KamLAND

    SciTech Connect

    Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, H.; Kishimoto, Y.; Koga, M.; Matsuda, R.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakajima, K.; Nakamura, K.; Obata, A.; Oki, A.; Oki, Y.; Otani, M.; Shimizu, I.; Shirai, J.; Suzuki, A.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamada, S.; Yamauchi, Y.; Yoshida, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Grant, C.; Keefer, G.; McKee, D. W.; Piepke, A.; Banks, T. I.; Bloxham, T.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Hsu, L.; Ichimura, K.; Murayama, H.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D.; Mauger, C.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Learned, J. G.; Sakai, M.; Horton-Smith, G. A.; Tang, A.; Downum, K. E.; Tolich, K.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Heeger, K.; Decowski, M. P.

    2015-11-30

    In this article, we report a measurement of the neutrino-electron elastic scattering rate of 862 keV 7Be solar neutrinos based on a 165.4 kt d exposure of KamLAND. The observed rate is 582 ± 94 (kt d)-1, which corresponds to an 862-keV 7Be solar neutrino flux of (3.26 ± 0.52) × 109 cm-2s-1, assuming a pure electron-flavor flux. Comparing this flux with the standard solar model prediction and further assuming three-flavor mixing, a νe survival probability of 0.66 ± 0.15 is determined from the KamLAND data. Utilizing a global three-flavor oscillation analysis, we obtain a total 7Be solar neutrino flux of (5.82 ± 1.02) × 109 cm-2s-1, which is consistent with the standard solar model predictions.

  19. Deep Water Cherenkov Light Scatter Meter

    SciTech Connect

    Pappalardo, L; Petta, C.; Russo, G.V.

    2000-12-31

    The relevant parameters for the site choice of an underwater neutrino's telescope are discussed. The in situ measurement of the scattering distribution of the cherenkov light requires a suitable experimental setup. Its main features are described here.

  20. The New Result of the Neutrino Magnetic Moment Measurement in the Gemma Experiment

    NASA Astrophysics Data System (ADS)

    Beda, A. G.; Brudanin, V. B.; Demidova, E. V.; Egorov, V. G.; Gavrilov, M. G.; Shirchenko, M. V.; Starostin, A. S.; Vylov, Ts.

    2009-01-01

    The new result of the neutrino magnetic moment measurement obtained by the collaboration of the Institute of Theoretical and Experimental Physics (ITEP, Moscow) and the Joint Institute for Nuclear Research (JINR, Dubna) is presented... Note from Publisher: This article contains the abstract and references only.

  1. Seabed Scattering from Low Frequency Reverberation Measurements

    DTIC Science & Technology

    2015-09-30

    X.Z. Zhang, " Low frequency seabed scattering at low grazing angles," Journal of the Acoustical Society of America, 131 (4), 261 1-2621 (Apr 2012). 2...13). 15. SUBJECT TERMS ocean reverberation, modeling and inversion, seabed scattering , seabottom acoustic model, the energy flux method for...reverberation, shallow water acoustics , low grazing angles scattering , shear waves 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a . REPORT b

  2. Strangeness in the Nucleon, Cold Dark Matter in the Universe, and Neutrino Scattering off Liquid Argon

    SciTech Connect

    Papavassiliou, V.

    2010-03-30

    The strangeness content of the nucleon and the contribution of strange quarks to various nucleon quantum numbers, besides being of fundamental interest, also affects calculations of cross sections of processes that are important in searches for new physics. Here we focus on direct searches for cold dark matter, in the scenario in which the lightest supersymmetric neutral particle dominates the CDM density in the universe and point out that interpretation of searches, as well as the choice of optimal materials for future experiments, are hobbled by uncertainties in the contribution of strange quarks to the nucleon spin. We show how a future low-energy neutrino experiment using a liquid-Ar TPC can make important contributions in determining this quantity with much better precision and reduced theoretical uncertainties.

  3. Single photon production induced by (anti)neutrino neutral current scattering on nucleons and nuclear targets

    SciTech Connect

    Alvarez-Ruso, L.; Nieves, J.; Wang, E.

    2015-10-15

    We review our theoretical approach to neutral current photon emission on nucleons and nuclei in the few-GeV energy region, relevant for neutrino oscillation experiments. These reactions are dominated by the weak excitation of the Δ(1232) resonance but there are also important non-resonant contributions. We have also included terms mediated by nucleon excitations from the second resonance region. On nuclei, Pauli blocking, Fermi motion and the in-medium Δ resonance broadening have been taken into account for both incoherent and coherent reaction channels. With this model, the number and distributions of photon events at the MiniBooNE and T2K experiments have been obtained. We have also compared to the NOMAD upper limit at higher energies. The implications of our findings and future perspectives are discussed.

  4. Neutrinos in Nuclear Physics

    SciTech Connect

    McKeown, Bob

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  5. Final results of bar nue — e scattering cross-section measurements and constraints on new physics

    NASA Astrophysics Data System (ADS)

    Deniz, Muhammed; Bilmis, Secluk; Wong, Henry T.; Texono Collaboration

    2012-07-01

    The bar nue - e elastic scattering cross-section was measured with a CsI(Tl) scintillating crystal detector array with a total mass of 187 kg at the Kuo-Sheng Nuclear Power Station. The detectors were exposed to a reactor bar nue flux of 6.4 × 1012 cm-2s-1 originated from a core with 2.9 GW thermal power. Using 29882/7369 kg-days of Reactor ON/OFF data, the Standard Model (SM) of electroweak interaction was probed at the 4-momentum transfer range of Q2 ~ 3 × 10-6 GeV2. A cross-section ratio of Rexpt = [1.08±0.21 (stat)±0.16 (sys)] × RSM was measured. Constraints on the electroweak parameters (gV,gA) were placed, corresponding to a weak mixing angle measurement of sin2θw = 0.251 ±0.031 (stat) ±0.024 (sys). Destructive interference in the SM bar nue-e processes was verified. Bounds on neutrino anomalous electromagnetic properties (neutrino magnetic moment and neutrino charge radius), as well as non-standard neutrino interactions were placed. We summarize the experimental details and results, and discuss projected sensitivities with realistic and feasible hardware upgrades.

  6. Sterile neutrinos and indirect dark matter searches in IceCube

    SciTech Connect

    Argüelles, Carlos A.; Kopp, Joachim E-mail: jkopp@fnal.gov

    2012-07-01

    If light sterile neutrinos exist and mix with the active neutrino flavors, this mixing will affect the propagation of high-energy neutrinos from dark matter annihilation in the Sun. In particular, new Mikheyev-Smirnov-Wolfenstein resonances can occur, leading to almost complete conversion of some active neutrino flavors into sterile states. We demonstrate how this can weaken IceCube limits on neutrino capture and annihilation in the Sun and how potential future conflicts between IceCube constraints and direct detection or collider data might be resolved by invoking sterile neutrinos. We also point out that, if the dark matter-nucleon scattering cross section and the allowed annihilation channels are precisely measured in direct detection and collider experiments in the future, IceCube can be used to constrain sterile neutrino models using neutrinos from the dark matter annihilation.

  7. Measurement of Atmospheric Neutrino Oscillations with IceCube/DeepCore in its 79-string Configuration

    NASA Astrophysics Data System (ADS)

    Euler, Sebastian

    With its low-energy extension DeepCore, the IceCube Neutrino Observatory at the Amundsen-Scott South Pole Station is able to detect neutrino events with energies as low as 10 GeV. This permits the investigation of flavor oscillations of atmospheric muon neutrinos in an energy range not covered by other experiments, opening a new window on the physics of atmospheric neutrino oscillations. The oscillation probability depends on the observed neutrino zenith angle and energy. Maximum disappearance is expected for vertically upward moving muon neutrinos at around 25 GeV. A recent analysis has rejected the non-oscillation hypothesis with a significance of about 5 σ based on data obtained with IceCube while it was operating in its 79-string configuration [1]. The analysis presented here uses data from the same detector configuration, but implements a more powerful approach for the event selection, which yields a dataset with an order of magnitude higher statistics (more than 8 000 events). We present new results based on a likelihood analysis of the two observables zenith angle and energy. The non-oscillation hypothesis is rejected with a significance32 of about 5.7 σ. In the 2-flavor approximation, our best-fit oscillation parameters are Δm2 = (2.2 ± 0.5) · 10-3eV2 and0.14 sin2 (2θ23) = 1.0+0-0.14, in good agreement with measurements at lower energy.

  8. Measured microwave scattering cross sections of three meteorite specimens

    NASA Technical Reports Server (NTRS)

    Hughes, W. E.

    1972-01-01

    Three meteorite specimens were used in a microwave scattering experiment to determine the scattering cross sections of stony meteorites and iron meteorites in the frequency range from 10 to 14 GHz. The results indicate that the stony meteorites have a microwave scattering cross section that is 30 to 50 percent of their projected optical cross section. Measurements of the iron meteorite scattering were inconclusive because of specimen surface irregularities.

  9. Measurement of Muon Neutrino Disappearance with Non-Fiducial Interactions in the NOnuA Experiment

    NASA Astrophysics Data System (ADS)

    Raddatz, Nicholas Jacob

    The NuMI1 Off-Axis nue Appearance (NOnuA) experiment is a long baseline neutrino oscillation experiment. The experiment measures the oscillations of a primarily muon neutrino beam using two functionally identical liquid scintillator tracking calorimeters detectors placed 810 km apart and 14 milliradians off-axis to the NuMI beam. The oscillation parameters sin2theta23 and |Deltam 322| are measured from the disappearance of muon neutrinos as they propagate between the two detectors using the first data collected in 2014 and 2015. The primary NOnuA analysis uses charged current events only in the fiducial volume of the far detector. This analysis also includes a non-fiducial sample of interactions that originate in the fiducial volume of the far detector but escape the detector. This analysis measures the oscillation parameters as sin2theta23 = 0.3--0.71 and |Deltam32 2| = 2.15--2.91x10-3 eV2 at 90% confidence limits. 1 Neutrinos at the Main Injector.

  10. Neutrino factories

    SciTech Connect

    Soler, F. J. P.

    2015-07-15

    The Neutrino Factory is a facility that produces neutrino beams with a well-defined flavour content and energy spectrum from the decay of intense, high-energy, stored muon beams to establish CP violation in the neutrino sector. The International Design Study for the Neutrino Factory (the IDS-NF) is providing a Reference Design Report (RDR) for the facility. The present design is optimised for the recent measurements of θ{sub 13}. The accelerator facility will deliver 10{sup 21} muon decays per year from 10 GeV stored muon beams. The straight sections of the storage ring point to a 100 kton Magnetised Iron Neutrino Detector (MIND) at a distance of 2000-2500 km from the source. The accuracy in the value of δ{sub CP} that a Neutrino Factory can achieve and the δ{sub CP} coverage is unrivalled by other future facilities. Staging scenarios for the Neutrino Factory deliver facilities that can carry out physics at each stage. In the context of Fermilab, such a scenario would imply in the first stage the construction of a small storage ring, nuSTORM, to carry out neutrino cross-section and sterile neutrino measurements and to perform a programme of 6D muon cooling R&D. The second stage is the construction of a 5 GeV Neutrino Factory (nuMAX) pointing to the Sanford Underground Research Facility at Homestake and the final stage would use many of the components of this facility to construct a Muon Collider, initially as a 126 GeV CM Higgs Factory, which may be upgraded to a multi-TeV Muon Collider if required.

  11. Neutrino factories

    NASA Astrophysics Data System (ADS)

    Soler, F. J. P.

    2015-07-01

    The Neutrino Factory is a facility that produces neutrino beams with a well-defined flavour content and energy spectrum from the decay of intense, high-energy, stored muon beams to establish CP violation in the neutrino sector. The International Design Study for the Neutrino Factory (the IDS-NF) is providing a Reference Design Report (RDR) for the facility. The present design is optimised for the recent measurements of θ13. The accelerator facility will deliver 1021 muon decays per year from 10 GeV stored muon beams. The straight sections of the storage ring point to a 100 kton Magnetised Iron Neutrino Detector (MIND) at a distance of 2000-2500 km from the source. The accuracy in the value of δCP that a Neutrino Factory can achieve and the δCP coverage is unrivalled by other future facilities. Staging scenarios for the Neutrino Factory deliver facilities that can carry out physics at each stage. In the context of Fermilab, such a scenario would imply in the first stage the construction of a small storage ring, nuSTORM, to carry out neutrino cross-section and sterile neutrino measurements and to perform a programme of 6D muon cooling R&D. The second stage is the construction of a 5 GeV Neutrino Factory (nuMAX) pointing to the Sanford Underground Research Facility at Homestake and the final stage would use many of the components of this facility to construct a Muon Collider, initially as a 126 GeV CM Higgs Factory, which may be upgraded to a multi-TeV Muon Collider if required.

  12. Independent measurement of the total active 8B solar neutrino flux using an array of 3He proportional counters at the Sudbury Neutrino Observatory.

    PubMed

    Aharmim, B; Ahmed, S N; Amsbaugh, J F; Anthony, A E; Banar, J; Barros, N; Beier, E W; Bellerive, A; Beltran, B; Bergevin, M; Biller, S D; Boudjemline, K; Boulay, M G; Bowles, T J; Browne, M C; Bullard, T V; Burritt, T H; Cai, B; Chan, Y D; Chauhan, D; Chen, M; Cleveland, B T; Cox-Mobrand, G A; Currat, C A; Dai, X; Deng, H; Detwiler, J; DiMarco, M; Doe, P J; Doucas, G; Drouin, P-L; Duba, C A; Duncan, F A; Dunford, M; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Ford, R J; Formaggio, J A; Fowler, M M; Gagnon, N; Germani, J V; Goldschmidt, A; Goon, J T M; Graham, K; Guillian, E; Habib, S; Hahn, R L; Hallin, A L; Hallman, E D; Hamian, A A; Harper, G C; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Henning, R; Hime, A; Howard, C; Howe, M A; Huang, M; Jagam, P; Jamieson, B; Jelley, N A; Keeter, K J; Klein, J R; Kormos, L L; Kos, M; Krüger, A; Kraus, C; Krauss, C B; Kutter, T; Kyba, C C M; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Loach, J C; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Martin, R; McBryde, K; McCauley, N; McDonald, A B; McGee, S; Mifflin, C; Miller, G G; Miller, M L; Monreal, B; Monroe, J; Morissette, B; Myers, A; Nickel, B G; Noble, A J; Oblath, N S; O'Keeffe, H M; Ollerhead, R W; Gann, G D Orebi; Oser, S M; Ott, R A; Peeters, S J M; Poon, A W P; Prior, G; Reitzner, S D; Rielage, K; Robertson, B C; Robertson, R G H; Rollin, E; Schwendener, M H; Secrest, J A; Seibert, S R; Simard, O; Simpson, J J; Sinclair, L; Skensved, P; Smith, M W E; Steiger, T D; Stonehill, L C; Tesić, G; Thornewell, P M; Tolich, N; Tsui, T; Tunnell, C D; Van Wechel, T; Van Berg, R; VanDevender, B A; Virtue, C J; Walker, T J; Wall, B L; Waller, D; Tseung, H Wan Chan; Wendland, J; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wouters, J M; Wright, A; Yeh, M; Zhang, F; Zuber, K

    2008-09-12

    The Sudbury Neutrino Observatory (SNO) used an array of 3He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active (nu_x) 8B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54_-0.31;+0.33(stat)-0.34+0.36(syst)x10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields Deltam2=7.59_-0.21;+0.19x10(-5) eV2 and theta=34.4_-1.2;+1.3 degrees. The uncertainty on the mixing angle has been reduced from SNO's previous results.

  13. Measurement of the atmospheric muon neutrino energy spectrum with IceCube in the 79- and 86-String configuration

    NASA Astrophysics Data System (ADS)

    Ruhe, T.; Scheriau, F.; Schmitz, M.

    2016-04-01

    IceCube is a neutrino telescope with an instrumented volume of one cubic kilometer. A total of 5160 Digital Optical Modules (DOMs) is deployed on 86 strings forming a three dimensional detector array. Although primarily designed for the detection of neutrinos from astrophysical sources, the detector can be used for spectral measurements of atmospheric neutrinos. These spectral measurements are hindered by a dominant background of atmospheric muons. State-of-the-art techniques from Machine Learning and Data Mining are required to select a high-purity sample of atmospheric neutrino candidates. The energy spectrum of muon neutrinos is obtained from energy-dependent input variables by utilizing regularized unfolding. The results obtained using IceCube in the 79- and 86-string configuration are presented in this paper.

  14. Supernovae and neutrinos

    SciTech Connect

    John F. Beacom

    2002-09-19

    A long-standing problem in supernova physics is how to measure the total energy and temperature of {nu}{sub {mu}}, {nu}{sub {tau}}, {bar {nu}}{sub {mu}}, and {bar {nu}}{sub {tau}}. While of the highest importance, this is very difficult because these flavors only have neutral-current detector interactions. We propose that neutrino-proton elastic scattering, {nu} + p {yields} {nu} + p, can be used for the detection of supernova neutrinos in scintillator detectors. It should be emphasized immediately that the dominant signal is on free protons. Though the proton recoil kinetic energy spectrum is soft, with T{sub p} {approx_equal} 2E{sub {nu}}{sup 2}/M{sub p}, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from {bar {nu}}{sub e} + p {yields} e{sup +} + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.

  15. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    SciTech Connect

    Vale, D.; Rauscher, T.; Paar, N. E-mail: Thomas.Rauscher@unibas.ch

    2016-02-01

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for {sup 56}Fe and {sup 208}Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(ν-bar {sub e},e{sup +})n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of ν{sub e}- and ν-bar {sub e}-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei ({sup 208}Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.

  16. Towards T2K neutrino flux predictions using the replica target measurements by NA61/SHINE

    NASA Astrophysics Data System (ADS)

    Zambelli, L.; Fiorentini, A.; Vladisavljevic, T.; ">T2K, neutrino flux composition and kinematics is one of the biggest challenges of long-baseline experiments such as T2K. Neutrinos are made by the in-flight decay of unstable hadrons produced by the interactions of 31GeV/c protons in a long graphite target. Mostly π + (π ‑) are created, leading to the {ν }μ ({\\bar{ν }}μ ) enhanced flux. As kaons and muons are also produced, an irreducible background of electron (anti-)neutrino is also present. The main source of uncertainty in the flux prediction is driven by the lack of data on the proton-carbon interaction in this energy range. The measurements performed by the NA61/SHINE large-acceptance experiment at CERN are used by the T2K collaboration to improve the flux predictions. Two datasets have been taken: using a thin target to study the primary interaction, and a replica of the T2K target to account for the re-interactions. The recently released differential multiplicity distributions of π ± along the replica target measured in NA61/SHINE will be presented. This dataset is now in the process of being used by T2K to further tune the flux prediction as 90% of the neutrinos will be directly constrained.

  17. Measurement of Neutrino Oscillation Parameters Using Anti-fiducial Charged Current Events in MINOS

    SciTech Connect

    Strait, Matthew Levy

    2010-09-01

    Abstract The Main Injector Neutrino Oscillation Search (MINOS) obse rves the disappearance of muon neutrinos as they propagate in the long baseline Neutri nos at the Main Injector (NuMI) beam. MINOS consists of two detectors. The near detector sam ples the initial composition of the beam. The far detector, 735 km away, looks for an energy-d ependent deficit in the neutrino spectrum. This energy-dependent deficit is interpreted as q uantum mechanical oscillations be- tween neutrino flavors. A measurement is made of the effective two-neutrino mixing parameters Δ m 2 ≈ Δ m 2 23 and sin 2 2 θ ≈ sin 2 2 θ 23 . The primary MINOS analysis uses charged current events in the fiducial volume of the far detector. This analysis uses the roughly equal-sized sample of events that fails the fiducial cut, consisting of interact ions outside the fiducial region of the detector and in the surrounding rock. These events provide a n independent and complementary measurement, albeit weaker due to incomplete reconstructi on of the events. This analysis reports on an exposure of 7 . 25 × 10 20 protons-on-target. Due to poor energy resolution, the meas urement of sin 2 2 θ is much weaker than established results, but the measuremen t of sin 2 2 θ > 0 . 56 at 90% confidence is consistent with the accepted value. The measur ement of Δ m 2 is much stronger. Assuming sin 2 2 θ = 1 , Δ m 2 = (2 . 20 ± 0 . 18[stat] ± 0 . 14[syst]) × 10 - -3 eV 2 .

  18. Scattering rates for leptogenesis: Damping of lepton flavour coherence and production of singlet neutrinos

    NASA Astrophysics Data System (ADS)

    Garbrecht, Björn; Glowna, Frank; Schwaller, Pedro

    2013-12-01

    Using the Closed Time Path (CTP) approach, we perform a systematic leading order calculation of the relaxation rate of flavour correlations of left-handed Standard Model leptons. This quantity is of pivotal relevance for flavoured leptogenesis in the Early Universe, and we find it to be 5.19×10-3T at T=107 GeV and 4.83×10-3T at T=1013 GeV, in substantial agreement with estimates used in previous phenomenological analyses. These values apply to the Standard Model with a Higgs-boson mass of 125 GeV. The dependence of the numerical coefficient on the temperature T is due to the renormalisation group running. The leading linear and logarithmic dependencies of the flavour relaxation rate on the gauge and top-quark couplings are extracted, such that the results presented in this work can readily be applied to extensions of the Standard Model. We also derive the production rate of light (compared to the temperature) sterile right-handed neutrinos, a calculation that relies on the same methods. We confirm most details of earlier results, but find a substantially larger contribution from the t-channel exchange of fermions.

  19. Measurements of the Solar Neutrino Flux from Super-Kamiokande{close_quote}s First 300 Days

    SciTech Connect

    Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Inoue, K.; Ishihara, K.; Ishino, H.; Itow, Y.; Kajita, T.; Kameda, J.; Kasuga, S.; Kobayashi, K.; Kobayashi, Y.; Koshio, Y.; Martens, K.; Miura, M.; Nakahata, M.; Nakayama, S.; Okada, A.; Oketa, M.; Okumura, K.; Ota, M.; Sakurai, N.; Shiozawa, M.; Suzuki, Y.; Takeuchi, Y.; Totsuka, Y.; Yamada, S.; Earl, M.; Habig, A.; Hong, J.T.; Kearns, E.; Kim, S.B.; Masuzawa, M.; Messier, M.D.; Scholberg, K.; Stone, J.L.; Sulak, L.R.; Walter, C.W.; Goldhaber, M.; Barszczak, T.; Gajewski, W.; Halverson, P.G.; Hsu, J.; Kropp, W.R.; Price, L.R.; Reines, F.; Sobel, H.W.; Vagins, M.R.; Haines, T.J.; Kielczewska, D.; Ganezer, K.S.; Keig, W.E.; Ellsworth, R.W.; Tasaka, S.; Flanagan, J.W.; Kibayashi, A.; Learned, J.G.; Matsuno, S.; Stenger, V.; Takemori, D.; Ishii, T.; Kanzaki, J.; Kobayashi, T.; Nakamura, K.; Nishikawa, K.; Oyama, Y.; Sakai, A.; Sakuda, M.; Sasaki, O.; Echigo, S.; Kohama, M.; Suzuki, A.T.; Haines, T.J.

    1998-08-01

    The first results of the solar neutrino flux measurement from Super-Kamiokande are presented. The results shown here are obtained from data taken between 31 May 1996, and 23 June 1997. Using our measurement of recoil electrons with energies above 6.5thinspthinspMeV, we infer the total flux of {sup 8}B solar neutrinos to be 2.42{plus_minus}0.06(stat){sup +0.10}{sub {minus}0.07}(syst){times}10{sup 6} thinspcm{sup {minus}2}thinsp s{sup {minus}1} . This result is consistent with the Kamiokande measurement and is 36{percent} of the flux predicted by the BP95 solar model. The flux is also measured in 1.5 month subsets and shown to be consistent with a constant rate. {copyright} {ital 1998} {ital The American Physical Society }

  20. Measurement of the neutrino velocity with the OPERA detector in the CNGS beam using the 2012 dedicated data

    NASA Astrophysics Data System (ADS)

    Adam, T.; Agafonova, N.; Aleksandrov, A.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Autiero, D.; Badertscher, A.; Ben Dhahbi, A.; Beretta, M.; Bertolin, A.; Bozza, C.; Brugière, T.; Brugnera, R.; Brunet, F.; Brunetti, G.; Buettner, B.; Buontempo, S.; Carlus, B.; Cavanna, F.; Cazes, A.; Chaussard, L.; Chernyavsky, M.; Chiarella, V.; Chukanov, A.; D'Ambrosio, N.; De Lellis, G.; De Serio, M.; del Amo Sanchez, P.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Dmitrievsky, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Ereditato, A.; Esposito, L. S.; Favier, J.; Felici, G.; Ferber, T.; Fini, R. A.; Fukuda, T.; Garfagnini, A.; Giacomelli, G.; Girerd, C.; Goellnitz, C.; Goldberg, J.; Golubkov, D.; Gornushkin, Y.; Grella, G.; Grianti, F.; Guerin, C.; Guler, A. M.; Gustavino, C.; Hagner, C.; Hamada, K.; Hara, T.; Hierholzer, M.; Hollnagel, A.; Ishida, H.; Ishiguro, K.; Jakovcic, K.; Jollet, C.; Kamiscioglu, C.; Kamiscioglu, M.; Kawada, J.; Kim, J. H.; Kim, S. H.; Kimura, M.; Kitagawa, N.; Klicek, B.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Lauria, A.; Lazzaro, C.; Lenkeit, J.; Ljubicic, A.; Longhin, A.; Malgin, A.; Mancini-Terracciano, C.; Mandrioli, G.; Marteau, J.; Matsuo, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meregaglia, A.; Migliozzi, P.; Mikado, S.; Monacelli, P.; Montesi, M. C.; Morishima, K.; Moser, U.; Muciaccia, M. T.; Nakamura, M.; Nakano, T.; Nakatsuka, Y.; Naumov, D.; Nikitina, V.; Ogawa, S.; Olchevsky, A.; Ozaki, K.; Palamara, O.; Paoloni, A.; Park, B. D.; Park, I. G.; Pastore, A.; Patrizii, L.; Pennacchio, E.; Pessard, H.; Pistillo, C.; Podgrudkov, D.; Polukhina, N.; Pozzato, M.; Pretzl, K.; Pupilli, F.; Rescigno, R.; Roda, M.; Roganova, T.; Rokujo, H.; Rosa, G.; Rostovtseva, I.; Rubbia, A.; Russo, A.; Ryazhskaya, O.; Sato, O.; Sato, Y.; Schembri, A.; Schmidt-Parzefall, W.; Schuler, J.; Shakiryanova, I.; Sheshukov, A.; Shibuya, H.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Song, J. S.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S. M.; Stipcevic, M.; Strauss, T.; Takahashi, S.; Tenti, M.; Terranova, F.; Tioukov, V.; Tolun, P.; Tufanli, S.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J.-L.; Wilquet, G.; Wonsak, B.; Wurtz, J.; Yoon, C. S.; Yoshida, J.; Zaitsev, Y.; Zemskova, S.; Zghiche, A.; Zimmermann, R.

    2013-01-01

    In spring 2012 CERN provided two weeks of a short bunch proton beam dedicated to the neutrino velocity measurement over a distance of 730 km. The OPERA neutrino experiment at the underground Gran Sasso Laboratory used an upgraded setup compared to the 2011 measurements, improving the measurement time accuracy. An independent timing system based on the Resistive Plate Chambers was exploited providing a time accuracy of 1 ns. Neutrino and anti-neutrino contributions were separated using the information provided by the OPERA magnetic spectrometers. The new analysis profited from the precision geodesy measurements of the neutrino baseline and of the CNGS/LNGS clock synchronization. The neutrino arrival time with respect to the one computed assuming the speed of light in vacuum is found to be δ t ν ≡ T OF c - T OF ν = (0.6±0.4 ( stat.)±3.0 ( syst.)) ns and δ {t_{overline{ν}}}equiv TO{F_c}-TO{F_{overline{ν}}}=left( {1.7± 1.4left( {stat.} right)± 3.1left( {syst.} right)} right) ns for ν μ and {{overline{ν}}_{μ }} , respectively. This corresponds to a limit on the muon neutrino velocity with respect to the speed of light of -1.8 × 10-6 < ( v ν - c)/ c < 2.3 × 10-6 at 90% C.L. This new measurement confirms with higher accuracy the revised OPERA result.

  1. Momentum measurement by the multiple Coulomb scattering method in the OPERA lead-emulsion target

    NASA Astrophysics Data System (ADS)

    Agafonova, N.; Aleksandrov, A.; Altinok, O.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Autiero, D.; Badertscher, A.; Bagulya, A.; Ben Dhahbi, A.; Bertolin, A.; Besnier, M.; Bozza, C.; Brugière, T.; Brugnera, R.; Brunet, F.; Brunetti, G.; Buontempo, S.; Cazes, A.; Chaussard, L.; Chernyavskiy, M.; Chiarella, V.; Chukanov, A.; D'Ambrosio, N.; Dal Corso, F.; De Lellis, G.; del Amo Sanchez, P.; Déclais, Y.; De Serio, M.; Di Capua, F.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Egorov, O.; Enikeev, R.; Ereditato, A.; Esposito, L. S.; Favier, J.; Ferber, T.; Fini, R. A.; Frekers, D.; Fukuda, T.; Garfagnini, A.; Giacomelli, G.; Giorgini, M.; Göllnitz, C.; Goldberg, J.; Golubkov, D.; Goncharova, L.; Gornushkin, Y.; Grella, G.; Grianti, F.; Guler, A. M.; Gustavino, C.; Hagner, C.; Hamada, K.; Hara, T.; Hierholzer, M.; Hollnagel, A.; Hoshino, K.; Ieva, M.; Ishida, H.; Jakovcic, K.; Jollet, C.; Juget, F.; Kamiscioglu, M.; Kazuyama, K.; Kim, S. H.; Kimura, M.; Kitagawa, N.; Klicek, B.; Knuesel, J.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Kubota, H.; Lazzaro, C.; Lenkeit, J.; Lippi, I.; Ljubicic, A.; Longhin, A.; Loverre, P.; Lutter, G.; Malgin, A.; Mandrioli, G.; Manai, K.; Marteau, J.; Matsuo, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meisel, F.; Meregaglia, A.; Migliozzi, P.; Mikado, S.; Miyamoto, S.; Monacelli, P.; Morishima, K.; Moser, U.; Muciaccia, M. T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Naumov, D.; Nikitina, V.; Niwa, K.; Nonoyama, Y.; Ogawa, S.; Okateva, N.; Olshevskiy, A.; Paniccia, M.; Paoloni, A.; Park, B. D.; Park, I. G.; Pastore, A.; Patrizii, L.; Pennacchio, E.; Pessard, H.; Pretzl, K.; Pilipenko, V.; Pistillo, C.; Polukhina, N.; Pozzato, M.; Pupilli, F.; Rescigno, R.; Roganova, T.; Rokujo, H.; Romano, G.; Rosa, G.; Rostovtseva, I.; Rubbia, A.; Russo, A.; Ryasny, V.; Ryazhskaya, O.; Sato, O.; Sato, Y.; Schembri, A.; Schmidt-Parzefall, W.; Schroeder, H.; Scotto Lavina, L.; Sheshukov, A.; Shibuya, H.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Song, J. S.; Spinetti, M.; Stanco, L.; Starkov, N.; Stipcevic, M.; Strauss, T.; Strolin, P.; Takahashi, S.; Tenti, M.; Terranova, F.; Tezuka, I.; Tioukov, V.; Tolun, P.; Trabelsi, A.; Tran, T.; Tufanli, S.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J. L.; Wilquet, G.; Wonsak, B.; Yakushev, V.; Yoon, C. S.; Yoshioka, T.; Yoshida, J.; Zaitsev, Y.; Zemskova, S.; Zghiche, A.; Zimmermann, R.

    2012-01-01

    A new method of momentum measurement of charged particles through multiple Coulomb scattering (MCS) in the OPERA lead-emulsion target is presented. It is based on precise measurements of track angular deviations carried out thanks to the very high resolution of nuclear emulsions. The algorithm has been tested with Monte Carlo pions. The results are found to describe within the expected uncertainties the data obtained from test beams. We also present a comparison of muon momenta evaluated through MCS in the OPERA lead-emulsion target with those determined by the electronic detectors for neutrino-charged current interaction events. The two independent measurements agree within the experimental uncertainties, and the results validate the algorithm developed for the emulsion detector of OPERA.

  2. INTERPLAY OF NEUTRINO OPACITIES IN CORE-COLLAPSE SUPERNOVA SIMULATIONS

    SciTech Connect

    Lentz, Eric J.; Mezzacappa, Anthony; Hix, W. Raphael; Messer, O. E. Bronson; Bruenn, Stephen W.

    2012-11-20

    We have conducted a series of numerical experiments using spherically symmetric, general relativistic, neutrino radiation hydrodynamics with the code Agile-BOLTZTRAN to examine the effects of modern neutrino opacities on the development of supernova simulations. We test the effects of opacities by removing opacities or by undoing opacity improvements for individual opacities and groups of opacities. We find that improvements to electron capture (EC) on nuclei, namely EC on an ensemble of nuclei using modern nuclear structure models rather than the simpler independent-particle approximation (IPA) for EC on a mean nucleus, plays the most important role during core collapse of all tested