Science.gov

Sample records for neutrino-driven supernova mechanism

  1. ON THE IMPORTANCE OF THE EQUATION OF STATE FOR THE NEUTRINO-DRIVEN SUPERNOVA EXPLOSION MECHANISM

    SciTech Connect

    Suwa, Yudai; Takiwaki, Tomoya; Kotake, Kei; Fischer, Tobias; Liebendoerfer, Matthias; Sato, Katsuhiko

    2013-02-10

    By implementing the widely used equations of state (EOS) from Lattimer and Swesty (LS) and H. Shen et al. (SHEN) in core-collapse supernova simulations, we explore possible impacts of these EOS on the post-bounce dynamics prior to the onset of neutrino-driven explosions. Our spherically symmetric (1D) and axially symmetric (2D) models are based on neutrino radiation hydrodynamics including spectral transport, which is solved by the isotropic diffusion source approximation. We confirm that in 1D simulations neutrino-driven explosions cannot be obtained for any of the employed EOS. Impacts of the EOS on the post-bounce hydrodynamics are more clearly visible in 2D simulations. In 2D models of a 15 M {sub Sun} progenitor using the LS EOS, the stalled bounce shock expands to increasingly larger radii, which is not the case when using the SHEN EOS. Keeping in mind that the omission of the energy drain by heavy-lepton neutrinos in the present scheme could facilitate explosions, we find that 2D models of an 11.2 M {sub Sun} progenitor produce neutrino-driven explosions for all the EOS under investigation. Models using the LS EOS are slightly more energetic compared with those with the SHEN EOS. The more efficient neutrino heating in the LS models coincides with a higher electron antineutrino luminosity and a larger mass that is enclosed within the gain region. The models based on the LS EOS also show a more vigorous and aspherical downflow of accreting matter to the surface of the protoneutron star (PNS). The accretion pattern is essential for the production and strength of outgoing pressure waves, which can push in turn the shock to larger radii and provide more favorable conditions for the explosion. Based on our models, we investigate several diagnostic indicators of the explosion that have been suggested in the literature, e.g., the amplitude of the standing accretion shock instability mode, the mass-weighted average entropy in the gain region, the PNS radius, the

  2. On the Importance of the Equation of State for the Neutrino-driven Supernova Explosion Mechanism

    NASA Astrophysics Data System (ADS)

    Suwa, Yudai; Takiwaki, Tomoya; Kotake, Kei; Fischer, Tobias; Liebendörfer, Matthias; Sato, Katsuhiko

    2013-02-01

    By implementing the widely used equations of state (EOS) from Lattimer & Swesty (LS) and H. Shen et al. (SHEN) in core-collapse supernova simulations, we explore possible impacts of these EOS on the post-bounce dynamics prior to the onset of neutrino-driven explosions. Our spherically symmetric (1D) and axially symmetric (2D) models are based on neutrino radiation hydrodynamics including spectral transport, which is solved by the isotropic diffusion source approximation. We confirm that in 1D simulations neutrino-driven explosions cannot be obtained for any of the employed EOS. Impacts of the EOS on the post-bounce hydrodynamics are more clearly visible in 2D simulations. In 2D models of a 15 M ⊙ progenitor using the LS EOS, the stalled bounce shock expands to increasingly larger radii, which is not the case when using the SHEN EOS. Keeping in mind that the omission of the energy drain by heavy-lepton neutrinos in the present scheme could facilitate explosions, we find that 2D models of an 11.2 M ⊙ progenitor produce neutrino-driven explosions for all the EOS under investigation. Models using the LS EOS are slightly more energetic compared with those with the SHEN EOS. The more efficient neutrino heating in the LS models coincides with a higher electron antineutrino luminosity and a larger mass that is enclosed within the gain region. The models based on the LS EOS also show a more vigorous and aspherical downflow of accreting matter to the surface of the protoneutron star (PNS). The accretion pattern is essential for the production and strength of outgoing pressure waves, which can push in turn the shock to larger radii and provide more favorable conditions for the explosion. Based on our models, we investigate several diagnostic indicators of the explosion that have been suggested in the literature, e.g., the amplitude of the standing accretion shock instability mode, the mass-weighted average entropy in the gain region, the PNS radius, the antesonic

  3. Explosive nucleosynthesis in a neutrino-driven core collapse supernova

    SciTech Connect

    Fujimoto, Shin-ichiro; Kotake, Kei; Hashimoto, Masa-aki; Ono, Masaomi; Ohnishi, Naofumi

    2010-06-01

    We investigate explosive nucleosynthesis in a delayed neutrino-driven, supernova explosion aided by standing accretion shock instability (SASI), based on two-dimensional hydrodynamic simulations of the explosion of a 15 M{sub c}entre dot star. We take into accounts neutrino heating and cooling as well as change in electron fraction due to weak interactions appropriately, in the two-dimensional simulations. We assume the isotropic emission of neutrinos from the neutrino spheres with given luminosities. and the Fermi-Dirac distribution of given temperatures. We find that the stalled shock revives due to the neutrino heating aided by SASI for cases with L{sub n}u{sub e}>=3.9x10{sup 52}ergss{sup -1} and the as-pherical shock passes through the outer layers of the star (>=10,000 km), with the explosion energies of approx10{sup 51}ergs.Next we examine abundances and masses of the supernova ejecta. We find that masses of the ejecta and {sup 56}Ni correlate with the neutrino luminosity, and {sup 56}Ni mass is comparable to that observed in SN 1987A. We also find that abundance pattern of the supernova ejecta is similar to that of the solar system, for cases with high explosion energies of >10{sup 51}ergs. We emphasize that {sup 64}Zn, which is underproduced in the spherical case, is abundantly produced in slightly neutron-rich ejecta.

  4. THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Murphy, Jeremiah W.; Dolence, Joshua C.; Burrows, Adam E-mail: jdolence@astro.princeton.edu

    2013-07-01

    Multi-dimensional instabilities have become an important ingredient in core-collapse supernova (CCSN) theory. Therefore, it is necessary to understand the driving mechanism of the dominant instability. We compare our parameterized three-dimensional CCSN simulations with other buoyancy-driven simulations and propose scaling relations for neutrino-driven convection. Through these comparisons, we infer that buoyancy-driven convection dominates post-shock turbulence in our simulations. In support of this inference, we present four major results. First, the convective fluxes and kinetic energies in the neutrino-heated region are consistent with expectations of buoyancy-driven convection. Second, the convective flux is positive where buoyancy actively drives convection, and the radial and tangential components of the kinetic energy are in rough equipartition (i.e., K{sub r} {approx} K{sub {theta}} + K{sub {phi}}). Both results are natural consequences of buoyancy-driven convection, and are commonly observed in simulations of convection. Third, buoyant driving is balanced by turbulent dissipation. Fourth, the convective luminosity and turbulent dissipation scale with the driving neutrino power. In all, these four results suggest that in neutrino-driven explosions, the multi-dimensional motions are consistent with neutrino-driven convection.

  5. Nucleosynthesis in neutrino-driven, aspherical Population III supernovae

    NASA Astrophysics Data System (ADS)

    Fujimoto, Shin-ichiro; Hashimoto, Masa-aki; Ono, Masaomi; Kotake, Kei

    2012-09-01

    We investigate explosive nucleosynthesis during neutrino-driven, aspherical supernova (SN) explosion aided by standing accretion shock instability (SASI), based on two-dimensional hydrodynamic simulations of the explosion of 11, 15, 20, 25, 30 and 40M ⊙ stars with zero metallicity. The magnitude and asymmetry of the explosion energy are estimated with simulations, for a given set of neutrino luminosities and temperatures, not as in the previous study in which the explosion is manually and spherically initiated by means of a thermal bomb or a piston and also some artificial mixing procedures are applied for the estimate of abundances of the SN ejecta. By post-processing calculations with a large nuclear reaction network, we have evaluated abundances and masses of ejecta from the aspherical SNe. We find that matter mixing induced via SASI is important for the abundant production of nuclei with atomic number >= 21, in particular Sc, which is underproduced in the spherical models without artificial mixing. We also find that the IMF-averaged abundances are similar to those observed in extremely metal poor stars. However, observed [K/Fe] cannot be reproduced with our aspherical SN models.

  6. Supernova 1987A: neutrino-driven explosions in three dimensions and light curves

    NASA Astrophysics Data System (ADS)

    Utrobin, V. P.; Wongwathanarat, A.; Janka, H.-Th.; Müller, E.

    2015-09-01

    Context. The well-observed and well-studied type IIP Supernova 1987A (SN 1987A), produced by the explosion of a blue supergiant in the Large Magellanic Cloud, is a touchstone for the evolution of massive stars, the simulation of neutrino-driven explosions, and the modeling of light curves and spectra. Aims: In the framework of the neutrino-driven explosion mechanism, we study the dependence of explosion properties on the structure of different blue supergiant progenitors and compare the corresponding light curves with observations of SN 1987A. Methods: Three-dimensional (3D) simulations of neutrino-driven explosions are performed with the explicit, finite-volume, Eulerian, multifluid hydrodynamics code Prometheus, using of four available presupernova models as initial data. At a stage of almost homologous expansion, the hydrodynamical and composition variables of the 3D models are mapped to a spherically symmetric configuration, and the simulations are continued with the implicit, Lagrangian radiation-hydrodynamics code Crab to follow the blast-wave evolution into the SN outburst. Results: All of our 3D neutrino-driven explosion models, with explosion energies compatible with SN 1987A, produce 56Ni in rough agreement with the amount deduced from fitting the radioactively powered light-curve tail. Two of our models (based on the same progenitor) yield maximum velocities of around 3000 km s-1 for the bulk of ejected 56Ni, consistent with observational data. In all of our models inward mixing of hydrogen during the 3D evolution leads to minimum velocities of hydrogen-rich matter below 100 km s-1, which is in good agreement with spectral observations. However, the explosion of only one of the considered progenitors reproduces the shape of the broad light curve maximum of SN 1987A fairly well. Conclusions: The considered presupernova models, 3D explosion simulations, and light-curve calculations can explain the basic observational features of SN 1987A, except for those

  7. Nucleosynthesis in neutrino-driven, aspherical supernova explosion of a massive star

    SciTech Connect

    Fujimoto, S.; Hashimoto, M.; Ono, M.; Kotake, K.; Ohnishi, N.

    2011-10-28

    We examine explosive nucleosynthesis of p-nuclei during a delayed neutrino-driven, aspherical supernova explosion aided by standing accretion shock instability, based on two-dimensional hydrodynamic simulations of the explosion of a 15M{sub {center_dot}} star. We find that p-nuclei are mainly produced through {gamma}-processes, and that the nuclei lighter than {sup 92}Mo are abundantly synthesized in slightly neutron-rich bubbles with electron fractions of Y{sub e}{<=}0.48. {sup 94}Mo, {sup 96}Ru, and {sup 98}Ru, are underproduced compared with the solar system, as in the spherical model.

  8. Systematic features of axisymmetric neutrino-driven core-collapse supernova models in multiple progenitors

    NASA Astrophysics Data System (ADS)

    Nakamura, Ko; Takiwaki, Tomoya; Kuroda, Takami; Kotake, Kei

    2015-12-01

    We present an overview of two-dimensional (2D) core-collapse supernova simulations employing a neutrino transport scheme by the isotropic diffusion source approximation. We study 101 solar-metallicity, 247 ultra metal-poor, and 30 zero-metal progenitors covering zero-age main sequence mass from 10.8 M⊙ to 75.0 M⊙. Using the 378 progenitors in total, we systematically investigate how the differences in the structures of these multiple progenitors impact the hydrodynamics evolution. By following a long-term evolution over 1.0 s after bounce, most of the computed models exhibit neutrino-driven revival of the stalled bounce shock at ˜200-800 ms postbounce, leading to the possibility of explosion. Pushing the boundaries of expectations in previous one-dimensional studies, our results confirm that the compactness parameter ξ that characterizes the structure of the progenitors is also a key in 2D to diagnosing the properties of neutrino-driven explosions. Models with high ξ undergo high ram pressure from the accreting matter onto the stalled shock, which affects the subsequent evolution of the shock expansion and the mass of the protoneutron star under the influence of neutrino-driven convection and the standing accretion-shock instability. We show that the accretion luminosity becomes higher for models with high ξ, which makes the growth rate of the diagnostic explosion energy higher and the synthesized nickel mass bigger. We find that these explosion characteristics tend to show a monotonic increase as a function of the compactness parameter ξ.

  9. Nucleosynthesis in neutrino-driven, aspherical supernovae of population III stars

    SciTech Connect

    Fujimoto, Shin-ichiro; Hashimoto, Masa-aki; Ono, Masaomi; Kotake, Kei

    2012-11-12

    We examine explosive nucleosynthesis during neutrino-driven, aspherical supernovae of Population III stars, based on two-dimensional (2D) hydrodynamic simulations of the explosion of 11-40M{sub Circled-Dot-Operator} stars with zero metallicity. The magnitude and asymmetry of the explosion energy are estimated with the simulations. By post-processing calculations with a large nuclear reaction network, we have evaluated abundances and masses of ejecta from the aspherical SNe. We find that the evaluated abundance patterns are similar to those observed in extremely metal poor stars, as shown in spherical and 2D models, in which the explosion is manually and spherically initiated. Matter mixing induced via standing accretion shock instability is important for the abundances and masses of the SN ejecta.

  10. Solar r-process-constrained actinide production in neutrino-driven winds of supernovae

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Janka, H.-Th.

    2016-07-01

    Long-lived radioactive nuclei play an important role as nucleo-cosmochronometers and as cosmic tracers of nucleosynthetic source activity. In particular, nuclei in the actinide region like thorium, uranium, and plutonium can testify to the enrichment of an environment by the still enigmatic astrophysical sources that are responsible for the production of neutron-rich nuclei by the rapid neutron-capture process (r-process). Supernovae and merging neutron-star (NS) or NS-black hole binaries are considered as most likely sources of the r-nuclei. But arguments in favour of one or the other or both are indirect and make use of assumptions; they are based on theoretical models with remaining simplifications and shortcomings. An unambiguous observational determination of a production event is still missing. In order to facilitate searches in this direction, e.g. by looking for radioactive tracers in stellar envelopes, the interstellar medium or terrestrial reservoirs, we provide improved theoretical estimates and corresponding uncertainty ranges for the actinide production (232Th, 235, 236, 238U, 237Np, 244Pu, and 247Cm) in neutrino-driven winds of core-collapse supernovae. Since state-of-the-art supernova models do not yield r-process viable conditions - but still lack, for example, the effects of strong magnetic fields - we base our investigation on a simple analytical, Newtonian, adiabatic and steady-state wind model and consider the superposition of a large number of contributing components, whose nucleosynthesis-relevant parameters (mass weight, entropy, expansion time-scale, and neutron excess) are constrained by the assumption that the integrated wind nucleosynthesis closely reproduces the Solar system distribution of r-process elements. We also test the influence of uncertain nuclear physics.

  11. Production of 44Ti in neutrino-driven aspherical supernova explosions

    NASA Astrophysics Data System (ADS)

    Fujimoto, Shin-ichiro; Ono, Masaomi; Hashimoto, Masa-aki; Kotake, Kei

    2014-05-01

    We examine the synthesis of 44Ti in a neutrino-driven aspherical supernova (SN), focusing on reaction rates related to 44Ti and rotation of a progenitor. We have performed 2D hydrodynamic simulations of SN of a 15M⊙ progenitor, whose angular velocity is manually set to be a cylindrical distribution and have followed explosive nucleosynthesis in the ejecta. We find that the faster rates of 40Ca(α,γ)44Ti and the slower rate of 44Ti(α,p)47V lead to more massive ejection of 44Ti and 56Ni and larger ratios <44Ti/56Ni>. Faster rotation also results in more massive ejection of 44Ti and 56Ni. Ratios <44Ti/56Ni> are however independent from rotation. Large masses of 44Ti and large ratios observed in SN 1987A and Cas A (> 1O-4M⊙ and 1-2 respectively) are not realized in all the models.

  12. Production of {sup 44}Ti in neutrino-driven aspherical supernova explosions

    SciTech Connect

    Fujimoto, Shin-ichiro; Ono, Masaomi; Hashimoto, Masa-aki; Kotake, Kei

    2014-05-02

    We examine the synthesis of {sup 44}Ti in a neutrino-driven aspherical supernova (SN), focusing on reaction rates related to {sup 44}Ti and rotation of a progenitor. We have performed 2D hydrodynamic simulations of SN of a 15M{sub ⊙} progenitor, whose angular velocity is manually set to be a cylindrical distribution and have followed explosive nucleosynthesis in the ejecta. We find that the faster rates of {sup 40}Ca(α,γ){sup 44}Ti and the slower rate of {sup 44}Ti(α,p){sup 47}V lead to more massive ejection of {sup 44}Ti and {sup 56}Ni and larger ratios <{sup 44}Ti/{sup 56}Ni>. Faster rotation also results in more massive ejection of {sup 44}Ti and {sup 56}Ni. Ratios <{sup 44}Ti/{sup 56}Ni> are however independent from rotation. Large masses of {sup 44}Ti and large ratios observed in SN 1987A and Cas A (> 1O{sup −4}M{sub ⊙} and 1-2 respectively) are not realized in all the models.

  13. ON THE IMPACT OF THREE DIMENSIONS IN SIMULATIONS OF NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVA EXPLOSIONS

    SciTech Connect

    Couch, Sean M.

    2013-09-20

    We present one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) hydrodynamical simulations of core-collapse supernovae including a parameterized neutrino heating and cooling scheme in order to investigate the critical core neutrino luminosity (L{sub crit}) required for explosion. In contrast to some previous works, we find that 3D simulations explode later than 2D simulations, and that L{sub crit} at fixed mass accretion rate is somewhat higher in three dimensions than in two dimensions. We find, however, that in two dimensions L{sub crit} increases as the numerical resolution of the simulation increases. In contrast to some previous works, we argue that the average entropy of the gain region is in fact not a good indicator of explosion but is rather a reflection of the greater mass in the gain region in two dimensions. We compare our simulations to semi-analytic explosion criteria and examine the nature of the convective motions in two dimensions and three dimensions. We discuss the balance between neutrino-driven buoyancy and drag forces. In particular, we show that the drag force will be proportional to a buoyant plume's surface area while the buoyant force is proportional to a plume's volume and, therefore, plumes with greater volume-to-surface-area ratios will rise more quickly. We show that buoyant plumes in two dimensions are inherently larger, with greater volume-to-surface-area ratios, than plumes in three dimensions. In the scenario that the supernova shock expansion is dominated by neutrino-driven buoyancy, this balance between buoyancy and drag forces may explain why 3D simulations explode later than 2D simulations and why L{sub crit} increases with resolution. Finally, we provide a comparison of our results with other calculations in the literature.

  14. NEUTRINO-DRIVEN TURBULENT CONVECTION AND STANDING ACCRETION SHOCK INSTABILITY IN THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Abdikamalov, Ernazar; Ott, Christian D.; Radice, David; Roberts, Luke F.; Haas, Roland; Reisswig, Christian; Mösta, Philipp; Klion, Hannah; Schnetter, Erik

    2015-07-20

    We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a 27 M{sub ⊙} progenitor star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), and (3) SASI-dominated evolution. This confirms previous 3D results of Hanke et al. and Couch and Connor. We carry out simulations with resolutions differing by up to a factor of ∼4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum E(ℓ) develops in the heating layer. Like other 3D studies, we find E(ℓ) ∝ℓ{sup −1} in the “inertial range,” while theory and local simulations argue for E(ℓ) ∝ ℓ{sup −5/3}. We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy-containing scale, creating a “bottleneck” that prevents an efficient turbulent cascade.

  15. Neutrino-driven Supernova of a Low-mass Iron-core Progenitor Boosted by Three-dimensional Turbulent Convection

    NASA Astrophysics Data System (ADS)

    Melson, Tobias; Janka, Hans-Thomas; Marek, Andreas

    2015-03-01

    We present the first successful simulation of a neutrino-driven supernova explosion in three dimensions (3D), using the Prometheus-Vertex code with an axis-free Yin-Yang grid and a sophisticated treatment of three-flavor, energy-dependent neutrino transport. The progenitor is a nonrotating, zero-metallicity 9.6 {{M}⊙ } star with an iron core. While in spherical symmetry outward shock acceleration sets in later than 300 ms after bounce, a successful explosion starts at ˜130 ms postbounce in two dimensions (2D). The 3D model explodes at about the same time but with faster shock expansion than in 2D and a more quickly increasing and roughly 10% higher explosion energy of >1050 erg. The more favorable explosion conditions in 3D are explained by lower temperatures and thus reduced neutrino emission in the cooling layer below the gain radius. This moves the gain radius inward and leads to a bigger mass in the gain layer, whose larger recombination energy boosts the explosion energy in 3D. These differences are caused by less coherent, less massive, and less rapid convective downdrafts associated with postshock convection in 3D. The less violent impact of these accretion downflows in the cooling layer produces less shock heating and therefore diminishes energy losses by neutrino emission. We thus have, for the first time, identified a reduced mass accretion rate, lower infall velocities, and a smaller surface filling factor of convective downdrafts as consequences of 3D postshock turbulence that facilitate neutrino-driven explosions and strengthen them compared to the 2D case.

  16. SHEDDING NEW LIGHT ON EXPLODING STARS: TERASCALE SIMULATIONS OF NEUTRINO-DRIVEN SUPERNOVAE AND THEIR NUCLEOSYNTHESIS

    SciTech Connect

    Haxton, Wick

    2012-03-07

    This project was focused on simulations of core-collapse supernovae on parallel platforms. The intent was to address a number of linked issues: the treatment of hydrodynamics and neutrino diffusion in two and three dimensions; the treatment of the underlying nuclear microphysics that governs neutrino transport and neutrino energy deposition; the understanding of the associated nucleosynthesis, including the r-process and neutrino process; the investigation of the consequences of new neutrino phenomena, such as oscillations; and the characterization of the neutrino signal that might be recorded in terrestrial detectors. This was a collaborative effort with Oak Ridge National Laboratory, State University of New York at Stony Brook, University of Illinois at Urbana-Champaign, University of California at San Diego, University of Tennessee at Knoxville, Florida Atlantic University, North Carolina State University, and Clemson. The collaborations tie together experts in hydrodynamics, nuclear physics, computer science, and neutrino physics. The University of Washington contributions to this effort include the further development of techniques to solve the Bloch-Horowitz equation for effective interactions and operators; collaborative efforts on developing a parallel Lanczos code; investigating the nuclear and neutrino physics governing the r-process and neutrino physics; and exploring the effects of new neutrino physics on the explosion mechanism, nucleosynthesis, and terrestrial supernova neutrino detection.

  17. Impact of eV-mass sterile neutrinos on neutrino-driven supernova outflows

    SciTech Connect

    Tamborra, Irene; Raffelt, Georg G.; Hüdepohl, Lorenz; Janka, Hans-Thomas E-mail: raffelt@mpp.mpg.de E-mail: thj@mpa-garching.mpg.de

    2012-01-01

    Motivated by recent hints for sterile neutrinos from the reactor anomaly, we study active-sterile conversions in a three-flavor scenario (2 active + 1 sterile families) for three different representative times during the neutrino-cooling evolution of the proto-neutron star born in an electron-capture supernova. In our ''early model'' (0.5 s post bounce), the ν{sub e}-ν{sub s} MSW effect driven by Δm{sup 2} = 2.35eV{sup 2} is dominated by ordinary matter and leads to a complete ν{sub e}-ν{sub s} swap with little or no trace of collective flavor oscillations. In our ''intermediate'' (2.9 s p.b.) and ''late models'' (6.5 s p.b.), neutrinos themselves significantly modify the ν{sub e}-ν{sub s} matter effect, and, in particular in the late model, νν refraction strongly reduces the matter effect, largely suppressing the overall ν{sub e}-ν{sub s} MSW conversion. This phenomenon has not been reported in previous studies of active-sterile supernova neutrino oscillations. We always include the feedback effect on the electron fraction Y{sub e} due to neutrino oscillations. In all examples, Y{sub e} is reduced and therefore the presence of sterile neutrinos can affect the conditions for heavy-element formation in the supernova ejecta, even if probably not enabling the r-process in the investigated outflows of an electron-capture supernova. The impact of neutrino-neutrino refraction is strong but complicated, leaving open the possibility that with a more complete treatment, or for other supernova models, active-sterile neutrino oscillations could generate conditions suitable for the r-process.

  18. THE ROLE OF TURBULENCE IN NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVA EXPLOSIONS

    SciTech Connect

    Couch, Sean M.; Ott, Christian D. E-mail: cott@tapir.caltech.edu

    2015-01-20

    The neutrino-heated ''gain layer'' immediately behind the stalled shock in a core-collapse supernova is unstable to high-Reynolds-number turbulent convection. We carry out and analyze a new set of 19 high-resolution three-dimensional (3D) simulations with a three-species neutrino leakage/heating scheme and compare with spherically symmetric (one-dimensional, 1D) and axisymmetric (two-dimensional, 2D) simulations carried out with the same methods. We study the postbounce supernova evolution in a 15 M {sub ☉} progenitor star and vary the local neutrino heating rate, the magnitude and spatial dependence of asphericity from convective burning in the Si/O shell, and spatial resolution. Our simulations suggest that there is a direct correlation between the strength of turbulence in the gain layer and the susceptibility to explosion. 2D and 3D simulations explode at much lower neutrino heating rates than 1D simulations. This is commonly explained by the fact that nonradial dynamics allows accreting material to stay longer in the gain layer. We show that this explanation is incomplete. Our results indicate that the effective turbulent ram pressure exerted on the shock plays a crucial role by allowing multi-dimensional models to explode at a lower postshock thermal pressure and thus with less neutrino heating than 1D models. We connect the turbulent ram pressure with turbulent energy at large scales and in this way explain why 2D simulations are erroneously exploding more easily than 3D simulations.

  19. Progenitor-dependent Explosion Dynamics in Self-consistent, Axisymmetric Simulations of Neutrino-driven Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Summa, Alexander; Hanke, Florian; Janka, Hans-Thomas; Melson, Tobias; Marek, Andreas; Müller, Bernhard

    2016-07-01

    We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11–28 M ⊙, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si–O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si–O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection timescales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.

  20. Progenitor-dependent Explosion Dynamics in Self-consistent, Axisymmetric Simulations of Neutrino-driven Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Summa, Alexander; Hanke, Florian; Janka, Hans-Thomas; Melson, Tobias; Marek, Andreas; Müller, Bernhard

    2016-07-01

    We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11-28 M ⊙, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si-O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si-O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection timescales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.

  1. EXPLOSIVE NUCLEOSYNTHESIS IN THE NEUTRINO-DRIVEN ASPHERICAL SUPERNOVA EXPLOSION OF A NON-ROTATING 15 M{sub sun} STAR WITH SOLAR METALLICITY

    SciTech Connect

    Fujimoto, Shin-ichiro; Kotake, Kei; Hashimoto, Masa-aki; Ono, Masaomi; Ohnishi, Naofumi

    2011-09-01

    We investigate explosive nucleosynthesis in a non-rotating 15 M{sub sun} star with solar metallicity that explodes by a neutrino-heating supernova (SN) mechanism aided by both standing accretion shock instability (SASI) and convection. To trigger explosions in our two-dimensional hydrodynamic simulations, we approximate the neutrino transport with a simple light-bulb scheme and systematically change the neutrino fluxes emitted from the protoneutron star. By a post-processing calculation, we evaluate abundances and masses of the SN ejecta for nuclei with a mass number {<=}70, employing a large nuclear reaction network. Aspherical abundance distributions, which are observed in nearby core-collapse SN remnants, are obtained for the non-rotating spherically symmetric progenitor, due to the growth of a low-mode SASI. The abundance pattern of the SN ejecta is similar to that of the solar system for models whose masses range between (0.4-0.5) M{sub sun} of the ejecta from the inner region ({<=}10, 000 km) of the precollapse core. For the models, the explosion energies and the {sup 56}Ni masses are {approx_equal} 10{sup 51}erg and (0.05-0.06) M{sub sun}, respectively; their estimated baryonic masses of the neutron star are comparable to the ones observed in neutron-star binaries. These findings may have little uncertainty because most of the ejecta is composed of matter that is heated via the shock wave and has relatively definite abundances. The abundance ratios for Ne, Mg, Si, and Fe observed in the Cygnus loop are reproduced well with the SN ejecta from an inner region of the 15 M{sub sun} progenitor.

  2. The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments

    SciTech Connect

    Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme; Masset, Frédéric; González, Matthias; Krueger, Brendan K.; Novak, Jérôme; Faure, Julien; Martin, Noël; Blottiau, Patrick; Peres, Bruno; Durand, Gilles

    2015-01-01

    The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the center of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernova remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as SASI and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. Lastly, we analyse the potential of this complementary research tool for supernova theory. We also review its potential for public outreach in science museums.

  3. Integrated Nucleosynthesis in Neutrino Driven Winds

    SciTech Connect

    Roberts, L F; Woosley, S E; Hoffman, R D

    2010-03-26

    Although they are but a small fraction of the mass ejected in core-collapse supernovae, neutrino-driven winds (NDWs) from nascent proto-neutron stars (PNSs) have the potential to contribute significantly to supernova nucleosynthesis. In previous works, the NDW has been implicated as a possible source of r-process and light p-process isotopes. In this paper we present time-dependent hydrodynamic calculations of nucleosynthesis in the NDW which include accurate weak interaction physics coupled to a full nuclear reaction network. Using two published models of PNS neutrino luminosities, we predict the contribution of the NDW to the integrated nucleosynthetic yield of the entire supernova. For the neutrino luminosity histories considered, no true r-process occurs in the most basic scenario. The wind driven from an older 1.4M{sub {circle_dot}} model for a PNS is moderately neutron-rich at late times however, and produces {sup 87}Rb, {sup 88}Sr, {sup 89}Y, and {sup 90}Zr in near solar proportions relative to oxygen. The wind from a more recently studied 1.27M{sub {circle_dot}} PNS is proton-rich throughout its entire evolution and does not contribute significantly to the abundance of any element. It thus seems very unlikely that the simplest model of the NDW can produce the r-process. At most, it contributes to the production of the N = 50 closed shell elements and some light p-nuclei. In doing so, it may have left a distinctive signature on the abundances in metal poor stars, but the results are sensitive to both uncertain models for the explosion and the masses of the neutron stars involved.

  4. The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments

    DOE PAGESBeta

    Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme; Masset, Frédéric; González, Matthias; Krueger, Brendan K.; Novak, Jérôme; Oertel, Micaela; Margueron, Jérôme; Faure, Julien; et al

    2015-01-01

    The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the center of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernovamore » remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as SASI and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. Lastly, we analyse the potential of this complementary research tool for supernova theory. We also review its potential for public outreach in science museums.« less

  5. PRODUCTION OF LIGHT-ELEMENT PRIMARY PROCESS NUCLEI IN NEUTRINO-DRIVEN WINDS

    SciTech Connect

    Arcones, A.; Montes, F.

    2011-04-10

    We present first comparisons between light-element primary process (LEPP) abundances observed in some ultra metal-poor (UMP) stars and nucleosynthesis calculations based on long-time hydrodynamical simulations of core-collapse supernovae and their neutrino-driven wind. UMP star observations indicate that Z {>=} 38 elements include the contributions of at least two nucleosynthesis components: r-process nuclei that are synthesized by rapid neutron capture in a yet unknown site and LEPP elements (mainly Sr, Y, and Zr). We show that neutrino-driven wind simulations can explain the observed LEPP pattern. We explore in detail the sensitivity of the calculated abundances to the electron fraction, which is a key nucleosynthesis parameter but poorly known due to uncertainties in neutrino interactions and transport. Our results show that the observed LEPP pattern can be reproduced in proton- and neutron-rich winds.

  6. Neutrino mechanism of supernova explosion

    NASA Astrophysics Data System (ADS)

    Chechetkin, V. M.

    In the last decades, scientifics have tried to understand the explosion mechanism of stars that is responsible for the simultaneous formation of neutron star and supernova outburst.The main problem is the determination of a source of energy in the ejection of a supernova envelope. The gravitation energy as a source of energy in supernova is placed first. However, subsequent studies led to certain problems in using gravitation energy if the assumption of neutrino difussion was adopted. Situation is changed if one take into consideration large scale convective instability owing to the neutronization of matter in a protoneutron star during the collapse of star with low initial entropy. The three-dimensional hydrodinamic calculation for 75*75*75 grid with step 0.015R(R = 2*10^7 cm) shows that large-scale bubbles with 10^6 cm emerge. When the bubble reaches low density, the neutrinos contained in matter freely escape from it in the regime of volume radiation. The characteristic time of this process is equaled 0.02 s. The shock from the initial bounce when the collapse in the stellar core stops will then be supported by the neutrino emission, resulting in the ejection of an envelope.

  7. The Status of Multi-Dimensional Core-Collapse Supernova Models

    NASA Astrophysics Data System (ADS)

    Müller, B.

    2016-09-01

    Models of neutrino-driven core-collapse supernova explosions have matured considerably in recent years. Explosions of low-mass progenitors can routinely be simulated in 1D, 2D, and 3D. Nucleosynthesis calculations indicate that these supernovae could be contributors of some lighter neutron-rich elements beyond iron. The explosion mechanism of more massive stars remains under investigation, although first 3D models of neutrino-driven explosions employing multi-group neutrino transport have become available. Together with earlier 2D models and more simplified 3D simulations, these have elucidated the interplay between neutrino heating and hydrodynamic instabilities in the post-shock region that is essential for shock revival. However, some physical ingredients may still need to be added/improved before simulations can robustly explain supernova explosions over a wide range of progenitors. Solutions recently suggested in the literature include uncertainties in the neutrino rates, rotation, and seed perturbations from convective shell burning. We review the implications of 3D simulations of shell burning in supernova progenitors for the `perturbations-aided neutrino-driven mechanism,' whose efficacy is illustrated by the first successful multi-group neutrino hydrodynamics simulation of an 18 solar mass progenitor with 3D initial conditions. We conclude with speculations about the impact of 3D effects on the structure of massive stars through convective boundary mixing.

  8. THE PROPAGATION OF NEUTRINO-DRIVEN JETS IN WOLF-RAYET STARS

    SciTech Connect

    Nagakura, Hiroki

    2013-02-20

    We numerically investigate the jet propagation through a rotating collapsing Wolf-Rayet star with detailed central engine physics constructed based on the neutrino-driven collapsar model. The collapsing star determines the evolution of the mass accretion rate, black hole mass, and spin, all of which are important ingredients for determining the jet luminosity. We reveal that neutrino-driven jets in rapidly spinning Wolf-Rayet stars are capable of breaking out from the stellar envelope, while those propagating in slower rotating progenitors fail to break out due to insufficient kinetic power. For progenitor models with successful jet breakouts, the kinetic energy accumulated in the cocoon could be as large as {approx}10{sup 51} erg and might significantly contribute to the luminosity of the afterglow emission or to the kinetic energy of the accompanying supernova if nickel production takes place. We further analyze the post-breakout phase using a simple analytical prescription and conclude that the relativistic jet component could produce events with an isotropic luminosity L {sub p(iso)} {approx} 10{sup 52} erg s{sup -1} and isotropic energy E {sub j(iso)} {approx} 10{sup 54} erg. Our findings support the idea of rapidly rotating Wolf-Rayet stars as plausible progenitors of GRBs, while slowly rotational ones could be responsible for low-luminosity or failed GRBs.

  9. Neutrino-driven wakefield plasma accelerator

    NASA Astrophysics Data System (ADS)

    Rios, L. A.; Serbeto, A.

    2003-08-01

    Processos envolvendo neutrinos são importantes em uma grande variedade de fenômenos astrofísicos, como as explosões de supernovas. Estes objetos, assim como os pulsares e as galáxias starburst, têm sido propostos como aceleradores cósmicos de partículas de altas energias. Neste trabalho, um modelo clássico de fluidos é utilizado para estudar a interação não-linear entre um feixe de neutrinos e um plasma não-colisional relativístico de pósitrons e elétrons na presença de um campo magnético. Durante a interação, uma onda híbrida superior de grande amplitude é excitada. Para parâmetros típicos de supernovas, verificamos que partículas carregadas "capturadas" por essa onda podem ser aceleradas a altas energias. Este resultado pode ser importante no estudo de mecanismos aceleradores de partículas em ambientes astrofísicos.

  10. Core-collapse Supernovae

    SciTech Connect

    Hix, William Raphael; Lentz, E. J.; Baird, Mark L; Chertkow, Merek A; Lee, Ching-Tsai; Blondin, J. M.; Bruenn, S. W.; Messer, Bronson; Mezzacappa, Anthony

    2013-01-01

    Marking the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae bring together physics at a wide range in spatial scales, from kilometer-sized hydrodynamic motions (growing to gigameter scale) down to femtometer scale nuclear reactions. Carrying 10$^{51}$ ergs of kinetic energy and a rich-mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up ourselves and our solar system. We will discuss our emerging understanding of the convectively unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino-radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Recent multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  11. Fission Cycling in a Supernova r-Process

    SciTech Connect

    Beun, Joshua; Mclaughlin, Gail C; Surman, Rebecca; Hix, William Raphael

    2008-01-01

    Recent halo star abundance observations exhibit an important feature of consequence to the r process: the presence of a main r process between the second and third peaks that is consistent among halo stars. We explore fission cycling and steady {beta} flow as the driving mechanisms behind this feature. The presence of fission cycling during the r process can account for nucleosynthesis yields between the second and third peaks, whereas the presence of steady {beta} flow can account for consistent r-process patterns, robust under small variations in astrophysical conditions. We employ the neutrino-driven wind of the core-collapse supernova to examine fission cycling and steady {beta} flow in the r process. As the traditional neutrino-driven wind model does not produce the required very neutron-rich conditions for these mechanisms, we examine changes to the neutrino physics necessary for fission cycling to occur in the neutrino-driven wind environment, and we explore under what conditions steady {beta} flow is obtained.

  12. Cutting-edge issues of core-collapse supernova theory

    SciTech Connect

    Kotake, Kei; Nakamura, Ko; Kuroda, Takami; Takiwaki, Tomoya

    2014-05-02

    Based on multi-dimensional neutrino-radiation hydrodynamic simulations, we report several cutting-edge issues about the long-veiled explosion mechanism of core-collapse supernovae (CCSNe). In this contribution, we pay particular attention to whether three-dimensional (3D) hydrodynamics and/or general relativity (GR) would or would not help the onset of explosions. By performing 3D simulations with spectral neutrino transport, we show that it is more difficult to obtain an explosion in 3D than in 2D. In addition, our results from the first generation of full general relativistic 3D simulations including approximate neutrino transport indicate that GR can foster the onset of neutrino-driven explosions. Based on our recent parametric studies using a light-bulb scheme, we discuss impacts of nuclear energy deposition behind the supernova shock and stellar rotation on the neutrino-driven mechanism, both of which have yet to be included in the self-consistent 3D supernova models. Finally we give an outlook with a summary of the most urgent tasks to extract the information about the explosion mechanisms from multi-messenger CCSN observables.

  13. Cutting-edge issues of core-collapse supernova theory

    NASA Astrophysics Data System (ADS)

    Kotake, Kei; Nakamura, Ko; Kuroda, Takami; Takiwaki, Tomoya

    2014-05-01

    Based on multi-dimensional neutrino-radiation hydrodynamic simulations, we report several cutting-edge issues about the long-veiled explosion mechanism of core-collapse supernovae (CCSNe). In this contribution, we pay particular attention to whether three-dimensional (3D) hydrodynamics and/or general relativity (GR) would or would not help the onset of explosions. By performing 3D simulations with spectral neutrino transport, we show that it is more difficult to obtain an explosion in 3D than in 2D. In addition, our results from the first generation of full general relativistic 3D simulations including approximate neutrino transport indicate that GR can foster the onset of neutrino-driven explosions. Based on our recent parametric studies using a light-bulb scheme, we discuss impacts of nuclear energy deposition behind the supernova shock and stellar rotation on the neutrino-driven mechanism, both of which have yet to be included in the self-consistent 3D supernova models. Finally we give an outlook with a summary of the most urgent tasks to extract the information about the explosion mechanisms from multi-messenger CCSN observables.

  14. The Progenitor Systems and Explosion Mechanisms of Supernovae

    NASA Astrophysics Data System (ADS)

    Milisavljevic, D.

    2013-10-01

    Supernovae are among the most powerful explosions in the universe. They affect the energy balance, global structure, and chemical make-up of galaxies, they produce neutron stars, black holes, and some gamma-ray bursts, and they have been used as cosmological yardsticks to detect the accelerating expansion of the universe. Fundamental properties of these cosmic engines, however, remain uncertain. In this review we discuss the progress made over the last two decades in understanding supernova progenitor systems and explosion mechanisms. We also comment on anticipated future directions of research and highlight alternative methods of investigation using young supernova remnants.

  15. Multi-D Core-Collapse Supernova Explosions and the Multi-Messenger Signatures

    NASA Astrophysics Data System (ADS)

    Kotake, Kei

    Based on multi-dimensional neutrino-radiation hydrodynamic simulations, we report several cutting-edge issues about the long-veiled explosion mechanism of core-collapse supernovae (CCSNe). In this contribution, we pay particular attention to whether three-dimensional (3D) hydrodynamics and/or general relativity (GR) would or would not help the onset of explosions. By performing 3D simulations with spectral neutrino transport, we show that it is more difficult to obtain an explosion in 3D than in 2D. In addition, our results from the first generation of full general relativistic 3D simulations including approximate neutrino transport indicate that GR can foster the onset of neutrino-driven explosions. Based on our recent parametric studies using a light-bulb scheme, we discuss impacts of nuclear energy deposition behind the supernova shock and stellar rotation on the neutrino-driven mechanism, both of which have yet to be included in the self-consistent 3D supernova models. Finally we give an outlook with a summary of the most urgent tasks to extract the information about the explosion mechanisms from multi-messenger CCSN observables.

  16. Neutrino-driven winds from neutron star merger remnants

    NASA Astrophysics Data System (ADS)

    Perego, A.; Rosswog, S.; Cabezón, R. M.; Korobkin, O.; Käppeli, R.; Arcones, A.; Liebendörfer, M.

    2014-10-01

    We present a detailed, three-dimensional hydrodynamic study of the neutrino-driven winds emerging from the remnant of a neutron star merger. Our simulations are performed with the Newtonian, Eulerian code FISH, augmented by a detailed, spectral neutrino leakage scheme that accounts for neutrino absorption. Consistent with earlier two-dimensional studies, a strong baryonic wind is blown out along the original binary rotation axis within ≈100 ms. From this model, we compute a lower limit on the expelled mass of 3.5 × 10-3 M⊙, relevant for heavy element nucleosynthesis. Because of stronger neutrino irradiation, the polar regions show substantially larger electron fractions than those at lower latitudes. The polar ejecta produce interesting r-process contributions from A ≈ 80 to about 130, while the more neutron-rich, lower latitude parts produce elements up to the third r-process peak near A ≈ 195. We calculate the properties of electromagnetic transients powered by the radioactivity in the wind, in addition to the `macronova' transient stemming from the dynamic ejecta. The polar regions produce ultraviolet/optical transients reaching luminosities up to 1041 erg s-1, which peak around 1 d in optical and 0.3 d in bolometric luminosity. The lower latitude regions, due to their contamination with high-opacity heavy elements, produce dimmer and more red signals, peaking after ˜2 d in optical and infrared.

  17. NEW TWO-DIMENSIONAL MODELS OF SUPERNOVA EXPLOSIONS BY THE NEUTRINO-HEATING MECHANISM: EVIDENCE FOR DIFFERENT INSTABILITY REGIMES IN COLLAPSING STELLAR CORES

    SciTech Connect

    Mueller, Bernhard; Janka, Hans-Thomas; Heger, Alexander E-mail: thj@mpa-garching.mpg.de

    2012-12-10

    The neutrino-driven explosion mechanism for core-collapse supernovae in its modern flavor relies on the additional support of hydrodynamical instabilities in achieving shock revival. Two possible candidates, convection and the so-called standing accretion shock instability (SASI), have been proposed for this role. In this paper, we discuss new successful simulations of supernova explosions that shed light on the relative importance of these two instabilities. While convection has so far been observed to grow first in self-consistent hydrodynamical models with multi-group neutrino transport, we here present the first such simulation in which the SASI grows faster while the development of convection is initially inhibited. We illustrate the features of this SASI-dominated regime using an explosion model of a 27 M{sub Sun} progenitor, which is contrasted with a convectively dominated model of an 8.1 M{sub Sun} progenitor with subsolar metallicity, whose early post-bounce behavior is more in line with previous 11.2 M{sub Sun} and 15 M{sub Sun} explosion models. We analyze the conditions discriminating between the two different regimes, showing that a high mass-accretion rate and a short advection timescale are conducive for strong SASI activity. We also briefly discuss some important factors for capturing the SASI-driven regime, such as general relativity, the progenitor structure, a nuclear equation of state leading to a compact proto-neutron star, and the neutrino treatment. Finally, we evaluate possible implications of our findings for two-dimensional and three-dimensional supernova simulations.

  18. INFLUENCE OF MAGNETOROTATIONAL INSTABILITY ON NEUTRINO HEATING: A NEW MECHANISM FOR WEAKLY MAGNETIZED CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Sawai, Hidetomo; Yamada, Shoichi

    2014-03-20

    We investigated the impact of magnetorotational instability (MRI) on the dynamics of weakly magnetized, rapidly rotating core-collapse supernovae by conducting high-resolution axisymmetric MHD simulations with simplified neutrino transfer. We found that an initially sub-magnetar-class magnetic field is drastically amplified by MRI and substantially affects the dynamics thereafter. Although the magnetic pressure is not strong enough to eject matter, the amplified magnetic field efficiently transfers angular momentum from small to large radii and from higher to lower latitudes, which causes the expansion of the heating region due to the extra centrifugal force. This then enhances the efficiency of neutrino heating and eventually leads to neutrino-driven explosion. This is a new scenario of core-collapse supernovae that has never been demonstrated by past numerical simulations.

  19. Supernovae in Binary Systems: An Application of Classical Mechanics.

    ERIC Educational Resources Information Center

    Mitalas, R.

    1980-01-01

    Presents the supernova explosion in a binary system as an application of classical mechanics. This presentation is intended to illustrate the power of the equivalent one-body problem and provide undergraduate students with a variety of insights into elementary classical mechanics. (HM)

  20. Essential ingredients in core-collapse supernovae

    SciTech Connect

    Hix, W. Raphael; Lentz, Eric J.; Chertkow, M. Austin; Harris, J. Austin; Endeve, Eirik; Baird, Mark; Messer, O. E. Bronson; Mezzacappa, Anthony; Bruenn, Stephen; Blondin, John

    2014-04-15

    Carrying 10{sup 44} joules of kinetic energy and a rich mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up our solar system and ourselves. Signaling the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae combine physics over a wide range in spatial scales, from kilometer-sized hydrodynamic motions (eventually growing to gigameter scale) down to femtometer-scale nuclear reactions. We will discuss our emerging understanding of the convectively-unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have recently motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of the births of neutron stars and the supernovae that result. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  1. Essential Ingredients in Core-collapse Supernovae

    SciTech Connect

    Hix, William Raphael; Lentz, E. J.; Endeve, Eirik; Baird, Mark L.; Chertkow, Merek A.; Harris, James A.; Messer, Bronson; Mezzacappa, Anthony; Bruenn, S. W.; Blondin, J. M.

    2014-03-27

    Marking the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae bring together physics at a wide range in spatial scales, from kilometer-sized hydrodynamic motions (eventually growing to gigameter scale) down to femtometer scale nuclear reactions. Carrying 10$^{44}$ joules of kinetic energy and a rich-mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up ourselves and our solar system. We will discuss our emerging understanding of the convectively unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino-radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Recent multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  2. Essential Ingredients in Core-collapse Supernovae

    DOE PAGESBeta

    Hix, William Raphael; Lentz, E. J.; Endeve, Eirik; Baird, Mark L.; Chertkow, Merek A.; Harris, James A.; Messer, Bronson; Mezzacappa, Anthony; Bruenn, S. W.; Blondin, J. M.

    2014-03-27

    Marking the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae bring together physics at a wide range in spatial scales, from kilometer-sized hydrodynamic motions (eventually growing to gigameter scale) down to femtometer scale nuclear reactions. Carrying 10more » $$^{44}$$ joules of kinetic energy and a rich-mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up ourselves and our solar system. We will discuss our emerging understanding of the convectively unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino-radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Recent multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.« less

  3. Essential ingredients in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Hix, W. Raphael; Lentz, Eric J.; Endeve, Eirik; Baird, Mark; Chertkow, M. Austin; Harris, J. Austin; Messer, O. E. Bronson; Mezzacappa, Anthony; Bruenn, Stephen; Blondin, John

    2014-04-01

    Carrying 1044 joules of kinetic energy and a rich mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up our solar system and ourselves. Signaling the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae combine physics over a wide range in spatial scales, from kilometer-sized hydrodynamic motions (eventually growing to gigameter scale) down to femtometer-scale nuclear reactions. We will discuss our emerging understanding of the convectively-unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have recently motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of the births of neutron stars and the supernovae that result. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  4. New developments in the mechanism for core-collapse supernovae

    SciTech Connect

    Guidry, M. |

    1994-12-31

    Recent results indicate that the standard type-2 supernova scenario in which the shock wave stagnates but is reenergized by neutrino heating fails to consistently produce supernova explosions having the required characteristics. The authors review the theory of convection and survey some recent calculations indicating the importance of convection operating on millisecond timescales in the protoneutron star. These calculations suggest that such convection is probably generic to the type-2 scenario, that this produces a violet overturn of material below the stalled shock, and that this overturn could lead to significant alterations in the neutrino luminosity and energy. This provides a mechanism that could be effective in reenergizing the stalled shock and producing supernovae explosions having the quantitative characteristics demands by observations. This mechanism implies, in turn, that the convection cannot be adequately described by the 1-dimensional hydrodynamics employed in most simulations. Thus, a full understanding of the supernova mechanism and the resulting heavy element production is likely to require 3-dimensional relativistic hydrodynamics and a comprehensive description of neutrino transport. The prospects for implementing such calculations using a new generation of massively parallel supercomputers and modern scalable algorithms are discussed.

  5. Neutrino Transport in Black Hole-Neutron Star Binaries: Dynamical Mass Ejection and Neutrino-Driven Wind

    NASA Astrophysics Data System (ADS)

    Kyutoku, K.; Kiuchi, K.; Sekiguchi, Y.; Shibata, M.; Taniguchi, K.

    2016-10-01

    We present our recent results of numerical-relativity simulations of black hole-neutron star binary mergers incorporating approximate neutrino transport. We in particular discuss dynamical mass ejection and neutrino-driven wind.

  6. Mechanisms for Detonation Initiation in Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Gamezo, Vadim N.; Oran, E. S.

    2008-03-01

    We consider possible mechanisms for detonation initiation in an exploding carbon-oxygen white dwarf. According to current models of Type Ia supernovae, the explosion starts as a thermonuclear deflagration, but ends as a detonation. The process of deflagration-to-detonation transition (DDT) is still not well understood, though there are several scenarios that may lead to the detonation initiation. These include mixing between burned and unburned materials, shock-flame interactions, and large-scale pulsations. Theory and simulations of DDT phenomena in terrestrial chemical systems show that DDT often involves formation of reactivity gradients that help to generate strong shocks. The same gradient mechanism may be responsible for the detonation initiation in Type Ia Supernovae, in particular, in the mixing scenario. Detonations can also be ignited when shocks interacting with thermonuclear flames accelerate, or strong shocks allow a direct detonation initiation. We analyze length scales associated with different mechanisms. This work was supported in part by the NASA ATP program (NRA NNH05ZDA001N-AT) and by the Naval Research Laboratory (NRL) through the Office of Naval Research.

  7. Supernovae

    NASA Astrophysics Data System (ADS)

    March, Marisa

    2014-03-01

    We live in a Universe that is getting bigger faster. This astonishing discovery of Universal acceleration was made in the late 1990s by two teams who made observations of a special type of exploded star known as a `Supernova Type Ia'. (SNeIa) Since the discovery of the accelerating Universe, one of the biggest questions in modern cosmology has been to determine the cause of that acceleration - the answer to this question will have far reaching implications for our theories of cosmology and fundamental physics more broadly. The two main competing explanations for this apparent late time acceleration of the Universe are modified gravity and dark energy. The Dark Energy Survey (DES) has been designed and commissioned to find to find answers to these questions about the nature of dark energy and modified gravity. The new 570 megapixel Dark Energy Camera is currently operating with the Cerro-Tololo Inter American Observatory's 4m Blanco teleccope, carrying out a systematic search for SNeIa, and mapping out the large scale structure of the Universe by making observations of galaxies. The DES science program program which saw first light in September 2013 will run for five years in total. DES SNeIa data in combination with the other DES observations of large scale structure will enable us to put increasingly accurate constraints on the expansion history of the Universe and will help us distinguish between competing theories of dark energy and modified gravity. As we draw to the close of the first observing season of DES in March 2014, we will report on the current status of the DES supernova survey, presenting first year supernovae data, preliminary results, survey strategy, discovery pipeline, spectroscopic target selection and data quality. This talk will give the first glimpse of the DES SN first year data and initial results as we begin our five year survey in search of dark energy. On behalf of the Dark Energy Survey collaboration.

  8. MISSING BLACK HOLES UNVEIL THE SUPERNOVA EXPLOSION MECHANISM

    SciTech Connect

    Belczynski, Krzysztof; Wiktorowicz, Grzegorz; Fryer, Chris L.; Holz, Daniel E.; Kalogera, Vassiliki

    2012-09-20

    It is firmly established that the stellar mass distribution is smooth, covering the range 0.1-100 M{sub Sun }. It is to be expected that the masses of the ensuing compact remnants correlate with the masses of their progenitor stars, and thus it is generally thought that the remnant masses should be smoothly distributed from the lightest white dwarfs to the heaviest black holes (BHs). However, this intuitive prediction is not borne out by observed data. In the rapidly growing population of remnants with observationally determined masses, a striking mass gap has emerged at the boundary between neutron stars (NSs) and BHs. The heaviest NSs reach a maximum of two solar masses, while the lightest BHs are at least five solar masses. Over a decade after the discovery, the gap has become a significant challenge to our understanding of compact object formation. We offer new insights into the physical processes that bifurcate the formation of remnants into lower-mass NSs and heavier BHs. Combining the results of stellar modeling with hydrodynamic simulations of supernovae, we both explain the existence of the gap and also put stringent constraints on the inner workings of the supernova explosion mechanism. In particular, we show that core-collapse supernovae are launched within 100-200 ms of the initial stellar collapse, implying that the explosions are driven by instabilities with a rapid (10-20 ms) growth time. Alternatively, if future observations fill in the gap, this will be an indication that these instabilities develop over a longer (>200 ms) timescale.

  9. Theoretical uncertainty of (α ,n ) reactions relevant for the nucleosynthesis of light r -process nuclei in neutrino-driven winds

    NASA Astrophysics Data System (ADS)

    Pereira, J.; Montes, F.

    2016-03-01

    Background: Neutrino-driven winds following core-collapse supernova explosions have been proposed as a possible site where light r -process nuclei (between Fe and Ag) might be synthesized. In these events, (α ,n ) reactions are key to moving matter towards the region of higher proton number. Abundance network calculations are very sensitive to the rates for this type of reactions. Purpose: The present work aims at evaluating the theoretical uncertainty of these (α ,n ) reactions calculated with reaction codes based on the Hauser-Feshbach model. Method: We compared several (α ,n ) rates taken from talys and the non-smoker database to determine the uncertainties owing to the existing technical differences between both codes. In addition, we evaluated the sensitivity of talys rates to variations in the α optical potentials, masses, level densities, optical potentials, preequilibrium intranuclear transition rates, level structure, radiative transmission coefficients, and width-fluctuation correction factors. Results: The main source of uncertainty at low temperature is mostly attributable to the use of different α optical potentials. Differences between talys and non-smoker at high temperatures arise from the energy-binning algorithm used by each code. We have also noticed that the (α ,n ) rates from the non-smoker database correspond to the inclusive reaction, instead of the exclusive (α ,1 n ) channel calculated in the present work and used in network calculations. Conclusions: Theoretical uncertainties in calculated reaction rates can be as high as one to two orders of magnitude and strongly dependent on the temperature of the environment. Besides direct measurements of the inclusive and exclusive (α ,1 n ) reaction rates, experimental studies of α optical potentials are crucial to improve the performance of reaction codes.

  10. Supernova Explosions and the Birth of Neutron Stars

    SciTech Connect

    Janka, H.-Thomas; Marek, Andreas; Mueller, Bernhard; Scheck, Leonhard

    2008-02-27

    We report here on recent progress in understanding the birth conditions of neutron stars and the way how supernovae explode. More sophisticated numerical models have led to the discovery of new phenomena in the supernova core, for example a generic hydrodynamic instability of the stagnant supernova shock against low-mode nonradial deformation and the excitation of gravity-wave activity in the surface and core of the nascent neutron star. Both can have supportive or decisive influence on the inauguration of the explosion, the former by improving the conditions for energy deposition by neutrino heating in the postshock gas, the latter by supplying the developing blast with a flux of acoustic power that adds to the energy transfer by neutrinos. While recent two-dimensional models suggest that the neutrino-driven mechanism may be viable for stars from {approx}8M{sub {center_dot}} to at least 15M{sub {center_dot}}, acoustic energy input has been advocated as an alternative if neutrino heating fails. Magnetohydrodynamic effects constitute another way to trigger explosions in connection with the collapse of sufficiently rapidly rotating stellar cores, perhaps linked to the birth of magnetars. The global explosion asymmetries seen in the recent simulations offer an explanation of even the highest measured kick velocities of young neutron stars.

  11. On Rapidly Rotating Magnetic Core-Collapse Supernovae

    SciTech Connect

    Wilson, J R; Mathews, G J; Dalhed, H E

    2004-12-20

    The authors have analyzed magnetic effects which may occur in rapidly rotating core collapse supernovae. They consider effects from both magnetic turbulence and the formation of magnetic bubbles. For magnetic turbulence they have made a perturbative analysis for the spherically symmetric core-collapse supernova model that incorporates the build up of magnetic field energy in the matter accreting onto the proto-neutron star shortly after collapse and bounce. This significantly modifies the pressure profile and increases the heating of the material above the proto-neutron star resulting in an explosion even in rotating stars which would not explode otherwise. Regarding magnetic bubbles it is shown that a model with an initial uniform magnetic field ({approx} 10{sup 8}) gauss and uniform angular velocity of ({approx} 0.1 rad sec{sup -1}) can form magnetic bubbles due to the very non homologous nature of the collapse. It is estimated that the buoyancy of the bubbles causes matter in the proto-neutron star to rise, carrying neutrino-rich material to the neutron-star surface. This increases the neutrino luminosity sufficiently at early times to achieve a successful neutrino-driven explosion. Both magnetic mechanisms thus provide new means for initiating a Type II core-collapse supernova.

  12. A common explosion mechanism for type Ia supernovae.

    PubMed

    Mazzali, Paolo A; Röpke, Friedrich K; Benetti, Stefano; Hillebrandt, Wolfgang

    2007-02-01

    Type Ia supernovae, the thermonuclear explosions of white dwarf stars composed of carbon and oxygen, were instrumental as distance indicators in establishing the acceleration of the universe's expansion. However, the physics of the explosion are debated. Here we report a systematic spectral analysis of a large sample of well-observed type Ia supernovae. Mapping the velocity distribution of the main products of nuclear burning, we constrain theoretical scenarios. We find that all supernovae have low-velocity cores of stable iron-group elements. Outside this core, nickel-56 dominates the supernova ejecta. The outer extent of the iron-group material depends on the amount of nickel-56 and coincides with the inner extent of silicon, the principal product of incomplete burning. The outer extent of the bulk of silicon is similar in all supernovae, having an expansion velocity of approximately 11,000 kilometers per second and corresponding to a mass of slightly over one solar mass. This indicates that all the supernovae considered here burned similar masses and suggests that their progenitors had the same mass. Synthetic light-curve parameters and three-dimensional explosion simulations support this interpretation. A single explosion scenario, possibly a delayed detonation, may thus explain most type Ia supernovae. PMID:17289993

  13. A common explosion mechanism for type Ia supernovae.

    PubMed

    Mazzali, Paolo A; Röpke, Friedrich K; Benetti, Stefano; Hillebrandt, Wolfgang

    2007-02-01

    Type Ia supernovae, the thermonuclear explosions of white dwarf stars composed of carbon and oxygen, were instrumental as distance indicators in establishing the acceleration of the universe's expansion. However, the physics of the explosion are debated. Here we report a systematic spectral analysis of a large sample of well-observed type Ia supernovae. Mapping the velocity distribution of the main products of nuclear burning, we constrain theoretical scenarios. We find that all supernovae have low-velocity cores of stable iron-group elements. Outside this core, nickel-56 dominates the supernova ejecta. The outer extent of the iron-group material depends on the amount of nickel-56 and coincides with the inner extent of silicon, the principal product of incomplete burning. The outer extent of the bulk of silicon is similar in all supernovae, having an expansion velocity of approximately 11,000 kilometers per second and corresponding to a mass of slightly over one solar mass. This indicates that all the supernovae considered here burned similar masses and suggests that their progenitors had the same mass. Synthetic light-curve parameters and three-dimensional explosion simulations support this interpretation. A single explosion scenario, possibly a delayed detonation, may thus explain most type Ia supernovae.

  14. Towards the Core-Collapse Supernova Explosion Mechanism

    SciTech Connect

    Cardall, Christian Y; Endeve, Eirik; Budiardja, R. D.; Marronetti, Pedro; Mezzacappa, Anthony

    2012-01-01

    Core-collapse supernovae are amazing displays of astrohysical fireworks - and the optical emission is only a tiny part of the story. These events involve virtually all branches of physics and spawn phenomena observale by every kind of astronomical observation. This richness of theory and observation presents a formidable challenge to their understanding via computer simulations, but we are entering a new era of realism and maturity in modeling the key processes by collapse and explosion.

  15. NEUTRINO-DRIVEN WINDS IN THE AFTERMATH OF A NEUTRON STAR MERGER: NUCLEOSYNTHESIS AND ELECTROMAGNETIC TRANSIENTS

    SciTech Connect

    Martin, D.; Perego, A.; Arcones, A.; Thielemann, F.-K.; Korobkin, O.; Rosswog, S.

    2015-11-01

    We present a comprehensive nucleosynthesis study of the neutrino-driven wind in the aftermath of a binary neutron star merger. Our focus is the initial remnant phase when a massive central neutron star is present. Using tracers from a recent hydrodynamical simulation, we determine total masses and integrated abundances to characterize the composition of unbound matter. We find that the nucleosynthetic yields depend sensitively on both the life time of the massive neutron star and the polar angle. Matter in excess of up to 9 × 10{sup −3} M{sub ⊙} becomes unbound until ∼200 ms. Due to electron fractions of Y{sub e} ≈ 0.2–0.4, mainly nuclei with mass numbers A < 130 are synthesized, complementing the yields from the earlier dynamic ejecta. Mixing scenarios with these two types of ejecta can explain the abundance pattern in r-process enriched metal-poor stars. Additionally, we calculate heating rates for the decay of the freshly produced radioactive isotopes. The resulting light curve peaks in the blue band after about 4 hr. Furthermore, high opacities due to heavy r-process nuclei in the dynamic ejecta lead to a second peak in the infrared after 3–4 days.

  16. Aspherical supernovae

    SciTech Connect

    Kasen, Daniel Nathan

    2004-05-21

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3) And

  17. Aspherical supernovae

    NASA Astrophysics Data System (ADS)

    Kasen, Daniel Nathan

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must be undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new breakthroughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi- dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3) And

  18. The convective engine paradigm for the supernova explosion mechanism and its consequences.

    NASA Astrophysics Data System (ADS)

    Herant, M.

    1995-05-01

    The convective engine paradigm for the explosion mechanism in core collapse supernovae is presented in a pedagogical manner. A candid evaluation of its strengths and weaknesses is attempted. The case where the convective mode corresponds to l=1, m=0 (one inflow, one outflow) is explored in more detail. The author also discusses the potential importance of such a convective pattern for neutron star kicks.

  19. Accreting white dwarf models for type 1 supernovae. 1: Presupernova evolution and triggering mechanisms

    NASA Technical Reports Server (NTRS)

    Nomoto, K.

    1981-01-01

    As a plausible explosion model for a Type I supernova, the evolution of carbon-oxygen white dwarfs accreting helium in binary systems was investigated from the onset of accretion up to the point at which a thermonuclear explosion occurs. The relationship between the conditions in the binary system and the triggering mechanism for the supernova explosion is discussed, especially for the cases with relatively slow accretion rate. It is found that the growth of a helium zone on the carbon-oxygen core leads to a supernova explosion which is triggered either by the off-center helium detonation for slow and intermediate accretion rates or by the carbon deflagration for slow and rapid accretion rates. Both helium detonation and carbon deflagration are possible for the case of slow accretion, since in this case the initial mass of the white dwarf is an important parameter for determining the mode of ignition. Finally, various modes of building up the helium zone on the white dwarf, namely, direct transfer of helium from the companion star and the various types and strength of the hydrogen shell flashes are discussed in some detail.

  20. The rp-Process in Core-collapse Supernovae

    SciTech Connect

    Wanajo, Shinya

    2006-07-12

    Recent hydrodynamic simulations of core-collapse supernovae with accurate neutrino transport suggest that the bulk of the neutrino-heated ejecta is proton rich, in which the production of some interesting proton-rich nuclei is expected. However, there are a number of waiting point nuclei with the {beta}+-lives of a few minutes, which prevent the production of heavy proton-rich nuclei beyond iron in explosive events such as core-collapse supernovae. In this study, it is shown that the rapid proton-capture (rp) process takes place by bypassing these waiting points via neutron-capture reactions even in the proton-rich environment, if there is an intense neutrino flux as expected during the early phase of the neutrino-driven winds of core-collapse supernovae. The nucleosynthesis calculations imply that the neutrino-driven winds can be potentially the origin of light p-nuclei including 92,94Mo and 96,98Ru, which cannot be explained by other astrophysical sites.

  1. Supernovae and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Mathews, Grant J.

    2014-09-01

    Nucleosynthesis by rapid neutron capture (the r-process) could be an important diagnostic of the explosive deep interiors of supernovae. The early appearance of r-process elements in the Galaxy, along with energetic requirements, strongly argues in favor of a supernova origin for r-process isotopes. However there is a current conundrum as to the relative contributions from various supernovae environments, e.g. MHD jets or neutrino energized winds. There are also possible contributions from failed supernovae (collapsars) leading to a black hole (BH), or the ejection of material during the mergers of neutron stars in binary systems, i.e. NS+NS or NS+BH systems. In this talk we will review the theoretical underpinnings of each possibility in the quest to deduce the relative contribution of each process. In particular, each model for r-process nucleosynthesis invariably leads to systematic discrepancies with the observed solar-system r-process abundances. For example, although the location of the abundance peaks near nuclear mass numbers A = 130 and 195 identify an environment of rapid neutron capture near closed nuclear shells, the abundances of elements just above and below those peaks are often underproduced by more than an order of magnitude in model calculations. Similarly, most recent neutrino-driven wind simulations produce only the lighter r-process elements, while neutron-star mergers may miss the r-process peaks due to fission recycling. In this talk we demonstrate that the underproduction of elements above and below the r-process peaks can be supplemented via fission fragment distributions from the recycling of material synthesized during neutron star mergers, while the abundance peaks themselves are well reproduced in MHD jets in supernovae and collapsars. Moreover, we show that the relative contributions to the solar-system r-process yields from core-collapse supernovae and neutron star mergers required by this proposal are consistent with estimates of the

  2. Photon-axion conversion as a mechanism for supernova dimming: Limits from CMB spectral distortion

    SciTech Connect

    Mirizzi, Alessandro; Raffelt, Georg G.; Serpico, Pasquale D.

    2005-07-15

    Axion-photon conversion induced by intergalactic magnetic fields has been proposed as an explanation for the dimming of distant supernovae of type Ia (SNe Ia) without cosmic acceleration. The effect depends on the intergalactic electron density n{sub e} as well as the B-field strength and domain size. We show that for n{sub e} < or approx. 10{sup -9} cm{sup -3} the same mechanism would cause excessive spectral distortion of the cosmic microwave background (CMB). This small-n{sub e} parameter region had been left open by the most restrictive previous constraints based on the dispersion of quasar (QSO) spectra. The combination of CMB and QSO limits suggests that the photon-axion conversion mechanism can only play a subleading role for SN Ia dimming. A combined analysis of all the observables affected by the photon-axion oscillations would be required to give a final verdict on the viability of this model.

  3. Explaining the Most Energetic Supernovae with an Inefficient Jet-feedback Mechanism

    NASA Astrophysics Data System (ADS)

    Gilkis, Avishai; Soker, Noam; Papish, Oded

    2016-08-01

    We suggest that the energetic radiation from core-collapse super-energetic supernovae (SESNe) is due to a long-lasting accretion process onto the newly born neutron star (NS), resulting from an inefficient operation of the jet-feedback mechanism (JFM). The jets that are launched by the accreting NS or black hole maintain their axis due to a rapidly rotating pre-collapse core and do not manage to eject core material from near the equatorial plane. The jets are able to eject material from the core along the polar directions and reduce the gravity near the equatorial plane. The equatorial gas expands, and part of it falls back over a timescale of minutes to days to prolong the jet-launching episode. According to the model for SESNe proposed in the present paper, the principal parameter that distinguishes between the different cases of core-collapse supernova (CCSN) explosions, such as between normal CCSNe and SESNe, is the efficiency of the JFM. This efficiency, in turn, depends on the pre-collapse core mass, envelope mass, core convection, and, most of all, the angular momentum profile in the core. One prediction of the inefficient JFM for SESNe is the formation of a slow equatorial outflow in the explosion. The typical velocity and mass of this outflow are estimated to be v eq ≈ 1000 km s-1 and M eq ≳ 1 M ⊙, respectively, though quantitative values will have to be checked in future hydrodynamic simulations.

  4. Explaining the Most Energetic Supernovae with an Inefficient Jet-feedback Mechanism

    NASA Astrophysics Data System (ADS)

    Gilkis, Avishai; Soker, Noam; Papish, Oded

    2016-08-01

    We suggest that the energetic radiation from core-collapse super-energetic supernovae (SESNe) is due to a long-lasting accretion process onto the newly born neutron star (NS), resulting from an inefficient operation of the jet-feedback mechanism (JFM). The jets that are launched by the accreting NS or black hole maintain their axis due to a rapidly rotating pre-collapse core and do not manage to eject core material from near the equatorial plane. The jets are able to eject material from the core along the polar directions and reduce the gravity near the equatorial plane. The equatorial gas expands, and part of it falls back over a timescale of minutes to days to prolong the jet-launching episode. According to the model for SESNe proposed in the present paper, the principal parameter that distinguishes between the different cases of core-collapse supernova (CCSN) explosions, such as between normal CCSNe and SESNe, is the efficiency of the JFM. This efficiency, in turn, depends on the pre-collapse core mass, envelope mass, core convection, and, most of all, the angular momentum profile in the core. One prediction of the inefficient JFM for SESNe is the formation of a slow equatorial outflow in the explosion. The typical velocity and mass of this outflow are estimated to be v eq ≈ 1000 km s‑1 and M eq ≳ 1 M ⊙, respectively, though quantitative values will have to be checked in future hydrodynamic simulations.

  5. Supernova remnants

    NASA Astrophysics Data System (ADS)

    Decourchelle, A.

    2016-06-01

    Supernova remnants result from the explosion of a star and keep trace, in their young ejecta-dominated phase, both of the explosion mechanism and to a lesser extent of the nature of the progenitor. They inject a large amount of energy into their surroundings, which impacts significantly the interstellar medium and to a larger extent the working of the galaxy by distributing heavy elements, heating to tens of million degrees large fractions of gas, accelerating high-energy particles, generating turbulence and amplification of the magnetic field. I will review the observational results on supernova remnants and their related scientific issues before suggesting directions for future ambitious XMM-Newton observations.

  6. A Key Role for Dimension in the Neutrino Mechanism of Core-Collapse Supernova Explosions

    SciTech Connect

    Burrows, Adam

    2008-01-23

    Core-collapse supernovae are a puzzle that has taxed theorists and computational science for half a century. Such explosions, the source of much of the heavy elements in the Universe and the birthplace of neutron stars and stellar-mass black holes, are still not understood. However, using sophisticated numerical tools and platforms, we have recently been able to demonstrate an important role for spatial dimension and instabilities in the viability of the neutrino mechanism of core-collapse explosions. In this talk, I will review the state of the field and the contending explosion models. In the process, I will highlight the computational astrophysics that has been applied to date, and that may be necessary in the future, to credibly unravel this mystery.

  7. STOCHASTICITY AND EFFICIENCY IN SIMPLIFIED MODELS OF CORE-COLLAPSE SUPERNOVA EXPLOSIONS

    SciTech Connect

    Cardall, Christian Y.; Budiardja, Reuben D. E-mail: reubendb@utk.edu

    2015-11-01

    We present an initial report on 160 simulations of a highly simplified model of the post-bounce core-collapse supernova environment in three spatial dimensions (3D). We set different values of a parameter characterizing the impact of nuclear dissociation at the stalled shock in order to regulate the post-shock fluid velocity, thereby determining the relative importance of convection and the stationary accretion shock instability (SASI). While our convection-dominated runs comport with the paradigmatic notion of a “critical neutrino luminosity” for explosion at a given mass accretion rate (albeit with a nontrivial spread in explosion times just above threshold), the outcomes of our SASI-dominated runs are much more stochastic: a sharp threshold critical luminosity is “smeared out” into a rising probability of explosion over a ∼20% range of luminosity. We also find that the SASI-dominated models are able to explode with 3–4 times less efficient neutrino heating, indicating that progenitor properties, and fluid and neutrino microphysics, conducive to the SASI would make the neutrino-driven explosion mechanism more robust.

  8. Stochasticity and efficiency of convection-dominated vs. SASI-dominated supernova explosions

    NASA Astrophysics Data System (ADS)

    Cardall, Christian; Budiardja, Reuben

    2016-03-01

    We present an initial report on 160 simulations of a highly simplified model of the post-bounce core-collapse supernova environment in three spatial dimensions (3D). We set different values of a parameter characterizing the impact of nuclear dissociation at the stalled shock in order to regulate the post-shock fluid velocity, thereby determining the relative importance of convection and the stationary accretion shock instability (SASI). While our convection-dominated runs comport with the paradigmatic notion of a `critical neutrino luminosity' for explosion at a given mass accretion rate (albeit with a nontrivial spread in explosion times just above threshold), the outcomes of our SASI-dominated runs are much more stochastic: a sharp threshold critical luminosity is `smeared out' into a rising probability of explosion over a ~ 20 % range of luminosity. We also find that the SASI-dominated models are able to explode with 3 to 4 times less efficient neutrino heating, indicating that progenitor properties, and fluid and neutrino microphysics, conducive to the SASI would make the neutrino-driven explosion mechanism more robust.

  9. Stochasticity and efficiency of convection-dominated vs. SASI-dominated supernova explosions

    DOE PAGESBeta

    Cardall, Christian Y.; Budiardja, Reuben D.

    2015-10-22

    We present an initial report on 160 simulations of a highly simplified model of the post-bounce supernova environment in three position space dimensions (3D). We set different values of a parameter characterizing the impact of nuclear dissociation at the stalled shock in order to regulate the post-shock fluid velocity, thereby determining the relative importance of convection and the stationary accretion shock instability (SASI). While our convection-dominated runs comport with the paradigmatic notion of a `critical neutrino luminosity' for explosion at a given mass accretion rate (albeit with a nontrivial spread in explosion times just above threshold), the outcomes of our SASI-dominated runs are more stochastic: a sharp threshold critical luminosity is `smeared out' into a rising probability of explosion over amore » $$\\sim 20\\%$$ range of luminosity. We also find that the SASI-dominated models are able to explode with 3 to 4 times less efficient neutrino heating, indicating that progenitor properties, and fluid and neutrino microphysics, conducive to the SASI would make the neutrino-driven explosion mechanism more robust.« less

  10. Stochasticity and efficiency of convection-dominated vs. SASI-dominated supernova explosions

    SciTech Connect

    Cardall, Christian Y.; Budiardja, Reuben D.

    2015-10-22

    We present an initial report on 160 simulations of a highly simplified model of the post-bounce supernova environment in three position space dimensions (3D). We set different values of a parameter characterizing the impact of nuclear dissociation at the stalled shock in order to regulate the post-shock fluid velocity, thereby determining the relative importance of convection and the stationary accretion shock instability (SASI). While our convection-dominated runs comport with the paradigmatic notion of a `critical neutrino luminosity' for explosion at a given mass accretion rate (albeit with a nontrivial spread in explosion times just above threshold), the outcomes of our SASI-dominated runs are more stochastic: a sharp threshold critical luminosity is `smeared out' into a rising probability of explosion over a $\\sim 20\\%$ range of luminosity. We also find that the SASI-dominated models are able to explode with 3 to 4 times less efficient neutrino heating, indicating that progenitor properties, and fluid and neutrino microphysics, conducive to the SASI would make the neutrino-driven explosion mechanism more robust.

  11. The r-PROCESS in Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Wanajo, Shinya; Kajino, Toshitaka; Mathews, Grant J.; Otsuki, Kaori

    We present calculations of r-process nucleosynthesis in neutrino-driven winds from the nascent neutron stars of core-collapse supernovae. A full dynamical reaction network for both the α-rich freezeout and the subsequent r-process is employed. The physical properties of the neutrino-heated ejecta are deduced from a general relativistic model in which spherical symmetry and steady flow are assumed. Our results suggest that proto-neutron stars with a large compaction ratio provide the most robust physical conditions for the r-process. This is due to the short dynamical timescale of material in the wind. Our results have confirmed that the neutrino-driven wind scenario is still a promising site in which to form the solar r-process abundances. However, our best results seem to imply both a rather soft neutron-star equation of state and a massive proto-neutron star which is difficult to achieve with standard core-collapse models. We propose that the most favorable conditions perhaps require that a massive supernova progenitor forms a massive proto-neutron star by accretion after a failed initial neutrino burst.

  12. Stellar collapse and the formation of black holes.

    SciTech Connect

    Fryer, C. L.; Dupuis, R.

    2003-01-01

    We review the engines behind neutrino-driven supernovae and gamma-ray bursts. Combined with our understanding of the convection-enhanced, neutrino-driven supernova mechanism, the stellar collapse can explain all of the supernova-like explosions observed from normal supernovae, to weak explosions and jet-like hypernovae. Combining this theoretical understanding with observations suggests that the collapsar rate is roughly 1/1000th that of normal supernovae.

  13. The Multi-Dimensional Character of Core-Collapse Supernovae

    SciTech Connect

    Hix, William Raphael; Lentz, E. J.; Bruenn, S. W.; Mezzacappa, Anthony; Messer, Bronson; Endeve, Eirik; Blondin, J. M.; Harris, James Austin; Marronetti, Pedro; Yakunin, Konstantin N

    2016-01-01

    Core-collapse supernovae, the culmination of massive stellar evolution, are spectacular astronomical events and the principle actors in the story of our elemental origins. Our understanding of these events, while still incomplete, centers around a neutrino-driven central engine that is highly hydrodynamically unstable. Increasingly sophisticated simulations reveal a shock that stalls for hundreds of milliseconds before reviving. Though brought back to life by neutrino heating, the development of the supernova explosion is inextricably linked to multi-dimensional fluid flows. In this paper, the outcomes of three-dimensional simulations that include sophisticated nuclear physics and spectral neutrino transport are juxtaposed to learn about the nature of the three dimensional fluid flow that shapes the explosion. Comparison is also made between the results of simulations in spherical symmetry from several groups, to give ourselves confidence in the understanding derived from this juxtaposition.

  14. Mechanism for spectral break in cosmic ray proton spectrum of supernova remnant W44.

    PubMed

    Malkov, M A; Diamond, P H; Sagdeev, R Z

    2011-02-15

    Recent observations of supernova remnant W44 by the Fermi spacecraft observatory support the idea that the bulk of galactic cosmic rays is accelerated in such remnants by a Fermi mechanism, also known as diffusive shock acceleration. However, the W44 expands into weakly ionized dense gas, and so a significant revision of the mechanism is required. Here, we provide the necessary modifications and demonstrate that strong ion-neutral collisions in the remnant surrounding lead to the steepening of the energy spectrum of accelerated particles by exactly one power. The spectral break is caused by Alfven wave evanescence leading to the fractional particle losses. The gamma-ray spectrum generated in collisions of the accelerated protons with the ambient gas is calculated and successfully fitted to the Fermi Observatory data. The parent proton spectrum is best represented by a classical test particle power law ∝E(-2), steepening to E(-3) at E(br)≈7 GeV due to deteriorated particle confinement.

  15. Type Ia Supernovae: Can Coriolis Force Break the Symmetry of the Gravitational Confined Detonation Explosion Mechanism?

    NASA Astrophysics Data System (ADS)

    García-Senz, D.; Cabezón, R. M.; Domínguez, I.; Thielemann, F. K.

    2016-03-01

    Currently the number of models aimed at explaining the phenomena of type Ia supernovae is high and distinguishing between them is a must. In this work we explore the influence of rotation on the evolution of the nuclear flame that drives the explosion in the so-called gravitational confined detonation models. Assuming that the flame starts in a pointlike region slightly above the center of the white dwarf (WD) and adding a moderate amount of angular velocity to the star we follow the evolution of the deflagration using a smoothed particle hydrodynamics code. We find that the results are very dependent on the angle between the rotational axis and the line connecting the initial bubble of burned material with the center of the WD at the moment of ignition. The impact of rotation is larger for angles close to 90° because the Coriolis force on a floating element of fluid is maximum and its principal effect is to break the symmetry of the deflagration. Such symmetry breaking weakens the convergence of the nuclear flame at the antipodes of the initial ignition volume, changing the environmental conditions around the convergence region with respect to non-rotating models. These changes seem to disfavor the emergence of a detonation in the compressed volume at the antipodes and may compromise the viability of the so-called gravitational confined detonation mechanism.

  16. THE DETONATION MECHANISM OF THE PULSATIONALLY ASSISTED GRAVITATIONALLY CONFINED DETONATION MODEL OF Type Ia SUPERNOVAE

    SciTech Connect

    Jordan, G. C. IV; Graziani, C.; Weide, K.; Norris, J.; Hudson, R.; Lamb, D. Q.; Fisher, R. T.; Townsley, D. M.; Meakin, C.; Reid, L. B.

    2012-11-01

    We describe the detonation mechanism composing the 'pulsationally assisted' gravitationally confined detonation (GCD) model of Type Ia supernovae. This model is analogous to the previous GCD model reported in Jordan et al.; however, the chosen initial conditions produce a substantively different detonation mechanism, resulting from a larger energy release during the deflagration phase. The resulting final kinetic energy and {sup 56}Ni yields conform better to observational values than is the case for the 'classical' GCD models. In the present class of models, the ignition of a deflagration phase leads to a rising, burning plume of ash. The ash breaks out of the surface of the white dwarf, flows laterally around the star, and converges on the collision region at the antipodal point from where it broke out. The amount of energy released during the deflagration phase is enough to cause the star to rapidly expand, so that when the ash reaches the antipodal point, the surface density is too low to initiate a detonation. Instead, as the ash flows into the collision region (while mixing with surface fuel), the star reaches its maximally expanded state and then contracts. The stellar contraction acts to increase the density of the star, including the density in the collision region. This both raises the temperature and density of the fuel-ash mixture in the collision region and ultimately leads to thermodynamic conditions that are necessary for the Zel'dovich gradient mechanism to produce a detonation. We demonstrate feasibility of this scenario with three three-dimensional (3D), full star simulations of this model using the FLASH code. We characterized the simulations by the energy released during the deflagration phase, which ranged from 38% to 78% of the white dwarf's binding energy. We show that the necessary conditions for detonation are achieved in all three of the models.

  17. The Detonation Mechanism of the Pulsationally Assisted Gravitationally Confined Detonation Model of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Jordan, G. C., IV; Graziani, C.; Fisher, R. T.; Townsley, D. M.; Meakin, C.; Weide, K.; Reid, L. B.; Norris, J.; Hudson, R.; Lamb, D. Q.

    2012-11-01

    We describe the detonation mechanism composing the "pulsationally assisted" gravitationally confined detonation (GCD) model of Type Ia supernovae. This model is analogous to the previous GCD model reported in Jordan et al.; however, the chosen initial conditions produce a substantively different detonation mechanism, resulting from a larger energy release during the deflagration phase. The resulting final kinetic energy and 56Ni yields conform better to observational values than is the case for the "classical" GCD models. In the present class of models, the ignition of a deflagration phase leads to a rising, burning plume of ash. The ash breaks out of the surface of the white dwarf, flows laterally around the star, and converges on the collision region at the antipodal point from where it broke out. The amount of energy released during the deflagration phase is enough to cause the star to rapidly expand, so that when the ash reaches the antipodal point, the surface density is too low to initiate a detonation. Instead, as the ash flows into the collision region (while mixing with surface fuel), the star reaches its maximally expanded state and then contracts. The stellar contraction acts to increase the density of the star, including the density in the collision region. This both raises the temperature and density of the fuel-ash mixture in the collision region and ultimately leads to thermodynamic conditions that are necessary for the Zel'dovich gradient mechanism to produce a detonation. We demonstrate feasibility of this scenario with three three-dimensional (3D), full star simulations of this model using the FLASH code. We characterized the simulations by the energy released during the deflagration phase, which ranged from 38% to 78% of the white dwarf's binding energy. We show that the necessary conditions for detonation are achieved in all three of the models.

  18. Neutrino Signal of Electron-Capture Supernovae from Core Collapse to Cooling

    SciTech Connect

    Huedepohl, L.; Mueller, B.; Janka, H.-T.; Marek, A.; Raffelt, G. G.

    2010-06-25

    An 8.8M{sub {center_dot}}electron-capture supernova was simulated in spherical symmetry consistently from collapse through explosion to essentially complete deleptonization of the forming neutron star. The evolution time ({approx}9 s) is short because high-density effects suppress our neutrino opacities. After a short phase of accretion-enhanced luminosities ({approx}200 ms), luminosity equipartition among all species becomes almost perfect and the spectra of {nu}{sub e} and {nu}{sub {mu},{tau}}very similar, ruling out the neutrino-driven wind as r-process site. We also discuss consequences for neutrino flavor oscillations.

  19. Neutrino signal of electron-capture supernovae from core collapse to cooling.

    PubMed

    Hüdepohl, L; Müller, B; Janka, H-T; Marek, A; Raffelt, G G

    2010-06-25

    An 8.8M{⊙} electron-capture supernova was simulated in spherical symmetry consistently from collapse through explosion to essentially complete deleptonization of the forming neutron star. The evolution time (∼9  s) is short because high-density effects suppress our neutrino opacities. After a short phase of accretion-enhanced luminosities (∼200  ms), luminosity equipartition among all species becomes almost perfect and the spectra of ν{e} and ν{μ,τ} very similar, ruling out the neutrino-driven wind as r-process site. We also discuss consequences for neutrino flavor oscillations.

  20. Three-dimensional simulations of SASI- and convection-dominated core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Fernández, Rodrigo

    2015-09-01

    We investigate the effect of dimensionality on the transition to explosion in neutrino-driven core-collapse supernovae. Using parametrized hydrodynamic simulations of the stalled supernova shock in one, two (2D), and three spatial dimensions (3D), we systematically probe the extent to which hydrodynamic instabilities alone can tip the balance in favour of explosion. In particular, we focus on systems that are well into the regimes where the standing accretion shock instability (SASI) or neutrino-driven convection dominates the dynamics. We find that SASI-dominated models can explode with up to ˜20 per cent lower neutrino luminosity in 3D than in 2D, with the magnitude of this difference decreasing with increasing resolution. This improvement in explosion conditions is related to the ability of spiral modes to generate more non-radial kinetic energy than a single sloshing mode, increasing the size of the average shock radius, and hence generating better conditions for the formation of large-scale, high-entropy bubbles. In contrast, convection-dominated explosions show a smaller difference in their critical heating rate between 2D and 3D (<8 per cent), in agreement with previous studies. The ability of our numerical implementation to maintain arbitrary symmetries is quantified with a set of SASI-based tests. We discuss implications for the diversity of explosion paths in a realistic supernova environment.

  1. Supernova hydrodynamics

    NASA Astrophysics Data System (ADS)

    Colgate, S. A.

    1981-11-01

    The physics as well as astrophysics of the supernova (SN) phenomenon are illustrated with the appropriate numbers. The explosion of a star, a supernova, occurs at the end of its evolution when the nuclear fuel in its core is almost, or completely, consumed. The star may explode due to a small residual thermonuclear detonation, type I SN, or it may collapse, type I and type II SN, leaving a neutron star remnant. The type I progenitor is thought to be an old accreting white dwarf, 1.4 interior mass, with a close companion star. A type II SN is thought to be a massive young star, 6 to 10 interior mass. The mechanism of explosion is still a challenge to model, being the most extreme conditions of matter and hydrodynamics that occur presently and excessively in the universe.

  2. Neutrino-Induced Nucleosynthesis in Helium Shells of Early Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Banerjee, Projjwal; Qian, Yong-Zhong; Heger, Alexander; Haxton, Wick

    2016-02-01

    We summarize our studies on neutrino-driven nucleosynthesis in He shells of early core-collapse supernovae with metallicities of Z ≲ 10-3 Z⊙. We find that for progenitors of ˜ 11-15 M⊙, the neutrons released by 4He(ν¯ee, e+n)3H in He shells can be captured to produce nuclei with mass numbers up to A ˜ 200. This mechanism is sensitive to neutrino emission spectra and flavor oscillations. In addition, we find two new primary mechanisms for neutrino-induced production of 9Be in He shells. The first mechanism produces 9Be via 7Li(n,γ)8Li(n,γ)9Li(e- ν¯ee)9Be and relies on a low explosion energy for its survival. The second mechanism operates in progenitors of ˜ 8 M⊙, where 9Be can be produced directly via 7Li(3H, n0)9Be during the rapid expansion of the shocked Heshell material. The light nuclei 7Li and 3H involved in these mechanisms are produced by neutrino interactions with 4He. We discuss the implications of neutrino-induced nucleosynthesis in He shells for interpreting the elemental abundances in metal-poor stars.

  3. THE ORIGIN OF COSMIC RAYS: EXPLOSIONS OF MASSIVE STARS WITH MAGNETIC WINDS AND THEIR SUPERNOVA MECHANISM

    SciTech Connect

    Biermann, Peter L.; Becker, Julia K.; Dreyer, Jens; Meli, Athina; Seo, Eun-Suk; Stanev, Todor

    2010-12-10

    One prediction of particle acceleration in the supernova (SN) remnants in the magnetic wind of exploding Wolf-Rayet and red supergiant stars is that the final spectrum is a composition of a spectrum E {sup -7/3} and a polar cap component of E {sup -2} at the source. This polar cap component contributes to the total energy content with only a few percent, but dominates the spectrum at higher energy. The sum of both components gives spectra which curve upward. The upturn was predicted to occur always at the same rigidity. An additional component of cosmic rays from acceleration by SNe exploding into the interstellar medium adds another component for hydrogen and for helium. After transport, the predicted spectra J(E) for the wind-SN cosmic rays are E {sup -8/3} and E {sup -7/3}; the sum leads to an upturn from the steeper spectrum. An upturn has now been seen by the CREAM mission. Here, we test the observations against the predictions and show that the observed properties are consistent with the predictions. Hydrogen can be shown to also have a noticeable wind-SN component. The observation of the upturn in the heavy element spectra being compatible with the same rigidity for all heavy elements supports the magneto-rotational mechanism for these SNe. This interpretation predicts the observed upturn to continue to curve upward and approach the E {sup -7/3} spectrum. If confirmed, this would strengthen the case that SNe of very massive stars with magnetic winds are important sources of Galactic cosmic rays.

  4. A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE. II. RELATIVISTIC EXPLOSION MODELS OF CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Mueller, Bernhard; Janka, Hans-Thomas; Marek, Andreas E-mail: thj@mpa-garching.mpg.de

    2012-09-01

    We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the COCONUT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the space-time metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 M{sub Sun} progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared with Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong nonradial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models, the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50%-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.

  5. A New Multi-dimensional General Relativistic Neutrino Hydrodynamics Code for Core-collapse Supernovae. II. Relativistic Explosion Models of Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Müller, Bernhard; Janka, Hans-Thomas; Marek, Andreas

    2012-09-01

    We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the COCONUT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the space-time metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 M ⊙ progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared with Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong nonradial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models, the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50%-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.

  6. Accelerating Our Understanding of Supernova Explosion Mechanism via Simulations and Visualizations with GenASiS

    SciTech Connect

    Budiardja, R. D.; Cardall, Christian Y; Endeve, Eirik

    2015-01-01

    Core-collapse supernovae are among the most powerful explosions in the Universe, releasing about 1053 erg of energy on timescales of a few tens of seconds. These explosion events are also responsible for the production and dissemination of most of the heavy elements, making life as we know it possible. Yet exactly how they work is still unresolved. One reason for this is the sheer complexity and cost of a self-consistent, multi-physics, and multi-dimensional core-collapse supernova simulation, which is impractical, and often impossible, even on the largest supercomputers we have available today. To advance our understanding we instead must often use simplified models, teasing out the most important ingredients for successful explosions, while helping us to interpret results from higher fidelity multi-physics models. In this paper we investigate the role of instabilities in the core-collapse supernova environment. We present here simulation and visualization results produced by our code GenASiS.

  7. On the Nature of Core-Collapse Supernova Explosions

    NASA Astrophysics Data System (ADS)

    Burrows, Adam; Hayes, John; Fryxell, Bruce A.

    1995-09-01

    We investigate in this paper the core-collapse supernova explosion mechanism in both one and two dimensions. With a radiation/hydrodynamic code based upon the PPM algorithm, we verify the usefulness of neutrino-driven overturn ("convection") between the shock and the neutrinosphere in igniting the supernova explosion. The two-dimensional simulation of the core of a 15 Msun star that we present here indicates that the breaking of spherical symmetry may be central to the explosion itself and that a multitude of bent and broken fingers is a common feature of the ejecta. As in one dimension, the explosion seems to be a mathematically critical phenomenon, evolving from a steady state to explosion after a critical mass accretion rate through the stalled shock has been reached. In the two-dimensional simulation the preexplosion convective phase lasted ˜30 overturns (˜100 ms) before exploding. The preexplosion steady state in two dimensions is similar to that achieved in one dimension, but in two dimensions, owing to the longer dwell time of matter in the overturning region, the average entropy achieved behind the stalled shock is larger. In addition, the entropy gradient in the convecting region is flatter. These effects, together with the dynamical pressure of the buoyant plumes, serve to increase the steady state shock radius (Rs) over its value in one dimension by 30%-100%. A large Rs enlarges the volume of the gain region, puts shocked matter lower in the gravitational potential well, and lowers the accretion ram pressure at the shock for a given Mdot. The critical condition for explosion is thereby relaxed. Since the "escape" temperature (Tesc) decreases with radius faster than the actual matter temperature (T) behind the shock, a larger Rs puts a larger fraction of the shocked material above its local escape temperature. T > Tesc is the condition for a thermally driven corona to lift off a star. In one, two, or three dimensions, since supernovae are driven by

  8. High-resolution three-dimensional simulations of core-collapse supernovae in multiple progenitors

    SciTech Connect

    Couch, Sean M.; O'Connor, Evan P.

    2014-04-20

    Three-dimensional (3D) simulations of core-collapse supernovae (CCSNe) are granting new insight into the as-yet-uncertain mechanism that drives successful explosions. While there is still debate about whether explosions are obtained more easily in 3D than in 2D, it is undeniable that there exist qualitative and quantitative differences between the results of 3D and 2D simulations. We present an extensive set of high-resolution 1D, 2D, and 3D CCSN simulations with multispecies neutrino leakage carried out in two different progenitors. Our simulations confirm the results of Couch indicating that 2D explodes more readily than 3D. We argue that this is due to the inadequacies of 2D to accurately capture important aspects of the 3D dynamics. We find that without artificially enhancing the neutrino heating rate, we do not obtain explosions in 3D. We examine the development of neutrino-driven convection and the standing accretion shock instability (SASI) and find that, in separate regimes, either instability can dominate. We find evidence for growth of the SASI for both 15 M {sub ☉} and 27 M {sub ☉} progenitors; however, it is weaker in 3D exploding models. The growth rate of both instabilities is artificially enhanced along the symmetry axis in 2D as compared with our axis-free 3D Cartesian simulations. Our work highlights the growing consensus that CCSNe must be studied in 3D if we hope to solve the mystery of how the explosions are powered.

  9. Towards simulating star formation in turbulent high-z galaxies with mechanical supernova feedback

    NASA Astrophysics Data System (ADS)

    Kimm, Taysun; Cen, Renyue; Devriendt, Julien; Dubois, Yohan; Slyz, Adrianne

    2015-08-01

    To better understand the impact of supernova (SN) explosions on the evolution of galaxies, we perform a suite of high-resolution (12 pc), zoom-in cosmological simulations of a Milky Way-like galaxy at z = 3 with adaptive mesh refinement. We find that SN explosions can efficiently regulate star formation, leading to the stellar mass and metallicity consistent with the observed mass-metallicity relation and stellar mass-halo mass relation at z ˜ 3. This is achieved by making three important changes to the classical feedback scheme: (i) the different phases of SN blast waves are modelled directly by injecting radial momentum expected at each stage, (ii) the realistic time delay of SNe is required to disperse very dense gas before a runaway collapse sets in, and (iii) a non-uniform density distribution of the interstellar medium (ISM) is taken into account below the computational grid scale for the cell in which an SN explodes. The simulated galaxy with the SN feedback model shows strong outflows, which carry approximately 10 times larger mass than star formation rate, as well as smoothly rising circular velocity. Although the metallicity of the outflow depends sensitively on the feedback model used, we find that the accretion rate and metallicity of the cold flow around the virial radius is impervious to SN feedback. Our results suggest that understanding the structure of the turbulent ISM may be crucial to assess the role of SN and other feedback processes in galaxy formation theory.

  10. SUPERNOVAE IN THE CENTRAL PARSEC: A MECHANISM FOR PRODUCING SPATIALLY ANISOTROPIC HYPERVELOCITY STARS

    SciTech Connect

    Zubovas, Kastytis; Wynn, Graham A.; Gualandris, Alessia

    2013-07-10

    Several tens of hypervelocity stars (HVSs) have been discovered escaping our Galaxy. These stars share a common origin in the Galactic center and are distributed anisotropically in Galactic longitude and latitude. We examine the possibility that HVSs may be created as the result of supernovae (SNe) occurring within binary systems in a disk of stars around Sgr A* over the last 100 Myr. Monte Carlo simulations show that the rate of binary disruption is {approx}10{sup -4} yr{sup -1}, comparable to that of tidal disruption models. The SN-induced HVS production rate ({Gamma}{sub HVS}) is significantly increased if the binaries are hardened via migration through a gaseous disk. Moderate hardening gives {Gamma}{sub HVS} {approx_equal} 2 Multiplication-Sign 10{sup -7} yr{sup -1} and an estimated population of {approx}20 HVSs in the last 100 Myr. SN-induced HVS production requires the internal and external orbital velocity vectors of the secondary binary component to be aligned when the binary is disrupted. This leaves an imprint of the disk geometry on the spatial distribution of the HVSs, producing a distinct anisotropy.

  11. Handbook of Supernovae

    NASA Astrophysics Data System (ADS)

    Athem Alsabti, Abdul

    2015-08-01

    Since the discovery of pulsars in 1967, few celestial phenomena have fascinated amateur and professional astronomers, and the public, more than supernovae - dying stars that explode spectacularly and, in so doing, may outshine a whole galaxy. Thousands of research papers, reviews, monographs and books have been published on this subject. These publications are often written either for a highly specific level of expertise or education, or with respect to a particular aspect of supernovae research. However, the study of supernovae is a very broad topic involving many integral yet connected aspects, including physics, mathematics, computation, history, theoretical studies and observation. More specifically, areas of study include historical supernovae, the different types and light curves, nucleosynthesis, explosion mechanisms, formation of black holes, neutron stars, cosmic rays, neutrinos and gravitational waves. Related questions include how supernovae remnants interact with interstellar matter nearby and how do these events affect the formation of new stars or planetary systems? Could they affect existing planetary systems? Closer to home, did any supernovae affect life on earth in the past or could they do so in the future? And on the larger scale, how did supernovae observations help measure the size and expansion of the universe? All these topics, and more, are to be covered in a new reference work, consisting of more than 100 articles and more than 1700 pages. It is intended to cover all the main facets of current supernovae research. It will be pitched at or above the level of a new postgraduate student, who will have successfully studied physics (or a similar scientific subject) to Bachelor degree level. It will be available in both print and electronic (updatable) formats, with the exception of the first section, which will consist of a review of all the topics of the handbook at a level that allows anyone with basic scientific knowledge to grasp the

  12. Supernova Flashback

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Annotated Version

    The Cassiopeia A supernova's first flash of radiation makes six clumps of dust (circled in annotated version) unusually hot. The supernova remnant is the large white ball in the center. This infrared picture was taken by NASA's Spitzer Space Telescope.

  13. White dwarf models for type 1 supernovae and quiet supernovae, and presupernova evolution

    NASA Technical Reports Server (NTRS)

    Nomoto, K.

    1980-01-01

    Supernova mechanisms in accreting white dwarfs are considered with emphasis on deflagration as a plausible mechanism for producing Type I supernovae and electron captures to form quiet supernovae leaving neutron stars. These outcomes depend on accretion rate of helium, initial mass and composition of the white dwarf. The various types of hydrogen shell burning in the presupernova stage are also discussed.

  14. Constraints on the explosion mechanism and progenitors of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Dessart, Luc; Blondin, Stéphane; Hillier, D. John; Khokhlov, Alexei

    2014-06-01

    Observations of SN 2011fe at early times reveal an evolution analogous to a fireball model of constant colour. In contrast, our unmixed delayed detonations of Chandrasekhar-mass white dwarfs (DDC series) exhibit a faster brightening concomitant with a shift in colour to the blue. In this paper, we study the origin of these discrepancies. We find that strong chemical mixing largely resolves the photometric mismatch at early times, but it leads to an enhanced line broadening that contrasts, for example, with the markedly narrow Si II 6355 Å line of SN 2011fe. We also explore an alternative configuration with pulsational-delayed detonations (PDDEL model series). Because of the pulsation, PDDEL models retain more unburnt carbon, have little mass at high velocity, and have a much hotter outer ejecta after the explosion. The pulsation does not influence the inner ejecta, so PDDEL and DDC models exhibit similar radiative properties beyond maximum. However, at early times, PDDEL models show bluer optical colours and a higher luminosity, even for weak mixing. Their early-time radiation is derived primarily from the initial shock-deposited energy in the outer ejecta rather than radioactive-decay heating. Furthermore, PDDEL models show short-lived C II lines, reminiscent of SN 2013dy. They typically exhibit lines that are weaker, narrower, and of near-constant width, reminiscent of SN 2011fe. In addition to multidimensional effects, varying configurations for such `pulsations' offer a source of spectral diversity amongst Type Ia supernovae (SNe Ia). PDDEL and DDC models also provide one explanation for low- and high-velocity-gradient SNe Ia.

  15. POST-SHOCK-REVIVAL EVOLUTION IN THE NEUTRINO-HEATING MECHANISM OF CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Yamamoto, Yu; Yamada, Shoichi; Fujimoto, Shin-ichiro; Nagakura, Hiroki

    2013-07-01

    We perform experimental simulations with spherical symmetry and axisymmetry to understand the post-shock-revival evolution of core-collapse supernovae. Assuming that the stalled shock wave is relaunched by neutrino heating and employing the so-called light bulb approximation, we induce shock revival by raising the neutrino luminosity up to the critical value, which is determined by dynamical simulations. A 15 M{sub Sun} progenitor model is employed. We incorporate nuclear network calculations with a consistent equation of state in the simulations to account for the energy release by nuclear reactions and their feedback to hydrodynamics. Varying the shock-relaunch time rather arbitrarily, we investigate the ensuing long-term evolutions systematically, paying particular attention to the explosion energy and nucleosynthetic yields as a function of relaunch time, or equivalently, the accretion rate at shock revival. We study in detail how the diagnostic explosion energy approaches the asymptotic value and which physical processes contribute in what proportions to the explosion energy. Furthermore, we study the dependence of physical processes on the relaunch time and the dimension of dynamics. We find that the contribution of nuclear reactions to the explosion energy is comparable to or greater than that of neutrino heating. In particular, recombinations are dominant over burnings in the contributions of nuclear reactions. Interestingly, one-dimensional (1D) models studied in this paper cannot produce the appropriate explosion energy and nickel mass simultaneously; nickels are overproduced. This problem is resolved in 2D models if the shock is relaunched at 300-400 ms after the bounce.

  16. Understanding the Progenitor Systems, Explosion Mechanisms, and Cosmological Utility of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Foley, Ryan

    2014-10-01

    Despite using Type Ia supernovae (SN Ia) to precisely measure cosmological parameters, we still do not know basic facts about the progenitor systems and explosions. Theory suggests that SN Ia progenitor metallicity is correlated with its peak luminosity, but not its light-curve shape. As a result, this effect should lead to an increased Hubble scatter, reducing the precision with which we measure distances. If the average progenitor metallicity changes with redshift, cosmological measurements could be biased. Models also indicate that changing the progenitor metallicity will have little effect on the appearance of optical SN data, but significantly change UV spectra. These data can only be obtained with HST.We recently published the first detection of 2 SN Ia with different progenitor metallicities. These "twin" SN had nearly identical optical spectra and light-curve shapes, but different UV spectra and peak luminosities, consistent with the models. We now must increase the sample of SN Ia with UV spectral time series to investigate the impact of metallicity on SN properties. To do this, we plan to obtain UV spectral time series of 3 SN Ia, nearly doubling the sample. UV observations are critical to the understanding of SN Ia explosions and progenitors. This is our best opportunity to further our understanding of SN Ia while directly improving the utility of SN Ia for cosmology.Using parallel observations, we will obtain Cepheid distances to a subset of the SN for free, providing precise SN luminosities and a better measurement of the Hubble constant. The UV Initiative is an excellent opportunity for HST to address significant questions in SN physics and cosmology.

  17. Critical surface for explosions of rotational core-collapse supernovae

    SciTech Connect

    Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi

    2014-09-20

    The effect of rotation on the explosion of core-collapse supernovae is investigated systematically in three-dimensional simulations. In order to obtain the critical conditions for explosion as a function of mass accretion rate, neutrino luminosity, and specific angular momentum, rigidly rotating matter was injected from the outer boundary with an angular momentum, which is increased every 500 ms. It is found that there is a critical value of the specific angular momentum, above which the standing shock wave revives, for a given combination of mass accretion rate and neutrino luminosity, i.e., an explosion can occur by rotation even if the neutrino luminosity is lower than the critical value for a given mass accretion rate in non-rotational models. The coupling of rotation and hydrodynamical instabilities plays an important role in characterizing the dynamics of shock revival for the range of specific angular momentum that are supposed to be realistic. Contrary to expectations from past studies, the most rapidly expanding direction of the shock wave is not aligned with the rotation axis. Being perpendicular to the rotation axis on average, it can be oriented in various directions. Its dispersion is small when the spiral mode of the standing accretion shock instability (SASI) governs the dynamics, while it is large when neutrino-driven convection is dominant. As a result of the comparison between two-dimensional and three-dimensional rotational models, it is found that m ≠ 0 modes of neutrino-driven convection or SASI are important for shock revival around the critical surface.

  18. Supernova models

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent progress in understanding the observed properties of Type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the /sup 56/Ni produced therein is reviewed. Within the context of this model for Type I explosions and the 1978 model for Type II explosions, the expected nucleosynthesis and gamma-line spectra from both kinds of supernovae are presented. Finally, a qualitatively new approach to the problem of massive star death and Type II supernovae based upon a combination of rotation and thermonuclear burning is discussed.

  19. Supernova Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Knödlseder, J.

    This lecture gives an introduction to the topic of supernova nucleosynthesis which is at the origin of almost all nuclear species that we encounter in the Universe. It starts with an overview over the relevant nuclear physics, with some emphasise on nuclear stability and nuclear reactions. The central part of the lecture is devoted to the synthesis of new elements in the interiors of stars, either during their quiescent live or during their violent explosion as supernova. The different types of supernova explosions are exposed and their key nucleosynthesis products are summarised. The lecture closes with an overview over gamma-ray line diagnostics which provides a modern tool to study supernova nucleosynthesis by the measurement of freshly produced radioactive isotopes.

  20. A simple approach to the supernova progenitor-explosion connection

    NASA Astrophysics Data System (ADS)

    Müller, Bernhard; Heger, Alexander; Liptai, David; Cameron, Joshua B.

    2016-07-01

    We present a new approach to understand the landscape of supernova explosion energies, ejected nickel masses, and neutron star birth masses. In contrast to other recent parametric approaches, our model predicts the properties of neutrino-driven explosions based on the pre-collapse stellar structure without the need for hydrodynamic simulations. The model is based on physically motivated scaling laws and simple differential equations describing the shock propagation, the contraction of the neutron star, the neutrino emission, the heating conditions, and the explosion energetics. Using model parameters compatible with multi-D simulations and a fine grid of thousands of supernova progenitors, we obtain a variegated landscape of neutron star and black hole formation similar to other parametrized approaches and find good agreement with semi-empirical measures for the `explodability' of massive stars. Our predicted explosion properties largely conform to observed correlations between the nickel mass and explosion energy. Accounting for the coexistence of outflows and downflows during the explosion phase, we naturally obtain a positive correlation between explosion energy and ejecta mass. These correlations are relatively robust against parameter variations, but our results suggest that there is considerable leeway in parametric models to widen or narrow the mass ranges for black hole and neutron star formation and to scale explosion energies up or down. Our model is currently limited to an all-or-nothing treatment of fallback and there remain some minor discrepancies between model predictions and observational constraints.

  1. Surprises in the Theory of Core-Collapse Supernova Explosions

    NASA Astrophysics Data System (ADS)

    Burrows, Adam; Dessart, Luc; Livne, Eli; Ott, Christian D.

    2007-08-01

    We summarize some provocative new ideas that have emerged from our multidimensional radiation hydrodynamic simulations of the explosions of the cores of massive stars. We see the excitation of core g-modes that emit sufficient acoustic power to energize an anisotropic blast. The core continues to radiate sound as long as it is needed. There is simultaneously accretion on one side and explosion from another. However, the acoustic-powered mechanism requires a significant delay and will be aborted if another mechanism, such as the neutrino-driven mechanism, succeeds earlier. Whether that happens is the subject of vigorous research. Here, first we discuss the current status of the neutrino mechanism and then follow with a summary of the main features of the acoustic mechanism.

  2. r-PROCESS Nucleosynthesis in Type-II Supernova Model with Neutron Star Mass ~ 1.4M⊙

    NASA Astrophysics Data System (ADS)

    Terasawa, Mariko

    2002-09-01

    It is generally believed that the r-process occurs under explosive conditions at high neutron density, high temperature, and high entropy. It has been discussed, for sometime, that core-collapse supernovae could provide the most likely environment for such r-process nucleosynthesis. So far, the models of neutrino-driven winds from very massive (M≥ 1.7M⊙) and compact neutron star have proved to get successful r-process abundance pattern. A short expansion time is required to obtain a high neutron-to-seed ratio at moderate entropy. This expansion time is obtained by adopting a high neutron star gravitational mass, M~ 2M⊙, and a neutron star radius of R~ 10 km. However, such a large mass is sometimes criticized from observational viewpoints although several established EOSs for neutron star matter are known to stabilize massive core as far as M≤ 2.2M⊙. Nucleosynthesis in the r-process is strongly dependent on the gravitational mass of the proto-neutron star, and for this reason it is taken to be an adjustable parameter to give good r-process yields. In this paper, we study the effects of the outer boundary conditions of neutrino-driven winds on the r-process nucleosynthesis. We can get a reasonable agreement with the solar system r-process abundance pattern even by adopting the 'standard' 1.4M⊙ mass model for the proto-neutron star.

  3. Astronomical Resources: Supernovae.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1987-01-01

    Contains a partially annotated, nontechnical bibliography of recent materials about supernovae, including some about the discovery of a supernova in the Large Magellanic Cloud. Includes citations of general books and articles about supernovae, articles about Supernova 1987A, and a few science fiction stories using supernovae. (TW)

  4. Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae

    SciTech Connect

    Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN

    2005-08-08

    compared to give confidence that the results are free from significant systematics. Conversely, analysis between supernova subsets at the same redshift can identify further systematics controls. While theories of the supernova progenitor and explosion mechanism can guide the establishment of subset criteria, such understanding is not required--only comprehensive measurements are--for robustness of the cosmological results. The level of robustness is tied to the quality of data with which supernovae are distinguished. Statistical mission requirements are fundamentally bound by the systematic limitations of the experiment.

  5. Three-dimensional simulations of core-collapse supernovae: from shock revival to shock breakout

    NASA Astrophysics Data System (ADS)

    Wongwathanarat, A.; Müller, E.; Janka, H.-Th.

    2015-05-01

    We present three-dimensional hydrodynamic simulations of the evolution of core-collapse supernovae (SN) from blast-wave initiation by the neutrino-driven mechanism to shock breakout from the stellar surface, using an axis-free Yin-Yang grid and considering two 15 M⊙ red supergiants (RSG) and two blue supergiants (BSG) of 15 M⊙ and 20 M⊙. We demonstrate that the metal-rich ejecta in homologous expansion still carry fingerprints of asymmetries at the beginning of the explosion, but the final metal distribution is massively affected by the detailed progenitor structure. The most extended and fastest metal fingers and clumps are correlated with the biggest and fastest-rising plumes of neutrino-heated matter, because these plumes most effectively seed the growth of Rayleigh-Taylor (RT) instabilities at the C+O/He and He/H composition-shell interfaces after the passage of the SN shock. The extent of radial mixing, global asymmetry of the metal-rich ejecta, RT-induced fragmentation of initial plumes to smaller-scale fingers, and maximum Ni and minimum H velocities depend not only on the initial asphericity and explosion energy (which determine the shock and initial Ni velocities), but also on the density profiles and widths of C+O core and He shell and on the density gradient at the He/H transition, which leads to unsteady shock propagation and the formation of reverse shocks. Both RSG explosions retain a large global metal asymmetry with pronounced clumpiness and substructure, deep penetration of Ni fingers into the H-envelope (with maximum velocities of 4000-5000 km s-1 for an explosion energy around 1.5 bethe) and efficient inward H-mixing. While the 15 M⊙ BSG shares these properties (maximum Ni speeds up to ~3500 km s-1), the 20 M⊙ BSG develops a much more roundish geometry without pronounced metal fingers (maximum Ni velocities only ~2200 km s-1) because of reverse-shock deceleration and insufficient time for strong RT growth and fragmentation at the He

  6. Presupernova models and supernovae

    NASA Technical Reports Server (NTRS)

    Sugimoto, D.; Nomoto, K.

    1980-01-01

    The present status of theories of presupernova stellar evolution and the triggering mechanisms of supernova explosions are reviewed. The validity of the single-star approximation for stellar core evolution is considered, and the central density and temperature of the stellar core are discussed. Attention is then given to the results of numerical models of supernova explosions by carbon deflagration of an intermediate mass star, resulting in the total disruption of the star; the photodissociation of iron nuclei in a massive star, resulting in neutron star or black hole formation; and stellar core collapse triggered by electron capture in stars of mass ranging between those of the intermediate mass and massive stars, resulting in neutron star formation despite oxygen deflagration. Helium and carbon combustion and detonation in accreting white dwarfs and the gravitational collapse triggered by electron-pair creation in supermassive stars are also discussed, and problems requiring future investigation are indicated.

  7. SASI ACTIVITY IN THREE-DIMENSIONAL NEUTRINO-HYDRODYNAMICS SIMULATIONS OF SUPERNOVA CORES

    SciTech Connect

    Hanke, Florian; Mueller, Bernhard; Wongwathanarat, Annop; Marek, Andreas; Janka, Hans-Thomas E-mail: bjmuellr@mpa-garching.mpg.de E-mail: amarek@mpa-garching.mpg.de

    2013-06-10

    The relevance of the standing accretion shock instability (SASI) compared to neutrino-driven convection in three-dimensional (3D) supernova-core environments is still highly controversial. Studying a 27 M{sub Sun} progenitor, we demonstrate, for the first time, that violent SASI activity can develop in 3D simulations with detailed neutrino transport despite the presence of convection. This result was obtained with the PROMETHEUS-VERTEX code with the same sophisticated neutrino treatment so far used only in one-dimensional and two-dimensional (2D) models. While buoyant plumes initially determine the nonradial mass motions in the postshock layer, bipolar shock sloshing with growing amplitude sets in during a phase of shock retraction and turns into a violent spiral mode whose growth is only quenched when the infall of the Si/SiO interface leads to strong shock expansion in response to a dramatic decrease of the mass accretion rate. In the phase of large-amplitude SASI sloshing and spiral motions, the postshock layer exhibits nonradial deformation dominated by the lowest-order spherical harmonics (l = 1, m = 0, {+-}1) in distinct contrast to the higher multipole structures associated with neutrino-driven convection. We find that the SASI amplitudes, shock asymmetry, and nonradial kinetic energy in three dimensions can exceed those of the corresponding 2D case during extended periods of the evolution. We also perform parameterized 3D simulations of a 25 M{sub Sun} progenitor, using a simplified, gray neutrino transport scheme, an axis-free Yin-Yang grid, and different amplitudes of random seed perturbations. They confirm the importance of the SASI for another progenitor, its independence of the choice of spherical grid, and its preferred growth for fast accretion flows connected to small shock radii and compact proto-neutron stars as previously found in 2D setups.

  8. SASI Activity in Three-dimensional Neutrino-hydrodynamics Simulations of Supernova Cores

    NASA Astrophysics Data System (ADS)

    Hanke, Florian; Müller, Bernhard; Wongwathanarat, Annop; Marek, Andreas; Janka, Hans-Thomas

    2013-06-01

    The relevance of the standing accretion shock instability (SASI) compared to neutrino-driven convection in three-dimensional (3D) supernova-core environments is still highly controversial. Studying a 27 M ⊙ progenitor, we demonstrate, for the first time, that violent SASI activity can develop in 3D simulations with detailed neutrino transport despite the presence of convection. This result was obtained with the PROMETHEUS-VERTEX code with the same sophisticated neutrino treatment so far used only in one-dimensional and two-dimensional (2D) models. While buoyant plumes initially determine the nonradial mass motions in the postshock layer, bipolar shock sloshing with growing amplitude sets in during a phase of shock retraction and turns into a violent spiral mode whose growth is only quenched when the infall of the Si/SiO interface leads to strong shock expansion in response to a dramatic decrease of the mass accretion rate. In the phase of large-amplitude SASI sloshing and spiral motions, the postshock layer exhibits nonradial deformation dominated by the lowest-order spherical harmonics (l = 1, m = 0, ±1) in distinct contrast to the higher multipole structures associated with neutrino-driven convection. We find that the SASI amplitudes, shock asymmetry, and nonradial kinetic energy in three dimensions can exceed those of the corresponding 2D case during extended periods of the evolution. We also perform parameterized 3D simulations of a 25 M ⊙ progenitor, using a simplified, gray neutrino transport scheme, an axis-free Yin-Yang grid, and different amplitudes of random seed perturbations. They confirm the importance of the SASI for another progenitor, its independence of the choice of spherical grid, and its preferred growth for fast accretion flows connected to small shock radii and compact proto-neutron stars as previously found in 2D setups.

  9. Nucleosynthesis in Early Supernova Winds II: The Role of Neutrinos

    SciTech Connect

    Pruet, J; Hoffman, R; Woosley, S; Janka, H; Buras, R

    2005-11-04

    One of the outstanding unsolved riddles of nuclear astrophysics is the origin of the so called ''p-process'' nuclei from A = 92 to 126. Both the lighter and heavier p-process nuclei are adequately produced in the neon and oxygen shells of ordinary Type II supernovae, but the origin of these intermediate isotopes, especially {sup 92,94}Mo and {sup 96,98}Ru, has long been mysterious. Here we explore the production of these nuclei in the neutrino-driven wind from a young neutron star. We consider such early times that the wind still contains a proton excess because the rates for {nu}{sub e} and positron captures on neutrons are faster than those for the inverse captures on protons. Following a suggestion by Froehlich et al. (2005), they also include the possibility that, in addition to the protons, {alpha}-particles, and heavy seed, a small flux of neutrons is maintained by the reaction p({bar {nu}}{sub e}, e{sup +})n. This flux of neutrons is critical in bridging the long waiting points along the path of the rp-process by (n,p) and (n,{gamma}) reactions. Using the unmodified ejecta histories from a recent two-dimensional supernova model by Janka, Buras, and Rampp (2003), they find synthesis of p-rich nuclei up to {sup 102}Pd. However, if the entropy of these ejecta is increased by a factor of two, the synthesis extends to {sup 120}Te. Still larger increases in entropy, that might reflect the role of magnetic fields or vibrational energy input neglected in the hydrodynamical model, result in the production of numerous r-, s-, and p-process nuclei up to A {approx} 170, even in winds that are proton-rich.

  10. Supernovae. Old supernova dust factory revealed at the Galactic center.

    PubMed

    Lau, R M; Herter, T L; Morris, M R; Li, Z; Adams, J D

    2015-04-24

    Dust formation in supernova ejecta is currently the leading candidate to explain the large quantities of dust observed in the distant, early universe. However, it is unclear whether the ejecta-formed dust can survive the hot interior of the supernova remnant (SNR). We present infrared observations of ~0.02 solar masses of warm (~100 kelvin) dust seen near the center of the ~10,000-year-old Sagittarius A East SNR at the Galactic center. Our findings indicate the detection of dust within an older SNR that is expanding into a relatively dense surrounding medium (electron density ~10(3) centimeters(-3)) and has survived the passage of the reverse shock. The results suggest that supernovae may be the dominant dust-production mechanism in the dense environment of galaxies of the early universe.

  11. Supernovae. Old supernova dust factory revealed at the Galactic center.

    PubMed

    Lau, R M; Herter, T L; Morris, M R; Li, Z; Adams, J D

    2015-04-24

    Dust formation in supernova ejecta is currently the leading candidate to explain the large quantities of dust observed in the distant, early universe. However, it is unclear whether the ejecta-formed dust can survive the hot interior of the supernova remnant (SNR). We present infrared observations of ~0.02 solar masses of warm (~100 kelvin) dust seen near the center of the ~10,000-year-old Sagittarius A East SNR at the Galactic center. Our findings indicate the detection of dust within an older SNR that is expanding into a relatively dense surrounding medium (electron density ~10(3) centimeters(-3)) and has survived the passage of the reverse shock. The results suggest that supernovae may be the dominant dust-production mechanism in the dense environment of galaxies of the early universe. PMID:25791082

  12. How Bright Can Supernovae Get?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    and a magnetic field of 2*1013 Gauss deposits energy into ~12 solar masses of ejecta. Click for a closerlook! [Adapted from SukhboldWoosley 2016]The authors find that the maximum luminosity that can be produced by these different supernova models ranges between 5*1043 and 2*1046 erg/s, with total radiated energies of 3*1050 to 4*1052 erg. This places the upper limit on the brightness of a supernova at about 5 trillion times the luminosity of the Sun.The calculations performed by Sukhbold and Woosley confirm that, of the options they explore, the least luminous events are produced by prompt explosions. The brightest events possible are powered by the rotational energy of a newly born magnetar at the heart of the explosion.The energies of observed ultra-luminous supernovae are (just barely) containedwithin the bounds of the mechanisms explored here. This is even true of the extreme ASASSN-15lh which, based on the authors calculations, was almost certainly powered by an embedded magnetar. If we were to observe a supernova more than twice as bright as ASASSN-15lh, however, it would be nearly impossible to explain with current models.CitationTuguldur Sukhbold and S. E. Woosley 2016 ApJ 820 L38. doi:10.3847/2041-8205/820/2/L38

  13. Neutrino-driven Explosion of a 20 Solar-mass Star in Three Dimensions Enabled by Strange-quark Contributions to Neutrino–Nucleon Scattering

    NASA Astrophysics Data System (ADS)

    Melson, Tobias; Janka, Hans-Thomas; Bollig, Robert; Hanke, Florian; Marek, Andreas; Müller, Bernhard

    2015-08-01

    Interactions with neutrons and protons play a crucial role for the neutrino opacity of matter in the supernova core. Their current implementation in many simulation codes, however, is rather schematic and ignores not only modifications for the correlated nuclear medium of the nascent neutron star, but also free-space corrections from nucleon recoil, weak magnetism, or strange quarks, which can easily add up to changes of several 10% for neutrino energies in the spectral peak. In the Garching supernova simulations with the Prometheus-Vertex code, such sophistications have been included for a long time except for the strange-quark contributions to the nucleon spin, which affect neutral-current neutrino scattering. We demonstrate on the basis of a 20 {M}ȯ progenitor star that a moderate strangeness-dependent contribution of {g}{{a}}{{s}}=-0.2 to the axial-vector coupling constant {g}{{a}}≈ 1.26 can turn an unsuccessful three-dimensional (3D) model into a successful explosion. Such a modification is in the direction of current experimental results and reduces the neutral-current scattering opacity of neutrons, which dominate in the medium around and above the neutrinosphere. This leads to increased luminosities and mean energies of all neutrino species and strengthens the neutrino-energy deposition in the heating layer. Higher nonradial kinetic energy in the gain layer signals enhanced buoyancy activity that enables the onset of the explosion at ˜300 ms after bounce, in contrast to the model with vanishing strangeness contributions to neutrino–nucleon scattering. Our results demonstrate the close proximity to explosion of the previously published, unsuccessful 3D models of the Garching group.

  14. ON THE REQUIREMENTS FOR REALISTIC MODELING OF NEUTRINO TRANSPORT IN SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Lentz, Eric J.; Mezzacappa, Anthony; Hix, W. Raphael; Messer, O. E. Bronson; Liebendoerfer, Matthias; Bruenn, Stephen W. E-mail: mezzacappaa@ornl.gov

    2012-03-01

    We have conducted a series of numerical experiments with the spherically symmetric, general relativistic, neutrino radiation hydrodynamics code AGILE-BOLTZTRAN to examine the effects of several approximations used in multidimensional core-collapse supernova simulations. Our code permits us to examine the effects of these approximations quantitatively by removing, or substituting for, the pieces of supernova physics of interest. These approximations include: (1) using Newtonian versus general relativistic gravity, hydrodynamics, and transport; (2) using a reduced set of weak interactions, including the omission of non-isoenergetic neutrino scattering, versus the current state-of-the-art; and (3) omitting the velocity-dependent terms, or observer corrections, from the neutrino Boltzmann kinetic equation. We demonstrate that each of these changes has noticeable effects on the outcomes of our simulations. Of these, we find that the omission of observer corrections is particularly detrimental to the potential for neutrino-driven explosions and exhibits a failure to conserve lepton number. Finally, we discuss the impact of these results on our understanding of current, and the requirements for future, multidimensional models.

  15. A SEMI-DYNAMICAL APPROACH TO THE SHOCK REVIVAL IN CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Nagakura, Hiroki; Yamamoto, Yu; Yamada, Shoichi

    2013-03-10

    We develop a new semi-dynamical method to study shock revival by neutrino heating in core-collapse supernovae. Our new approach is an extension of the previous studies that employ spherically symmetric, steady, shocked accretion flows together with the light-bulb approximation. The latter has been widely used in the supernova community for the phenomenological investigation of the criteria for successful supernova explosions. In the present approach, we get rid of the steady-state condition and take into account shock wave motions instead. We have in mind a scenario in which it is not the critical luminosity but the critical fluctuation generated by hydrodynamical instabilities such as standing accretion shock instability and neutrino-driven convection in the post-shock region that determines the onset of shock revival. After confirming that the new approach indeed captures the dynamics of revived shock wave qualitatively, we then apply the method to various initial conditions and find that there is a critical fluctuation for shock revival, which can be well fit by the following formula: f{sub crit} {approx} 0.8 Multiplication-Sign (M{sub in}/1.4 M{sub Sun }) Multiplication-Sign {l_brace}1 - (r{sub sh}/10{sup 8} cm){r_brace}, where f{sub crit} denotes the critical pressure fluctuation normalized by the unperturbed post-shock value. M{sub in} and r{sub sh} stand for the mass of the central compact object and the shock radius, respectively. The critical fluctuation decreases with the shock radius, whereas it increases with the mass of the central object. We discuss the possible implications of our results for three-dimensional effects on shock revival, which is currently controversial in the supernova community.

  16. Supernova neutrino detection

    SciTech Connect

    Scholberg, K.

    2015-07-15

    In this presentation I summarize the main detection channels for neutrinos from core-collapse supernovae, and describe current status of and future prospects for supernova-neutrino-sensitive detectors worldwide.

  17. Supernova frequency estimates

    SciTech Connect

    Tsvetkov, D.Y.

    1983-01-01

    Estimates of the frequency of type I and II supernovae occurring in galaxies of different types are derived from observational material acquired by the supernova patrol of the Shternberg Astronomical Institute.

  18. VisPort: Web-Based Access to Community-Specific Visualization Functionality [Shedding New Light on Exploding Stars: Visualization for TeraScale Simulation of Neutrino-Driven Supernovae (Final Technical Report)

    SciTech Connect

    Baker, M Pauline

    2007-06-30

    The VisPort visualization portal is an experiment in providing Web-based access to visualization functionality from any place and at any time. VisPort adopts a service-oriented architecture to encapsulate visualization functionality and to support remote access. Users employ browser-based client applications to choose data and services, set parameters, and launch visualization jobs. Visualization products typically images or movies are viewed in the user's standard Web browser. VisPort emphasizes visualization solutions customized for specific application communities. Finally, VisPort relies heavily on XML, and introduces the notion of visualization informatics - the formalization and specialization of information related to the process and products of visualization.

  19. Core-collapse supernova explosion simulations

    SciTech Connect

    Cardall, Christian Y

    2011-01-01

    Neutrinos play important roles in the pre-collapse evolution, explosion, and aftermath of core-collapse supernovae. Detected neutrino signals from core-collapse supernovae would provide insight into the explosion mechanism and unknown neutrino mixing parameters. Achieving these goals requires large-scale, multiphysics simulations. For many years, several groups have performed such simulations with increasing realism. Current simulations and plans for future work of the Oak Ridge group are described.

  20. Red-Supergiant and Supernova Rate Problems: Implication for the Relic Supernova Neutrino Spectrum

    NASA Astrophysics Data System (ADS)

    Hidaka, J.; Kajino, T.; Mathews, G. J.

    2016-08-01

    Direct observations of core-collapse supernovae (SNe) and their red supergiant (RSG) progenitors suggest that the upper mass limit of RSGs may be only about 16.5{--}18{M}ȯ , while the standard theoretical value is as much as 25{M}ȯ . We investigate the possibility that RSGs with m\\gt 16.5{--}18{M}ȯ end their lives as failed supernovae (fSNe) and analyze their contribution to the relic supernova neutrino spectrum. We show that adopting this mass limit simultaneously solves both the RSG problem and the supernova rate problem. In addition, energetic neutrinos that originated from fSNe are sensitive to the explosion mechanism, and in particular, to the nuclear equation of state (EOS). We show that this solution to the RSG problem might also be used to constrain the EOS for failed supernovae.

  1. Disentangling the Origin and Heating Mechanism of Supernova Dust: Late-Time Spitzer Spectroscopy of the Type IIn SN 2005ip

    NASA Technical Reports Server (NTRS)

    Fox, Ori D.; Chevalier, Roger A.; Dwek, Eli; Skrutskie, Michael F.; Sugerman, Ben E. K.; Leisenring, Jarron M.

    2010-01-01

    This paper presents late-time near-infrared and Spitzer mid-infrared photometric and spectroscopic observations of warm dust in the Type IIn SN 2005ip in NGC 2906. The spectra show evidence for two dust components with different temperatures. Spanning the peak of the thermal emission, these observations provide strong constraints on the dust mass, temperature, and luminosity, which serve as critical diagnostics for disentangling the origin and heating mechanism of each component. The results suggest the warmer dust has a mass of approx. 5 x 10(exp -4) Solar Mass and originates from newly formed dust in the ejecta, continuously heated by the circumstellar interaction. By contrast, the cooler component likely originates from a circumstellar shock echo that forms from the heating of a large, pre-existing dust shell approx. 0.01 - 0.05 Solar Mass by the late-time circumstellar interaction. The progenitor wind velocity derived from the blue edge of the He I 1.083 micro P Cygni profile indicates a progenitor eruption likely formed this dust shell approx.100 years prior to the supernova explosion, which is consistent with a Luminous Blue Variable (LBV) progenitor star. Subject

  2. DISENTANGLING THE ORIGIN AND HEATING MECHANISM OF SUPERNOVA DUST: LATE-TIME SPITZER SPECTROSCOPY OF THE TYPE IIn SN 2005ip

    SciTech Connect

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Leisenring, Jarron M.; Dwek, Eli; Sugerman, Ben E. K.

    2010-12-20

    This paper presents late-time near-infrared and Spitzer mid-infrared photometric and spectroscopic observations of warm dust in the Type IIn SN 2005ip in NGC 2906. The spectra show evidence for two dust components with different temperatures. Spanning the peak of the thermal emission, these observations provide strong constraints on the dust mass, temperature, and luminosity, which serve as critical diagnostics for disentangling the origin and heating mechanism of each component. The results suggest that the warmer dust has a mass of {approx}5 x 10{sup -4} M{sub sun}, originates from newly formed dust in the ejecta, or possibly the cool, dense shell, and is continuously heated by the circumstellar interaction. By contrast, the cooler component likely originates from a circumstellar shock echo that forms from the heating of a large, pre-existing dust shell {approx}0.01-0.05 M{sub sun} by the late-time circumstellar interaction. The progenitor wind velocity derived from the blue edge of the He I 1.083 {mu}m P Cygni profile indicates a progenitor eruption likely formed this dust shell {approx}100 years prior to the supernova explosion, which is consistent with a Luminous Blue Variable progenitor star.

  3. Supernovae and mass extinctions

    NASA Technical Reports Server (NTRS)

    Vandenbergh, S.

    1994-01-01

    Shklovsky and others have suggested that some of the major extinctions in the geological record might have been triggered by explosions of nearby supernovae. The frequency of such extinction events will depend on the galactic supernova frequency and on the distance up to which a supernova explosion will produce lethal effects upon terrestrial life. In the present note it will be assumed that a killer supernova has to occur so close to Earth that it will be embedded in a young, active, supernova remnant. Such young remnants typically have radii approximately less than 3 pc (1 x 10(exp 19) cm). Larger (more pessimistic?) killer radii have been adopted by Ruderman, Romig, and by Ellis and Schramm. From observations of historical supernovae, van den Bergh finds that core-collapse (types Ib and II) supernovae occur within 4 kpc of the Sun at a rate of 0.2 plus or minus 0.1 per century. Adopting a layer thickness of 0.3 kpc for the galacitc disk, this corresponds to a rate of approximately 1.3 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). Including supernovae of type Ia will increase the total supernovae rate to approximately 1.5 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). For a lethal radius of R pc the rate of killer events will therefore be 1.7 (R/3)(exp 3) x 10(exp -2) supernovae per g.y. However, a frequency of a few extinctions per g.y. is required to account for the extinctions observed during the phanerozoic. With R (extinction) approximately 3 pc, the galactic supernova frequency is therefore too low by 2 orders of magnitude to account for the major extinctions in the geological record.

  4. Physical processes in collapse driven supernova

    SciTech Connect

    Mayle, R.W.

    1985-11-01

    A model of the supernova explosion is discussed. The method of neutrino transport is discussed, since the explosive mechanism depends on neutrino heating of the material behind the accretion shock. The core region of these exploding stars becomes unstable to convective motions during the supernova evolution. Convective mixing allows more neutrinos to escape from under the neutrinosphere, and thus increases the amount of heating by neutrinos. An approximate method of incorporating convection is described, and some results of including convection in a computer model is presented. Another phenomena is seen in computer simulations of supernova, oscillations in the neutrino luminosity and mass accretion rate onto the protoneutron star. The last topic discussed in this thesis describes the attempt to understand this oscillation by perturbation of the steady state solution to equations approximating the complex physical processes occurring in the late time supernova. 42 refs., 31 figs.

  5. Impact of Supernova Dynamics on the νp-process

    NASA Astrophysics Data System (ADS)

    Arcones, A.; Fröhlich, C.; Martínez-Pinedo, G.

    2012-05-01

    We study the impact of the late-time dynamical evolution of ejecta from core-collapse supernovae on νp-process nucleosynthesis. Our results are based on hydrodynamical simulations of neutrino-driven wind ejecta. Motivated by recent two-dimensional wind simulations, we vary the dynamical evolution during the νp-process and show that final abundances strongly depend on the temperature evolution. When the expansion is very fast, there is not enough time for antineutrino absorption on protons to produce enough neutrons to overcome the β+-decay waiting points and no heavy elements beyond A = 64 are produced. The wind termination shock or reverse shock dramatically reduces the expansion speed of the ejecta. This extends the period during which matter remains at relatively high temperatures and is exposed to high neutrino fluxes, thus allowing for further (p, γ) and (n, p) reactions to occur and to synthesize elements beyond iron. We find that the νp-process starts to efficiently produce heavy elements only when the temperature drops below ~3 GK. At higher temperatures, due to the low alpha separation energy of 60Zn (S α = 2.7 MeV) the reaction 59Cu(p, α)56Ni is faster than the reaction 59Cu(p, γ)60Zn. This results in the closed NiCu cycle that we identify and discuss here for the first time. We also investigate the late phase of the νp-process when the temperatures become too low to maintain proton captures. Depending on the late neutron density, the evolution to stability is dominated by β+ decays or by (n, γ) reactions. In the latter case, the matter flow can even reach the neutron-rich side of stability and the isotopic composition of a given element is then dominated by neutron-rich isotopes.

  6. Supernovae and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Panagia, Nino; Sahu, Kailash

    2001-07-01

    Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the

  7. Atomic and molecular supernovae

    NASA Technical Reports Server (NTRS)

    Liu, Weihong

    1997-01-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  8. EFFECTS OF ROTATION ON STOCHASTICITY OF GRAVITATIONAL WAVES IN THE NONLINEAR PHASE OF CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Kotake, Kei; Iwakami-Nakano, Wakana; Ohnishi, Naofumi

    2011-08-01

    By performing three-dimensional (3D) simulations that demonstrate the neutrino-driven core-collapse supernovae aided by the standing accretion shock instability (SASI), we study how the spiral modes of the SASI can impact the properties of the gravitational-wave (GW) emission. To see the effects of rotation in the nonlinear postbounce phase, we give a uniform rotation on the flow advecting from the outer boundary of the iron core, the specific angular momentum of which is assumed to agree with recent stellar evolution models. We compute fifteen 3D models in which the initial angular momentum and the input neutrino luminosities from the protoneutron star are changed in a systematic manner. By performing a ray-tracing analysis, we accurately estimate the GW amplitudes generated by anisotropic neutrino emission. Our results show that the gravitational waveforms from neutrinos in models that include rotation exhibit a common feature; otherwise, they vary much more stochastically in the absence of rotation. The breaking of the stochasticity stems from the excess of the neutrino emission parallel to the spin axis. This is because the compression of matter is more enhanced in the vicinity of the equatorial plane due to the growth of the spiral SASI modes, leading to the formation of the spiral flows circulating around the spin axis with higher temperatures. We point out that recently proposed future space interferometers like Fabry-Perot-type DECIGO would permit the detection of these signals for a Galactic supernova.

  9. Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?

    NASA Astrophysics Data System (ADS)

    Tartaglia, L.

    2015-02-01

    Violent eruptions, and consequently major mass loss, are a common feature of the so-called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8⊙) exploding in a dense H-rich circumstellar medium (CSM), produced by progenitor's mass loss prior to the SN explosion. Although the mechanisms triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ˜3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.

  10. Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?

    SciTech Connect

    Tartaglia, L.

    2015-02-24

    Violent eruptions, and consequently major mass loss, are a common feature of the so–called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8{sub ⊙}) exploding in a dense H–rich circumstellar medium (CSM), produced by progenitor’s mass loss prior to the SN explosion. Although the mechanisms triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ∼3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.

  11. Progenitors of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Raskin, Cody

    Type Ia supernovae are important, but mysterious cosmological tools. Their standard brightnesses have enabled cosmologists to measure extreme distances and to discover dark energy. However, the nature of their progenitor mechanisms remains elusive, with many competing models offering only partial clues to their origins. Here, type Ia supernova delay times are explored using analytical models. Combined with a new observation technique, this model places new constraints on the characteristic time delay between the formation of stars and the first type Ia supernovae. This derived delay time (500 million years) implies low-mass companions for single degenerate progenitor scenarios. In the latter portions of this dissertation, two progenitor mechanisms are simulated in detail; white dwarf collisions and mergers. From the first of these simulations, it is evident that white dwarf collisions offer a viable and unique pathway to producing type Ia supernovae. Many of the combinations of masses simulated produce sufficient quantities of 56 Ni (up to 0.51 solar masses) to masquerade as normal type Ia supernovae. Other combinations of masses produce 56 Ni yields that span the entire range of supernova brightnesses, from the very dim and underluminous, with 0.14 solar masses, to the over-bright and superluminous, with up to 1.71 solar masses. The 56 Ni yield in the collision simulations depends non-linearly on total system mass, mass ratio, and impact parameter. Using the same numerical tools as in the collisions examination, white dwarf mergers are studied in detail. Nearly all of the simulations produce merger remnants consisting of a cold, degenerate core surrounded by a hot accretion disk. The properties of these disks have strong implications for various viscosity treatments that have attempted to pin down the accretion times. Some mass combinations produce super-Chandrasekhar cores on shorter time scales than viscosity driven accretion. A handful of simulations also

  12. Pair production of helicity-flipped neutrinos in supernovae

    NASA Technical Reports Server (NTRS)

    Perez, Armando; Gandhi, Raj

    1989-01-01

    The emissivity was calculated for the pair production of helicity-flipped neutrinos, in a way that can be used in supernova calculations. Also presented are simple estimates which show that such process can act as an efficient energy-loss mechanism in the shocked supernova core, and this fact is used to extract neutrino mass limits from SN 1987A neutrino observations.

  13. Observing gravitational waves from core-collapse supernovae in the advanced detector era

    NASA Astrophysics Data System (ADS)

    Gossan, S. E.; Sutton, P.; Stuver, A.; Zanolin, M.; Gill, K.; Ott, C. D.

    2016-02-01

    The next galactic core-collapse supernova (CCSN) has already exploded, and its electromagnetic (EM) waves, neutrinos, and gravitational waves (GWs) may arrive at any moment. We present an extensive study on the potential sensitivity of prospective detection scenarios for GWs from CCSNe within 5 Mpc, using realistic noise at the predicted sensitivity of the Advanced LIGO and Advanced Virgo detectors for 2015, 2017, and 2019. We quantify the detectability of GWs from CCSNe within the Milky Way and Large Magellanic Cloud, for which there will be an observed neutrino burst. We also consider extreme GW emission scenarios for more distant CCSNe with an associated EM signature. We find that a three-detector network at design sensitivity will be able to detect neutrino-driven CCSN explosions out to ˜5.5 kpc , while rapidly rotating core collapse will be detectable out to the Large Magellanic Cloud at 50 kpc. Of the phenomenological models for extreme GW emission scenarios considered in this study, such as long-lived bar-mode instabilities and disk fragmentation instabilities, all models considered will be detectable out to M31 at 0.77 Mpc, while the most extreme models will be detectable out to M82 at 3.52 Mpc and beyond.

  14. NUCLEOSYNTHESIS IN CORE-COLLAPSE SUPERNOVA EXPLOSIONS TRIGGERED BY A QUARK-HADRON PHASE TRANSITION

    SciTech Connect

    Nishimura, Nobuya; Thielemann, Friedrich-Karl; Hempel, Matthias; Kaeppeli, Roger; Rauscher, Thomas; Winteler, Christian; Fischer, Tobias; Martinez-Pinedo, Gabriel; Froehlich, Carla; Sagert, Irina

    2012-10-10

    We explore heavy-element nucleosynthesis in the explosion of massive stars that are triggered by a quark-hadron phase transition during the early post-bounce phase of core-collapse supernovae. The present study is based on general-relativistic radiation hydrodynamics simulations with three-flavor Boltzmann neutrino transport in spherical symmetry, which utilize a quark-hadron hybrid equation of state based on the MIT bag model for strange quark matter. The quark-hadron phase transition inside the stellar core forms a shock wave propagating toward the surface of the proto-neutron star. This shock wave results in an explosion and ejects neutron-rich matter from the outer accreted layers of the proto-neutron star. Later, during the cooling phase, the proto-neutron star develops a proton-rich neutrino-driven wind. We present a detailed analysis of the nucleosynthesis outcome in both neutron-rich and proton-rich ejecta and compare our integrated nucleosynthesis with observations of the solar system and metal-poor stars. For our standard scenario, we find that a 'weak' r-process occurs and elements up to the second peak (A {approx} 130) are successfully synthesized. Furthermore, uncertainties in the explosion dynamics could barely allow us to obtain the strong r-process which produces heavier isotopes, including the third peak (A {approx} 195) and actinide elements.

  15. A New Gravitational-wave Signature from Standing Accretion Shock Instability in Supernovae

    NASA Astrophysics Data System (ADS)

    Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya

    2016-09-01

    We present results from fully relativistic three-dimensional core-collapse supernova simulations of a non-rotating 15{M}⊙ star using three different nuclear equations of state (EoSs). From our simulations covering up to ˜350 ms after bounce, we show that the development of the standing accretion shock instability (SASI) differs significantly depending on the stiffness of nuclear EoS. Generally, the SASI activity occurs more vigorously in models with softer EoS. By evaluating the gravitational-wave (GW) emission, we find a new GW signature on top of the previously identified one, in which the typical GW frequency increases with time due to an accumulating accretion to the proto-neutron star (PNS). The newly observed quasi-periodic signal appears in the frequency range from ˜100 to 200 Hz and persists for ˜150 ms before neutrino-driven convection dominates over the SASI. By analyzing the cycle frequency of the SASI sloshing and spiral modes as well as the mass accretion rate to the emission region, we show that the SASI frequency is correlated with the GW frequency. This is because the SASI-induced temporary perturbed mass accretion strikes the PNS surface, leading to the quasi-periodic GW emission. Our results show that the GW signal, which could be a smoking-gun signature of the SASI, is within the detection limits of LIGO, advanced Virgo, and KAGRA for Galactic events.

  16. Impacts of Rotation on Three-dimensional Hydrodynamics of Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Nakamura, Ko; Kuroda, Takami; Takiwaki, Tomoya; Kotake, Kei

    2014-09-01

    We perform a series of simplified numerical experiments to explore how rotation impacts the three-dimensional (3D) hydrodynamics of core-collapse supernovae. For our systematic study, we employ a light-bulb scheme to trigger explosions and a three-flavor neutrino leakage scheme to treat deleptonization effects and neutrino losses from the proto-neutron-star interior. Using a 15 M ⊙ progenitor, we compute 30 models in 3D with a wide variety of initial angular momentum and light-bulb neutrino luminosity. We find that the rotation can help the onset of neutrino-driven explosions for the models in which the initial angular momentum is matched to that obtained in recent stellar evolutionary calculations (~0.3-3 rad s-1 at the center). For the models with larger initial angular momentum, the shock surface deforms to be more oblate due to larger centrifugal force. This not only makes the gain region more concentrated around the equatorial plane, but also makes the mass larger in the gain region. As a result, buoyant bubbles tend to be coherently formed and rise in the equatorial region, which pushes the revived shock toward ever larger radii until a global explosion is triggered. We find that these are the main reasons that the preferred direction of the explosion in 3D rotating models is often perpendicular to the spin axis, which is in sharp contrast to the polar explosions around the axis that were obtained in previous two-dimensional simulations.

  17. HUBBLE PINPOINTS DISTANT SUPERNOVAE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These Hubble Space Telescope images pinpoint three distant supernovae, which exploded and died billions of years ago. Scientists are using these faraway light sources to estimate if the universe was expanding at a faster rate long ago and is now slowing down. Images of SN 1997cj are in the left hand column; SN 1997ce, in the middle; and SN 1997ck, on the right. All images were taken by the Hubble telescope's Wide Field and Planetary Camera 2. The top row of images are wider views of the supernovae. The supernovae were discovered in April 1997 in a ground-based survey at the Canada-France-Hawaii Telescope on Mauna Kea, Hawaii. Once the supernovae were discovered, the Hubble telescope was used to distinguish the supernovae from the light of their host galaxies. A series of Hubble telescope images were taken in May and June 1997 as the supernovae faded. Six Hubble telescope observations spanning five weeks were taken for each supernova. This time series enabled scientists to measure the brightness and create a light curve. Scientists then used the light curve to make an accurate estimate of the distances to the supernovae. Scientists combined the estimated distance with the measured velocity of the supernova's host galaxy to determine the expansion rate of the universe in the past (5 to 7 billion years ago) and compare it with the current rate. These supernovae belong to a class called Type Ia, which are considered reliable distance indicators. Looking at great distances also means looking back in time because of the finite velocity of light. SN 1997ck exploded when the universe was half its present age. It is the most distant supernova ever discovered (at a redshift of 0.97), erupting 7.7 billion years ago. The two other supernovae exploded about 5 billion years ago. SN 1997ce has a redshift of 0.44; SN 1997cj, 0.50. SN 1997ck is in the constellation Hercules, SN 1997ce is in Lynx, just north of Gemini; and SN 1997cj is in Ursa Major, near the Hubble Deep Field

  18. SPECTRA AND LIGHT CURVES OF FAILED SUPERNOVAE

    SciTech Connect

    Fryer, Chris L.; Dahl, Jon A.; Fontes, Christopher J. E-mail: dahl@lanl.go

    2009-12-10

    Astronomers have proposed a number of mechanisms to produce supernova explosions. Although many of these mechanisms are now not considered primary engines behind supernovae (SNe), they do produce transients that will be observed by upcoming ground-based surveys and NASA satellites. Here, we present the first radiation-hydrodynamics calculations of the spectra and light curves from three of these 'failed' SNe: SNe with considerable fallback, accretion-induced collapse of white dwarfs, and energetic helium flashes (also known as type Ia SNe).

  19. Convection in Type 2 supernovae

    SciTech Connect

    Miller, D.S.

    1993-10-15

    Results are presented here from several two dimensional numerical calculations of events in Type II supernovae. A new 2-D hydrodynamics and neutrino transport code has been used to compute the effect on the supernova explosion mechanism of convection between the neutrinosphere and the shock. This convection is referred to as exterior convection to distinguish it from convection beneath the neutrinosphere. The model equations and initial and boundary conditions are presented along with the simulation results. The 2-D code was used to compute an exterior convective velocity to compare with the convective model of the Mayle and Wilson 1-D code. Results are presented from several runs with varying sizes of initial perturbation, as well as a case with no initial perturbation but including the effects of rotation. The M&W code does not produce an explosion using the 2-D convective velocity. Exterior convection enhances the outward propagation of the shock, but not enough to ensure a successful explosion. Analytic estimates of the growth rate of the neutron finger instability axe presented. It is shown that this instability can occur beneath the neutrinosphere of the proto-neutron star in a supernova explosion with a growth time of {approximately} 3 microseconds. The behavior of the high entropy bubble that forms between the shock and the neutrinosphere in one dimensional calculations of supernova is investigated. It has been speculated that this bubble is a site for {gamma}-process generation of heavy elements. Two dimensional calculations are presented of the time evolution of the hot bubble and the surrounding stellar material. Unlike one dimensional calculations, the 2D code fails to achieve high entropies in the bubble. When run in a spherically symmetric mode the 2-D code reaches entropies of {approximately} 200. When convection is allowed, the bubble reaches {approximately} 60 then the bubble begins to move upward into the cooler, denser material above it.

  20. Improved Element Production Networks for Type Ia Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Chupryna, Viktor; Budiardja, Reuben; Guidry, Mike

    2004-11-01

    The cosmological implications of Type Ia supernovae depend crucially on their assumed standardizable candle properties. Therefore it is highly desirable to understand the detailed mechanism of the Ia supernova explosion from a fundamental point of view. There is some consensus that Type Ia supernovae result when a white dwarf in a binary star system is driven to the Chandrasekhar limit by accretion from a companion star, with the resulting instability triggering a thermonuclear runaway that burns most of the white dwarf to iron and nickel. However, the details of this mechanism are very poorly understood. The energy released in the supernovae comes primarily from the element and energy production network that powers the thermonuclear flash, but in most simulations of Ia explosions this network and its coupling to the hydrodynamics are treated only in an approximate fashion. In this presentation we shall discuss our current efforts to incorporate an improved description of energy generation networks coupled to hydrodynamics in Type Ia supernova simulations.

  1. Supernova remnants: the X-ray perspective

    NASA Astrophysics Data System (ADS)

    Vink, Jacco

    2012-12-01

    Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects. And in particular the advances made in X-ray imaging spectroscopy over the last two decades has greatly increased our knowledge about supernova remnants. It has made it possible to map the products of fresh nucleosynthesis, and resulted in the identification of regions near shock fronts that emit X-ray synchrotron radiation. Since X-ray synchrotron radiation requires 10-100 TeV electrons, which lose their energies rapidly, the study of X-ray synchrotron radiation has revealed those regions where active and rapid particle acceleration is taking place. In this text all the relevant aspects of X-ray emission from supernova remnants are reviewed and put into the context of supernova explosion properties and the physics and evolution of supernova remnants. The first half of this review has a more tutorial style and discusses the basics of supernova remnant physics and X-ray spectroscopy of the hot plasmas they contain. This includes hydrodynamics, shock heating, thermal conduction, radiation processes, non-equilibrium ionization, He-like ion triplet lines, and cosmic ray acceleration. The second half offers a review of the advances made in field of X-ray spectroscopy of supernova remnants during the last 15 year. This period coincides with the availability of X-ray imaging spectrometers. In addition, I discuss the results of high resolution X-ray spectroscopy with the Chandra and XMM-Newton gratings. Although these instruments are not ideal for studying extended sources, they nevertheless provided interesting results for a limited number of remnants. These results provide a glimpse of what may be achieved with future microcalorimeters that will be available on board future X

  2. Neutrino Nucleosynthesis in Supernovae

    SciTech Connect

    Yoshida, Takashi; Suzuki, Toshio; Chiba, Satoshi; Kajino, Toshitaka; Yokomakura, Hidekazu; Kimura, Keiichi; Takamura, Akira; Hartmann, Dieter H.

    2009-05-04

    Neutrino nucleosynthesis is an important synthesis process for light elements in supernovae. One important physics input of neutrino nucleosynthesis is cross sections of neutrino-nucleus reactions. The cross sections of neutrino-{sup 12}C and {sup 4}He reactions are derived using new shell model Hamiltonians. With the new cross sections, light element synthesis of a supernova is investigated. The appropriate range of the neutrino temperature for supernovae is constrained to be between 4.3 MeV and 6.5 MeV from the {sup 11}B abundance in Galactic chemical evolution. Effects by neutrino oscillations are also discussed.

  3. SUPERNOVA FALLBACK ONTO MAGNETARS AND PROPELLER-POWERED SUPERNOVAE

    SciTech Connect

    Piro, Anthony L.; Ott, Christian D. E-mail: cott@tapir.caltech.edu

    2011-08-01

    We explore fallback accretion onto newly born magnetars during the supernova of massive stars. Strong magnetic fields ({approx}10{sup 15} G) and short spin periods ({approx}1-10 ms) have an important influence on how the magnetar interacts with the infalling material. At long spin periods, weak magnetic fields, and high accretion rates, sufficient material is accreted to form a black hole, as is commonly found for massive progenitor stars. When B {approx}< 5 x 10{sup 14} G, accretion causes the magnetar to spin sufficiently rapidly to deform triaxially and produces gravitational waves, but only for {approx}50-200 s until it collapses to a black hole. Conversely, at short spin periods, strong magnetic fields, and low accretion rates, the magnetar is in the 'propeller regime' and avoids becoming a black hole by expelling incoming material. This process spins down the magnetar, so that gravitational waves are only expected if the initial protoneutron star is spinning rapidly. Even when the magnetar survives, it accretes at least {approx}0.3 M{sub sun}, so we expect magnetars born within these types of environments to be more massive than the 1.4 M{sub sun} typically associated with neutron stars. The propeller mechanism converts the {approx}10{sup 52} erg of spin energy in the magnetar into the kinetic energy of an outflow, which shock heats the outgoing supernova ejecta during the first {approx}10-30 s. For a small {approx}5 M{sub sun} hydrogen-poor envelope, this energy creates a brighter, faster evolving supernova with high ejecta velocities {approx}(1-3) x 10{sup 4} km s{sup -1} and may appear as a broad-lined Type Ib/c supernova. For a large {approx}> 10 M{sub sun} hydrogen-rich envelope, the result is a bright Type IIP supernova with a plateau luminosity of {approx}> 10{sup 43} erg s{sup -1} lasting for a timescale of {approx}60-80 days.

  4. Berkeley automated supernova search

    SciTech Connect

    Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.; Crawford, F.S.; Burns, M.S.

    1981-01-01

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982.

  5. Automated search for supernovae

    SciTech Connect

    Kare, J.T.

    1984-11-15

    This thesis describes the design, development, and testing of a search system for supernovae, based on the use of current computer and detector technology. This search uses a computer-controlled telescope and charge coupled device (CCD) detector to collect images of hundreds of galaxies per night of observation, and a dedicated minicomputer to process these images in real time. The system is now collecting test images of up to several hundred fields per night, with a sensitivity corresponding to a limiting magnitude (visual) of 17. At full speed and sensitivity, the search will examine some 6000 galaxies every three nights, with a limiting magnitude of 18 or fainter, yielding roughly two supernovae per week (assuming one supernova per galaxy per 50 years) at 5 to 50 percent of maximum light. An additional 500 nearby galaxies will be searched every night, to locate about 10 supernovae per year at one or two percent of maximum light, within hours of the initial explosion.

  6. Nucleosynthesis in Thermonuclear Supernovae

    SciTech Connect

    Claudia, Travaglio; Hix, William Raphael

    2013-01-01

    We review our understanding of the nucleosynthesis that occurs in thermonuclear supernovae and their contribution to Galactic Chemical evolution. We discuss the prospects to improve the modeling of the nucleosynthesis within simulations of these events.

  7. The Historical Supernovae

    NASA Astrophysics Data System (ADS)

    Clark, D. H.; Stephenson, F. R.

    1982-11-01

    A survey was made of pretelescopic astronomical records from Europe, China, Korea, Japan, Babylon, and the Arab countries to search for historical evidence of supernovae. A Roman, Claudian, reported a new star in 393 AD, the same year that Chinese astronomers noted a new star, together with its location and duration. Most European records were made in monasteries after 1000 AD, and one supernova was sighted in 1006 AD. A similar sighting was made in the Arab world at the same time. A total of twenty candidate events were found in the nearly 2000 yr of Chinese records. An analysis of the recorded events characteristics indicates that in 185, 393, 1006, 1054, 1181, 1572, and 1604 AD supernovae were seen. The 1054 AD explosion was corroborated by Arab records, while all others (except for the 393 AD and 1006 AD supernovae) were confined to Oriental observations.

  8. Physics of supernovae

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1985-12-13

    Presupernova models of massive stars are presented and their explosion by ''delayed neutrino transport'' examined. A new form of long duration Type II supernova model is also explored based upon repeated encounter with the electron-positron pair instability in stars heavier than about 60 Msub solar. Carbon deflagration in white dwarfs is discussed as the probable explanation of Type I supernovae and special attention is paid to the physical processes whereby a nuclear flame propagates through degenerate carbon. 89 refs., 12 figs.

  9. The Supernova Shock

    NASA Astrophysics Data System (ADS)

    Bethe, Hans A.

    1995-08-01

    Vigorous convection is the key to the supernova mechanism. An analytic theory is presented which parallels the computations of Herant et al. Energy is delivered by neutrinos to the convecting medium. The most important quantity is p1r3, where P1 is the density outside the shock. This can be obtained from the computations of Wilson et al., since it is not affected by the convection behind the shock. It is closely related to Mdot, the rate at which matter falls in toward the center. The outgoing shock is dominated by the Hugoniot equation; the shock cannot move out until its energy is of the order of 1 foe (= 1051 ergs). Once it moves, its velocity and energy are calculated as functions of its radius. Nucleosynthesis gives an appreciable contribution to the energy. A substantial fraction of the energy is initially stored as nuclear dissociation energy, and then released as the shock moves out. This energy cannot at present be calculated from first principles, but it can be deduced from the observed energy of SN 1987A of 1.4±0.4 foe. From the result it is shown that about one-half of the infalling material goes into the shock and one-half accretes to the neutron star.

  10. Dynamics of supernova driven superbubbles

    NASA Astrophysics Data System (ADS)

    Yadav, Naveen; Mukherjee, Dipanjan; Sharma, Prateek; Nath, Biman

    2015-08-01

    Energy injection by supernovae is believed to be one of the primary sources which powers the expansion of supershells. There is a qualitative difference between isolated supernovae (SNe) and overlapping SNe. For typical interstellar medium (ISM) conditions an isolated supernova loses most of the injected mechanical energy by 1 Myr. In contrast, for SNe going off in bubbles the radiative losses are much smaller. While the outer shock going off in the dense ISM (~1 cm-3) becomes radiative well before 1 Myr, there is a strong non-radiative termination shock that keeps the bubble over-pressured till the lifetime of the OB association (10s of Myr; Sharma et al. 2014). This has relevance for supernova feedback in galaxy formation simulations. In our previous 1-D treatment all the SNe were assumed to occur at the same location in space. It was found that a steady wind inside the bubble (Chevalier & Clegg 1985) can occur only if the number of SNe is large (>~104) and a supernova going off inside the bubble can thermalize within the termination shock. In the present work we study the effect of SNe separated in both space and time using 3-D hydrodynamic simulations with radiative cooling. If the separation between SNe is larger than the remnant’s radius at the time it becomes radiative, SNe are in the isolated regime. The explosion energy is deposited as thermal energy in a uniform, static interstellar medium (ISM) with temperature 104 K, corresponding to the warm neutral medium. The key parameters of our idealized setup are the ISM density (ngas), the number of SNe (N★) and the spatial separation between SNe (Rcl). The shock radius when it becomes radiative depends on the ISM density and number of SNe. We obtain the critical values of the key parameters (ngas, N★, Rcl) which lead to the formation of a superbubble. e.g., at least 103 SNe are required to maintain an over-pressured bubble at 20 Myr in an ISM with 1 cm-3 similarly 102 SNe going off within a region of 100

  11. Deciphering the Encoded Debris of Supernovae

    NASA Astrophysics Data System (ADS)

    Milisavljevic, Dan

    2016-06-01

    Theory and observation strongly favor the notion that asymmetric explosions drive core-collapse supernovae. Where and how this asymmetry is introduced is uncertain, in part because of limited constraints on various dynamical processes that may take place deep inside the star prior to and during core collapse. Fortunately, the debris fields of supernovae encode valuable information about these processes in their three-dimensional kinematics and chemical abundances. Accessing that information accurately, however, is not straightforward since observed properties may have multiple origins; e.g., asymmetries in both the explosion mechanism and/or turbulent stellar interior, and nonuniform circumstellar environments. I argue that the key to deciphering supernova debris fields is via end-toend investigations that connect extragalactic events with young, nearby supernova remnants. This approach has the unique ability to trace the sources of mixing and clumping at large and small scales back to the time of explosion. I will emphasize how a holistic SN-SNR methodology is necessary for the next generation of three-dimensional core-collapse simulations seeking to robustly model and interpret the gravitational wave, neutrino, and EM signatures of supernovae.

  12. Dark matter balls help supernovae to explode

    NASA Astrophysics Data System (ADS)

    Froggatt, C. D.; Nielsen, H. B.

    2015-10-01

    As a solution to the well-known problem that the shock wave potentially responsible for the explosion of a supernova actually tends to stall, we propose a new energy source arising from our model for dark matter. Our earlier model proposed that dark matter should consist of cm-large white dwarf-like objects kept together by a skin separating two different sorts of vacua. These dark matter balls or pearls will collect in the middle of any star throughout its lifetime. At some stage during the development of a supernova, the balls will begin to take in neutrons and then other surrounding material. By passing into a ball nucleons fall through a potential of order 10 MeV, causing a severe production of heat — of order 10 foe for a solar mass of material eaten by the balls. The temperature in the iron core will thereby be raised, splitting up the iron into smaller nuclei. This provides a mechanism for reviving the shock wave when it arrives and making the supernova explosion really occur. The onset of the heating due to the dark matter balls would at first stop the collapse of the supernova progenitor. This opens up the possibility of there being two collapses giving two neutrino outbursts, as apparently seen in the supernova SN1987A — one in Mont Blanc and one 4 h 43 min later in both IMB and Kamiokande.

  13. Deflagrations and detonations in thermonuclear supernovae.

    PubMed

    Gamezo, Vadim N; Khokhlov, Alexei M; Oran, Elaine S

    2004-05-28

    We study a type Ia supernova explosion using three-dimensional numerical simulations based on reactive fluid dynamics. We consider a delayed-detonation model that assumes a deflagration-to-detonation transition. In contrast with the pure deflagration model, the delayed-detonation model releases enough energy to account for a healthy explosion, and does not leave carbon, oxygen, and intermediate-mass elements in central parts of a white dwarf. This removes the key disagreement between simulations and observations, and makes a delayed detonation the mostly likely mechanism for type Ia supernovae. PMID:15245271

  14. Deflagrations and detonations in thermonuclear supernovae.

    PubMed

    Gamezo, Vadim N; Khokhlov, Alexei M; Oran, Elaine S

    2004-05-28

    We study a type Ia supernova explosion using three-dimensional numerical simulations based on reactive fluid dynamics. We consider a delayed-detonation model that assumes a deflagration-to-detonation transition. In contrast with the pure deflagration model, the delayed-detonation model releases enough energy to account for a healthy explosion, and does not leave carbon, oxygen, and intermediate-mass elements in central parts of a white dwarf. This removes the key disagreement between simulations and observations, and makes a delayed detonation the mostly likely mechanism for type Ia supernovae.

  15. Swift X-Ray Telescope Observations of Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Kae Batara Olaes, Melanie; Quimby, Robert

    2016-06-01

    Superluminous Supernovae (SLSNe) are a part of an emerging class of exceptionally bright supernovae with peak luminosities 10 times brighter than typical Type Ia supernovae. Similar to supernovae, SLSNe are divided into two subclasses: hydrogen poor SLSN-I and hydrogen rich SLSN-II. However, the luminosity of these events is far too high to be explained by the models for normal supernovae. New models developed to explain SLSNe predict high luminosity X-ray emission at late times. A consistent analysis of incoming SLSNe is essential in order to place constraints on the mechanisms behind these events. Here we present the results of X-ray analysis on SLSNe using a Bayesian method of statistical inference for low count rate events.

  16. Observing Supernovae and Supernova Remnants with JWST

    NASA Astrophysics Data System (ADS)

    Sonneborn, George; Temim, Tea; Williams, Brian J.; Blair, William P.

    2015-01-01

    The James Webb Space Telescope (JWST) will enable near- and mid-infrared studies of supernovae (SN) and supernova remnants (SNR) in the Milky Way and galaxies throughout the local universe and to high redshift. JWST's instrumentation provides imaging, coronography, and spectroscopy (R<3000) over the wavelength range 1-29 microns. The unprecedented sensitivity and angular resolution will enable spectroscopic study of new and recent supernovae, including molecule and dust formation, in galaxies at least out to 30 Mpc, and imaging to much greater distances. The Target of Opportunity response time can be as short as 48 hours, enabling quick follow-up observations of important SN events. JWST will be ideal for the study of Galactic and Magellanic Clouds supernova remnants, particularly young remnants with hot dust. Its high angular resolution (0.07" at 2 microns, 0.7" at 20 microns) will allow direct comparison between the IR, optical, and X-ray morphologies, identifying sites of dust emission in both the ejecta and the shocked ISM unresolved by previous IR telescopes. There is a rich spectrum of atomic lines (H, He I, [Si I], [Fe II], [Ni I-III], [Co II-III], [S III-IV], [Ar II-III], [Ne II, III, V], [O IV]) and molecules (CO, SiO, H2) of importance for SN and SNR studies. JWST is a large aperture (6.5m), cryogenic, infrared-optimized space observatory under construction by NASA, ESA, and CSA for launch in 2018. The JWST observatory will be placed in an Earth-Sun L2 orbit by an Ariane 5 launch vehicle provided by ESA. The observatory is designed for a 5-year prime science mission, with consumables for 10 years of science operations. The first call for proposals for JWST observations will be released in 2017.

  17. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    SciTech Connect

    Moriya, Takashi J.

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  18. Progenitors of Recombining Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  19. The Texas Supernova Search

    NASA Astrophysics Data System (ADS)

    Quimby, Robert

    2006-12-01

    Supernovae (SNe) are popular tools to explore the cosmological expansion of the Universe owing to their bright peak magnitudes and reasonably high rates; however, even the relatively homogeneous Type Ia supernovae are not perfect standard candles intrinsically. Their absolute peak brightness must be established by corrections that have been largely empirical. Hundreds of SNe are now found every year, shrinking the statistical errors in the cosmological terms, but most of these distant discoveries do little to further the physical understanding of SNe, which may illuminate unknown systematics. This talk will describe recent results from the The Texas Supernova Search, a campaign designed to discover not the most SNe nor the most distant SNe, but instead to amass a small collection of well-observed nearby SNe with detailed, multi-epoch spectral observations beginning at the earliest possible phases. For the past two years, we have pointed ROTSE-IIIb's 1.85 x 1.85 degree field of view at nearby galaxy clusters and searched thousands of galaxies, covering hundreds of square degrees on the sky, for supernovae. With ToO time on the neighboring 9.2m Hobby-Eberly Telescope, we have captured SNe spectra at some of the earliest phases ever. I will discuss the implications of these data on the physics of SNe explosions, including the propagation of the burning front and the progenitors of Type Ia supernovae.

  20. The Most Luminous Supernovae

    NASA Astrophysics Data System (ADS)

    Sukhbold, Tuguldur; Woosley, S. E.

    2016-04-01

    Recent observations have revealed a stunning diversity of extremely luminous supernovae, seemingly increasing in radiant energy without bound. We consider simple approximate limits for what existing models can provide for the peak luminosity and total radiated energy for non-relativistic, isotropic stellar explosions. The brightest possible supernova is a Type I explosion powered by a sub-millisecond magnetar with field strength B ∼ few × {10}13 G. In extreme cases, such models might reach a peak luminosity of 2× {10}46 {erg} {{{s}}}-1 and radiate a total energy of up to 4× {10}52 {erg}. Other less luminous models are also explored, including prompt hyper-energetic explosions in red supergiants, pulsational-pair instability supernovae, pair-instability supernovae, and colliding shells. Approximate analytic expressions and limits are given for each case. Excluding magnetars, the peak luminosity is near 3× {10}44 {erg} {{{s}}}-1 for the brightest models and the corresponding limit on total radiated energy is 3× {10}51 {erg}. Barring new physics, supernovae with a light output over 3× {10}51 erg must be rotationally powered, either during the explosion itself or after, the most obvious candidate being a rapidly rotating magnetar. A magnetar-based model for the recent transient event, ASASSN-15lh is presented that strains, but does not exceed the limits of what the model can provide.

  1. Gamma-line emission from radioactivities produced in supernovae

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.; Timmes, F. X.

    1997-01-01

    The major targets for the gamma ray spectroscopy of supernovae are reviewed. The principle benefit of such observations is the insight provided into the mechanisms of supernova explosions, the distribution and nature of star forming regions in our Galaxy, and the history of the nucleosynthesis of our Galaxy. The emphasis is on two short lived species, Co-56 and Ti-44 which may be seen in individual events and two longer lived species, Al-26 and Fe-60, which can be seen as the cumulative production of many supernovae.

  2. Neutrinos in supernovae

    SciTech Connect

    Cooperstein, J.

    1986-10-01

    The role of neutrinos in Type II supernovae is discussed. An overall view of the neutrino luminosity as expected theoretically is presented. The different weak interactions involved are assessed from the standpoint of how they exchange energy, momentum, and lepton number. Particular attention is paid to entropy generation and the path to thermal and chemical equilibration, and to the phenomenon of trapping. Various methods used to calculate the neutrino flows are considered. These include trapping and leakage schemes, distribution-averaged transfer, and multi-energy group methods. The information obtained from the neutrinos caught from Supernova 1987a is briefly evaluated. 55 refs., 7 figs.

  3. What Shapes Supernova Remnants?

    NASA Astrophysics Data System (ADS)

    Lopez, Laura A.

    2014-01-01

    Evidence has mounted that Type Ia and core-collapse (CC) supernovae (SNe) can have substantial deviations from spherical symmetry; one such piece of evidence is the complex morphologies of supernova remnants (SNRs). However, the relative role of the explosion geometry and the environment in shaping SNRs remains an outstanding question. Recently, we have developed techniques to quantify the morphologies of SNRs, and we have applied these methods to the extensive X-ray and infrared archival images available of Milky Way and Magellanic Cloud SNRs. In this proceeding, we highlight some results from these studies, with particular emphasis on SNR asymmetries and whether they arise from ``nature'' or ``nurture''.

  4. Properties of unusually luminous supernovae

    NASA Astrophysics Data System (ADS)

    Pan, Tony Shih Arng

    This thesis is a theoretical study of the progenitors, event rates, and observational properties of unusually luminous supernova (SN), and aims to identify promising directions for future observations. In Chapter 2, we present model light curves and spectra of pair-instability supernovae (PISNe) over a range of progenitor masses and envelope structures for Pop III stars. We calculate the rates and detectability of PISNe, core-collapse supernovae (CCSNe), and Type Ia SNe at the Epoch of Reionization with the James Webb Space Telescope (JWST), which can be used to determine the contribution of Pop III versus Pop II stars toward ionizing the universe. Although CCSNe are the least intrinsically luminous supernovae, Chapter 5 shows that a JWST survey targeting known galaxy clusters with Einstein radii > 35" should discover gravitationally lensed CCSNe at redshifts exceeding z = 7--8. In Chapter 3, we explain the Pop II/I progenitors of observed PISNe in the local universe can be created via mergers in runaway collisions in young, dense star clusters, despite copious mass loss via line-driven winds. The PISN rate from this mechanism is consistent with the observed volumetric rate, and the Large Synoptic Survey Telescope could discover ~102 such PISNe per year. In Chapter 4, we identify 10 star clusters which may host PISN progenitors with masses up to 600 solar masses formed via runaway collisions. We estimate the probabilities of these very massive stars being in eclipsing binaries to be ≳ 30%, and find that their transits can be detected even under the contamination of the background cluster light, due to mean transit depths of ~10 6 solar luminosities. In Chapter 6, we show that there could be X-ray analogues of optically super-luminous SNe that are powered by the conversion of the kinetic energy of SN ejecta into radiation upon its collision with a dense but optically-thin circumstellar shell. We find shell configurations that can convert a large fraction of the SN

  5. Supernovae and Dark Energy

    NASA Astrophysics Data System (ADS)

    Domínguez, I.; Bravo, E.; Piersanti, L.; Straniero, O.; Tornambé, A.

    2009-08-01

    A decade ago the observations of thermonuclear supernovae at high-redhifts showed that the expansion rate of the Universe is accelerating and since then, the evidence for cosmic acceleration has gotten stronger. This acceleration requires that the Universe is dominated by dark energy, an exotic component characterized by its negative pressure. Nowadays all the available astronomical data (i.e. thermonuclear supernovae, cosmic microwave background, barionic acoustic oscillations, large scale structure, etc.) agree that our Universe is made of about 70% of dark energy, 25% of cold dark matter and only 5% of known, familiar matter. This Universe is geometrically flat, older than previously thought, its destiny is no longer linked to its geometry but to dark energy, and we ignore about 95% of its components. To understand the nature of dark energy is probably the most fundamental problem in physics today. Current astronomical observations are compatible with dark energy being the vacuum energy. Supernovae have played a fundamental role in modern Cosmology and it is expected that they will contribute to unveil the dark energy. In order to do that it is mandatory to understand the limits of supernovae as cosmological distance indicators, improving their precision by a factor 10.

  6. Supernova Photometric Lightcurve Classification

    NASA Astrophysics Data System (ADS)

    Zaidi, Tayeb; Narayan, Gautham

    2016-01-01

    This is a preliminary report on photometric supernova classification. We first explore the properties of supernova light curves, and attempt to restructure the unevenly sampled and sparse data from assorted datasets to allow for processing and classification. The data was primarily drawn from the Dark Energy Survey (DES) simulated data, created for the Supernova Photometric Classification Challenge. This poster shows a method for producing a non-parametric representation of the light curve data, and applying a Random Forest classifier algorithm to distinguish between supernovae types. We examine the impact of Principal Component Analysis to reduce the dimensionality of the dataset, for future classification work. The classification code will be used in a stage of the ANTARES pipeline, created for use on the Large Synoptic Survey Telescope alert data and other wide-field surveys. The final figure-of-merit for the DES data in the r band was 60% for binary classification (Type I vs II).Zaidi was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  7. Theoretical models for supernovae

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1981-09-21

    The results of recent numerical simulations of supernova explosions are presented and a variety of topics discussed. Particular emphasis is given to (i) the nucleosynthesis expected from intermediate mass (10sub solar less than or equal to M less than or equal to 100 Msub solar) Type II supernovae and detonating white dwarf models for Type I supernovae, (ii) a realistic estimate of the ..gamma..-line fluxes expected from this nucleosynthesis, (iii) the continued evolution, in one and two dimensions, of intermediate mass stars wherein iron core collapse does not lead to a strong, mass-ejecting shock wave, and (iv) the evolution and explosion of vary massive stars (M greater than or equal to 100 Msub solar of both Population I and III. In one dimension, nuclear burning following a failed core bounce does not appear likely to lead to a supernova explosion although, in two dimensions, a combination of rotation and nuclear burning may do so. Near solar proportions of elements from neon to calcium and very brilliant optical displays may be created by hypernovae, the explosions of stars in the mass range 100 M/sub solar/ to 300 M/sub solar/. Above approx. 300 M/sub solar/ a black hole is created by stellar collapse following carbon ignition. Still more massive stars may be copious producers of /sup 4/He and /sup 14/N prior to their collapse on the pair instability.

  8. THE ENGINES BEHIND SUPERNOVAE AND GAMMA-RAY BURSTS

    SciTech Connect

    FRYER, CHRISTOPHER LEE

    2007-01-23

    The authors review the different engines behind supernova (SNe) and gamma-ray bursts (GRBs), focusing on those engines driving explosions in massive stars: core-collapse SNe and long-duration GRBs. Convection and rotation play important roles in the engines of both these explosions. They outline the basic physics and discuss the wide variety of ways scientists have proposed that this physics can affect the supernova explosion mechanism, concluding with a review of the current status in these fields.

  9. First stars, hypernovae, and superluminous supernovae

    NASA Astrophysics Data System (ADS)

    Nomoto, Ken'Ichi

    2016-07-01

    After the big bang, production of heavy elements in the early universe takes place starting from the formation of the first (Pop III) stars, their evolution, and explosion. The Pop III supernova (SN) explosions have strong dynamical, thermal, and chemical feedback on the formation of subsequent stars and evolution of galaxies. However, the nature of Pop III stars/supernovae (SNe) have not been well-understood. The signature of nucleosynthesis yields of the first SN can be seen in the elemental abundance patterns observed in extremely metal-poor (EMP) stars. We show that the abundance patterns of EMP stars, e.g. the excess of C, Co, Zn relative to Fe, are in better agreement with the yields of hyper-energetic explosions (Hypernovae, (HNe)) rather than normal supernovae. We note the large variation of the abundance patterns of EMP stars propose that such a variation is related to the diversity of the GRB-SNe and posssibly superluminous supernovae (SLSNe). For example, the carbon-enhanced metal-poor (CEMP) stars may be related to the faint SNe (or dark HNe), which could be the explosions induced by relativistic jets. Finally, we examine the various mechanisms of SLSNe.

  10. Supernovae: lights in the darkness

    NASA Astrophysics Data System (ADS)

    Every year, at the end of the summer, the Section of Physics and Technique of the "Institut Menorquí d'Estudis" and the "Societat Catalana de Física" organize the "Trobades Científiques de la Mediterrània" with the support of several academic institutions. The 2007 edition has been devoted to stellar explosions, the true evolutionary engines of galaxies. Whenever a star explodes, it injects into the interstellar medium a kinetic energy of 1051 erg and between one and several solar masses of newly synthesized elements as a result of the thermonuclear reactions that have taken place within the stellar interior. Two mechanisms are able to provide these enormous amounts of energy: one of them thermonuclear and the other, gravitational. Thermonuclear supernovae are the result of the incineration of a carbon-oxygen white dwarf that is the compact star of a binary stellar system. If the two stars are sufficiently close to each other, the white dwarf accretes matter from its companion, approaches the mass of Chandrasekhar, and ends up exploding. The processes previous to the explosion, the explosion itself, as well as the exact nature of the double stellar system that explodes, are still a matter of discussion. This point is particularly important because these explosions, known as Type Ia Supernovae, are very homogenous and can be used to measure cosmological distances. The most spectacular result obtained, is the discovery of the accelerated expansion of the Universe, but it still feels uncomfortable that such a fundamental result is based on a "measuring system" whose origin and behaviour in time is unknown. At the end of their lives, massive stars generate an iron nucleus that gets unstable when approaching the Chandrasekhar mass. Its collapse gives rise to the formation of a neutron star or a black hole, and the external manifestation of the energy that is released, about a 1053 erg, consists of a Type II or Ib/c supernova, of a Gamma Ray Burst (GRB) or even of

  11. Impacts of rotation on three-dimensional hydrodynamics of core-collapse supernovae

    SciTech Connect

    Nakamura, Ko; Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya

    2014-09-20

    We perform a series of simplified numerical experiments to explore how rotation impacts the three-dimensional (3D) hydrodynamics of core-collapse supernovae. For our systematic study, we employ a light-bulb scheme to trigger explosions and a three-flavor neutrino leakage scheme to treat deleptonization effects and neutrino losses from the proto-neutron-star interior. Using a 15 M {sub ☉} progenitor, we compute 30 models in 3D with a wide variety of initial angular momentum and light-bulb neutrino luminosity. We find that the rotation can help the onset of neutrino-driven explosions for the models in which the initial angular momentum is matched to that obtained in recent stellar evolutionary calculations (∼0.3-3 rad s{sup –1} at the center). For the models with larger initial angular momentum, the shock surface deforms to be more oblate due to larger centrifugal force. This not only makes the gain region more concentrated around the equatorial plane, but also makes the mass larger in the gain region. As a result, buoyant bubbles tend to be coherently formed and rise in the equatorial region, which pushes the revived shock toward ever larger radii until a global explosion is triggered. We find that these are the main reasons that the preferred direction of the explosion in 3D rotating models is often perpendicular to the spin axis, which is in sharp contrast to the polar explosions around the axis that were obtained in previous two-dimensional simulations.

  12. Observational properties of low-redshift pair instability supernovae

    NASA Astrophysics Data System (ADS)

    Kozyreva, A.; Blinnikov, S.; Langer, N.; Yoon, S.-C.

    2014-05-01

    Context. So-called superluminous supernovae have been recently discovered in the local Universe. It appears possible that some of them originate in stellar explosions induced by the pair instability mechanism. Recent stellar evolution models also predict pair instability supernovae from very massive stars at fairly high metallicities (i.e., Z ~ 0.004). Aims: We provide supernova models and synthetic light curves for two progenitor models, a 150 M⊙ red supergiant and a 250 M⊙ yellow supergiant at a metallicity of Z = 0.001, for which the evolution from the main sequence to collapse and the initiation of the pair instability supernova itself has been previously computed in a realistic and self-consistent way. Methods: We use the radiation hydrodynamics code STELLA to describe the supernova evolution of both models in a time frame of about 500 days. Results: We describe the shock-breakout phases of both supernovae, which are characterized by higher luminosity, longer duration, and a lower effective temperature than those of ordinary Type IIP supernovae. We derive the bolometric, as well as the U, B, V, R, and I, light curves of our pair instability supernova models, which show a long-lasting plateau phase with maxima at Mbol ≃ -19.3 mag and -21.3 mag for our lower and higher mass models, respectively. While we do not produce synthetic spectra, we also describe the photospheric composition and velocity as a function of time. Conclusions: We conclude that the light curve of the explosion of our initially 150 M⊙ star resembles those of relatively bright type IIP supernovae, whereas its photospheric velocity at early times is somewhat lower. Its 56Ni mass of 0.04 M⊙ also falls well into the range found in ordinary core collapse supernovae. The light curve and photospheric velocity of our 250 M⊙ models has a striking resemblance to that of the superluminous SN 2007bi, strengthening its interpretation as pair instability supernova. We conclude that pair

  13. Supernova Science Center

    SciTech Connect

    S. E. Woosley

    2008-05-05

    The Supernova Science Center (SNSC) was founded in 2001 to carry out theoretical and computational research leading to a better understanding of supernovae and related transients. The SNSC, a four-institutional collaboration, included scientists from LANL, LLNL, the University of Arizona (UA), and the University of California at Santa Cruz (UCSC). Intitially, the SNSC was funded for three years of operation, but in 2004 an opportunity was provided to submit a renewal proposal for two years. That proposal was funded and subsequently, at UCSC, a one year no-cost extension was granted. The total operational time of the SNSC was thus July 15, 2001 - July 15, 2007. This document summarizes the research and findings of the SNSC and provides a cummulative publication list.

  14. An infrared study of dust in Type IIn supernovae

    NASA Astrophysics Data System (ADS)

    Fox, Ori Dosovitz

    2010-11-01

    Given their high sensitivity to warm dust, infrared observations serve as important probes of supernovae and the surrounding supernova environment. Warm dust can trace progenitor mass loss rates, circumstellar interaction, and dust formation in the supernova environment, ultimately contributing to a broader understanding of stellar evolution, supernova explosion mechanics, and the origin of dust in the universe. The Type IIn supernova subclass, named for the "narrow" emission lines, tends to exhibit late-time infrared emission from warm dust more often than other subclasses. These supernovae, however, are particularly rare, consisting of only ˜2--3% of all core-collapse events. With only a handful of Type IIn observations at infrared wavelengths, the nature of the Type IIn environments and progenitors remain relatively unknown. This thesis presents an infrared study of Type IIn supernovae, beginning with a case study of SN 2005ip. A combination of Spitzer/IRS and IRAC, APO/TripleSpec, and FanCam data constrain the dust mass, temperature, and luminosity, identify the origin and heating mechanism of the warm dust, and characterize the progenitor system. Expanding on this work, a warm Spitzer/IRAC mission surveys the coordinates of 68 Type IIn supernovae within 250 Mpc from the past ten years. The detection of late-time emission from nine targets (>10%) nearly doubles the database of existing mid-infrared observations of Type IIn events. Pre-exisiting dust produced by massive progenitor eruptions (i.e., luminous blue variables) and heated by an infrared echo likely dominates the observed mid-infraraed flux. Finally, a characterization of the next generation of near-infrared detectors identifies several non-ideal noise sources and calibrations procedures. The resulting improvement in detector sensitivity paves the way for the next generation of transient observations as they trend towards cooler objects and higher redshifts.

  15. Radio emission from supernovae.

    NASA Astrophysics Data System (ADS)

    Weiler, K. W.; Panagia, N.; Sramek, R. A.; Van Dyk, S. D.; Stockdale, C. J.; Williams, C. L.

    Study of radio supernovae over the past 30 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. Along with reviewing these general properties of the radio emission from supernovae, we present our extensive observations of the radio emission from supernova (SN) 1993J in M 81 (NGC 3031) made with the Very Large Array and other radio telescopes. The SN 1993J radio emission evolves regularly in both time and frequency, and the usual interpretation in terms of shock interaction with a circumstellar medium (CSM) formed by a pre-supernova stellar wind describes the observations rather well considering the complexity of the phenomenon. However: 1) The highest frequency measurements at 85 - 110 GHz at early times (<40 days) are not well fitted by the parameterization which describes the cm wavelength measurements. 2) At a time ˜3100 days after shock breakout, the decline rate of the radio emission steepens from (t+beta ) beta ˜ -0.7 to beta ˜ -2.7 without change in the spectral index (nu +alpha ; alpha ˜ -0.81). This decline is best described not as a power-law, but as an exponential decay with an e-folding time of ˜ 1100 days. 3) The best overall fit to all of the data is a model including both non-thermal synchrotron self-absorption (SSA) and a thermal free-free absorbing (FFA) components at early times, evolving to a constant spectral index, optically thin decline rate, until a break in that decline rate at day ˜3100, as mentioned above.

  16. Are There Hidden Supernovae?

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse; Harker, David; Dunham, E.; Rank, David; Temi, Pasquale

    1997-01-01

    Ames Research Center and UCSC have been working on the development of a Mid IR Camera for the KAO in order to search for extra galactic supernovae. The development of the camera and its associated data reduction software have been successfully completed. Spectral Imaging of the Orion Bar at 6.2 and 7.8 microns demonstrates the derotation and data reduction software which was developed.

  17. Type IA Supernovae

    NASA Technical Reports Server (NTRS)

    Wheeler, J. Craig

    1992-01-01

    Spectral calculations show that a model based on the thermonuclear explosion of a degenerate carbon/oxygen white dwarf provides excellent agreement with observations of Type Ia supernovae. Identification of suitable evolutionary progenitors remains a severe problem. General problems with estimation of supernova rates are outlined and the origin of Type Ia supernovae from double degenerate systems are discussed in the context of new rates of explosion per H band luminosity, the lack of observed candidates, and the likely presence of H in the vicinity of some SN Ia events. Re-examination of the problems of triggering Type Ia by accretion of hydrogen from a companion shows that there may be an avenue involving cataclysmic variables, especially if extreme hibernation occurs. Novae may channel accreting white dwarfs to a unique locus in accretion rate/mass space. Systems that undergo secular evolution to higher mass transfer rates could lead to just the conditions necessary for a Type Ia explosion. Tests involving fluorescence or absorption in a surrounding circumstellar medium and the detection of hydrogen stripped from a companion, which should appear at low velocity inside the white dwarf ejecta, are suggested. Possible observational confirmation of the former is described.

  18. Supernova Discoveries from the Nearby Supernova Factory (SNfactory)

    DOE Data Explorer

    SNfactory International Collaboration,

    The Nearby Supernova Factory is an experiment designed to collect data on more Type Ia supernovae than have ever been studied in a single project before, and in so doing, to answer some fundamental questions about the nature of the universe. Type Ia supernovae are extraordinarily bright, remarkably uniform objects which make excellent "standard candles" for measuring the expansion rate of the universe. However, such stellar explosions are very rare, occurring only a couple of times per millenium in a typical galaxy, and remaining bright enough to detect only for a few weeks. Previous studies of Type Ia supernovae led to the discovery of the mysterious "dark energy" that is causing the universe to expand at an accelerating rate. To reduce the statistical uncertainties in previous experimental data, extensive spectral and photometric monitoring of more Type Ia supernovae is required. The SNfactory collaboration has built an automated system consisting of specialized software and custom-built hardware that systematically searches the sky for new supernovae, screens potential candidates, then performs multiple spectral and photometric observations on each supernova. These observations are stored in a database to be made available to supernova researchers world-wide for further study and analysis [copied from http://snfactory.lbl.gov/snf/snf-about.html]. Users must register and agree to the open access honor system. Finding charts are in FITS format and may not be accessible through normal browser settings.

  19. Accelerating Compact Object Mergers in Triple Systems with the Kozai Resonance: A Mechanism for "Prompt" Type Ia Supernovae, Gamma-Ray Bursts, and Other Exotica

    NASA Astrophysics Data System (ADS)

    Thompson, Todd A.

    2011-11-01

    White dwarf-white dwarf (WD-WD) and neutron star-neutron star (NS-NS) mergers may produce Type Ia supernovae and gamma-ray bursts (GRBs), respectively. A general problem is how to produce binaries with semi-major axes small enough to merge in significantly less than the Hubble time (t H), and thus accommodate the observation that these events closely follow episodes of star formation. I explore the possibility that such systems are not binaries at all, but actually coeval, or dynamical formed, triple systems. The tertiary induces Kozai oscillations in the inner binary, driving it to high eccentricity, and reducing its gravitational wave (GW) merger timescale. This effect significantly increases the allowed range of binary period P such that the merger time is t merge < t H. In principle, Chandrasekhar-mass binaries with P ~ 300 days can merge in <~ t H if they contain a prograde solar-mass tertiary at high enough inclination. For retrograde tertiaries, the maximum P such that t merge <~ t H is yet larger. In contrast, P <~ 0.3 days is required in the absence of a tertiary. I discuss implications of these findings for the production of transients formed via compact object binary mergers. Based on the statistics of solar-type binaries, I argue that many such binaries should be in triple systems affected by the Kozai resonance. If true, expectations for the mHz GW signal from individual sources, the diffuse background, and the foreground for GW experiments like LISA are modified. This work motivates future studies of triples systems of A, B, and O stars, and new types of searches for WD-WD binaries in triple systems.

  20. Radio emission from supernova remnants

    NASA Astrophysics Data System (ADS)

    Dubner, Gloria; Giacani, Elsa

    2015-09-01

    The explosion of a supernova releases almost instantaneously about 10^{51} ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from an SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critically discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analysis of the prospects for future research with the latest-generation radio telescopes.

  1. Gamma ray lines from buried supernovae

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Meyer, P.

    1982-01-01

    An investigation is conducted concerning the possibility that supernovae (SN), located in dense interstellar clouds, might become the sources of gamma ray lines. The SN progenitor, in such a case, has to be an O or B star so that its evolutionary lifetime is short, and an explosion inside the cloud is still possible. It is shown that, in principle, a measurement of the abundances in the ejecta is possible. Attention is given to the characteristics of a model, the expected luminosity of gamma-ray lines, and the study of specific numerical examples for testing the feasibility of the considered mechanism. On the basis of the obtained results, it is concluded that gamma-ray line production by collisional excitation in confined supernovae remnants may be quite important.

  2. Radiation Transport in Type IA Supernovae

    SciTech Connect

    Eastman, R

    1999-11-16

    It has been said more than once that the critical link between explosion models and observations is the ability to accurately simulate cooling and radiation transport in the expanding ejecta of Type Ia supernovae. It is perhaps frustrating to some of the theorists who study explosion mechanisms, and to some of the observers too, that more definitive conclusions have not been reached about the agreement, or lack thereof, between various Type Ia supernova models and the data. Although claims of superlative accuracy in transport simulations are sometimes made, I will argue here that there are outstanding issues of critical importance and in need of addressing before radiation transport calculations are accurate enough to discriminate between subtly different explosion models.

  3. Remnants of Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Lopez, Laura

    2015-04-01

    Supernovae (SNe) play an essential role in the Universe, and they are detected routinely through dedicated surveys. However, most of these SNe are often too distant (~1-100 Mpc) to resolve the SN ejecta and immediate surroundings of the exploded stars. Fortunately, supernova remnants (SNRs) offer the means to study explosions and dynamics at sub-pc scales. SNRs are observable for up to 105 years after the explosions across the electromagnetic spectrum, and almost 400 SNRs have now been identified in the Milky Way and nearby galaxies. In this talk, I will review recent advances in the understanding of core-collapse (CC) SNe based on studies of SNRs. In particular, I will highlight investigations of SNR (a)symmetry and of heavy metal (like iron and titanium) abundances which give insight to the nature and mechanisms of the originating explosions.

  4. Impacto ambiental de los remanentes de supernova

    NASA Astrophysics Data System (ADS)

    Dubner, G. M.

    2015-08-01

    The explosion of a supernovae (SN) represents the sudden injection of about ergs of thermal and mechanical energy in a small region of space, causing the formation of powerful shock waves that propagate through the interstellar medium at speeds of several thousands of km/s. These waves sweep, compress and heat the interstellar material that they encounter, forming the supernova remnants. Their evolution over thousands of years change forever, irreversibly, not only the physical but also the chemical properties of a vast region of space that can span hundreds of parsecs. This contribution briefly analyzes the impact of these explosions, discussing the relevance of some phenomena usually associated with SNe and their remnants in the light of recent theoretical and observational results.

  5. Pair-instability supernovae in the local universe

    SciTech Connect

    Whalen, Daniel J.; Smidt, Joseph; Heger, Alexander; Hirschi, Raphael; Yusof, Norhasliza; Even, Wesley; Fryer, Chris L.; Stiavelli, Massimo; Chen, Ke-Jung; Joggerst, Candace C.

    2014-12-10

    The discovery of 150-300 M {sub ☉} stars in the Local Group and pair-instability supernova candidates at low redshifts has excited interest in this exotic explosion mechanism. Realistic light curves for pair-instability supernovae at near-solar metallicities are key to identifying and properly interpreting these events as more are found. We have modeled pair-instability supernovae of 150-500 M {sub ☉} Z ∼ 0.1-0.4 Z {sub ☉} stars. These stars lose up to 80% of their mass to strong line-driven winds and explode as bare He cores. We find that their light curves and spectra are quite different from those of Population III pair-instability explosions, which therefore cannot be used as templates for low-redshift events. Although non-zero metallicity pair-instability supernovae are generally dimmer than their Population III counterparts, in some cases they will be bright enough to be detected at the earliest epochs at which they can occur, the formation of the first galaxies at z ∼ 10-15. Others can masquerade as dim, short duration supernovae that are only visible in the local universe and that under the right conditions could be hidden in a wide variety of supernova classes. We also report for the first time that some pair-instability explosions can create black holes with masses of ∼100 M {sub ☉}.

  6. Collective neutrino oscillations in supernovae

    SciTech Connect

    Duan, Huaiyu

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  7. Gravitational Lensing of Supernova Neutrinos

    SciTech Connect

    Mena, Olga; Mocioiu, Irina; Quigg, Chris; /Fermilab

    2006-10-01

    The black hole at the center of the galaxy is a powerful lens for supernova neutrinos. In the very special circumstance of a supernova near the extended line of sight from Earth to the galactic center, lensing could dramatically enhance the neutrino flux at Earth and stretch the neutrino pulse.

  8. The past, present and future supernova threat to Earth's biosphere

    NASA Astrophysics Data System (ADS)

    Beech, Martin

    2011-12-01

    A brief review of the threat posed to Earth's biosphere via near-by supernova detonations is presented. The expected radiation dosage, cosmic ray flux and expanding blast wave collision effects are considered, and it is argued that a typical supernova must be closer than ˜10-pc before any appreciable and potentially harmful atmosphere/biosphere effects are likely to occur. In contrast, the critical distance for Gamma-ray bursts is of order 1-kpc. In spite of the high energy effects potentially involved, the geological record provides no clear-cut evidence for any historic supernova induced mass extinctions and/or strong climate change episodes. This, however, is mostly a reflection of their being numerous possible (terrestrial and astronomical) forcing mechanisms acting upon the biosphere and the difficulty of distinguishing between competing scenarios. Key to resolving this situation, it is suggested, is the development of supernova specific extinction and climate change linked ecological models. Moving to the future, we estimate that over the remaining lifetime of the biosphere (˜2 Gyr) the Earth might experience 1 GRB and 20 supernova detonations within their respective harmful threat ranges. There are currently at least 12 potential pre-supernova systems within 1-kpc of the Sun. Of these systems IK Pegasi is the closest Type Ia pre-supernova candidate and Betelgeuse is the closest potential Type II supernova candidate. We review in some detail the past, present and future behavior of these two systems. Developing a detailed evolutionary model we find that IK Pegasi will likely not detonate until some 1.9 billion years hence, and that it affords absolutely no threat to Earth's biosphere. Betelgeuse is the closest, reasonably well understood, pre-supernova candidate to the Sun at the present epoch, and may undergo detonation any time within the next several million years. The stand-off distance of Betelgeuse at the time of its detonation is estimated to fall

  9. Neutrino Reactions on Two-Nucleon System and Core-Collapse Supernova

    NASA Astrophysics Data System (ADS)

    Nasu, Shota

    2011-10-01

    The neutrino reactions on nucleon and nucleus play important role in core-collapse supernova. Recently it is pointed that light nuclei(A = 2,3) can be abundant at the various stage of supernova environment. As an important mechanism of neutrino reaction on a few nucleon system, we study the neutrino emissivity on neutron fusion reaction nn-->de-νe.

  10. Cosmology with superluminous supernovae

    NASA Astrophysics Data System (ADS)

    Scovacricchi, D.; Nichol, R. C.; Bacon, D.; Sullivan, M.; Prajs, S.

    2016-02-01

    We predict cosmological constraints for forthcoming surveys using superluminous supernovae (SLSNe) as standardizable candles. Due to their high peak luminosity, these events can be observed to high redshift (z ˜ 3), opening up new possibilities to probe the Universe in the deceleration epoch. We describe our methodology for creating mock Hubble diagrams for the Dark Energy Survey (DES), the `Search Using DECam for Superluminous Supernovae' (SUDSS) and a sample of SLSNe possible from the Large Synoptic Survey Telescope (LSST), exploring a range of standardization values for SLSNe. We include uncertainties due to gravitational lensing and marginalize over possible uncertainties in the magnitude scale of the observations (e.g. uncertain absolute peak magnitude, calibration errors). We find that the addition of only ≃100 SLSNe from SUDSS to 3800 Type Ia Supernovae (SNe Ia) from DES can improve the constraints on w and Ωm by at least 20 per cent (assuming a flat wCDM universe). Moreover, the combination of DES SNe Ia and 10 000 LSST-like SLSNe can measure Ωm and w to 2 and 4 per cent, respectively. The real power of SLSNe becomes evident when we consider possible temporal variations in w(a), giving possible uncertainties of only 2, 5 and 14 per cent on Ωm, w0 and wa, respectively, from the combination of DES SNe Ia, LSST-like SLSNe and Planck. These errors are competitive with predicted Euclid constraints, indicating a future role for SLSNe for probing the high-redshift Universe.

  11. Nuclear astrophysics of supernovae

    SciTech Connect

    Cooperstein, J.

    1988-01-01

    In this paper, I'll give a general introduction to Supernova Theory, beginning with the presupernova evolution and ending with the later stages of the explosion. This will be distilled from a colloquium type of talk. It is necessary to have the whole supernova picture in one's mind's eye when diving into some of its nooks and crannies, as it is quite a mess of contradictory ingredients. We will have some discussion of supernova 1987a, but will keep our discussion more general. Second, we'll look at the infall and bounce of the star, seeing why it goes unstable, what dynamics it follows as it collapses, and how and why it bounces back. From there, we will go on to look at the equation of state (EOS) in more detail. We'll consider the cases T = 0 and T > 0. We'll focus on /rho/ < /rho//sub 0/, and then /rho/ > /rho//sub 0/ and the EOS of neutron stars, and whether or not they contain cores of strange matter. There are many things we could discuss here and not enough time. If I had more lectures, the remaining time would focus on two more questions of special interest to nuclear physicists: the electron capture reactions and neutrino transport. If time permitted, we'd have some discussion of the nucleosynthetic reactions in the explosion's debris as well. However, we cannot cover such material adequately, and I have chosen these topics because they are analytically tractable, pedagogically useful, and rather important. 23 refs., 14 figs., 3 tabs.

  12. Cosmological and supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

    2014-06-01

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  13. Cosmological and supernova neutrinos

    SciTech Connect

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Suzuki, T.

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  14. Radio Emission from Supernovae

    NASA Astrophysics Data System (ADS)

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; van Dyk, Schuyler D.; Williams, Christopher L.; Stockdale, Christopher J.; Kelley, Matthew T.

    2007-10-01

    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect clumpiness of the circumstellar material. Along with reviewing these general properties of the radio emission from supernovae, we present our extensive observations of the radio emission from supernova (SN) 1993J in M 81 (NGC 3031) made with the Very Large Array and other radio telescopes. The SN 1993J radio emission evolves regularly in both time and frequency, and the usual interpretation in terms of shock interaction with a circumstellar medium (CSM) formed by a pre-supernova stellar wind describes the observations rather well considering the complexity of the phenomenon. However: 1) The highest frequency measurements at 85-110 GHz at early times (<40 days) are not well fitted by the parameterization which describes the cm wavelength measurements rather well. 2) At mid-cm wavelengths there is often deviation from the fitted radio light curves, particularly near the peak flux density, and considerable shorter term deviations in the declining portion when the emission has become optically thin. 3) At a time ~3100 days after shock breakout, the decline rate of the radio emission steepens from (t+β)β~-0.7 to β~-2.7 without change in the spectral index (ν+αα~-0.81). However, this decline is best described not as a power-law, but as an exponential decay starting at day ~3100 with an e-folding time of ~1100 days. 4) The best overall fit to all of the data is

  15. Radio Emission from Supernovae

    SciTech Connect

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; Van Dyk, Schuyler D.; Stockdale, Christopher J.; Kelley, Matthew T.

    2009-05-03

    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect dumpiness of the circumstellar material.

  16. Supernova Hydrodynamics on the Omega Laser

    SciTech Connect

    R. Paul Drake

    2004-01-16

    (B204)The fundamental motivation for our work is that supernovae are not well understood. Recent observations have clarified the depth of our ignorance, by producing observed phenomena that current theory and computer simulations cannot reproduce. Such theories and simulations involve, however, a number of physical mechanisms that have never been studied in isolation. We perform experiments, in compressible hydrodynamics and radiation hydrodynamics, relevant to supernovae and supernova remnants. These experiments produce phenomena in the laboratory that are believed, based on simulations, to be important to astrophysics but that have not been directly observed in either the laboratory or in an astrophysical system. During the period of this grant, we have focused on the scaling of an astrophysically relevant, radiative-precursor shock, on preliminary studies of collapsing radiative shocks, and on the multimode behavior and the three-dimensional, deeply nonlinear evolution of the Rayleigh-Taylor (RT) instability at a decelerating, embedded interface. These experiments required strong compression and decompression, strong shocks (Mach {approx}10 or greater), flexible geometries, and very smooth laser beams, which means that the 60-beam Omega laser is the only facility capable of carrying out this program.

  17. The nearby supernova factory

    SciTech Connect

    Wood-Vasey, W.M.; Aldering, G.; Lee, B.C.; Loken, S.; Nugent, P.; Perlmutter, S.; Siegrist, J.; Wang, L.; Antilogus, P.; Astier, P.; Hardin, D.; Pain, R.; Copin, Y.; Smadja, G.; Gangler, E.; Castera, A.; Adam, G.; Bacon, R.; Lemonnier, J.-P.; Pecontal, A.; Pecontal, E.; Kessler, R.

    2004-01-23

    The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe Ia) at redshifts 0.03 < z < 0.08. This program will provide an exceptional data set of well-studied SNe in the nearby smooth Hubble flow that can be used as calibration for the current and future programs designed to use SNe to measure the cosmological parameters. The first key ingredient for this program is a reliable supply of Hubble-flow SNe systematically discovered in unprecedented numbers using the same techniques as those used in distant SNe searches. In 2002, 35 SNe were found using our test-bed pipeline for automated SN search and discovery. The pipeline uses images from the asteroid search conducted by the Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction techniques and analysis have allowed us to increase our effective SN discovery rate to {approx}12 SNe/month in 2003.

  18. Automated Supernova Discovery (Abstract)

    NASA Astrophysics Data System (ADS)

    Post, R. S.

    2015-12-01

    (Abstract only) We are developing a system of robotic telescopes for automatic recognition of Supernovas as well as other transient events in collaboration with the Puckett Supernova Search Team. At the SAS2014 meeting, the discovery program, SNARE, was first described. Since then, it has been continuously improved to handle searches under a wide variety of atmospheric conditions. Currently, two telescopes are used to build a reference library while searching for PSN with a partial library. Since data is taken every night without clouds, we must deal with varying atmospheric and high background illumination from the moon. Software is configured to identify a PSN, reshoot for verification with options to change the run plan to acquire photometric or spectrographic data. The telescopes are 24-inch CDK24, with Alta U230 cameras, one in CA and one in NM. Images and run plans are sent between sites so the CA telescope can search while photometry is done in NM. Our goal is to find bright PSNs with magnitude 17.5 or less which is the limit of our planned spectroscopy. We present results from our first automated PSN discoveries and plans for PSN data acquisition.

  19. Du Pont Classifications of 6 Supernovae

    NASA Astrophysics Data System (ADS)

    Morrell, N.; Shappee, Benjamin J.

    2016-06-01

    We report optical spectroscopy (range 370-910 nm) of six supernovae from the Backyard Observatory Supernova Search (BOSS) and the All-Sky Automated Survey for Supernovae (ASAS-SN) using the du Pont 2.5-m telescope (+ WFCCD) at Las Campanas Observatory on June 17 2016 UT. We performed a cross-correlation with a library of supernova spectra using the "Supernova Identification" code (SNID; Blondin and Tonry 2007, Ap.J.

  20. The LCOGT Supernova Key Project

    NASA Astrophysics Data System (ADS)

    Howell, Dale Andrew; Arcavi, Iair; Hosseinzadeh, Griffin; McCully, Curtis; Valenti, Stefano; Lcogt Supernova Key Project

    2015-01-01

    I present first results from the Las Cumbres Observatory Global Telescope Network (LCOGT) Supernova Key Project. LCOGT is a network of 11 robotic one and two meter telescopes spaced around the globe with imaging and spectroscopic capabilities. The supernova key project is a 3 year program to obtain lightcurves and spectra of at least 450 supernovae. About half are expected to be core-collapse supernovae, and half thermonuclear. We will start light curves and spectroscopy within hours of discovery, and focus on those SNe caught soon after explosion. The goals are fivefold: (1) observe supernovae soon after explosion to search for signs of their progenitors, (2) obtain a large homogeneous sample of supernovae for next generation cosmological studies, (3) obtain a large sample of supernovae for statistical studies comparing groups that are split into different populations, (4) obtain some of the first large samples of the recently discovered classes of rare and exotic explosions, (5) obtain the optical light curves and spectroscopy in support of studies at other wavelengths and using other facilities including UV observations, IR imaging and spectroscopy, host galaxy studies, high resolution spectroscopy, and late-time spectroscopy with large telescopes.

  1. Intense Magnetism in Supernovae

    NASA Astrophysics Data System (ADS)

    Thompson, C.

    2002-05-01

    Observations of the Soft Gamma Repeaters and Anomalous X-ray Pulsars have provided strong evidence for a class of neutron stars with magnetic fields exceeding 1015 G. This talk will overview the excellent prospects for generating such intense fields in a core-collapse supernova, with a focus on the violent convective motions believed to occur both inside and outside the neutrinosphere of the forming neutron star. I will also examine the effects of late fallback, and the role of (electron-type) neutrinos in aiding buoyant motions of the magnetic field. The case will be made that the SGRs and AXPs are distinguished from classical radio pulsars by a very rapid initial rotation of the neutron star.

  2. Supernova olivine from cometary dust.

    PubMed

    Messenger, Scott; Keller, Lindsay P; Lauretta, Dante S

    2005-07-29

    An interplanetary dust particle contains a submicrometer crystalline silicate aggregate of probable supernova origin. The grain has a pronounced enrichment in 18O/16O (13 times the solar value) and depletions in 17O/16O (one-third solar) and 29Si/28Si (<0.8 times solar), indicative of formation from a type II supernova. The aggregate contains olivine (forsterite 83) grains <100 nanometers in size, with microstructures that are consistent with minimal thermal alteration. This unusually iron-rich olivine grain could have formed by equilibrium condensation from cooling supernova ejecta if several different nucleosynthetic zones mixed in the proper proportions. The supernova grain is also partially encased in nitrogen-15-rich organic matter that likely formed in a presolar cold molecular cloud.

  3. Supernova olivine from cometary dust

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Keller, Lindsay P.; Lauretta, Dante S.

    2005-01-01

    An interplanetary dust particle contains a submicrometer crystalline silicate aggregate of probable supernova origin. The grain has a pronounced enrichment in 18O/16O (13 times the solar value) and depletions in 17O/16O (one-third solar) and 29Si/28Si (<0.8 times solar), indicative of formation from a type II supernova. The aggregate contains olivine (forsterite 83) grains <100 nanometers in size, with microstructures that are consistent with minimal thermal alteration. This unusually iron-rich olivine grain could have formed by equilibrium condensation from cooling supernova ejecta if several different nucleosynthetic zones mixed in the proper proportions. The supernova grain is also partially encased in nitrogen-15-rich organic matter that likely formed in a presolar cold molecular cloud.

  4. Spectroscopic classification of supernova candidates

    NASA Astrophysics Data System (ADS)

    Hodgkin, S. T.; Hall, A.; Fraser, M.; Campbell, H.; Wyrzykowski, L.; Kostrzewa-Rutkowska, Z.; Pietro, N.

    2014-09-01

    We report the spectroscopic classification of four supernovae at the 2.5m Isaac Newton Telescope on La Palma, using the Intermediate Dispersion Spectrograph and the R300V grating (3500-8000 Ang; ~6 Ang resolution).

  5. Simulation of Kepler Supernova Explosion

    NASA Video Gallery

    This video shows a simulation of the Kepler supernova as it interacts with material expelled by the giant star companion to the white dwarf before the latter exploded. It was assumed that the bulk ...

  6. Ozone Depletion from Nearby Supernovae

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.

  7. Shocked Clouds in the Vela Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Nichols, Joy S.; Slavin, Jonathan D.

    2004-01-01

    Unusually strong high-excitation C I has been detected in eleven lines of sight through the Vela supernova remnant by means of UV absorption-line studies of IUE data. Most of these lines of sight lie near the western edge of the X-ray bright region of the supernova remnant in a spatially distinct band approximately 1deg by 4deg oriented approximately north/south. The high-excitation C I (denoted C I*) is interpreted as evidence of a complex of shocked dense clouds inside the supernova remnant, due to the high pressures indicated in this region. To further analyze the properties of this region of C I*, we present new HIRES-processed IRAS data of the entire Vela SNR. A temperature map calculated from the HIRES IRAS data, based on a two-component dust model, reveals the signature of hot dust at several locations in the SNR. The hot dust is anti-correlated spatially with X-ray emission as revealed by ROSAT, as would be expected for a dusty medium interacting with a shock wave. The regions of hot dust are strongly correlated with optical filaments, supporting a scenario of dense clouds interior to the SNR that have been shocked and are now cooling behind the supernova blast wave. With few exceptions, the lines of sight to the strong C I* pass through regions of hot dust and optical filaments. Possible mechanisms for the production of the anomalously large columns of C I and C I* are discussed. Dense clouds on the back western hemisphere of the remnant may explain the relatively low X-ray emission in the western portion of the Vela supernova remnant due to the slower forward shock velocity in regions where the shock has encountered the dense clouds. An alternate explanation for the presence of neutral, excited state, and ionized species along the same line of sight may be a magnetic precusor that heats and compresses the gas ahead of the shock.

  8. First supernova companion star found

    NASA Astrophysics Data System (ADS)

    2004-01-01

    Supernova 1993J exploding hi-res Size hi-res: 222 kb Credits: ESA and Justyn R. Maund (University of Cambridge) Supernova 1993J exploding (artist’s impression) New observations with the Hubble Space Telescope allow a look into a supernova explosion under development. In this artist’s view the red supergiant supernova progenitor star (left) is exploding after having transferred about 10 solar masses of hydrogen gas to the blue companion star (right). This interaction process happened over about 250 years and affected the supernova explosion to such an extent that SN 1993J was later known as one of the most peculiar supernovae ever seen. Supernova 1993J exploding hi-res Size hi-res: 4200 kb Credits: ESA and Justyn R. Maund (University of Cambridge) The site of the Supernova 1993J explosion A virtual journey into one of the spiral arms of the grand spiral Messier 81 (imaged with the Isaac Newton Telescope on La Palma, left) reveals the superb razor-sharp imaging power of the NASA/ESA Hubble Space Telescope (Hubble’s WFPC2 instrument, below). The close-up (with Hubble’s ACS, to the right) is centred on the newly discovered companion star to Supernova 1993J that itself is no longer visible. The quarter-circle around the supernova companion is a so-called light echo originating from sheets of dust in the galaxy reflecting light from the original supernova explosion. Supernova 1993J explosing site hi-res Size hi-res: 1502 kb Credits: ESA and Justyn R. Maund (University of Cambridge) Close-up of the Supernova 1993J explosion site (ACS/HRC image) This NASA/ESA Hubble Space Telescope image shows the area in Messier 81 where Supernova 1993J exploded. The companion to the supernova ‘mother star’ that remains after the explosion is seen in the centre of the image. The image is taken with Hubble’s Advanced Camera for Surveys and is a combination of four exposures taken with ACS’ High Resolution Camera. The exposures were taken through two near-UV filters (250W

  9. Supernovae, neutron stars and biomolecular chirality.

    PubMed

    Bonner, W A; Rubenstein, E

    1987-01-01

    Recent theoretical and experimental investigations of the origin of biomolecular chirality are reviewed briefly. Biotic and abiotic theories are evaluated critically with the conclusion that asymmetric photochemical processes with circulary polarized light (CPL), particularly asymmetric photolyses, constitute the most viable mechanisms. Solar CPL sources appear too weak and random to be effective. We suggest an alternative CPL source, namely, the synchrotron radiation from the neutron star remnants of supernova explosions. This could asymmetrically process racemic compounds in the organic mantles of the dust grains in interstellar clouds, and the resulting chiral molecules could be transferred to Earth by cold accretion as the solar system periodically traverses these interstellar clouds.

  10. The velocity and composition of supernova ejecta

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.

    1971-01-01

    In case of the Gum nebula, a pulsar - a presumed neutron star - is believed to be a relic of the supernova explosion. Regardless of the mechanism of the explosion, the velocity distribution and composition of the ejected matter will be roughly the same. The reimploding mass fraction is presumed to be neutron rich. The final composition is thought to be roughly 1/3 iron and 2/3 silicon, with many small fractions of elements from helium to iron. The termination of helium shell burning occurs because the shell is expanded and cooled by radiation stress. The mass fraction of the helium burning shell was calculated.

  11. Weak neutral currents and collapse initiated supernova

    SciTech Connect

    Wilson, J.R.

    1993-03-19

    Since 1974 the neutrino processes mediated by neutral currents have been a part of supernova (SN) modeling calculations. In this report only present day SN calculations will be discussed. First I will give brief description of the SN computer model and an outline of the explosion process as depicted by that model. Then I will discuss the role weak neutral current (WNC) processes play in this explosion process. Finally, I will discus inelastic scattering of tau neutrinos by heavy elements in WNC or Earth as a mechanism for measuring the mass of tau neutrino.

  12. Spectropolarimetric diagnostics of thermonuclear supernova explosions.

    PubMed

    Wang, Lifan; Baade, Dietrich; Patat, Ferdinando

    2007-01-12

    Even at extragalactic distances, the shape of supernova ejecta can be effectively diagnosed by spectropolarimetry. We present results for 17 type Ia supernovae that allow a statistical study of the correlation among the geometric structures and other observable parameters of type Ia supernovae. These observations suggest that type Ia supernova ejecta typically consist of a smooth, central, iron-rich core and an outer layer with chemical asymmetries. The degree of this peripheral asphericity is correlated with the light-curve decline rate of type Ia supernovae. These results lend strong support to delayed-detonation models of type Ia supernovae.

  13. Pulsar recoil by large-scale anisotropies in supernova explosions.

    PubMed

    Scheck, L; Plewa, T; Janka, H-Th; Kifonidis, K; Müller, E

    2004-01-01

    Assuming that the neutrino luminosity from the neutron star core is sufficiently high to drive supernova explosions by the neutrino-heating mechanism, we show that low-mode (l=1,2) convection can develop from random seed perturbations behind the shock. A slow onset of the explosion is crucial, requiring the core luminosity to vary slowly with time, in contrast to the burstlike exponential decay assumed in previous work. Gravitational and hydrodynamic forces by the globally asymmetric supernova ejecta were found to accelerate the remnant neutron star on a time scale of more than a second to velocities above 500 km s(-1), in agreement with observed pulsar proper motions.

  14. SPECTRUM OF THE SUPERNOVA RELIC NEUTRINO BACKGROUND AND METALLICITY EVOLUTION OF GALAXIES

    SciTech Connect

    Nakazato, Ken’ichiro; Mochida, Eri; Suzuki, Hideyuki; Niino, Yuu

    2015-05-01

    The spectrum of the supernova relic neutrino (SRN) background from past stellar collapses including black hole formation (failed supernovae) is calculated. The redshift dependence of the black hole formation rate is considered on the basis of the metallicity evolution of galaxies. Assuming the mass and metallicity ranges of failed supernova progenitors, their contribution to SRNs is quantitatively estimated for the first time. Using this model, the dependences of SRNs on the cosmic star formation rate density (CSFRD), shock revival time, and equation of state (EOS) are investigated. The shock revival time is introduced as a parameter that should depend on the still unknown explosion mechanism of core collapse supernovae. The dependence on EOS is considered for failed supernovae, whose collapse dynamics and neutrino emission are certainly affected. It is found that the low-energy spectrum of SRNs is mainly determined by the CSFRD. These low-energy events will be observed in the Super-Kamiokande experiment with gadolinium-loaded water.

  15. Neutrinos and nucleosynthesis in core-collapse supernovae

    SciTech Connect

    Fröhlich, C.; Casanova, J.; Hempel, M.; Liebendörfer, M.; Melton, C. A.; Perego, A.

    2014-01-01

    Massive stars (M > 8-10 M{sub ⊙}) undergo core collapse at the end of their life and explode as supernova with ~ 10⁵¹ erg of kinetic energy. While the detailed supernova explosion mechanism is still under investigation, reliable nucleosynthesis calculations based on successful explosions are needed to explain the observed abundances in metal-poor stars and to predict supernova yields for galactic chemical evolution studies. To predict nucleosynthesis yields for a large number of progenitor stars, computationally efficient explosion models are required. We model the core collapse, bounce and subsequent explosion of massive stars assuming spherical symmetry and using detailed microphysics and neutrino physics combined with a novel method to artificially trigger the explosion (PUSH). We discuss the role of neutrinos, the conditions in the ejecta, and the resulting nucleosynthesis.

  16. On the progenitors of core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Leonard, Douglas C.

    2011-11-01

    Theory holds that a star born with an initial mass between about 8 and 140 times the mass of the Sun will end its life through the catastrophic gravitational collapse of its iron core to a neutron star or black hole. This core collapse process is thought to usually be accompanied by the ejection of the star's envelope as a supernova. This established theory is now being tested observationally, with over three dozen core-collapse supernovae having had the properties of their progenitor stars directly measured through the examination of high-resolution images taken prior to the explosion. Here I review what has been learned from these studies and briefly examine the potential impact on stellar evolution theory, the existence of "failed supernovae", and our understanding of the core-collapse explosion mechanism.

  17. Simulation of the spherically symmetric stellar core collapse, bounce, and postbounce evolution of a star of 13 solar masses with boltzmann neutrino transport, and its implications for the supernova mechanism.

    PubMed

    Mezzacappa, A; Liebendörfer, M; Messer, O E; Hix, W R; Thielemann, F K; Bruenn, S W

    2001-03-01

    With exact three-flavor Boltzmann neutrino transport, we simulate the stellar core collapse, bounce, and postbounce evolution of a 13M star in spherical symmetry, the Newtonian limit, without invoking convection. In the absence of convection, prior spherically symmetric models, which implemented approximations to Boltzmann transport, failed to produce explosions. We consider exact transport to determine if these failures were due to the transport approximations made and to answer remaining fundamental questions in supernova theory. The model presented here is the first in a sequence of models beginning with different progenitors. In this model, a supernova explosion is not obtained.

  18. The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry

    SciTech Connect

    Miknaitis, Gajus; Pignata, G.; Rest, A.; Wood-Vasey, W.M.; Blondin, S.; Challis, P.; Smith, R.C.; Stubbs, C.W.; Suntzeff, N.B.; Foley, R.J.; Matheson, T.; Tonry, J.L.; Aguilera, C.; Blackman, J.W.; Becker, A.C.; Clocchiatti, A.; Covarrubias, R.; Davis, T.M.; Filippenko, A.V.; Garg, A.; Garnavich, P.M.; /Fermilab /Chile U., Catolica /Cerro-Tololo InterAmerican Obs. /Harvard-Smithsonian Ctr. Astrophys. /Harvard U. /UC, Berkeley, Astron. Dept. /NOAO, Tucson /Inst. Astron., Honolulu /Res. Sch. Astron. Astrophys., Weston Creek /Washington U., Seattle, Astron. Dept. /Bohr Inst. /Notre Dame U. /KIPAC, Menlo Park /Texas A-M /European Southern Observ. /Ohio State U., Dept. Astron. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Stockholm U.

    2007-01-08

    We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the equation of state parameter of the dark energy. We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to the dark energy equation of state parameter w = P/{rho}c{sup 2} for a given fixed amount of telescope time. For our survey on the CTIO 4m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z {approx} 0.5 {+-} 0.2) is optimal for determining w. We describe the data analysis pipeline based on using reliable and robust image subtraction to find supernovae automatically and in near real-time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4m natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 type Ia SNe, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for the all type Ia supernovae found by ESSENCE and used in our measurement of w, presented in Wood-Vasey et al. (2007).

  19. Light-echo spectroscopy of historic Supernovae

    NASA Astrophysics Data System (ADS)

    Krause, Oliver

    Young Galactic supernova remnants are unique laboratories for supernova physics. Due to their proximity they provide us with the most detailed view of the outcome of a supernova. However, the exact spectroscopic types of their original explosions have been undetermined so far -hindering to link the wealth of multi-wavelength knowledge about their remnants with the diverse population of supernovae. Light echoes, reflektions of the brilliant supernova burst of light by interstellar dust, provide a unique opportunity to reobserve today -with powerful scientific instruments of the 21st century -historic supernova exlosions even after hundreds of years and to conclude on their nature. We report on optical light-echo spectroscopy of two famous Galactic supernovae: Tycho Brahe's SN 1572 and the supernova that created the Cassiopeia A remnant around the year 1680. These observations finally recovered the missing spectroscopic classifications and provide new constraints on explosion models for future studies.

  20. Core Collapse Supernova Models and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Nomoto, Ken'ichi

    2014-01-01

    After the Big Bang, production of heavy elements in the early Universe takes place in the first stars and their supernova explosions. The nature of the first supernovae, however, has not been well understood. The signature of nucleosynthesis yields of the first supernovae can be seen in the elemental abundance patterns observed in extremely metal-poor stars. Interestingly, those abundance patterns show some peculiarities relative to the solar abundance pattern, which should provide important clues to understanding the nature of early generations of supernovae. We review the recent results of the nucleosynthesis yields of massive stars. We examine how those yields are affected by some hydrodynamical effects during the supernova explosions, namely, explosion energies from those of hypernovae to faint supernovae, mixing and fallback of processed materials, asphericity, etc. Those parameters in the supernova nucleosynthesis models are constrained from observational data of supernovae and metal-poor stars.

  1. The Shape of Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    What causes the tremendous explosions of superluminous supernovae? New observations reveal the geometry of one such explosion, SN 2015bn, providing clues as to its source.A New Class of ExplosionsImage of a type Ia supernova in the galaxy NGC 4526. [NASA/ESA]Supernovae are powerful explosions that can briefly outshine the galaxies that host them. There are several different classifications of supernovae, each with a different physical source such as thermonuclear instability in a white dwarf, caused by accretion of too much mass, or the exhaustion of fuel in the core of a massive star, leading to the cores collapse and expulsion of its outer layers.In recent years, however, weve detected another type of supernovae, referred to as superluminous supernovae. These particularly energetic explosions last longer months instead of weeks and are brighter at their peaks than normal supernovae by factors of tens to hundreds.The physical cause of these unusual explosions is still a topic of debate. Recently, however, a team of scientists led by Cosimo Inserra (Queens University Belfast) has obtained new observations of a superluminous supernova that might help address this question.The flux and the polarization level (black lines) along the dominant axis of SN 2015bn, 24 days before peak flux (left) and 28 days after peak flux (right). Blue lines show the authors best-fitting model. [Inserra et al. 2016]Probing GeometryInserra and collaborators obtained two sets of observations of SN 2015bn one roughly a month before and one a month after the superluminous supernovas peak brightness using a spectrograph on the Very Large Telescope in Chile. These observations mark the first spectropolarimetric data for a superluminous supernova.Spectropolarimetry is the practice of obtaining information about the polarization of radiation from an objects spectrum. Polarization carries information about broken spatial symmetries in the object: only if the object is perfectly symmetric can it

  2. Supernova Remnants And GLAST

    SciTech Connect

    Slane, Patrick; /Harvard-Smithsonian Ctr. Astrophys.

    2011-11-29

    It has long been speculated that supernova remnants represent a major source of cosmic rays in the Galaxy. Observations over the past decade have ceremoniously unveiled direct evidence of particle acceleration in SNRs to energies approaching the knee of the cosmic ray spectrum. Nonthermal X-ray emission from shell-type SNRs reveals multi-TeV electrons, and the dynamical properties of several SNRs point to efficient acceleration of ions. Observations of TeV gamma-ray emission have confirmed the presence of energetic particles in several remnants as well, but there remains considerable debate as to whether this emission originates with high energy electrons or ions. Equally uncertain are the exact conditions that lead to efficient particle acceleration. Based on the catalog of EGRET sources, we know that there is a large population of Galactic gamma-ray sources whose distribution is similar to that of SNRs.With the increased resolution and sensitivity of GLAST, the gamma-ray SNRs from this population will be identified. Their detailed emission structure, along with their spectra, will provide the link between their environments and their spectra in other wavebands to constrain emission models and to potentially identify direct evidence of ion acceleration in SNRs. Here I summarize recent observational and theoretical work in the area of cosmic ray acceleration by SNRs, and discuss the contributions GLAST will bring to our understanding of this problem.

  3. A Supernova's Shockwaves

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Supernovae are the explosive deaths of the universe's most massive stars. In death, these volatile creatures blast tons of energetic waves into the cosmos, destroying much of the dust surrounding them.

    This false-color composite from NASA's Spitzer Space Telescope and NASA's Chandra X-ray Observatory shows the remnant of one such explosion. The remnant, called N132D, is the wispy pink shell of gas at the center of this image. The pinkish color reveals a clash between the explosion's high-energy shockwaves and surrounding dust grains.

    In the background, small organic molecules called polycyclic aromatic hydrocarbons are shown as tints of green. The blue spots represent stars in our galaxy along this line of sight.

    N132D is located 163,000 light-years away in a neighboring galaxy called, the Large Magellanic Cloud.

    In this image, infrared light at 4.5 microns is mapped to blue, 8.0 microns to green and 24 microns to red. Broadband X-ray light is mapped purple. The infrared data were taken by Spitzer's infrared array camera and multiband imaging photometer, while the X-ray data were captured by Chandra.

  4. Supernova explosions in the Universe.

    PubMed

    Burrows, A

    2000-02-17

    During the lifetime of our Milky Way galaxy, there have been something like 100 million supernova explosions, which have enriched the Galaxy with the oxygen we breathe, the iron in our cars, the calcium in our bones and the silicon in the rocks beneath our feet. These exploding stars also influence the birth of new stars and are the source of the energetic cosmic rays that irradiate us on the Earth. The prodigious amount of energy (approximately 10(51), or approximately 2.5 x 10(28) megatonnes of TNT equivalent) and momentum associated with each supernova may even have helped to shape galaxies as they formed in the early Universe. Supernovae are now being used to measure the geometry of the Universe, and have recently been implicated in the decades-old mystery of the origin of the gamma-ray bursts. Together with major conceptual advances in our theoretical understanding of supernovae, these developments have made supernovae the centre of attention in astrophysics.

  5. Theory and phenomenology of supernova neutrinos

    SciTech Connect

    Lunardini, Cecilia

    2015-07-15

    The theory and phenomenology of supernova neutrinos is reviewed, with focus on the most recent advancements on the neutrino flux predicted by supernova numerical models, on neutrino oscillations inside the star and in the Earth, and on the physics of the diffuse supernova neutrino background. Future directions of research are briefly summarized.

  6. Featured Image: Modeling Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    This image shows a computer simulation of the hydrodynamics within a supernova remnant. The mixing between the outer layers (where color represents the log of density) is caused by turbulence from the Rayleigh-Taylor instability, an effect that arises when the expanding core gas of the supernova is accelerated into denser shell gas. The past standard for supernova-evolution simulations was to perform them in one dimension and then, in post-processing, manually smooth out regions that undergo Rayleigh-Taylor turbulence (an intrinsically multidimensional effect). But in a recent study, Paul Duffell (University of California, Berkeley) has explored how a 1D model could be used to reproduce the multidimensional dynamics that occur in turbulence from this instability. For more information, check out the paper below!CitationPaul C. Duffell 2016 ApJ 821 76. doi:10.3847/0004-637X/821/2/76

  7. Standardization of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Coelho, Rodrigo C. V.; Calvão, Maurício O.; Reis, Ribamar R. R.; Siffert, Beatriz B.

    2015-01-01

    Type Ia supernovae (SNe Ia) have been intensively investigated due to their great homogeneity and high luminosity, which make it possible to use them as standardizable candles for the determination of cosmological parameters. In 2011, the physics Nobel prize was awarded ‘for the discovery of the accelerating expansion of the Universe through observations of distant supernovae.’ This is a pedagogical article, aimed at those starting their study of that subject, in which we dwell on some topics related to the analysis of SNe Ia and their use in luminosity distance estimators. Here, we investigate their spectral properties and light curve standardization, paying careful attention to the fundamental quantities directly related to the SNe Ia observables. Finally, we describe our own step-by-step implementation of a classical light curve fitter, the stretch, applying it to real data from the Carnegie Supernova Project.

  8. Supernovae, young remnants, and nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Kirshner, R. P.

    1982-01-01

    Chemical abundance data from extragalactic supernovae and from supernova remnants (SNR) less than 1000 yrs old are employed to show that nuclear burning beyond helium synthesis actually occurs. Supernova (SN) are classified into types I or II, having no hydrogen lines or featuring hydrogen lines, respectively. The SN I's have been observed as having a preponderance of Fe lines, and emitting from a source at around 12,000 K with a center continuum of approximately 10 AU. Decay chains which could account for detected luminosities and spectra are presented, noting a good fit of Fe II spectrum with observed SN spectra. SNR pass through younger and older stages, going from the outpouring of material to diffusion in the interstellar medium. Expanding flocculi from young SNR show oxygen abundances as well as lines from sulfur, calcium, and argon, with a corresponding necessity of an explosive source of 15 solar masses.

  9. Dynamics of Kepler's supernova remnant

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Blondin, John M.; Sarazin, Craig L.

    1992-01-01

    Observations of Kepler's SNR have revealed a strong interaction with the ambient medium, far in excess of that expected at a distance of about 600 pc away from the Galactic plane where Kepler's SNR is located. This has been interpreted as a result of the interaction of supernova ejecta with the dense circumstellar medium (CSM). Based on the bow-shock model of Bandiera (1985), we study the dynamics of this interaction. The CSM distribution consists of an undisturbed stellar wind of a moving supernova progenitor and a dense shell formed in its interaction with a tenuous interstellar medium. Supernova ejecta drive a blast wave through the stellar wind which splits into the transmitted and reflected shocks upon hitting this bow-shock shell. We identify the transmitted shock with the nonradiative, Balmer-dominated shocks found recently in Kepler's SNR. The transmitted shock most probably penetrated the shell in the vicinity of the stagnation point.

  10. Tidally-Induced Thermonuclear Supernovae

    SciTech Connect

    Rosswog, S.; Ramirez-Ruiz, E.; Hix, William Raphael

    2009-01-01

    We discuss the results of 3D simulations of tidal disruptions of white dwarfs by moderate-mass black holes as they may exist in the cores of globular clusters or dwarf galaxies. Our simulations follow self-consistently the hydrodynamic and nuclear evolution from the initial parabolic orbit over the disruption to the build-up of an accretion disk around the black hole. For strong enough encounters (pericentre distances smaller than about 1/3 of the tidal radius) the tidal compression is reversed by a shock and finally results in a thermonuclear explosion. These explosions are not restricted to progenitor masses close to the Chandrasekhar limit, we find exploding examples throughout the whole white dwarf mass range. There is, however, a restriction on the masses of the involved black holes: black holes more massive than 2x105M{circle_dot} swallow a typical 0.6M{circle_dot} white dwarf before their tidal forces can overwhelm the star's selfgravity. Therefore, this mechanism is characteristic for black holes of moderate masses. The material that remains bound to the black hole settles into an accretion disk and produces an Xray flare close to the Eddington limit of L{sub Edd} {approx} 10{sup 41}erg/s (Mbh/1000M{circle_dot}), typically lasting for a few months. The combination of a peculiar thermonuclear supernova together with an X-ray flare thus whistle-blows the existence of such moderate-mass black holes. The next generation of wide field space-based instruments should be able to detect such events.

  11. Precision Constraints from Computational Cosmology and Type Ia Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Bernstein, Joseph P.; Kuhlmann, S. E.; Norris, B.; Biswas, R.

    2011-01-01

    The evidence for dark energy represents one of the greatest mysteries of modern science. The research undertaken probes the implications of dark energy via analysis of large scale structure and detonation-based Type Ia supernova light curve simulations. It is presently an exciting time to be involved in cosmology because planned astronomical surveys will effectively result in dark sector probes becoming systematics-limited, making numerical simulations crucial to the formulation of precision constraints. This work aims to assist in reaching the community goal of 1% constraints on the dark energy equation of state parameter. Reaching this goal will require 1) hydrodynamic+N-body simulations with a minimum of a 1 Gpc box size, 20483 hydrodynamic cells, and 1011 dark matter particles, which push the limits of existing codes, and 2) a better understanding of the explosion mechanism(s) for Type Ia supernovae, together with larger, high-quality data sets from present and upcoming supernova surveys. Initial results are discussed from two projects. The first is computational cosmology studies aimed at enabling the large simulations discussed above. The second is radiative transfer calculations drawn from Type Ia supernova explosion simulations aimed at bridging the gap between simulated light curves and those observed from, e.g., the Sloan Digital Sky Survey II and, eventually, the Dark Energy Survey.

  12. Frontier Field Supernova Search

    NASA Astrophysics Data System (ADS)

    Rodney, Steven

    2014-10-01

    The Frontier Fields program presents an extraordinary opportunity for the detection of high redshift supernovae (SNe). The combination of very deep imaging in each epoch with the added boost from gravitational lensing magnification will provide the means to detect both Type Ia SNe (SNIa) and core collapse SNe (CC SNe) out to z~3. We propose to capitalize on this unique new asset by processing and searching all of the Frontier Field data, and then triggering ToO follow-up observations for SNe of interest.We expect to discover ~20 new SNe over the entire 3-year program, including ~5 SNIa at z>1.5 and ~6 with strong lensing magnification. These samples are small but special: the high-z SNIa set has unique leverage for testing SNIa progenitor models through the delay time distribution; the lensed SNIa offer a chance to validate cluster mass models by directly measuring the lensing magnification. We will also be able to extend CCSN rate measurements for the first time beyond z~1, and our search will open up the small but exciting possibility of catching a truly rare event such as a multiply imaged SN or a superluminous SN at z>4.This follow-up program provides the color and light curve information necessary to unlock the science potential of these SNe. It is also designed for high efficiency: broad-band photometry and ground-based spectroscopy will be used to classify and characterize most of the SNe. For a small "New Frontier" sub-set comprising the SNIa candidates at never-before-seen redshifts, we will employ a novel medium band IR imaging strategy. All told, this program will classify and characterize all SNe of interest with just 60 orbits across 3 cycles.

  13. Frontier Field Supernova Search

    NASA Astrophysics Data System (ADS)

    Rodney, Steven

    2013-10-01

    The Frontier Fields program presents an extraordinary opportunity for the detection of high redshift supernovae (SNe). The combination of very deep imaging in each epoch with the added boost from gravitational lensing magnification will provide the means to detect both Type Ia SNe (SNIa) and core collapse SNe (CC SNe) out to z~3. We propose to capitalize on this unique new asset by processing and searching all of the Frontier Field data, and then triggering ToO follow-up observations for SNe of interest.We expect to discover ~20 new SNe over the entire 3-year program, including ~5 SNIa at z>1.5 and ~6 with strong lensing magnification. These samples are small but special: the high-z SNIa set has unique leverage for testing SNIa progenitor models through the delay time distribution; the lensed SNIa offer a chance to validate cluster mass models by directly measuring the lensing magnification. We will also be able to extend CCSN rate measurements for the first time beyond z~1, and our search will open up the small but exciting possibility of catching a truly rare event such as a multiply imaged SN or a superluminous SN at z>4.This follow-up program provides the color and light curve information necessary to unlock the science potential of these SNe. It is also designed for high efficiency: broad-band photometry and ground-based spectroscopy will be used to classify and characterize most of the SNe. For a small "New Frontier" sub-set comprising the SNIa candidates at never-before-seen redshifts, we will employ a novel medium band IR imaging strategy. All told, this program will classify and characterize all SNe of interest with just 60 orbits across 3 cycles.

  14. Real-time supernova neutrino burst monitor at Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakano, Y.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Tanaka, H.; Tomura, T.; Ueno, K.; Wendell, R. A.; Yokozawa, T.; Irvine, T.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Lee, K. P.; McLachlan, T.; Nishimura, Y.; Richard, E.; Okumura, K.; Labarga, L.; Fernandez, P.; Berkman, S.; Tanaka, H. A.; Tobayama, S.; Gustafson, J.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Goldhaber, M.; Carminati, G.; Kropp, W. R.; Mine, S.; Weatherly, P.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Keig, W. E.; Hong, N.; Kim, J. Y.; Lim, I. T.; Akiri, T.; Himmel, A.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Tasaka, S.; Jang, J. S.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Suzuki, A. T.; Takeuchi, Y.; Bronner, C.; Hirota, S.; Huang, K.; Ieki, K.; Kikawa, T.; Minamino, A.; Murakami, A.; Nakaya, T.; Suzuki, K.; Takahashi, S.; Tateishi, K.; Fukuda, Y.; Choi, K.; Itow, Y.; Mitsuka, G.; Mijakowski, P.; Hignight, J.; Imber, J.; Jung, C. K.; Yanagisawa, C.; Wilking, M. J.; Ishino, H.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Yamaguchi, R.; Yano, T.; Kuno, Y.; Tacik, R.; Kim, S. B.; Okazawa, H.; Choi, Y.; Nishijima, K.; Koshiba, M.; Suda, Y.; Totsuka, Y.; Yokoyama, M.; Martens, K.; Marti, Ll.; Vagins, M. R.; Martin, J. F.; de Perio, P.; Konaka, A.; Chen, S.; Zhang, Y.; Connolly, K.; Wilkes, R. J.

    2016-08-01

    We present a real-time supernova neutrino burst monitor at Super-Kamiokande (SK). Detecting supernova explosions by neutrinos in real time is crucial for giving a clear picture of the explosion mechanism. Since the neutrinos are expected to come earlier than light, a fast broadcasting of the detection may give astronomers a chance to make electromagnetic radiation observations of the explosions right at the onset. The role of the monitor includes a fast announcement of the neutrino burst detection to the world and a determination of the supernova direction. We present the online neutrino burst detection system and studies of the direction determination accuracy based on simulations at SK.

  15. Nature of type 1 Supernovae

    NASA Technical Reports Server (NTRS)

    Shklovskiy, I. S.

    1980-01-01

    The nature of type 1 supernovae (SN 1) is discussed through a comparison of observational evidence and theoretical perspectives relating to both type 1 and 2 supernovae. In particular two hypotheses relating to SN 1 phenomenon are examined: the first proposing that SN 1 are components of binary systems in which, at a comparatively late stage of evolution, overflow of the mass occurs; the second considers pre-SN 1 to be recently evolved stars with a mass greater than 1.4 solar mass (white dwarfs). In addition, an explanation of the reduced frequency of flares of SN 1 in spiral galaxies as related to that in elliptical galaxies is presented.

  16. Dust around Type Ia supernovae

    SciTech Connect

    Wang, Lifan

    2005-10-20

    An explanation is given of the low value of R lambda triple bond A lambda/E(B - V), the ratio of absolute to selective extinction deduced from Type Ia supernova observations. The idea involves scattering by dust clouds located in the circumstellar environment, or at the highest velocity shells of the supernova ejecta. The scattered light tends to reduce the effective R lambda in the optical, but has an opposite effect in the ultraviolet. The presence of circumstellar dust can be tested by ultraviolet to near infrared observations and by multi-epoch spectropolarimetry of SNe Ia.

  17. Educational Resources on Supernovae for Children

    NASA Astrophysics Data System (ADS)

    Struck, James T.

    The National Science Education Standards (1996, National Academy Press) suggest mention of objects like the ``sun, moon, stars" in grades K-4 and element formation in grades 9-12. Children's librarians and some astronomy librarians should know about some of the resources for children on supernovae not only because supernovae are critical to higher element formation, but also to educate others about the universe's expansion and stars. In addition, basic bibliometrics on these resources yields lessons on the importance of using many indexes, the pattern of literature for children on supernovae, the types of resources on supernovae, and the scattering of resources/information for children on supernovae.

  18. A New Empirical Model for Type Ia Supernovae Using Spectrophotometry from the Nearby Supernova Factory

    NASA Astrophysics Data System (ADS)

    Saunders, Clare; Nearby Supernova Factory

    2016-01-01

    Type Ia supernovae are currently limited in their use for cosmology by dispersion in standardized magnitudes. A large part of this dispersion is due to the fact that the current lightcurve fitters do not describe the full range of Type Ia supernova diversity. I will present an empirical model of Type Ia supernovae that captures a wider range of supernova behavior and can improve magnitude standardization. This model is constructed using over 2000 spectrophotometric observations of Type Ia supernovae from the Nearby Supernova Factory. The true spectral time series for each supernova is modeled using Gaussian Processes. The supernova model predictions are used to calculate the principal components of the full set of supernova spectral time series. K-fold cross-validation is used to determine how many components correlate to absolute magnitude. Future work will test this method on independent photometric data sets.

  19. Are supernovae recorded in indigenous astronomical traditions?

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.

    2014-07-01

    Novae and supernovae are rare astronomical events that would have had an influence on the skywatching peoples who witnessed them. Although several bright novae/supernovae have been visible during recorded human history, there are many proposed but no confirmed accounts of supernovae in indigenous oral traditions or material culture. Criteria are established for confirming novae/supernovae in oral traditions and material culture, and claims from around the world are discussed to determine if they meet these criteria. Aboriginal Australian traditions are explored for possible descriptions of novae/supernovae. Although representations of supernovae may exist in Aboriginal traditions, there are currently no confirmed accounts of supernovae in Indigenous Australian oral or material traditions.

  20. The Supernova - A Stellar Spectacle.

    ERIC Educational Resources Information Center

    Straka, W. C.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. The following topics concerning supernovae are included: the outburst as observed and according to theory, the stellar remnant, the nebular remnant, and a summary…

  1. Radio studies of extragalactic supernovae.

    PubMed

    Weiler, K W; Sramek, R A; Panagia, N

    1986-03-14

    Some exploding stars (supernovae) are powerful emitters of centimeter radio radiation. Detailed observations have shown that these supernovae quickly become detectable in the radio range, first at shorter wavelengths (higher frequencies) and later at progressively longer and longer wavelengths (lower frequencies). This part of the phenomenon appears to be well explained by a monotonic decrease in the amount of ionized material surrounding the radio-emitting regions as the shock from the explosion travels outward. The radio emission itself is of a nonthermal, synchrotron origin, as is the case in most bright cosmic radio sources. Once the absorption effects become negligible, the radio intensity declines with time until reaching the detection limit of the telescope. Models suggest that the absorbing material originates in a dense wind of matter lost by the supernova progenitor star, or by its companion if it is in a binary system, in the last stages of evolution before the explosion. The synchrotron radio emission can be generated either externally by the shock wave from the explosion propagating through this same high density stellar wind or internally by a rapidly rotating neutron star, which is the collapsed core of the exploded star. Present results appear to favor the former model for at least the first several years after the supernova explosion, although the latter model remains viable.

  2. Supernova neutrinos and explosive nucleosynthesis

    SciTech Connect

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Mathews, G. J.; Nakamura, K.; Suzuki, T.

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  3. The supernova: A stellar spectacle

    NASA Technical Reports Server (NTRS)

    Straka, W. C.

    1976-01-01

    The life of a star, the supernova, related objects and their importance in astronomy and science in general are discussed. Written primarily for science teachers of secondary school chemistry, physics, and earth sciences, the booklet contains a glossary, reference sources, suggested topics for discussion, and projects for individual or group assignment.

  4. Neutrino Reactions on Two-Nucleon System and Core-Collapse Supernova

    SciTech Connect

    Nasu, Shota

    2011-10-21

    The neutrino reactions on nucleon and nucleus play important role in core-collapse supernova. Recently it is pointed that light nuclei(A = 2,3) can be abundant at the various stage of supernova environment. As an important mechanism of neutrino reaction on a few nucleon system, we study the neutrino emissivity on neutron fusion reaction nn{yields}de{sup -}{nu}-bar{sub e}.

  5. Neutrino event counts from Type Ia supernova models

    NASA Astrophysics Data System (ADS)

    Nagaraj, Gautam; Scholberg, Kate

    2016-01-01

    Core collapse supernovae (SNe) are widely known to be among the universe's primary neutrino factories, releasing ˜99% of their energy, or ˜1053 ergs, in the form of the tiny leptons. On the other hand, less than 4% of the energy of Type Ia SNe is released via neutrinos, hence making Ia SNe impossible to detect (through neutrino observations) at typical supernova distances. For this reason, neutrino signatures from these explosions have very rarely been modeled. We ran time-sliced fluences from non-oscillation pure deflagration and delayed detonation (DDT) Ia models by Odrzywolek and Plewa (2011) through SNOwGLoBES, a software that calculates event rates and other observed quantities of supernova neutrinos in various detectors. We determined Ia neutrino event rates in Hyper-K, a proposed water Cherenkov detector, JUNO, a scintillator detector under construction, and DUNE, a proposed argon detector, and identified criteria to distinguish between the two models (pure deflagration and DDT) based on data from a real supernova (statistically represented by a Poisson distribution around the expected result). We found that up to distances of 8.00, 1.54, and 2.37 kpc (subject to change based on oscillation effects and modified detector efficiencies), we can discern the explosion mechanism with ≥90% confidence in Hyper-K, JUNO, and DUNE, respectively, thus learning more about Ia progenitors.

  6. Can pair-instability supernova models match the observations of superluminous supernovae?

    NASA Astrophysics Data System (ADS)

    Kozyreva, Alexandra; Blinnikov, S.

    2015-12-01

    An increasing number of so-called superluminous supernovae (SLSNe) are discovered. It is believed that at least some of them with slowly fading light curves originate in stellar explosions induced by the pair instability mechanism. Recent stellar evolution models naturally predict pair instability supernovae (PISNe) from very massive stars at wide range of metallicities (up to Z = 0.006, Yusof et al.). In the scope of this study, we analyse whether PISN models can match the observational properties of SLSNe with various light-curve shapes. Specifically, we explore the influence of different degrees of macroscopic chemical mixing in PISN explosive products on the resulting observational properties. We artificially apply mixing to the 250 M⊙ PISN evolutionary model from Kozyreva et al. and explore its supernova evolution with the one-dimensional radiation hydrodynamics code STELLA. The greatest success in matching SLSN observations is achieved in the case of an extreme macroscopic mixing, where all radioactive material is ejected into the hydrogen-helium outer layer. Such an extreme macroscopic redistribution of chemicals produces events with faster light curves with high photospheric temperatures and high photospheric velocities. These properties fit a wider range of SLSNe than non-mixed PISN model. Our mixed models match the light curves, colour temperature, and photospheric velocity evolution of two well-observed SLSNe PTF12dam and LSQ12dlf. However, these models' extreme chemical redistribution may be hard to realize in massive PISNe. Therefore, alternative models such as the magnetar mechanism or wind-interaction may still to be favourable to interpret rapidly rising SLSNe.

  7. Dark Matter Admixed Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Leung, S.-C.; Chu, M.-C.; Lin, L.-M.

    2015-10-01

    We perform two-dimensional hydrodynamic simulations for the thermonuclear explosion of Chandrasekhar-mass white dwarfs with dark matter (DM) cores in Newtonian gravity. We include a 19-isotope nuclear reaction network and make use of the pure turbulent deflagration model as the explosion mechanism in our simulations. Our numerical results show that the general properties of the explosion depend quite sensitively on the mass of the DM core M DM: a larger M DM generally leads to a weaker explosion and a lower mass of synthesized iron-peaked elements. In particular, the total mass of produced can drop from about 0.3 to 0.03 M ⊙ as M DM increases from 0.01 to 0.03 M ⊙. We have also constructed the bolometric light curves obtained from our simulations and found that our results match well with the observational data of sub-luminous Type Ia supernovae.

  8. DARK MATTER ADMIXED TYPE Ia SUPERNOVAE

    SciTech Connect

    Leung, S.-C.; Chu, M.-C.; Lin, L.-M. E-mail: mcchu@phy.cuhk.edu.hk

    2015-10-20

    We perform two-dimensional hydrodynamic simulations for the thermonuclear explosion of Chandrasekhar-mass white dwarfs with dark matter (DM) cores in Newtonian gravity. We include a 19-isotope nuclear reaction network and make use of the pure turbulent deflagration model as the explosion mechanism in our simulations. Our numerical results show that the general properties of the explosion depend quite sensitively on the mass of the DM core M {sub DM}: a larger M {sub DM} generally leads to a weaker explosion and a lower mass of synthesized iron-peaked elements. In particular, the total mass of produced can drop from about 0.3 to 0.03 M {sub ⊙} as M {sub DM} increases from 0.01 to 0.03 M {sub ⊙}. We have also constructed the bolometric light curves obtained from our simulations and found that our results match well with the observational data of sub-luminous Type Ia supernovae.

  9. Finding Distances to Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    Type Ia supernovae are known as standard candles due to their consistency, allowing us to measure distances based on their brightness. But what if these explosions arent quite as consistent as we thought? Due scientific diligence requires careful checks, so a recent study investigates whether the metallicity of a supernovas environment affects the peak luminosity of the explosion.Metallicity Dependence?Type Ia supernovae are incredibly powerful tools for determining distances in our universe. Because these supernovae are formed by white dwarfs that explode when they reach a uniform accreted mass, the supernova peak luminosity is thought to be very consistent. This consistency allows these supernovae to be used as standard candles to measure distances to their host galaxies.But what if that peak luminosity is affected by a factor that we havent taken into account? Theorists have proposed that the luminosities of Type Ia supernovae might depend on the metallicity of their environments with high-metallicity environments suppressing supernova luminosities. If this is true, then we could be systematically mis-measuring cosmological distances using these supernovae.Testing AbundancesSupernova brightnesses vs. the metallicity of their environments. Low-metallicity supernovae (blue shading) and high-metallicity supernovae (red shading) have an average magnitude difference of ~0.14. [Adapted from Moreno-Raya et al. 2016]A team led by Manuel Moreno-Raya, of the Center for Energy, Environment and Technology (CIEMAT) in Spain, has observed 28 Type Ia supernovae in an effort to test for such a metallicity dependence. These supernovae each have independent distance measurements (e.g., from Cepheids or the Tully-Fisher relation).Moreno-Raya and collaborators used spectra from the 4.2-m William Herschel Telescope to estimate oxygen abundances in the region where each of these supernovae exploded. They then used these measurements to determine if metallicity of the local region

  10. Gravitational lensing statistics of amplified supernovae

    NASA Technical Reports Server (NTRS)

    Linder, Eric V.; Wagoner, Robert V.; Schneider, P.

    1988-01-01

    Amplification statistics of gravitationally lensed supernovae can provide a valuable probe of the lensing matter in the universe. A general probability distribution for amplification by compact objects is derived which allows calculation of the lensed fraction of supernovae at or greater than an amplification A and at or less than an apparent magnitude. Comparison of the computed fractions with future results from ongoing supernova searches can lead to determination of the mass density of compact dark matter components with masses greater than about 0.001 solar mass, while the time-dependent amplification (and polarization) of the expanding supernovae constrain the individual masses. Type II supernovae are found to give the largest fraction for deep surveys, and the optimum flux-limited search is found to be at approximately 23d magnitude, if evolution of the supernova rate is neglected.

  11. Comment on the preprint Neutrino Flavor Evolution Near a Supernova`s Core

    SciTech Connect

    Pantaleone, J.; Qian, Yong-Zhong; Fuller, G.M.

    1994-08-01

    The revised version of the widely circulated preprint ``Neutrino Flavor Evolution Near A Supernova`s Core`` by J. Pantaleone (astro-ph 9405008 on the bulletin Board, Indiana University preprint IUHET-276) is wrong. It contains two errors which lead to incorrect conclusions regarding neutrino flavor transformation in the supernova environment. In this short note we discuss these errors.

  12. Magnetares como fuentes para potenciar supernovas superluminosas

    NASA Astrophysics Data System (ADS)

    Bersten, M. C.; Benvenuto, O. G.

    2016-08-01

    Magnetars have been proposed as one of the possible sources to power the light curve of super-luminous supernovae. We have included the energy deposited by a hypothetical magnetar in our one-dimensional hydrodynamical code, and analyzed the dynamical effect on the supernova ejecta. In particular, we present a model for SN 2011kl, the first object associated with a ultra-long-duration gamma-ray burst. Finally, we show its effect on the light curves of hydrogen rich supernovae.

  13. La supernova galattica è in ritardo?

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino

    2005-06-01

    After 400 years we are still waiting to see a galactic supernova. A simple galactic model based upon interstellar absorption is shown in order to explain the rate of observed galactic supernovae. The history of variable stars observations in modern epoch is sketched and the hypothesis for Bethlehem Star made by Kepler in occasion of the last galactic supernova, exploded in Ophiuchus on 9 October 1604, is also presented.

  14. An Update on Radio Supernovae

    NASA Astrophysics Data System (ADS)

    van Dyk, Schuyler D.; Sramek, Richard A.; Weiler, Kurt W.; Montes, Marcos J.; Panagia, Nino

    The radio emission from supernovae (SNe) is nonthermal synchrotron radiation of high brightness temperature, with a ``turn-on'' delay at longer wavelengths, power-law decline after maximum with index beta, and spectral index alpha asymptotically decreasing with time to a final, optically thin value. Radio supernovae (RSNe) are best described by the Chevalier (1982) ``mini-shell'' model, with modifications by Weiler \\etal\\ (1990). RSNe observations provide a valuable probe of the SN circumstellar environment and constraints on progenitor masses. We present a progress report on a number of recent RSNe, as well as on new behavior from RSNe 1979C and 1980K, and on RSNe as potential distance indicators. In particular, we present updated radio light curves for SN 1993J in M81.

  15. Object classification at the Nearby Supernova Factory

    NASA Astrophysics Data System (ADS)

    Bailey, S.; Aragon, C.; Romano, R.; Thomas, R. C.; Weaver, B. A.; Wong, D.

    2008-03-01

    We present the results of applying new object classification techniques to the supernova search of the Nearby Supernova Factory. In comparison to simple threshold cuts, more sophisticated methods such as boosted decision trees, random forests, and support vector machines provide dramatically better object discrimination: we reduced the number of non-supernova candidates by a factor of 10 while increasing our supernova identification efficiency. Methods such as these will be crucial for maintaining a reasonable false positive rate in the automated transient alert pipelines of upcoming large optical surveys.

  16. The first ten years of Swift supernovae

    NASA Astrophysics Data System (ADS)

    Brown, Peter J.; Roming, Peter W. A.; Milne, Peter A.

    2015-09-01

    The Swift Gamma Ray Burst Explorer has proven to be an incredible platform for studying the multiwavelength properties of supernova explosions. In its first ten years, Swift has observed over three hundred supernovae. The ultraviolet observations reveal a complex diversity of behavior across supernova types and classes. Even amongst the standard candle type Ia supernovae, ultraviolet observations reveal distinct groups. When the UVOT data is combined with higher redshift optical data, the relative populations of these groups appear to change with redshift. Among core-collapse supernovae, Swift discovered the shock breakout of two supernovae and the Swift data show a diversity in the cooling phase of the shock breakout of supernovae discovered from the ground and promptly followed up with Swift. Swift observations have resulted in an incredible dataset of UV and X-ray data for comparison with high-redshift supernova observations and theoretical models. Swift's supernova program has the potential to dramatically improve our understanding of stellar life and death as well as the history of our universe.

  17. Dust production in supernovae and AGB stars

    NASA Astrophysics Data System (ADS)

    Matsuura, Mikako

    2015-08-01

    In the last decade, the role of supernovae on dust has changed; it has been long proposed that supernovae are dust destroyers, but now recent observations show that core-collapse supernovae can become dust factories. Theoretical models of dust evolution in galaxies have predicted that core-collapse supernovae can be an important source of dust in galaxies, if these supernovae can form a significant mass of dust (0.1-1 solar masses). The Herschel Space Observatory and ALMA detected dust in the ejecta of Supernova 1987A. They revealed an estimated 0.5 solar masses of dust. Herschel also found nearly 0.1 solar masses of dust in historical supernovae remnants, namely Cassiopeia A and the Crab Nebula. If dust grains can survive future interaction with the supernova winds and ambient interstellar medium, core-collapse supernovae can be an important source of dust in the interstellar media of galaxies. We further discuss the total dust mass injected by AGB stars and SNe into the interstellar medium of the Magellanic Clouds.

  18. Supernova 2009ig Has Brightened

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2009-09-01

    The Type-Ia Supernova 2009ig in NGC 1015 has brightened from its discovery magnitude of 17.5 on Aug. 20.48 UT (I. Kleiser, S. B. Cenko, W. Li, and A. V. Filippenko, University of California; LOSS discovery on unfiltered KAIT images) to unfiltered CCD magnitude 14.0 on Sep. 20.646 UT (Yoshiteru Matsuura, Nada-ku, Kobe, Japan). H. Navasardyan, E. Cappellaro, and S. Benetti, Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Padova, report that a spectrogram obtained on Aug. 21.08 UT with the Asiago 1.82-m telescope indicates that the object is a type-Ia supernova caught soon after explosion. They note some similarity to early spectra of SN 2002bo (Benetti et al. 2004, MNRAS 348, 261), although Si II 597.2-nm and S II 564.0-nm are not yet present. Instructions for CCD observing are given in accordance with AAVSO policy on the observation of Type-Ia supernovae brighter than magnitude 15.0. Data should be submitted to the AAVSO International Database; FITS images should be uploaded to ftp.aavso.org.

  19. Dark Energy and Termonuclear Supernovae

    NASA Astrophysics Data System (ADS)

    Domíngez, I.; Bravo, E.; Piersanti, L.; Tornambé, A.; Straniero, O.; Höflich, P.

    2008-12-01

    Nowadays it is widely accepted that the current Universe is dominated by dark energy and exotic matter, the so called StandardModel of Cosmoloy or CDM model. All the available data (Thermonuclear Supernovae, Cosmic Microwave Background, Baryon Acoustic Oscillations, Large Scale Structure, etc.) are compatible with a flat Universe made by ~70% of dark energy. Up to now observations agree that dark energy may be the vacuum energy (or cosmological constant) although improvements are needed to constrain further its equation of state. In this context, the cosmic destiny of the Universe is no longer linked to its geometry but to the nature of dark energy; it may be flat and expand forever or collapse. To understand the nature of dark energy is probably the most fundamental problem in physics today; it may open new roads of knowledge and led to unify gravity with the other fundamental interactions in nature. It is expected that astronomical data will continue to provide directions to theorists and experimental physicists. Type Ia supernovae (SNe Ia) have played a fundamental role, showing the acceleration of the expansion rate of the Universe a decade ago, and up to now they are the only astronomical observations that provide a direct evidence of the acceleration. However, in order to determine the source of the dark energy term it is mandatory to improve the precision of supernovae as distance indicators on cosmological scale.

  20. FUZZY SUPERNOVA TEMPLATES. I. CLASSIFICATION

    SciTech Connect

    Rodney, Steven A.; Tonry, John L. E-mail: jt@ifa.hawaii.ed

    2009-12-20

    Modern supernova (SN) surveys are now uncovering stellar explosions at rates that far surpass what the world's spectroscopic resources can handle. In order to make full use of these SN data sets, it is necessary to use analysis methods that depend only on the survey photometry. This paper presents two methods for utilizing a set of SN light-curve templates to classify SN objects. In the first case, we present an updated version of the Bayesian Adaptive Template Matching program (BATM). To address some shortcomings of that strictly Bayesian approach, we introduce a method for Supernova Ontology with Fuzzy Templates (SOFT), which utilizes fuzzy set theory for the definition and combination of SN light-curve models. For well-sampled light curves with a modest signal-to-noise ratio (S/N >10), the SOFT method can correctly separate thermonuclear (Type Ia) SNe from core collapse SNe with >=98% accuracy. In addition, the SOFT method has the potential to classify SNe into sub-types, providing photometric identification of very rare or peculiar explosions. The accuracy and precision of the SOFT method are verified using Monte Carlo simulations as well as real SN light curves from the Sloan Digital Sky Survey and the SuperNova Legacy Survey. In a subsequent paper, the SOFT method is extended to address the problem of parameter estimation, providing estimates of redshift, distance, and host galaxy extinction without any spectroscopy.

  1. Tycho Brahe's 1572 supernova as a standard type Ia as revealed by its light-echo spectrum.

    PubMed

    Krause, Oliver; Tanaka, Masaomi; Usuda, Tomonori; Hattori, Takashi; Goto, Miwa; Birkmann, Stephan; Nomoto, Ken'ichi

    2008-12-01

    Type Ia supernovae are thermonuclear explosions of white dwarf stars in close binary systems. They play an important role as cosmological distance indicators and have led to the discovery of the accelerated expansion of the Universe. Among the most important unsolved questions about supernovae are how the explosion actually proceeds and whether accretion occurs from a companion or by the merging of two white dwarfs. Tycho Brahe's supernova of 1572 (SN 1572) is thought to be one of the best candidates for a type Ia supernova in the Milky Way. The proximity of the SN 1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. The determination of the hitherto unknown spectroscopic type of this supernova is crucial in relating these results to the diverse population of type Ia supernovae. Here we report an optical spectrum of Tycho's supernova near maximum brightness, obtained from a scattered-light echo more than four centuries after the direct light from the explosion swept past the Earth. We find that SN 1572 belongs to the majority class of normal type Ia supernovae. PMID:19052622

  2. Tycho Brahe's 1572 supernova as a standard typeIa as revealed by its light-echo spectrum

    NASA Astrophysics Data System (ADS)

    Krause, Oliver; Tanaka, Masaomi; Usuda, Tomonori; Hattori, Takashi; Goto, Miwa; Birkmann, Stephan; Nomoto, Ken'ichi

    2008-12-01

    TypeIa supernovae are thermonuclear explosions of white dwarf stars in close binary systems. They play an important role as cosmological distance indicators and have led to the discovery of the accelerated expansion of the Universe. Among the most important unsolved questions about supernovae are how the explosion actually proceeds and whether accretion occurs from a companion or by the merging of two white dwarfs. Tycho Brahe's supernova of 1572 (SN1572) is thought to be one of the best candidates for a typeIa supernova in the Milky Way. The proximity of the SN1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. The determination of the hitherto unknown spectroscopic type of this supernova is crucial in relating these results to the diverse population of typeIa supernovae. Here we report an optical spectrum of Tycho's supernova near maximum brightness, obtained from a scattered-light echo more than four centuries after the direct light from the explosion swept past the Earth. We find that SN1572 belongs to the majority class of normal typeIa supernovae.

  3. Tycho Brahe's 1572 supernova as a standard type Ia as revealed by its light-echo spectrum.

    PubMed

    Krause, Oliver; Tanaka, Masaomi; Usuda, Tomonori; Hattori, Takashi; Goto, Miwa; Birkmann, Stephan; Nomoto, Ken'ichi

    2008-12-01

    Type Ia supernovae are thermonuclear explosions of white dwarf stars in close binary systems. They play an important role as cosmological distance indicators and have led to the discovery of the accelerated expansion of the Universe. Among the most important unsolved questions about supernovae are how the explosion actually proceeds and whether accretion occurs from a companion or by the merging of two white dwarfs. Tycho Brahe's supernova of 1572 (SN 1572) is thought to be one of the best candidates for a type Ia supernova in the Milky Way. The proximity of the SN 1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. The determination of the hitherto unknown spectroscopic type of this supernova is crucial in relating these results to the diverse population of type Ia supernovae. Here we report an optical spectrum of Tycho's supernova near maximum brightness, obtained from a scattered-light echo more than four centuries after the direct light from the explosion swept past the Earth. We find that SN 1572 belongs to the majority class of normal type Ia supernovae.

  4. Viscosity and Rotation in Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Thompson, Todd A.; Quataert, Eliot; Burrows, Adam

    2005-02-01

    We construct models of core-collapse supernovae in one spatial dimension, including rotation, angular momentum transport, and viscous dissipation employing an α-prescription. We compare the evolution of a fiducial 11 Msolar nonrotating progenitor with its evolution when including a wide range of imposed initial rotation profiles (1.25smechanism for energy deposition that is not strongly coupled to the mass accretion rate through the stalled supernova shock. This effect yields qualitatively new dynamics in models of supernovae. We explore several potential mechanisms for viscosity in the core-collapse environment: neutrino viscosity, turbulent viscosity caused by the magnetorotational instability (MRI), and turbulent viscosity by entropy- and composition gradient-driven convection. We argue that the MRI is the most effective. We find for rotation periods in the range P0<~5 s and a range of viscous stresses that the postbounce dynamics is significantly affected by the inclusion of this extra energy deposition mechanism; in several cases we obtain strong supernova explosions.

  5. Cygnus Loop Supernova Blast Wave

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This is an image of a small portion of the Cygnus Loop supernova remnant, which marks the edge of a bubble-like, expanding blast wave from a colossal stellar explosion, occurring about 15,000 years ago. The HST image shows the structure behind the shock waves, allowing astronomers for the first time to directly compare the actual structure of the shock with theoretical model calculations. Besides supernova remnants, these shock models are important in understanding a wide range of astrophysical phenomena, from winds in newly-formed stars to cataclysmic stellar outbursts. The supernova blast is slamming into tenuous clouds of insterstellar gas. This collision heats and compresses the gas, causing it to glow. The shock thus acts as a searchlight revealing the structure of the interstellar medium. The detailed HST image shows the blast wave overrunning dense clumps of gas, which despite HST's high resolution, cannot be resolved. This means that the clumps of gas must be small enough to fit inside our solar system, making them relatively small structures by interstellar standards. A bluish ribbon of light stretching left to right across the picture might be a knot of gas ejected by the supernova; this interstellar 'bullet' traveling over three million miles per hour (5 million kilometres) is just catching up with the shock front, which has slowed down by ploughing into interstellar material. The Cygnus Loop appears as a faint ring of glowing gases about three degrees across (six times the diameter of the full Moon), located in the northern constellation, Cygnus the Swan. The supernova remnant is within the plane of our Milky Way galaxy and is 2,600 light-years away. The photo is a combination of separate images taken in three colors, oxygen atoms (blue) emit light at temperatures of 30,000 to 60,000 degrees Celsius (50,000 to 100,000 degrees Farenheit). Hydrogen atoms (green) arise throughout the region of shocked gas. Sulfur atoms (red) form when the gas cools to

  6. Gamma-ray constraints on supernova nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.

    1994-01-01

    Gamma-ray spectroscopy holds great promise for probing nucleosynthesis in individual supernova explosions via short-lived radioactivity, and for measuring current global Galactic supernova nucleosynthesis with longer-lived radioactivity. It was somewhat surprising that the former case was realized first for a Type II supernova, when both Co-56 and Co-57 were detected in SN 1987A. These provide unprecedented constraints on models of Type II explosions and nucleosynthesis. Live Al-26 in the Galaxy might come from Type II supernovae, and if it is eventually shown to be so, can constrain massive star evolution, supernova nucleosynthesis, and the Galactic Type II supernova rate. Type Ia supernovae, thought to be thermonuclear explosions, have not yet been detected in gamma-rays. This is somewhat surprising given current models and recent Co-56 detection attempts. Ultimately, gamma-ray measurements can confirm their thermonuclear nature, probe the nuclear burning conditions, and help evaluate their contributions to Galactic nucleosynthesis. Type Ib/c supernovae are poorly understood. Whether they are core collapse or thermonuclear events might be ultimately settled by gamma-ray observations. Depending on details of the nuclear processing, any of these supernova types might contribute to a detectable diffuse glow of Fe-60 gamma-ray lines. Previous attempts at detection have come very close to expected emission levels. Remnants of any type of age less that a few centuries might be detectable as individual spots of Ti-44 gamma-ray line emission. It is in fact quite surprising that previous surveys have not discovered such spots, and the constraints on the combination of nucleosynthesis yields and supernova rates are very interesting. All of these interesting limits and possibilities mean that the next mission, International Gamma-Ray Astrophysics Laboratory (INTEGRAL), if it has sufficient sensitivity, is very likely to lead to the realization of much of the great potential

  7. The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae

    SciTech Connect

    Burns, Christopher R.; Persson, S. E.; Freedman, Wendy L.; Madore, Barry F.; Stritzinger, Maximilian; Contreras, Carlos; Phillips, M. M.; Hsiao, E. Y.; Boldt, Luis; Campillay, Abdo; Castellón, Sergio; Morrell, Nidia; Salgado, Francisco; Folatelli, Gaston; Suntzeff, Nicholas B.

    2014-07-01

    We present an updated analysis of the intrinsic colors of Type Ia supernova (SNe Ia) using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of 'normal' SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B – V light-curves with stretch and color. Using the full wavelength range from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of R{sub V} , though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, R{sub V} , and the color excess, E(B – V), such that larger E(B – V) tends to favor lower R{sub V} . The intrinsic u-band colors show a relatively large scatter that cannot be explained by variations in R{sub V} or by the Goobar power-law for circumstellar dust, but rather is correlated with spectroscopic features of the supernova and is therefore likely due to metallicity effects.

  8. The Local Supernova Rate from the Lick Observatory Supernova Search

    NASA Astrophysics Data System (ADS)

    Leaman, Jesse F.; Li, W.; Filippenko, A.; LOSS

    2009-05-01

    The robotic Lick Observatory Supernova Search (LOSS), conducted with the 0.76-m Katzman Automatic Imaging Telescope (KAIT), has been the world's most successful nearby supernova search engine over the past decade. For the over 1,000 supernovae (SNe) discovered in the LOSS sample galaxies until the end of the year 2008, we used an optimal subsample of 728 SNe to derive the SN rate in the local universe. The LOSS galaxy sample consists of about 14,000 fields, imaged with temporal frequencies that typically range from 2 to 10 days. Detailed logs of the observations and search parameters have allowed us to determine the most accurate nearby SN rates since the study of Cappellaro, Evans, & Turatto (1999, A&A, 351, 459). We first selected 140 SNe, discovered in a distance-limited sample, to construct the observed luminosity functions for various types of SNe. Photometry for each of these 140 SNe was collected, their peak magnitudes were measured, and their completeness in the survey was calculated. The resulting luminosity functions are the first of their kind, and provide significant improvement to Zwicky's well-known control-time calculation for the SN rates. We derived SN rates for various types of SNe, in galaxies of different Hubble types and B-K colors. Our rates agree well with previous measurements, but provide significant improvement in precision, more morphological and color bins, and fewer observational biases. We found that the SN rates, after linear normalization by the size of the galaxies, still have a significant correlation with the galaxy size, in the sense that smaller galaxies have a higher SN rate per unit luminosity or mass. The volumetric SN rates are as follows (in units of 10^-4 SN Mpc^-3 yr^-1): 0.28 +/- 0.03 for SNe Ia, 0.20 +/- 0.03 for SNe Ibc, and 0.40 +/- 0.05 for SNe II.

  9. Amplification of magnetic fields by supernova-driven turbulence

    NASA Astrophysics Data System (ADS)

    Kim, J.; Balsara, D. S.

    2006-06-01

    Observations of μG magnetic fields in radio galaxies at cosmological epochs as early as around z=2 have shortened the available time for dynamo action. This fact suggests that the mean-field dynamo mechanism in a global galactic scale either is too slow to amplify a seed field generated by the Biermann battery effect to the level of the observed field strength at z˜2 or needs much stronger seed fields of an order of 10-10 G. A ``contamination'' picture that amplified magnetic fields in smaller objects, such as stars or AGNs, within a relatively shorter timescale spread out through supernova ejecta, stellar winds, and AGN jets to nearby environments is gaining momentum. In line with this picture, we demonstrate, through three-dimensional numerical experiments, that magnetic fields can be amplified by supernova-driven turbulence with two orders of magnitude smaller e-folding timescale than that of the mean-field dynamo mechanism. Therefore, supernova-driven turbulence may play an important role in amplifying small-scale B-fields in any astrophysical systems that have harbored massive stars.

  10. PULSATING REVERSE DETONATION MODELS OF TYPE Ia SUPERNOVAE. II. EXPLOSION

    SciTech Connect

    Bravo, Eduardo; Garcia-Senz, Domingo; Cabezon, Ruben M.; DomInguez, Inmaculada E-mail: domingo.garcia@upc.edu E-mail: inma@ugr.es

    2009-04-20

    Observational evidences point to a common explosion mechanism of Type Ia supernovae based on a delayed detonation of a white dwarf (WD). However, all attempts to find a convincing ignition mechanism based on a delayed detonation in a destabilized, expanding, white dwarf have been elusive so far. One of the possibilities that has been invoked is that an inefficient deflagration leads to pulsation of a Chandrasekhar-mass WD, followed by formation of an accretion shock that confines a carbon-oxygen rich core, while transforming the kinetic energy of the collapsing halo into thermal energy of the core, until an inward moving detonation is formed. This chain of events has been termed Pulsating Reverse Detonation (PRD). In this work, we present three-dimensional numerical simulations of PRD models from the time of detonation initiation up to homologous expansion. Different models characterized by the amount of mass burned during the deflagration phase, M {sub defl}, give explosions spanning a range of kinetic energies, K {approx} (1.0-1.2) x 10{sup 51} erg, and {sup 56}Ni masses, M({sup 56}Ni) {approx} 0.6-0.8 M {sub sun}, which are compatible with what is expected for typical Type Ia supernovae. Spectra and light curves of angle-averaged spherically symmetric versions of the PRD models are discussed. Type Ia supernova spectra pose the most stringent requirements on PRD models.

  11. UV Spectroscopy of a Peculiar White Dwarf Supernova

    NASA Astrophysics Data System (ADS)

    McCully, Curtis

    2012-10-01

    While type Ia supernovae {SNe Ia} have been extremely useful for studying the cosmic expansion history, their explosion mechanism and progenitor system remain unsolved problems. Moreover, as large samples of SNe are observed, the diversity among these explosions has grown: not all exploding white dwarfs look like normal SNe Ia. Understanding why these "peculiar" objects are different from the normal ones can help explain the standard SN Ia scenario, as well as give us a better understanding of the many endpoints of stellar evolution. Connecting observations to physical models has been difficult for both normal and peculiar white dwarf supernovae. The ultraviolet is an unexplored wavelength region for peculiar SNe Ia; the high opacity in the UV from typical thermonuclear burning products means that the UV flux in white dwarf supernovae is very sensitive to the outermost layers of ejecta. This material is the least processed, and is thus an ideal place to look for clues to progenitors and explosion mechanisms. Here we propose target-of-opportunity UV spectroscopy of a peculiar white dwarf SN using the STIS NUV-MAMA instrument to add a unique piece of the puzzle connecting peculiar SNe Ia and their progenitors.

  12. Gamma Ray Bursts and Their Links With Supernovae and Cosmology

    NASA Technical Reports Server (NTRS)

    Meszaros, Peter; Gehrels, Neil

    2012-01-01

    Gamma-ray bursts are the most luminous explosions in the Universe, whose origin and mechanism is the focus of intense interest. They appear connected to supernova remnants from massive stars or the merger of their remnants, and their brightness makes them temporarily detectable out to the largest distances yet explored in the Universe. After pioneering breakthroughs from space and ground experiments, their study is entering a new phase with observations from the recently launched Fermi satellite, as well as the prospect of detections or limits from large neutrino and gravitational wave detectors. The interplay between such observations and theoretical models of gamma-ray bursts is reviewed, as well as their connections to supernovae and cosmology.

  13. SN 1991T - Gamma-Ray Observatory's first supernova?

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Shankar, Anurag; Van Riper, Kenneth A.

    1991-01-01

    Consideration is given to the explosion of the Type Ia supernova SN 1991T in the nearby galaxy NGC 4527 detected in gamma-ray lines by the recently launched GRO. The dominant gamma-line and continuum features of the new 'delayed detonation' model FDEFA1 are calculated and compared to those for standard deflagration models W7 and cdtg7. It is shown that there are many useful hard photon discriminants of the Type Ia explosion mechanism that can, in principle, be detected by the OSSE and COMPTEL instruments on the GRO. Either SN 1991T, if bright enough, or one of the several Type Ia supernovae expected to be within the GRO's range during its active life, may make it possible to settle the detonation/deflagration debate, verify the generic thermonuclear white dwarf model of Type Ia explosions, and calibrate the Type Ia B(max)/847 keV line flux ratio.

  14. Theoretical models for Type I and Type II supernova

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1985-01-01

    Recent theoretical progress in understanding the origin and nature of Type I and Type II supernovae is discussed. New Type II presupernova models characterized by a variety of iron core masses at the time of collapse are presented and the sensitivity to the reaction rate /sup 12/C(..cap alpha..,..gamma..)/sup 16/O explained. Stars heavier than about 20 M/sub solar/ must explode by a ''delayed'' mechanism not directly related to the hydrodynamical core bounce and a subset is likely to leave black hole remnants. The isotopic nucleosynthesis expected from these massive stellar explosions is in striking agreement with the sun. Type I supernovae result when an accreting white dwarf undergoes a thermonuclear explosion. The critical role of the velocity of the deflagration front in determining the light curve, spectrum, and, especially, isotopic nucleosynthesis in these models is explored. 76 refs., 8 figs.

  15. Oscillation effects and time variation of the supernova neutrino signal

    SciTech Connect

    Kneller, James P.; McLaughlin, Gail C.; Brockman, Justin

    2008-02-15

    The neutrinos detected from the next galactic core-collapse supernova will contain valuable information on the internal dynamics of the explosion. One mechanism leading to a temporal evolution of the neutrino signal is the variation of the induced neutrino flavor mixing driven by changes in the density profile. With one and two-dimensional hydrodynamical simulations we identify the behavior and properties of prominent features of the explosion. Using these results we demonstrate the time variation of the neutrino crossing probabilities due to changes in the Mikheyev-Smirnov-Wolfenstein (MSW) neutrino transformations as the star explodes by using the S-matrix--Monte Carlo--approach to neutrino propagation. After adopting spectra for the neutrinos emitted from the proto-neutron star we calculate for a galactic supernova the evolution of the positron spectra within a water Cerenkov detector and find that this signal allows us to probe of a number of explosion features.

  16. Supernovae, neutrinos and the chirality of amino acids.

    PubMed

    Boyd, Richard N; Kajino, Toshitaka; Onaka, Takashi

    2011-01-01

    A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the (14)N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's proteinaceous amino acids.

  17. Supernovae, Neutrinos and the Chirality of Amino Acids

    PubMed Central

    Boyd, Richard N.; Kajino, Toshitaka; Onaka, Takashi

    2011-01-01

    A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth’s proteinaceous amino acids. PMID:21747686

  18. Fast evolving pair-instability supernova models: Evolution, explosion, light curves

    NASA Astrophysics Data System (ADS)

    Kozyreva, Alexandra; Gilmer, Matthew; Hirschi, Raphael; Fröhlich, Carla; Blinnikov, Sergey; Wollaeger, Ryan T.; Noebauer, Ulrich M.; van Rossum, Daniel R.; Heger, Alexander; Even, Wesley P.; Waldman, Roni; Tolstov, Alexey; Chatzopoulos, Emmanouil; Sorokina, Elena

    2016-10-01

    With an increasing number of superluminous supernovae (SLSNe) discovered the question of their origin remains open and causes heated debates in the supernova community. Currently, there are three proposed mechanisms for SLSNe: (1) pair-instability supernovae (PISN), (2) magnetar-driven supernovae, and (3) models in which the supernova ejecta interacts with a circumstellar material ejected before the explosion. Based on current observations of SLSNe, the PISN origin has been disfavoured for a number of reasons. Many PISN models provide overly broad light curves and too reddened spectra, because of massive ejecta and a high amount of nickel. In the current study we re-examine PISN properties using progenitor models computed with the GENEC code. We calculate supernova explosions with FLASH and light curve evolution with the radiation hydrodynamics code STELLA. We find that high-mass models (200 M⊙ and 250 M⊙) at relatively high metallicity (Z = 0.001) do not retain hydrogen in the outer layers and produce relatively fast evolving PISNe Type I and might be suitable to explain some SLSNe. We also investigate uncertainties in light curve modelling due to codes, opacities, the nickel-bubble effect and progenitor structure and composition.

  19. Two possible active supernovae in IC 2150

    NASA Astrophysics Data System (ADS)

    Parker, Stu; Bock, Greg; Marples, Peter; Drescher, Colin; Pearl, Patrick; BOSS Team; Contreras, Carlos; Phillips, Mark; Morrell, Nidia; Hsiao, Eric; Carnegie Supernova Project

    2016-03-01

    Stu Parker and the BOSS team report the discovery of a rare event involving two possible active supernovae in IC 2150 (z=0.010404; NED) which were recorded in images obtained by Stu Parker during the ongoing program by the Backyard Observatory Supernova Search (BOSS) team.

  20. Gamma line radiation from supernovae. [nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Arnett, W. D.

    1978-01-01

    Recent calculations of core collapse or massive stars result in explosive ejection of the mantle by a reflected shock. These hydrodynamic results are important for predictions of explosive nucleosynthesis and gamma-ray line emission from supernovae. Previous estimates, based on simple parameterized models or the nucleosynthesis in an average supernova, are compared with these latest results.

  1. Rates and progenitors of type Ia supernovae

    SciTech Connect

    Wood-Vasey, William Michael

    2004-01-01

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  2. Supernova shock breakout from a red supergiant.

    PubMed

    Schawinski, Kevin; Justham, Stephen; Wolf, Christian; Podsiadlowski, Philipp; Sullivan, Mark; Steenbrugge, Katrien C; Bell, Tony; Röser, Hermann-Josef; Walker, Emma S; Astier, Pierre; Balam, Dave; Balland, Christophe; Carlberg, Ray; Conley, Alex; Fouchez, Dominique; Guy, Julien; Hardin, Delphine; Hook, Isobel; Howell, D Andrew; Pain, Reynald; Perrett, Kathy; Pritchet, Chris; Regnault, Nicolas; Yi, Sukyoung K

    2008-07-11

    Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic "core-collapse" supernova. Such events are usually only detected at least a few days after the star has exploded. Observations of the supernova SNLS-04D2dc with the Galaxy Evolution Explorer space telescope reveal a radiative precursor from the supernova shock before the shock reached the surface of the star and show the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve confirm that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a way to probe the physics of core-collapse supernovae and the internal structures of their progenitor stars.

  3. Supernovae and cosmology with future European facilities.

    PubMed

    Hook, I M

    2013-06-13

    Prospects for future supernova surveys are discussed, focusing on the European Space Agency's Euclid mission and the European Extremely Large Telescope (E-ELT), both expected to be in operation around the turn of the decade. Euclid is a 1.2 m space survey telescope that will operate at visible and near-infrared wavelengths, and has the potential to find and obtain multi-band lightcurves for thousands of distant supernovae. The E-ELT is a planned, general-purpose ground-based, 40-m-class optical-infrared telescope with adaptive optics built in, which will be capable of obtaining spectra of type Ia supernovae to redshifts of at least four. The contribution to supernova cosmology with these facilities will be discussed in the context of other future supernova programmes such as those proposed for DES, JWST, LSST and WFIRST.

  4. Probing dark energy inhomogeneities with supernovae

    SciTech Connect

    Blomqvist, Michael; Moertsell, Edvard; Nobili, Serena E-mail: edvard@physto.se

    2008-06-15

    We discuss the possibility of identifying anisotropic and/or inhomogeneous cosmological models using type Ia supernova data. A search for correlations in current type Ia peak magnitudes over a large range of angular scales yields a null result. However, the same analysis limited to supernovae at low redshift shows a feeble anticorrelation at the 2{sigma} level at angular scales {theta} Almost-Equal-To 40 Degree-Sign . Upcoming data from, e.g., the SNLS (Supernova Legacy Survey) and the SDSS-II (SDSS: Sloan Digital Sky Survey) supernova searches will improve our limits on the size of-or possibly detect-possible correlations also at high redshift at the per cent level in the near future. With data from the proposed SNAP (SuperNova Acceleration Probe) satellite, we will be able to detect the induced correlations from gravitational lensing on type Ia peak magnitudes on scales less than a degree.

  5. On relative supernova rates and nucleosynthesis roles

    NASA Technical Reports Server (NTRS)

    Arnett, W. David; Schramm, David N.; Truran, James W.

    1989-01-01

    It is shown that the Ni-56-Fe-56 observed in SN 1987A argues that core collapse supernovae may be responsible for more than 50 percent of the iron in the galaxy. Furthermore it is argued that the time averaged rate of thermonuclear driven Type I supernovae may be at least an order of magnitude lower than the average rate of core collapse supernovae. The present low rate of Type II supernovae (below their time averaged rate of approx. 1/10 yr) is either because the past rate was much higher because many core collapse supernovae are dim like SN 1987A. However, even in this latter case they are only an order of magnitude dimmer that normal Type II's due to the contribution of Ni-56 decay to the light curve.

  6. On relative supernova rates and nucleosynthesis roles

    NASA Technical Reports Server (NTRS)

    Arnett, W. David; Schramm, David N.; Truran, James W.

    1988-01-01

    It is shown that the Ni-56-Fe-56 observed in SN 1987A argues that core collapse supernovae may be responsible for more that 50 percent of the iron in the galaxy. Furthermore it is argued that the time averaged rate of thermonuclear driven Type I supernovae may be at least an order of magnitude lower than the average rate of core collapse supernovae. The present low rate of Type II supernovae (below their time averaged rate of approx. 1/10 yr) is either because the past rate was much higher because many core collapse supernovae are dim like SN 1987A. However, even in this latter case they are only an order of magnitude dimmer that normal Type II's due to the contribution of Ni-56 decay to the light curve.

  7. Supernovae and cosmology with future European facilities.

    PubMed

    Hook, I M

    2013-06-13

    Prospects for future supernova surveys are discussed, focusing on the European Space Agency's Euclid mission and the European Extremely Large Telescope (E-ELT), both expected to be in operation around the turn of the decade. Euclid is a 1.2 m space survey telescope that will operate at visible and near-infrared wavelengths, and has the potential to find and obtain multi-band lightcurves for thousands of distant supernovae. The E-ELT is a planned, general-purpose ground-based, 40-m-class optical-infrared telescope with adaptive optics built in, which will be capable of obtaining spectra of type Ia supernovae to redshifts of at least four. The contribution to supernova cosmology with these facilities will be discussed in the context of other future supernova programmes such as those proposed for DES, JWST, LSST and WFIRST. PMID:23630381

  8. Four Papers by the Supernova Cosmology Project

    SciTech Connect

    Perlmutter, S.; et al.

    1995-06-01

    Our search for high-redshift Type Ia supernovae discovered, in its first years, a sample of seven supernovae. Using a 'batch' search strategy, almost all were discovered before maximum light and were observed over the peak of their light curves. The spectra and light curves indicate that almost all were Type Ia supernovae at redshifts z = 0.35 - 0.5. These high-redshift supernovae can provide a distance indicator and 'standard clock' to study the cosmological parameters q{sub 0}, {Lambda}, {Omega}{sub 0}, and H{sub 0}. This presentation and the following presentations of Kim et al. (1996), Goldhaber et al. (1996), and Pain et al. (1996) will discuss observation strategies and rates, analysis and calibration issues, the sources of measurement uncertainty, and the cosmological implications, including bounds on q{sub 0}, of these first high-redshift supernovae from our ongoing search.

  9. Supernova 1987A at 29 years

    NASA Astrophysics Data System (ADS)

    McCray, Richard

    2016-06-01

    In the 29 years since it was discovered, SN 1987A has evolved from supernova to supernova remnant, in the sense that its luminosity is now dominated by radiation from its shock interaction with circumstellar matter rather than radioactive decay of newly synthesized elements. The circumstellar matter has a complex structure and the impact of the supernova debris results in a complex distribution of shocks, with velocities ranging from a few hundred to several thousand km/s. The supernova blast wave is overtaking dense knots in the equatorial ring, resulting in rapidly brightening optical “hotspots”, while the interaction with less dense matter gives rise to X-rays. The X-rays illuminate the outer supernova debris, causing it to glow at optical wavelengths. The ALMA telescope provides a new window at mm/sub-mm wavelengths, enabling us to probe the structure of the cold inner debris through molecular emission lines.

  10. OXYGEN-RICH SUPERNOVA REMNANT IN THE LARGE MAGELLANIC CLOUD

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a NASA Hubble Space Telescope image of the tattered debris of a star that exploded 3,000 years ago as a supernova. This supernova remnant, called N132D, lies 169,000 light-years away in the satellite galaxy, the Large Magellanic Cloud. A Hubble Wide Field Planetary Camera 2 image of the inner regions of the supernova remnant shows the complex collisions that take place as fast moving ejecta slam into cool, dense interstellar clouds. This level of detail in the expanding filaments could only be seen previously in much closer supernova remnants. Now, Hubble's capabilities extend the detailed study of supernovae out to the distance of a neighboring galaxy. Material thrown out from the interior of the exploded star at velocities of more than four million miles per hour (2,000 kilometers per second) plows into neighboring clouds to create luminescent shock fronts. The blue-green filaments in the image correspond to oxygen-rich gas ejected from the core of the star. The oxygen-rich filaments glow as they pass through a network of shock fronts reflected off dense interstellar clouds that surrounded the exploded star. These dense clouds, which appear as reddish filaments, also glow as the shock wave from the supernova crushes and heats the clouds. Supernova remnants provide a rare opportunity to observe directly the interiors of stars far more massive than our Sun. The precursor star to this remnant, which was located slightly below and left of center in the image, is estimated to have been 25 times the mass of our Sun. These stars 'cook' heavier elements through nuclear fusion, including oxygen, nitrogen, carbon, iron etc., and the titanic supernova explosions scatter this material back into space where it is used to create new generations of stars. This is the mechanism by which the gas and dust that formed our solar system became enriched with the elements that sustain life on this planet. Hubble spectroscopic observations will be used to determine the exact

  11. The LCOGT Supernova Key Project

    NASA Astrophysics Data System (ADS)

    Howell, Dale Andrew; Arcavi, Iair; Hosseinzadeh, Griffin; McCully, Curtis; Valenti, Stefano; LCOGT Supernova Key Project

    2016-06-01

    We highlight results from the Las Cumbres Observatory Global Telescope (LCOGT) Supernova Key Project -- a 3 year program to obtain lightcurves and spectra of approximately 500 low-redshift SNe. LCOGT is a robotic network of elevent one and two meter telescopes spaced around the globe. We are involved in a variety of surveys, including the intermediate Palomar Transient Factory, LaSilla Quest, PESSTO, and KMTNet. Recent results include analysis of large samples of core-collaspe SNe, the largest sample of SNe Ibn, evidence of the progenitors of SNe Ia from companion shocking, and new findings about superluminious SNe.

  12. SkyMapper and Supernovae

    NASA Astrophysics Data System (ADS)

    Scalzo, R.

    The SkyMapper Southern Sky Survey will be a wide-area digital survey of the southern sky, run from the robotic 1.3-m SkyMapper telescope at Siding Spring Observatory near Coonabarabran, NSW, Australia. The survey will include a supernova search run during poor seeing time, run as a rolling search to produce high-quality light curves for Hubble diagram cosmology. The search is currently taking data in science verification mode. I will briefly describe SkyMapper and then give an overview of su- pernova search activities, including pipeline design, operations, and interaction with the community.

  13. Petascale Supernova Simulation with CHIMERA

    SciTech Connect

    Messer, Bronson; Bruenn, S. W.; Blondin, J. M.; Mezzacappa, Anthony; Hix, William Raphael; Dirk, Charlotte

    2007-01-01

    CHIMERA is a multi-dimensional radiation hydrodynamics code designed to study core-collapse supernovae. The code is made up of three essentially independent parts: a hydrodynamics module, a nuclear burning module, and a neutrino transport solver combined within an operator-split approach. We describe some ma jor algorithmic facets of the code and briefly discuss some recent results. The multi-physics nature of the problem, and the specific implementation of that physics in CHIMERA, provide a rather straightforward path to effective use of multi-core platforms in the near future.

  14. Models for Type I supernovae

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.; Taam, R.E.

    1980-06-17

    Two rather disjoint scenarios for Type I supernovae are presented. One is based upon mass accretion by a white dwarf in a binary system. The second involves a star having some 8 to 10 times the mass of the sun which may or may not be a solitary star. Despite the apparent dissimilarities in the models it may be that each occurs to some extent in nature for they both share the possibility of producing substantial quantities of /sup 56/Ni and explosions in stars devoid of hydrogen envelopes. These are believed to be two properties that must be shared by any viable Type I model.

  15. The Progenitors of Thermonuclear Supernovae

    SciTech Connect

    Piersanti, L.; Straniero, O.; Tornambe, A.; Dominguez, I.

    2009-05-03

    In the framework of the rotating Double Degenerate Scenario for type Ia Supernovae progenitors, we show that the dichotomy between explosive events in early and late type galaxies can be easily explained. Assuming that more massive progenitors produce slow-decline (high-luminosity) light curve, it comes out that, at the current age of the Universe, in late type galaxies the continuous star formation provides very massive exploding objects (prompt component) corresponding to slow-decline (bright) SNe; on the other hand, in early type galaxies, where star formation ended many billions years ago, only low mass ''normal luminosity'' objects (delayed component) are present.

  16. Probing post-bounce supernova density profile from neutrino signals

    SciTech Connect

    Baldo, M.; Palmisano, V.

    2008-07-15

    Supernovae of Type II is a phenomenon that occurs at the end of the evolution of massive stars when the iron core of the star exceeds a mass limit. After the collapse of the core under gravity the shockwave alone does not succeed in expelling the mass of the star and in this sense the role of neutrinos is the most important mechanism to do so. During the emission of neutrinos flavor conversion is possible, related the phenomenon of oscillations, which however depends directly on the particular density profile of the medium. In this paper we present results of numerical simulations of neutrino flavor conversion in supernovae after bounce. The probabilities of survival for a given flavor in a complete three-flavors framework is estimated through an algorithm which conserves unitarity to a high degree of accuracy. The sensitivity of the results to the different adopted models for the supernova structure is examined in detail demonstrating how the neutrino signal could be used to check the validity of models.

  17. Future GLAST Observations of Supernova Remnants And Pulsar Wind Nebulae

    SciTech Connect

    Funk, S.; /KIPAC, Menlo Park

    2007-09-26

    Shell-type Supernova remnants (SNRs) have long been known to harbour a population of ultra-relativistic particles, accelerated in the Supernova shock wave by the mechanism of diffusive shock acceleration. Experimental evidence for the existence of electrons up to energies of 100 TeV was first provided by the detection of hard X-ray synchrotron emission as e.g. in the shell of the young SNR SN1006. Furthermore using theoretical arguments shell-type Supernova remnants have long been considered as the main accelerator of protons - Cosmic rays - in the Galaxy; definite proof of this process is however still missing. Pulsar Wind Nebulae (PWN) - diffuse structures surrounding young pulsars - are another class of objects known to be a site of particle acceleration in the Galaxy, again through the detection of hard synchrotron X-rays such as in the Crab Nebula. Gamma-rays above 100 MeV provide a direct access to acceleration processes. The GLAST Large Area telescope (LAT) will be operating in the energy range between 30 MeV and 300 GeV and will provide excellent sensitivity, angular and energy resolution in a previously rather poorly explored energy band. We will describe prospects for the investigation of these Galactic particle accelerators with GLAST.

  18. The shocking development of lithium (and boron) in supernovae

    NASA Technical Reports Server (NTRS)

    Dearborn, David S. P.; Schramm, David N.; Steigman, Gary; Truran, James

    1989-01-01

    It is shown that significant amounts of Li-7 and B-11 are produced in Type 2 supernovae. The synthesis of these rare elements occurs as the supernova shock traverses the base of the hydrogen envelope burning He-3 to masses 7 and 11 via alpha capture. The yields in this process are sufficient to account for the difference in lithium abundance observed between Pop 2 and Pop 1 stars. Since lithium (and boron) would, in this manner, be created in the same stars that produce the bulk of the heavy elements, the lithium abundance even in old Pop 1 stars would be high (as observed). The B-11 production may remedy the long-standing problem of the traditional spallation scenario to account for the observed isotopic ratio of boron. Observational consequences of this mechanism are discussed, including the evolution of lithium and boron isotope ratios in the Galaxy and the possible use of the boron yields to constrain the number of blue progenitor Type 2 supernovae.

  19. The Supernova Remnant CTA 1

    NASA Technical Reports Server (NTRS)

    Seward, Frederick D.

    1996-01-01

    The supernova remnants G327.1-1.1 and G327.4+0.4 (Kes 27) are located 1.5 deg apart in the constellation Norma. In 1980, Einstein IPC observations discovered that both were irregular filled-center X-ray sources with possible point sources superposed. This paper describes new ROSAT position sensitive proportional counter (PSPC) observations which both map the diffuse structure and clearly show several unresolved sources in each field. Both remnants have bright emitting regions inside the limb which might indicate the presence of high energy electrons accelerated by a pulsar. The interior region is more prominent in G327.1-1.1 than in Kes 27. The spectra are relatively strongly absorbed, as expected from distant remnants close to the galactic plane. Comparison of the X-ray and radio maps of each remnant allows us to attribute some emission to a shell and some to the interior. With this information, a blast-wave model is used to derive approximate ages and energy release. Indications are that the Kes 27 supernova deposited approximately 10(exp 51) ergs in the surrounding medium. The G327.1-1.1 event probably deposited a factor of 3-10 less.

  20. Supernova Remnants in High Definition

    NASA Astrophysics Data System (ADS)

    Slane, Patrick; Badenes, Carles; Freyer, Chris; Hughes, Jack; Lee, Herman Shiu-Hang; Lopez, Laura; Patnaude, Daniel; Reynolds, Steve; Temim, Tea; Williams, Brian; Wongwathanarat, Annop; Yamaguchi, Hiroya

    2015-10-01

    As the observable products of explosive stellar death, supernova remnants reveal some of the most direct information on the physics of the explosions, the properties of the progenitor systems, and the demographics of compact objects formed in the supernova events. High sensitivity X-ray observations have allowed us to probe the properties of the shocked plasma, providing constraints on abundances and ionization states that connect directly progenitor masses and metallicities, the nature of the explosions (core-collapse vs. thermonuclear), and the physics of shock heating and particle acceleration in fast shocks. Studies of SNRs in the Magellanic Clouds have provided information on source demographics in a low metallicity environment, and deep searches for point sources in Galactic SNRs imply that many remnants contain rapidly cooling neutron stars or black holes. Based on Chandra observations, we know that crucial measurements required to advance our knowledge in these areas are possible only with much more sensitive observations at high angular resolution. From identifying the effects of particle acceleration on the post-shock gas in young SNRs like Tycho to obtaining spatially resolved spectra - and identifying compact objects - for young SNRs in the Magellanic Clouds, the capabilities of a facility like the X-ray Surveyor are required. Here I present a summary of recent advances brought about by spectral investigations of SNRs, and discuss particular examples of new advances that will be enabled by X-ray Surveyor capabilities.

  1. Runaway Stars in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Pannicke, Anna; Neuhaeuser, Ralph; Dinçel, Baha

    2016-07-01

    Half of all stars and in particular 70 % of the massive stars are a part of a multiple system. A possible development for the system after the core collapse supernova (SN) of the more massive component is as follows: The binary is disrupted by the SN. The formed neutron star is ejected by the SN kick whereas the companion star either remains within the system and is gravitationally bounded to the neutron star, or is ejected with a spatial velocity comparable to its former orbital velocity (up to 500 km/s). Such stars with a large peculiar space velocity are called runaway stars. We present our observational results of the supernova remnants (SNRs) G184.6-5.8, G74.0-8.5 and G119.5+10.2. The focus of this project lies on the detection of low mass runaway stars. We analyze the spectra of a number of candidates and discuss their possibility of being the former companions of the SN progenitor stars. The spectra were obtained with INT in Tenerife, Calar Alto Astronomical Observatory and the University Observatory Jena. Also we investigate the field stars in the neighborhood of the SNRs G74.0-8.5 and G119.5+10.2 and calculate more precise distances for these SNRs.

  2. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  3. Energetic Supernovae from the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung

    2013-04-01

    We present the results from our 3D supernova simulations by using CASTRO, a new radiation-hydrodynamics code. The first generation of stars in the universe ended the cosmic dark age by shining the first light. But what was the fate of these stars? Based on the stellar evolution models, the fate of stars depends on their masses. Modern cosmological simulations suggest that the first stars could be very massive, with a typical mass scale over 50 solar masses. We look for the possible supernovae from the death of the first stars with masses over 50 solar masses. Besides the iron-core collapse supernovae, we find energetic thermonuclear supernovae, including two types of pair-instability supernovae and one type of general-relativity instability supernovae. Our models capture all explosive burning and follow the explosion until the shock breaks out from the stellar surface. We will discuss the energetics, nucleosynthesis, and possible observational signatures for these primordial supernovae that will be the prime targets for future large telescopes such as the James Webb Space Telescope (JWST).

  4. How multiple supernovae overlap to form superbubbles

    NASA Astrophysics Data System (ADS)

    Yadav, Naveen; Mukherjee, Dipanjan; Sharma, Prateek; Nath, Biman B.

    2016-10-01

    We explore the formation of superbubbles through energy deposition by multiple supernovae (SNe) in a uniform medium. We use total energy conserving, 3-D hydrodynamic simulations to study how SNe correlated in space and time create superbubbles. While isolated SNe fizzle out completely by ˜1 Myr due to radiative losses, for a realistic cluster size it is likely that subsequent SNe go off within the hot/dilute bubble and sustain the shock till the cluster lifetime. For realistic cluster sizes, we find that the bubble remains overpressured only if, for a given ng0, NOB is sufficiently large. While most of the input energy is still lost radiatively, superbubbles can retain up to ˜5 - 10% of the input energy in form of kinetic+thermal energy till 10 Myr for ISM density ng0 ≈ 1 cm-3. We find that the mechanical efficiency decreases for higher densities (η _mech ∝ n_{g0}^{-2/3}). We compare the radii and velocities of simulated supershells with observations and the classical adiabatic model. Our simulations show that the superbubbles retain only ≲ 10% of the injected energy, thereby explaining the observed smaller size and slower expansion of supershells. We also confirm that a sufficiently large (≳ 104) number of SNe is required to go off in order to create a steady wind with a stable termination shock within the superbubble. We show that the mechanical efficiency increases with increasing resolution, and that explicit diffusion is required to obtain converged results.

  5. Light-Echo Spectrum Reveals the Type of Tycho Brahe's 1572 Supernova

    NASA Astrophysics Data System (ADS)

    Usuda, T.; Krause, O.; Tanaka, M.; Hattori, T.; Goto, M.; Birkmann, S. M.; Nomoto, K.

    2013-01-01

    We successfully obtained the first optical spectra of the faint light echoes around Cassiopeia A and Tycho Brahe's supernova remnants (SNRs) with FOCAS and the Subaru Telescope. We conclude that Cas A and Tycho's SN 1572 belong to the Type IIb and normal Type Ia supernovae, respectively. Light echo spectra are important in order to obtain further insight into the supernova explosion mechanism of Tycho's SN 1572: how the Type Ia explosion actually proceeds, and whether accretion occurs from a companion or by the merging of two white dwarfs. The proximity of the SN 1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. Future light-echo spectra, obtained in different spatial directions of SN 1572, will enable to construct a three-dimensional spectroscopic view of the explosion.

  6. A Comprehensive Investigation Into Modeling Supernovae Spectra

    NASA Astrophysics Data System (ADS)

    Hillier, Desmond

    Supernovae are a rich source of information. By studying their light curves and spectra we gain insights into stellar evolution, the nature of the progenitor star, surface abundances at the time of the explosion, whether previous mass-loss episodes have occurred, the physics of the explosion including the amount and type of elements synthesized, and whether the explosion has produced significant mixing between shells of different chemical composition. To maximize the information that can be gleaned from observations of supernovae it is essential that we have the necessary spectroscopic tools. To this end, we are developing a code, CMFGEN, capable of modeling supernova light curves and spectra. The code is currently being used, to study core-collapse supernovae as well as those arising from the nuclear detonation of a White Dwarf star. We wish to extend CMFGEN's capabilities by developing a procedure to handle non-monotonic velocity flows so that we can treat shock breakout and the interaction of supernova ejecta with circumstellar material. We will also investigate magnetar-powered SNe, and explore the connection between Type Ib and Type Ic supernovae and those supernovae associated with long-duration gamma-ray bursters. Through detailed studies of individual supernova, and through the construction of model grids, we are able to infer deficiencies in our modeling, in our atomic data, and in the progenitor models, and hence make refinements so that we can improve our understanding of all SNe classes. Previous (IUE), current (HST, Chandra, GALEX), and future NASA missions (James Webb Telescope) do/will provide a wealth of data on supernovae. The proposed research is related to strategic subgoal 3D: "Discover the origin, structure, evolution, and destiny of the universe, and search for Earth-like planets." Supernovae are inherently coupled to the evolution of the universe and life: They can trigger star formation and they provide the raw materials (e.g., oxygen

  7. Recent progress on young Galactic supernova remnants

    NASA Astrophysics Data System (ADS)

    Williams, Brian J.

    2016-06-01

    I will review progress in the past few years on several young (less than a few thousand years old) supernova remnants within the Milky Way galaxy and the Magellanic Clouds. I will focus on objects like Tycho, Kepler, 3C 397, W49B, and Cas A. I will discuss not only what has been learned about particular remnants, but also what these remnants can tell us about their pre-supernova progenitor systems. I will also show areas in which newly launched and upcoming observatories, such as Hitomi (Astro-H) and JWST can contribute to the study of supernova remnants.

  8. Object Classification at the Nearby Supernova Factory

    SciTech Connect

    Aragon, Cecilia R.; Bailey, Stephen; Aragon, Cecilia R.; Romano, Raquel; Thomas, Rollin C.; Weaver, B. A.; Wong, D.

    2007-12-21

    We present the results of applying new object classification techniques to the supernova search of the Nearby Supernova Factory. In comparison to simple threshold cuts, more sophisticated methods such as boosted decision trees, random forests, and support vector machines provide dramatically better object discrimination: we reduced the number of nonsupernova candidates by a factor of 10 while increasing our supernova identification efficiency. Methods such as these will be crucial for maintaining a reasonable false positive rate in the automated transient alert pipelines of upcoming large optical surveys.

  9. Supernovae as sources of interstellar diamonds

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Allen, John E., Jr.

    1992-01-01

    Small hydrocarbon grains in the vicinity of a supernova could be annealed by the absorption of several far-ultraviolet photons to produce the tiny diamonds found in meteorites. These freshly-synthesized diamond grains would be bombarded by the heavy ions and neutrals in the supernovae outflow and would thereby acquire the distinctive noble-gas isotopic signature by which they were first isolated. Only diamonds formed relatively close to supernovae would acquire such a signature, since grains formed farther out would be subjected to a much diluted and less energetic plasma environment.

  10. A New Supernova Discovery/Classification

    NASA Astrophysics Data System (ADS)

    Howell, D. A.; Nugent, P. E.; Sullivan, M.; Gal-Yam, A.

    2010-10-01

    The Type Ia supernova science working group of the Palomar Transient Factory (ATEL#1964) reports the discovery of the Type Ia supernova PTF10ygu at RA=09:37:30.30, Dec=+23:09:33.6 (J2000) in the host galaxy NGC 2929 at z=0.025. The supernova was discovered on Oct. 12.5 UT when it was at magnitude 19.2 in R-band (calibrated wrt the USNO catalog). There was nothing at this location on Oct 8.5 UT to a limiting magnitude of 20.3, and a marginal detection (S/N=5) at R=19.6 on Oct.

  11. Supernova 1987 A - A cold, dusty and rusty supernova

    NASA Astrophysics Data System (ADS)

    Spyromilio, Jason; Graham, James R.

    1992-04-01

    The near-infrared emission from forbidden lines of singly ionized iron in the ejecta of supernova 1987 A has been modeled. It is found that as late as 1989 February, relatively high excitation transitions such as those arising from the a4F-a2G multiplet at 7150 A are surprisingly strong. The inferred temperature and electron density imply a mass of Fe(+) of order 10 exp -3 solar mass. No evidence is found for strong emission by neutral or doubly ionized iron. Given that 0.07 solar mass of iron is believed to be present in the ejecta of SN 1987 A, the results suggest that the bulk of the iron is unable to emit in the wavelength range investigated.

  12. SPECTROSCOPY OF TYPE Ia SUPERNOVAE BY THE CARNEGIE SUPERNOVA PROJECT

    SciTech Connect

    Folatelli, Gaston; Morrell, Nidia; Phillips, Mark M.; Hsiao, Eric; Campillay, Abdo; Contreras, Carlos; Castellon, Sergio; Roth, Miguel; Hamuy, Mario; Anderson, Joseph P.; Krzeminski, Wojtek; Stritzinger, Maximilian; Burns, Christopher R.; Freedman, Wendy L.; Madore, Barry F.; Murphy, David; Persson, S. E.; Prieto, Jose L.; Suntzeff, Nicholas B.; Krisciunas, Kevin; and others

    2013-08-10

    This is the first release of optical spectroscopic data of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project including 604 previously unpublished spectra of 93 SNe Ia. The observations cover a range of phases from 12 days before to over 150 days after the time of B-band maximum light. With the addition of 228 near-maximum spectra from the literature, we study the diversity among SNe Ia in a quantitative manner. For that purpose, spectroscopic parameters are employed such as expansion velocities from spectral line blueshifts and pseudo-equivalent widths (pW). The values of those parameters at maximum light are obtained for 78 objects, thus providing a characterization of SNe Ia that may help to improve our understanding of the properties of the exploding systems and the thermonuclear flame propagation. Two objects, namely, SNe 2005M and 2006is, stand out from the sample by showing peculiar Si II and S II velocities but otherwise standard velocities for the rest of the ions. We further study the correlations between spectroscopic and photometric parameters such as light-curve decline rate and color. In agreement with previous studies, we find that the pW of Si II absorption features are very good indicators of light-curve decline rate. Furthermore, we demonstrate that parameters such as pW2 (Si II 4130) and pW6 (Si II 5972) provide precise calibrations of the peak B-band luminosity with dispersions of Almost-Equal-To 0.15 mag. In the search for a secondary parameter in the calibration of peak luminosity for SNe Ia, we find a Almost-Equal-To 2{sigma}-3{sigma} correlation between B-band Hubble residuals and the velocity at maximum light of S II and Si II lines.

  13. Supernova relic neutrinos and the supernova rate problem: Analysis of uncertainties and detectability of ONeMg and failed supernovae

    SciTech Connect

    Mathews, Grant J.; Hidaka, Jun; Kajino, Toshitaka; Suzuki, Jyutaro

    2014-08-01

    Direct measurements of the core collapse supernova rate (R{sub SN}) in the redshift range 0 ≤ z ≤ 1 appear to be about a factor of two smaller than the rate inferred from the measured cosmic massive star formation rate (SFR). This discrepancy would imply that about one-half of the massive stars that have been born in the local observed comoving volume did not explode as luminous supernovae. In this work, we explore the possibility that one could clarify the source of this 'supernova rate problem' by detecting the energy spectrum of supernova relic neutrinos with a next generation 10{sup 6} ton water Čerenkov detector like Hyper-Kamiokande. First, we re-examine the supernova rate problem. We make a conservative alternative compilation of the measured SFR data over the redshift range 0 ≤z ≤ 7. We show that by only including published SFR data for which the dust obscuration has been directly determined, the ratio of the observed massive SFR to the observed supernova rate R{sub SN} has large uncertainties ∼1.8{sub −0.6}{sup +1.6} and is statistically consistent with no supernova rate problem. If we further consider that a significant fraction of massive stars will end their lives as faint ONeMg SNe or as failed SNe leading to a black hole remnant, then the ratio reduces to ∼1.1{sub −0.4}{sup +1.0} and the rate problem is essentially solved. We next examine the prospects for detecting this solution to the supernova rate problem. We first study the sources of uncertainty involved in the theoretical estimates of the neutrino detection rate and analyze whether the spectrum of relic neutrinos can be used to independently identify the existence of a supernova rate problem and its source. We consider an ensemble of published and unpublished core collapse supernova simulation models to estimate the uncertainties in the anticipated neutrino luminosities and temperatures. We illustrate how the spectrum of detector events might be used to establish the average

  14. X-ray studies of supernova remnants: a different view of supernova explosions.

    PubMed

    Badenes, Carles

    2010-04-20

    The unprecedented spatial and spectral resolutions of Chandra have revolutionized our view of the X-ray emission from supernova remnants. The excellent datasets accumulated on young, ejecta-dominated objects like Cas A or Tycho present a unique opportunity to study at the same time the chemical and physical structure of the explosion debris and the characteristics of the circumstellar medium sculpted by the progenitor before the explosion. Supernova remnants can thus put strong constraints on fundamental aspects of both supernova explosion physics and stellar evolution scenarios for supernova progenitors. This view of the supernova phenomenon is completely independent of, and complementary to, the study of distant extragalactic supernovae at optical wavelengths. The calibration of these two techniques has recently become possible thanks to the detection and spectroscopic follow-up of supernova light echoes. In this paper, I review the most relevant results on supernova remnants obtained during the first decade of Chandra and the impact that these results have had on open issues in supernova research.

  15. X-ray studies of supernova remnants: A different view of supernova explosions

    PubMed Central

    Badenes, Carles

    2010-01-01

    The unprecedented spatial and spectral resolutions of Chandra have revolutionized our view of the X-ray emission from supernova remnants. The excellent datasets accumulated on young, ejecta-dominated objects like Cas A or Tycho present a unique opportunity to study at the same time the chemical and physical structure of the explosion debris and the characteristics of the circumstellar medium sculpted by the progenitor before the explosion. Supernova remnants can thus put strong constraints on fundamental aspects of both supernova explosion physics and stellar evolution scenarios for supernova progenitors. This view of the supernova phenomenon is completely independent of, and complementary to, the study of distant extragalactic supernovae at optical wavelengths. The calibration of these two techniques has recently become possible thanks to the detection and spectroscopic follow-up of supernova light echoes. In this paper, I review the most relevant results on supernova remnants obtained during the first decade of Chandra and the impact that these results have had on open issues in supernova research. PMID:20404206

  16. GENERAL-RELATIVISTIC SIMULATIONS OF THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Ott, Christian D.; Abdikamalov, Ernazar; Moesta, Philipp; Haas, Roland; Drasco, Steve; O'Connor, Evan P.; Reisswig, Christian; Meakin, Casey A.; Schnetter, Erik

    2013-05-10

    We study the three-dimensional (3D) hydrodynamics of the post-core-bounce phase of the collapse of a 27 M{sub Sun} star and pay special attention to the development of the standing accretion shock instability (SASI) and neutrino-driven convection. To this end, we perform 3D general-relativistic simulations with a three-species neutrino leakage scheme. The leakage scheme captures the essential aspects of neutrino cooling, heating, and lepton number exchange as predicted by radiation-hydrodynamics simulations. The 27 M{sub Sun} progenitor was studied in 2D by Mueller et al., who observed strong growth of the SASI while neutrino-driven convection was suppressed. In our 3D simulations, neutrino-driven convection grows from numerical perturbations imposed by our Cartesian grid. It becomes the dominant instability and leads to large-scale non-oscillatory deformations of the shock front. These will result in strongly aspherical explosions without the need for large-scale SASI shock oscillations. Low-l-mode SASI oscillations are present in our models, but saturate at small amplitudes that decrease with increasing neutrino heating and vigor of convection. Our results, in agreement with simpler 3D Newtonian simulations, suggest that once neutrino-driven convection is started, it is likely to become the dominant instability in 3D. Whether it is the primary instability after bounce will ultimately depend on the physical seed perturbations present in the cores of massive stars. The gravitational wave signal, which we extract and analyze for the first time from 3D general-relativistic models, will serve as an observational probe of the postbounce dynamics and, in combination with neutrinos, may allow us to determine the primary hydrodynamic instability.

  17. Observing the next galactic supernova

    SciTech Connect

    Adams, Scott M.; Kochanek, C. S.; Beacom, John F.; Stanek, K. Z.; Vagins, Mark R.

    2013-12-01

    No supernova (SN) in the Milky Way has been observed since the invention of the optical telescope, instruments for other wavelengths, neutrino detectors, or gravitational wave observatories. It would be a tragedy to miss the opportunity to fully characterize the next one. To aid preparations for its observations, we model the distance, extinction, and magnitude probability distributions of a successful Galactic core-collapse supernova (ccSN), its shock breakout radiation, and its massive star progenitor. We find, at very high probability (≅ 100%), that the next Galactic SN will easily be detectable in the near-IR and that near-IR photometry of the progenitor star very likely (≅ 92%) already exists in the Two Micron All Sky Survey. Most ccSNe (98%) will be easily observed in the optical, but a significant fraction (43%) will lack observations of the progenitor due to a combination of survey sensitivity and confusion. If neutrino detection experiments can quickly disseminate a likely position (∼3°), we show that a modestly priced IR camera system can probably detect the shock breakout radiation pulse even in daytime (64% for the cheapest design). Neutrino experiments should seriously consider adding such systems, both for their scientific return and as an added and internal layer of protection against false triggers. We find that shock breakouts from failed ccSNe of red supergiants may be more observable than those of successful SNe due to their lower radiation temperatures. We review the process by which neutrinos from a Galactic ccSN would be detected and announced. We provide new information on the EGADS system and its potential for providing instant neutrino alerts. We also discuss the distance, extinction, and magnitude probability distributions for the next Galactic Type Ia supernova (SN Ia). Based on our modeled observability, we find a Galactic ccSN rate of 3.2{sub −2.6}{sup +7.3} per century and a Galactic SN Ia rate of 1.4{sub −0.8}{sup +1.4} per

  18. Slowly fading super-luminous supernovae that are not pair-instability explosions.

    PubMed

    Nicholl, M; Smartt, S J; Jerkstrand, A; Inserra, C; McCrum, M; Kotak, R; Fraser, M; Wright, D; Chen, T-W; Smith, K; Young, D R; Sim, S A; Valenti, S; Howell, D A; Bresolin, F; Kudritzki, R P; Tonry, J L; Huber, M E; Rest, A; Pastorello, A; Tomasella, L; Cappellaro, E; Benetti, S; Mattila, S; Kankare, E; Kangas, T; Leloudas, G; Sollerman, J; Taddia, F; Berger, E; Chornock, R; Narayan, G; Stubbs, C W; Foley, R J; Lunnan, R; Soderberg, A; Sanders, N; Milisavljevic, D; Margutti, R; Kirshner, R P; Elias-Rosa, N; Morales-Garoffolo, A; Taubenberger, S; Botticella, M T; Gezari, S; Urata, Y; Rodney, S; Riess, A G; Scolnic, D; Wood-Vasey, W M; Burgett, W S; Chambers, K; Flewelling, H A; Magnier, E A; Kaiser, N; Metcalfe, N; Morgan, J; Price, P A; Sweeney, W; Waters, C

    2013-10-17

    Super-luminous supernovae that radiate more than 10(44) ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of 'pair-instability' supernovae. Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of (56)Ni are synthesized; this isotope decays to (56)Fe via (56)Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10-16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10(-6) times that of the core-collapse rate. PMID:24132291

  19. Slowly fading super-luminous supernovae that are not pair-instability explosions

    NASA Astrophysics Data System (ADS)

    Nicholl, M.; Smartt, S. J.; Jerkstrand, A.; Inserra, C.; McCrum, M.; Kotak, R.; Fraser, M.; Wright, D.; Chen, T.-W.; Smith, K.; Young, D. R.; Sim, S. A.; Valenti, S.; Howell, D. A.; Bresolin, F.; Kudritzki, R. P.; Tonry, J. L.; Huber, M. E.; Rest, A.; Pastorello, A.; Tomasella, L.; Cappellaro, E.; Benetti, S.; Mattila, S.; Kankare, E.; Kangas, T.; Leloudas, G.; Sollerman, J.; Taddia, F.; Berger, E.; Chornock, R.; Narayan, G.; Stubbs, C. W.; Foley, R. J.; Lunnan, R.; Soderberg, A.; Sanders, N.; Milisavljevic, D.; Margutti, R.; Kirshner, R. P.; Elias-Rosa, N.; Morales-Garoffolo, A.; Taubenberger, S.; Botticella, M. T.; Gezari, S.; Urata, Y.; Rodney, S.; Riess, A. G.; Scolnic, D.; Wood-Vasey, W. M.; Burgett, W. S.; Chambers, K.; Flewelling, H. A.; Magnier, E. A.; Kaiser, N.; Metcalfe, N.; Morgan, J.; Price, P. A.; Sweeney, W.; Waters, C.

    2013-10-01

    Super-luminous supernovae that radiate more than 1044 ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of `pair-instability' supernovae. Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of 56Ni are synthesized; this isotope decays to 56Fe via 56Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10-16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10-6 times that of the core-collapse rate.

  20. Slowly fading super-luminous supernovae that are not pair-instability explosions.

    PubMed

    Nicholl, M; Smartt, S J; Jerkstrand, A; Inserra, C; McCrum, M; Kotak, R; Fraser, M; Wright, D; Chen, T-W; Smith, K; Young, D R; Sim, S A; Valenti, S; Howell, D A; Bresolin, F; Kudritzki, R P; Tonry, J L; Huber, M E; Rest, A; Pastorello, A; Tomasella, L; Cappellaro, E; Benetti, S; Mattila, S; Kankare, E; Kangas, T; Leloudas, G; Sollerman, J; Taddia, F; Berger, E; Chornock, R; Narayan, G; Stubbs, C W; Foley, R J; Lunnan, R; Soderberg, A; Sanders, N; Milisavljevic, D; Margutti, R; Kirshner, R P; Elias-Rosa, N; Morales-Garoffolo, A; Taubenberger, S; Botticella, M T; Gezari, S; Urata, Y; Rodney, S; Riess, A G; Scolnic, D; Wood-Vasey, W M; Burgett, W S; Chambers, K; Flewelling, H A; Magnier, E A; Kaiser, N; Metcalfe, N; Morgan, J; Price, P A; Sweeney, W; Waters, C

    2013-10-17

    Super-luminous supernovae that radiate more than 10(44) ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of 'pair-instability' supernovae. Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of (56)Ni are synthesized; this isotope decays to (56)Fe via (56)Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10-16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10(-6) times that of the core-collapse rate.

  1. ANTIPROTONS PRODUCED IN SUPERNOVA REMNANTS

    SciTech Connect

    Berezhko, E. G.; Ksenofontov, L. T.

    2014-08-20

    We present the energy spectrum of an antiproton cosmic ray (CR) component calculated on the basis of the nonlinear kinetic model of CR production in supernova remnants (SNRs). The model includes the reacceleration of antiprotons already existing in the interstellar medium as well as the creation of antiprotons in nuclear collisions of accelerated protons with gas nuclei and their subsequent acceleration by SNR shocks. It is shown that the production of antiprotons in SNRs produces a considerable effect in their resultant energy spectrum, making it essentially flatter above 10 GeV so that the spectrum at TeV energies increases by a factor of 5. The calculated antiproton spectrum is consistent with the PAMELA data, which correspond to energies below 100 GeV. As a consistency check, we have also calculated within the same model the energy spectra of secondary nuclei and show that the measured boron-to-carbon ratio is consistent with the significant SNR contribution.

  2. Supernova Optical Observations and Theory

    NASA Astrophysics Data System (ADS)

    Maeda, Keiichi; Bersten, Melina C.; Moriya, Takashi J.; Folatelli, Gaston; Nomoto, Ken'ichi

    2014-01-01

    We review emission processes within the supernova (SN) ejecta. Examples of the application of the theory to observational data are presented. The emission processes and thermal condition within the SN ejecta change as a function of time, and multi-epoch observations are important to obtain comprehensive views. Through the analyses, we can constrain the progenitor radius, compositions as a function of depth, ejecta properties, explosion asymmetry and so on. Multi-frequency follow-up is also important, including radio synchrotron emissions and the inverse Compton effect, γ-ray emissions from radioactive decay of newly synthesized materials. The optical data are essential to make the best use of the multi-frequency data.

  3. Supernovae and the Accelerating Universe

    NASA Technical Reports Server (NTRS)

    Wood, H. John

    2003-01-01

    Orbiting high above the turbulence of the earth's atmosphere, the Hubble Space Telescope (HST) has provided breathtaking views of astronomical objects never before seen in such detail. The steady diffraction-limited images allow this medium-size telescope to reach faint galaxies of 30th stellar magnitude. Some of these galaxies are seen as early as 2 billion years after the Big Bang in a 15 billion year old universe. Up until recently, astronomers assumed that all of the laws of physics and astronomy applied back then as they do today. Now, using the discovery that certain supernovae are standard candles, astronomers have found that the universe is expanding faster today than it was back then: the universe is accelerating in its expansion.

  4. Radio emision from supernova remnants

    NASA Astrophysics Data System (ADS)

    Dubner, G.

    2016-06-01

    The vast majority of supernova remnants (SNRs) in our Galaxy and nearby galaxies have been discovered through radio observations, and only a very small number of the SNRs catalogued in the Milky Way have not been detected in the radio band, or are poorly defined by current radio observations. The study of the radio emission from SNRs is an excellent tool to investigate morphological characteristics, marking the location of shock fronts and contact discontinuities; the presence, orientation and intensity of the magnetic field; the energy spectrum of the emitting particles; and the dynamical consequences of the interaction with the circumstellar and interstellar medium. I will review the present knowledge of different important aspects of radio remnants and their impact on the interstellar gas. Also, new radio studies of the Crab Nebula carried out with the Karl Jansky Very Large Array (JVLA) at 3 GHz and with ALMA at 100 GHz, will be presented.

  5. Evidence for nearby supernova explosions.

    PubMed

    Benítez, Narciso; Maíz-Apellániz, Jesús; Canelles, Matilde

    2002-02-25

    Supernova (SN) explosions are one of the most energetic---and potentially lethal---phenomena in the Universe. We show that the Scorpius-Centaurus OB association, a group of young stars currently located at approximately 130 pc from the Sun, has generated 20 SN explosions during the last 11 Myr, some of them probably as close as 40 pc to our planet. The deposition on Earth of (60)Fe atoms produced by these explosions can explain the recent measurements of an excess of this isotope in deep ocean crust samples. We propose that approximately 2 Myr ago, one of the SNe exploded close enough to Earth to seriously damage the ozone layer, provoking or contributing to the Pliocene-Pleistocene boundary marine extinction.

  6. Progenitors of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Maeda, Keiichi; Terada, Yukikatsu

    2016-07-01

    Natures of progenitors of type Ia Supernovae (SNe Ia) have not yet been clarified. There has been long and intensive discussion on whether the so-called single degenerate (SD) scenario or the double degenerate (DD) scenario, or anything else, could explain a major population of SNe Ia, but the conclusion has not yet been reached. With rapidly increasing observational data and new theoretical ideas, the field of studying the SN Ia progenitors has been quickly developing, and various new insights have been obtained in recent years. This paper aims at providing a summary of the current situation regarding the SN Ia progenitors, both in theory and observations. It seems difficult to explain the emerging diversity seen in observations of SNe Ia by a single population, and we emphasize that it is important to clarify links between different progenitor scenarios and different sub-classes of SNe Ia.

  7. ANTIMATTER PRODUCTION IN SUPERNOVA REMNANTS

    SciTech Connect

    Kachelriess, M.; Ostapchenko, S.; Tomas, R.

    2011-06-01

    We calculate the energy spectra of cosmic rays (CRs) and their secondaries produced in a supernova remnant (SNR) taking into account the time dependence of the SNR shock. We model the trajectories of charged particles as a random walk with a prescribed diffusion coefficient, accelerating the particles at each shock crossing. Secondary production by CRs colliding with gas is included as a Monte Carlo process. We find that SNRs produce less antimatter than suggested previously: the positron/electron ratio F{sub e}{sup +}/F{sub e}{sup +}{sub +e}{sup -} and the antiproton/proton ratio F{sub p-bar/}F{sub p-bar+p} are a few percent and few x 10{sup -5}, respectively. Moreover, the obtained positron/electron ratio decreases with energy, while the antiproton/proton ratio rises at most by a factor of two above 10 GeV.

  8. How to See a Recently Discovered Supernova

    SciTech Connect

    Nugent, Peter

    2011-01-01

    Berkeley Lab scientist Peter Nugent discusses a recently discovered supernova that is closer to Earth — approximately 21 million light-years away — than any other of its kind in a generation. Astronomers believe they caught the supernova within hours of its explosion, a rare feat made possible with a specialized survey telescope and state-of-the-art computational tools. The finding of such a supernova so early and so close has energized the astronomical community as they are scrambling to observe it with as many telescopes as possible, including the Hubble Space Telescope. More info on how to see it: http://newscenter.lbl.gov/feature-stories/2011/08/31/glimpse-cosmic-explosion/ News release: http://newscenter.lbl.gov/feature-stories/2011/08/25/supernova/

  9. Detecting thermal neutrinos from supernovae with DUMAND

    SciTech Connect

    Pryor, C.; Roos, C.E.; Webster, M.S.

    1988-06-01

    The Deep Underwater Muon and Neutrino Detector (DUMAND) could be made sensitive to the thermal (about 10-MeV) neutrinos from a supernova, as well as the TeV neutrinos for which it was originally designed, by clustering the photomultiplier tubes used to detect the Cerenkov light produced by neutrino interactions into nodes of four tubes. Requiring coincident counts from three or four of the tubes at a node would reduce the background from bioluminescence enough to allow the detection of the neutrinos from a supernova. A modified DUMAND using quadruple coincidence would have detected roughly eight neutrinos from SN 1987A and would detect about 280 neutrinos from a Galactic supernova at a distance of 9 kpc. Triple coincidence could be used with a Galactic supernova and would detect about 1500 neutrinos. 26 references.

  10. Optical spectrosopy of HiTS supernovae

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Forster, F.; Smith, C.; Vivas, K.; Pignata, G.; Olivares, F.; Hamuy, M.; Martin, J. San; Maureira, J. C.; Cabrera, G.; Gonzalez-Gaitan, S.; Galbany, L.; Bufano, F.; de Jaeger, T.; Hsiao, E.; Munoz, R.; Vera, E.

    2015-04-01

    We report optical wavelength spectroscopy obtained using the Goodman instrument mounted on the SOAR at CTIO on UT 2015-03-30, for two supernovae discovered by HiTS, the High Cadence Transient Survey (see ATELs #7289, #7290).

  11. Fermi Proves Supernova Remnants Make Cosmic Rays

    NASA Video Gallery

    The husks of exploded stars produce some of the fastest particles in the cosmos. New findings by NASA's Fermi show that two supernova remnants accelerate protons to near the speed of light. The pro...

  12. Astrophysics: Echo from an ancient supernova

    NASA Astrophysics Data System (ADS)

    Pastorello, Andrea; Patat, Ferdinando

    2008-12-01

    Light reflected off a dust cloud in the vicinity of the relic of Tycho Brahe's supernova, whose light first swept past Earth more than four centuries ago, literally sheds light on the nature of this cosmic explosion.

  13. The Union3 Supernova Ia Compilation

    NASA Astrophysics Data System (ADS)

    Rubin, David; Aldering, Greg Scott; Amanullah, Rahman; Barbary, Kyle H.; Bruce, Adam; Chappell, Greta; Currie, Miles; Dawson, Kyle S.; Deustua, Susana E.; Doi, Mamoru; Fakhouri, Hannah; Fruchter, Andrew S.; Gibbons, Rachel A.; Goobar, Ariel; Hsiao, Eric; Huang, Xiaosheng; Ihara, Yutaka; Kim, Alex G.; Knop, Robert A.; Kowalski, Marek; Krechmer, Evan; Lidman, Chris; Linder, Eric; Meyers, Joshua; Morokuma, Tomoki; Nordin, Jakob; Perlmutter, Saul; Ripoche, Pascal; Ruiz-Lapuente, Pilar; Rykoff, Eli S.; Saunders, Clare; Spadafora, Anthony L.; Suzuki, Nao; Takanashi, Naohiro; Yasuda, Naoki; Supernova Cosmology Project

    2016-01-01

    High-redshift supernovae observed with the Hubble Space Telescope (HST) are crucial for constraining any time variation in dark energy. In a forthcoming paper (Rubin+, in prep), we will present a cosmological analysis incorporating existing supernovae with improved calibrations, and new HST-observed supernovae (six above z=1). We combine these data with current literature data, and fit them using SALT2-4 to create the Union3 Supernova compilation. We build on the Unified Inference for Type Ia cosmologY (UNITY) framework (Rubin+ 2015b), incorporating non-linear light-curve width and color relations, a model for unexplained dispersion, an outlier model, and a redshift-dependent host-mass correction.

  14. An ''archaeological'' quest for galactic supernova neutrinos

    SciTech Connect

    Lazauskas, Rimantas; Volpe, Cristina E-mail: Cecilia.Lunardini@asu.edu

    2009-04-15

    We explore the possibility to observe the effects of electron neutrinos from past galactic supernovae, through a geochemical measurement of the amount of Technetium 97 produced by neutrino-induced reactions in a Molybdenum ore. The calculations we present take into account the recent advances in our knowledge of neutrino interactions, of neutrino oscillations inside a supernova, of the solar neutrino flux at Earth and of possible failed supernovae. The predicted Technetium 97 abundance is of the order of 10{sup 7} atoms per 10 kilotons of ore, which is close to the current geochemical experimental sensitivity. Of this, {approx} 10-20% is from supernovae. Considering the comparable size of uncertainties, more precision in the modeling of neutrino fluxes as well as of neutrino cross sections is required for a meaningful measurement.

  15. Classification of 5 DES supernovae by Magellan

    NASA Astrophysics Data System (ADS)

    Lasker, J.; Kessler, R.; Scolnic, D.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Prajs, S.; Smith, M.; Sullivan, M.

    2016-03-01

    We report optical spectroscopy of 5 supernovae discovered by the Dark Energy Survey (ATel #4668). The spectra (580-1050nm) were obtained using LDSS-3C on the 6.5m Clay telescope at the Las Campanas Observatory.

  16. Classification of 14 DES supernovae by Magellan

    NASA Astrophysics Data System (ADS)

    Galbany, L.; Gonzalez-Gaitan, S.; Smith, M.; ForsterÂ, F.; Hamuy, M.; Prieto, Jose Luis; Sullivan, M.; NicholÂ, R.; Sako, M.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Wolf, R. C.

    2016-02-01

    We report optical spectroscopy of 14 supernovae discovered by the Dark Energy Survey (ATel #4668). The spectra (425-1050nm) were obtained using LDSS3 on the 6.5m Clay telescope at the Las Campinas Observatory.

  17. Type Ibn Supernovae: Not a Single Class

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Griffin; Arcavi, Iair; Howell, Dale Andrew; McCully, Curtis; Valenti, Stefano

    2016-01-01

    Type Ibn supernovae are a small yet diverse class of explosions whose spectra are characterized by low-velocity helium emission lines. The prevailing theory has been that these are the core-collapse explosions of very massive stars embedded in helium-rich circumstellar material. However, unlike the more common Type IIn supernovae, whose interaction with hydrogen-rich circumstellar material has been shown to generate a wide variety of light curve shapes, we find that light curves of Type Ibn supernovae are more homogeneous and faster evolving. Spectroscopically, we find that Type Ibn supernovae divide cleanly into two classes, only one of which resembles the archetypal Type Ibn SN 2006jc. We explore various photometric and spectroscopic parameter spaces in order to characterize these two classes. We consider the possibility that not all objects classified as Type Ibn have the same physical origin.

  18. Supernova cooling in a dark matter smog

    SciTech Connect

    Zhang, Yue

    2014-11-27

    A light hidden gauge boson with kinetic mixing with the usual photon is a popular setup in theories of dark matter. The supernova cooling via radiating the hidden boson is known to put an important constraint on the mixing. I consider the possible role dark matter, which under reasonable assumptions naturally exists inside supernova, can play in the cooling picture. Because the interaction between the hidden gauge boson and DM is likely unsuppressed, even a small number of dark matter compared to protons inside the supernova could dramatically shorten the free streaming length of the hidden boson. A picture of a dark matter “smog” inside the supernova, which substantially relaxes the cooling constraint, is discussed in detail.

  19. SN 1054: A pulsar-powered supernova?

    NASA Astrophysics Data System (ADS)

    Li, Shao-Ze; Yu, Yun-Wei; Huang, Yan

    2015-11-01

    The famous ancient supernova SN 1054 could have been too bright to be explained in the “standard” radioactive-powered supernova scenario. As an alternative attempt, we demonstrate that the spin-down of the newly born Crab pulsar could provide a sufficient energy supply to make SN 1054 visible at daytime for 23 days and at night for 653 days, where a one-zone semi-analytical model is employed. Our results indicate that SN 1054 could be a “normal” cousin of magnetar-powered superluminous supernovae. Therefore, SN 1054-like supernovae could be a probe to uncover the properties of newly born neutron stars, which provide initial conditions for studies on neutron star evolutions.

  20. Supernova cooling in a dark matter smog

    SciTech Connect

    Zhang, Yue

    2014-11-01

    A light hidden gauge boson with kinetic mixing with the usual photon is a popular setup in theories of dark matter. The supernova cooling via radiating the hidden boson is known to put an important constraint on the mixing. I consider the possible role dark matter, which under reasonable assumptions naturally exists inside supernova, can play in the cooling picture. Because the interaction between the hidden gauge boson and DM is likely unsuppressed, even a small number of dark matter compared to protons inside the supernova could dramatically shorten the free streaming length of the hidden boson. A picture of a dark matter ''smog'' inside the supernova, which substantially relaxes the cooling constraint, is discussed in detail.

  1. The Supernova Impostor SN 2010da

    NASA Astrophysics Data System (ADS)

    Binder, Breanna A.; Williams, Benjamin F.; Kong, Albert K. H.; Plucinsky, Paul P.; Gaetz, Terrance J.; Skillman, Evan D.; Dolphin, Andrew E.

    2016-01-01

    Supernova impostors are optical transients that, despite being assigned a supernova designation, do not signal the death of a massive star or accreting white dwarf. Instead, many impostors are thought to be major eruptions from luminous blue variables. Although the physical cause of these eruptions is still debated, tidal interactions from a binary companion has recently gained traction as a possible explanation for observations of some supernova impostors. In this talk, I will discuss the particularly interesting impostor SN 2010da, which exhibits high-luminosity, variable X-ray emission. The X-ray emission is consistent with accretion onto a neutron star, making SN 2010da a likely high mass X-ray binary in addition to a supernova impostor. SN 2010da is a unique laboratory for understanding both binary interactions as drivers of massive star eruptions and the evolutionary processes that create high mass X-ray binaries.

  2. Classification of 17 DES supernovae by SALT

    NASA Astrophysics Data System (ADS)

    Kasai, E.; Bassett, B.; Crawford, S.; Childress, M.; D'Andrea, C.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.

    2016-02-01

    We report optical spectroscopy of 17 supernovae discovered by the Dark Energy Survey (ATel #4668). The spectra (380-820nm) were obtained using the Robert Stobie Spectrograph (RSS) on the South African Large Telescope (SALT).

  3. How to See a Recently Discovered Supernova

    ScienceCinema

    Nugent, Peter

    2016-07-12

    Berkeley Lab scientist Peter Nugent discusses a recently discovered supernova that is closer to Earth — approximately 21 million light-years away — than any other of its kind in a generation. Astronomers believe they caught the supernova within hours of its explosion, a rare feat made possible with a specialized survey telescope and state-of-the-art computational tools. The finding of such a supernova so early and so close has energized the astronomical community as they are scrambling to observe it with as many telescopes as possible, including the Hubble Space Telescope. More info on how to see it: http://newscenter.lbl.gov/feature-stories/2011/08/31/glimpse-cosmic-explosion/ News release: http://newscenter.lbl.gov/feature-stories/2011/08/25/supernova/

  4. Multidimensional Simulations of Magnetar Powered Supernovae

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung

    2016-03-01

    Magnetars are neutron stars with unusually strong magnetic fields, typically greater than 1E13 Gauss (G). Observational evidence suggests that magnetars form in a significant fraction of supernovae. Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies also shown the existence of an instability arising from the piling up of radiatively accelerated matter in a dense, thin shell deep inside the supernova. Here, we examine the problem in two dimensions and find that this shell fragments into a filamenary structure that facilitates mixing. The degree of the mixing depends on the relative energy input by the magnetar and the kinetic energy of the inner ejecta. The light curve and spectrum of the resulting supernova will be appreciably altered. We acknowledge the support of EACOA Fellowship from the East Asian Core Observatories Association.

  5. A Probabilistic Approach to Classifying Supernovae UsingPhotometric Information

    SciTech Connect

    Kuznetsova, Natalia V.; Connolly, Brian M.

    2006-12-14

    This paper presents a novel method for determining the probability that a supernova candidate belongs to a known supernova type (such as Ia, Ibc, IIL, etc.), using its photometric information alone. It is validated with Monte Carlo, and both space- and ground-based data. We examine the application of the method to well-sampled as well as poorly sampled supernova light curves and investigate to what extent the best currently available supernova models can be used for typing supernova candidates. Central to the method is the assumption that a supernova candidate belongs to a group of objects that can be modeled; we therefore discuss possible ways of removing anomalous or less well understood events from the sample. This method is particularly advantageous for analyses where the purity of the supernova sample is of the essence, or for those where it is important to know the number of the supernova candidates of a certain type (e.g., in supernova rate studies).

  6. TYPE Ia SUPERNOVA CARBON FOOTPRINTS

    SciTech Connect

    Thomas, R. C.; Nugent, P.; Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Hsiao, E. Y.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Paech, K.; Chotard, N.; Copin, Y.; Gangler, E.; and others

    2011-12-10

    We present convincing evidence of unburned carbon at photospheric velocities in new observations of five Type Ia supernovae (SNe Ia) obtained by the Nearby Supernova Factory. These SNe are identified by examining 346 spectra from 124 SNe obtained before +2.5 days relative to maximum. Detections are based on the presence of relatively strong C II {lambda}6580 absorption 'notches' in multiple spectra of each SN, aided by automated fitting with the SYNAPPS code. Four of the five SNe in question are otherwise spectroscopically unremarkable, with ions and ejection velocities typical of SNe Ia, but spectra of the fifth exhibit high-velocity (v > 20, 000 km s{sup -1}) Si II and Ca II features. On the other hand, the light curve properties are preferentially grouped, strongly suggesting a connection between carbon-positivity and broadband light curve/color behavior: three of the five have relatively narrow light curves but also blue colors and a fourth may be a dust-reddened member of this family. Accounting for signal to noise and phase, we estimate that 22{sup +10}{sub -6%} of SNe Ia exhibit spectroscopic C II signatures as late as -5 days with respect to maximum. We place these new objects in the context of previously recognized carbon-positive SNe Ia and consider reasonable scenarios seeking to explain a physical connection between light curve properties and the presence of photospheric carbon. We also examine the detailed evolution of the detected carbon signatures and the surrounding wavelength regions to shed light on the distribution of carbon in the ejecta. Our ability to reconstruct the C II {lambda}6580 feature in detail under the assumption of purely spherical symmetry casts doubt on a 'carbon blobs' hypothesis, but does not rule out all asymmetric models. A low volume filling factor for carbon, combined with line-of-sight effects, seems unlikely to explain the scarcity of detected carbon in SNe Ia by itself.

  7. Overview of the nearby supernova factory

    SciTech Connect

    Aldering, Greg; Adam, Gilles; Antilogus, Pierre; Astier, Pierre; Bacon, Roland; Bongard, S.; Bonnaud, C.; Copin, Yannick; Hardin, D.; Howell, D. Andy; Lemmonnier, Jean-Pierre; Levy, J.-M.; Loken, S.; Nugent, Peter; Pain, Reynald; Pecontal, Arlette; Pecontal, Emmanuel; Perlmutter, Saul; Quimby, Robert; Schahmaneche, Kyan; Smadja, Gerard; Wood-Vasey, W. Michael

    2002-07-29

    The Nearby Supernova Factory (SNfactory) is an international experiment designed to lay the foundation for the next generation of cosmology experiments (such as CFHTLS, wP, SNAP and LSST) which will measure the expansion history of the Universe using Type Ia supernovae. The SNfactory will discover and obtain frequent lightcurve spectrophotometry covering 3200-10000 {angstrom} for roughly 300 Type Ia supernovae at the low-redshift end of the smooth Hubble flow. The quantity, quality, breadth of galactic environments, and homogeneous nature of the SNfactory dataset will make it the premier source of calibration for the Type Ia supernova width-brightness relation and the intrinsic supernova colors used for K-correction and correction for extinction by host-galaxy dust. This dataset will also allow an extensive investigation of additional parameters which possibly influence the quality of Type Ia supernovae as cosmological probes. The SNfactory search capabilities and follow-up instrumentation include wide-field CCD imagers on two 1.2-m telescopes (via collaboration with the Near Earth Asteroid Tracking team at JPL and the QUEST team at Yale), and a two-channel integral-field-unit optical spectrograph/imager being fabricated for the University of Hawaii 2.2-m telescope. In addition to ground-based follow-up, UV spectra for a subsample of these supernovae will be obtained with HST. The pipeline to obtain, transfer via wireless and standard internet, and automatically process the search images is in operation. Software and hardware development is now underway to enable the execution of follow-up spectroscopy of supernova candidates at the Hawaii 2.2-m telescope via automated remote control of the telescope and the IFU spectrograph/imager.

  8. Detection of Radio Transients from Supernovae

    NASA Astrophysics Data System (ADS)

    Schmitt, Christian

    2011-05-01

    A core-collapse supernova (SN) would produce an expanding shell of charged particles which interact with the surrounding magnetic field of the progenitor star producing a transient radio pulse. Approximately one supernova event per century is expected in a galaxy. The radio waves emitted are detectable by a new generation of low-frequency radio telescope arrays. We present details of an ongoing search for such events by the Eight-meter-wavelength Transient Array (ETA) and the Long Wavelength Array (LWA).

  9. Are 44Ti-producing supernovae exceptional?

    NASA Astrophysics Data System (ADS)

    The, L.-S.; Clayton, D. D.; Diehl, R.; Hartmann, D. H.; Iyudin, A. F.; Leising, M. D.; Meyer, B. S.; Motizuki, Y.; Schönfelder, V.

    2006-05-01

    According to standard models supernovae produce radioactive 44Ti, which should be visible in gamma-rays following decay to 44Ca for a few centuries. 44Ti production is believed to be the source of cosmic 44Ca, whose abundance is well established. Yet, gamma-ray telescopes have not seen the expected young remnants of core collapse events. The 44Ti mean life of τ ≃ 89 y and the Galactic supernova rate of ≃3/100 y imply ≃several detectable 44Ti gamma-ray sources, but only one is clearly seen, the 340-year-old Cas A SNR. Furthermore, supernovae which produce much 44Ti are expected to occur primarily in the inner part of the Galaxy, where young massive stars are most abundant. Because the Galaxy is transparent to gamma-rays, this should be the dominant location of expected gamma-ray sources. Yet the Cas A SNR as the only one source is located far from the inner Galaxy (at longitude 112°). We evaluate the surprising absence of detectable supernovae from the past three centuries. We discuss whether our understanding of SN explosions, their 44Ti yields, their spatial distributions, and statistical arguments can be stretched so that this apparent disagreement may be accommodated within reasonable expectations, or if we have to revise some or all of the above aspects to bring expectations in agreement with the observations. We conclude that either core collapse supernovae have been improbably rare in the Galaxy during the past few centuries, or 44Ti-producing supernovae are atypical supernovae. We also present a new argument based on 44Ca/40Ca ratios in mainstream SiC stardust grains that may cast doubt on massive-He-cap type I supernovae as the source of most galactic 44Ca.

  10. Accretional Heating of Asymmetric Supernova Cores

    NASA Astrophysics Data System (ADS)

    Thompson, Christopher

    2000-05-01

    The role of accretion in heating a stalled bounce shock in a core-collapse supernova is investigated. We show that effective accretional heating causes an asymmetric expansion of the shock, sufficient to impart a net impulse of ~300-400 km s-1 to the neutron core. To simplify the analysis, we consider a failed accretion shock. Below such a shock, inward advection is faster than neutrino heating and the usual gain criterion does not suffice to determine a successful explosion. A mechanism that enhances buoyancy and inhibits mixing between hot and cold postshock fluid elements is required to revive the shock. We focus on the response of a magnetic field to the accretion flow. Ram heating and shearing of a low-density, magnetized fluid phase (``M-fluid'') is shown to be faster than neutrino cooling. The long duration of the accretion flow compared with the dynamical time allows for a large amplification of the magnetic energy. We calculate the stability of a spherical shock in the presence of a low-density hydrostatic atmosphere below it and show that below a critical atmospheric density the shock is unstable to a global Rayleigh-Taylor mode. We then calculate the equilibrium structure of this Rayleigh-Taylor plume as it accumulates energy and the critical size beyond which quasi-static expansion is no longer possible and its outer boundary converts to a running shock. Accretion continues while the shock expands, and an energy of ~1051 ergs is a direct consequence of the efficiency of ram heating close to the neutron core. The linear momentum imparted to the core is directly related to the mass profile of the precollapse core and explains the proper motions of (most) radio pulsars. We also estimate the net circulation imparted to the last 0.1-0.2 Msolar of collapsing material, which appears sufficient to torque the core down to a spin period of 1-100 ms. The effect of photodissociation on the shock jump conditions is calculated, and the implications for

  11. Transparent Helium in Stripped Envelope Supernovae

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.; Morozova, Viktoriya S.

    2014-09-01

    Using simple arguments based on photometric light curves and velocity evolution, we propose that some stripped envelope supernovae (SNe) show signs that a significant fraction of their helium is effectively transparent. The main pieces of evidence are the relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize helium. This means that the helium should not contribute to the shaping of the main SN light curve, and thus the total helium mass may be difficult to measure from simple light curve modeling. Conversely, such modeling may be more useful for constraining the mass of the carbon/oxygen core of the SN progenitor. Other stripped envelope SNe show higher velocities and larger velocity gradients, which require an additional opacity source (perhaps the mixing of heavier elements or radioactive nickel) to prevent the helium from being transparent. We discuss ways in which similar analysis can provide insights into the differences and similarities between SNe Ib and Ic, which will lead to a better understanding of their respective formation mechanisms.

  12. TRANSPARENT HELIUM IN STRIPPED ENVELOPE SUPERNOVAE

    SciTech Connect

    Piro, Anthony L.; Morozova, Viktoriya S.

    2014-09-01

    Using simple arguments based on photometric light curves and velocity evolution, we propose that some stripped envelope supernovae (SNe) show signs that a significant fraction of their helium is effectively transparent. The main pieces of evidence are the relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize helium. This means that the helium should not contribute to the shaping of the main SN light curve, and thus the total helium mass may be difficult to measure from simple light curve modeling. Conversely, such modeling may be more useful for constraining the mass of the carbon/oxygen core of the SN progenitor. Other stripped envelope SNe show higher velocities and larger velocity gradients, which require an additional opacity source (perhaps the mixing of heavier elements or radioactive nickel) to prevent the helium from being transparent. We discuss ways in which similar analysis can provide insights into the differences and similarities between SNe Ib and Ic, which will lead to a better understanding of their respective formation mechanisms.

  13. Supernova remnants in the GC region

    NASA Astrophysics Data System (ADS)

    Asvarov, Abdul

    2016-07-01

    Along with the central Black hole the processes of active star formation play very important role in the energetics of the Galactic center region. The SNe and their remnants (SNRs) are the main ingredients of the processes of star formation. SNRs are also the sources of electromagnetic radiation of all wavelengths from the optical to hard gamma rays. In the presented work we consider the physics of supernova remnants evolving in extreme environmental conditions which are typical for the region of the Galactic center. Because of the high density and strong inhomogeneity of the surrounding medium these objects remain practically invisible at almost all wavelengths. We model evolution of SNR taking into account the pressure of the surrounding medium and the gravitational field of the matter (stars, compact clouds, dark matter) inside the remnant. As it is well established, considerable portion of the kinetic energy of the SNR can be converted into the cosmic ray particles by diffusive shock acceleration mechanism. Therefore the effect of particle acceleration is also included in the model (with the effectiveness of acceleration as a free parameter). Using the observed radiation fluxes at different wavelengths we attempt to obtain limits on the parameters of the model of the Galactic Center, namely, the frequency of star birth, the average density of the matter and radiation field, etc.

  14. Dark matter admixed Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Leung, Shing Chi; Chu, Ming Chung; Lin, Lap Ming

    2015-04-01

    We perform two-dimensional hydrodynamic simulations for the thermonuclear explosion of Chandrasekhar-mass white dwarfs with dark matter (DM) cores in Newtonian gravity. We include a detailed nuclear reaction network and make use of the pure turbulent deflagration model as the explosion mechanism in our simulations. Our numerical results show that the general properties of the explosion depend quite sensitively on the mass of the DM core MDM. A larger MDM generally leads to a weaker explosion and a lower mass of synthesized iron-peaked elements. In particular, the total mass of 56 Ni produced can drop from about 0.3 to 0.03 Msun as MDM increases from 0.01 to 0.03 Msun. We have also constructed the bolometric light curves obtained from our simulations and found that our results match well with the observational data of sub-luminous type Ia supernovae. This work is partially supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region, China (Project No. 400910).

  15. Type Ia Supernova Models and Progenitor Scenarios

    NASA Astrophysics Data System (ADS)

    Nomoto, Ken'ichi; Kamiya, Yasuomi; Nakasato, Naohito

    2013-01-01

    We review some recent developments in theoretical studies on the connection between the progenitor systems of Type Ia supernovae (SNe Ia) and the explosion mechanisms. (1) DD-subCh: In the merging of double C+O white dwarfs (DD scenario), if the carbon detonation is induced near the white dwarf (WD) surface in the early dynamical phase, it could result in the (effectively) sub-Chandrasekhar mass explosion. (2) DD-Ch: If no surface C-detonation is ignited, the WD could grow until the Chandrasekhar mass is reached, but the outcome depends on whether the quiescent carbon shell burning is ignited and burns C+O into O+Ne+Mg. (3) SD-subCh: In the single degenerate (SD) scenario, if the He shell-flashes grow strong to induce a He detonation, it leads to the sub-Chandra explosion. (4) SD-Ch: If the He-shell flashes are not strong enough, they still produce interesting amounts of Si and S near the surface of the C+O WD before the explosion. In the Chandra mass explosion, the central density is high enough to produce electron capture elements, e.g., stable 58Ni. Observations of the emission lines of Ni in the nebular spectra provides useful diagnostics of the sub-Chandra vs. Chandra issue. The recent observations of relatively low velocity carbon near the surface of SNe Ia provide also an interesting constraint on the explosion models.

  16. NAPA Observations of Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Ryder, Stuart; Stockdale, Christopher; van Dyk, Schuyler; Panagia, Nino; Amy, Shaun; Immler, Stefan; Burlon, Davide; Kotak, Rubina; Polshaw, Joe

    2014-04-01

    We propose to continue NAPA observations of nearby core-collapse supernovae (CCSNe) to: (1) Determine the physics of SNe through the study of the mass-loss rate, absorption mechanisms, and density distribution of the circumstellar medium (CSM) laid down by the pre-SN stellar wind; (2) Improve our understanding of the various subgroupings (Type Ib, Ic, IIL, IIP, IIn, IIb) which characterise the range of CCSN progenitor systems; and (3) Provide targets for Chandra/Swift X-ray ToO which is sensitive to the thermal emission from the SN shock and, thus, complementary to the non-thermal radio observations. To date we have detected and then monitored 4 out of 6 CCSNe out to distances ~30 Mpc, something not possible prior to CABB. By combining our data with optical and X-ray observations for the Type IIb SN 2011hs and the Type IIP SN 2011ja, we could confirm that their progenitors were a Wolf-Rayet star, and a red supergiant, respectively.

  17. NAPA Observations of Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Ryder, Stuart; Stockdale, Christopher; van Dyk, Schuyler; Panagia, Nino; Amy, Shaun; Immler, Stefan; Burlon, Davide; Kotak, Rubina; Polshaw, Joe; Romero-Canizales, Cristina

    2014-10-01

    We propose to continue NAPA observations of nearby core-collapse supernovae (CCSNe) to: (1) Determine the physics of SNe through the study of the mass-loss rate, absorption mechanisms, and density distribution of the circumstellar medium (CSM) laid down by the pre-SN stellar wind; (2) Improve our understanding of the various subgroupings (Type Ib, Ic, IIL, IIP, IIn, IIb) which characterise the range of CCSN progenitor systems; and (3) Provide targets for Chandra/Swift X-ray ToO which is sensitive to the thermal emission from the SN shock and, thus, complementary to the non-thermal radio observations. To date we have detected and then monitored 4 out of 6 CCSNe out to distances ~30 Mpc, something not possible prior to CABB. By combining our data with optical and X-ray observations for the Type IIb SN 2011hs and the Type IIP SN 2011ja, we could confirm that their progenitors were a Wolf-Rayet star, and a red supergiant, respectively.

  18. The distant type Ia supernova rate

    SciTech Connect

    Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R.S.; Aldering, G.; Astier, P.; Deustua, S.E.; Fruchter, A.S.; Goldhaber, G.; Goobar, A.; Groom, D.E.; Hardin, D.; Hook, I.M.; Howell, D.A.; Irwin, M.J.; Kim, A.G.; Kim, M.Y.; Knop, R.A.; Lee, J.C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N.A.

    2002-05-20

    We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample,which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.

  19. The Multiply Imaged Strongly Lensed Supernova Refsdal

    NASA Astrophysics Data System (ADS)

    Kelly, Patrick

    2016-01-01

    In 1964, Sjur Refsdal first considered the possibility that the light from a background supernova could traverse multiple paths around a strong gravitational lens towards us. He showed that the arrival times of the supernova's light would depend on the cosmic expansion rate, as well as the distribution of matter in the lens. I will discuss the discovery of the first such multiply imaged supernova, which exploded behind the MACS J1149.6+2223 galaxy cluster. We have obtained Hubble Space Telescope grism and ground-based spectra of the four images of the supernova, which form an Einstein Cross configuration around an elliptical cluster member. These spectra as well as rest-frame optical light curves have allowed us to learn about the properties of the peculiar core-collapse supernova explosion, and contain information about the lenses' matter distribution as well as their stellar populations. A delayed image of the supernova is expected close to the galaxy cluster center as early as Fall 2015, and will serve as an unprecedented probe of the potential of a massive galaxy cluster.

  20. Supernova Debris in the Solar System

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2000-03-01

    Meteorites contain clear evidence that isotopes with short half lives (as short as 100,000 years) were present in the cloud of gas and dust (the called solar nebula) from which the Sun and planets formed. Supernovae, the powerful explosions of spent stars, produce elements, including short-lived radioactive isotopes. Given the short lifetimes, these elements must have been added immediately before solids formed in the Solar System, and it is possible that a supernova triggered the collapse of the vast interstellar cloud in which the Solar System formed. However, there is some evidence that two isotopes, aluminum-26 and manganese-53, were not distributed uniformly in the solar nebula. If correct, does this mean that the supernova debris was not mixed thoroughly into the collapsing interstellar cloud? This possibility was tested by Robert H. Nichols, Frank Podosek, and Cristine Jennings (Washington University in St. Louis) and Brad Meyer (Clemson University). They evaluated how thoroughly supernova products were mixed into the solar nebula by searching for the effects on the isotopic make up of other elements. They conclude that the explosive products of a supernova would have been mixed uniformly into the nebula. Thus, either the evidence of heterogeneous distribution of short-lived isotopes is incorrect, or some isotopes were not formed in a supernova, but came from somewhere else. This research project is one of many that link studies of meteorites, astronomical observations, and astrophysical calculations.

  1. The Distant Type Ia Supernova Rate

    DOE R&D Accomplishments Database

    Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R. S.; Aldering, G.; Astier, P.; Deustua, S. E.; Fruchter, A. S.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I. M.; Howell, D. A.; Irwin, M. J.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lee, J. C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N. A.

    2002-05-28

    We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample, which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.

  2. Dance into the fire: dust survival inside supernova remnants

    NASA Astrophysics Data System (ADS)

    Micelotta, Elisabetta R.; Dwek, Eli; Slavin, Jonathan D.

    2016-06-01

    Core collapse supernovae (CCSNe) are important sources of interstellar dust, potentially capable of producing 1 M_{⊙}) of dust in their explosively expelled ejecta. However, unlike other dust sources, the dust has to survive the passage of the reverse shock, generated by the interaction of the supernova blast wave with its surrounding medium. Knowledge of the net amount of dust produced by CCSNe is crucial for understanding the origin and evolution of dust in the local and high-redshift universe. Our goal is to identify the dust destruction mechanisms in the ejecta, and derive the net amount of dust that survives the passage of the reverse shock. To do so, we have developed analytical models for the evolution of a supernova blast wave and of the reverse shock, and the simultaneous processing of the dust inside the cavity of the supernova remnant. We have applied our models to the special case of the clumpy ejecta of the remnant of Cassiopeia A (Cas A), assuming that the dust (silicates and carbon grains) resides in cool oxygen-rich ejecta clumps which are uniformly distributed within the remnant and surrounded by a hot X-ray emitting plasma (smooth ejecta). The passage of the reverse shock through the clumps gives rise to a relative gas-grain motion and also destroys the clumps. While residing in the ejecta clouds, dust is processed via kinetic sputtering, which is terminated either when the grains escape the clumps, or when the clumps are destroyed by the reverse shock. In either case, grain destruction proceeds thereafter by thermal sputtering in the hot shocked smooth ejecta. We find that 12 and 16 percent of silicate and carbon dust, respectively, survive the passage of the reverse shock by the time the shock has reached the center of the remnant. These fractions depend on the morphology of the ejecta and the medium into which the remnant is expanding, as well as the composition and size distribution of the grains that formed in the ejecta. Results will

  3. Two Superluminous Supernovae from the Early Universe Discovered by the Supernova Legacy Survey

    NASA Astrophysics Data System (ADS)

    Howell, D. A.; Kasen, D.; Lidman, C.; Sullivan, M.; Conley, A.; Astier, P.; Balland, C.; Carlberg, R. G.; Fouchez, D.; Guy, J.; Hardin, D.; Pain, R.; Palanque-Delabrouille, N.; Perrett, K.; Pritchet, C. J.; Regnault, N.; Rich, J.; Ruhlmann-Kleider, V.

    2013-12-01

    We present spectra and light curves of SNLS 06D4eu and SNLS 07D2bv, two hydrogen-free superluminous supernovae (SNe) discovered by the Supernova Legacy Survey. At z = 1.588, SNLS 06D4eu is the highest redshift superluminous SN with a spectrum, at MU = -22.7 it is one of the most luminous SNe ever observed, and it gives a rare glimpse into the rest-frame ultraviolet where these SNe put out their peak energy. SNLS 07D2bv does not have a host galaxy redshift, but on the basis of the SN spectrum, we estimate it to be at z ~ 1.5. Both SNe have similar observer-frame griz light curves, which map to rest-frame light curves in the U band and UV, rising in ~20 rest-frame days or longer and declining over a similar timescale. The light curves peak in the shortest wavelengths first, consistent with an expanding blackbody starting near 15,000 K and steadily declining in temperature. We compare the spectra with theoretical models, and we identify lines of C II, C III, Fe III, and Mg II in the spectra of SNLS 06D4eu and SCP 06F6 and find that they are consistent with an expanding explosion of only a few solar masses of carbon, oxygen, and other trace metals. Thus, the progenitors appear to be related to those suspected for SNe Ic. A high kinetic energy, 1052 erg, is also favored. Normal mechanisms of powering core-collapse or thermonuclear SNe do not seem to work for these SNe. We consider models powered by 56Ni decay and interaction with circumstellar material, but we find that the creation and spin-down of a magnetar with a period of 2 ms, a magnetic field of 2 × 1014 G, and a 3 M ⊙ progenitor provides the best fit to the data.

  4. Tracing Dust Grains from Supernovae to The Solar Nebulae

    NASA Astrophysics Data System (ADS)

    Luebbers, Ian; Goodson, Matthew; Heitsch, Fabian

    2016-01-01

    Short-lived radioisotopes (SLRs) were present in the early solar system, providing evidence that the solar system was impacted by a supernova prior to or during its formation. However, hydrodynamical models of the injection of SLRs fail to achieve sufficient mixing, presenting a challenge to this hypothesis. We propose the injection of SLRs via dust grains in an attempt to overcome the mixing barrier. To test this hypothesis we simulate injection into a presolar gas cloud under various assumptions. Our results suggest that SLR transport in dust grains is a viable mechanism for generating observed SLR abundances.

  5. A neutron-star-driven X-ray flash associated with supernova SN 2006aj.

    PubMed

    Mazzali, Paolo A; Deng, Jinsong; Nomoto, Ken'ichi; Sauer, Daniel N; Pian, Elena; Tominaga, Nozomu; Tanaka, Masaomi; Maeda, Keiichi; Filippenko, Alexei V

    2006-08-31

    Supernovae connected with long-duration gamma-ray bursts (GRBs) are hyper-energetic explosions resulting from the collapse of very massive stars ( approximately 40 M\\circ, where M\\circ is the mass of the Sun) stripped of their outer hydrogen and helium envelopes. A very massive progenitor, collapsing to a black hole, was thought to be a requirement for the launch of a GRB. Here we report the results of modelling the spectra and light curve of SN 2006aj (ref. 9), which demonstrate that the supernova had a much smaller explosion energy and ejected much less mass than the other GRB-supernovae, suggesting that it was produced by a star whose initial mass was only approximately 20 M\\circ. A star of this mass is expected to form a neutron star rather than a black hole when its core collapses. The smaller explosion energy of SN 2006aj is matched by the weakness and softness of GRB 060218 (an X-ray flash), and the weakness of the radio flux of the supernova. Our results indicate that the supernova-GRB connection extends to a much broader range of stellar masses than previously thought, possibly involving different physical mechanisms: a 'collapsar' (ref. 8) for the more massive stars collapsing to a black hole, and magnetic activity of the nascent neutron star for the less massive stars.

  6. THE ANGULAR MOMENTA OF NEUTRON STARS AND BLACK HOLES AS A WINDOW ON SUPERNOVAE

    SciTech Connect

    Miller, J. M.; Miller, M. C.; Reynolds, C. S.

    2011-04-10

    It is now clear that a subset of supernovae displays evidence for jets and is observed as gamma-ray bursts (GRBs). The angular momentum distribution of massive stellar endpoints provides a rare means of constraining the nature of the central engine in core-collapse explosions. Unlike supermassive black holes, the spin of stellar-mass black holes in X-ray binary systems is little affected by accretion and accurately reflects the spin set at birth. A modest number of stellar-mass black hole angular momenta have now been measured using two independent X-ray spectroscopic techniques. In contrast, rotation-powered pulsars spin down over time, via magnetic braking, but a modest number of natal spin periods have now been estimated. For both canonical and extreme neutron star parameters, statistical tests strongly suggest that the angular momentum distributions of black holes and neutron stars are markedly different. Within the context of prevalent models for core-collapse supernovae, the angular momentum distributions are consistent with black holes typically being produced in GRB-like supernovae with jets and with neutron stars typically being produced in supernovae with too little angular momentum to produce jets via magnetohydrodynamic processes. It is possible that neutron stars are with high spin initially and rapidly spun down shortly after the supernova event, but the available mechanisms may be inconsistent with some observed pulsar properties.

  7. Experimental challenge to nucleosynthesis in core-collapse supernovae - Very early epoch of type II SNe -

    NASA Astrophysics Data System (ADS)

    Kubono, S.; Binh, Dam N.; Hayakawa, S.; Hashimoto, T.; Kahl, D. M.; Yamaguchi, H.; Wakabayashi, Y.; Teranishi, T.; Iwasa, N.; Komatsubara, T.; Kato, S.; Chen, A.; Cherubini, S.; Choi, S. H.; Hahn, I. S.; He, J. J.; Khiem, Le H.; Lee, C. S.; Kwon, Y. K.; Wanajo, S.; Janka, H.-T.

    2013-05-01

    Nucleosynthesis is one of the keys in studying the mechanism of core-collapse supernovae, which is an interesting challenge for modern science. The νp-process, which is similar to an explosive hydrogen burning process, has been proposed as the most probable process in the very early epoch of type II supernovae. Here, we discuss our experimental efforts for the νp-process, the first extensive direct measurements of the (α,p) reactions on bottle-neck proto-rich nuclei in light mass regions. Other challenges for the νp-process study are also discussed.

  8. Effects of a nonfactorizable metric on neutrino oscillation inside a supernova

    NASA Astrophysics Data System (ADS)

    Mahanta, Uma; Mohanty, Subhendra

    2000-10-01

    In this paper we construct the interaction potential between the dense supernova core and neutrinos due to the exchange of light radions in the Randall-Sundrum scenario. We then show that the radion exchange potential affects the neutrino oscillation phenomenology inside the supernova significantly if the radion mass is less than around 1 GeV. In order for the Bethe-Wilson mechanism for heating the envelope and r-process neucleosynthesis to be operative, the radion mass must be greater than 1 GeV. Bounds on the radion mass of the same order of magnitude can also be derived from TASSO and CLEO data on B decays.

  9. Detecting the QCD phase transition in the next Galactic supernova neutrino burst

    SciTech Connect

    Dasgupta, Basudeb; Fischer, Tobias; Liebendoerfer, Matthias; Horiuchi, Shunsaku; Mirizzi, Alessandro; Sagert, Irina; Schaffner-Bielich, Juergen

    2010-05-15

    Predictions of the thermodynamic conditions for phase transitions at high baryon densities and large chemical potentials are currently uncertain and largely phenomenological. Neutrino observations of core-collapse supernovae can be used to constrain the situation. Recent simulations of stellar core collapse that include a description of quark matter predict a sharp burst of {nu}{sub e} several hundred milliseconds after the prompt {nu}{sub e} neutronization burst. We study the observational signatures of that {nu}{sub e} burst at current neutrino detectors--IceCube and Super-Kamiokande. For a Galactic core-collapse supernova, we find that signatures of the QCD phase transition can be detected, regardless of the neutrino oscillation scenario. The detection would constitute strong evidence of a phase transition in the stellar core, with implications for the equation of state at high matter density and the supernova explosion mechanism.

  10. Appearance of light clusters in post-bounce evolution of core-collapse supernovae

    SciTech Connect

    Sumiyoshi, Kohsuke; Roepke, Gerd

    2008-05-15

    We explore the abundance of light clusters in core-collapse supernovae at post-bounce stage in a quantum statistical approach. Adopting the profile of a supernova core from detailed numerical simulations, we study the distribution of light bound clusters up to {alpha} particles (2{<=}A{<=}4) as well as heavy nuclei (A>4) in dense matter at finite temperature. Within the frame of a cluster-mean-field approach, the abundances of light clusters are evaluated accounting for self-energy, Pauli blocking, and effects of continuum correlations. We find that deuterons and tritons, in addition to {sup 3}He and {sup 4}He, appear abundantly in a wide region from the surface of the proto-neutron star to the position of the shock wave. The appearance of light clusters may modify the neutrino emission in the cooling region and the neutrino absorption in the heating region and, thereby, influence the supernova mechanism.

  11. Two- and three-dimensional simulations of core-collapse supernovae with CHIMERA

    SciTech Connect

    Lentz, Eric J; Bruenn, S. W.; Harris, James A; Chertkow, Merek A; Hix, William Raphael; Mezzacappa, Anthony; Messer, Bronson; Blondin, J. M.; Marronetti, Pedro; Mauney, Christopher M; Yakunin, Konstantin

    2012-01-01

    Ascertaining the core-collapse supernova mechanism is a complex, and yet unsolved, problem dependent on the interaction of general relativity, hydrodynamics, neutrino transport, neutrino-matter interactions, and nuclear equations of state and reaction kinetics. Ab initio modeling of core-collapse supernovae and their nucleosynthetic outcomes requires care in the coupling and approximations of the physical components. We have built our multi-physics CHIMERA code for supernova modeling in 1-, 2-, and 3-D, using ray-by-ray neutrino transport, approximate general relativity, and detailed neutrino and nuclear physics. We discuss some early results from our current series of exploding 2D simulations and our work to perform computationally tractable simulations in 3D using the ``Yin--Yang'' grid.

  12. HUBBLE SPIES MOST DISTANT SUPERNOVA EVER SEEN

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Using NASA's Hubble Space Telescope, astronomers pinpointed a blaze of light from the farthest supernova ever seen, a dying star that exploded 10 billion years ago. The detection and analysis of this supernova, called 1997ff, is greatly bolstering the case for the existence of a mysterious form of dark energy pervading the cosmos, making galaxies hurl ever faster away from each other. The supernova also offers the first glimpse of the universe slowing down soon after the Big Bang, before it began speeding up. This panel of images, taken with the Wide Field and Planetary Camera 2, shows the supernova's cosmic neighborhood; its home galaxy; and the dying star itself. Astronomers found this supernova in 1997 during a second look at the northern Hubble Deep Field [top panel], a tiny region of sky first explored by the Hubble telescope in 1995. The image shows the myriad of galaxies Hubble spied when it peered across more than 10 billion years of time and space. The white box marks the area where the supernova dwells. The photo at bottom left is a close-up view of that region. The white arrow points to the exploding star's home galaxy, a faint elliptical. Its redness is due to the billions of old stars residing there. The picture at bottom right shows the supernova itself, distinguished by the white dot in the center. Although this stellar explosion is among the brightest beacons in the universe, it could not be seen directly in the Hubble images. The stellar blast is so distant from Earth that its light is buried in the glow of its host galaxy. To find the supernova, astronomers compared two pictures of the 'deep field' taken two years apart. One image was of the original Hubble Deep Field; the other, the follow-up deep-field picture taken in 1997. Using special computer software, astronomers then measured the light from the galaxies in both images. Noting any changes in light output between the two pictures, the computer identified a blob of light in the 1997 picture

  13. Acceleration of cosmic rays in supernova-remnants

    NASA Technical Reports Server (NTRS)

    Dorfi, E. A.; Drury, L. O.

    1985-01-01

    It is commonly accepted that supernova-explosions are the dominant source of cosmic rays up to an energy of 10 to the 14th power eV/nucleon. Moreover, these high energy particles provide a major contribution to the energy density of the interstellar medium (ISM) and should therefore be included in calculations of interstellar dynamic phenomena. For the following the first order Fermi mechanism in shock waves are considered to be the main acceleration mechanism. The influence of this process is twofold; first, if the process is efficient (and in fact this is the cas) it will modify the dynamics and evolution of a supernova-remnant (SNR), and secondly, the existence of a significant high energy component changes the overall picture of the ISM. The complexity of the underlying physics prevented detailed investigations of the full non-linear selfconsistent problem. For example, in the context of the energy balance of the ISM it has not been investigated how much energy of a SN-explosion can be transfered to cosmic rays in a time-dependent selfconsistent model. Nevertheless, a lot of progress was made on many aspects of the acceleration mechanism.

  14. Atomic Data Applications for Supernova Modeling

    NASA Astrophysics Data System (ADS)

    Fontes, Christopher J.

    2013-06-01

    The modeling of supernovae (SNe) incorporates a variety of disciplines, including hydrodynamics, radiation transport, nuclear physics and atomic physics. These efforts require numerical simulation of the final stages of a star's life, the supernova explosion phase, and the radiation that is subsequently emitted by the supernova remnant, which can occur over a time span of tens of thousands of years. While there are several different types of SNe, they all emit radiation in some form. The measurement and interpretation of these spectra provide important information about the structure of the exploding star and the supernova engine. In this talk, the role of atomic data is highlighted as iit pertains to the modeling of supernova spectra. Recent applications [1,2] involve the Los Alamos OPLIB opacity database, which has been used to provide atomic opacities for modeling supernova plasmas under local thermodynamic equilibrium (LTE) conditions. Ongoing work includes the application of atomic data generated by the Los Alamos suite of atomic physics codes under more complicated, non-LTE conditions [3]. As a specific, recent example, a portion of the x-ray spectrum produced by Tycho's supernova remnant (SN 1572) will be discussed [4]. [1] C.L. Fryer et al, Astrophys. J. 707, 193 (2009). [2] C.L. Fryer et al, Astrophys. J. 725, 296 (2009). [3] C.J. Fontes et al, Conference Proceedings for ICPEAC XXVII, J. of Phys: Conf. Series 388, 012022 (2012). [4] K.A. Eriksen et al, Presentation at the 2012 AAS Meeting (Austin, TX). (This work was performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.)

  15. Gamma rays and supernova explosions. [high temperature radiation measurement

    NASA Technical Reports Server (NTRS)

    Arnett, W. D.

    1977-01-01

    Thermal radiation associated with the explosion of supernovae is investigated. High temperature is required to produce copious gamma radiation of this sort. It appears that type 11 supernovae do not release much of their energy as gamma ray continuum radiation.

  16. Light echoes - Type II supernovae

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1987-01-01

    Type II supernovae (SNs) light curves show a remarkable range of shapes. Data have been collected for the 12 Type II SNs that have light curve information for more than four months past maximum. Contrary to previous reports, it is found that (1) the decay rate after 100 days past maximum varies by almost an order of magnitude and (2) the light curve shapes are not bimodally distributed, but actually form a continuum. In addition, it is found that the extinctions to the SNs are related to the light curve shapes. This implies that the absorbing dust is local to the SNs. The dust is likely to be part of a circumstellar shell emitted by the SN progenitor that Dwek (1983) has used to explain infrared echoes. The optical depth of the shell can get quite large. In such cases, it is found that the photons scattered and delayed by reflection off dust grains will dominate the light curve several months after peak brightness. This 'light echo' offers a straightforward explanation of the diversity of Type II SN light curves.

  17. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Click on the image for the movie

    For the first time, a multiwavelength three-dimensional reconstruction of a supernova remnant has been created. This stunning visualization of Cassiopeia A, or Cas A, the result of an explosion approximately 330 years ago, uses data from several telescopes: X-ray data from NASA's Chandra X-ray Observatory, infrared data from NASA's Spitzer Space Telescope and optical data from the National Optical Astronomy Observatory 4-meter telescope at Kitt Peak, Ariz., and the Michigan-Dartmouth-MIT 2.4-meter telescope, also at Kitt Peak. In this visualization, the green region is mostly iron observed in X-rays. The yellow region is a combination of argon and silicon seen in X-rays, optical, and infrared including jets of silicon plus outer debris seen in the optical. The red region is cold debris seen in the infrared. Finally, the blue reveals the outer blast wave, most prominently detected in X-rays.

    Most of the material shown in this visualization is debris from the explosion that has been heated by a shock moving inwards. The red material interior to the yellow/orange ring has not yet encountered the inward moving shock and so has not yet been heated. These unshocked debris were known to exist because they absorb background radio light, but they were only recently discovered in infrared emission with Spitzer. The blue region is composed of gas surrounding the explosion that was heated when it was struck by the outgoing blast wave, as clearly seen in Chandra images.

    To create this visualization, scientists took advantage of both a previously known phenomenon the Doppler effect and a new technology that bridges astronomy and medicine. When elements created inside a supernova, such as iron, silicon and argon, are heated they emit light at certain wavelengths. Material moving towards the observer will have shorter wavelengths and material moving away will have longer

  18. Supernova Feedback in Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Dubois, Y.; Teyssier, R.

    2008-06-01

    The hierarchical model of galaxy formation is known to suffer from the ``over-cooling'' problem: the high efficiency of radiative cooling results in too much baryonic matter in a condensed phase (namely, cold gas or stars) when compared to observations. A solution proposed by many authors (see Springel & Hernquist 2003; Fujita et al. 2004; Rasera & Teyssier 2005) is feedback due to supernova (SN) driven winds or active galactic nuclei. Modeling SN feedback by direct injection of thermal energy usually turns out to be inefficient in galaxy-scale simulations, due to the quasi-instantaneous radiation of the SN energy. To avoid this effect, we have developed a new method to incorporate SN feedback in cosmological simulations: using temporary test particles, we reproduce explicitly a local Sedov blast wave solution in the gas distribution. We have performed several self-consistent runs of isolated Navarro, Frenk, & White (1996, hereafter NFW) halos with radiative cooling, star formation, SN feedback and metal enrichment using the adaptive mesh refinement code RAMSES (Teyssier 2002). We have explored the influence of SN feedback on the formation and the evolution of galaxies with different masses. We have studied the efficiency of the resulting galactic winds, as a function of the mass of the parent halo.

  19. Du Pont Classifications of 2 ASAS-SN Supernovae

    NASA Astrophysics Data System (ADS)

    Shappee, Benjamin J.; Prieto, J. L.; Rich, J.; Madore, B.; Poetrodjojo, Henry; D'Agostino, Joshua

    2016-09-01

    We report optical spectroscopy (range 370-910 nm) of two supernovae discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN; Shappee et al. 2014, ApJ, 788, 48) using the du Pont 2.5-m telescope (+ WFCCD) at Las Campanas Observatory on Aug. 30 and Sep. 1 2016 UT. We performed a cross-correlation with a library of supernova spectra using the "Supernova Identification" code (SNID; Blondin and Tonry 2007, Ap.J.

  20. Du Pont Classifications of 4 ASAS-SN Supernovae

    NASA Astrophysics Data System (ADS)

    Morrell, N.; Shappee, Benjamin J.

    2016-08-01

    We report optical spectroscopy (range 370-910 nm) of four supernovae discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN; Shappee et al. 2014, ApJ, 788, 48) using the du Pont 2.5-m telescope (+ WFCCD) at Las Campanas Observatory on July 31 and Aug. 01 2016 UT. We performed a cross-correlation with a library of supernova spectra using the "Supernova Identification" code (SNID; Blondin and Tonry 2007, Ap.J.

  1. Calculated late time spectra of supernovae

    SciTech Connect

    Axelrod, T.S.

    1987-10-30

    We consider here the nebular phase spectra of supernovae whose late time luminosity is provided by the radioactive decay of /sup 56/Ni and /sup 56/Co synthesized in the explosion. A broad variety of supernovae are known or suspected to fall in this category. This includes all SNIa and SNIb, and at least some SNII, in particular SN1987a. At sufficiently late times the expanding supernova becomes basically nebular in character due to its decreasing optical depth. The spectra produced during this stage contain information on the density and abundance structure of the entire supernova, as opposed to spectra near maximum light which are affected only by the outermost layers. A numerical model for nebular spectrum formation is therefore potentially very valuable for answering currently outstanding questions about the post-explosion supernova structure. As an example, we can hope to determine the degree of mixing which occurs between the layers of the ''onion-skin'' abundance structure predicted by current one dimensional explosion calculations. In the sections which follow, such a numerical model is briefly described and then applied to SN1972e, a typical SNIa, SN1985f, an SNIb, and finally to SN1987a. In the case of SN1987a predicted spectra are presented for the wavelength range from 1 to 100 microns at a time 300 days after explosion. 18 refs., 6 figs.

  2. High Rate for Type IC Supernovae

    SciTech Connect

    Muller, R.A.; Marvin-Newberg, H.J.; Pennypacker, Carl R.; Perlmutter, S.; Sasseen, T.P.; Smith, C.K.

    1991-09-01

    Using an automated telescope we have detected 20 supernovae in carefully documented observations of nearby galaxies. The supernova rates for late spiral (Sbc, Sc, Scd, and Sd) galaxies, normalized to a blue luminosity of 10{sup 10} L{sub Bsun}, are 0.4 h{sup 2}, 1.6 h{sup 2}, and 1.1 h{sup 2} per 100 years for SNe type la, Ic, and II. The rate for type Ic supernovae is significantly higher than found in previous surveys. The rates are not corrected for detection inefficiencies, and do not take into account the indications that the Ic supernovae are fainter on the average than the previous estimates; therefore the true rates are probably higher. The rates are not strongly dependent on the galaxy inclination, in contradiction to previous compilations. If the Milky Way is a late spiral, then the rate of Galactic supernovae is greater than 1 per 30 {+-} 7 years, assuming h = 0.75. This high rate has encouraging consequences for future neutrino and gravitational wave observatories.

  3. Neutrino emission from nearby supernova progenitors

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi; Takahashi, Koh; Umeda, Hideyuki

    2016-05-01

    Neutrinos have an important role for energy loss process during advanced evolution of massive stars. Although the luminosity and average energy of neutrinos during the Si burning are much smaller than those of supernova neutrinos, these neutrinos are expected to be detected by the liquid scintillation neutrino detector KamLAND if a supernova explosion occurs at the distance of ~100 parsec. We investigate the neutrino emission from massive stars during advanced evolution. We calculate the evolution of the energy spectra of neutrinos produced through electron-positron pair-annihilation in the supernova progenitors with the initial mass of 12, 15, and 20 M ⊙ during the Si burning and core-collapse stages. The neutrino emission rate increases from ~ 1050 s-1 to ~ 1052 s-1. The average energy of electron-antineutrinos is about 1.25 MeV during the Si burning and gradually increases until the core-collapse. For one week before the supernova explosion, the KamLAND detector is expected to observe 12-24 and 6-13 v¯e events in the normal and inverted mass hierarchies, respectively, if a supernova explosion of a 12-20 M ⊙ star occurs at the distance of 200 parsec, corresponding to the distance to Betelgeuse. Observations of neutrinos from SN progenitors have a possibility to constrain the core structure and the evolution just before the core collapse of massive stars.

  4. Emission from Pair Instability Supernovae with Rotation

    NASA Astrophysics Data System (ADS)

    Chatzopoulos, Emmanouil; Van Rossum, Daniel R; Whalen, Daniel J.

    2014-08-01

    Pair Instability Supernovae have been suggested as candidates for some Super Luminous Supernovae, like SN 2007bi, and can also be one of the dominant types of explosion occurring in the early Universe from massive, zero-metallicity Population III stars. The progenitors of such events can be rapidly rotating therefore exhibiting a differentevolutionary path due to the effects of rotationally-induced mixing and mass-loss.Proper identification of such events requires rigorous radiation hydrodynamics and non-localthermal equilibrium calculations that capture not only the behavior of the light curve but also the spectral evolution of these events accurately. We present radiation hydrodynamics and local and non-local thermal equilibrium radiation transport calculations for 90-140 Msun rotating pair-instability supernovae covering both the shock break-out and late light curve phases. We find that for a variety of progenitor masses these events are too dim and too red in color to account for so far observed super-luminous supernovae and do not seem to matchother known events, in terms of spectral appearance. We discuss the qualitative differences between different radiation transport treatments and compare our results with previous results from non-rotating pair-instability supernovae.

  5. Superluminous Supernovae: No Threat from Eta Carinae

    NASA Astrophysics Data System (ADS)

    Thomas, Brian; Melott, A. L.; Fields, B. D.; Anthony-Twarog, B. J.

    2008-05-01

    Recently Supernova 2006gy was noted as the most luminous ever recorded, with a total radiated energy of 1044 Joules. It was proposed that the progenitor may have been a massive evolved star similar to η Carinae, which resides in our own galaxy at a distance of about 2.3 kpc. η Carinae appears ready to detonate. Although it is too distant to pose a serious threat as a normal supernova, and given its rotation axis is unlikely to produce a Gamma-Ray Burst oriented toward the Earth, η Carinae is about 30,000 times nearer than 2006gy, and we re-evaluate it as a potential superluminous supernova. We find that given the large ratio of emission in the optical to the X-ray, atmospheric effects are negligible. Ionization of the atmosphere and concomitant ozone depletion are unlikely to be important. Any cosmic ray effects should be spread out over 104 y, and similarly unlikely to produce any serious perturbation to the biosphere. We also discuss a new possible effect of supernovae, endocrine disruption induced by blue light near the peak of the optical spectrum. This is a possibility for nearby supernovae at distances too large to be considered "dangerous” for other reasons. However, due to reddening and extinction by the interstellar medium, η Carinae is unlikely to trigger such effects to any significant degree.

  6. Snapping Supernovae at z>1.7

    SciTech Connect

    Aldering, Greg; Kim, Alex G.; Kowalski, Marek; Linder, Eric V.; Perlmutter, Saul

    2006-07-03

    We examine the utility of very high redshift Type Ia supernovae for cosmology and systematic uncertainty control. Next generation space surveys such as the Supernova/Acceleration Probe (SNAP) will obtain thousands of supernovae at z>1.7, beyond the design redshift for which the supernovae will be exquisitely characterized. We find that any z gtrsim 2 standard candles' use for cosmological parameter estimation is quite modest and subject to pitfalls; we examine gravitational lensing, redshift calibration, and contamination effects in some detail. The very high redshift supernovae - both thermonuclear and core collapse - will provide copious interesting information on star formation, environment, and evolution. However, the new observational systematics that must be faced, as well as the limited expansion of SN-parameter space afforded, does not point to high value for 1.7

  7. Analysis of IUE Observations of Supernovae

    NASA Technical Reports Server (NTRS)

    Kirshner, Robert P.

    1996-01-01

    This program supported the analysis of IUE observations of supernovae. One aspect was a Target-of-Opportunity program to observe bright supernovae which was applied to SN 1993J in M81, and another was continuing analysis of the IUE data from SN 1987A. Because of its quick response time, the IUE satellite has continued to provide useful data on the ultraviolet spectra of supernovae. Even after the launch of the Hubble Space Telescope, which has much more powerful ultraviolet spectrometers, the IUE has enabled us to obtain early and frequent measurements of ultraviolet radiation: this information has been folded in with our HST data to create unique observations of supernova which can be interpreted to give powerful constraints on the physical properties of the exploding stars. Our chief result in the present grant period was the completion of a detailed reanalysis of the data on the circumstellar shell of SN 1987A. The presence of narrow high-temperature mission lines from nitrogen-rich gas close to SN 1987A has been the principal observational constraint on the evolution of the supernova's progenitor. Our new analysis shows that the onset of these lines, their rise to maximum, and their subsequent fading can be understood in the context of a model for the photoionization of circumstellar matter.

  8. Supernova experiments on the Nova Laser

    SciTech Connect

    Kane, J.; Arnett, D.; Remington, B.A.; Glendinning, S.G.; Wallace, R.; Rubenchik, A.; Fryxell, B.A.

    1997-12-02

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in [l]. The Nova laser is used to generate a 10-15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth, due to the Richtmyer-Meshkov and Rayleigh-Taylor instabilities as the interface decelerates. This resembles the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few x10{sup 3} s. The experiment is modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS. Results of the experiments and simulations are presented. New analysis of the bubble velocity is presented, as well as a study of 2D vs. 3D difference in growth at the He-H interface of SN 1987A.

  9. Supernova Experiments on the Nova Laser

    SciTech Connect

    Kane, J.; Arnett, D.; Remington, B. A.; Glendinning, S. G.; Bazan, G.; Drake, R. P.; Fryxell, B. A.

    2000-04-01

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported by Kane et al. in a recent paper. The Nova laser is used to generate a 10-15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth, due to the Richtmeyer-Meshkov instability, and to the Rayleigh-Taylor instability as the interface decelerates. This resembles the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few times 10{sup 3} s. The experiment is modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS. Results of the experiments and simulations are presented. We also present new analysis of the bubble velocity, a study of two-dimensional versus three-dimensional difference in growth at the He-H interface of SN 1987A, and designs for two-dimensional versus three-dimensional hydro experiments. (c) 2000 The American Astronomical Society.

  10. Scaling supernova hydrodynamics to the laboratory

    SciTech Connect

    Kane, J O; Remington, B A; Arnett, D; Fryxell, B A; Drake, R P

    1998-11-10

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, they are attempting to rigorously scale the physics of the laboratory in supernova. The scaling of hydrodynamics on microscopic laser scales to hydrodynamics on the SN-size scales is presented and requirements established. Initial results were reported in [1]. Next the appropriate conditions are generated on the NOVA laser. 10-15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth, due to the Richtmyer-Meshkov instability and to the Rayleigh-Taylor instability as the interface decelerates is generated. This scales the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few x10{sup 3} s. The experiment is modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS. Results of the experiments and simulations are presented. Analysis of the spike bubble velocities using potential flow theory and Ott thin shell theory is presented, as well as a study of 2D vs. 3D difference in growth at the He-H interface of Sn 1987A.

  11. The secondary supernova machine: Gravitational compression, stored Coulomb energy, and SNII displays

    NASA Astrophysics Data System (ADS)

    Clayton, Donald D.; Meyer, Bradley S.

    2016-04-01

    Radioactive power for several delayed optical displays of core-collapse supernovae is commonly described as having been provided by decays of 56Ni nuclei. This review analyses the provenance of that energy more deeply: the form in which that energy is stored; what mechanical work causes its storage; what conservation laws demand that it be stored; and why its release is fortuitously delayed for about 106 s into a greatly expanded supernova envelope. We call the unifying picture of those energy transfers the secondary supernova machine owing to its machine-like properties; namely, mechanical work forces storage of large increases of nuclear Coulomb energy, a positive energy component within new nuclei synthesized by the secondary machine. That positive-energy increase occurs despite the fusion decreasing negative total energy within nuclei. The excess of the Coulomb energy can later be radiated, accounting for the intense radioactivity in supernovae. Detailed familiarity with this machine is the focus of this review. The stored positive-energy component created by the machine will not be reduced until roughly 106 s later by radioactive emissions (EC and β +) owing to the slowness of weak decays. The delayed energy provided by the secondary supernova machine is a few × 1049 erg, much smaller than the one percent of the 1053 erg collapse that causes the prompt ejection of matter; however, that relatively small stored energy is vital for activation of the late displays. The conceptual basis of the secondary supernova machine provides a new framework for understanding the energy source for late SNII displays. We demonstrate the nuclear dynamics with nuclear network abundance calculations, with a model of sudden compression and reexpansion of the nuclear gas, and with nuclear energy decompositions of a nuclear-mass law. These tools identify excess Coulomb energy, a positive-energy component of the total negative nuclear energy, as the late activation energy. If the

  12. Shock-turbulence interaction in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Abdikamalov, Ernazar; Zhaksylykov, Azamat; Radice, David; Berdibek, Shapagat

    2016-10-01

    Nuclear shell burning in the final stages of the lives of massive stars is accompanied by strong turbulent convection. The resulting fluctuations aid supernova explosion by amplifying the non-radial flow in the post-shock region. In this work, we investigate the physical mechanism behind this amplification using a linear perturbation theory. We model the shock wave as a one-dimensional planar discontinuity and consider its interaction with vorticity and entropy perturbations in the upstream flow. We find that, as the perturbations cross the shock, their total turbulent kinetic energy is amplified by a factor of ˜2, while the average linear size of turbulent eddies decreases by about the same factor. These values are not sensitive to the parameters of the upstream turbulence and the nuclear dissociation efficiency at the shock. Finally, we discuss the implication of our results for the supernova explosion mechanism. We show that the upstream perturbations can decrease the critical neutrino luminosity for producing explosion by several per cent.

  13. Very low energy supernovae and their resulting transients

    NASA Astrophysics Data System (ADS)

    Lovegrove, Elizabeth

    Core-collapse supernovae play a key role in many of astrophysical processes, but the details of how these explosive events work remain elusive. Many questions about the CCSN explosion mechanism and progenitor stars could be answered by either detecting very-low-energy supernovae (VLE SNe) or alternately placing a tight upper bound on their fraction of the CCSN population. However, VLE SNe are by definition dim events. Many VLE SNe result from the failure of the standard CCSN explosion mechanism, meaning that any observable signature must be created by secondary processes either before or during the collapse. In this dissertation I examine alternate means of producing transients in otherwise-failed CCSNe and consider the use of shock breakout flashes to both detect VLE SNe and retrieve progenitor star information. I begin by simulating neutrino-mediated mass loss in CCSNe progenitors to show that a dim, unusual, but still observable transient can be produced. I then simulate shock breakout flashes in VLE SNe for both the purposes of detection as well as extracting information about the exploding star. I discuss particular challenges of modeling shock breakout at low energies and behaviors unique to this regime, in particular the behavior of the spectral temperature. All simulations in this dissertation were done with the CASTRO radiation-hydrodynamic code.

  14. Tests of Environmental Effects on Type Ia Supernova Production

    NASA Astrophysics Data System (ADS)

    Sadler, Suzanna M.; Strolger, L.; Wolff, S.

    2011-01-01

    The host galaxy environments of type Ia supernovae (SNe Ia) provide our best opportunity for constraining the mechanism(s) of the SN Ia progenitor system, i.e., the stars involved, the incubation times, and the sensitivity of SNe Ia to changes in the local gas-phase metallicity. The latter can affect the luminosity of the resultant event, and possibly the success in ultimately yielding a SN Ia. We seek to solidify possible environmental trends in SN Ia rates from direct measures of host galaxy properties, using the sample collected by the Nearby Galaxies Supernova Search project. This study will uncover which has the greatest influence on SN Ia production efficiency: parent population age, rate of star-formation, or metallicity. Here, we will show some preliminary results from SSP model fitting (of age and [Fe/H]) to a selection of hosts obtained thus far from this study. The complete sample will provide a validity test of the mostly indirect trends being established for SNe Ia from the LOSS, SDSS, SNfactory and other surveys, and may ultimately steer future investigations towards more precise SN Ia cosmology.

  15. VLA radio upper limit on Type IIn Supernova 2008S

    NASA Astrophysics Data System (ADS)

    Chandra, Poonam; Soderberg, Alicia

    2008-02-01

    Poonam Chandra and Alicia Soderberg report on behalf of a larger collaboration: We observed type IIn supernova SN 2008S (CBET 1234) with the Very Large Array (VLA) on 2008, February 10.62 UT. We do not detect any radio emission at the supernova position (CBET 1234). The flux density at the supernova position is -62 +/- 36 uJy.

  16. Imagery and spectroscopy of supernova remnants and H-2 regions

    NASA Technical Reports Server (NTRS)

    Dufour, R. J.

    1984-01-01

    Research activities relating to supernova remnants were summarized. The topics reviewed include: progenitor stars of supernova remnants, UV/optical/radio/X-ray imagery of selected regions in the Cygnus Loop, UV/optical spectroscopy of the Cygnus Loop spur, and extragalactic supernova remnant spectra.

  17. Connecting the high- and low-energy Universe: dust processing inside Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Micelotta, Elisabetta; Dwek, Eli; Slavin, Jonathan

    2015-09-01

    The recent detection of large amounts of dust (> 10(7) M_⊙) at very high redshift (z > 6) raises a fundamental question about the origin of such dust. The main dust producers, i. e., the stars populating the Red Giant Branch and the Asymptotic Giant Branch (RGB and AGB stars) did not have time to evolve. From an evolutionary point of view, young supernovae (SNe) could represent a viable source of dust in high-redshift galaxies, however, a critical issue still needs to be addressed. While recent observations have demonstrated that supernovae are indeed efficient dust factories, at the same time SNe represent the major agent responsible for dust destruction. Supernova blast waves propagating into the interstellar medium destroy the dust residing there, while the fresh dust produced by the supernova itself is threatened by the reverse shock which propagates through the expanding ejecta towards the center of the remnant. We focus here on this second destruction mechanism, with the aim of quantifying the amount of dust able to survive the heavy processing by the reverse shock and to reach the interstellar medium. We present our results for the textbook supernova remnant Cassiopeia A (Cas A). Using recent X-ray and infrared observations, we have developed a model for the evolution of the remnant and the simultaneous processing of the dust by the reverse shock, and derived the expected amount of surviving dust. In addition, we will briefly illustrate the impact of the capabilities of the Athena mission on the variety of astrophysical problems involving the processing of dust particles in extreme environments characterized by the presence of shocked X-ray emitting gas. These range from individual supernova remnants, to starburst super winds up to AGN outflows and the hot intra-cluster medium. The study of dust processing by a shocked gas truly connects the high-energy Universe with the low-energy Universe, and Athena will play a major role in it.

  18. Flavor evolution of supernova neutrinos in turbulent matter

    SciTech Connect

    Lund, Tina; Kneller, James P.

    2014-01-01

    The neutrino signal from the next galactic supernova carries with it an enormous amount of information on the explosion mechanism of a core-collapse supernova, as well as on the stellar progenitor and on the neutrinos themselves. In order to extract this information we need to know how the neutrino flavor evolves over time due to the interplay of neutrino self-interactions and matter effects. Additional turbulence in the supernova matter may impart its own signatures on the neutrino spectrum, and could partly obscure the imprints of collective and matter effects. We investigate the neutrino flavor evolution due to neutrino self-interactions, matter effects due to the shock wave propagation, and turbulence in three progenitors with masses of 8.8 M⊙, 10.8 M⊙ and 18.0 M⊙. In the lightest progenitor we find that the impact of moderate turbulence of the order 10% is limited and occurs only briefly early on. This makes the signatures of collective and matter interactions relatively straightforward to interpret. Similarly, with moderate turbulence the two heavier progenitors exhibit only minor changes in the neutrino spectrum, and collective and matter signatures persists. However, when the turbulence is increased to 30% and 50% the high density matter resonance features in the neutrino spectrum get obscured, while new features arise in the low density resonance channel and in the non-resonant channels. We conclude that with moderate amounts of turbulence spectral features of collective and matter interactions survive in all three progenitors. For the larger amounts of turbulence in the 10.8 M⊙ and 18.0 M⊙ progenitor new features arise, as others disappear.

  19. An origin for pulsar kicks in supernova hydrodynamics

    NASA Astrophysics Data System (ADS)

    Burrows, Adam; Hayes, John

    1996-04-01

    It is now believed that pulsars comprise the fastest population of stars in the galaxy. With inferred mean, root-mean-square, and maximum 3-D pulsar speeds of ~300-500 km/s, ~500 km/s, and ~2000 km/s, respectively, the question of the origin of such singular proper motions becomes acute. What mechanism can account for speeds that range from zero to twice the galactic escape velocity? We speculate that a major vector component of a neutron star's proper motion comes from the hydrodynamic recoil of the nascent neutron star during the supernova explosion in which it is born. Recently, theorists have shown that asymmetries and instabilities are a natural aspect of supernova dynamics. In this paper, we highlight two phenomena: 1) the ``Brownian-like'' stochastic motion of the core in response to the convective ``boiling'' of the mantle of the protoneutron star during the post-bounce, pre-explosion accretion phase, and 2) the asymmetrical bounce and explosion of an aspherically collapsing Chandrasekhar core. In principle, either phenomenon can leave the young neutron star with a speed of hundreds of kilometers per second. However, neither has yet been adequately simulated or explored. The two-dimensional radiation/hydrodynamic calculations we present here provide only crude estimates of the potential impulses due to mass motions and neutrino emissions. A comprehensive and credible investigation will require fully three-dimensional numerical simulations not yet possible. Nevertheless, we have in the asymmetric hydrodynamics of supernovae a natural means of imparting respectable kicks to neutron stars at birth, though speeds approaching 1000 km/s are still problematic.

  20. Simulating the Double-Degenerate Channel for Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Jumper, Kevin; Fisher, R. T.

    2013-01-01

    Type Ia Supernovae (SNe Ia) are the thermonuclear explosions of white dwarfs, and are of fundamental importance to the study of many phenomena, including the expansion of the universe and dark energy. For many years, it was suspected that that SNe Ia occur in binary systems, but the identity of the white dwarf’s companion could not be determined. A leading hypothesis, the single-degenerate (SD) channel, suggests that the companion is either on the main sequence or a red giant, and that the white dwarf accretes matter off of its companion until it nears the Chandrasekhar limit of 1.4 solar masses, causing the white dwarf to detonate shortly thereafter. Another hypothesis, the double-degenerate (DD) channel, proposes that both stars in the system are white dwarfs and that they merge together, resulting in a central, rapidly spinning white dwarf, surrounded by a thick disk of remnant material. Precisely how this triggers a detonation remains unclear; early spherically-symmetric models by Nomoto et al. indicated that merged white dwarfs would collapse to neutron stars instead of producing supernovae. Recent observations of two supernovae discovered last year by the Palomar Transient Factory (PTF), SN 2011 fe and SN PTF11k, have provided evidence that suggests that both the SD and DD channels coexist in nature. Consequently, it is important to develop simulations that can resolve the mystery of the DD channel’s detonation mechanism. To this end, we use a smoothed-particle hydrodynamics (SPH) code, GADGET-1, to model the rotating flows characteristic of merged DD systems and study how they evolve with time.

  1. Dust in Interstellar Clouds, Evolved Stars and Supernovae

    SciTech Connect

    Hartquist, T. W.; Van Loo, S.; Caselli, P.; Ashmore, I.; Falle, S. A. E. G.

    2008-09-07

    Outflows of pre-main-sequence stars drive shocks into molecular material within 0.01-1 pc of the young stars. The shock-heated gas emits infrared lines of H{sub 2} and H{sub 2}O and millimeter and submillimeter lines of many species including CO, SiO, H{sub 2}S and HCO{sup +}. Dust grains are important charge carriers and play a large role in coupling the magnetic field and flow of neutral gas. Some understanding of the effects of the dust on the dynamics of oblique shocks began to emerge in the 1990s. However, detailed models of these shocks are required for the calculation of the grain sputtering contribution to gas phase abundances of species producing observed emissions. We are developing such models.Some of the molecular species introduced into the gas phase by sputtering in shocks or by thermally driven desorption in radiatively heated hot cores form on grain surfaces. Recently laboratory studies have begun to contribute to the understanding of surface reactions and thermally driven desorption important for the chemistry of star forming clouds.Dusty plasmas are prevalent in many evolved stars just as well as in star forming regions. Radiation pressure on dust plays a significant role in mass loss from some post-main-sequence stars. The mechanisms leading to the formation of carbonaceous dust in the stellar outflows are similar to those important for soot formation in flames. However, nucleation in oxygen-rich outflows is less well understood and remains a challenging research area.Dust is observed in supernova ejecta that have not passed through the reverse shocks that develop in the interaction of ejecta with ambient media. Dust is detected in high redshift galaxies that are sufficiently young that the only stars that could have produced the dust were so massive that they became supernovae. Consequently, the issue of the survival of dust in strong supernova shocks is of considerable interest.

  2. Radio-Quiet Pulsars and Point Sources in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Helfand, David

    2002-04-01

    Since Baade and Zwicky made their prescient remark identifying the central blue star in the Crab Nebula as a neutron star, this pulsar's period has increased by 0.9 msec, turning 10^48 ergs of rotational kinetic energy into a relativistic wind that has been deposited in its surroundings. This makes the compact remnant of the supernova of 1054 AD highly conspicuous. It also makes this remnant highly anomalous. Nowhere else in the Galaxy does such a luminous young pulsar exists, despite the fact that at least half a dozen core-collapse supernovae have occurred since the Crab's birth. Indeed, the newly discovered central object in Cas A is four orders of magnitude less luminous in the X-ray band. While the Chandra and XMM-Newton Observatories are discovering an increasing number of Crab-like synchrotron nebulae (albeit, far less luminous than the prototype), they are also revealing X-ray point sources inside supernova remnants that lack detectable radio pulses and show no evidence of a relativistic outflow to power a surrounding nebula. I will provide an inventory of these objects, discuss whether or not truly radio-silent young neutron stars exist, and speculate on the emission mechanisms and power sources which make such objects shine. I will conclude with a commentary on the implications of this population for the distributions of pulsar birth parameters such as spin period, magnetic field strength, and space velocity, as well as offer a glimpse of what future observations might reveal about the demographics of core-collapse remnants.

  3. A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36-670839.3.

    PubMed

    Keller, S C; Bessell, M S; Frebel, A; Casey, A R; Asplund, M; Jacobson, H R; Lind, K; Norris, J E; Yong, D; Heger, A; Magic, Z; Da Costa, G S; Schmidt, B P; Tisserand, P

    2014-02-27

    The element abundance ratios of four low-mass stars with extremely low metallicities (abundances of elements heavier than helium) indicate that the gas out of which the stars formed was enriched in each case by at most a few--and potentially only one--low-energy supernova. Such supernovae yield large quantities of light elements such as carbon but very little iron. The dominance of low-energy supernovae seems surprising, because it had been expected that the first stars were extremely massive, and that they disintegrated in pair-instability explosions that would rapidly enrich galaxies in iron. What has remained unclear is the yield of iron from the first supernovae, because hitherto no star has been unambiguously interpreted as encapsulating the yield of a single supernova. Here we report the optical spectrum of SMSS J031300.36-670839.3, which shows no evidence of iron (with an upper limit of 10(-7.1) times solar abundance). Based on a comparison of its abundance pattern with those of models, we conclude that the star was seeded with material from a single supernova with an original mass about 60 times that of the Sun (and that the supernova left behind a black hole). Taken together with the four previously mentioned low-metallicity stars, we conclude that low-energy supernovae were common in the early Universe, and that such supernovae yielded light-element enrichment with insignificant iron. Reduced stellar feedback both chemically and mechanically from low-energy supernovae would have enabled first-generation stars to form over an extended period. We speculate that such stars may perhaps have had an important role in the epoch of cosmic reionization and the chemical evolution of early galaxies. PMID:24509711

  4. A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36-670839.3.

    PubMed

    Keller, S C; Bessell, M S; Frebel, A; Casey, A R; Asplund, M; Jacobson, H R; Lind, K; Norris, J E; Yong, D; Heger, A; Magic, Z; Da Costa, G S; Schmidt, B P; Tisserand, P

    2014-02-27

    The element abundance ratios of four low-mass stars with extremely low metallicities (abundances of elements heavier than helium) indicate that the gas out of which the stars formed was enriched in each case by at most a few--and potentially only one--low-energy supernova. Such supernovae yield large quantities of light elements such as carbon but very little iron. The dominance of low-energy supernovae seems surprising, because it had been expected that the first stars were extremely massive, and that they disintegrated in pair-instability explosions that would rapidly enrich galaxies in iron. What has remained unclear is the yield of iron from the first supernovae, because hitherto no star has been unambiguously interpreted as encapsulating the yield of a single supernova. Here we report the optical spectrum of SMSS J031300.36-670839.3, which shows no evidence of iron (with an upper limit of 10(-7.1) times solar abundance). Based on a comparison of its abundance pattern with those of models, we conclude that the star was seeded with material from a single supernova with an original mass about 60 times that of the Sun (and that the supernova left behind a black hole). Taken together with the four previously mentioned low-metallicity stars, we conclude that low-energy supernovae were common in the early Universe, and that such supernovae yielded light-element enrichment with insignificant iron. Reduced stellar feedback both chemically and mechanically from low-energy supernovae would have enabled first-generation stars to form over an extended period. We speculate that such stars may perhaps have had an important role in the epoch of cosmic reionization and the chemical evolution of early galaxies.

  5. Isothermal blast wave model of supernova remnants

    NASA Technical Reports Server (NTRS)

    Solinger, A.; Buff, J.; Rappaport, S.

    1975-01-01

    The validity of the 'adiabatic' assumption in supernova-remnant calculations is examined, and the alternative extreme of an isothermal blast wave is explored. It is concluded that, because of thermal conductivity, the large temperature gradients predicted by the adiabatic model probably are not maintained in nature. Self-similar solutions to the hydrodynamic equations for an isothermal blast wave have been found and studied. These solutions are then used to determine the relationship between X-ray observations and inferred parameters of supernova remnants. A comparison of the present results with those for the adiabatic model indicates differences which are less than present observational uncertainties. It is concluded that most parameters of supernova remnants inferred from X-ray measurements are relatively insensitive to the specifics of the blast-wave model.

  6. Supernovas y Cosmología

    NASA Astrophysics Data System (ADS)

    Folatelli, G.

    Supernovae are very relevant astrophysical objects because they indicate the violent end of certain stars and because they alter the interstellar medium. But most importantly, they have become an extremely useful tool for measuring cosmological distances. Based on highly precise distances to type Ia supernovae it was possible to find out that the expansion of the universe is currently accelerated. This led to introducing the concept of ``dark energy'' as a dominant and yet unknown component of the cosmos. In this article we will describe the method of distance measurements that leads to the determination of cosmological parameters. We will briefly review the current status of the field with emphasis on the importance of improving our knowledge about the physical nature of supernovae. FULL TEXT IN SPANISH

  7. Electron capture in carbon dwarf supernovae

    NASA Technical Reports Server (NTRS)

    Mazurek, T. J.; Truran, J. W.; Cameron, A. G. W.

    1974-01-01

    The rates of electron capture on heavier elements under the extreme conditions predicted for dwarf star supernovae have been computed, incorporating modifications that seem to be indicated by present experimental results. An estimate of the maximum possible value of such rates is also given. The distribution of nuclei in nuclear statistical equilibrium has been calculated for the range of expected supernovae conditions, including the effects of the temperature dependence of nuclear partition functions. These nuclide abundance distributions are then used to compute nuclear equilibrium thermodynamic properties. The effects of the electron capture on such equilibrium matter are discussed. In the context of the 'carbon detonation' supernova model, the dwarf central density required to ensure core collapse to a neutron star configuration is found to be slightly higher than that obtained by Bruenn (1972) with the electron capture rates of Hansen (1966).-

  8. Theoretical cosmic Type Ia supernova rates

    NASA Astrophysics Data System (ADS)

    Valiante, R.; Matteucci, F.; Recchi, S.; Calura, F.

    2009-10-01

    The purpose of this work is the computation of the cosmic Type Ia supernova rates, namely the frequency of Type Ia supernovae per unit time in a unitary volume of the Universe. Our main goal in this work is to predict the Type Ia supernova rates at very high redshifts and to check whether it is possible to select the best delay time distribution model, on the basis of the available observations of Type Ia supernovae. We compute the cosmic Type Ia supernova rates in different scenarios for galaxy formation and predict the expected number of explosions at high redshift ( z⩾2). Moreover, we adopt various progenitor models in order to compute the Type Ia supernova rate in typical elliptical galaxies of initial luminous masses of 1010M⊙,1011M⊙ and 1012M⊙, and compute the total amount of iron produced by Type Ia supernovae in each case. In this analysis we assume that Type Ia supernovae are caused by thermonuclear explosions of C-O white dwarfs in binary systems and we consider the most popular frameworks: the single degenerate and the double degenerate scenarios. The two competing schemes for the galaxy formation, namely the monolithic collapse and the hierarchical clustering, are also taken into account, by considering the histories of star formation increasing and decreasing with redshift, respectively. We calculate the Type Ia supernova rates through an analytical formulation which rests upon the definition of the SN Ia rate following an instantaneous burst of star formation as a function of the time elapsed from the birth of the progenitor system to its explosion as a Type Ia supernova (i.e. the delay time). What emerges from this work is that: (i) we confirm the result of previous papers that it is not easy to select the best delay time distribution scenario from the observational data and this is because the cosmic star formation rate dominates over the distribution function of the delay times; (ii) the monolithic collapse scenario for galaxy formation

  9. Probing Exotic Physics With Supernova Neutrinos

    SciTech Connect

    Kelso, Chris; Hooper, Dan

    2010-09-01

    Future galactic supernovae will provide an extremely long baseline for studying the properties and interactions of neutrinos. In this paper, we discuss the possibility of using such an event to constrain (or discover) the effects of exotic physics in scenarios that are not currently constrained and are not accessible with reactor or solar neutrino experiments. In particular, we focus on the cases of neutrino decay and quantum decoherence. We calculate the expected signal from a core-collapse supernova in both current and future water Cerenkov, scintillating, and liquid argon detectors, and find that such observations will be capable of distinguishing between many of these scenarios. Additionally, future detectors will be capable of making strong, model-independent conclusions by examining events associated with a galactic supernova's neutronization burst.

  10. Supernova Recognition using Support Vector Machines

    SciTech Connect

    Romano, Raquel A.; Aragon, Cecilia R.; Ding, Chris

    2006-10-01

    We introduce a novel application of Support Vector Machines(SVMs) to the problem of identifying potential supernovae usingphotometric and geometric features computed from astronomical imagery.The challenges of this supervised learning application are significant:1) noisy and corrupt imagery resulting in high levels of featureuncertainty,2) features with heavy-tailed, peaked distributions,3)extremely imbalanced and overlapping positiveand negative data sets, and4) the need to reach high positive classification rates, i.e. to find allpotential supernovae, while reducing the burdensome workload of manuallyexamining false positives. High accuracy is achieved viaasign-preserving, shifted log transform applied to features with peaked,heavy-tailed distributions. The imbalanced data problem is handled byoversampling positive examples,selectively sampling misclassifiednegative examples,and iteratively training multiple SVMs for improvedsupernovarecognition on unseen test data. We present crossvalidationresults and demonstrate the impact on a largescale supernova survey thatcurrently uses the SVM decision value to rank-order 600,000 potentialsupernovae each night.

  11. Cosmological Galaxy Evolution with Superbubble Feedback II: The Limits of Supernovae

    NASA Astrophysics Data System (ADS)

    Keller, B. W.; Wadsley, J.; Couchman, H. M. P.

    2016-08-01

    We explore when supernovae can (and cannot) regulate the star formation and bulge growth in galaxies based on a sample of 18 simulated galaxies. The simulations are the first to model feedback superbubbles including evaporation and conduction. These processes determine the mass loadings and wind speeds of galactic outflows. We show that for galaxies with virial masses >1012 M⊙, supernovae alone cannot prevent excessive star formation. This occurs due to a shutdown of galactic winds, with wind mass loadings falling from η ˜ 10 to η < 1. In more massive systems, the ejection of baryons to the circumgalactic medium falters earlier on and the galaxies diverge significantly from observed galaxy scaling relations and morphologies. The decreasing efficiency is due to a deepening potential well preventing gas escape, and is unavoidable if mass-loaded outlflows regulate star formation on galactic scales. This implies that non-supernova feedback mechanisms must become dominant for galaxies with stellar masses greater than ˜4 × 1010 M⊙. The runaway growth of the central stellar bulge, strongly linked to black hole growth, suggests that feedback from active galactic nuclei is the likely mechanism. Below this mass, supernovae alone are able to produce a realistic stellar mass fraction, star formation history and disc morphology.

  12. Formation of Nuclear 'Pasta' in Supernovae

    SciTech Connect

    Watanabe, Gentaro; Sonoda, Hidetaka; Maruyama, Toshiki; Sato, Katsuhiko; Yasuoka, Kenji; Ebisuzaki, Toshikazu

    2009-09-18

    In supernova cores, nuclear 'pasta' phases such as a triangular lattice of rodlike nuclei and layered structure of slablike nuclei are considered to exist. However, it is still unclear whether or not they are actually formed in collapsing supernova cores. Using ab initio simulations called quantum molecular dynamics, here we solve this problem by demonstrating that a lattice of rodlike nuclei is formed from a bcc lattice by compression. We also find that, in the transition process, the system undergoes a zigzag configuration of elongated nuclei, which are formed by a fusion of two original spherical nuclei.

  13. Nuclear Physics in Core-Collapse Supernovae

    SciTech Connect

    Liebendoerfer, Matthias; Fischer, T.; Froelich, C.; Hix, William Raphael; Langanke, Karlheinz; Martinez-Pinedo, Gabriel; Mezzacappa, Anthony; Scheidegger, Simon; Thielemann, Friedrich-Karl W.; Whitehouse, Stuart

    2008-01-01

    Core-collapse and the launch of a supernova explosion form a very short episode of few seconds in the evolution of a massive star, during which an enormous gravitational energy of several times 1053 erg is transformed into observable neutrino-, kinetic-, and electromagnetic radiation energy. We emphasize the wide range of matter conditions that prevail in a supernova event and sort the conditions into distinct regimes in the density and entropy phase diagram to briefly discuss their different impact on the neutrino signal, gravitational wave emission, and ejecta.

  14. The infrared emission from supernova condensates

    NASA Technical Reports Server (NTRS)

    Dwek, E.; Werner, M. W.

    1981-01-01

    The possibility of detecting grains formed in supernovae by observations of their emission in the infrared is examined. The basic processes determining the temperature and infrared radiation of grains in supernova environments are analyzed, and the results are used to estimate the infrared emission from the highly metal enriched fast moving knots in Cas A. The predicted fluxes lie within the reach of current ground-based facilities at 10 microns, and their emission should be detectable throughout the infrared band with cryogenic space telescopes.

  15. SNLS: Empirical modeling of distant supernovae

    NASA Astrophysics Data System (ADS)

    Guy, J.; Astier, P.; Pain, R.; Regnault, N.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Conley, A.; Fabbro, S.; Fouchez, D.; Hook, I. M.; Howell, D. A.; Lafoux, H.; Neill, J. D.; Palanque-Delabrouille, N.; Perrett, K.; Pritchet, C. J.; Rich, J.; Sullivan, M.; Taillet, R.; Baumont, S.; Bronder, J.; Lusset, V.; Mourao, A.; Perlmutter, S.; Ripoche, P.; Tao, C.; SNLS Collaboration

    2005-12-01

    The SuperNova Legacy Survey provides us with a rich data set of supernovae multi-color light curves in the redshift range 0.1--1. Thanks to the "rolling search" operation mode, most of them contain photometric points well before the peak luminosity. In addition, the far-UV rest-frame light curves can be modeled from g and r-band observations of high-z SNe. In this poster, we present an update of the Spectral Adaptive Lightcurve Template model (SALT) adjusted on the SNLS data set.

  16. Neutrino Scattering and Flavor Transformation in Supernovae

    NASA Astrophysics Data System (ADS)

    Cherry, John F.; Carlson, J.; Friedland, Alexander; Fuller, George M.; Vlasenko, Alexey

    2012-06-01

    We argue that the small fraction of neutrinos that undergo direction-changing scattering outside of the neutrinosphere could have significant influence on neutrino flavor transformation in core-collapse supernova environments. We show that the standard treatment for collective neutrino flavor transformation is adequate at late times but could be inadequate in early epochs of core-collapse supernovae, where the potentials that govern neutrino flavor evolution are affected by the scattered neutrinos. Taking account of this effect, and the way it couples to entropy and composition, will require a new approach in neutrino flavor transformation modeling.

  17. Progenitor's Signatures in Type Ia Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Chiotellis, A.; Kosenko, D.; Schure, K. M.; Vink, J.

    2013-01-01

    The remnants of Type Ia supernovae (SNe Ia) can provide important clues about their progenitor histories. We discuss two well-observed supernova remnants (SNRs) that are believed to have resulted from SNe Ia, and use various tools to shed light on the possible progenitor histories. We find that Kepler's SNR is consistent with a symbiotic binary progenitor consisting of a white dwarf and an AGB star. Our hydrosimulations can reproduce the observed kinematic and morphological properties. For Tycho's remnant we use the characteristics of the X-ray spectrum and kinematics to show that the ejecta has likely interacted with dense circumstellar gas.

  18. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Click on the image for the movie

    For the first time, a multiwavelength three-dimensional reconstruction of a supernova remnant has been created. This stunning visualization of Cassiopeia A, or Cas A, the result of an explosion approximately 330 years ago, uses data from several telescopes: X-ray data from NASA's Chandra X-ray Observatory, infrared data from NASA's Spitzer Space Telescope and optical data from the National Optical Astronomy Observatory 4-meter telescope at Kitt Peak, Ariz., and the Michigan-Dartmouth-MIT 2.4-meter telescope, also at Kitt Peak. In this visualization, the green region is mostly iron observed in X-rays. The yellow region is a combination of argon and silicon seen in X-rays, optical, and infrared including jets of silicon plus outer debris seen in the optical. The red region is cold debris seen in the infrared. Finally, the blue reveals the outer blast wave, most prominently detected in X-rays.

    Most of the material shown in this visualization is debris from the explosion that has been heated by a shock moving inwards. The red material interior to the yellow/orange ring has not yet encountered the inward moving shock and so has not yet been heated. These unshocked debris were known to exist because they absorb background radio light, but they were only recently discovered in infrared emission with Spitzer. The blue region is composed of gas surrounding the explosion that was heated when it was struck by the outgoing blast wave, as clearly seen in Chandra images.

    To create this visualization, scientists took advantage of both a previously known phenomenon the Doppler effect and a new technology that bridges astronomy and medicine. When elements created inside a supernova, such as iron, silicon and argon, are heated they emit light at certain wavelengths. Material moving towards the observer will have shorter wavelengths and material moving away will have longer

  19. Detection of supernova neutrinos at spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2016-07-01

    After considering supernova shock effects, Mikheyev-Smirnov-Wolfenstein effects, neutrino collective effects, and Earth matter effects, the detection of supernova neutrinos at the China Spallation Neutron Source is studied and the expected numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and the “beta fit” distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on Earth is applied to some other spallation neutron sources, and the total expected numbers of supernova neutrinos observed through different reactions channels are given. Supported by National Natural Science Foundation of China (11205185, 11175020, 11275025, 11575023)

  20. Gamma ray constraints on the galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1992-01-01

    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.

  1. A Strange Supernova with a Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    1998-10-01

    1998bw is obviously an unusual supernova. It is therefore of particular significance that a Gamma-Ray Burst was observed from the same sky region just before it was discovered in optical light. It is very unlikely that these two very rare events would happen in the same region of the sky without being somehow related. Most astronomers therefore tend to believe that the gamma-rays do indeed originate in the supernova explosion. But can a single supernova be sufficiently energetic to produce a powerful Gamma-Ray Burst? New theoretical calculations, also published today in Nature, indicate that this may be so. Moreover, if the Gamma-Ray Burst observed on April 25 did originate in this supernova that is located in a relatively nearby galaxy, it was intrinsically much fainter than some of the other Gamma-Ray Bursts that are known to have taken place in extremely distant galaxies. The main idea is that while the centres of most other supernovae collapse into neutron stars at the moment of explosion, a black hole was created in a very massive star consisting mostly of carbon and oxygen. If so, a very strong shockwave may be produced that is capable of generating the observed gamma rays. A comparison of synthetic spectra from such a supernova model, based on a new spectrum-modelling technique developed by Leon Lucy at the ESA/ESO Space Telescope/European Coordinating Facility (ST/ECF), with the spectra of SN 1998bw observed at La Silla, show good agreement, thus lending credibility to the new models. Future work Much data has already been collected at ESO on the strange supernova SN 1998bw . More observations will be obtained by the astronomers at the ESO observatories in the future during a long-term monitoring programme of SN 1998bw . There is a good chance that this effort will ultimately provide fundamental information on the explosion mechanism and the nature of the progenitor star of this exceptional object. This supernova's connection with a Gamma-Ray Burst will

  2. Type Ia supernova rate studies from the SDSS-II Supernova Study

    SciTech Connect

    Dilday, Benjamin

    2008-08-01

    The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SN Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.

  3. Possible Progenitor of Special Supernova Type Detected

    NASA Astrophysics Data System (ADS)

    2008-04-01

    Using data from NASA's Chandra X-ray Observatory, scientists have reported the possible detection of a binary star system that was later destroyed in a supernova explosion. The new method they used provides great future promise for finding the detailed origin of these important cosmic events. In an article appearing in the February 14th issue of the journal Nature, Rasmus Voss of the Max Planck Institute for Extraterrestrial Physics in Germany and Gijs Nelemans of Radboud University in the Netherlands searched Chandra images for evidence of a much sought after, but as yet unobserved binary system - one that was about to go supernova. Near the position of a recently detected supernova, they discovered an object in Chandra images taken more than four years before the explosion. Optical image of SN 2007on Optical image of SN 2007on The supernova, known as SN 2007on, was identified as a Type Ia supernova. Astronomers generally agree that Type Ia supernovas are produced by the explosion of a white dwarf star in a binary star system. However, the exact configuration and trigger for the explosion is unclear. Is the explosion caused by a collision between two white dwarfs, or because a white dwarf became unstable by pulling too much material off a companion star? Answering such questions is a high priority because Type Ia supernovas are major sources of iron in the Universe. Also, because of their nearly uniform intrinsic brightness, Type Ia supernova are used as important tools by scientists to study the nature of dark energy and other cosmological issues. People Who Read This Also Read... Oldest Known Objects Are Surprisingly Immature Black Holes Have Simple Feeding Habits Discovery of Most Recent Supernova in Our Galaxy Geriatric Pulsar Still Kicking "Right now these supernovas are used as black boxes to measure distances and derive the rate of expansion of the universe," said Nelemans. "What we're trying to do is look inside the box." If the supernova explosion is

  4. VLBA Reveals Dust-Enshrouded "Supernova Factory"

    NASA Astrophysics Data System (ADS)

    2003-05-01

    Using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope, astronomers have discovered a newly-exploded star, or supernova, hidden deep in a dust-enshrouded "supernova factory" in a galaxy some 140 million light-years from Earth. "This supernova is likely to be part of a group of super star clusters that produce one such stellar explosion every two years," said James Ulvestad, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. "We're extremely excited by the tremendous insights into star formation and the early Universe that we may gain by observing this 'supernova factory,'" he added. Ulvestad worked with Susan Neff of NASA's Goddard Space Flight Center in Greenbelt, MD, and Stacy Teng, a graduate student at the University of Maryland, on the project. The scientists presented their findings to the American Astronomical Society's meeting in Nashville, TN. "These super star clusters likely are forming in much the same way that globular clusters formed in the early Universe, and thus provide us with a unique opportunity to learn about how some of the first stars formed billions of years ago," Neff said. The cluster is in an object called Arp 299, a pair of colliding galaxies, where regions of vigorous star formation have been found in past observations. Since 1990, four other supernova explosions have been seen optically in Arp 299. Observations with the NSF's Very Large Array (VLA) earlier showed a region near the nucleus of one of the colliding galaxies which had all the earmarks of prolific star formation. The astronomers focused on this region, prosaically dubbed "Source A," with the VLBA and the NSF's Robert C. Byrd Green Bank Telescope in 2002, and found four objects in this dusty cloud that are likely young supernova remnants. When they observed the region again in February 2003, there was a new, fifth, object located only 7 light-years from one of the previously detected objects. More observations on April 30-May

  5. The supernova-gamma-ray burst-jet connection.

    PubMed

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  6. 3D Simulations of Supernova Remnants from Type Ia Supernova Models

    NASA Astrophysics Data System (ADS)

    Johnson, Heather; Reynolds, S. P.; Frohlich, C.; Blondin, J. M.

    2014-01-01

    Type Ia supernovae (SNe) originate from thermonuclear explosions of white dwarfs. A great deal is still unknown about the explosion mechanisms, particularly the degree of asymmetry. However, Type Ia supernova remnants (SNRs) can bear the imprint of asymmetry long after the explosion. A SNR of interest is G1.9+0.3, the youngest Galactic SNR, which demonstrates an unusual spatial distribution of elements in the ejecta. While its X-ray spectrum is dominated by synchrotron emission, spectral lines of highly ionized Si, S, and Fe are seen in a few locations, with Fe near the edge of the remnant and with strongly varying Fe/Si ratios. An asymmetric explosion within the white dwarf progenitor may be necessary to explain these unusual features of G1.9+0.3, in particular the shocked Fe at large radii. We use the VH-1 hydrodynamics code to evolve initial Type Ia explosion models in 1, 2, and 3 dimensions at an age of 100 seconds provided by other researchers to study asymmetry, the ignition properties, and the nucleosynthesis resulting from these explosions. We follow the evolution of these models interacting with a uniform external medium to a few hundred years in age. We find the abundance and location of ejecta elements from our models to be inconsistent with the observations of G1.9+0.3; while our models show asymmetric element distributions, we find no tendency for iron-group elements to be found beyond intermediate-mass elements, or for significant iron to be reverse-shocked at all at the age of G1.9+0.3. We compare the amounts of shocked iron-group and intermediate-mass elements as a function of time in the different models. Some new kind of explosion asymmetry may be required to explain G1.9+0.3. This work was performed as part of NC State University's Undergraduate Research in Computational Astrophysics (URCA) program, an REU program supported by the National Science Foundation through award AST-1032736.

  7. Two superluminous supernovae from the early universe discovered by the supernova legacy survey

    SciTech Connect

    Howell, D. A.; Kasen, D.; Lidman, C.; Sullivan, M.; Conley, A.; Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.; Carlberg, R. G.; Fouchez, D.; Palanque-Delabrouille, N.; Rich, J.; Ruhlmann-Kleider, V.; Pritchet, C. J.

    2013-12-20

    We present spectra and light curves of SNLS 06D4eu and SNLS 07D2bv, two hydrogen-free superluminous supernovae (SNe) discovered by the Supernova Legacy Survey. At z = 1.588, SNLS 06D4eu is the highest redshift superluminous SN with a spectrum, at M{sub U} = –22.7 it is one of the most luminous SNe ever observed, and it gives a rare glimpse into the rest-frame ultraviolet where these SNe put out their peak energy. SNLS 07D2bv does not have a host galaxy redshift, but on the basis of the SN spectrum, we estimate it to be at z ∼ 1.5. Both SNe have similar observer-frame griz light curves, which map to rest-frame light curves in the U band and UV, rising in ∼20 rest-frame days or longer and declining over a similar timescale. The light curves peak in the shortest wavelengths first, consistent with an expanding blackbody starting near 15,000 K and steadily declining in temperature. We compare the spectra with theoretical models, and we identify lines of C II, C III, Fe III, and Mg II in the spectra of SNLS 06D4eu and SCP 06F6 and find that they are consistent with an expanding explosion of only a few solar masses of carbon, oxygen, and other trace metals. Thus, the progenitors appear to be related to those suspected for SNe Ic. A high kinetic energy, 10{sup 52} erg, is also favored. Normal mechanisms of powering core-collapse or thermonuclear SNe do not seem to work for these SNe. We consider models powered by {sup 56}Ni decay and interaction with circumstellar material, but we find that the creation and spin-down of a magnetar with a period of 2 ms, a magnetic field of 2 × 10{sup 14} G, and a 3 M {sub ☉} progenitor provides the best fit to the data.

  8. Revival of a stalled supernova shock by neutrino heating

    NASA Astrophysics Data System (ADS)

    Bethe, H. A.; Wilson, J. R.

    1985-08-01

    The mechanism for revival of a stalled supernova shock found by Wilson (1982) in a computation is analyzed. Neutrinos from the hot, inner core of the supernova are absorbed in the outer layers, and although only about 0.1 percent of their energy is so absorbed, this is enough to eject the outer part of the star and leave only enough mass to form a neutron star. The neutrino absorption is independent of the density of material. After the shock recedes to some extent, neutrino heating establishes a sufficient pressure gradient to push the material beyond about 150 km outward, while the material further in falls rapidly toward the core. This makes the density near 150 km decrease spectacularly, creating a quasi-vacuum in which the pressure is mainly carried by radiation. This is a perfect condition to make the internal energy of the matter sufficient to escape from the gravitational attraction of the star. The net energy of the outgoing shock is about 4 x 10 to the 50th ergs.

  9. Predicting supernova associated to gamma-ray burst 130427a

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Ruffini, R.; Kovacevic, M.; Bianco, C. L.; Enderli, M.; Muccino, M.; Penacchioni, A. V.; Pisani, G. B.; Rueda, J. A.

    2015-07-01

    Binary systems constituted by a neutron star and a massive star are not rare in the universe. The Induced Gravitational Gamma-ray Burst (IGC) paradigm interprets Gamma-ray bursts as the outcome of a neutron star that collapses into a black hole due to the accretion of the ejecta coming from its companion massive star that underwent a supernova event. GRB 130427A is one of the most luminous GRBs ever observed, of which isotropic energy exceeds 1054 erg. And it is within one of the few GRBs obtained optical, X-ray and GeV spectra simultaneously for hundreds of seconds, which provides an unique opportunity so far to understand the multi-wavelength observation within the IGC paradigm, our data analysis found low Lorentz factor blackbody emission in the Episode 3 and its X-ray light curve overlaps typical IGC Golden Sample, which comply to the IGC mechanisms. We consider these findings as clues of GRB 130427A belonging to the IGC GRBs. We predicted on GCN the emergence of a supernova on May 2, 2013, which was later successfully detected on May 13, 2013.

  10. Planck intermediate results. XXXI. Microwave survey of Galactic supernova remnants

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Brogan, C. L.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D. L.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hobson, M.; Holmes, W. A.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Maino, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Pasian, F.; Peel, M.; Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reich, W.; Reinecke, M.; Remazeilles, M.; Renault, C.; Rho, J.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Stolyarov, V.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-02-01

    The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. As predicted for a population of relativistic particles with energy distribution that extends continuously to high energies, a single power law is evident for many sources, including the Crab and PKS 1209-51/52. A decrease in flux density relative to the extrapolation of radio emission is evident in several sources. Their spectral energy distributions can be approximated as broken power laws, Sν ∝ ν-α, with the spectral index, α, increasing by 0.5-1 above a break frequency in the range 10-60 GHz. The break could be due to synchrotron losses.

  11. NERO- a post-maximum supernova radiation transport code

    NASA Astrophysics Data System (ADS)

    Maurer, I.; Jerkstrand, A.; Mazzali, P. A.; Taubenberger, S.; Hachinger, S.; Kromer, M.; Sim, S.; Hillebrandt, W.

    2011-12-01

    The interpretation of supernova (SN) spectra is essential for deriving SN ejecta properties such as density and composition, which in turn can tell us about their progenitors and the explosion mechanism. A very large number of atomic processes are important for spectrum formation. Several tools for calculating SN spectra exist, but they mainly focus on the very early or late epochs. The intermediate phase, which requires a non-local thermodynamic equilibrium (NLTE) treatment of radiation transport has rarely been studied. In this paper, we present a new SN radiation transport code, NERO, which can look at those epochs. All the atomic processes are treated in full NLTE, under a steady-state assumption. This is a valid approach between roughly 50 and 500 days after the explosion depending on SN type. This covers the post-maximum photospheric and the early and the intermediate nebular phase. As a test, we compare NERO to the radiation transport code of Jerkstrand, Fransson & Kozma and to the nebular code of Mazzali et al. All three codes have been developed independently and a comparison provides a valuable opportunity to investigate their reliability. Currently, NERO is one-dimensional and can be used for predicting spectra of synthetic explosion models or for deriving SN properties by spectral modelling. To demonstrate this, we study the spectra of the 'normal' Type Ia supernova (SN Ia) 2005cf between 50 and 350 days after the explosion and identify most of the common SN Ia line features at post-maximum epochs.

  12. Rapidly Rising Transients in the Supernova—Superluminous Supernova Gap

    NASA Astrophysics Data System (ADS)

    Arcavi, Iair; Wolf, William M.; Howell, D. Andrew; Bildsten, Lars; Leloudas, Giorgos; Hardin, Delphine; Prajs, Szymon; Perley, Daniel A.; Svirski, Gilad; Gal-Yam, Avishay; Katz, Boaz; McCully, Curtis; Cenko, S. Bradley; Lidman, Chris; Sullivan, Mark; Valenti, Stefano; Astier, Pierre; Balland, Cristophe; Carlberg, Ray G.; Conley, Alex; Fouchez, Dominique; Guy, Julien; Pain, Reynald; Palanque-Delabrouille, Nathalie; Perrett, Kathy; Pritchet, Chris J.; Regnault, Nicolas; Rich, James; Ruhlmann-Kleider, Vanina

    2016-03-01

    We present observations of four rapidly rising (trise ≈ 10 days) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (Mpeak ≈ -20)—one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey. The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma-ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as an SN II due to broad Hα emission, but an unusual absorption feature, which can be interpreted as either high velocity Hα (though deeper than in previously known cases) or Si ii (as seen in SNe Ia), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM), and magnetar spin down cannot readily explain the observations. We consider the possibility that a “Type 1.5 SN” scenario could be the origin of our events. More detailed models for these kinds of transients and more constraining observations of future such events should help to better determine their nature.

  13. Photometric selection of Type Ia supernovae in the Supernova Legacy Survey

    NASA Astrophysics Data System (ADS)

    Bazin, G.; Ruhlmann-Kleider, V.; Palanque-Delabrouille, N.; Rich, J.; Aubourg, E.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I. M.; Howell, D. A.; Pain, R.; Perrett, K.; Pritchet, C. J.; Regnault, N.; Sullivan, M.; Fourmanoit, N.; González-Gaitán, S.; Lidman, C.; Perlmutter, S.; Ripoche, P.; Walker, E. S.

    2011-10-01

    We present a sample of 485 photometrically identified Type Ia supernova candidates mined from the first three years of data of the CFHT SuperNova Legacy Survey (SNLS). The images were submitted to a deferred processing independent of the SNLS real-time detection pipeline. Light curves of all transient events were reconstructed in the gM, rM, iM and zM filters and submitted to automated sequential cuts in order to identify possible supernovae. Pure noise and long-term variable events were rejected by light curve shape criteria. Type Ia supernova identification relied on event characteristics fitted to their light curves assuming the events to be normal SNe Ia. The light curve fitter SALT2 was used for this purpose, assigning host galaxy photometric redshifts to the tested events. The selected sample of 485 candidates is one magnitude deeper than that allowed by the SNLS spectroscopic identification. The contamination by supernovae of other types is estimated to be 4%. Testing Hubble diagram residuals with this enlarged sample allows us to measure the Malmquist bias due to spectroscopic selections directly. The result is fully consistent with the precise Monte Carlo based estimate used to correct SN Ia distance moduli in the SNLS 3-year cosmological analyses. This paper demonstrates the feasibility of a photometric selection of high redshift supernovae with known host galaxy redshifts, opening interesting prospects for cosmological analyses from future large photometric SN Ia surveys.

  14. The Cygnus Loop: An Older Supernova Remnant.

    ERIC Educational Resources Information Center

    Straka, William

    1987-01-01

    Describes the Cygnus Loop, one of brightest and most easily studied of the older "remnant nebulae" of supernova outbursts. Discusses some of the historical events surrounding the discovery and measurement of the Cygnus Loop and makes some projections on its future. (TW)

  15. Rayleigh-Taylor mixing in supernova experiments

    NASA Astrophysics Data System (ADS)

    Swisher, N. C.; Kuranz, C. C.; Arnett, D.; Hurricane, O.; Remington, B. A.; Robey, H. F.; Abarzhi, S. I.

    2015-10-01

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order.

  16. Rayleigh-Taylor mixing in supernova experiments

    NASA Astrophysics Data System (ADS)

    Swisher, Nora; Kuranz, Carolyn; Arnett, David; Hurricane, Omar; Remington, Bruce; Robey, Harry; Abarzhi, Snezhana

    2015-11-01

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor (RT) mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of RT flow in supernova experiments, and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By proper accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are identified to describe asymptotic dynamics of RT flow with time-dependent acceleration by applying theoretical analysis. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments, the RT flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; the mixing flow may keep order. Support of the National Science Foundation is warmly appreciated.

  17. Superluminous Supernovae: No Threat from η Carinae

    NASA Astrophysics Data System (ADS)

    Thomas, Brian C.; Melott, Adrian L.; Field, Brian D.; Anthony-Twarog, Barbara J.

    2008-02-01

    Recently, Supernova 2006gy was noted as the most luminous ever recorded, with a total radiated energy of 1044 Joules. It was proposed that the progenitor may have been a massive evolved star similar to η Carinae, which resides in our own Galaxy at a distance of about 2.3 kpc. η Carinae appears ready to detonate. Although it is too distant to pose a serious threat as a normal supernova, and given that its rotation axis is unlikely to produce a gamma-ray burst oriented toward Earth, η Carinae is about 30,000 times nearer than 2006gy, and we re-evaluate it as a potential superluminous supernova. We have found that, given the large ratio of emission in the optical to the X-ray, atmospheric effects are negligible. Ionization of the atmosphere and concomitant ozone depletion are unlikely to be important. Any cosmic ray effects should be spread out over 104 y and similarly unlikely to produce any serious perturbation to the biosphere. We also discuss a new possible effect of supernovaeendocrine disruption induced by blue light near the peak of the optical spectrum. This is a possibility for nearby supernovae at distances too large to be considered dangerous for other reasons. However, due to reddening and extinction by the interstellar medium, η Carinae is unlikely to trigger such effects to any significant degree.

  18. Einstein Observations of Galactic supernova remnants

    NASA Technical Reports Server (NTRS)

    Seward, Frederick D.

    1990-01-01

    This paper summarizes the observations of Galactic supernova remnants with the imaging detectors of the Einstein Observatory. X-ray surface brightness contours of 47 remnants are shown together with gray-scale pictures. Count rates for these remnants have been derived and are listed for the HRI, IPC, and MPC detectors.

  19. Fuentes IRAS en remanentes de supernovas

    NASA Astrophysics Data System (ADS)

    Giacani, E. B.; Dubner, G. M.; Fernández, R.

    Se investiga la existencia de excesos estadísticos de fuentes infrarrojas puntuales alrededor de remanentes de supernovas galácticos. Las fuentes infrarrojas se seleccionaron sobre la base del espectro, buscando aquellas cuya excitación pueda haberse originado en la interacción con un frente de choque.

  20. Classification of 20 DES supernovae by Magellan

    NASA Astrophysics Data System (ADS)

    Challis, P.; Kirshner, R.; Mandel, K.; Avelino, A.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Prajs, S.; Smith, M.; Sullivan, M.; Maartens, R.

    2016-04-01

    We report optical spectroscopy of 20 supernovae discovered by the Dark Energy Survey (ATel #4668). The spectra were obtained using IMACS (covering 460-820nm) on the 6.5m Baade telescope, and LDSS-3C (covering 420-950nm) on the 6.5m Clay telescope at the Las Campanas Observatory.

  1. Probable Bright Supernovae discovered by PSST

    NASA Astrophysics Data System (ADS)

    Smith, K. W.; Wright, D.; Smartt, S. J.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.

    2016-01-01

    Three bright transients, which are probable supernovae, have been discovered as part of the Pan-STARRS Survey for Transients (PSST). Information on all objects discovered by the Pan-STARRS Survey for Transients is available at http://star.pst.qub.ac.uk/ps1threepi/ (see Huber et al. ATel #7153).

  2. Probable Bright Supernova discovered by PSST

    NASA Astrophysics Data System (ADS)

    Smith, K. W.; Wright, D.; Smartt, S. J.; Young, D. R.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.

    2016-09-01

    A bright transient, which is a probable supernova, has been discovered as part of the Pan-STARRS Survey for Transients (PSST). Information on all objects discovered by the Pan-STARRS Survey for Transients is available at http://star.pst.qub.ac.uk/ps1threepi/ (see Huber et al. ATel #7153).

  3. Classification of 9 DES supernova by Magellan

    NASA Astrophysics Data System (ADS)

    Challis, P.; Kirshner, R.; Mandel, K.; Avelino, A.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Prajs, S.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.

    2016-09-01

    We report optical spectroscopy of 9 supernovae discovered by the Dark Energy Survey (ATel #4668). The spectra were obtained using LDSS-3C (covering 420-950nm) on the 6.5m Clay telescope at the Las Campanas Observatory.

  4. A comparative modeling of supernova 1993J

    NASA Technical Reports Server (NTRS)

    Blinnikov, Sergei; Eastman, Ron; Bartunov, Oleg; Popolitov, Vlad; Woosley, Stan

    1997-01-01

    The light curve of Supernova 1993J is calculated using two computational radiation transport approaches. The two approaches are represented by the computer codes STELLA and EDDINGTON. The emphasis is on the shock breakout and the photometry in the U, B and V bands during the first 120 days of the supernova. The STELLA model includes implicit hydrodynamics and is able to model early supernova evolution before the expansion is homologous. The STELLA model employs multi-group photonics and is able to follow the radiation as it decouples from the matter. The EDDINGTON code uses an algorithm for integrating the transport equation which assumes homologous expansion and uses a finer frequency resolution. The agreement between the two codes is considered to be satisfactory only in the case where compatible physical assumptions are made concerning the opacity. The assumptions are justified. The continuum spectrum for SN 1993J is predicted near the shock breakout to be superior to that predicted by standard single energy group hydrocodes. The uncertainties involved in current time dependent models of supernova light curves are discussed.

  5. KAIT Independent Discovery of Four Recent Supernovae

    NASA Astrophysics Data System (ADS)

    Ross, T. Willie; Channa, Sanyum; Molloy, Jeffrey D.; Zheng, WeiKang; Filippenko, Alexei V.

    2016-03-01

    We report the independent discovery of four recent supernovae with the 0.76-m Katzman Automatic Imaging Telescope (KAIT) at Lick Observatory. All observations were performed with the clear band (close to R) and calibrated to the USNO-B1 catalog.

  6. HiTS additional supernova candidates

    NASA Astrophysics Data System (ADS)

    Forster, F.; Maureira, J. C.; Points, S.; Medina, G.; Munoz, R.; Martin, J. San; Hamuy, M.; Estevez, P.; Smith, R. C.; Vivas, K.; Flores, S.; Huijse, P.; Cabrera, G.; Anderson, J.; Bufano, F.; Gonzalez-Gaitan, S.; Galbany, L.; Pignata, G.; de Jaeger, Th.; Martinez, J.; Munoz, R.; Vera, E.; Perez, C.

    2015-03-01

    HiTS, the High Cadence Transient Survey (see ATELs #5949, #7099), reports the discovery of additional supernova candidates detected using an image subtraction / classification pipeline developed at the Center for Mathematical Modelling (CMM) in collaboration with the Millennium Institute for Astrophysics (MAS).

  7. L-D dependence for supernova remnants

    NASA Astrophysics Data System (ADS)

    Stanković, M.; Tešić, Lj.; Urošević, D.

    2003-10-01

    We discuss here the L-D relation (the possible dependence of the radio luminosity on linear diameter) for the supernova remnants (SNRs) in order to see wether determination of SNR distances on the basis of Σ-D relation is possible.

  8. Condensation of Carbon in Radioactive Supernova Gas

    NASA Astrophysics Data System (ADS)

    Clayton, Donald D.; Deneault, Ethan A.-N.; Meyer, Bradley S.

    2001-11-01

    The chemistry of carbon molecules leading to the formation of large carbon-bearing molecules and dust in the interior of an expanding supernova is explored and the equations governing their abundances are solved. A steady state between production and destruction is set up early and evolves adiabatically as the supernova evolves. Simple solutions for that steady state limit yield the abundance of each linear carbon molecule and its dependence on the C/O atomic ratio in the gas. Carbon dust condenses from initially gaseous C and O atoms because Compton electrons produced by the radioactivity cause dissociation of the CO molecules, which would otherwise form and limit the supply of C atoms. The resulting free C atoms enable carbon dust to grow faster by C association than its destruction by oxidation for various C/O ratios. Nucleation for graphite growth occurs when linear Cn molecules transition to ringed Cn molecules. We survey the dependence of the abundances of these molecules on the C/O ratio and on several other kinetic rate parameters. The concept of ``population control'' is significant for the maximum sizes of carbon particles grown during supernova expansion. Interpretation of presolar micrometer-sized carbon solids found in meteorites and of infrared emission from supernova is relaxed to allow O to be more abundant than C, but the maximum grain size depends upon that ratio.

  9. Rayleigh-Taylor mixing in supernova experiments

    SciTech Connect

    Swisher, N. C.; Abarzhi, S. I.; Kuranz, C. C.; Arnett, D.; Hurricane, O.; Remington, B. A.; Robey, H. F.

    2015-10-15

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order.

  10. Supernova 1987A: 18 months later

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1989-01-01

    An overview of the significance for physics of the closest visual supernova in almost 400 years is presented. The supernova occurred in the Large Magellanic Cloud (LMC), approx. 50 kpc away. The supernova star was a massive star of approx. 15 to 20 solar mass. Observations now show that it was once a red giant but lost its outer envelope. The lower than standard luminosity and higher observed velocities are a natural consequence of the pre-supernova star being a blue rather than a red (supergiant). Of particular importance to physicsts is the detection of neutrinos from the event by detectors in the United States and Japan. Not only did this establish extra-solar system neutrino astronomy, but it also constrained the properties of neutrino. It is shown that the well established Kamioka-IMB neutrino burst experimentally implies an event with about 2 to 4 x 10 to the 53rd power ergs emitted in neutrinos and a temperature, T sub nu e, of between 4 and 4.5 MeV. This event is in excellent agreement with what one would expect from the gravitational core collapse of a massive star. The anticipated frequency of collapse events in our Galaxy is discussed.

  11. Supernova tests of the timescape cosmology

    NASA Astrophysics Data System (ADS)

    Smale, Peter R.; Wiltshire, David L.

    2011-05-01

    The timescape cosmology has been proposed as a viable alternative to homogeneous cosmologies with dark energy. It realizes cosmic acceleration as an apparent effect that arises in calibrating average cosmological parameters in the presence of spatial curvature and gravitational energy gradients that grow large with the growth of inhomogeneities at late epochs. Recently Kwan, Francis and Lewis have claimed that the timescape model provides a relatively poor fit to the Union and Constitution supernovae compilations, as compared to the standard Λ cold dark matter (ΛCDM) model. We show this conclusion is a result of systematic issues in supernova light-curve fitting, and of failing to exclude data below the scale of statistical homogeneity, z≲ 0.033. Using all currently available supernova data sets (Gold07, Union, Constitution, MLCS17, MLCS31, SDSS-II, CSP, Union2), and making cuts at the statistical homogeneity scale, we show that data reduced by the SALT/SALT-II (Spectral Adaptive Light curve Template) fitters provide Bayesian evidence that favours the spatially flat ΛCDM model over the timescape model, whereas data reduced with MLCS2k2 fitters give Bayesian evidence which favours the timescape model over the ΛCDM model. We discuss the questions of extinction and reddening by dust, and of intrinsic colour variations in supernovae which do not correlate with the decay time, and the likely impact these systematics would have in a scenario consistent with the timescape model.

  12. Multipole expansion method for supernova neutrino oscillations

    SciTech Connect

    Duan, Huaiyu; Shalgar, Shashank E-mail: shashankshalgar@unm.edu

    2014-10-01

    We demonstrate a multipole expansion method to calculate collective neutrino oscillations in supernovae using the neutrino bulb model. We show that it is much more efficient to solve multi-angle neutrino oscillations in multipole basis than in angle basis. The multipole expansion method also provides interesting insights into multi-angle calculations that were accomplished previously in angle basis.

  13. Supernova hydrodynamicas experiments using the Nova laser

    SciTech Connect

    Remington, B.A.; Glendinning, S.G.; Estabrook, K.

    1997-07-01

    We are developing experiments using the Nova laser to investigate (1) compressible nonlinear hydrodynamic mixing relevant to the first few hours of the supernova (SN) explosion and (2) ejecta-ambient plasma interactions relevant to the early SN remnant phase. The experiments and astrophysical implications are discussed.

  14. The Application of Bayesian Inference to Gravitational Waves from Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Gossan, Sarah; Ott, Christian; Kalmus, Peter; Logue, Joshua; Heng, Siong

    2013-04-01

    The gravitational wave (GW) signature of core-collapse supernovae (CCSNe) encodes important information on the supernova explosion mechanism, the workings of which cannot be explored via observations in the electromagnetic spectrum. Recent research has shown that the CCSNe explosion mechanism can be inferred through the application of Bayesian model selection to gravitational wave signals from supernova explosions powered by the neutrino, magnetorotational and acoustic mechanisms. Extending this work, we apply Principal Component Analysis to the GW spectrograms from CCSNe to take into account also the time-frequency evolution of the emitted signals. We do so in the context of Advanced LIGO, to establish if any improvement on distinguishing between various explosion mechanisms can be obtained. Further to this, we consider a five-detector network of interferometers (comprised of the two Advanced LIGO detectors, Advanced Virgo, LIGO India and KAGRA) and generalize the aforementioned analysis for a source of known position but unknown distance, using realistic, re-colored detector data (as opposed to Gaussian noise), in order to make more reliable statements regarding our ability to distinguish between various explosion mechanisms on the basis of their GW signatures.

  15. ANALYTICAL LIGHT CURVE MODELS OF SUPERLUMINOUS SUPERNOVAE: {chi}{sup 2}-MINIMIZATION OF PARAMETER FITS

    SciTech Connect

    Chatzopoulos, E.; Wheeler, J. Craig; Vinko, J.; Horvath, Z. L.; Nagy, A.

    2013-08-10

    We present fits of generalized semi-analytic supernova (SN) light curve (LC) models for a variety of power inputs including {sup 56}Ni and {sup 56}Co radioactive decay, magnetar spin-down, and forward and reverse shock heating due to supernova ejecta-circumstellar matter (CSM) interaction. We apply our models to the observed LCs of the H-rich superluminous supernovae (SLSN-II) SN 2006gy, SN 2006tf, SN 2008am, SN 2008es, CSS100217, the H-poor SLSN-I SN 2005ap, SCP06F6, SN 2007bi, SN 2010gx, and SN 2010kd, as well as to the interacting SN 2008iy and PTF 09uj. Our goal is to determine the dominant mechanism that powers the LCs of these extraordinary events and the physical conditions involved in each case. We also present a comparison of our semi-analytical results with recent results from numerical radiation hydrodynamics calculations in the particular case of SN 2006gy in order to explore the strengths and weaknesses of our models. We find that CS shock heating produced by ejecta-CSM interaction provides a better fit to the LCs of most of the events we examine. We discuss the possibility that collision of supernova ejecta with hydrogen-deficient CSM accounts for some of the hydrogen-deficient SLSNe (SLSN-I) and may be a plausible explanation for the explosion mechanism of SN 2007bi, the pair-instability supernova candidate. We characterize and discuss issues of parameter degeneracy.

  16. Supernova Remnant Observations with Micro-X

    NASA Astrophysics Data System (ADS)

    Figueroa, Enectali

    explosion mechanisms of supernovae and their roles in energy and heavy-element injection into galaxies, their evolution into SNRs, their interactions with their environments, and finally their roles as particle accelerators. For the first flight, we will observe an ejecta region in the Puppis A SNR. The Puppis A bright eastern knot (BEK), is the target of second flight in 2014. The third flight, in late 2015 or early 2016, will make an observation of the Cas A SNR. We will continue to advance the technology readiness of TES microcalorimeters while enhancing the science capability of the payload by implementing a series of improvements for the third flight. For the observation of Cas A in the third flight, we will upgrade from the 128-pixel array with 1 arcminute pixels used in the first two flights to a higher-energy resolution (1 eV FWHM) 256-pixel array with 20 arcsecond pixels and a new 30 arcsecond HPD mirror to enable improved imaging spectroscopy with our payload. The Micro-X team includes leaders in the development of microcalorimeters, SQUID readout systems, and segmented and full-shell grazing incidence X-ray optics, as well as highly experienced sounding rocket instrument developers, and scientific experts on supernova remnants. These investigators are located at institutions with strong space instrumentation traditions with the infrastructure to ensure a successful flight program. With Micro-X, we have designed a versatile payload capable of providing high-resolution science and a testbed for new technology. The first flight this year will make significant scientific contributions well ahead of the Astro-H mission. The program will also aid in the understanding and development of future flight-qualified microcalorimeter systems for larger orbiting missions. Finally, it will continue to attract talented young scientists to X-ray astrophysics and thus serve as a direct pipeline of future leaders of NASA missions.

  17. SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION

    SciTech Connect

    Dexter, Jason; Kasen, Daniel

    2013-07-20

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time ({approx}>days) power potentially associated with the accretion of this 'fallback' material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as M-dot {proportional_to}t{sup -5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous ({approx}> 10{sup 44} erg s{sup -1}) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  18. Evidence of Historical Supernovae in Ice Cores

    NASA Astrophysics Data System (ADS)

    Young, Donna

    2011-05-01

    Within the framework of the U.S. Greenland Ice Core Science Project (GISP2), an ice core, known as the GISP H-Core, was collected in June, 1992 adjacent to the GISP2 summit drill site. The project scientists, Gisela A.M. Dreschhoff and Edward J. Zeller, were interested in dating solar proton events with volcanic eruptions. The GISP2-H 122-meter firn and ice core is a record of 415 years of liquid electrical conductivity (LEC) and nitrate concentrations, spanning the years 1992 at the surface through 1577 at the bottom. At the National Ice Core Laboratory in Denver, Colorado, the core (beneath the 12-meter firn) was sliced into 1.5 cm sections and analyzed. The resulting data set consisted of 7,776 individual analyses. The ultrahigh resolution sampling technique resulted in a time resolution of one week near the surface and one month at depth. The liquid electrical conductivity (LEC) sequence contains signals from a number of known volcanic eruptions and provides a dating system at specific locations along the core. The terrestrial and solar background nitrate records show seasonal and annual variations, respectively. However, major nitrate anomalies within the record do not correspond to any known terrestrial or solar events. There is evidence that these nitrate anomalies could be a record of supernovae events. Cosmic X-rays ionize atmospheric nitrogen, producing excess nitrate that is then deposited in the Polar Regions. The GISP2-H ice core has revealed nitrate anomalies at the times of the Tycho and Kepler supernovae. The Cassiopeia A supernova event may be documented in the core as well. We have developed a classroom activity for high school and college students, in which they examine several lines of evidence in the Greenland ice core, discriminating among nearby and mid-latitude volcanic activity, solar proton events, and supernovae. Students infer the date of the Cassiopeia A supernova.

  19. Pulsars, supernovae, and ultrahigh energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Kotera, K.; Fang, K.; Olinto, A. V.; Phinney, E. S.

    2012-12-01

    The acceleration of ultrahigh energy nuclei in fast spinning newborn pulsars can explain the observed spectrum of ultrahigh energy cosmic rays and the trend towards heavier nuclei for energies above 10^{19} eV as indicated by air shower studies reported by the Auger Observatory. By assuming a normal distribution of pulsar birth periods centered at 300 ms, we show that the contribution of extragalactic pulsar births to the ultrahigh energy cosmic ray spectrum naturally gives rise to a contribution to very high energy cosmic rays (VHECRs, between 10^{16} and 10^{18} eV) by Galactic pulsar births. The required injected composition to fit the observed spectrum depends on the absolute energy scale, differing considerably between the energy scale used by Auger and that used by the Telescope Array. Depending on the composition of the cosmic rays that escape the supernova remnant and the diffusion behavior of VHECRs in the Galaxy, the contribution of Galactic pulsar births can also bridge the gap between predictions for cosmic ray acceleration in supernova remnants and the observed spectrum below the ankle. Fast spinning newborn pulsars that could produce UHECRs would be born in supernovae that could present interesting specific radiative features, due to the interaction of the pulsar wind with the surrounding ejecta. The resulting supernova lightcurves could present a high luminosity plateau over a few years, and a bright X-ray and gamma-ray peak around one or two years after the onset of the explosion. If such signatures were observed, they could have important implications both for UHECR astrophysics and for the understanding of core-collapse supernovae.

  20. Scaling supernova hydrodynamics to the laboratory

    SciTech Connect

    Kane, J.O.

    1999-06-01

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in J. Kane et al., Astrophys. J.478, L75 (1997) The Nova laser is used to shock two-layer targets, producing Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities at the interfaces between the layers, analogous to instabilities seen at the interfaces of SN 1987A. Because the hydrodynamics in the laser experiments at intermediate times (3-40 ns) and in SN 1987A at intermediate times (5 s-10{sup 4} s) are well described by the Euler equations, the hydrodynamics scale between the two regimes. The experiments are modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS, thus serving as a benchmark for PROMETHEUS. Results of the experiments and simulations are presented. Analysis of the spike and bubble velocities in the experiment using potential flow theory and a modified Ott thin shell theory is presented. A numerical study of 2D vs. 3D differences in instability growth at the O-He and He-H interface of SN 1987A, and the design for analogous laser experiments are presented. We discuss further work to incorporate more features of the SN in the experiments, including spherical geometry, multiple layers and density gradients. Past and ongoing work in laboratory and laser astrophysics is reviewed, including experimental work on supernova remnants (SNRs). A numerical study of RM instability in SNRs is presented.

  1. Scaling supernova hydrodynamics to the laboratory

    SciTech Connect

    Kane, J.; Arnett, D.; Remington, B.A.; Glendinning, S.G.; Bazan, G.; Drake, R.P.; Fryxell, B.A.; Teyssier, R.

    1999-05-01

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in J. Kane {ital et al.} [Astrophys. J. {bold 478}, L75 (1997) and B. A. Remington {ital et al.}, Phys. Plasmas {bold 4}, 1994 (1997)]. The Nova laser is used to generate a 10{endash}15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth due to the Richtmyer{endash}Meshkov instability, and to the Rayleigh{endash}Taylor instability as the interface decelerates. This resembles the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few {times}10{sup 3}s. The scaling of hydrodynamics on microscopic laser scales to the SN-size scales is presented. The experiment is modeled using the hydrodynamics codes HYADES [J. T. Larson and S. M. Lane, J. Quant. Spect. Rad. Trans. {bold 51}, 179 (1994)] and CALE [R. T. Barton, {ital Numerical Astrophysics} (Jones and Bartlett, Boston, 1985), pp. 482{endash}497], and the supernova code PROMETHEUS [P. R. Woodward and P. Collela, J. Comp. Phys. {bold 54}, 115 (1984)]. Results of the experiments and simulations are presented. Analysis of the spike-and-bubble velocities using potential flow theory and Ott thin-shell theory is presented, as well as a study of 2D versus 3D differences in perturbation growth at the He-H interface of SN 1987A.

  2. Supernova 1987A: 18 Months later

    SciTech Connect

    Schramm, D.N.

    1989-01-01

    An overview of the significance for physics of the closest visual supernova in almost 400 years is presented. The supernova occurred in the Large Magellanic Cloud (LMC), /approximately/50 kpc away. The supernova star was a massive star of /approximately/15--20M. Observations now show that it was once a red-giant but lost its outer envelope. The lower than standard luminosity and higher observed velocities are a natural consequence of the pre-supernova star being a blue rather than a red (supergiant). Of particular importance to physicists is the detection of neutrinos from the event by detectors in the United States and Japan. Not only did this establish extra-solar system neutrino astronomy, but it also constrained the properties of neutrino. It is shown that the well established Kamioka-IMB neutrino burst experimentally implies an event with about 2--4 /times/ 10/sup 53/ergs emitted in neutrinos and a temperature, T/sub /bar /nu/e//, of between 4 and 4.5 MeV. This event is in excellent agreement with what one would expect from the gravitational core collapse of a massive star. A neutrino detection, such as that reported earlier in Mt. Blanc, would require more than the rest mass energy of a neutron star to be converted to neutrinos, if it were to have its origin in the LMC. Thus it is probably unrelated to the supernova. The anticipated frequency of collapse events in our Galaxy, will also be discussed with a rate as high as 1/10 year shown to be not unreasonable. 61 refs.

  3. Progress of the equation of state table for supernova simulations and its influence

    SciTech Connect

    Sumiyoshi, Kohsuke

    2012-11-12

    We describe recent progress of the EOS tables for numerical simulations of core-collapse supernovae and related astrophysical phenomena. Based on the Shen EOS table, which has been widely used in supernova simulations, there is systematic progress by extending the degrees of freedom such as hyperons and quarks. These extended EOS tables have been used, for example, to study the neutrino bursts from the gravitational collapse of massive stars leading to the black hole formation. Observations of such neutrinos from galactic events in future will provide us with the information on the EOS. Recently, studies of the supernova EOS with the multi-composition of nuclei under the nuclear statistical equilibrium have been made beyond the single nucleus approximation as used in the Shen EOS. It has been found that light elements including deuterons are abundant in wide regions of the supernova cores. We discuss that neutrino-deuteron reactions may have a possible influence on the explosion mechanism through modifications of neutrino heating rates.

  4. Constraining absolute neutrino masses via detection of galactic supernova neutrinos at JUNO

    SciTech Connect

    Lu, Jia-Shu; Cao, Jun; Li, Yu-Feng; Zhou, Shun

    2015-05-26

    A high-statistics measurement of the neutrinos from a galactic core-collapse supernova is extremely important for understanding the explosion mechanism, and studying the intrinsic properties of neutrinos themselves. In this paper, we explore the possibility to constrain the absolute scale of neutrino masses m{sub ν} via the detection of galactic supernova neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO) with a 20 kiloton liquid-scintillator detector. In assumption of a nearly-degenerate neutrino mass spectrum and a normal mass ordering, the upper bound on the absolute neutrino mass is found to be m{sub ν}<(0.83±0.24) eV at the 95% confidence level for a typical galactic supernova at a distance of 10 kpc, where the mean value and standard deviation are shown to account for statistical fluctuations. For comparison, we find that the bound in the Super-Kamiokande experiment is m{sub ν}<(0.94±0.28) eV at the same confidence level. However, the upper bound will be relaxed when the model parameters characterizing the time structure of supernova neutrino fluxes are not exactly known, and when the neutrino mass ordering is inverted.

  5. Constraining absolute neutrino masses via detection of galactic supernova neutrinos at JUNO

    SciTech Connect

    Lu, Jia-Shu; Cao, Jun; Li, Yu-Feng; Zhou, Shun E-mail: caoj@ihep.ac.cn E-mail: zhoush@ihep.ac.cn

    2015-05-01

    A high-statistics measurement of the neutrinos from a galactic core-collapse supernova is extremely important for understanding the explosion mechanism, and studying the intrinsic properties of neutrinos themselves. In this paper, we explore the possibility to constrain the absolute scale of neutrino masses m{sub ν} via the detection of galactic supernova neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO) with a 20 kiloton liquid-scintillator detector. In assumption of a nearly-degenerate neutrino mass spectrum and a normal mass ordering, the upper bound on the absolute neutrino mass is found to be m{sub ν} < (0.83 ± 0.24) eV at the 95% confidence level for a typical galactic supernova at a distance of 10 kpc, where the mean value and standard deviation are shown to account for statistical fluctuations. For comparison, we find that the bound in the Super-Kamiokande experiment is m{sub ν} < (0.94 ± 0.28) eV at the same confidence level. However, the upper bound will be relaxed when the model parameters characterizing the time structure of supernova neutrino fluxes are not exactly known, and when the neutrino mass ordering is inverted.

  6. Supernova Search Charts and Handbook, Pack/set ICL

    NASA Astrophysics Data System (ADS)

    Thompson, Gregg D.; Bryan, James T., Jr.

    This unique atlas contains 248 charts of more than 300 of the brightest galaxies, each specially prepared to facilitate the discovery of supernovae. The comparison of these charts with the field seen in a telescope enables any extragalactic supernova to be spotted immediately. The charts include 345 galaxies printed on translucent paper for use on a light-box, each one carrying an explanation of the constellation in which the galaxy lies, special characteristics of the galaxy, observing instructions, expected maximum brightness for the supernovae in each galaxy, and the reference for the sequence. A handbook accompanies the charts advising on their use, on how to make and record supernova discoveries, and reviewing the present understanding of supernovae. Published for an international market, these charts carry real potential for numerous discoveries of supernovae. The Supernovea Search Charts are a must for both serious observers and the growing number of deep sky enthusiasts around the world. '...these charts and the handbook will eventually increase the detection rate of supernovae.' New Scientist'...a much needed addition to the library of the active observer who wishes to hunt for these most important objects.' Observatory'...a mine of useful information and contains many hints on observing supernovae, as well as appendices on current supernova research.' Contemporary Physics'..they are a valuable asset to the field of supernovae searching' Journal of the British Astronomical Association

  7. Thermal effects in supernova matter

    NASA Astrophysics Data System (ADS)

    Constantinou, Constantinos

    A crucial ingredient in simulations of core collapse supernova (SN) explosions is the equation of state (EOS) of nucleonic matter for densities extending from 10-7 fm-3 to 1 ffm-3, temperatures up to 50 MeV, and proton-to-baryon fraction in the range 0 to 1/2. SN explosions release 99% of the progenitor star's gravitational potential energy in the form of neutrinos and, additionally, they are responsible for populating the universe with elements heavier than 56Fe. Therefore, the importance of understanding this phenomenon cannot be overstated as it could shed light onto the underlying nuclear and neutrino physics. A realistic EOS of SN matter must incorporate the nucleon-nucleon interaction in a many-body environment. We treat this problem with a non-relativistic potential model as well as relativistic mean-field theoretical one. In the former approach, we employ the Skyrme-like Hamiltonian density constructed by Akmal, Pandharipande, and Ravenhall which takes into account the long scattering lengths of nucleons that determine the low density characteristics. In the latter, we use a Walecka-like Lagrangian density supplemented by non-linear interactions involving scalar, vector, and isovector meson exchanges, calibrated so that known properties of nuclear matter are reproduced. We focus on the bulk homogeneous phase and calculate its thermodynamic properties as functions of baryon density, temperature, and proton-to-baryon ratio. The exact numerical results are then compared to those in the degenerate and non-degenerate limits for which analytical formulae have been derived. We find that the two models bahave similarly for densities up to nuclear saturation but exhibit differences at higher densities most notably in the isospin susceptibilities, the chemical potentials, and the pressure. The importance of the correct momentum dependence in the single particle potential that fits optical potentials of nucleon-nucleus scattering was highlighted in the context of

  8. Type Ia supernovae: explosions and progenitors

    NASA Astrophysics Data System (ADS)

    Kerzendorf, Wolfgang Eitel

    2011-08-01

    Supernovae are the brightest explosions in the universe. Supernovae in our Galaxy, rare and happening only every few centuries, have probably been observed since the beginnings of mankind. At first they were interpreted as religious omens but in the last half millennium they have increasingly been used to study the cosmos and our place in it. Tycho Brahe deduced from his observations of the famous supernova in 1572, that the stars, in contrast to the widely believe Aristotelian doctrine, were not immutable. More than 400 years after Tycho made his paradigm changing discovery using SN 1572, and some 60 years after supernovae had been identified as distant dying stars, two teams changed the view of the world again using supernovae. The found that the Universe was accelerating in its expansion, a conclusion that could most easily be explained if more than 70% of the Universe was some previously un-identified form of matter now often referred to as `Dark Energy'. Beyond their prominent role as tools to gauge our place in the Universe, supernovae themselves have been studied well over the past 75 years. We now know that there are two main physical causes of these cataclysmic events. One of these channels is the collapse of the core of a massive star. The observationally motivated classes Type II, Type Ib and Type Ic have been attributed to these events. This thesis, however is dedicated to the second group of supernovae, the thermonuclear explosions of degenerate carbon and oxygen rich material and lacking hydrogen - called Type Ia supernovae (SNe Ia). White dwarf stars are formed at the end of a typical star's life when nuclear burning ceases in the core, the outer envelope is ejected, with the degenerate core typically cooling for eternity. Theory predicts that such stars will self ignite when close to 1.38 Msun (called the Chandrasekhar Mass). Most stars however leave white dwarfs with 0.6 Msun, and no star leaves a remnant as heavy as 1.38 M! sun, which suggests

  9. Are supernova remnants quasi-parallel or quasi-perpendicular accelerators

    NASA Technical Reports Server (NTRS)

    Spangler, S. R.; Leckband, J. A.; Cairns, I. H.

    1989-01-01

    Observations of shock waves in the solar system which show a pronounced difference in the plasma wave and particle environment depending on whether the shock is propagating along or perpendicular to the interplanetary magnetic field are discussed. Theories for particle acceleration developed for quasi-parallel and quasi-perpendicular shocks, when extended to the interstellar medium suggest that the relativistic electrons in radio supernova remnants are accelerated by either the Q parallel or Q perpendicular mechanisms. A model for the galactic magnetic field and published maps of supernova remnants were used to search for a dependence of structure on the angle Phi. Results show no tendency for the remnants as a whole to favor the relationship expected for either mechanism, although individual sources resemble model remnants of one or the other acceleration process.

  10. Spectroscopic classification of supernova SN 2016fqr with the Nordic Optical Telescope

    NASA Astrophysics Data System (ADS)

    Terreran, G.; Elias-Rosa, N.; Mattila, S.; Lundqvist, P.; Stritzinger, M.; Benetti, S.; Cappellaro, E.; Blagorodnova, N.; Davis, S.; Dong, S.; Fraser, M.; Gall, C.; Harmanen, J.; Harrison, D.; Hodgkin, S.; Hsiao, E. Y.; Jonker, P.; Kangas, T.; Kankare, E.; Kuncarayakti, H.; Kostrzewa-Rutkowska, Z.; Nielsen, M.; Ochner, P.; Pastorello, A.; Prieto, J. L.; Reynolds, T.; Romero-Canizales, C.; Stanek, K.; Taddia, F.; Tartaglia, L.; Tomasella, L.; Wyrzykowski, L.

    2016-09-01

    The NOT Unbiased Transient Survey (NUTS; ATel #8992) report the spectroscopic classification of supernova SN 2016fqr in NGC 1122. The supernova was discovered by the Lick Observatory Supernova Search (LOSS).

  11. Asymmetric Explosion of Type Ia Supernovae and Their Observational Signatures

    SciTech Connect

    Maeda, Keiichi

    2010-06-01

    The nature of Type Ia supernova (SN Ia) explosions has not yet been clarified, despite their importance in astrophysics and cosmology. Recent theoretical investigations suggest that asymmetric distribution of initial thermonuclear sparks may be a key in the SN Ia explosion mechanism. In this paper, the first observational evidence of the asymmetry in SN Ia explosions is presented: We have found that late-time nebular spectra of various SNe Ia show a diversity in wavelengths of emission lines. This feature is inconsistent with any spherically symmetric explosion models, and indicates that the innermost region, a likely product of the deflagration wave propagation, shows an off-set with respect to the explosion center. The diversity in the emission-line wavelengths could naturally be explained by a combination of different viewing angles.

  12. Envelope dynamics of iron-core supernova models

    NASA Technical Reports Server (NTRS)

    Barkat, Z.; Wheeler, J. C.; Buchler, J.-R.; Rakavy, G.

    1974-01-01

    Wilson (1971) has found that the neutrino transport mechanism is unable to generate a supernova explosion in stars with collapsing iron cores. The present work uses Wilson's analysis to investigate the behavior of the overlying potentially explosive layers which Wilson omitted. The outer boundary of the core of Wilson's models moves in such a manner as to deliver a shock to the base of the envelope. We have numerically followed the progress of such shocks into the envelope of a realistic model obtained from evolutionary calculations. We find that only shocks so strong as to be inconsistent with our treatment are capable of ejecting material. For reasonable shocks the nuclear burning does not proceed rapidly at densities below 1,000 kg/cu cm, and the nuclear energy released is less than the shock energy in all models that come near to ejecting matter.

  13. Stardust, Supernovae and the Chirality of the Amino Acids

    SciTech Connect

    Boyd, R N; Kajino, T; Onaka, T

    2011-03-09

    A mechanism for creating enantiomerism in the amino acids, the building blocks of the proteins, that involves global selection of one chirality by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's amino acids.

  14. Using Twin Type Ia Supernovae to Improve Cosmological Distance Measurements

    NASA Astrophysics Data System (ADS)

    Boone, Kyle; Fakhouri, Hannah; Aldering, Greg Scott; Antilogus, Pierre; Aragon, Cecilia; Bailey, Stephen J.; Baltay, Charles; Barbary, Kyle H.; Baugh, Derek; Birchall, Dan; Bongard, Sebastien; Buton, Clement; Cellier-Holzem, Flora; Chen, Juncheng; Childress, Michael; Chotard, Nicolas; Copin, Yannick; Fagrelius, Parker; Feindt, Ulrich; Fleury, Mathilde; Fouchez, Dominique; Gangler, Emmanuel; Hayden, Brian; Kim, Alex G.; Kowalski, Marek; Leget, Pierre-Francois; Lombardo, Simona; Nordin, Jakob; Nugent, Peter E.; Pain, Reynald; Pecontal, Emmanuel; Pereira, Rui; Perlmutter, Saul; Rabinowitz, David L.; Ren, James; Rigault, Mickael; Rubin, David; Runge, Karl; Saunders, Clare; Scalzo, Richard A.; Smadja, Gerard; Sofiatti, Caroline; Strovink, Mark; Suzuki, Nao; Tao, Charling; Thomas, Rollin; Weaver, Benjamin; Nearby Supernova Factory (SNfactory)

    2016-01-01

    The Nearby Supernova Factory has collected spectrophotometric timeseries of many Hubble-flow type Ia supernovae. Using this dataset, we introduce a novel method of identifying "twin" Type Ia supernovae by matching spectral data. For this initial set of SNfactory twin supernovae, we find a dispersion in luminosity of 0.083 ± 0.012 magnitudes between twins, implying a dispersion of 0.072 ± 0.010 magnitudes in the absence of peculiar velocities. This shows that at least 3/4 of the variance in Hubble residuals in current supernova cosmology analyses is due to previously unaccounted-for astrophysical differences among the supernovae -- differences captured by spectrophotometric twinning. We discuss both the usage of this method and the data requirements to implement it.

  15. DISCOVERY OF X-RAY EMISSION FROM SUPERNOVA 1970G WITH CHANDRA: FILLING THE VOID BETWEEN SUPERNOVAE AND SUPERNOVA REMNANTS

    NASA Technical Reports Server (NTRS)

    Immler, Stefan; Kuntz, K. D.

    2005-01-01

    We report the discovery of X-ray emission from SN 1970G in M101, 35 yr after its outburst, using deep X-ray imaging with the Chundra X-Ray Observatory. The Chandra ACIS spectrum shows that the emission is soft (52 keV) and characteristic of the reverse-shock region. The X-ray luminosity, Lo,,, = (1.1 3 0.2) x lo3# ergs s-1, is likely caused by the interaction of the supernova shock with dense circumstellar matter. If the material was deposited by the stellar wind from the progenitor, a mass-loss rate of M = (2.6 ? 0.4) x M, yr-I (v,/lO km s-I) is inferred. Utilizing the high-resolution Chandra ACIS data of SN 1970G and its environment, we reconstruct the X-ray lightcurve from previous ROSAT HRI, PSPC, and XMM-Newton EPIC observations, and find a best-fit linear rate of decline of L cc t-# with index s = 2.7 t 0.9 over a period of -20-35 yr after the outburst. As the oldest supernova detected in X-rays, SN 1970G allows, for the first time, direct observation of the transition from a supenova to its supernova remnant phase.

  16. Black Hole Physics and Astrophysics: The GRB-Supernova Connection and URCA-1 - URCA-2

    NASA Astrophysics Data System (ADS)

    Ruffini, R.; Bernardini, M. G.; Bianco, C. L.; Vitagliano, L.; Xue, S.-S.; Chardonnet, P.; Fraschetti, F.; Gurzadyan, V.

    2006-02-01

    We outline the confluence of three novel theoretical fields in our modeling of Gamma-Ray Bursts (GRBs): 1) the ultrarelativistic regime of a shock front expanding with a Lorentz gamma factor ~ 300; 2) the quantum vacuum polarization process leading to an electron-positron plasma originating the shock front; and 3) the general relativistic process of energy extraction from a black hole originating the vacuum polarization process. There are two different classes of GRBs: the long GRBs and the short GRBs. We here address the issue of the long GRBs. The theoretical understanding of the long GRBs has led to the detailed description of their luminosities in fixed energy bands, of their spectral features and made also possible to probe the astrophysical scenario in which they originate. We are specially interested, in this report, to a subclass of long GRBs which appear to be accompanied by a supernova explosion. We are considering two specific examples: GRB980425/SN1998bw and GRB030329/SN2003dh. While these supernovae appear to have a standard energetics of 1049 ergs, the GRBs are highly variable and can have energetics 104 - 105 times larger than the ones of the supernovae. Moreover, many long GRBs occurs without the presence of a supernova. It is concluded that in no way a GRB can originate from a supernova. The precise theoretical understanding of the GRB luminosity we present evidence, in both these systems, the existence of an independent component in the X-ray emission, usually interpreted in the current literature as part of the GRB afterglow. This component has been observed by Chandra and XMM to have a strong decay on scale of months. We have named here these two sources respectively URCA-1 and URCA-2, in honor of the work that George Gamow and Mario Shoenberg did in 1939 in this town of Urca identifying the basic mechanism, the Urca processes, leading to the process of gravitational collapse and the formation of a neutron star and a supernova. The further

  17. Addendum to: Gen. Rel. Grav. 28 (1996) 1161, First Prize Essay for 1996: Neutrino Oscillations and Supernovae

    NASA Astrophysics Data System (ADS)

    Ahluwalia-Khalilova, D. V.

    2004-09-01

    In a 1996 JRO Fellowship Research Proposal (Los Alamos), the author suggested that neutrino oscillations may provide a powerful indirect energy transport mechanism to supernovae explosions. The principal aim of this addendum is to present the relevant unedited text of Section 1 of that proposal. We then briefly remind, (a) of an early suggestion of Mazurek on vacuum neutrino oscillations and their relevance to supernovae explosion, and (b) Wolfenstein's result on suppression of the effect by matter effects. We conclude that whether or not neutrino oscillations play a significant role in supernovae explosions shall depend if there are shells/regions of space in stellar collapse where matter effects play no essential role. Should such regions exist in actual astrophysical situations, the final outcome of neutrino oscillations on supernovae explosions shall depend, in part, on whether or not the LNSD signal is confirmed. Importantly, the reader is reminded that neutrino oscillations form a set of flavor-oscillation clocks and these clock suffer gravitational redshift which can be as large as 20 percent. This effect must be incorporated fully into any calculation of supernova explosion.

  18. SUPERLUMINOUS X-RAYS FROM A SUPERLUMINOUS SUPERNOVA

    SciTech Connect

    Levan, A. J.; Wheatley, P. J.; Read, A. M.; Tanvir, N. R.; Metzger, B. D.

    2013-07-10

    The discovery of a population of superluminous supernovae (SLSNe), with peak luminosities a factor of {approx}100 brighter than normal supernovae (SNe; typically SLSNe have M{sub V} < -21), has shown an unexpected diversity in core-collapse SN properties. Numerous models have been postulated for the nature of these events, including a strong interaction of the shockwave with a dense circumstellar environment, a re-energizing of the outflow via a central engine, or an origin in the catastrophic destruction of the star following a loss of pressure due to pair production in an extremely massive stellar core (so-called pair instability SNe). Here we consider constraints that can be placed on the explosion mechanism of hydrogen-poor SLSNe (SLSNe-I) via X-ray observations, with XMM-Newton, Chandra, and Swift, and show that at least one SLSN-I is likely the brightest X-ray SN ever observed, with L{sub X} {approx} 10{sup 45} erg s{sup -1}, {approx}150 days after its initial discovery. This is a luminosity three orders of magnitude higher than seen in other X-ray SNe powered via circumstellar interactions. Such high X-ray luminosities are sufficient to ionize the ejecta and markedly reduce the optical depth, making it possible to see deep into the ejecta and any source of emission that resides there. Alternatively, an engine could have powered a moderately relativistic jet external to the ejecta, similar to those seen in gamma-ray bursts. If the detection of X-rays does require an engine it implies that these SNe do create compact objects, and that the stars are not completely destroyed in a pair instability event. Future observations will determine which, if any, of these mechanisms are at play in SLSNe.

  19. HUBBLE CAPTURES VIEW OF SUPERNOVA BLAST IN REMOTE GALAXY CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In March 1996, the Hubble Space Telescope's Wide Field and Planetary Camera 2 just happened to be pointed at the faraway galaxy cluster MS1054-0321 when it captured the light from an exploding star, called supernova 1996CL. The cluster is 8 billion light-years from Earth. The Hubble telescope can clearly distinguish the supernova light from the glow of its parent galaxy. The larger image on the left shows the entire cluster of galaxies. The galaxy where the supernova was discovered is located in the boxed area. The bright knot of light from the supernova and the fainter glow from the parent galaxy are shown in the inset image on the right. The arrow points to the light from the supernova explosion. The supernova was discovered by members of the Supernova Cosmology Project, led by Saul Perlmutter of Lawrence Berkeley Laboratory in California. Perlmutter and his team made this discovery using images from the Hubble telescope and ground-based observatories. The Hubble data were furnished by Megan Donahue of the Space Telescope Science Institute. Donahue was using the Hubble telescope to study galaxy cluster MS1054-0321. Members of the Supernova Project use ground-based telescopes to search for distant supernovae, such as 1996CL, by comparing multiple, wide-field images of galaxies and clusters of galaxies taken at different times. Supernovae are named for the year and the order in which they are found. Supernova 1996CL is a Type Ia supernova. Exploding stars of this type are particularly useful for cosmology because they share a standard maximum brightness. By measuring this brightness, astronomers can determine a Type Ia's distance from Earth. Astronomers use this information to measure the expansion rate of the universe.

  20. Weak-interaction processes in core-collapse supernovae

    SciTech Connect

    Langanke, K.

    2015-02-24

    Weak interaction processes play an important role for the dynamics of a core-collapse supernova. Due to progress of nuclear modeling and constrained by data it has been possible to improve the rates of these processes for supernova conditions decisively. This manuscript describes the recent advances and the current status in deriving electron capture rates on nuclei and of inelastic neutrino-nucleus scattering for applications in supernova simulations and briefly discusses their impact on such studies.

  1. Supernova Search at Intermediate-redshift. I. Spectroscopic Analysis

    NASA Astrophysics Data System (ADS)

    Altavilla, G.; Ruiz-Lapuente, P.; Balastegui, A.; Méndez, J.; Benetti, S.; Irwin, M.; Schahmaneche, K.; Balland, C.; Pain, R.; Walton, N.

    2005-12-01

    We present 8 supernovae discovered as part of the International Time Programme (ITP) project ``Ω and Λ from Supernovae and the Physics of Supernovae Explosions'' at the European Northern Observatory (ENO). The objective is to increase the sample of intermediate redshift (0.1

  2. Ejection of Supernova-Enriched Gas From Dwarf Disk Galaxies

    SciTech Connect

    Fragile, P C; Murray, S D; Lin, D C

    2004-06-15

    We examine the efficiency with which supernova-enriched gas may be ejected from dwarf disk galaxies, using a methodology previously employed to study the self-enrichment efficiency of dwarf spheroidal systems. Unlike previous studies that focused on highly concentrated starbursts, in the current work we consider discrete supernova events spread throughout various fractions of the disk. We model disk systems having gas masses of 10{sup 8} and 10{sup 9} M{sub {circle_dot}} with supernova rates of 30, 300, and 3000 Myr{sup -1}. The supernova events are confined to the midplane of the disk, but distributed over radii of 0, 30, and 80% of the disk radius, consistent with expectations for Type II supernovae. In agreement with earlier studies, we find that the enriched material from supernovae is largely lost when the supernovae are concentrated near the nucleus, as expected for a starburst event. In contrast, we find the loss of enriched material to be much less efficient (as low as 21%) when the supernovae occur over even a relatively small fraction of the disk. The difference is due to the ability of the system to relax following supernova events that occur over more extended regions. Larger physical separations also reduce the likelihood of supernovae going off within low-density ''chimneys'' swept out by previous supernovae. We also find that, for the most distributed systems, significant metal loss is more likely to be accompanied by significant mass loss. A comparison with theoretical predications indicates that, when undergoing self-regulated star formation, galaxies in the mass range considered shall efficiently retain the products of Type II supernovae.

  3. Improved models of stellar core collapse and still no explosions: what is missing?

    PubMed

    Buras, R; Rampp, M; Janka, H-Th; Kifonidis, K

    2003-06-20

    Two-dimensional hydrodynamic simulations of stellar core collapse are presented which for the first time were performed by solving the Boltzmann equation for the neutrino transport including a state-of-the-art description of neutrino interactions. Stellar rotation is also taken into account. Although convection develops below the neutrinosphere and in the neutrino-heated region behind the supernova shock, the models do not explode. This suggests missing physics, possibly with respect to the nuclear equation of state and weak interactions in the subnuclear regime. However, it might also indicate a fundamental problem with the neutrino-driven explosion mechanism.

  4. Multi-Wavelength Observations of Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Williams, B.

    2012-01-01

    Supernova remnants (SNRs) provide a laboratory for studying various astrophysical processes, including particle acceleration, thermal and non thermal emission processes across the spectrum, distribution of heavy elements, the physics of strong shock waves, and the progenitor systems and environments of supernovae. Long studied in radio and X-rays, the past decade has seen a dramatic increase in the detection and subsequent study of SNRs in the infrared and gamma-ray regimes. Understanding the evolution of SNRs and their interaction with the interstellar medium requires a multi-wavelength approach. I will review the various physical processes observed in SNRs and how these processes are intertwined. In particular, I will focus on X-ray and infrared observations, which probe two very different but intrinsically connected phases of the ISM: gas and dust. I will discuss results from multi-wavelength studies of several SNRs at various stages of evolution, including Kepler, RCW 86, and the Cygnus Loop.

  5. Vivid View of Tycho's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This composite image of the Tycho supernova remnant combines infrared and X-ray observations obtained with NASA's Spitzer and Chandra space observatories, respectively, and the Calar Alto observatory, Spain. It shows the scene more than four centuries after the brilliant star explosion witnessed by Tycho Brahe and other astronomers of that era.

    The explosion has left a blazing hot cloud of expanding debris (green and yellow). The location of the blast's outer shock wave can be seen as a blue sphere of ultra-energetic electrons. Newly synthesized dust in the ejected material and heated pre-existing dust from the area around the supernova radiate at infrared wavelengths of 24 microns (red). Foreground and background stars in the image are white.

  6. Modeling Type IIn Supernova Light Curves

    NASA Astrophysics Data System (ADS)

    De La Rosa, Janie; Roming, Peter; Fryer, Chris

    2016-01-01

    We present near-by Type IIn supernovae observed with Swift's Ultraviolet/Optical Telescope (UVOT). Based on the diversity of optical light curve properties, this Type II subclass is commonly referred to as heterogeneous. At the time of discovery, our IIn sample is ~ 2 magnitudes brighter at ultraviolet wavelengths than at optical wavelengths, and ultraviolet brightness decays faster than the optical brightness. We use a semi-analytical supernova (SN) model to better understand our IIn observations, and focus on matching specific observed light curves features, i.e peak luminosity and decay rate. The SN models are used to study the effects of initial SN conditions on early light curves, and to show the extent of the "uniqueness" problem in SN light curves. We gratefully acknowledge the contributions from members of the Swift UVOT team, the NASA astrophysics archival data analysis program, and the NASA Swift guest investigator program.

  7. Quantitative Spectroscopy of Distant Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Bronder, T. J.; Hook, I.; Howell, D. A.; Sullivan, M.; Perrett, K.; Conley, A.; Astier, P.; Basa, S.; Carlberg, R. G.; Guy, J.; Pain, R.; Pritchet, C. J.; Neill, James D.

    2007-08-01

    Quantitative analysis of 24 high-z (zmed = 0.81) Type Ia supernovae (SNe Ia) spectra observed at the Gemini Telescopes for the Supernova Legacy Survey (SNLS) is presented. This analysis includes equivalent width measurements of SNe Ia-specific absorption features with methods tailored to the reduced signal-to-noise and host galaxy contamination present in these distant spectra. The results from this analysis are compared to corresponding measurements of a large set of low-z SNe Ia from the literature. This comparison showed no significant difference (less than 2σ) between the spectroscopic features of the distant and nearby SNe; a result that supports the assumption that SNe Ia are not evolving with redshift. Additionally, a new correlation between SiII absorption (observed near peak luminosity) and SNe Ia peak magnitudes is presented.

  8. Nuclear quests for supernova dynamics and nucleosynthesis

    SciTech Connect

    Langanke, K.; Martinez-Pinedo, G.

    2011-10-28

    Nuclear physics plays a crucial role in various aspects of core collapse supernovae. The collapse dynamics is strongly influenced by electron captures. Using modern many-body theory improved capture rates have been derived recently with the important result that the process is dominated by capture on nuclei until neutrino trapping is achieved. Following the core bounce the ejected matter is the site of interesting nucleosynthesis. The early ejecta are proton-rich and give rise to the recently discovered {nu}p-process. Later ejecta might be neutron-rich and can be one site of the r-process. The manuscript discusses recent progress in describing nuclear input relevant for the supernova dynamics and nucleosynthesis.

  9. Supernova nucleosynthesis in low-metallicity populations

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1986-01-01

    The mass loss rate in low-metallicity stars is discussed, and the consequences of that rate for the fate of such stars are considered. It is shown that, if radiation pressure on dust is important in driving the mass loss from red giants, and if these stars do not dredge up large amounts of processed material during their evolution, then the total amount of mass lost by Population II stars with low metallicity is small. Consequently, the rate of supernovae in populations of low metallicity is much higher than in populations of solar abundances. This conclusion leads to the prediction that the supernova rate should be high in galaxies that have some intermediate mass stars and have metallicity less than about 0.1 of the solar value.

  10. Merging white dwarfs and thermonuclear supernovae.

    PubMed

    van Kerkwijk, M H

    2013-06-13

    Thermonuclear supernovae result when interaction with a companion reignites nuclear fusion in a carbon-oxygen white dwarf, causing a thermonuclear runaway, a catastrophic gain in pressure and the disintegration of the whole white dwarf. It is usually thought that fusion is reignited in near-pycnonuclear conditions when the white dwarf approaches the Chandrasekhar mass. I briefly describe two long-standing problems faced by this scenario, and the suggestion that these supernovae instead result from mergers of carbon-oxygen white dwarfs, including those that produce sub-Chandrasekhar-mass remnants. I then turn to possible observational tests, in particular, those that test the absence or presence of electron captures during the burning. PMID:23630372

  11. Self similar evolution of evaporative supernova remnants

    NASA Astrophysics Data System (ADS)

    Chieze, J. P.; Lazareff, B.

    1981-02-01

    The expansion of a supernova remnant into an inhomogeneous medium of evaporating clouds can be idealized as a self-similar problem. The equations are set up and solved in the two limiting cases of negligible and dominant large scale conductivity, in the presence of an ad hoc external intercloud density equal to the product of Gamma, a parameter dependent on the evaporation parameter and the energy deposited by the supernova, with the -5/3 power of the radial distance, with Gamma equals 0 as a limiting case. While the detailed structure depends on Gamma, the global properties such as the expansion law and the total mass are to a large extent independent of this parameter, and agree with previous approximate results of McKee and Ostriker (1977). The limitations of the formal solutions are briefly discussed.

  12. Genetic algorithms and supernovae type Ia analysis

    SciTech Connect

    Bogdanos, Charalampos; Nesseris, Savvas E-mail: nesseris@nbi.dk

    2009-05-15

    We introduce genetic algorithms as a means to analyze supernovae type Ia data and extract model-independent constraints on the evolution of the Dark Energy equation of state w(z) {identical_to} P{sub DE}/{rho}{sub DE}. Specifically, we will give a brief introduction to the genetic algorithms along with some simple examples to illustrate their advantages and finally we will apply them to the supernovae type Ia data. We find that genetic algorithms can lead to results in line with already established parametric and non-parametric reconstruction methods and could be used as a complementary way of treating SNIa data. As a non-parametric method, genetic algorithms provide a model-independent way to analyze data and can minimize bias due to premature choice of a dark energy model.

  13. Merging white dwarfs and thermonuclear supernovae.

    PubMed

    van Kerkwijk, M H

    2013-06-13

    Thermonuclear supernovae result when interaction with a companion reignites nuclear fusion in a carbon-oxygen white dwarf, causing a thermonuclear runaway, a catastrophic gain in pressure and the disintegration of the whole white dwarf. It is usually thought that fusion is reignited in near-pycnonuclear conditions when the white dwarf approaches the Chandrasekhar mass. I briefly describe two long-standing problems faced by this scenario, and the suggestion that these supernovae instead result from mergers of carbon-oxygen white dwarfs, including those that produce sub-Chandrasekhar-mass remnants. I then turn to possible observational tests, in particular, those that test the absence or presence of electron captures during the burning.

  14. Energetic Supernovae of Very Massive Primordial Stars

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Woosley, Stan

    2015-08-01

    Current models of the formation of the first stars in the universe suggest that these stars were very massive, having a typical mass scale of hundreds of solar masses. Some of them would die as pair instability supernovae (PSNe) which might be the biggest explosions of the universe. We present the results from multidimensional numerical studies of PSNe with a new radiation-hydrodynamics code, CASTRO and with realistic nuclear reaction networks. We simulate the fluid instabilities that occur in multiple spatial dimensions and discuss how the resulting mixing affects the explosion, mixing, and nucleosynthesis of these supernovae. Our simulations provide useful predictions for the observational signatures of PSNe, which might soon be examined by the James Webb Space Telescope.

  15. Absolute-magnitude distributions of supernovae

    SciTech Connect

    Richardson, Dean; Wright, John; Jenkins III, Robert L.; Maddox, Larry

    2014-05-01

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  16. Supernovae and gamma-ray bursts connection

    NASA Astrophysics Data System (ADS)

    Valle, Massimo Della

    2015-12-01

    I'll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ˜ 0.4% - 3%.

  17. X-ray spectra of supernova remnants

    NASA Technical Reports Server (NTRS)

    Szymkowiak, A. E.

    1985-01-01

    X-ray spectra were obtained from fields in three supernova remnants with the solid state spectrometer of the HEAO 2 satellite. These spectra, which contain lines from K-shell transitions of several abundant elements with atomic numbers between 10 and 22, were compared with various models, including some of spectra that would be produced by adiabatic phase remnants when the time-dependence of the ionization is considered.

  18. Classification of 5 DES supernovae by MMT

    NASA Astrophysics Data System (ADS)

    Challis, P.; Kirshner, R.; Mandel, K.; Avelino, A.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.

    2016-04-01

    We report optical spectroscopy of 5 supernovae discovered by the Dark Energy Survey (ATel #4668). The spectra (330-850nm) were obtained using the Blue Channel Spectrograph on the MMT. Object classification was performed using SNID (Blondin & Tonry, 2007, ApJ, 666, 1024) and superfit (Howell et al, 2005, ApJ, 634, 119), the details of which are reported in the table below.

  19. Supernovae and gamma-ray bursts connection

    SciTech Connect

    Valle, Massimo Della

    2015-12-17

    I’ll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ∼ 0.4% − 3%.

  20. Nucleosynthesis in O-Ne-Mg Supernovae

    SciTech Connect

    Hoffman, R D; Janka, H; Muller, B

    2007-12-18

    We have studied detailed nucleosynthesis in the shocked surface layers of an oxygen-neon-magnesium core collapse supernova with an eye to determining whether the conditions are suitable for r-process nucleosynthesis. We find no such conditions in an unmodified model, but do find overproduction of N=50 nuclei (previously seen in early neutron-rich neutrino winds) in amounts that, if ejected, would pose serious problems for Galactic chemical evolution.