NASA Astrophysics Data System (ADS)
Koseoglou, P.; Vagena, E.; Stoulos, S.; Manolopoulou, M.
2016-09-01
Neutron spectrum of the sub-critical nuclear assembly-reactor of Aristotle University of Thessaloniki was measured at three radial distances from the reactor core. The neutron activation technique was applied irradiating 15 thick foils - disc of various elements at each position. The data of 38 (n, γ), (n, p) and (n, α) reactions were analyzed for specific activity determination. Discs instead of foils were used due to the relevant low neutron flux, so the gamma self-absorption as well as the neutron self-shielding factors has been calculated using GEANT simulations in order to determine the activity induced. The specific activities calculated for all isotopes studied were the input to the SANDII code, which was built specifically for the neutron spectrum de-convolution when the neutron activation technique is used. For the optimization of the results a technique was applied in order to minimize the influence of the initial-"guessed" spectrum shape SANDII uses. The neutron spectrum estimated presents a peak in the regions of (i) thermal neutrons ranged between 0.001 and 1 eV peaking at neutron energy ∼0.1 eV and (ii) fast neutrons ranged between 0.1 and 20 MeV peaking at neutron energy ∼1.2 MeV. The reduction of thermal neutrons is higher than the fast one as the distance from the reactor core increases since thermal neutrons capture by natural U-fuel has higher cross section than the fast neutrons.
Sulfur activation at the Little Boy-Comet Critical Assembly: a replica of the Hiroshima bomb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, G.D.; Emery, J.F.; Pace, J.V. III
1985-04-01
Studies have been completed on the activation of sulfur by fast neutrons from the Little Boy-Comet Critical Assembly which replicates the general features of the Hiroshima bomb. The complex effects of the bomb's design and construction on leakage of sulfur-activation neutrons were investigated both experimentally and theoretically. Our sulfur activation studies were performed as part of a larger program to provide benchmark data for testing of methods used in recent source-term calculations for the Hiroshima bomb. Source neutrons capable of activating sulfur play an important role in determining neutron doses in Hiroshima at a kilometer or more from the pointmore » of explosion. 37 refs., 5 figs., 6 tabs.« less
Neutron streaming studies along JET shielding penetrations
NASA Astrophysics Data System (ADS)
Stamatelatos, Ion E.; Vasilopoulou, Theodora; Batistoni, Paola; Obryk, Barbara; Popovichev, Sergey; Naish, Jonathan
2017-09-01
Neutronic benchmark experiments are carried out at JET aiming to assess the neutronic codes and data used in ITER analysis. Among other activities, experiments are performed in order to validate neutron streaming simulations along long penetrations in the JET shielding configuration. In this work, neutron streaming calculations along the JET personnel entrance maze are presented. Simulations were performed using the MCNP code for Deuterium-Deuterium and Deuterium- Tritium plasma sources. The results of the simulations were compared against experimental data obtained using thermoluminescence detectors and activation foils.
Studies of neutron and proton nuclear activation in low-Earth orbit
NASA Technical Reports Server (NTRS)
Laird, C. E.
1982-01-01
The expected induced radioactivity of experimental material in low Earth orbit was studied for characteristics of activating particles such as cosmic rays, high energy Earth albedo neutrons, trapped protons, and secondary protons and neutrons. The activation cross sections for the production of long lived radioisotopes and other existing nuclear data appropriate to the study of these reactions were compiled. Computer codes which are required to calculate the expected activation of orbited materials were developed. The decreased computer code used to predict the activation of trapped protons of materials placed in the expected orbits of LDEF and Spacelab II. Techniques for unfolding the fluxes of activating particles from the measured activation of orbited materials are examined.
Mineral exploration and soil analysis using in situ neutron activation
Senftle, F.E.; Hoyte, A.F.
1966-01-01
A feasibility study has been made to operate by remote control an unshielded portable positive-ion accelerator type neutron source to induce activities in the ground or rock by "in situ" neutron irradiation. Selective activation techniques make it possible to detect some thirty or more elements by irradiating the ground for periods of a few minutes with either 3-MeV or 14-MeV neutrons. The depth of penetration of neutrons, the effect of water content of the soil on neutron moderation, gamma ray attenuation in the soil and other problems are considered. The analysis shows that, when exploring for most elements of economic interest, the reaction 2H(d,n)3He yielding ??? 3-MeV neutrons is most practical to produce a relatively uniform flux of neutrons of less than 1 keV to a depth of 19???-20???. Irradiation with high energy neutrons (??? 14 MeV) can also be used and may be better suited for certain problems. However, due to higher background and lower sensitivity for the heavy minerals, it is not a recommended neutron source for general exploration use. Preliminary experiments have been made which indicate that neutron activation in situ is feasible for a mineral exploration or qualititative soil analysis. ?? 1976.
Response in thermal neutrons intensity on the activation of seismic processes
NASA Astrophysics Data System (ADS)
Antonova, Valentina; Chubenko, Alexandr; Kryukov, Sergey; Lutsenko, Vadim
2017-04-01
Results of study of thermal and high-energy neutrons intensity during the activation of seismic activity are presented. Installations are located close to the fault of the earth's crust at the high-altitude station of cosmic rays (3340 m above sea level, 20 km from Almaty) in the mountains of Northern Tien-Shan. High correlation and similarity of responses to changes of space and geophysical conditions in the absence of seismic activity are obtained between data of thermal neutron detectors and data of the standard neutron monitor, recording the intensity of high-energy particles. These results confirm the genetic connection of thermal neutrons at the Earth's surface with high-energy neutrons of the galactic origin and suggest same sources of disturbances of their flux. However, observations and analysis of experimental data during the activation of seismic activity showed the frequent breakdown of the correlation between the intensity of thermal and high-energy neutrons and the absence of similarity between variations during these periods. We suppose that the cause of this phenomenon is the additional thermal neutron flux of the lithospheric origin, which appears under these conditions. Method of separating of thermal neutron intensity variations of the lithospheric origin from neutrons variations generated in the atmosphere is proposed. We used this method for analysis of variations of thermal neutrons intensity during earthquakes (with intensity ≥ 3b) in the vicinity of Almaty which took place in 2006-2015. The increase of thermal neutrons flux of the lithospheric origin during of seismic processes activation was observed for 60% of events. However, before the earthquake the increase of thermal neutron flux is only observed for 25-30% of events. It is shown that the amplitude of the additional thermal neutron flux from the Earth's crust is equal to 5-7% of the background level.
Iwatani, K; Hoshi, M; Shizuma, K; Hiraoka, M; Hayakawa, N; Oka, T; Hasai, H
1994-10-01
A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated 252Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate 152Eu and 60Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated 252Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cotter, M.J.; Meyers, P.; van Zelst, L.
Neutron activation autoradiography and activation analysis were used to study techniques and material used by nineteenth century painters particularly Ralph A. Blakelock. These techniques can supply information on pigments as well as the way they are applied. (LK)
Stankunas, Gediminas; Cufar, Aljaz; Tidikas, Andrius; Batistoni, Paola
2017-11-23
Irradiations with 14 MeV fusion neutrons are planned at Joint European Torus (JET) in DT operations with the objective to validate the calculation of the activation of structural materials in functional materials expected in ITER and fusion plants. This study describes the activation and dose rate calculations performed for materials irradiated throughout the DT plasma operation during which the samples of real fusion materials are exposed to 14 MeV neutrons inside the JET vacuum vessel. Preparatory activities are in progress during the current DD operations with dosimetry foils to measure the local neutron fluence and spectrum at the sample irradiation position. The materials included those used in the manufacturing of the main in-vessel components, such as ITER-grade W, Be, CuCrZr, 316 L(N) and the functional materials used in diagnostics and heating systems. The neutron-induced activities and dose rates at shutdown were calculated by the FISPACT code, using the neutron fluxes and spectra that were provided by the preceding MCNP neutron transport calculations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Misawa, Tsuyoshi; Takahashi, Yoshiyuki; Yagi, Takahiro; Pyeon, Cheol Ho; Kimura, Masaharu; Masuda, Kai; Ohgaki, Hideaki
2015-10-01
For detection of hidden special nuclear materials (SNMs), we have developed an active neutron-based interrogation system combined with a D-D fusion pulsed neutron source and a neutron detection system. In the detection scheme, we have adopted new measurement techniques simultaneously; neutron noise analysis and neutron energy spectrum analysis. The validity of neutron noise analysis method has been experimentally studied in the Kyoto University Critical Assembly (KUCA), and was applied to a cargo container inspection system by simulation.
NASA Astrophysics Data System (ADS)
Ghias, Asghar
1999-11-01
Neutron activation methods and bore-hole gamma-ray spectrometry have been versatile techniques for real time field evaluation in mineral exploration. The most common neutron generators producing 14 MeV and 2.5 MeV neutrons accelerate deuterium ions into a tritium or deuterium target via the 3H( 2H,n)4He or the 2H(2H,n) 3H reactions. The development and design of bore-hole 2.5 MeV high flux neutron generator coupled with an efficient gamma-ray detector is the primary focus of this work, which is needed by the coal and petroleum industries. A 2.5 MeV neutron generator, which used the D(D,n)T reaction, was constructed similar to a conventional Zetatron 14 MeV generator. The performance of the low energy neutron generator was studied under various operating conditions. In order to enhance the neutron flux of the generator, an r.f. field was applied to the ion source which increased the neutron yield per pulse by about thirty percent. A theoretical study of the r.f enhancement has been made to explain the operation of the r.f. added Zetatron tube. An alternative, method of neutron flux enhancement by use of laser-excitation is discussed and explained theoretically. The laser technique although not experimentally verified, is based on the recent development of vibronic lasers, the neutron flux can be enhanced several orders of magnitude by precise tuning of the wavelength within vibronic band. Activation experiments using a large coal sample (about I ton) were conducted, and studies were made on inter and intrapulse counting, detector gated spectra, and comparison of the spectra using different neutron sources. Preliminary results on coal analysis reveal that lower energy (2.5 MeV) is superior to high energy (14 MeV) neutrons. During the course of this work it became necessary to measure fast neutrons, efficiently and in real time. A new type of detector was consequently developed using SnO2 as sheath material around a BGO detector to measure the capture gamma-rays of oxygen. Using neutron activation studies of coal, the feasibility of applying the technique to aid medical diagnostics is also discussed in this dissertation.
Radiological risks of neutron interrogation of food.
Albright, S; Seviour, R
2015-09-01
In recent years there has been growing interest in the use of neutron scanning techniques for security. Neutron techniques with a range of energy spectra including thermal, white and fast neutrons have been shown to work in different scenarios. As international interest in neutron scanning increases the risk of activating cargo, especially foodstuffs must be considered. There has been a limited amount of research into the activation of foods by neutron beams and we have sought to improve the amount of information available. In this paper we show that for three important metrics; activity, ingestion dose and Time to Background there is a strong dependence on the food being irradiated and a weak dependence on the energy of irradiation. Previous studies into activation used results based on irradiation of pharmaceuticals as the basis for research into activation of food. The earlier work reports that (24)Na production is the dominant threat which motivated the search for (24)Na(n,γ)(24)Na in highly salted foods. We show that (42)K can be more significant than (24)Na in low sodium foods such as Bananas and Potatoes.
Absorption of Thermal Neutrons in Uranium
DOE R&D Accomplishments Database
Creutz, E. C.; Wilson, R. R.; Wigner, E. P.
1941-09-26
A knowledge of the absorption processes for neutrons in uranium is important for planning a chain reaction experiment. The absorption of thermal neutrons in uranium and uranium oxide has been studied. Neutrons from the cyclotron were slowed down by passage through a graphite block. A uranium or uranium oxide sphere was placed at various positions in the block. The neutron intensity at different points in the sphere and in the graphite was measured by observing the activity induced in detectors or uranium oxide or manganese. It was found that both the fission activity in the uranium oxide and the activity induced in manganese was affected by non-thermal neutrons. An experimental correction for such effects was made by making measurements with the detectors surrounded by cadmium. After such corrections the results from three methods of procedure with the uranium oxide detectors and from the manganese detectors were consistent to within a few per cent.
Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H
2015-12-01
A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.
NASA Astrophysics Data System (ADS)
Ablesimov, V. E.; Dolin, Yu. N.; Kalinychev, A. E.; Tsibikov, Z. S.
2017-10-01
The relation between neutron yield Y and magnetic field energy variations Δ W in the discharge circuit has been studied for a Mather-type plasma-focus camera. The activation technique (activation of silver isotopes) has been used to measure the integral yield of DD neutrons from the source. The time dependence of the neutron yield has been recorded by scintillation detectors. For the device used in the investigations, the neutron yield exhibits a linear dependence on variations in the magnetic field energy Δ W in the discharge circuit at the instant of neutron generation. It is also found that this dependence is related to the initial deuteron pressure in the discharge chamber.
NASA Astrophysics Data System (ADS)
Yeamans, C. B.; Gharibyan, N.
2016-11-01
At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 1015 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.
Yeamans, C B; Gharibyan, N
2016-11-01
At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 10 15 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.
Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance
NASA Astrophysics Data System (ADS)
Glascock, M. D.; Neff, H.; Vaughn, K. J.
2004-06-01
The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.
NASA Astrophysics Data System (ADS)
Ofek, R.; Tsechanski, A.; Shani, G.
1988-05-01
In the present study a method used to normalize a collimated 14.7 MeV neutron beam is introduced. It combined a measurement of the fast neutron scalar flux passing through the collimator, using a copper foil activation, with a neutron transport calculation of the foil activation per unit source neutron, carried out by the discrete-ordinates transport code DOT 4.2. The geometry of the collimated neutron beam is composed of a D-T neutron source positioned 30 cm in front of a 6 cm diameter collimator, through a 120 cm thick paraffin wall. The neutron flux emitted from the D-T source was counted by an NE-213 scintillator, simultaneously with the irradiation of the copper foil. Thus, the determination of the normalization factor of the D-T source is used for an absolute flux calibration of the NE-213 scintillator. The major contributions to the uncertainty in the determination of the normalization factor, and their origins, are discussed.
NASA Astrophysics Data System (ADS)
Sabaibang, S.; Lekchaum, S.; Tipayakul, C.
2015-05-01
This study is a part of an on-going work to develop a computational model of Thai Research Reactor (TRR-1/M1) which is capable of accurately predicting the neutron flux level and spectrum. The computational model was created by MCNPX program and the CT (Central Thimble) in-core irradiation facility was selected as the location for validation. The comparison was performed with the typical flux measurement method routinely practiced at TRR-1/M1, that is, the foil activation technique. In this technique, gold foil is irradiated for a certain period of time and the activity of the irradiated target is measured to derive the thermal neutron flux. Additionally, the flux measurement with SPND (self-powered neutron detector) was also performed for comparison. The thermal neutron flux from the MCNPX simulation was found to be 1.79×1013 neutron/cm2s while that from the foil activation measurement was 4.68×1013 neutron/cm2s. On the other hand, the thermal neutron flux from the measurement using SPND was 2.47×1013 neutron/cm2s. An assessment of the differences among the three methods was done. The difference of the MCNPX with the foil activation technique was found to be 67.8% and the difference of the MCNPX with the SPND was found to be 27.8%.
NOTE: Total body-calcium measurements: comparison of two delayed-gamma neutron activation facilities
NASA Astrophysics Data System (ADS)
Ma, R.; Ellis, K. J.; Yasumura, S.; Shypailo, R. J.; Pierson, R. N., Jr.
1999-06-01
This study compares two independently calibrated delayed-gamma neutron activation (DGNA) facilities, one at the Brookhaven National Laboratory (BNL), Upton, New York, and the other at the Children's Nutrition Research Center (CNRC), Houston, Texas that measure total body calcium (TBCa). A set of BNL phantoms was sent to CNRC for neutron activation analysis, and a set of CNRC phantoms was measured at BNL. Both facilities showed high precision (<2%), and the results were in good agreement, within 5%.
NASA Astrophysics Data System (ADS)
Wahid, Kareem; Sanchez, Patrick; Hannan, Mohammad
2014-03-01
In the field of nuclear science, neutron flux is an intrinsic property of nuclear reaction facilities that is the basis for experimental irradiation calculations and analysis. In the Rio Grande Valley (Texas), the UTPA Neutron Research Facility (NRF) is currently the only neutron facility available for experimental research purposes. The facility is comprised of a 20-microgram californium-252 neutron source surrounded by a shielding cascade containing different irradiation cavities. Thermal and fast neutron flux values for the UTPA NRF have yet to be fully investigated and may be of particular interest to biomedical studies in low neutron dose applications. Though a variety of techniques exist for the characterization of neutron flux, neutron activation analysis (NAA) of metal and nonmetal foils is a commonly utilized experimental method because of its detection sensitivity and availability. The aim of our current investigation is to employ foil activation in the determination of neutron flux values for the UTPA NSRF for further research purposes. Neutron spectrum unfolding of the acquired experimental data via specialized software and subsequent comparison for consistency with computational models lends confidence to the results.
NASA Astrophysics Data System (ADS)
Stefanik, Milan; Rataj, Jan; Huml, Ondrej; Sklenka, Lubomir
2017-11-01
The VR-1 training reactor operated by the Czech Technical University in Prague is utilized mainly for education of students and training of various reactor staff; however, R&D is also carried out at the reactor. The experimental instrumentation of the reactor can be used for the irradiation experiments and neutron activation analysis. In this paper, the neutron activation analysis (NAA) is used for a study of dietary supplements containing the zinc (one of the essential trace elements for the human body). This analysis includes the dietary supplement pills of different brands; each brand is represented by several different batches of pills. All pills were irradiated together with the standard activation etalons in the vertical channel of the VR-1 reactor at the nominal power (80 W). Activated samples were investigated by the nuclear gamma-ray spectrometry technique employing the semiconductor HPGe detector. From resulting saturated activities, the amount of mineral element (Zn) in the pills was determined using the comparative NAA method. The results show clearly that the VR-1 training reactor is utilizable for neutron activation analysis experiments.
NASA Astrophysics Data System (ADS)
Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.
2015-09-01
In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.
Hoshi, M; Hiraoka, M; Hayakawa, N; Sawada, S; Munaka, M; Kuramoto, A; Oka, T; Iwatani, K; Shizuma, K; Hasai, H
1992-11-01
A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a 252Cf fission neutron source to validate the use of the code for the energy spectrum analyses of Hiroshima atomic bomb neutrons. Nuclear data libraries used in the Monte Carlo neutron and photon transport code calculation were ENDF/B-III, ENDF/B-IV, LASL-SUB, and ENDL-73. The neutron moderators used were granite (the main component of which is SiO2, with a small fraction of hydrogen), Newlight [polyethylene with 3.7% boron (natural)], ammonium chloride (NH4Cl), and water (H2O). Each moderator was 65 cm thick. The neutron detectors were gold and nickel foils, which were used to detect thermal and epithermal neutrons (4.9 eV) and fast neutrons (> 0.5 MeV), respectively. Measured activity data from neutron-irradiated gold and nickel foils in these moderators decreased to about 1/1,000th or 1/10,000th, which correspond to about 1,500 m ground distance from the hypocenter in Hiroshima. For both gold and nickel detectors, the measured activities and the calculated values agreed within 10%. The slopes of the depth-yield relations in each moderator, except granite, were similar for neutrons detected by the gold and nickel foils. From the results of these studies, the Monte Carlo neutron and photon transport code was verified to be accurate enough for use with the elements hydrogen, carbon, nitrogen, oxygen, silicon, chlorine, and cadmium, and for the incident 252Cf fission spectrum neutrons.
Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu
2015-01-01
Abstract Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources. PMID:25589504
Neutron detection using a water Cherenkov detector with pure water and a single PMT
NASA Astrophysics Data System (ADS)
Sidelnik, Iván; Asorey, Hernán; Blostein, Juan Jerónimo; Gómez Berisso, Mariano
2017-12-01
We present the performance of a novel neutron detector based on a water Cherenkov detector (WCD) employing pure water and a single photomultiplier tube (PMT). The experiments presented in this work were performed using 241AmBe and 252Cf neutron sources in different neutron moderator and shielding configurations. We show that fast neutrons from the 241AmBe and 241Cf sources, as well as thermal neutrons from a neutron moderator, despite having different spectral characteristics, produce essentially the same pulse histogram shape. This characteristic pulse-height histogram shapes are recorded as a clear signature of neutrons with energies lower than ≃ 11 MeV . This is verified in different experimental conditions. Our estimation of the neutron detection efficiency is at the level of (15±5)%, for fast neutrons. Since water is the material employed as active volume, the results of this study are of interest for the construction of low cost and large active volume neutron detectors for various applications. Of special importance are those related with space weather phenomena monitoring as well as those for the detection of fissile special nuclear material, including uranium or plutonium.
NASA Astrophysics Data System (ADS)
Shalbi, Safwan; Salleh, Wan Norhayati Wan; Mohamad Idris, Faridah; Aliff Ashraff Rosdi, Muhammad; Syahir Sarkawi, Muhammad; Liyana Jamsari, Nur; Nasir, Nur Aishah Mohd
2018-01-01
In order to design facilities for boron neutron capture therapy (BNCT), the neutron measurement must be considered to obtain the optimal design of BNCT facility such as collimator and shielding. The previous feasibility study showed that the thermal column could generate higher thermal neutrons yield for BNCT application at the TRIGA MARK II reactor. Currently, the facility for BNCT are planned to be developed at thermal column. Thus, the main objective was focused on the thermal neutron and epithermal neutron flux measurement at the thermal column. In this measurement, pure gold and cadmium were used as a filter to obtain the thermal and epithermal neutron fluxes from inside and outside of the thermal column door of the 200kW reactor power using a gold foil activation method. The results were compared with neutron fluxes using TLD 600 and TLD 700. The outcome of this work will become the benchmark for the design of BNCT collimator and the shielding
A neutron camera system for MAST.
Cecconello, M; Turnyanskiy, M; Conroy, S; Ericsson, G; Ronchi, E; Sangaroon, S; Akers, R; Fitzgerald, I; Cullen, A; Weiszflog, M
2010-10-01
A prototype neutron camera has been developed and installed at MAST as part of a feasibility study for a multichord neutron camera system with the aim to measure the spatial and time resolved 2.45 MeV neutron emissivity profile. Liquid scintillators coupled to a fast digitizer are used for neutron/gamma ray digital pulse shape discrimination. The preliminary results obtained clearly show the capability of this diagnostic to measure neutron emissivity profiles with sufficient time resolution to study the effect of fast ion loss and redistribution due to magnetohydrodynamic activity. A minimum time resolution of 2 ms has been achieved with a modest 1.5 MW of neutral beam injection heating with a measured neutron count rate of a few 100 kHz.
NASA Astrophysics Data System (ADS)
Lee, Yi-Kang
2017-09-01
Nuclear decommissioning takes place in several stages due to the radioactivity in the reactor structure materials. A good estimation of the neutron activation products distributed in the reactor structure materials impacts obviously on the decommissioning planning and the low-level radioactive waste management. Continuous energy Monte-Carlo radiation transport code TRIPOLI-4 has been applied on radiation protection and shielding analyses. To enhance the TRIPOLI-4 application in nuclear decommissioning activities, both experimental and computational benchmarks are being performed. To calculate the neutron activation of the shielding and structure materials of nuclear facilities, the knowledge of 3D neutron flux map and energy spectra must be first investigated. To perform this type of neutron deep penetration calculations with the Monte Carlo transport code, variance reduction techniques are necessary in order to reduce the uncertainty of the neutron activation estimation. In this study, variance reduction options of the TRIPOLI-4 code were used on the NAIADE 1 light water shielding benchmark. This benchmark document is available from the OECD/NEA SINBAD shielding benchmark database. From this benchmark database, a simplified NAIADE 1 water shielding model was first proposed in this work in order to make the code validation easier. Determination of the fission neutron transport was performed in light water for penetration up to 50 cm for fast neutrons and up to about 180 cm for thermal neutrons. Measurement and calculation results were benchmarked. Variance reduction options and their performance were discussed and compared.
Application of activation methods on the Dubna experimental transmutation set-ups.
Stoulos, S; Fragopoulou, M; Adloff, J C; Debeauvais, M; Brandt, R; Westmeier, W; Krivopustov, M; Sosnin, A; Papastefanou, C; Zamani, M; Manolopoulou, M
2003-02-01
High spallation neutron fluxes were produced by irradiating massive heavy targets with proton beams in the GeV range. The experiments were performed at the Dubna High Energy Laboratory using the nuclotron accelerator. Two different experimental set-ups were used to produce neutron spectra convenient for transmutation of radioactive waste by (n,x) reactions. By a theoretical analysis neutron spectra can be reproduced from activation measurements. Thermal-epithermal and fast-super-fast neutron fluxes were estimated using the 197Au, 238U (n,gamma) and (n,2n) reactions, respectively. Depleted uranium transmutation rates were also studied in both experiments.
Neutron activation analysis for antimetabolites. [in food samples
NASA Technical Reports Server (NTRS)
1973-01-01
Determination of metal ion contaminants in food samples is studied. A weighed quantity of each sample was digested in a concentrated mixture of nitric, hydrochloric and perchloric acids to affect complete solution of the food products. The samples were diluted with water and the pH adjusted according to the specific analysis performed. The samples were analyzed by neutron activation analysis, polarography, and atomic absorption spectrophotometry. The solid food samples were also analyzed by neutron activation analysis for increased sensitivity and lower levels of detectability. The results are presented in tabular form.
New applications and developments in the neutron shielding
NASA Astrophysics Data System (ADS)
Uğur, Fatma Aysun
2017-09-01
Shielding neutrons involve three steps that are slowing neutrons, absorption of neutrons, and impregnation of gamma rays. Neutrons slow down with thermal energy by hydrogen, water, paraffin, plastic. Hydrogenated materials are also very effective for the absorption of neutrons. Gamma rays are produced by neutron (radiation) retention on the neutron shield, inelastic scattering, and degradation of activation products. If a source emits gamma rays at various energies, high-energy gamma rays sometimes specify shielding requirements. Multipurpose Materials for Neutron Shields; Concrete, especially with barium mixed in, can slow and absorb the neutrons, and shield the gamma rays. Plastic with boron is also a good multipurpose shielding material. In this study; new applications and developments in the area of neutron shielding will be discussed in terms of different materials.
In situ calibration of neutron activation system on the large helical device
NASA Astrophysics Data System (ADS)
Pu, N.; Nishitani, T.; Isobe, M.; Ogawa, K.; Kawase, H.; Tanaka, T.; Li, S. Y.; Yoshihashi, S.; Uritani, A.
2017-11-01
In situ calibration of the neutron activation system on the Large Helical Device (LHD) was performed by using an intense 252Cf neutron source. To simulate a ring-shaped neutron source, we installed a railway inside the LHD vacuum vessel and made a train loaded with the 252Cf source run along a typical magnetic axis position. Three activation capsules loaded with thirty pieces of indium foils stacked with total mass of approximately 18 g were prepared. Each capsule was irradiated over 15 h while the train was circulating. The activation response coefficient (9.4 ± 1.2) × 10-8 of 115In(n, n')115mIn reaction obtained from the experiment is in good agreement with results from three-dimensional neutron transport calculations using the Monte Carlo neutron transport simulation code 6. The activation response coefficients of 2.45 MeV birth neutron and secondary 14.1 MeV neutron from deuterium plasma were evaluated from the activation response coefficient obtained in this calibration experiment with results from three-dimensional neutron calculations using the Monte Carlo neutron transport simulation code 6.
Measurements of the thermal neutron flux for an accelerator-based photoneutron source.
Taheri, Ali; Pazirandeh, Ali
2016-12-01
To have access to an appropriate neutron source is one of the most demanding requirements for neutron studies. This is important specially in laboratory and clinical applications, which need more compact and accessible sources. The most known neutron sources are fission reactors and natural isotopes, but there is an increasing interest for using accelerator based neutron sources because of their advantages. In this paper, we shall present a photo-neutron source prototype which is designed and fabricated to be used for different neutron researches including in-laboratory neutron activation analysis and neutron imaging, and also preliminary studies in boron neutron capture therapy (BNCT). Series of experimental tests were conducted to examine the intensity and quality of the neutron field produced by this source. Monte-Carlo simulations were also utilized to provide more detailed evaluation of the neutron spectrum, and determine the accuracy of the experiments. The experiments demonstrated a thermal neutron flux in the order of 10 7 (n/cm 2 .s), while simulations affirmed this flux and showed a neutron spectrum with a sharp peak at thermal energy region. According to the results, about 60 % of produced neutrons are in the range of thermal to epithermal neutrons.
NASA Astrophysics Data System (ADS)
Stankunas, Gediminas; Batistoni, Paola; Sjöstrand, Henrik; Conroy, Sean; JET Contributors
2015-07-01
The neutron activation technique is routinely used in fusion experiments to measure the neutron yields. This paper investigates the uncertainty on these measurements as due to the uncertainties on dosimetry and activation reactions. For this purpose, activation cross-sections were taken from the International Reactor Dosimetry and Fusion File (IRDFF-v1.05) in 640 groups ENDF-6 format for several reactions of interest for both 2.5 and 14 MeV neutrons. Activation coefficients (reaction rates) have been calculated using the neutron flux spectra at JET vacuum vessel, both for DD and DT plasmas, calculated by MCNP in the required 640-energy group format. The related uncertainties for the JET neutron spectra are evaluated as well using the covariance data available in the library. These uncertainties are in general small, but not negligible when high accuracy is required in the determination of the fusion neutron yields.
Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.
Hsu, Yung-Cheng; Lai, Bo-Lun; Sheu, Rong-Jiun
2016-01-01
This study evaluated the magnitude of potential neutron yield and induced radioactivity of two new accelerators in Taiwan: a 235-MeV proton cyclotron for radiation therapy and a 3-GeV electron synchrotron serving as the injector for the Taiwan Photon Source. From a nuclear interaction point of view, neutron production from targets bombarded with high-energy particles is intrinsically related to the resulting target activation. Two multi-particle interaction and transport codes, FLUKA and MCNPX, were used in this study. To ensure prediction quality, much effort was devoted to the associated benchmark calculations. Comparisons of the accelerators' results for three target materials (copper, stainless steel and tissue) are presented. Although the proton-induced neutron yields were higher than those induced by electrons, the maximal neutron production rates of both accelerators were comparable according to their respective beam outputs during typical operation. Activation products in the targets of the two accelerators were unexpectedly similar because the primary reaction channels for proton- and electron-induced activation are (p,pn) and (γ,n), respectively. The resulting residual activities and remnant dose rates as a function of time were examined and discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Radiocarbon Production by Thunderstorms
NASA Astrophysics Data System (ADS)
Babich, L. P.
2017-11-01
In view of the neutron flux enhancements observed in thunderstorms, a contribution of thunderstorm neutrons to atmospheric radiocarbon (isotope 614C) production is analyzed in connection with the archaeometry. Herein, estimates of neutron fluence per lightning electromagnetic pulse in regions with severe thunderstorm activity, at which a local rate of the 614C production is comparable to the observed rates, are shown to be consistent with the measured magnitudes of thunderstorm neutron fluence. At present, available observations of atmospheric neutron and parent gamma ray flashes correlated with thunderstorms do not allow making final conclusions about thunderstorm contributions to 614C production. For this, numerous studies of high-energy phenomena in thunderstorms are required, especially in the tropical belt where the thunderstorm activity is especially severe and where the 614C production by galactic cosmic rays is almost independent of the solar activity disturbing the Earth's magnetic field shielding the Earth from cosmic rays.
Ames collaborative study of cosmic ray neutrons
NASA Technical Reports Server (NTRS)
Hewitt, J. E.; Hughes, L.; Mccaslin, J. B.; Stephens, L. D.; Rindi, A.; Smith, A. R.; Thomas, R. H.; Griffith, R. V.; Welles, C. G.; Baum, J. W.
1976-01-01
The results of a collaborative study to define both the neutron flux and the spectrum more precisely and to develop a dosimetry package that can be flown quickly to altitude for solar flare events are described. Instrumentation and analysis techniques were used which were developed to measure accelerator-produced radiation. The instruments were flown in the Ames Research Center high altitude aircraft. Neutron instrumentation consisted of Bonner spheres with both active and passive detector elements, threshold detectors of both prompt-counter and activation-element types, a liquid scintillation spectrometer based on pulse-shape discrimination, and a moderated BF3 counter neutron monitor. In addition, charged particles were measured with a Reuter-Stokes ionization chamber system and dose equivalent with another instrument. Preliminary results from the first series of flights at 12.5 km (41,000 ft) are presented, including estimates of total neutron flux intensity and spectral shape and of the variation of intensity with altitude and geomagnetic latitude.
Abedi, Ebrahim; Ebrahimkhani, Marzieh; Davari, Amin; Mirvakili, Seyed Mohammad; Tabasi, Mohsen; Maragheh, Mohammad Ghannadi
2016-12-01
Efficient and safe production of molybdenum-99 ( 99 Mo) radiopharmaceutical at Tehran Research Reactor (TRR) via fission of LEU targets is studied. Neutronic calculations are performed to evaluate produced 99 Mo activity, core neutronic safety parameters and also the power deposition values in target plates during a 7 days irradiation interval. Thermal-hydraulic analysis has been also carried out to obtain thermal behavior of these plates. Using Thermal-hydraulic analysis, it can be concluded that the safety parameters are satisfied in the current study. Consequently, the present neutronic and thermal-hydraulic calculations show efficient 99 Mo production is accessible at significant activity values in TRR current core configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Frisoni, Manuela
2017-09-01
ANITA-IEAF is an activation package (code and libraries) developed in the past in ENEA-Bologna in order to assess the activation of materials exposed to neutrons with energies greater than 20 MeV. An updated version of the ANITA-IEAF activation code package has been developed. It is suitable to be applied to the study of the irradiation effects on materials in facilities like the International Fusion Materials Irradiation Facility (IFMIF) and the DEMO Oriented Neutron Source (DONES), in which a considerable amount of neutrons with energies above 20 MeV is produced. The present paper summarizes the main characteristics of the updated version of ANITA-IEAF, able to use decay and cross section data based on more recent evaluated nuclear data libraries, i.e. the JEFF-3.1.1 Radioactive Decay Data Library and the EAF-2010 neutron activation cross section library. In this paper the validation effort related to the comparison between the code predictions and the activity measurements obtained from the Karlsruhe Isochronous Cyclotron is presented. In this integral experiment samples of two different steels, SS-316 and F82H, pure vanadium and a vanadium alloy, structural materials of interest in fusion technology, were activated in a neutron spectrum similar to the IFMIF neutron field.
NASA Astrophysics Data System (ADS)
Bushuev, A. V.; Kozhin, A. F.; Aleeva, T. B.; Zubarev, V. N.; Petrova, E. V.; Smirnov, V. E.
2016-12-01
An active neutron method for measuring the residual mass of 235U in spent fuel assemblies (FAs) of the IRT MEPhI research reactor is presented. The special measuring stand design and uniform irradiation of the fuel with neutrons along the entire length of the active part of the FA provide high accuracy of determination of the residual 235U content. AmLi neutron sources yield a higher effect/background ratio than other types of sources and do not induce the fission of 238U. The proposed method of transfer of the isotope source in accordance with a given algorithm may be used in experiments where the studied object needs to be irradiated with a uniform fluence.
Nuclear accident dosimetry intercomparison studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sims, C.S.
1989-09-01
Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shieldedmore » spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry.« less
Calibration of the JET neutron activation system for DT operation
NASA Astrophysics Data System (ADS)
Bertalot, L.; Roquemore, A. L.; Loughlin, M.; Esposito, B.
1999-01-01
The neutron activation system at JET is a pneumatic transfer system capable of positioning activation samples close to the plasma. Its primary purpose is to provide a calibration for the time-dependent neutron yield monitors (fission chambers and solid state detectors). Various activation reactions with different high energy thresholds were used including 56Fe(n,p) 56Mn, 27Al(n,α) 24Na, 93Nb(n,2n) 92mNb, and 28Si(n,p) 28Al reactions. The silicon reaction, with its short half life (2.25 min), provides a prompt determination of the 14 MeV DT yield. The neutron induced γ-ray activity of the Si samples was measured using three sodium iodide scintillators, while two high purity germanium detectors were used for other foils. It was necessary to use a range of sample masses and different counting geometries in order to cover the wide range of neutron yields (1015-1019 neutrons) while avoiding excessive count rates in the detectors. The absolute full energy peak efficiency calibration of the detectors was measured taking into account the source-detector geometry, the self-attenuation of the samples and cross-talk effects. An error analysis of the neutron yield measurement was performed including uncertainties in efficiency calibration, neutron transport calculations, cross sections, and counting statistics. Cross calibrations between the different irradiation ends were carried out in DD and DT (with 1% and 10% tritium content) discharges. The effect of the plasma vertical displacement was also experimentally studied. An agreement within 10% was found between the 14 MeV neutron yields measured from Si, Fe, Al, Nb samples in DT discharges.
NASA Astrophysics Data System (ADS)
Didi, Abdessamad; Dadouch, Ahmed; Bencheikh, Mohamed; Jai, Otman
2017-09-01
The neutron activation analysis is a method of exclusively elemental analysis. Its implementation of irradiates the sample which can be analyzed by a high neutron flux, this method is widely used in developed countries with nuclear reactors or accelerators of particle. The purpose of this study is to develop a prototype to increase the neutron flux such as americium-beryllium and have the opportunity to produce radioisotopes. Americium-beryllium is a mobile source of neutron activity of 20 curie, and gives a thermal neutron flux of (1.8 ± 0.0007) × 106 n/cm2 s when using water as moderator, when using the paraffin, the thermal neutron flux increases to (2.2 ± 0.0008) × 106 n/cm2 s, in the case of adding two solid beryllium barriers, the distance between them is 24 cm, parallel and symmetrical about the source, the thermal flux is increased to (2.5 ± 0.0008) × 106 n/cm2 s and in the case of multi-source (6 sources), with-out barriers, increases to (1.17 ± 0.0008) × 107 n/cm2 s with a rate of increase equal to 4.3 and with the both barriers flux increased to (1.37 ± 0.0008) × 107 n/cm2 s.
Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.
1983-01-01
A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.
NAKAMURA, Satoshi; IMAMICHI, Shoji; MASUMOTO, Kazuyoshi; ITO, Masashi; WAKITA, Akihisa; OKAMOTO, Hiroyuki; NISHIOKA, Shie; IIJIMA, Kotaro; KOBAYASHI, Kazuma; ABE, Yoshihisa; IGAKI, Hiroshi; KURITA, Kazuyoshi; NISHIO, Teiji; MASUTANI, Mitsuko; ITAMI, Jun
2017-01-01
This study aimed to evaluate the residual radioactivity in mice induced by neutron irradiation with an accelerator-based boron neutron capture therapy (BNCT) system using a solid Li target. The radionuclides and their activities were evaluated using a high-purity germanium (HP-Ge) detector. The saturated radioactivity of the irradiated mouse was estimated to assess the radiation protection needs for using the accelerator-based BNCT system. 24Na, 38Cl, 80mBr, 82Br, 56Mn, and 42K were identified, and their saturated radioactivities were (1.4 ± 0.1) × 102, (2.2 ± 0.1) × 101, (3.4 ± 0.4) × 102, 2.8 ± 0.1, 8.0 ± 0.1, and (3.8 ± 0.1) × 101 Bq/g/mA, respectively. The 24Na activation rate at a given neutron fluence was found to be consistent with the value reported from nuclear-reactor-based BNCT experiments. The induced activity of each nuclide can be estimated by entering the saturated activity of each nuclide, sample mass, irradiation time, and proton current into the derived activation equation in our accelerator-based BNCT system. PMID:29225308
Nakamura, Satoshi; Imamichi, Shoji; Masumoto, Kazuyoshi; Ito, Masashi; Wakita, Akihisa; Okamoto, Hiroyuki; Nishioka, Shie; Iijima, Kotaro; Kobayashi, Kazuma; Abe, Yoshihisa; Igaki, Hiroshi; Kurita, Kazuyoshi; Nishio, Teiji; Masutani, Mitsuko; Itami, Jun
2017-01-01
This study aimed to evaluate the residual radioactivity in mice induced by neutron irradiation with an accelerator-based boron neutron capture therapy (BNCT) system using a solid Li target. The radionuclides and their activities were evaluated using a high-purity germanium (HP-Ge) detector. The saturated radioactivity of the irradiated mouse was estimated to assess the radiation protection needs for using the accelerator-based BNCT system. 24 Na, 38 Cl, 80m Br, 82 Br, 56 Mn, and 42 K were identified, and their saturated radioactivities were (1.4 ± 0.1) × 10 2 , (2.2 ± 0.1) × 10 1 , (3.4 ± 0.4) × 10 2 , 2.8 ± 0.1, 8.0 ± 0.1, and (3.8 ± 0.1) × 10 1 Bq/g/mA, respectively. The 24 Na activation rate at a given neutron fluence was found to be consistent with the value reported from nuclear-reactor-based BNCT experiments. The induced activity of each nuclide can be estimated by entering the saturated activity of each nuclide, sample mass, irradiation time, and proton current into the derived activation equation in our accelerator-based BNCT system.
Hahn, K D; Cooper, G W; Ruiz, C L; Fehl, D L; Chandler, G A; Knapp, P F; Leeper, R J; Nelson, A J; Smelser, R M; Torres, J A
2014-04-01
We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r(2) decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm(2) and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.
Determination of elements in hospital waste with neutron activation analysis method
NASA Astrophysics Data System (ADS)
Dwijananti, P.; Astuti, B.; Alwiyah; Fianti
2018-03-01
The producer of the biggest B3 waste is hospital. The waste is from medical and laboratory activities. The purpose of this study is to determine the elements contained in the liquid waste from hospital and calculate the levels of these elements. This research was done by analysis of the neutron activation conducted at BATAN Yogyakarta. The neutron activation analysis is divided into two stages: activation of the samples using neutron sources of reactor Kartini, then chopping by using a set of tools, gamma spectrometer with HPGe detector. Qualitative and quantitative analysis were done by matching the gamma spectrum peak to the Neutron Activation Table. The sample was taken from four points of the liquid waste treatment plant (WWTP) Bhakti Wira Tamtama Semarang hospital. The results showed that the samples containing elements of Cr, Zn, Fe, Co, and Na, with the levels of each element is Cr (0.033 - 0.075) mg/L, Zn (0.090 - 1.048) mg/L, Fe (2.937-37.743) mg/L, Co (0.005-0.023) mg/L, and Na (61.088-116.330) mg/L. Comparing to the standard value, the liquid is safe to the environment.
NASA Astrophysics Data System (ADS)
Ródenas, José
2017-11-01
All materials exposed to some neutron flux can be activated independently of the kind of the neutron source. In this study, a nuclear reactor has been considered as neutron source. In particular, the activation of control rods in a BWR is studied to obtain the doses produced around the storage pool for irradiated fuel of the plant when control rods are withdrawn from the reactor and installed into this pool. It is very important to calculate these doses because they can affect to plant workers in the area. The MCNP code based on the Monte Carlo method has been applied to simulate activation reactions produced in the control rods inserted into the reactor. Obtained activities are introduced as input into another MC model to estimate doses produced by them. The comparison of simulation results with experimental measurements allows the validation of developed models. The developed MC models have been also applied to simulate the activation of other materials, such as components of a stainless steel sample introduced into a training reactors. These models, once validated, can be applied to other situations and materials where a neutron flux can be found, not only nuclear reactors. For instance, activation analysis with an Am-Be source, neutrography techniques in both medical applications and non-destructive analysis of materials, civil engineering applications using a Troxler, analysis of materials in decommissioning of nuclear power plants, etc.
NASA Astrophysics Data System (ADS)
Dahing, Lahasen@Normanshah; Yahya, Redzuan; Yahya, Roslan; Hassan, Hearie
2014-09-01
In this study, principle of prompt gamma neutron activation analysis has been used as a technique to determine the elements in the sample. The system consists of collimated isotopic neutron source, Cf-252 with HPGe detector and Multichannel Analysis (MCA). Concrete with size of 10×10×10 cm3 and 15×15×15 cm3 were analysed as sample. When neutrons enter and interact with elements in the concrete, the neutron capture reaction will occur and produce characteristic prompt gamma ray of the elements. The preliminary result of this study demonstrate the major element in the concrete was determined such as Si, Mg, Ca, Al, Fe and H as well as others element, such as Cl by analysis the gamma ray lines respectively. The results obtained were compared with NAA and XRF techniques as a part of reference and validation. The potential and the capability of neutron induced prompt gamma as tool for multi elemental analysis qualitatively to identify the elements present in the concrete sample discussed.
NASA Astrophysics Data System (ADS)
Volmert, Ben; Pantelias, Manuel; Mutnuru, R. K.; Neukaeter, Erwin; Bitterli, Beat
2016-02-01
In this paper, an overview of the Swiss Nuclear Power Plant (NPP) activation methodology is presented and the work towards its validation by in-situ NPP foil irradiation campaigns is outlined. Nuclear Research and consultancy Group (NRG) in The Netherlands has been given the task of performing the corresponding neutron metrology. For this purpose, small Aluminium boxes containing a set of circular-shaped neutron activation foils have been prepared. After being irradiated for one complete reactor cycle, the sets have been successfully retrieved, followed by gamma-spectrometric measurements of the individual foils at NRG. Along with the individual activities of the foils, the reaction rates and thermal, intermediate and fast neutron fluence rates at the foil locations have been determined. These determinations include appropriate corrections for gamma self-absorption and neutron self-shielding as well as corresponding measurement uncertainties. The comparison of the NPP Monte Carlo calculations with the results of the foil measurements is done by using an individual generic MCNP model functioning as an interface and allowing the simulation of individual foil activation by predetermined neutron spectra. To summarize, the comparison between calculation and measurement serve as a sound validation of the Swiss NPP activation methodology by demonstrating a satisfying agreement between measurement and calculation. Finally, the validation offers a chance for further improvements of the existing NPP models by ensuing calibration and/or modelling optimizations for key components and structures.
NASA Astrophysics Data System (ADS)
Radebe, M. J.; Korochinsky, S.; Strydom, W. J.; De Beer, F. C.
The purpose of this study was to measure the effective neutron shielding characteristics of the new shielding material designed and manufactured to be used for the construction of the new SANRAD facility at Necsa, South Africa, through Au foil activation as well as MCNP simulations. The shielding capability of the high density shielding material was investigated in the worst case region (the neutron beam axis) of the experimental chamber for two operational modes. The everyday operational mode includes the 15 cm thick poly crystalline Bismuth filter at room temperature (assumed) to filter gamma-rays and some neutron spectrum energies. The second mode, dynamic imaging, will be conducted without the Bi-filter. The objective was achieved through a foil activation measurement at the current SANRAD facility and MCNP calculations. Several Au foilswere imbedded at different thicknesses(two at each position) of shielding material up to 80 cm thick to track the attenuation of the neutron beam over distance within the shielding material. The neutron flux and subsequently the associated dose rates were calculated from the activation levels of the Au foils. The concrete shielding material was found to provide adequate shielding for all energies of neutrons emerging from beam port no-2 of the SAFARI-1 research reactorwithin a thickness of 40 cm of concrete.
The investigation of fast neutron Threshold Activation Detectors (TAD)
NASA Astrophysics Data System (ADS)
Gozani, T.; King, M. J.; Stevenson, J.
2012-02-01
The detection of fast neutrons is usually done by liquid hydrogenous organic scintillators, where the separation between the ever present gamma rays and neutrons is achieved by the pulse shape discrimination (PSD). In many practical situation the detection of fast neutrons has to be carried out while the intense source (be it neutrons, gamma rays or x-rays) that creates these neutrons, for example by the fission process, is present. This source, or ``flash'', usually blinds the neutron detectors and temporarily incapacitates them. By the time the detectors recover the prompt neutron signature does not exist. Thus to overcome the blinding background, one needs to search for processes whereby the desired signature, such as fission neutrons could in some way be measured long after the fission occurred and when the neutron detector is fully recovered from the overload. A new approach was proposed and demonstrated a good sensitivity for the detection of fast neutrons in adverse overload situations where normally it could not be done. A temporal separation of the fission event from the prompt neutrons detection is achieved via the activation process. The main idea, called Threshold Activation Detection (or detector)-TAD, is to find appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation, and then measure the radioactively decaying activation products (typically beta and γ-rays) well after the source pulse has ended. The activation material should possess certain properties: a suitable half-life; an energy threshold below which the numerous source neutrons will not activate it (e.g. about 3 MeV); easily detectable activation products and has a usable cross section for the selected reaction. Ideally the substance would be part of the scintillator. There are several good candidates for TAD. The first one we have selected is based on fluorine. One of the major advantages of this element is the fact that it is a major constituent of available scintillators (e.g., BaF2, CaF2, hydrogen free liquid fluorocarbon). Thus the activation products of the fast prompt neutrons, in particular, the beta particles, can be measured with a very high efficiency in the detector. Other detectors and substances were investigated, such as 6Li and even common detectors such as NaI. The principles and experimental results obtained with F, NaI and 6Li based TAD are shown. The various contributing activation products are identified. The insensitivity of the fluorine based TAD to (d,D) neutrons is demonstrated. Ways and means to reduce or subtract the various neutron induced activations of NaI detector are elucidated along with its fast neutron detection capabilities. 6Li could also be a useful TAD.
NASA Astrophysics Data System (ADS)
Lin, Heng-Xiao; Chen, Wei-Lin; Liu, Yuan-Hao; Sheu, Rong-Jiun
2016-03-01
A set of spherical-type activation detectors was developed aiming to provide better determination of the neutron spectrum at the Tsing Hua Open-pool Reactor (THOR) BNCT facility. An activation foil embedded in a specially designed spherical holder exhibits three advantages: (1) minimizing the effect of neutron angular dependence, (2) creating response functions with broadened coverage of neutron energies by introducing additional moderators or absorbers to the central activation foil, and (3) reducing irradiation time because of improved detection efficiencies to epithermal neutron beam. This paper presents the design concept and the calculated response functions of new detectors. Theoretical and experimental demonstrations of the performance of the detectors are provided through comparisons of the unfolded neutron spectra determined using this method and conventional multiple-foil activation techniques.
Spallation yield of neutrons produced in thick lead target bombarded with 250 MeV protons
NASA Astrophysics Data System (ADS)
Chen, L.; Ma, F.; Zhanga, X. Y.; Ju, Y. Q.; Zhang, H. B.; Ge, H. L.; Wang, J. G.; Zhou, B.; Li, Y. Y.; Xu, X. W.; Luo, P.; Yang, L.; Zhang, Y. B.; Li, J. Y.; Xu, J. K.; Liang, T. J.; Wang, S. L.; Yang, Y. W.; Gu, L.
2015-01-01
The neutron yield from thick target of Pb irradiated with 250 MeV protons has been studied experimentally. The neutron production was measured with the water-bath gold method. The thermal neutron distributions in the water were determined according to the measured activities of Au foils. Corresponding results calculated with the Monte Carlo code MCNPX were compared with the experimental data. It was found out that the Au foils with cadmium cover significantly changed the spacial distribution of the thermal neutron field. The corrected neutron yield was deduced to be 2.23 ± 0.19 n/proton by considering the influence of the Cd cover on the thermal neutron flux.
124Sb-Be photo-neutron source for BNCT: Is it possible?
NASA Astrophysics Data System (ADS)
Golshanian, Mohadeseh; Rajabi, Ali Akbar; Kasesaz, Yaser
2016-11-01
In this research a computational feasibility study has been done on the use of 124SbBe photo-neutron source for Boron Neutron Capture Therapy (BNCT) using MCNPX Monte Carlo code. For this purpose, a special beam shaping assembly has been designed to provide an appropriate epithermal neutron beam suitable for BNCT. The final result shows that using 150 kCi of 124Sb, the epithermal neutron flux at the designed beam exit is 0.23×109 (n/cm2 s). In-phantom dose analysis indicates that treatment time for a brain tumor is about 40 min which is a reasonable time. This high activity 124Sb could be achieved using three 50 kCi rods of 124Sb which can be produced in a research reactor. It is clear, that as this activity is several hundred times the activity of a typical cobalt radiotherapy source, issues related to handling, safety and security must be addressed.
NASA Astrophysics Data System (ADS)
Skuhersky, Michael
2013-04-01
IsoDAR (Isotope Decay-At-Rest) is a proposed high-intensity source of electron antineutrinos intended for use in searches for beyond standard model physics, the main analysis being a short baseline search for sterile neutrinos at a kiloton scale liquid scintillator detector. The source uses a compact cyclotron to deliver 600kW of protons at 60 MeV/nucleon in the form of H2^+ onto a Beryllium target which produces a large intermediate energy neutron flux. These neutrons thermalize and capture on a 99.9% pure ^7Li sleeve, which produces ^8Li at rest, which subsequently beta decays producing νe. Due to the high neutron fluxes, large duty factor, and low background environment surrounding the neutrino detector, we need to understand the activation risk and design a shield to minimize this risk allowing for the safe operation of the source. I will report on my neutron activation studies and the benchmarking of Geant4 for these applications.
Activation analysis study on Li-ion batteries for nuclear forensic applications
NASA Astrophysics Data System (ADS)
Johnson, Erik B.; Whitney, Chad; Holbert, Keith E.; Zhang, Taipeng; Stannard, Tyler; Christie, Anthony; Harper, Peter; Anderson, Blake; Christian, James F.
2015-06-01
The nuclear materials environment has been increasing significantly in complexity over the past couple of decades. The prevention of attacks from nuclear weapons is becoming more difficult, and nuclear forensics is a deterrent by providing detailed information on any type of nuclear event for proper attribution. One component of the nuclear forensic analysis is a measurement of the neutron spectrum. As an example, the neutron component provides information on the composition of the weapons, whether boosting is involved or the mechanisms used in creating a supercritical state. As 6Li has a large cross-section for thermal neutrons, the lithium battery is a primary candidate for assessing the neutron spectrum after detonation. The absorption process for 6Li yields tritium, which can be measured at a later point after the nuclear event, as long as the battery can be processed in a manner to successfully extract the tritium content. In addition, measuring the activated constituents after exposure provides a means to reconstruct the incident neutron spectrum. The battery consists of a spiral or folded layers of material that have unique, energy dependent interactions associated with the incident neutron flux. A detailed analysis on the batteries included a pre-irradiated mass spectrometry analysis to be used as input for neutron spectrum reconstruction. A set of batteries were exposed to a hard neutron spectrum delivered by the University of Massachusetts, Lowell research reactor Fast Neutron Irradiator (FNI). The gamma spectra were measured from the batteries within a few days and within a week after the exposure to obtain sufficient data on the activated materials in the batteries. The activity was calculated for a number of select isotopes, indicating the number of associated neutron interactions. The results from tritium extraction are marginal. A measurable increase in detected particles (gammas and betas) below 50 keV not self-attenuated by the battery was observed, yet as the spectra are coarse, the gamma information is not separable from tritium spectra. The activation analysis was successful, and the incident neutron spectrum was reconstructed using materials found in lithium batteries.
Flux trap effect study in a sub-critical neutron assembly using activation methods
NASA Astrophysics Data System (ADS)
Routsonis, K.; Stoulos, S.; Clouvas, A.; Catsaros, N.; Varvayianni, M.; Manolopoulou, M.
2016-09-01
The neutron flux trap effect was experimentally studied in the subcritical assembly of the Atomic and Nuclear Physics Laboratory of the Aristotle University of Thessaloniki, using delayed gamma neutron activation analysis. Measurements were taken within the natural uranium fuel grid, in vertical levels symmetrical to the Am-Be neutron source, before and after the removal of fuel elements, permitting likewise a basic study of the vertical flux profile. Three identical flux traps of diamond shape were created by removing four fuel rods for each one. Two (n, γ) reactions and one (n, p) threshold reaction were selected for thermal, epithermal and fast flux study. Results of thermal and epithermal flux obtained through the 197Au (n, γ) 198Au and 186W (n, γ) 187W reactions, with and without Cd covers, to differentiate between the two flux regions. The 58Ni (n, p) 58Co reaction was used for the fast flux determination. An interpolation technique based on local procedures was applied to fit the cross sections data and the neutron flux spectrum. End results show a maximum thermal flux increase of 105% at the source level, pointing to a high potential to increase in the available thermal flux for future experiments. The increase in thermal flux is not accompanied by a comparable decrease in epithermal or fast flux, since thermal flux gain is higher than epithermal and fast neutron flux loss. So, the neutron reflection is mainly responsible for the thermal neutron increase, contributing to 89% at the central axial position.
Stagnancy of the pygmy dipole resonance
NASA Astrophysics Data System (ADS)
Sun, Xu-Wei; Chen, Jing; Lu, Ding-Hui
2018-01-01
The pygmy dipole resonance (PDR) of nickel isotopes is studied using the deformed random phase approximation method. The isoscalar character of the pygmy resonance is confirmed, and the correlation between the pygmy resonance and neutron skin thickness is discussed. Our investigation shows a linear correlation between PDR integral cross section and neutron skin thickness when the excess neutrons lie in pf orbits, with a correlation rate of about 0.27 fm-1. However, in more neutron-rich nickel isotopes, the growth of the pygmy dipole resonance is stagnant. Although the neutron skin thickness increases, the whole skin is not active. There is an inertial part in the nuclei 70-78Ni which does not participate in the pygmy resonance actively and as a result, contributes little to the photo-absorption cross section. Supported by National Science Foundation of China
Detection sensitivities in 3-8 MeV neutron activation
NASA Technical Reports Server (NTRS)
Wahlgren, M. A.; Wing, J.
1968-01-01
Study of detection sensitivities of 73 radioactive elements using fast unmoderated neutrons includes experiments for irradiation, cooling and counting conditions. The gamma ray emission spectra is used to identify the unknown material.
Development of high flux thermal neutron generator for neutron activation analysis
NASA Astrophysics Data System (ADS)
Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.
2015-05-01
The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.
NASA Astrophysics Data System (ADS)
Casoli, Pierre; Grégoire, Gilles; Rousseau, Guillaume; Jacquet, Xavier; Authier, Nicolas
2016-02-01
CALIBAN is a metallic critical assembly managed by the Criticality, Neutron Science and Measurement Department located on the French CEA Center of Valduc. The reactor is extensively used for benchmark experiments dedicated to the evaluation of nuclear data, for electronic hardening or to study the effect of the neutrons on various materials. Therefore CALIBAN irradiation characteristics and especially its central cavity neutron spectrum have to be very accurately evaluated. In order to strengthen our knowledge of this spectrum, several adjustment methods based on activation foils measurements are being studied for a few years in the laboratory. Firstly two codes included in the UMG package have been tested and compared: MAXED and GRAVEL. More recently, the CALIBAN cavity spectrum has been studied using CALMAR, a new adjustment tool currently under development at the CEA Center of Cadarache. The article will discuss and compare the results and the quality of spectrum rebuilding obtained with the UMG codes and with the CALMAR software, from a set of activation measurements carried out in the CALIBAN irradiation cavity.
USDA-ARS?s Scientific Manuscript database
Prompt-gamma neutron activation (PGNA) analysis is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV and D-T with...
Estimation of neutron spectrum in the low-level gamma spectroscopy system using unfolding procedure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knežević, D., E-mail: david.knezevic@df.uns.ac.rs; Jovančević, N.; Krmar, M.
2016-03-25
The radiation resulting from neutron interactions with Ge nuclei in active volume of HPGe detectors is one of the main concerns in low-level gamma spectroscopy measurements [1,2]. It is usually not possible to measure directly spectrum of neutrons which strike detector. This paper explore the possibility of estimation of neutron spectrum using measured activities of certain Ge(n,γ) and Ge(n,n’) reactions (obtained from low-level gamma measurements), available ENDF cross section data and unfolding procedures. In this work HPGe detector with passive shield made from commercial low background lead was used for the measurement. The most important objective of this study wasmore » to reconstruct muon induced neutron spectrum created in the shield of the HPGe detector. MAXED [3] and GRAVEL [4] algorithms for neutron spectra unfolding were used. The results of those two algorithms were compared and we analyzed the sensitivity of the unfolding procedure to the various input parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heyse, J.; Becker, B.; Kopecky, S.
Neutrons can be used as a tool to study properties of materials and objects. An evolving activity in this field focusses on neutron induced reaction cross sections. The probability that a neutron interacts with nuclei strongly depends on the energy of the neutron. The cross sections reveal the presence of resonance structures, the energy and width of which are isotope specific. As such, these resonance structures can be used as fingerprints to determine the elemental and isotopic composition of materials and objects. They are the basis of two analytical methods which have been developed at Institute for Reference Materials andmore » Measurements of the European Commission's Joint Research Centre (EC-JRC-IRMM): Neutron Resonance Capture Analysis (NRCA) and Neutron Resonance Transmission Analysis (NRTA). The first technique is based on the detection of gamma rays emitted during a neutron capture reaction in the sample being studied; the latter determines the fraction of neutrons transmitted through a sample positioned in a neutron beam. In the past both techniques have been applied to determine the composition of archaeological objects and to characterize nuclear reference materials. More recently a combination of NRTA and NRCA is being studied as a non-destructive method to determine the heavy metal content of particle-like debris of melted fuel that is formed in severe nuclear accidents such as the one which occurred at the Fukushima Daiichi nuclear power plant in Japan. This study is part of a collaboration between the Japan Atomic Energy Agency (JAEA) and ECJRC- IRMM and is a spin-off from the core activity of IRMM, i.e. the production of nuclear data for nuclear technology applications. This contribution focusses on a newly developed NRTA measurement station that has been set up recently at one of the flight paths of the neutron time-of-flight facility GELINA at the EC-JRC-IRMM. The basic principles of NRTA and first results of measurements at the new set up will be discussed. (authors)« less
Aslam; Prestwich, W V; McNeill, F E
2003-03-01
The operating conditions at McMaster KN Van de Graaf accelerator have been optimized to produce neutrons via the (7)Li(p, n)(7)Be reaction for in vivo neutron activation analysis. In a number of earlier studies (development of an accelerator based system for in vivo neutron activation analysis measurements of manganese in humans, Ph.D. Thesis, McMaster University, Hamilton, ON, Canada; Appl. Radiat. Isot. 53 (2000) 657; in vivo measurement of some trace elements in human Bone, Ph.D. Thesis. McMaster University, Hamilton, ON, Canada), a significant discrepancy between the experimental and the calculated neutron doses has been pointed out. The hypotheses formulated in the above references to explain the deviation of the experimental results from analytical calculations, have been tested experimentally. The performance of the lithium target for neutron production has been evaluated by measuring the (7)Be activity produced as a result of (p, n) interaction with (7)Li. In contradiction to the formulated hypotheses, lithium target performance was found to be mainly affected by inefficient target cooling and the presence of oxides layer on target surface. An appropriate choice of these parameters resulted in neutron yields same as predicated by analytical calculations.
Radiation damage caused by cold neutrons in boron doped CMOS active pixel sensors
NASA Astrophysics Data System (ADS)
Linnik, B.; Bus, T.; Deveaux, M.; Doering, D.; Kudejova, P.; Wagner, F. M.; Yazgili, A.; Stroth, J.
2017-05-01
CMOS Monolithic Active Pixel Sensors (MAPS) are considered as an emerging technology in the field of charged particle tracking. They will be used in the vertex detectors of experiments like STAR, CBM and ALICE and are considered for the ILC and the tracker of ATLAS. In those applications, the sensors are exposed to sizeable radiation doses. While the tolerance of MAPS to ionizing radiation and fast hadrons is well known, the damage caused by low energy neutrons was not studied so far. Those slow neutrons may initiate nuclear fission of 10B dopants found in the B-doped silicon active medium of MAPS. This effect was expected to create an unknown amount of radiation damage beyond the predictions of the NIEL (Non Ionizing Energy Loss) model for pure silicon. We estimate the impact of this effect by calculating the additional NIEL created by this fission. Moreover, we show first measured data for CMOS sensors which were irradiated with cold neutrons. The empirical results contradict the prediction of the updated NIEL model both, qualitatively and quantitatively: the sensors irradiated with slow neutrons show an unexpected and strong acceptor removal, which is not observed in sensors irradiated with MeV neutrons.
NASA Astrophysics Data System (ADS)
Takahashi, Y.; Misawa, T.; Yagi, T.; Pyeon, C. H.; Kimura, M.; Masuda, K.; Ohgaki, H.
2015-10-01
The detection of special nuclear materials (SNM) is an important issue for nuclear security. The interrogation systems used in a sea port and an airport are developed in the world. The active neutron-based interrogation system is the one of the candidates. We are developing the active neutron-based interrogation system with a D-D fusion neutron source for the nuclear security application. The D-D neutron source is a compact discharge-type fusion neutron source called IEC (Inertial-Electrostatic Confinement fusion) device which provides 2.45 MeV neutrons. The nuclear materials emit the highenergy neutrons by fission reaction. High-energy neutrons with energies over 2.45 MeV amount to 30% of all the fission neutrons. By using the D-D neutron source, the detection of SNMs is considered to be possible with the attention of fast neutrons if there is over 2.45 MeV. Ideally, neutrons at En>2.45 MeV do not exist if there is no nuclear materials. The detection of fission neutrons over 2.45 MeV are hopeful prospect for the detection of SNM with a high S/N ratio. In the future, the experiments combined with nuclear materials and a D-D neutron source will be conducted. Furthermore, the interrogation system will be numerically investigated by using nuclear materials, a D-D neutron source, and a steel container.
Prompt fission neutron emission in the reaction 235U(n,f)
NASA Astrophysics Data System (ADS)
Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan
2018-03-01
Experimental activities at JRC-Geel on prompt fission neutron (PFN) emission in response to OECD/NEA nuclear data requests are presented in this contribution. Specifically, on-going investigations of PFN emission from the reaction 235U(n,f) in the region of the resolved resonances, taking place at the GELINA facility, are presented. The focus of this contribution lies on studies of PFN correlations with fission fragment properties. The experiment employs a scintillation detector array for neutron detection, while fission fragment properties are determined via the double kinetic energy technique using a position sensitive twin ionization chamber. This setup allows us to study several correlations between properties of neutron and fission fragments simultaneously. Results on PFN correlations with fission fragment properties from the present study differ significantly from earlier studies on this reaction, induced by thermal neutrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klix, A.; Fischer, U.; Raj, P.
Fusion power reactors will rely on the internal production of the fuel tritium from lithium in the tritium breeding blanket. Test Blanket Modules (TBM) will be installed in ITER with the aim to investigate the nuclear performance of different breeding blanket designs. Currently there is no fully qualified nuclear instrumentation available for the measurement of neutron fluxes and tritium production rates which would be able to withstand the harsh environment conditions in the TBM such as high temperature (>400 deg. C) and, depending on the operation scenario, intense radiation levels. As partner of the European Consortium on Nuclear Data andmore » Measurement Techniques in the framework of several F4E specific grants and contracts, KIT and ENEA have jointly studied the possibility to develop and test detectors suitable to operate in ITER-TBMs. Here we present an overview of ongoing work on three types of neutron flux monitors under development for the TBMs with focus on the KIT activities. A neutron activation system (NAS) with pneumatic sample transport could provide absolute neutron flux measurements in selected positions. A test system for investigating activation materials with short half-lives was constructed at the DT neutron generator laboratory of Technical University of Dresden to investigate the neutronics aspects. Several irradiations have been performed with focus on the simultaneous measurement of the extracted activated probes. An engineering assessment of a TBM NAS in the conceptual design phase has been done which considered issues of design requirements and integration. Last but not least, a mechanical test bench is under construction at KIT which will address issues of driving the activation probes, solutions for loading the system etc. experimentally. Self-powered neutron detectors (SPND) are widely applied in fission reactor monitoring, and the commercially available SPNDs are sensitive to thermal neutrons. We are investigating novel materials for SPND which would be sensitive also to the fast neutron flux expected in the TBMs. To this end simulations were done with the European Activation System EASY and neutron flux spectra which were calculated with MCNP for the HCPB TBM. Preliminary tests with commercial SPND in a fast reactor were performed. As a result of these activities, several materials have been found which may be suitable for the measurement of fast neutron fluxes in the TBM. Test detectors are under preparation for testing with DT neutron generators. Within the I{sub S}MART project, funded by KIC InnoEnergy, KIT is developing an online detector based on silicon carbide electronics for the TBMs. The operation of such detectors at TBM relevant temperatures is expected to incur lower accumulated radiation damage to them than at room temperature due to annealing effects. Detectors of several designs have been already irradiated with DT neutrons. Irradiation tests at elevated temperatures have been done and further tests are currently underway. This paper summarizes the status of the work for these three neutron flux monitor systems. (authors)« less
Neutron threshold activation detectors (TAD) for the detection of fissions
NASA Astrophysics Data System (ADS)
Gozani, Tsahi; Stevenson, John; King, Michael J.
2011-10-01
Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique, called Threshold Activation Detection (TAD), is to utilize appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation and then measure the radioactively decaying activation products (typically beta and gamma rays) well after the source pulse. The activation material should possess certain properties: a suitable half-life of the order of seconds; an energy threshold below which the numerous source neutrons will not activate it (e.g., 3 MeV); easily detectable activation products (typically >1 MeV beta and gamma rays) and have a usable cross-section for the selected reaction. Ideally the substance would be a part of the scintillator. There are several good material candidates for the TAD, including fluorine, which is a major constituent of available scintillators such as BaF 2, CaF 2 and hydrogen free liquid fluorocarbon. Thus the fluorine activation products, in particular the beta particles, can be measured with a very high efficiency in the detector. The principles, applications and experimental results obtained with the fluorine based TAD are discussed.
Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC
Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath
2015-01-01
A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed 28Al, 24Na, 54Mn and 60Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is 28Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several 28Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. PMID:26265661
Monte-Carlo Application for Nondestructive Nuclear Waste Analysis
NASA Astrophysics Data System (ADS)
Carasco, C.; Engels, R.; Frank, M.; Furletov, S.; Furletova, J.; Genreith, C.; Havenith, A.; Kemmerling, G.; Kettler, J.; Krings, T.; Ma, J.-L.; Mauerhofer, E.; Neike, D.; Payan, E.; Perot, B.; Rossbach, M.; Schitthelm, O.; Schumann, M.; Vasquez, R.
2014-06-01
Radioactive waste has to undergo a process of quality checking in order to check its conformance with national regulations prior to its transport, intermediate storage and final disposal. Within the quality checking of radioactive waste packages non-destructive assays are required to characterize their radio-toxic and chemo-toxic contents. The Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety of the Forschungszentrum Jülich develops in the framework of cooperation nondestructive analytical techniques for the routine characterization of radioactive waste packages at industrial-scale. During the phase of research and development Monte Carlo techniques are used to simulate the transport of particle, especially photons, electrons and neutrons, through matter and to obtain the response of detection systems. The radiological characterization of low and intermediate level radioactive waste drums is performed by segmented γ-scanning (SGS). To precisely and accurately reconstruct the isotope specific activity content in waste drums by SGS measurement, an innovative method called SGSreco was developed. The Geant4 code was used to simulate the response of the collimated detection system for waste drums with different activity and matrix configurations. These simulations allow a far more detailed optimization, validation and benchmark of SGSreco, since the construction of test drums covering a broad range of activity and matrix properties is time consuming and cost intensive. The MEDINA (Multi Element Detection based on Instrumental Neutron Activation) test facility was developed to identify and quantify non-radioactive elements and substances in radioactive waste drums. MEDINA is based on prompt and delayed gamma neutron activation analysis (P&DGNAA) using a 14 MeV neutron generator. MCNP simulations were carried out to study the response of the MEDINA facility in terms of gamma spectra, time dependence of the neutron energy spectrum, neutron flux distribution. The validation of the measurements simulations with Mont-Carlo transport codes for the design, optimization and data analysis of further P&DGNAA facilities is performed in collaboration with LMN CEA Cadarache. The performance of the prompt gamma neutron activation analysis (PGNAA) for the nondestructive determination of actinides in small samples is investigated. The quantitative determination of actinides relies on the precise knowledge of partial neutron capture cross sections. Up to today these cross sections are not very accurate for analytical purpose. The goal of the TANDEM (Trans-uranium Actinides' Nuclear Data - Evaluation and Measurement) Collaboration is the evaluation of these cross sections. Cross sections are measured using prompt gamma activation analysis facilities in Budapest and Munich. Geant4 is used to optimally design the detection system with Compton suppression. Furthermore, for the evaluation of the cross sections it is strongly needed to correct the results to the self-attenuation of the prompt gammas within the sample. In the framework of cooperation RWTH Aachen University, Forschungszentrum Jülich and the Siemens AG will study the feasibility of a compact Neutron Imaging System for Radioactive waste Analysis (NISRA). The system is based on a 14 MeV neutron source and an advanced detector system (a-Si flat panel) linked to an exclusive converter/scintillator for fast neutrons. For shielding and radioprotection studies the codes MCNPX and Geant4 were used. The two codes were benchmarked in processing time and accuracy in the neutron and gamma fluxes. Also the detector response was simulated with Geant4 to optimize components of the system.
Determination of the Secondary Neutron Flux at the Massive Natural Uranium Spallation Target
NASA Astrophysics Data System (ADS)
Zeman, M.; Adam, J.; Baldin, A. A.; Furman, W. I.; Gustov, S. A.; Katovsky, K.; Khushvaktov, J.; Mar`in, I. I.; Novotny, F.; Solnyshkin, A. A.; Tichy, P.; Tsoupko-Sitnikov, V. M.; Tyutyunnikov, S. I.; Vespalec, R.; Vrzalova, J.; Wagner, V.; Zavorka, L.
The flux of secondary neutrons generated in collisions of the 660 MeV proton beam with the massive natural uranium spallation target was investigated using a set of monoisotopic threshold activation detectors. Sandwiches made of thin high-purity Al, Co, Au, and Bi metal foils were installed in different positions across the whole spallation target. The gamma-ray activity of products of (n,xn) and other studied reactions was measured offline with germanium semiconductor detectors. Reaction yields of radionuclides with half-life exceeding 100 min and with effective neutron energy thresholds between 3.6 MeV and 186 MeV provided us with information about the spectrum of spallation neutrons in this energy region and beyond. The experimental neutron flux was determined using the measured reaction yields and cross-sections calculated with the TALYS 1.8 nuclear reaction program and INCL4-ABLA event generator of MCNP6. Neutron spectra in the region of activation sandwiches were also modeled with the radiation transport code MCNPX 2.7. Neutron flux based on excitation functions from TALYS provides a reasonable description of the neutron spectrum inside the spallation target and is in good agreement with Monte-Carlo predictions. The experimental flux that uses INCL4 cross-sections rather underestimates the modeled spectrum in the whole region of interest, but the agreement within few standard deviations was reached as well. The paper summarizes basic principles of the method for determining the spectrum of high-energy neutrons without employing the spectral adjustment routines and points out to the need for model improvements and precise cross-section measurements.
Martín-Hernández, G; Mastinu, P F; Praena, J; Dzysiuk, N; Capote Noy, R; Pignatari, M
2012-08-01
The need of neutron capture cross section measurements for astrophysics motivates present work, where calculations to generate stellar neutron spectra at different temperatures are performed. The accelerator-based (7)Li(p,n)(7)Be reaction is used. Shaping the proton beam energy and the sample covering a specific solid angle, neutron activation for measuring stellar-averaged capture cross section can be done. High-quality Maxwell-Boltzmann neutron spectra are predicted. Assuming a general behavior of the neutron capture cross section a weighted fit of the spectrum to Maxwell-Boltzmann distributions is successfully introduced. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser
2016-01-01
Determination of in-phantom quality factors of Tehran research reactor (TRR) boron neutron capture therapy (BNCT) beam. The doses from thermal neutron reactions with 14N and 10B are calculated by kinetic energy released per unit mass approach, after measuring thermal neutron flux using neutron activation technique. Gamma dose is measured using TLD-700 dosimeter. Different dose components have been measured in a head phantom which has been designed and constructed for BNCT purpose in TRR. Different in-phantom beam quality factors have also been determined. This study demonstrates that the TRR BNCT beam line has potential for treatment of superficial tumors.
NASA Astrophysics Data System (ADS)
Vagena, E.; Theodorou, K.; Stoulos, S.
2018-04-01
Neutron activation technique has been applied using a proposed set of twelve thick metal foils (Au, As, Cd, In, Ir, Er, Mn, Ni, Se, Sm, W, Zn) for off-site measurements to obtain the neutron spectrum over a wide energy range (from thermal up to a few MeV) in intense neutron-gamma mixed fields such as around medical Linacs. The unfolding procedure takes into account the activation rates measured using thirteen (n , γ) and two (n , p) reactions without imposing a guess solution-spectrum. The MINUIT minimization routine unfolds a neutron spectrum that is dominated by fast neutrons (70%) peaking at 0.3 MeV, while the thermal peak corresponds to the 15% of the total neutron fluence equal to the epithermal-resonances area. The comparison of the unfolded neutron spectrum against the simulated one with the GEANT4 Monte-Carlo code shows a reasonable agreement within the measurement uncertainties. Therefore, the proposed set of activation thick-foils could be a useful tool in order to determine low flux neutrons spectrum in intense mixed field.
Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favalli, Andrea; Roth, Markus
2015-05-01
An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.
Neutron reflectometry on highly absorbing films and its application to 10B4C-based neutron detectors
Piscitelli, F.; Khaplanov, A.; Devishvili, A.; Schmidt, S.; Höglund, C.; Birch, J.; Dennison, A. J. C.; Gutfreund, P.; Hall-Wilton, R.; Van Esch, P.
2016-01-01
Neutron reflectometry is a powerful tool used for studies of surfaces and interfaces. The absorption in the typical studied materials is neglected and this technique is limited only to the reflectivity measurement. For strongly absorbing nuclei, the absorption can be directly measured by using the neutron-induced fluorescence technique which exploits the prompt particle emission of absorbing isotopes. This technique is emerging from soft matter and biology where highly absorbing nuclei, in very small quantities, are used as a label for buried layers. Nowadays, the importance of absorbing layers is rapidly increasing, partially because of their application in neutron detection; a field that has become more active also due to the 3He-shortage. We extend the neutron-induced fluorescence technique to the study of layers of highly absorbing materials, in particular 10B4C. The theory of neutron reflectometry is a commonly studied topic; however, when a strong absorption is present the subtle relationship between the reflection and the absorption of neutrons is not widely known. The theory for a general stack of absorbing layers has been developed and compared to measurements. We also report on the requirements that a 10B4C layer must fulfil in order to be employed as a converter in neutron detection. PMID:26997902
NASA Astrophysics Data System (ADS)
Bazo, J.; Rojas, J. M.; Best, S.; Bruna, R.; Endress, E.; Mendoza, P.; Poma, V.; Gago, A. M.
2018-03-01
Samples of two characteristic semiconductor sensor materials, silicon and germanium, have been irradiated with neutrons produced at the RP-10 Nuclear Research Reactor at 4.5 MW. Their radionuclides photon spectra have been measured with high resolution gamma spectroscopy, quantifying four radioisotopes (28Al, 29Al for Si and 75Ge and 77Ge for Ge). We have compared the radionuclides production and their emission spectrum data with Monte Carlo simulation results from FLUKA. Thus we have tested FLUKA's low energy neutron library (ENDF/B-VIIR) and decay photon scoring with respect to the activation of these semiconductors. We conclude that FLUKA is capable of predicting relative photon peak amplitudes, with gamma intensities greater than 1%, of produced radionuclides with an average uncertainty of 13%. This work allows us to estimate the corresponding systematic error on neutron activation simulation studies of these sensor materials.
Trace elements study of high purity nanocrystalline silicon carbide (3C-SiC) using k0-INAA method
NASA Astrophysics Data System (ADS)
Huseynov, Elchin; Jazbec, Anze
2017-07-01
Silicon carbide (3C-SiC) nanoparticles have been irradiated by neutron flux (2×1013 n·cm-2·s-1) at TRIGA Mark II type research reactor. After neutron irradiation, the radioisotopes of trace elements in the nanocrystalline 3C-SiC were studied as time functions. The identification of isotopes which significantly increased the activity of the samples as a result of neutron radiation was carried out. Nanocrystalline 3C-SiC are synthesized by standard laser technique and the purity of samples was determined by the k0-based Instrumental Neutron Activation Analysis (k0-INAA) method. Trace elements concentration in the 3C-SiC nanoparticles were determined by the radionuclides of appropriate elements. The trace element isotopes concentration have been calculated in percentage according to k0-INAA method.
Propagation of nuclear data uncertainties for fusion power measurements
NASA Astrophysics Data System (ADS)
Sjöstrand, Henrik; Conroy, Sean; Helgesson, Petter; Hernandez, Solis Augusto; Koning, Arjan; Pomp, Stephan; Rochman, Dimitri
2017-09-01
Neutron measurements using neutron activation systems are an essential part of the diagnostic system at large fusion machines such as JET and ITER. Nuclear data is used to infer the neutron yield. Consequently, high-quality nuclear data is essential for the proper determination of the neutron yield and fusion power. However, uncertainties due to nuclear data are not fully taken into account in uncertainty analysis for neutron yield calibrations using activation foils. This paper investigates the neutron yield uncertainty due to nuclear data using the so-called Total Monte Carlo Method. The work is performed using a detailed MCNP model of the JET fusion machine; the uncertainties due to the cross-sections and angular distributions in JET structural materials, as well as the activation cross-sections in the activation foils, are analysed. It is found that a significant contribution to the neutron yield uncertainty can come from uncertainties in the nuclear data.
NASA Astrophysics Data System (ADS)
Osawa, Yuta; Imoto, Shoichi; Kusaka, Sachie; Sato, Fuminobu; Tanoshita, Masahiro; Murata, Isao
2017-09-01
Boron Neutron Capture Therapy (BNCT) is known to be a new promising cancer therapy suppressing influence against normal cells. In Japan, Accelerator Based Neutron Sources (ABNS) are being developed for BNCT. For the spread of ABNS based BNCT, we should characterize the neutron field beforehand. For this purpose, we have been developing a low-energy neutron spectrometer based on 3He position sensitive proportional counter. In this study, a new intense epi-thermal neutron field was developed with a DT neutron source for verification of validity of the spectrometer. After the development, the neutron field characteristics were experimentally evaluated by using activation foils. As a result, we confirmed that an epi-thermal neutron field was successfully developed suppressing fast neutrons substantially. Thereafter, the neutron spectrometer was verified experimentally. In the verification, although a measured detection depth distribution agreed well with the calculated distribution by MCNP, the unfolded spectrum was significantly different from the calculated neutron spectrum due to contribution of the side neutron incidence. Therefore, we designed a new neutron collimator consisting of a polyethylene pre-collimator and boron carbide neutron absorber and confirmed numerically that it could suppress the side incident neutrons and shape the neutron flux to be like a pencil beam.
NASA Astrophysics Data System (ADS)
Tanaka, Ken-ichi; Ueno, Jun
2017-09-01
Reliable information of radioactivity inventory resulted from the radiological characterization is important in order to plan decommissioning planning and is also crucial in order to promote decommissioning in effectiveness and in safe. The information is referred to by planning of decommissioning strategy and by an application to regulator. Reliable information of radioactivity inventory can be used to optimize the decommissioning processes. In order to perform the radiological characterization reliably, we improved a procedure of an evaluation of neutron-activated materials for a Boiling Water Reactor (BWR). Neutron-activated materials are calculated with calculation codes and their validity should be verified with measurements. The evaluation of neutron-activated materials can be divided into two processes. One is a distribution calculation of neutron-flux. Another is an activation calculation of materials. The distribution calculation of neutron-flux is performed with neutron transport calculation codes with appropriate cross section library to simulate neutron transport phenomena well. Using the distribution of neutron-flux, we perform distribution calculations of radioactivity concentration. We also estimate a time dependent distribution of radioactivity classification and a radioactive-waste classification. The information obtained from the evaluation is utilized by other tasks in the preparatory tasks to make the decommissioning plan and the activity safe and rational.
Arsenic activation neutron detector
Jacobs, E.L.
1980-01-28
A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.
Arsenic activation neutron detector
Jacobs, Eddy L.
1981-01-01
A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.
Bodenheimer, Annette M; O'Dell, William B; Stanley, Christopher B; Meilleur, Flora
2017-08-07
Sensitivity to hydrogen/deuterium and lack of observable radiation damage makes cold neutrons an ideal probe the structural studies of proteins with highly photosensitive groups such as the copper center of lytic polysaccharide monooxygenases (LPMOs) and flavin adenine dinucleotide (FAD) and heme redox cofactors of cellobiose dehydrogenases (CDHs). Here, neutron crystallography and small-angle neutron scattering are used to investigate Neurospora crassa LPMO9D (NcLPMO9D) and CDHIIA (NcCDHIIA), respectively. The presence of LPMO greatly enhances the efficiency of commercial glycoside hydrolase cocktails in the depolymerization of cellulose. LPMOs can receive electrons from CDHs to activate molecular dioxygen for the oxidation of cellulose resulting in chain cleavage and disruption of local crystallinity. Using neutron protein crystallography, the hydrogen/deuterium atoms of NcLPMO9D could be located throughout the structure. At the copper active site, the protonation states of the side chains of His1, His84, His157 and Tyr168, and the orientation of water molecules could be determined. Small-angle neutron scattering measurements provided low resolution models of NcCDHIIA with both the dehydrogenase and cytochrome domains in oxidized states that exhibited elongated conformations. This work demonstrates the suitability of neutron diffraction and scattering for characterizing enzymes critical to oxidative cellulose deconstruction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bodenheimer, Annette M.; O'Dell, William B.; Stanley, Christopher B.; ...
2017-03-04
Sensitivity to hydrogen/deuterium and lack of observable radiation damage makes cold neutrons an ideal probe the structural studies of proteins with highly photosensitive groups such as the copper center of lytic polysaccharide monooxygenases (LPMOs) and flavin adenine dinucleotide (FAD) and heme redox cofactors of cellobiose dehydrogenases (CDHs). In this paper, neutron crystallography and small-angle neutron scattering are used to investigate Neurospora crassa LPMO9D (NcLPMO9D) and CDHIIA (NcCDHIIA), respectively. The presence of LPMO greatly enhances the efficiency of commercial glycoside hydrolase cocktails in the depolymerization of cellulose. LPMOs can receive electrons from CDHs to activate molecular dioxygen for the oxidation ofmore » cellulose resulting in chain cleavage and disruption of local crystallinity. Using neutron protein crystallography, the hydrogen/deuterium atoms of NcLPMO9D could be located throughout the structure. At the copper active site, the protonation states of the side chains of His1, His84, His157 and Tyr168, and the orientation of water molecules could be determined. Small-angle neutron scattering measurements provided low resolution models of NcCDHIIA with both the dehydrogenase and cytochrome domains in oxidized states that exhibited elongated conformations. Finally, this work demonstrates the suitability of neutron diffraction and scattering for characterizing enzymes critical to oxidative cellulose deconstruction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodenheimer, Annette M.; O'Dell, William B.; Stanley, Christopher B.
Sensitivity to hydrogen/deuterium and lack of observable radiation damage makes cold neutrons an ideal probe the structural studies of proteins with highly photosensitive groups such as the copper center of lytic polysaccharide monooxygenases (LPMOs) and flavin adenine dinucleotide (FAD) and heme redox cofactors of cellobiose dehydrogenases (CDHs). In this paper, neutron crystallography and small-angle neutron scattering are used to investigate Neurospora crassa LPMO9D (NcLPMO9D) and CDHIIA (NcCDHIIA), respectively. The presence of LPMO greatly enhances the efficiency of commercial glycoside hydrolase cocktails in the depolymerization of cellulose. LPMOs can receive electrons from CDHs to activate molecular dioxygen for the oxidation ofmore » cellulose resulting in chain cleavage and disruption of local crystallinity. Using neutron protein crystallography, the hydrogen/deuterium atoms of NcLPMO9D could be located throughout the structure. At the copper active site, the protonation states of the side chains of His1, His84, His157 and Tyr168, and the orientation of water molecules could be determined. Small-angle neutron scattering measurements provided low resolution models of NcCDHIIA with both the dehydrogenase and cytochrome domains in oxidized states that exhibited elongated conformations. Finally, this work demonstrates the suitability of neutron diffraction and scattering for characterizing enzymes critical to oxidative cellulose deconstruction.« less
A COMPREHENSIVE STUDY OF THE NEUTRON ACTIVATION ANALYSIS OF URANIUM BY DELAYED-NEUTRON COUNTING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, F.F.; Emery, J.F.; Leddicotte, G.W.
The method of neutron activation analysis of U by delayed-neutron counting was investigated in order to ascertain if the method would be suitable for routine application to such analyses. It was shown that the method can be used extensively and routinely for the determination of U. Emphasis was placed on the determination of U in the types of sample materials encountered in nuclear technology. Determinations of U were made on such materials as ores, granite, sea sediments, biological tissue, graphite, and metal alloys. The method is based upon the fact that delayed neutrons are emitted from fission products from themore » interaction of neutrons with U/sup 235/. Since the U/sup 235/ component of U undergoes most of the fissions when a sample is in a neutron flux, the method is predominately one for the determination of U/sup 235/. The total U in a sample or the isotopic composition of the U in a sample can be determined provided there is a prior knowledge of one of these quantities. The U/sup 235/ content of a test sample is obtained by comparing its delayed-neutron count to that obtained with a comparator sample containing a known quantity of U/sup 235/. (auth)« less
Gadolinium-loaded Plastic Scintillators for Thermal Neutron Detection using Compensation
NASA Astrophysics Data System (ADS)
Dumazert, Jonathan; Coulon, Romain; Hamel, Matthieu; Carrel, Frédérick; Sguerra, Fabien; Normand, Stéphane; Méchin, Laurence; Bertrand, Guillaume H. V.
2016-06-01
Plastic scintillator loading with gadolinium-rich organometallic complexes shows a high potential for the deployment of efficient and cost-effective neutron detectors. Due to the low-energy photon and electron signature of thermal neutron capture by Gd-155 and Gd-157, alternative treatment to pulse-shape discrimination has to be proposed in order to display a count rate. This paper discloses the principle of a compensation method applied to a two-scintillator system: a detection scintillator interacts with photon and fast neutron radiation and is loaded with gadolinium organometallic compound to become a thermal neutron absorber, while a not-gadolinium loaded compensation scintillator solely interacts with the fast neutron and photon part of incident radiation. After the nonlinear smoothing of the counting signals, a hypothesis test determines whether the resulting count rate post-background response compensation falls into statistical fluctuations or provides a robust indication of neutron activity. Laboratory samples are tested under both photon and neutron irradiations, allowing the authors to investigate the performance of the overall detection system in terms of sensitivity and detection limits, especially with regards to a similar-active volume He-3 based commercial counter. The study reveals satisfactory figures of merit in terms of sensitivity and directs future investigation toward promising paths.
NASA Astrophysics Data System (ADS)
Çeçen, Yiğit; Gülümser, Tuğçe; Yazgan, Çağrı; Dapo, Haris; Üstün, Mahmut; Boztosun, Ismail
2017-09-01
In cancer treatment, high energy X-rays are used which are produced by linear accelerators (LINACs). If the energy of these beams is over 8 MeV, photonuclear reactions occur between the bremsstrahlung photons and the metallic parts of the LINAC. As a result of these interactions, neutrons are also produced as secondary radiation products (γ,n) which are called photoneutrons. The study aims to map the photoneutron flux distribution within the LINAC bunker via neutron activation analysis (NAA) using indium-cadmium foils. Irradiations made at different gantry angles (0°, 90°, 180° and 270°) with a total of 91 positions in the Philips SLI-25 linear accelerator treatment room and location-based distribution of thermal neutron flux was obtained. Gamma spectrum analysis was carried out with high purity germanium (HPGe) detector. Results of the analysis showed that the maximum neutron flux in the room occurred at just above of the LINAC head (1.2x105 neutrons/cm2.s) which is compatible with an americium-beryllium (Am-Be) neutron source. There was a 90% decrease of flux at the walls and at the start of the maze with respect to the maximum neutron flux. And, just in front of the LINAC door, inside the room, neutron flux was measured less than 1% of the maximum.
Application of Neutron Tomography in Culture Heritage research.
Mongy, T
2014-02-01
Neutron Tomography (NT) investigation of Culture Heritages (CH) is an efficient tool for understanding the culture of ancient civilizations. Neutron imaging (NI) is a-state-of-the-art non-destructive tool in the area of CH and plays an important role in the modern archeology. The NI technology can be widely utilized in the field of elemental analysis. At Egypt Second Research Reactor (ETRR-2), a collimated Neutron Radiography (NR) beam is employed for neutron imaging purposes. A digital CCD camera is utilized for recording the beam attenuation in the sample. This helps for the detection of hidden objects and characterization of material properties. Research activity can be extended to use computer software for quantitative neutron measurement. Development of image processing algorithms can be used to obtain high quality images. In this work, full description of ETRR-2 was introduced with up to date neutron imaging system as well. Tomographic investigation of a clay forged artifact represents CH object was studied by neutron imaging methods in order to obtain some hidden information and highlight some attractive quantitative measurements. Computer software was used for imaging processing and enhancement. Also the Astra Image 3.0 Pro software was employed for high precise measurements and imaging enhancement using advanced algorithms. This work increased the effective utilization of the ETRR-2 Neutron Radiography/Tomography (NR/T) technique in Culture Heritages activities. © 2013 Elsevier Ltd. All rights reserved.
Ishikawa, Masayori; Yamamoto, Tetsuya; Matsumura, Akira; Hiratsuka, Junichi; Miyatake, Shin-Ichi; Kato, Itsuro; Sakurai, Yoshinori; Kumada, Hiroaki; Shrestha, Shubhechha J; Ono, Koji
2016-08-09
Real-time measurement of thermal neutrons in the tumor region is essential for proper evaluation of the absorbed dose in boron neutron capture therapy (BNCT) treatment. The gold wire activation method has been routinely used to measure the neutron flux distribution in BNCT irradiation, but a real-time measurement using gold wire is not possible. To overcome this issue, the scintillator with optical fiber (SOF) detector has been developed. The purpose of this study is to demonstrate the feasibility of the SOF detector as a real-time thermal neutron monitor in clinical BNCT treatment and also to report issues in the use of SOF detectors in clinical practice and their solutions. Clinical measurements using the SOF detector were carried out in 16 BNCT clinical trial patients from December 2002 until end of 2006 at the Japanese Atomic Energy Agency (JAEA) and Kyoto University Research Reactor Institute (KURRI). The SOF detector worked effectively as a real-time thermal neutron monitor. The neutron fluence obtained by the gold wire activation method was found to differ from that obtained by the SOF detector. The neutron fluence obtained by the SOF detector was in better agreement with the expected fluence than with gold wire activation. The estimation error for the SOF detector was small in comparison to the gold wire measurement. In addition, real-time monitoring suggested that the neutron flux distribution and intensity at the region of interest (ROI) may vary due to the reactor condition, patient motion and dislocation of the SOF detector. Clinical measurements using the SOF detector to measure thermal neutron flux during BNCT confirmed that SOF detectors are effective as a real-time thermal neutron monitor. To minimize the estimation error due to the displacement of the SOF probe during treatment, a loop-type SOF probe was developed.
Radiation damage and waste management options for the SOMBRERO final focus system and neutron dumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latkowski, J F; Meier, W R; Reyes, S
1999-08-09
Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were notmore » addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three -dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view.« less
Wakabayashi, Genichiro; Nohtomi, Akihiro; Yahiro, Eriko; Fujibuchi, Toshioh; Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Nakamura, Katsumasa; Hosono, Makoto; Itoh, Tetsuo
2015-01-01
The applicability of the activation of an NaI scintillator for neutron monitoring at a clinical linac was investigated experimentally. Thermal neutron fluence rates are derived by measurement of the I-128 activity generated in an NaI scintillator irradiated by neutrons; β-rays from I-128 are detected efficiently by the NaI scintillator. In order to verify the validity of this method for neutron measurement, we irradiated an NaI scintillator at a research reactor, and the neutron fluence rate was estimated. The method was then applied to neutron measurement at a 10-MV linac (Varian Clinac 21EX), and the neutron fluence rate was estimated at the isocenter and at 30 cm from the isocenter. When the scintillator was irradiated directly by high-energy X-rays, the production of I-126 was observed due to photo-nuclear reactions, in addition to the generation of I-128 and Na-24. From the results obtained by these measurements, it was found that the neutron measurement by activation of an NaI scintillator has a great advantage in estimates of a low neutron fluence rate by use of a quick measurement following a short-time irradiation. Also, the future application of this method to quasi real-time monitoring of neutrons during patient treatments at a radiotherapy facility is discussed, as well as the method of evaluation of the neutron dose.
Detectors for Active Interrogation Applications
NASA Astrophysics Data System (ADS)
Clarke, S. D.; Hamel, M. C.; Bourne, M. M.; Pozzi, S. A.
Active interrogation creates an environment that is particularly challenging from a radiation-detection standpoint: the elevated background levels from the source can mask the desired signatures from the SNM. Neutron based interrogation experiments have shown that nanosecond-level timing is required to discriminate induced-fission neutrons from the scattered source neutrons. Previous experiments using high-energy bremsstrahlung X-rays have demonstrated the ability to induce and detect prompt photofission neutrons from single target materials; however, a real-world application would require spectroscopic capability to discern between photofission neutrons emitted by SNM and neutrons emitted by other reactions in non-SNM. Using digital pulse-shape discrimination, organic liquid scintillators are capable of reliably detecting neutrons in an intense gamma-ray field. Photon misclassification rates as low as 1 in 106 have been achieved, which is approaching the level of gaseous neutron detectors such as 3He without the need for neutron moderation. These scintillators also possess nanosecond-timing resolution, making them candidates for both neutron-and photon-driven active interrogation systems. We have applied an array of liquid and NaI(Tl) scintillators to successfully image 13.7 kg of HEU interrogated by a DT neutron generator; the system was in the direct presence of the accelerator during the experiment.
Earthquake effects in thermal neutron variations at the high-altitude station of Northern
NASA Astrophysics Data System (ADS)
Antonova, Valentina; Chubenko, Alexandr; Kryukov, Sergey; Lutsenko, Vadim
2016-04-01
Results of study of thermal neutron variations under various space and geophysical conditions on the basis of measurements on stationary installations with high statistical accuracy are presented. Installations are located close to the fault of the earth's crust at the high-altitude station of cosmic rays (3340 m above sea level, 43.02 N, 76.56 E, 20 km from Almaty) in the mountains of Northern Tien-Shan. Responses of the most effective gelio- and geophysical events (variations of atmospheric pressure, coronal mass ejections, earthquakes) has consistently considered in the variations of the thermal neutron flux and compared with variations of high-energy neutrons (standard monitor 18NM64) of galactic origin during these periods. Coefficients of correlation were calculated between data of thermal neutron detectors and data of the neutron monitor, recording the intensity of high-energy particles. High correlation coefficients and similarity of responses to changes of space and geophysical conditions are obtained, that confirms the conclusion of the genetic connection of thermal neutrons with high-energy neutrons of galactic origin and suggests same sources of disturbances in the absence of seismic activity. Observations and analysis of experimental data during the activation of seismic activity in the vicinity of Almaty showed the frequent breakdown of the correlation between the intensity of thermal and high-energy neutrons and the absence of similarity between variations during these periods. We suppose that the additional thermal neutron flux of the lithospheric origin appears under these conditions. Method of separating of thermal neutron flux variations of the lithospheric origin from neutrons variations generated in the atmosphere by subtracting the normalized data is proposed, taking into account the conclusion that variations caused with the atmospheric and interplanetary origins in thermal neutron detectors are similar to variations of high-energy neutrons, and the probability of detecting by 18NM64 monitor of thermal neutrons is extremely low (less than 0, 01). We used it for analysis variations of thermal neutrons during earthquakes 2006-2015. The catalog of earthquakes in the vicinity of Almaty with intensity ≥ 3b, including 25 events, is composed on the basis of observations of the Kazakhstan National Data center. Experimental data of registration of thermal and high-energy neutrons (≥ 200 MeV) with duration not less than 14 days are prepared for an each event. The main statistical characteristics of experimental data are calculated and the normalization is carried out. The increase of thermal neutrons flux of the lithospheric origin during of seismic processes activation is observed for ~ 60% of events. However, before the earthquake the increase of thermal neutron flux is observed only for ~ 30-35% of events. It is shown that the amplitude of the additional thermal neutron flux from the Earth's crust is equal to 5-7% of the background level. Sometimes it reaches values of 10-12%. We propose to employ method of allocating the thermal neutron flux of the lithospheric origin for short-term prediction of earthquakes in seismoactive regions.
A laser-induced repetitive fast neutron source applied for gold activation analysis
NASA Astrophysics Data System (ADS)
Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki
2012-12-01
A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 105 n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He4 nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T3.
A laser-induced repetitive fast neutron source applied for gold activation analysis.
Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki
2012-12-01
A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 10(5) n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He(4) nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T(3).
IEC-Based Neutron Generator for Security Inspection System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Linchun; Miley, George H.
2002-07-01
Large nuclear reactors are widely employed for electricity power generation, but small nuclear radiation sources can also be used for a variety of industrial/government applications. In this paper we will discuss the use of a small neutron source based on Inertial Electrostatic Confinement (IEC) of accelerated deuterium ions. There is an urgent need of highly effective detection systems for explosives, especially in airports. While current airport inspection systems are strongly based on X-ray technique, neutron activation including Thermal Neutron Analysis (TNA) and Fast Neutron Analysis (FNA) is powerful in detecting certain types of explosives in luggage and in cargoes. Basicmore » elements present in the explosives can be measured through the (n, n'?) reaction initiated by fast neutrons. Combined with a time-of-flight technique, a complete imaging of key elements, hence of the explosive materials, is obtained. Among the various neutron source generators, the IEC is an ideal candidate to meet the neutron activation analysis requirements. Compared with other accelerators and radioisotopes such as {sup 252}Cf, the IEC is simpler, can be switched on or off, and can reliably produce neutrons with minimum maintenance. Theoretical and experimental studies of a spherical IEC have been conducted at the University of Illinois. In a spherical IEC device, 2.54-MeV neutrons of {approx}10{sup 8} n/s via DD reactions over recent years or 14-MeV neutrons of {approx}2x10{sup 10} n/s via DT reactions can be obtained using an ion gun injection technique. The possibility of the cylindrical IEC in pulsed operation mode combining with pulsed FNA method would also be discussed. In this paper we examine the possibility of using an alternative cylindrical IEC configuration. Such a device was studied earlier at the University of Illinois and it provides a very convenient geometry for security inspection. However, to calculate the neutron yield precisely with this configuration, an understanding of the potential wall trapping and acceleration of ions is needed. The theory engaged is an extension of original analytic study by R.L. Hirsh on the potential well structure in a spherical IEC device, i.e. roughly a 'line' source of neutrons from a cylindrical IEC is a 'point' source from the spherical geometry. Thus our present study focuses on the cylindrical IEC for its convenient application in an FNA detecting system. The conceptual design and physics of ion trapping and re-circulation in a cylindrical IEC intended for neutron-based inspection system will be presented. (authors)« less
Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC.
Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath
2015-11-01
A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed (28)Al, (24)Na, (54)Mn and (60)Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is (28)Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several (28)Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Diagnostic Application of Absolute Neutron Activation Analysis in Hematology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamboni, C.B.; Oliveira, L.C.; Dalaqua, L. Jr.
2004-10-03
The Absolute Neutron Activation Analysis (ANAA) technique was used to determine element concentrations of Cl and Na in blood of healthy group (male and female blood donators), select from Blood Banks at Sao Paulo city, to provide information which can help in diagnosis of patients. This study permitted to perform a discussion about the advantages and limitations of using this nuclear methodology in hematological examinations.
A compact in vivo neutron activation analysis system to quantify manganese in human hand bone
NASA Astrophysics Data System (ADS)
Liu, Yingzi
As an urgent issue of correlating cumulative manganese (Mn) exposure to neurotoxicity, bone has emerged as an attractive biomarker for long-term Mn deposition and storage. A novel Deuterium-Deuterium (DD) neutron generator irradiation system has been simulated and constructed, incorporating moderator, reflector and shielding. This neutron activation analysis (NAA) irradiation assembly presents several desirable features, including high neutron flux, improved detection limit and acceptable neutron & photon dose, which would allow it be ready for clinical measurement. Key steps include simulation modeling and verifying, irradiation system design, detector characterization, and neutron flux and dose assessment. Activation foils were also analyzed to reveal the accurate neutron spectrum in the irradiation cave. The detection limit with this system is 0.428 ppm with 36 mSv equivalent hand dose and 52 microSv whole body effective dose.
An active drop counting device using condenser microphone for superheated emulsion detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Mala; Marick, C.; Kanjilal, D.
2008-11-15
An active device for superheated emulsion detector is described. A capacitive diaphragm sensor or condenser microphone is used to convert the acoustic pulse of drop nucleation to electrical signal. An active peak detector is included in the circuit to avoid multiple triggering of the counter. The counts are finally recorded by a microprocessor based data acquisition system. Genuine triggers, missed by the sensor, were studied using a simulated clock pulse. The neutron energy spectrum of {sup 252}Cf fission neutron source was measured using the device with R114 as the sensitive liquid and compared with the calculated fission neutron energy spectrummore » of {sup 252}Cf. Frequency analysis of the detected signals was also carried out.« less
An active drop counting device using condenser microphone for superheated emulsion detector
NASA Astrophysics Data System (ADS)
Das, Mala; Arya, A. S.; Marick, C.; Kanjilal, D.; Saha, S.
2008-11-01
An active device for superheated emulsion detector is described. A capacitive diaphragm sensor or condenser microphone is used to convert the acoustic pulse of drop nucleation to electrical signal. An active peak detector is included in the circuit to avoid multiple triggering of the counter. The counts are finally recorded by a microprocessor based data acquisition system. Genuine triggers, missed by the sensor, were studied using a simulated clock pulse. The neutron energy spectrum of C252f fission neutron source was measured using the device with R114 as the sensitive liquid and compared with the calculated fission neutron energy spectrum of C252f. Frequency analysis of the detected signals was also carried out.
A recoverable gas-cell diagnostic for the National Ignition Facility.
Ratkiewicz, A; Berzak Hopkins, L; Bleuel, D L; Bernstein, L A; van Bibber, K; Cassata, W S; Goldblum, B L; Siem, S; Velsko, C A; Wiedeking, M; Yeamans, C B
2016-11-01
The high-fluence neutron spectrum produced by the National Ignition Facility (NIF) provides an opportunity to measure the activation of materials by fast-spectrum neutrons. A new large-volume gas-cell diagnostic has been designed and qualified to measure the activation of gaseous substances at the NIF. This in-chamber diagnostic is recoverable, reusable and has been successfully fielded. Data from the qualification of the diagnostic have been used to benchmark an Monte Carlo N-Particle Transport Code simulation describing the downscattered neutron spectrum seen by the gas cell. We present early results from the use of this diagnostic to measure the activation of nat Xe and discuss future work to study the strength of interactions between plasma and nuclei.
Photonuclear Contributions to SNS Pulse Shapes
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClanahan, Tucker C.; Iverson, Erik B.; Gallmeier, Franz X.
Short-pulsed sources like the Spallation Neutron Source (SNS) and ISIS produce bursts of neutron pulses at rates of 10-60 Hz, with sub-microsecond proton pulses impacting on high-Z target materials. Moderators are grouped around the target to receive the fast neutrons generated from spallation reactions to moderate them effciently to thermal and sub-thermal energies and to feed narrow neutron pulses to neutron scattering instruments. The scattering instruments use the neutrons as a probe for material investigations, and make use of time-of-flight (TOF) methods for resolving the neutron energy. The energy resolution of scattering instruments depends on the narrow time-structure of themore » neutron pulses, while neutrons in the long tail of the emission time distributions can degrade the instrument performance and add undesired background to measurements. The SNS neutronics team is investigating a possible source term impacting the background at short-pulsed spallation sources. The ISIS TS2 project claims to have significantly reduced neutron scattering instrument background levels by the elimination or reduction of iron shielding in the target-moderator-reflector assembly. An alternative hypothesis, also proposed by ISIS, suggests that this apparent reduction arises from moving beamline shielding away from the neutron guide channels, reducing albedo down the beamlines. In both hypotheses, the background neutrons in question are believed to be generated by photonuclear reactions. If the background neutrons are indeed generated via photonuclear channels, then they are generated in a time-dependent fashion, since most of the high-energy photons capable of inducing photonuclear production are gone within a few microseconds following the proton pulse. To evaluate this e ect, we have enabled photonuclear reactions in a series of studies for the SNS first target station (FTS) taking advantage of its Monte Carlo model. Using a mixture of ENDF/B VII.0 and TENDL-2014 photonuclear cross sections available and the CEM03 physics model within MCNPX 2.6.0 in the simulation, we are able to estimate the impact of photoneutron production on both overall neutron production and delayed neutron production. We find that a significant number of photon-induced neutrons are produced a few milliseconds after the proton pulse, following prompt gamma emission through the capture of neutrons in the slowing-down and thermalization processes. We name these "slowing-down delayed neutrons" to distinguish them from either "activation-delayed neutrons" or "beta-delayed neutrons." The beta-delayed and activation-delayed neutrons were not part of this study, and will be addressed elsewhere. While these other delayed neutron channels result in the time-independent (constant) production of fast neutrons outside of the prompt pulse, the slowing-down delayed neutrons also a ect the shape of the pulses. Although numerically insignificant in most cases, we describe a set of scenarios related to T0-chopper operation in which the slowing-down delayed neutrons may be important.« less
NASA Astrophysics Data System (ADS)
Coventry, M. D.; Krites, A. M.
Measurements to determine the absolute D-D and D-7Li neutron production rates with a neutron generator running at 100-200 kV acceleration potential were performed using the threshold activation foil technique. This technique provides a clear measure of fast neutron flux and with a suitable model, the neutron output. This approach requires little specialized equipment and is used to calibrate real-time neutron detectors and to verify neutron output. We discuss the activation foil measurement technique and describe its use in determining the relative contributions of D-D and D-7Li reactions to the total neutron yield and real-time detector response and compare to model predictions. The D-7Li reaction produces neutrons with a continuum of energies and a sharp peak around 13.5 MeV for measurement techniques outside of what D-D generators can perform. The ability to perform measurements with D-D neutrons alone, then add D-7Li neutrons for inelastic gamma production presents additional measurement modalities with the same neutron source without the use of tritium. Typically, D-T generators are employed for inelastic scattering applications but have a high regulatory burden from a radiological aspect (tritium inventory, liability concerns) and are export-controlled. D-D and D-7Li generators avoid these issues completely.
Study of neutron shielding collimators for curved beamlines at the European Spallation Source
NASA Astrophysics Data System (ADS)
Santoro, V.; DiJulio, D. D.; Ansell, S.; Cherkashyna, N.; Muhrer, G.; Bentley, P. M.
2018-06-01
The European Spallation Source is being constructed in Lund, Sweden and is planned to be the world’s brightest pulsed spallation neutron source for cold and thermal neutron beams (≤ 1 eV). The facility uses a 2 GeV proton beam to produce neutrons from a tungsten target. The neutrons are then moderated in a moderator assembly consisting of both liquid hydrogen and water compartments. Surrounding the moderator are 22 beamports, which view the moderator’s outside surfaces. The beamports are connected to long neutron guides that transport the moderated neutrons to the sample position via reflections. As well as the desired moderated neutrons, fast neutrons coming directly from the target can find their way down the beamlines. These can create unwanted sources of background for the instruments. To mitigate such a kind of background, several instruments will use curved guides to lose direct line-of-sight (LoS) to the moderator and the target. In addition instruments can also use shielding collimators to reduce the amount of fast neutrons further traveling down the guide due to albedo reflections or streaming. Several different materials have been proposed for this purpose. We present the results of a study of different options for collimators and identify the optimal choices that balance cost, background and activation levels.
Silva, H G; Lopes, I
Heliospheric modulation of galactic cosmic rays links solar cycle activity with neutron monitor count rate on earth. A less direct relation holds between neutron monitor count rate and atmospheric electric field because different atmospheric processes, including fluctuations in the ionosphere, are involved. Although a full quantitative model is still lacking, this link is supported by solid statistical evidence. Thus, a connection between the solar cycle activity and atmospheric electric field is expected. To gain a deeper insight into these relations, sunspot area (NOAA, USA), neutron monitor count rate (Climax, Colorado, USA), and atmospheric electric field (Lisbon, Portugal) are presented here in a phase space representation. The period considered covers two solar cycles (21, 22) and extends from 1978 to 1990. Two solar maxima were observed in this dataset, one in 1979 and another in 1989, as well as one solar minimum in 1986. Two main observations of the present study were: (1) similar short-term topological features of the phase space representations of the three variables, (2) a long-term phase space radius synchronization between the solar cycle activity, neutron monitor count rate, and potential gradient (confirmed by absolute correlation values above ~0.8). Finally, the methodology proposed here can be used for obtaining the relations between other atmospheric parameters (e.g., solar radiation) and solar cycle activity.
Active-Interrogation Measurements of Induced-Fission Neutrons from Low-Enriched Uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. L. Dolan; M. J. Marcath; M. Flaska
2012-07-01
Protection and control of nuclear fuels is paramount for nuclear security and safeguards; therefore, it is important to develop fast and robust controlling mechanisms to ensure the safety of nuclear fuels. Through both passive- and active-interrogation methods we can use fast-neutron detection to perform real-time measurements of fission neutrons for process monitoring. Active interrogation allows us to use different ranges of incident neutron energy to probe for different isotopes of uranium. With fast-neutron detectors, such as organic liquid scintillation detectors, we can detect the induced-fission neutrons and photons and work towards quantifying a sample’s mass and enrichment. Using MCNPX-PoliMi, amore » system was designed to measure induced-fission neutrons from U-235 and U-238. Measurements were then performed in the summer of 2010 at the Joint Research Centre in Ispra, Italy. Fissions were induced with an associated particle D-T generator and an isotopic Am-Li source. The fission neutrons, as well as neutrons from (n, 2n) and (n, 3n) reactions, were measured with five 5” by 5” EJ-309 organic liquid scintillators. The D-T neutron generator was available as part of a measurement campaign in place by Padova University. The measurement and data-acquisition systems were developed at the University of Michigan utilizing a CAEN V1720 digitizer and pulse-shape discrimination algorithms to differentiate neutron and photon detections. Low-enriched uranium samples of varying mass and enrichment were interrogated. Acquired time-of-flight curves and cross-correlation curves are currently analyzed to draw relationships between detected neutrons and sample mass and enrichment. In the full paper, the promise of active-interrogation measurements and fast-neutron detection will be assessed through the example of this proof-of-concept measurement campaign. Additionally, MCNPX-PoliMi simulation results will be compared to the measured data to validate the MCNPX-PoliMi code when used for active-interrogation simulations.« less
Neutron resonance spectroscopy for the characterization of materials and objects
NASA Astrophysics Data System (ADS)
Schillebeeckx, P.; Borella, A.; Emiliani, F.; Gorini, G.; Kockelmann, W.; Kopecky, S.; Lampoudis, C.; Moxon, M.; Perelli Cippo, E.; Postma, H.; Rhodes, N. J.; Schooneveld, E. M.; Van Beveren, C.
2012-03-01
The resonance structure in neutron induced reaction cross sections can be used to determine the elemental compositions of materials or objects. The occurrence of resonances is the basis of neutron resonance capture analysis (NRCA) and neutron resonance transmission analysis (NRTA). NRCA and NRTA are fully non-destructive methods to determine the bulk elemental composition without the need of any sample preparation and resulting in a negligible residual activity. They have been applied to determine the elemental composition of archaeological objects and to characterize reference materials used for cross section measurements. For imaging applications a position sensitive neutron detector has been developed within the ANCIENT CHARM project. The detector is based on a 10 × 10 array of 6Li-glass scintillators mounted on a pitch of 2.5 mm, resulting in a 25 × 25 mm2 active area. The detector has been tested at the time-of-flight facility GELINA and used at the ISIS spallation source to study cultural heritage objects.
Safety control circuit for a neutronic reactor
Ellsworth, Howard C.
2004-04-27
A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.
NASA Astrophysics Data System (ADS)
Cherdizov, R. K.; Fursov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu; Ratakhin, N. A.; Shishlov, A. V.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.
2017-05-01
The Z-pinch experiments with deuterium gas-puff surrounded by an outer plasma shell were carried out on the GIT-12 generator (Tomsk, Russia) at currents of 2 MA. The plasma shell consisting of hydrogen and carbon ions was formed by 48 plasma guns. The deuterium gas-puff was created by a fast electromagnetic valve. This configuration provides an efficient mode of the neutron production in DD reaction, and the neutron yield reaches a value above 1012 neutrons per shot. Neutron diagnostics included scintillation TOF detectors for determination of the neutron energy spectrum, bubble detectors BD-PND, a silver activation detector, and several activation samples for determination of the neutron yield analysed by a Sodium Iodide (NaI) and a high-purity Germanium (HPGe) detectors. Using this neutron diagnostic complex, we measured the total neutron yield and amount of high-energy neutrons.
NASA Astrophysics Data System (ADS)
Paul, Neelima; Wandt, Johannes; Seidlmayer, Stefan; Schebesta, Sebastian; Mühlbauer, Martin J.; Dolotko, Oleksandr; Gasteiger, Hubert A.; Gilles, Ralph
2017-03-01
The aging behavior of commercially produced 18650-type Li-ion cells consisting of a lithium iron phosphate (LFP) based cathode and a graphite anode based on either mesocarbon microbeads (MCMB) or needle coke (NC) is studied by in situ neutron diffraction and standard electrochemical techniques. While the MCMB cells showed an excellent cycle life with only 8% relative capacity loss (i.e., referenced to the capacity after formation) after 4750 cycles and showed no capacity loss on storage for two years, the needle coke cells suffered a 23% relative capacity loss after cycling and a 11% loss after storage. Based on a combination of neutron diffraction and electrochemical characterization, it is shown that the entire capacity loss for both cell types is dominated by the loss of active lithium; no other aging mechanisms like structural degradation of anode or cathode active materials or deactivation of active material could be found, highlighting the high structural stability of the active material and the excellent quality of the investigated cells.
NASA Astrophysics Data System (ADS)
Wang, Chao; Xiao, Jun; Luo, Xiaobing
2016-10-01
The neutron inelastic scattering cross section of 115In has been measured by the activation technique at neutron energies of 2.95, 3.94, and 5.24 MeV with the neutron capture cross sections of 197Au as an internal standard. The effects of multiple scattering and flux attenuation were corrected using the Monte Carlo code GEANT4. Based on the experimental values, the 115In neutron inelastic scattering cross sections data were theoretically calculated between the 1 and 15 MeV with the TALYS software code, the theoretical results of this study are in reasonable agreement with the available experimental results.
The intensive DT neutron generator of TU Dresden
NASA Astrophysics Data System (ADS)
Klix, Axel; DÖring, Toralf; Domula, Alexander; Zuber, Kai
2018-01-01
TU Dresden operates an accelerator-based intensive DT neutron generator. Experimental activities comprise investigation into material activation and decay, neutron and photon transport in matter and R&D work on radiation detectors for harsh environments. The intense DT neutron generator is capable to produce a maximum of 1012 n/s. The neutron source is a solid-type water-cooled tritium target based on a titanium matrix on a copper carrier. The neutron yield at a typical deuteron beam current of 1 mA is of the order of 1011 n/s in 4Π. A pneumatic sample transport system is available for short-time irradiations and connected to wo high-purity germanium detector spectrometers for the measurement of induced activities. The overall design of the experimental hall with the neutron generator allows a flexible setup of experiments including the possibility of investigating larger structures and cooled samples or samples at high temperatures.
A Quasi-Laue Neutron Crystallographic Study of D-Xylose Isomerase
NASA Technical Reports Server (NTRS)
Meilleur, Flora; Snell, Edward H.; vanderWoerd, Mark; Judge, Russell A.; Myles, Dean A. A.
2006-01-01
Hydrogen atom location and hydrogen bonding interaction determination are often critical to explain enzymatic mechanism. Whilst it is difficult to determine the position of hydrogen atoms using X-ray crystallography even with subatomic (less than 1.0 Angstrom) resolution data available, neutron crystallography provides an experimental tool to directly localise hydrogeddeuteriwn atoms in biological macromolecules at resolution of 1.5-2.0 Angstroms. Linearisation and isomerisation of xylose at the active site of D-xylose isomerase rely upon a complex hydrogen transfer. Neutron quasi-Laue data were collected on Streptomyces rubiginosus D-xylose isomerase crystal using the LADI instrument at ILL with the objective to provide insight into the enzymatic mechanism (Myles et al. 1998). The neutron structure unambiguously reveals the protonation state of His 53 in the active site, identifying the model for the enzymatic pathway.
Detectors for Active Interrogation Applications
Clarke, S. D.; Hamel, M. C.; Bourne, M. M.; ...
2017-10-26
Active interrogation creates an environment that is particularly challenging from a radiation-detection standpoint: the elevated background levels from the source can mask the desired signatures from the SNM. Neutron based interrogation experiments have shown that nanosecond-level timing is required to discriminate induced-fission neutrons from the scattered source neutrons. Previous experiments using high-energy bremsstrahlung X-rays have demonstrated the ability to induce and detect prompt photofission neutrons from single target materials; however, a real-world application would require spectroscopic capability to discern between photofission neutrons emitted by SNM and neutrons emitted by other reactions in non-SNM. Using digital pulseshape discrimination, organic liquid scintillatorsmore » are capable of reliably detecting neutrons in an intense gamma-ray field. Photon misclassification rates as low as 1 in 10 6 have been achieved, which is approaching the level of gaseous neutron detectors such as 3He without the need for neutron moderation. These scintillators also possess nanosecond-timing resolution, making them candidates for both neutron-and photon-driven active interrogation systems. Lastly, we have applied an array of liquid and NaI(Tl) scintillators to successfully image 13.7 kg of HEU interrogated by a DT neutron generator; the system was in the direct presence of the accelerator during the experiment.« less
Study of Neutrino-Induced Neutrons in Dark Matter Detectors for Supernova Burst Neutrinos
NASA Astrophysics Data System (ADS)
Kwan, Newton; Scholberg, Kate
2017-09-01
When supernova burst neutrinos (1-50 MeV) pass through the Earth, they occasionally interact with the passive shielding surrounding dark matter detectors. When the neutrinos interact, one or two roughly 2 MeV neutrons are scattered isotropically and uniformly, often leaving undetected. Occasionally, these neutrino-induced neutrons (NINs) interact with the detector and leave a background signal similar to a WIMP. The purpose of this study is to understand the effects of NINs on active dark matter detectors during a supernova burst.
Neutron Activation Analysis of Water - A Review
NASA Technical Reports Server (NTRS)
Buchanan, John D.
1971-01-01
Recent developments in this field are emphasized. After a brief review of basic principles, topics discussed include sources of neutrons, pre-irradiation physical and chemical treatment of samples, neutron capture and gamma-ray analysis, and selected applications. Applications of neutron activation analysis of water have increased rapidly within the last few years and may be expected to increase in the future.
High Conduction Neutron Absorber to Simulate Fast Reactor Environment in an Existing Test Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillen, Donna; Greenwood, Lawrence R.; Parry, James
2014-06-22
A need was determined for a thermal neutron absorbing material that could be cooled in a gas reactor environment without using large amounts of a coolant that would thermalize the neutron flux. A new neutron absorbing material was developed that provided high conduction so a small amount of water would be sufficient for cooling thereby thermalizing the flux as little as possible. An irradiation experiment was performed to assess the effects of radiation and the performance of a new neutron absorbing material. Neutron fluence monitors were placed inside specially fabricated holders within a set of drop-in capsules and irradiated formore » up to four cycles in the Advanced Test Reactor. Following irradiation, the neutron fluence monitor wires were analyzed by gamma and x-ray spectrometry to determine the activities of the activation products. The adjusted neutron fluences were calculated and grouped into three bins – thermal, epithermal and fast to evaluate the spectral shift created by the new material. Fluence monitors were evaluated after four different irradiation periods to evaluate the effects of burn-up in the absorbing material. Additionally, activities of the three highest activity isotopes present in the specimens are given.« less
NASA Astrophysics Data System (ADS)
Mukherjee, Sumanta; Naik, Yeshwant
2018-04-01
Lithium-zirconium based oxides were prepared by combustion route. Thermal analysis (TG and DTA) was used to study the combustion process. The nucleation and growth stages were identified and their activation energies were predicted. The suitability of these oxide breeders was evaluated based on their radiation stability, variation in thermal behavior upon γ irradiation, neutron absorption and tritium breeding characteristics. Nuclear properties of these oxide ceramics were evaluated with a view to use them as efficient neutron absorbers and simultaneously breed tritium. Total neutron absorption cross sections were evaluated as a function of neutron energy in the range of 0 to 20 MeV. Resonant absorption is predicted for the neutron of energy 2.3 keV manly due to contribution from neutron induced nuclear reactions of 7Li in this energy range.
Landsberger, S; Sharp, A; Wang, S; Pontikes, Y; Tkaczyk, A H
2017-07-01
This study employs thermal and epithermal neutron activation analysis (NAA) to quantitatively and specifically determine absorption dose rates to various body parts from uranium, thorium and potassium. Specifically, a case study of bauxite residue (red mud) from an industrial facility was used to demonstrate the feasibility of the NAA approach for radiological safety assessment, using small sample sizes to ascertain the activities of 235 U, 238 U, 232 Th and 40 K. This proof-of-concept was shown to produce reliable results and a similar approach could be used for quantitative assessment of other samples with possible radiological significance. 238 U and 232 Th were determined by epithermal and thermal neutron activation analysis, respectively. 235 U was determined based on the known isotopic ratio of 238 U/ 235 U. 40 K was also determined using epithermal neutron activation analysis to measure total potassium content and then subtracting its isotopic contribution. Furthermore, the work demonstrates the application of Monte Carlo Neutral-Particle (MCNP) simulations to estimate the radiation dose from large quantities of red mud, to assure the safety of humans and the surrounding environment. Phantoms were employed to observe the dose distribution throughout the human body demonstrating radiation effects on each individual organ. Copyright © 2016 Elsevier Ltd. All rights reserved.
New neutron imaging techniques to close the gap to scattering applications
NASA Astrophysics Data System (ADS)
Lehmann, Eberhard H.; Peetermans, S.; Trtik, P.; Betz, B.; Grünzweig, C.
2017-01-01
Neutron scattering and neutron imaging are activities at the strong neutron sources which have been developed rather independently. However, there are similarities and overlaps in the research topics to which both methods can contribute and thus useful synergies can be found. In particular, the spatial resolution of neutron imaging has improved recently, which - together with the enhancement of the efficiency in data acquisition- can be exploited to narrow the energy band and to implement more sophisticated methods like neutron grating interferometry. This paper provides a report about the current options in neutron imaging and describes how the gap to neutron scattering data can be closed in the future, e.g. by diffractive imaging, the use of polarized neutrons and the dark-field imagining of relevant materials. This overview is focused onto the interaction between neutron imaging and neutron scattering with the aim of synergy. It reflects mainly the authors’ experiences at their PSI facilities without ignoring the activities at the different other labs world-wide.
Neutrons produced by known energies of ions abundant in space
NASA Technical Reports Server (NTRS)
Wadman, W. W., III
1972-01-01
Particle accelerator radiation measurements are applied to the problem of calculating biological dose from radiation produced in the walls of a spacecraft by various ions in space. Neutrons, one of the products of the interactions of energetic ions with matter, are usually quite penetrating and have large values of Q.F. or R.B.E. Ions of helium, boron, carbon, nitrogen, and oxygen were accelerated and directed onto target materials of copper or tantalum. The secondary neutron production was determined. Studies were made of the angular distribution and an inferred neutron spectrum was calculated from activities of threshold reaction detectors.
Komeda, Masao; Kawasaki, Kozo; Obara, Toru
2013-04-01
We studied a new silicon irradiation holder with a neutron filter designed to make the vertical neutron flux profile uniform. Since an irradiation holder has to be made of a low activation material, we applied aluminum blended with B4C as the holder material. Irradiation methods to achieve uniform flux with a filter are discussed using Monte-Carlo calculation code MVP. Validation of the use of the MVP code for the holder's analyses is also discussed via characteristic experiments. Copyright © 2013 Elsevier Ltd. All rights reserved.
Modelisation and distribution of neutron flux in radium-beryllium source (226Ra-Be)
NASA Astrophysics Data System (ADS)
Didi, Abdessamad; Dadouch, Ahmed; Jai, Otman
2017-09-01
Using the Monte Carlo N-Particle code (MCNP-6), to analyze the thermal, epithermal and fast neutron fluxes, of 3 millicuries of radium-beryllium, for determine the qualitative and quantitative of many materials, using method of neutron activation analysis. Radium-beryllium source of neutron is established to practical work and research in nuclear field. The main objective of this work was to enable us harness the profile flux of radium-beryllium irradiation, this theoretical study permits to discuss the design of the optimal irradiation and performance for increased the facility research and education of nuclear physics.
Enhanced NIF neutron activation diagnostics.
Yeamans, C B; Bleuel, D L; Bernstein, L A
2012-10-01
The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.
Accidental neutron dosimetry with human hair
NASA Astrophysics Data System (ADS)
Ekendahl, Daniela; Bečková, Věra; Zdychová, Vlasta; Bulánek, Boris; Prouza, Zdeněk; Štefánik, Milan
2014-11-01
Human hair contains sulfur, which can be activated by fast neutrons. The 32S(n,p)32P reaction with a threshold of 2.5 MeV was used for fast neutron dose estimation. It is a very important parameter for individual dose reconstruction with regards to the heterogeneity of the neutron transfer to the human body. Samples of human hair were irradiated in a radial channel of a training reactor VR-1. 32P activity in hair was measured both, directly by means of a proportional counter, and as ash dispersed in a liquid scintillator. Based on neutron spectrum estimation, a relationship between the neutron dose and induced activity was derived. The experiment verified the practical feasibility of this dosimetry method in cases of criticality accidents or malevolent acts with nuclear materials.
Improved Fission Neutron Data Base for Active Interrogation of Actinides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pozzi, Sara; Czirr, J. Bart; Haight, Robert
2013-11-06
This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems bothmore » with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).« less
Neutron flux measurements around PLT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zankl, G.; Strachan, J.D.; Lewis, R.
1980-09-01
Using Indium activation foils, the toroidal and poloidal neutron emission patterns were determined for PLT plasmas which include ICRF and neutral beam heating. The activities produced the /sup 115/In (n,n') /sup 115m/In reaction were determined by counting the 336 keV ..gamma.. line of the /sup 115m/In decay. This activation cross section falls just below 2.5 MeV so that the influence of scattered neutrons of degraded energies is reduced. From the magnitude of the activity, the absolute calibration of the PLT fusion neutron emission is obtained with less than or equal to 40% accuracy.
Development and Characterization of a High Sensitivity Segmented Fast Neutron Spectrometer (FaNS-2)
Langford, T.J.; Beise, E.J.; Breuer, H.; Heimbach, C.R.; Ji, G.; Nico, J.S.
2016-01-01
We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and 3He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a 3He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated 252Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra are unfolded using a Singular Value Decomposition method, demonstrating a 5% energy resolution at 14 MeV. Finally, we discuss plans for measuring the surface and underground cosmogenic neutron spectra with FaNS-2. PMID:27226807
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaja, R.E.; Greene, R.T.; Sims, C.S.
1985-04-01
An international intercomparison of nuclear accident dosimetry systems was conducted during September 12-16, 1983, at Oak Ridge National Laboratory (ORNL) using the Health Physics Research Reactor operated in the pulse mode to simulate criticality accidents. This study marked the twentieth in a series of annual accident dosimetry intercomparisons conducted at ORNL. Participants from ten organizations attended this intercomparison and measured neutron and gamma doses at area monitoring stations and on phantoms for three different shield conditions. Results of this study indicate that foil activation techniques are the most popular and accurate method of determining accident-level neutron doses at area monitoringmore » stations. For personnel monitoring, foil activation, blood sodium activation, and thermoluminescent (TL) methods are all capable of providing accurate dose estimates in a variety of radiation fields. All participants in this study used TLD's to determine gamma doses with very good results on the average. Chemical dosemeters were also shown to be capable of yielding accurate estimates of total neutron plus gamma doses in a variety of radiation fields. While 83% of all neutron measurements satisfied regulatory standards relative to reference values, only 39% of all gamma results satisfied corresponding guidelines for gamma measurements. These results indicate that continued improvement in accident dosimetry evaluation and measurement techniques is needed.« less
A recoverable gas-cell diagnostic for the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratkiewicz, A., E-mail: ratkiewicz1@llnl.gov; Berzak Hopkins, L.; Bleuel, D. L.
2016-11-15
The high-fluence neutron spectrum produced by the National Ignition Facility (NIF) provides an opportunity to measure the activation of materials by fast-spectrum neutrons. A new large-volume gas-cell diagnostic has been designed and qualified to measure the activation of gaseous substances at the NIF. This in-chamber diagnostic is recoverable, reusable and has been successfully fielded. Data from the qualification of the diagnostic have been used to benchmark an Monte Carlo N-Particle Transport Code simulation describing the downscattered neutron spectrum seen by the gas cell. We present early results from the use of this diagnostic to measure the activation of {sup nat}Xemore » and discuss future work to study the strength of interactions between plasma and nuclei.« less
A recoverable gas-cell diagnostic for the National Ignition Facility
Ratkiewicz, A.; Hopkins, L. Berzak; Bleuel, D. L.; ...
2016-08-22
Here, the high-fluence neutron spectrum produced by the National Ignition Facility (NIF) provides an opportunity to measure the activation of materials by fast-spectrum neutrons. A new large-volume gas-cell diagnostic has been designed and qualified to measure the activation of gaseous substances at the NIF. This in-chamber diagnostic is recoverable, reusable and has been successfully fielded. Data from the qualification of the diagnostic have been used to benchmark an Monte Carlo N-Particle Transport Code simulation describing the downscattered neutron spectrum seen by the gas cell. We present early results from the use of this diagnostic to measure the activation of natXemore » and discuss future work to study the strength of interactions between plasma and nuclei.« less
Investigating Prompt Fission Neutron Emission from 235U(n,f) in the Resolved Resonance Region
NASA Astrophysics Data System (ADS)
Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan
2016-03-01
Investigations of prompt emission in fission is of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at IRMM on prompt neutron emission from fission in response to OECD/NEA nuclear data requests is presented in this contribution. Main focus lies on currently on-going investigations of prompt neutron emission from the reaction 235U(n,f) in the region of the resolved resonances. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed [Nucl. Phys. A 491, 56 (1989)] as a function of incident neutron energy in the resonance region. In addition fluctuations of prompt neutron multiplicities were also observed [Phys. Rev. C 13, 195 (1976)]. The goal of the present study is to verify the current knowledge of prompt neutron multiplicity fluctuations and to study correlations with fission fragment properties.
Romero, A M; Saez-Vergara, J C; Rodriguez, R; Domínguez-Mompell, R
2004-01-01
CIEMAT, in close co-operation with Iberia Airlines, carried out an extensive programme of in-flight measurements, covering both hemispheres, during the years 2001 and 2002. Although the instrumentation onboard included different active devices, the results presented here were obtained from a polyethylene/tungsten-moderated rem meter (SWENDI2; Eberline) and an ionisation chamber (RSS-131; Reuter-Stokes) used for measuring the ambient dose equivalent due to the neutron and the non-neutron components of cosmic radiation, respectively. This paper presents a study of each of the dose components mentioned as a function of the vertical cut-off rigidity and the flight altitude. The ratio between the two components is also presented to determine the variations in cosmic radiation composition as a function of the aforementioned parameters. The experimental results have also been compared with those predicted by the code EPCARD3.2 for the non-neutron and the neutron components of the ambient dose equivalent.
Source Correlated Prompt Neutron Activation Analysis for Material Identification and Localization
NASA Astrophysics Data System (ADS)
Canion, Bonnie; McConchie, Seth; Landsberger, Sheldon
2017-07-01
This paper investigates the energy spectrum of photon signatures from an associated particle imaging deuterium tritium (API-DT) neutron generator interrogating shielded uranium. The goal is to investigate if signatures within the energy spectrum could be used to indirectly characterize shielded uranium when the neutron signature is attenuated. By utilizing the correlated neutron cone associated with each pixel of the API-DT neutron generator, certain materials can be identified and located via source correlated spectrometry of prompt neutron activation gamma rays. An investigation is done to determine if fission neutrons induce a significant enough signature within the prompt neutron-induced gamma-ray energy spectrum in shielding material to be useful for indirect nuclear material characterization. The signature deriving from the induced fission neutrons interacting with the shielding material was slightly elevated in polyethylene-shielding depleted uranium (DU), but was more evident in some characteristic peaks from the aluminum shielding surrounding DU.
Dose equivalent on the Moon contributed from cosmic rays and their secondary particles
NASA Astrophysics Data System (ADS)
Hayatsu, K.; Hareyama, Makoto; Hasebe, N.; Kobayashi, S.; Yamashita, N.
Estimation of radiation dose on and under the lunar surface is quite important for human activity on the Moon and in the future lunar bases. Radiation environment on the Moon is much different from that on the Earth. Galactic cosmic rays and solar energetic particles directly penetrate the lunar surface because of no atmosphere and no magnetic field around the Moon. Then, those generate many secondary particles such as gamma rays, neutrons and other charged particles by interaction with soils under the lunar surface. Therefore, the estimation of radiation dose from them on the surface and the underground of the Moon are essential for safety human activities. In this study the ambient dose equivalent in the ICRU sphere at the surface and various depths of the Moon is estimated based on the latest galactic cosmic ray spectrum and its generating secondary particles calculated by the Geant4 code. On the surface the most dominant contribution for the dose are not protons and heliums, but heavy components of galactic cosmic rays such as iron, while in the ground, secondary neutrons are the most dominant. In particular, the dose from neutrons becomes maximal at 50 - 100 g/cm2 of lunar soil depth, because fast neutrons with about 1.0 MeV are mostly produced at this depth and give a large dose. On the surface, the dose originated from GCR is quite sensitive for solar cycle activity, while that from secondary neutrons is not so sensitive. Inversely, under the surface, the dose from neutron is much sensitive for solar activity related to the flux of galactic cosmic rays. This difference should be considered to shield cosmic radiation for human activity on the Moon.
Neutron activation analysis of certified samples by the absolute method
NASA Astrophysics Data System (ADS)
Kadem, F.; Belouadah, N.; Idiri, Z.
2015-07-01
The nuclear reactions analysis technique is mainly based on the relative method or the use of activation cross sections. In order to validate nuclear data for the calculated cross section evaluated from systematic studies, we used the neutron activation analysis technique (NAA) to determine the various constituent concentrations of certified samples for animal blood, milk and hay. In this analysis, the absolute method is used. The neutron activation technique involves irradiating the sample and subsequently performing a measurement of the activity of the sample. The fundamental equation of the activation connects several physical parameters including the cross section that is essential for the quantitative determination of the different elements composing the sample without resorting to the use of standard sample. Called the absolute method, it allows a measurement as accurate as the relative method. The results obtained by the absolute method showed that the values are as precise as the relative method requiring the use of standard sample for each element to be quantified.
Prompt neutron emission and energy balance in 235U(n,f)
NASA Astrophysics Data System (ADS)
Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan
2017-09-01
Investigations of prompt fission neutron (PFN) emission are of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at JRC-Geel on PFN emission in response to OECD/NEA nuclear data requests is presented in this contribution. The focus lies on on-going investigations of PFN emission from the reaction 235U(n,f) in the region of the resolved resonances taking place at the GELINA facility. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed as a function of incident neutron energy in the resonance region. In addition, fluctuations of prompt neutron multiplicities have also been observed. The goal of the present study is to verify the current knowledge of PFN multiplicity fluctuations and to study correlations with fission fragment properties. The experiment employs a scintillation detector array for neutron detection, while fission fragment properties are determined via the double kinetic energy technique using a position sensitive twin ionization chamber. Results on PFN multiplicity correlations with fission fragment properties from the present study show significant differences compared to earlier studies on this reaction, induced by thermal neutrons. Specifically, the total kinetic energy dependence of the neutron multiplicity per fission shows an inverse slope FX1TKE/FX2ν approximately 35% weaker than observed in earlier studies of thermal neutron induced fission on 235U. The inverse slope is related to the energy carried away per emitted neutron and is, thereby, closely connected to the energy balance of the fission reaction. The present result should have strong impact on the modeling of both prompt neutron and prompt γ-ray emission in fission of the 236U compound nucleus.
NASA Astrophysics Data System (ADS)
Nicol, T.; Pérot, B.; Carasco, C.; Brackx, E.; Mariani, A.; Passard, C.; Mauerhofer, E.; Collot, J.
2016-10-01
This paper reports a feasibility study of 235U and 239Pu characterization in 225 L bituminized waste drums or 200 L concrete waste drums, by detecting delayed fission gamma rays between the pulses of a deuterium-tritium neutron generator. The delayed gamma yields were first measured with bare samples of 235U and 239Pu in REGAIN, a facility dedicated to the assay of 118 L waste drums by Prompt Gamma Neutron Activation Analysis (PGNAA) at CEA Cadarache, France. Detectability in the waste drums is then assessed using the MCNPX model of MEDINA (Multi Element Detection based on Instrumental Neutron Activation), another PGNAA cell dedicated to 200 L drums at FZJ, Germany. For the bituminized waste drum, performances are severely hampered by the high gamma background due to 137Cs, which requires the use of collimator and shield to avoid electronics saturation, these elements being very penalizing for the detection of the weak delayed gamma signal. However, for lower activity concrete drums, detection limits range from 10 to 290 g of 235U or 239Pu, depending on the delayed gamma rays of interest. These detection limits have been determined by using MCNPX to calculate the delayed gamma useful signal, and by measuring the experimental gamma background in MEDINA with a 200 L concrete drum mock-up. The performances could be significantly improved by using a higher interrogating neutron emission and an optimized experimental setup, which would allow characterizing nuclear materials in a wide range of low and medium activity waste packages.
Stoupel, Eliyahu
2015-03-01
We are constantly affected by changes in space weather. The principal "players" are solar activity (SA), geomagnetic activity (GMA) and antagonistic to them, cosmic ray activity (CRA) and high energy proton flux. CRA is measured by neutron activity on the earth's surface in imp/min. SA and GMA are linked and serve as a shield for the earth from CRA. For a long time SA and GMA were the main areas of studies. The aim of this study was to compare some effects of the mentioned forces and discuss the temporal distribution of both groups of space weather, in relation to their effects on humans. The time distribution of GMA storms (daily) was compared with quiet (low) GMA, with higher CRA (neutron activity). Space weather data were obtained from the USA, Russia and Finland. A total of 4383 days were analyzed in the years 2000-2012. A total of 71 days (1.62%) of geomagnetic storms (GS) and 2753 days (63.8%) of quiet (I0) GMA were registered. A second study was provided including the years 1983-2007 (9131 days); here 3800 days (41.62%) were quiet GMA days and 400 storm days (4.38%). According to publications in the medical literature, many phenomena are connected with the extremes of space weather. Despite a great number of publications and the significant role of GS, it is a relatively rare event and most medical emergencies and deaths occur on days of low GMA, accompanied by higher CRA (neutron activity). High neutron activity deserves more attention when analyzing space effects on human health and their mechanism of action.
Neutron counter based on beryllium activation
NASA Astrophysics Data System (ADS)
Bienkowska, B.; Prokopowicz, R.; Scholz, M.; Kaczmarczyk, J.; Igielski, A.; Karpinski, L.; Paducha, M.; Pytel, K.
2014-08-01
The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction 9Be(n, α)6He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, 6He, decays with half-life T1/2 = 0.807 s emitting β- particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β-particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β-source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5-the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β- particles emitted from radioactive 6He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.
Fusion materials high energy-neutron studies. A status report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doran, D.G.; Guinan, M.W.
1980-01-01
The objectives of this paper are (1) to provide background information on the US Magnetic Fusion Reactor Materials Program, (2) to provide a framework for evaluating nuclear data needs associated with high energy neutron irradiations, and (3) to show the current status of relevant high energy neutron studies. Since the last symposium, the greatest strides in cross section development have been taken in those areas providing FMIT design data, e.g., source description, shielding, and activation. In addition, many dosimetry cross sections have been tentatively extrapolated to 40 MeV and integral testing begun. Extensive total helium measurements have been made inmore » a variety of neutron spectra. Additional calculations are needed to assist in determining energy dependent cross sections.« less
Neutron activation analysis system
Taylor, M.C.; Rhodes, J.R.
1973-12-25
A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)
Neutron Activation Diagnostics in Deuterium Gas-Puff Experiments on the 3 MA GIT-12 Z-Pinch
NASA Astrophysics Data System (ADS)
Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Fursov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.
2016-10-01
The experiments with a deuterium z-pinch on the GIT-12 generator at IHCE in Tomsk were performed in the frame of the Czech-Russian agreement. A set of neutron diagnostics included scintillation time-of-flight detectors, bubble detectors, and several kinds of threshold nuclear activation detectors in the order to obtain information about the yield, anisotropy, and spectrum of the neutrons produced by a deuterium gas-puff. The average neutron yield in these experiments was of the order of 1012 neutrons per a single shot. The energy spectrum of the produced neutrons was evaluated using neutron time-of-flight detectors and a set of neutron activation detectors. Because the deuterons in the pinch achieve multi-MeV energies, non-DD neutrons are produced by nuclear reactions of deuterons with a stainless steel vacuum chamber and aluminum components of diagnostics inside the chamber. An estimated number of the non-DD was of the order of 1011. GACR (Grant No. 16-07036S), CME (Grant Nos. LD14089, LG13029, and LH13283), MESRF (Grant No. RFMEFI59114X0001), IAEA (Grant No. RC17088), CTU (Grant No. SGS 16/223/OHK3/3T/13).
NASA Astrophysics Data System (ADS)
Varmuza, Jan; Katovsky, Karel; Zeman, Miroslav; Stastny, Ondrej; Haysak, Ivan; Holomb, Robert
2018-04-01
Knowledge of neutron energy spectra is very important because neutrons with various energies have a different material impact or a biological tissue impact. This paper presents basic results of the neutron flux distribution inside the new experimental research stand SVICKA which is located at Brno University of Technology in Brno, Czech Republic. The experiment also focused on the investigation of the sandwich biological shielding quality that protects staff against radiation effects. The set of indium activation detectors was used to the investigation of neutron flux distribution. The results of the measurement provide basic information about the neutron flux distribution inside all irradiation channels and no damage or cracks are present in the experimental research stand biological shielding.
Kotb, N A; Solieman, Ahmed H M; El-Zakla, T; Amer, T Z; Elmeniawi, S; Comsan, M N H
2018-05-01
A neutron irradiation facility consisting of six 241 Am-Be neutron sources of 30 Ci total activity and 6.6 × 10 7 n/s total neutron yield is designed. The sources are embedded in a cubic paraffin wax, which plays a dual role as both moderator and reflector. The sample passage and irradiation channel are represented by a cylindrical path of 5 cm diameter passing through the facility core. The proposed design yields a high degree of space symmetry and thermal neutron homogeneity within 98% of flux distribution throughout the irradiated spherical sample of 5 cm diameter. The obtained thermal neutron flux is 8.0 × 10 4 n/cm 2 .s over the sample volume, with thermal-to-fast and thermal-to-epithermal ratios of 1.20 and 3.35, respectively. The design is optimized for maximizing the thermal neutron flux at sample position using the MCNP-5 code. The irradiation facility is supposed to be employed principally for neutron activation analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bushuev, A. V.; Kozhin, A. F., E-mail: alexfkozhin@yandex.ru; Aleeva, T. B.
An active neutron method for measuring the residual mass of {sup 235}U in spent fuel assemblies (FAs) of the IRT MEPhI research reactor is presented. The special measuring stand design and uniform irradiation of the fuel with neutrons along the entire length of the active part of the FA provide high accuracy of determination of the residual {sup 235}U content. AmLi neutron sources yield a higher effect/background ratio than other types of sources and do not induce the fission of {sup 238}U. The proposed method of transfer of the isotope source in accordance with a given algorithm may be usedmore » in experiments where the studied object needs to be irradiated with a uniform fluence.« less
Active Well Counting Using New PSD Plastic Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausladen, Paul; Newby, Jason; McElroy, Robert Dennis
This report presents results and analysis from a series of proof-of-concept measurements to assess the suitability of segmented detectors constructed from Eljen EJ-299-34 PSD-plastic scintillator with pulse-shape discrimination capability for the purposes of quantifying uranium via active neutron coincidence counting. Present quantification of bulk uranium materials for international safeguards and domestic materials control and accounting relies on active neutron coincidence counting systems, such as the Active Well Coincidence Counter (AWCC) and the Uranium Neutron Coincidence Collar (UNCL), that use moderated He-3 proportional counters along with necessarily low-intensity 241Am(Li) neutron sources. Scintillation-based fast-neutron detectors are a potentially superior technology to themore » existing AWCC and UNCL designs due to their spectroscopic capability and their inherently short neutron coincidence times that largely eliminate random coincidences and enable interrogation by stronger sources. One of the past impediments to the investigation and adoption of scintillation counters for the purpose of quantifying bulk uranium was the commercial availability of scintillators having the necessary neutron-gamma pulse-shape discrimination properties only as flammable liquids. Recently, Eljen EJ-299-34 PSD-plastic scintillator became commercially available. The present work is the first assessment of an array of PSD-plastic detectors for the purposes of quantifying bulk uranium. The detector panel used in the present work was originally built as the focal plane for a fast-neutron imager, but it was repurposed for the present investigation by construction of a stand to support the inner well of an AWCC immediately in front of the detector panel. The detector panel and data acquisition of this system are particularly well suited for performing active-well fast-neutron counting of LEU and HEU samples because the active detector volume is solid, the 241Am(Li) interrogating neutrons are largely below the detector threshold, and the segmented construction of the detector modules allow for separation of true neutron-neutron coincidences from inter-detector scattering using the kinematics of neutron scattering. The results from a series of measurements of a suite of uranium standards are presented, and compared to measurements of the same standards and source configurations using the AWCC. Using these results, the performance of the segmented detectors reconfigured as a well counter is predicted and outperforms the AWCC.« less
Total body nitrogen analysis. [neutron activation analysis
NASA Technical Reports Server (NTRS)
Palmer, H. E.
1975-01-01
Studies of two potential in vivo neutron activation methods for determining total and partial body nitrogen in animals and humans are described. A method using the CO-11 in the expired air as a measure of nitrogen content was found to be adequate for small animals such as rats, but inadequate for human measurements due to a slow excretion rate. Studies on the method of measuring the induced N-13 in the body show that with further development, this method should be adequate for measuring muscle mass changes occurring in animals or humans during space flight.
Shestopalov, I P; Rogozhin, Iu A
2005-01-01
The study searched for interactions between the solar activity, seismic energy of the Earth and microbiological processes in the period from 1969 to 1997. Microbiological processes were found dependent on as the solar, so intraterrestrial (e.g. seismic) activity. The 11-year seismic on biological cycles on Earth display a positive inter-correlation and a negative one with the solar activity (sun-spots cycles). There is also correlation between the Earth's seismic energy and neutron fluxes generated at the times of earthquakes on our planet, and microbiological parameters.
The sciences and applications of the Electron LINAC-driven neutron source in Argentina
NASA Astrophysics Data System (ADS)
Granada, J. R.; Mayer, R. E.; Dawidowski, J.; Santisteban, J. R.; Cantargi, F.; Blostein, J. J.; Rodríguez Palomino, L. A.; Tartaglione, A.
2016-06-01
The Neutron Physics group at Centro Atómico Bariloche (CNEA, Argentina) has evolved for more than forty five years around a small 25MeV linear electron accelerator. It constitutes our compact accelerator-driven neutron source (CANS), which is dedicated to the use and development of neutronic methods to tackle problems of basic sciences and technological applications. Its historical first commitment has been the determination of the total cross sections of materials as a function of neutron energy by means of transmission experiments for thermal and sub-thermal neutrons. This also allowed testing theoretical models for the generation of scattering kernels and cross sections. Through the years, our interests moved from classic pulsed neutron diffraction, which included the development of high-precision methods for the determination of very low hydrogen content in metals, towards deep inelastic neutron scattering (DINS), a powerful tool for the determination of atomic momentum distribution in condensed matter. More recently non-intrusive techniques aimed at the scanning of large cargo containers have started to be developed with our CANS, testing the capacity and limitations to detect special nuclear material and dangerous substances. Also, the ever-present "bremsstrahlung" radiation has been recognized and tested as a useful complement to instrumental neutron activation, as it permits to detect other nuclear species through high-energy photon activation. The facility is also used for graduate and undergraduate students' experimental work within the frame of Instituto Balseiro Physics and Nuclear Engineering courses of study, and also MSc and PhD theses work.
Thermal Neutron Radiography using a High-flux Compact Neutron Generator
NASA Astrophysics Data System (ADS)
Taylor, Michael; Sengbusch, Evan; Seyfert, Chris; Moll, Eli; Radel, Ross
A novel neutron imaging system has been designed and constructed by Phoenix Nuclear Labs to investigate specimens when conventional X-ray imaging will not suffice. A first-generation electronic neutron generator is actively being used by the United States Army and is coupled with activation films for neutron radiography to inspect munitions and other critical defence and aerospace components. A second-generation system has been designed to increase the total neutron output from an upgraded gaseous deuterium target to 5×1011 DD n/s, generating higher neutron flux at the imaging plane and dramatically reducing interrogation time, while maintaining high spatial resolution and low geometric unsharpness. A description of the neutron generator and imaging system, including the beamline, target and detector platform, is given in this paper. State of the art neutron moderators, collimators and imaging detector components are also discussed in the context of increasing specimen throughput and optimizing image quality. Neutron radiographs captured with the neutron radiography system will be further compared against simulated images using the MCNP nuclear simulation code.
Pulsed Neurton Elemental On-Line Material Analyzer
Vourvopoulos, George
2002-08-20
An on-line material analyzer which utilizes pulsed neutron generation in order to determine the composition of material flowing through the apparatus. The on-line elemental material analyzer is based on a pulsed neutron generator. The elements in the material interact with the fast and thermal neutrons produced from the pulsed generator. Spectra of gamma-rays produced from fast neutrons interacting with elements of the material are analyzed and stored separately from spectra produced from thermal neutron reactions. Measurements of neutron activation takes place separately from the above reactions and at a distance from the neutron generator. A primary passageway allows the material to flow through at a constant rate of speed and operators to provide data corresponding to fast and thermal neutron reactions. A secondary passageway meters the material to allow for neutron activation analysis. The apparatus also has the capability to determine the density of the flowed material. Finally, the apparatus continually utilizes a neutron detector in order to normalize the yield of the gamma ray detectors and thereby automatically calibrates and adjusts the spectra data for fluctuations in neutron generation.
Andreani, C.; Anderson, I. S.; Carpenter, J. M.; ...
2014-12-24
In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10⁻⁶ to 10²more » MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McElroy, Robert Dennis; Cleveland, Steven L.
The 235U mass assay of bulk uranium items, such as oxide canisters, fuel pellets, and fuel assemblies, is not achievable by traditional gamma-ray assay techniques due to the limited penetration of the item by the characteristic 235U gamma rays. Instead, fast neutron interrogation methods such as active neutron coincidence counting must be used. For international safeguards applications, the most commonly used active neutron systems, the Active Well Coincidence Counter (AWCC), Uranium Neutron Collar (UNCL) and 252Cf Shuffler, rely on fast neutron interrogation using an isotopic neutron source [i.e., 252Cf or Am(Li)] to achieve better measurement accuracies than are possible usingmore » gamma-ray techniques for high-mass, high-density items. However, the Am(Li) sources required for the AWCC and UNCL systems are no longer manufactured, and newly produced systems rely on limited supplies of sources salvaged from disused instruments. The 252Cf shuffler systems rely on the use of high-output 252Cf sources, which while still available have become extremely costly for use in routine operations and require replacement every five to seven years. Lack of a suitable alternative neutron interrogation source would leave a potentially significant gap in the safeguarding of uranium processing facilities. In this work, we made use of Oak Ridge National Laboratory’s (ORNL’s) Large Volume Active Well Coincidence Counter (LV-AWCC) and a commercially available deuterium-deuterium (D-D) neutron generator to examine the potential of the D-D neutron generator as an alternative to the isotopic sources. We present the performance of the LV-AWCC with D-D generator for the assay of 235U based on the results of Monte Carlo N-Particle (MCNP) simulations and measurements of depleted uranium (DU), low enriched uranium (LEU), and highly enriched uranium (HEU) items.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trahan, Alexis Chanel
The objectives of this presentation are to introduce the basic physics of neutron production, interactions and detection; identify the processes that generate neutrons; explain the most common neutron mechanism, spontaneous and induced fission and (a,n) reactions; describe the properties of neutron from different sources; recognize advantages of neutron measurements techniques; recognize common neutrons interactions; explain neutron cross section measurements; describe the fundamental of 3He detector function and designs; and differentiate between passive and active assay techniques.
Marchese, N; Cannuli, A; Caccamo, M T; Pace, C
2017-01-01
Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10 6 n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mildenberger, Frank; Mauerhofer, Eric
2015-07-01
In Germany, radioactive waste with negligible heat production has to pass through a process of quality checking in order to check its conformance with national regulations prior to its transport, intermediate storage and final disposal. Additionally to its radioactive components, the waste may contain non-radioactive chemically toxic substances that can adversely affect human health and pollute the environment, especially the ground water. After an adequate decay time, the waste radioactivity will become harmless but the non-radioactive substances will persist over time. In principle, these hazardous substances may be quantified from traceability and quality controls performed during the production of themore » waste packages. As a consequence, a research and development program was initiated in 2007 with the aim to develop a nondestructive analytical technique for radioactive waste packages based on prompt and delayed gamma neutron activation analysis (P and DGNAA) employing a DT-neutron generator in pulsed mode. In a preliminary study it was experimentally demonstrated that P and DGNAA is suitable to determine the chemical composition of large samples. In 2010 a facility called MEDINA (Multi Element Detection based on Instrumental Neutron Activation) was developed for the qualitative and quantitative determination of nonradioactive, toxic elements and substances in 200-l steel drums. The determination of hazardous substances and elements is generally achieved measuring the prompt gamma-rays induced by thermal neutrons. Additional information about the composition of the waste matrix could be derived measuring the delayed gamma-rays from short life activation products. However a sensitive detection of these delayed gamma-rays requires that thermal neutrons have almost vanished. Therefore, the thermal neutron die-away-time has to be known in order to achieve an optimal discrimination between prompt and delayed gamma-ray spectra acquisition. Measurements Thermal neutron die-away times have been determined for the following cases: a) the empty chamber, b ) an empty 200-l steel drum, for a 200-l steel drum filled c) with concrete d) with polyethylene and e) with a mixture of polyethylene and concrete by measuring the prompt-gamma ray count rate of relevant isotopes like of {sup 1}H, {sup 10}B, {sup 12}C, {sup 28}Si, {sup 35}Cl, {sup 40}Ca and {sup 56}Fe which are emitted from different parts of the facility and the sample. Additionally, the average die-away-time was determined from the total detector count rate. The neutron generator was operated with a neutron emission of 8x10{sup 7} n.s{sup -1}, a neutron pulse with a length of 250 μs and a repetition time of 5 ms. The spectra were acquired between the neutron pulses over t{sub c}=500 μs after a pre-defined waiting time t{sub D} (multiple of 500 μs). The thermal neutron die-away time was ranging between 0.9 ms and 5 ms according to the sample composition. As an example the measured thermal neutron die-away-time Λ [μs] of a drum filled with concrete is presented. Detailed results of this study will be presented and discussed. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glick, A; Diffenderfer, E
2016-06-15
Proton radiation therapy can deliver high radiation doses to tumors while sparing normal tissue. However, protons yield secondary neutron and gamma radiation that is difficult to detect, small in comparison to the prescribed dose, and not accounted for in most treatment planning systems. The risk for secondary malignancies after proton therapy may be dependent on the quality of this dose. Consequently, there is interest in characterizing the secondary radiation. Previously, we used the dual ionization chamber method to measure the separate absorbed dose from gamma-rays and neutrons secondary to the proton beam1, relying on characterization of ionization chamber response inmore » the unknown neutron spectrum from Monte Carlo simulation. We developed a procedure to use Shieldwerx activation foils, with neutron activation energies ranging from 0.025 eV to 13.5 MeV, to measure the neutron energy spectrum from double scattering (DS) and pencil beam scanning (PBS) protons outside of the treatment volume in a water tank. The activated foils are transferred to a NaI well chamber for gamma-ray spectroscopy and activity measurement. Since PBS treats in layers, the switching time between layers is used to correct for the decay of the activated foils and the relative dose per layer is assumed to be proportional to the neutron fluence per layer. MATLAB code was developed to incorporate the layer delivery and switching time into a calculation of foil activity, which is then used to determine the neutron energy fluence from tabulated foil activation energy thresholds.1. Diffenderfer et. al., Med. Phys., 38(11) 2011.« less
Spectrum and density of neutron flux in the irradiation beam line no. 3 of the IBR-2 reactor
NASA Astrophysics Data System (ADS)
Shabalin, E. P.; Verkhoglyadov, A. E.; Bulavin, M. V.; Rogov, A. D.; Kulagin, E. N.; Kulikov, S. A.
2015-03-01
Methodology and results of measuring the differential density of the neutron flux in irradiation beam line no. 3 of the IBR-2 reactor using neutron activation analysis (NAA) are presented in the paper. The results are compared to the calculation performed on the basis of the 3D MCNP model. The data that are obtained are required to determine the integrated radiation dose of the studied samples at various distances from the reactor.
NASA Astrophysics Data System (ADS)
Nasrabadi, M. N.; Bakhshi, F.; Jalali, M.; Mohammadi, A.
2011-12-01
Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma 10.8 MeV following radioactive neutron capture by 14N nuclei. We aimed to study the feasibility of using field-portable prompt gamma neutron activation analysis (PGNAA) along with improved nuclear equipment to detect and identify explosives, illicit substances or landmines. A 252Cf radio-isotopic source was embedded in a cylinder made of high-density polyethylene (HDPE) and the cylinder was then placed in another cylindrical container filled with water. Measurements were performed on high nitrogen content compounds such as melamine (C3H6N6). Melamine powder in a HDPE bottle was placed underneath the vessel containing water and the neutron source. Gamma rays were detected using two NaI(Tl) crystals. The results were simulated with MCNP4c code calculations. The theoretical calculations and experimental measurements were in good agreement indicating that this method can be used for detection of explosives and illicit drugs.
Chen, Chien-Yi
2009-01-01
Optimal conditions for the simultaneous determination of As, Sb and Sm in Chinese medicinal herbs using epithermal neutron activation analysis were investigated. The minimum detectable concentrations of 76As, 122Sb and 153Sm in lichen and medicinal herbs depended on the weight of the irradiated sample, and irradiation and decay durations. Optimal conditions were obtained by wrapping the irradiated target with 3.2 mm borated polyethylene neutron filters, which were adopted to screen the original reactor fission neutrons and to reduce the background activities of 38Cl, 24Na and 42K. Twelve medicinal herbs, commonly consumed by Taiwanese children as a diuretic treatment, were analysed since trace elements, such as As and Sb, in these herbs may be toxic when consumed in sufficiently large quantities over a long period. Various amounts of medicinal herbs, standardised powder, lichen and tomato leaves were weighed, packed into polyethylene bags, irradiated and counted under different conditions. The results indicated that about 350 mg of lichen irradiated for 24 h and counted for 20 min following a 30-60 h decay period was optimal for irradiation in a 10(11)n/cm s epithermal neutron flux. The implications of the content of the studied elements in Chinese medicinal herbs are discussed.
APPARATUS FOR CONTROLLING NEUTRONIC REACTORS
Dietrich, J.R.; Harrer, J.M.
1958-09-16
A device is described for rapidly cortrolling the reactivity of an active portion of a reactor. The inveniion consists of coaxially disposed members each having circumferenital sections of material having dlfferent neutron absorbing characteristics and means fur moving the members rotatably and translatably relative to each other within the active portion to vary the neutron flux therein. The angular and translational movements of any member change the neutron flux shadowing effect of that member upon the other member.
Results on the neutron energy distribution measurements at the RECH-1 Chilean nuclear reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilera, P., E-mail: paguilera87@gmail.com; Romero-Barrientos, J.; Universidad de Chile, Dpto. de Física, Facultad de Ciencias, Las Palmeras 3425, Nuñoa, Santiago
2016-07-07
Neutron activations experiments has been perform at the RECH-1 Chilean Nuclear Reactor to measure its neutron flux energy distribution. Samples of pure elements was activated to obtain the saturation activities for each reaction. Using - ray spectroscopy we identify and measure the activity of the reaction product nuclei, obtaining the saturation activities of 20 reactions. GEANT4 and MCNP was used to compute the self shielding factor to correct the cross section for each element. With the Expectation-Maximization algorithm (EM) we were able to unfold the neutron flux energy distribution at dry tube position, near the RECH-1 core. In this work,more » we present the unfolding results using the EM algorithm.« less
Radiological Protection and Nuclear Engineering Studies in Multi-MW Target Systems
NASA Astrophysics Data System (ADS)
Luis, Raul Fernandes
Several innovative projects involving nuclear technology have emerged around the world in recent years, for applications such as spallation neutron sources, accelerator-driven systems for the transmutation of nuclear waste and radioactive ion beam (RIB) production. While the available neutron Wuxes from nuclear reactors did not increase substantially in intensity over the past three decades, the intensities of neutron sources produced in spallation targets have increased steadily, and should continue to do so during the 21st century. Innovative projects like ESS, MYRRHA and EURISOL lie at the forefront of the ongoing pursuit for increasingly bright neutron sources; driven by proton beams with energies up to 2 GeV and intensities up to several mA, the construction of their proposed facilities involves complex Nuclear Technology and Radiological Protection design studies executed by multidisciplinary teams of scientists and engineers from diUerent branches of Science. The intense neutron Wuxes foreseen for those facilities can be used in several scientiVc research Velds, such as Nuclear Physics and Astrophysics, Medicine and Materials Science. In this work, the target systems of two facilitites for the production of RIBs using the Isotope Separation On-Line (ISOL) method were studied in detail: ISOLDE, operating at CERN since 1967, and EURISOL, the next-generation ISOL facility to be built in Europe. For the EURISOL multi-MW target station, a detailed study of Radiological Protection was carried out using the Monte Carlo code FLUKA. Simulations were done to assess neutron Wuences, Vssion rates, ambient dose equivalent rates during operation and after shutdown and the production of radioactive nuclei in the targets and surrounding materials. DiUerent materials were discussed for diUerent components of the target system, aiming at improving its neutronics performance while keeping the residual activities resulting from material activation as low as possible. The second goal of this work was to perform an optimisation study for the ISOLDE neutron converter and Vssion target system. The target system was simulated using FLUKA and the cross section codes TALYS and ABRABLA, with the objective of maximising the performance of the system for the production of pure beams of neutron-rich isotopes, suppressing the contaminations by undesired neutron-deficient isobars. Two alternative target systems were proposed in the optimisation studies; the simplest of the two, with some modiVcations, was built as a prototype and tested at ISOLDE. The experimental results clearly show that it is possible, with simple changes in the layouts of the target systems, to produce purer beams of neutron-rich isotopes around the doubly magic nuclei 78Ni and 132Sn. A study of Radiological Protection was also performed, comparing the performances of the prototype target system and the standard ISOLDE target system. None
Active detection of shielded SNM with 60-keV neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagmann, C; Dietrich, D; Hall, J
2008-07-08
Fissile materials, e.g. {sup 235}U and {sup 239}Pu, can be detected non-invasively by active neutron interrogation. A unique characteristic of fissile material exposed to neutrons is the prompt emission of high-energy (fast) fission neutrons. One promising mode of operation subjects the object to a beam of medium-energy (epithermal) neutrons, generated by a proton beam impinging on a Li target. The emergence of fast secondary neutrons then clearly indicates the presence of fissile material. Our interrogation system comprises a low-dose 60-keV neutron generator (5 x 10{sup 6}/s), and a 1 m{sup 2} array of scintillators for fast neutron detection. Preliminary experimentalmore » results demonstrate the detectability of small quantities (370 g) of HEU shielded by steel (200 g/cm{sup 2}) or plywood (30 g/cm{sup 2}), with a typical measurement time of 1 min.« less
Effect of Different Structural Materials on Neutronic Performance of a Hybrid Reactor
NASA Astrophysics Data System (ADS)
Übeyli, Mustafa; Tel, Eyyüp
2003-06-01
Selection of structural material for a fusion-fission (hybrid) reactor is very important by taking into account of neutronic performance of the blanket. Refractory metals and alloys have much higher operating temperatures and neutron wall load (NWL) capabilities than low activation materials (ferritic/martensitic steels, vanadium alloys and SiC/SiC composites) and austenitic stainless steels. In this study, effect of primary candidate refractory alloys, namely, W-5Re, T111, TZM and Nb-1Zr on neutronic performance of the hybrid reactor was investigated. Neutron transport calculations were conducted with the help of SCALE 4.3 System by solving the Boltzmann transport equation with code XSDRNPM. Among the investigated structural materials, tantalum had the worst performance due to the fact that it has higher neutron absorption cross section than others. And W-5Re and TZM having similar results showed the best performance.
MCNP simulation to optimise in-pile and shielding parts of the Portuguese SANS instrument.
Gonçalves, I F; Salgado, J; Falcão, A; Margaça, F M A; Carvalho, F G
2005-01-01
A Small Angle Neutron Scattering instrument is being installed at one end of the tangential beam tube of the Portuguese Research Reactor. The instrument is fed using a neutron scatterer positioned in the middle of the beam tube. The scatterer consists of circulating H2O contained in a hollow disc of Al. The in-pile shielding components and the shielding installed around the neutron selector have been the object of an MCNP simulation study. The quantities calculated were the neutron and gamma-ray fluxes in different positions, the energy deposited in the material by the neutron and gamma-ray fields, the material activation resulting from the neutron field and radiation doses at the exit wall of the shutter and around the shielding. The MCNP results are presented and compared with results of an analytical approach and with experimental data collected after installation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickens, Peter T.; Marcial, Jose; McCloy, John
In this study, LiAlO 2 crystals doped with rare-earth elements and Ti were produced by the CZ method and spectroscopic and neutron detection properties were investigated. Photoluminescence revealed no clear luminescent activation of LiAlO 2 by the rare-earth dopants though some interesting luminescence was observed from secondary phases within the crystal. Gamma-ray pulse height spectra collected using a 137Cs source exhibited only a Compton edge for the crystals. Neutron modeling using Monte Carlo N-Particle Transport Code revealed most neutrons used in the detection setup are thermalized, and while using natural lithium in the crystal growth, which contains 7.6% 6Li, amore » 10 mm Ø by 10 mm sample of LiAlO 2 has a 70.7% intrinsic thermal neutron capture efficiency. Furthermore, the pulse height spectra collected using a 241Am-Be neutron source demonstrated a distinct neutron peak.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickens, Peter T.; Marcial, José; McCloy, John
In this study, LiAlO2 crystals doped with rare-earth elements and Ti were produced by the CZ method and spectroscopic and neutron detection properties were investigated. Photoluminescence revealed no clear luminescent activation of LiAlO2 by the rare-earth dopants though some interesting luminescence was observed from secondary phases within the crystal. Gamma-ray pulse height spectra collected using a 137Cs source exhibited only a Compton edge for the crystals. Neutron modeling using Monte Carlo N-Particle Transport Code revealed most neutrons used in the detection setup are thermalized, and while using natural lithium in the crystal growth, which contains 7.6 % 6Li, a 10more » mm Ø by 10 mm sample of LiAlO2 has a 70.7 % intrinsic thermal neutron capture efficiency. Furthermore, the pulse height spectra collected using a 241Am-Be neutron source demonstrated a distinct neutron peak.« less
Dickens, Peter T.; Marcial, Jose; McCloy, John; ...
2017-05-17
In this study, LiAlO 2 crystals doped with rare-earth elements and Ti were produced by the CZ method and spectroscopic and neutron detection properties were investigated. Photoluminescence revealed no clear luminescent activation of LiAlO 2 by the rare-earth dopants though some interesting luminescence was observed from secondary phases within the crystal. Gamma-ray pulse height spectra collected using a 137Cs source exhibited only a Compton edge for the crystals. Neutron modeling using Monte Carlo N-Particle Transport Code revealed most neutrons used in the detection setup are thermalized, and while using natural lithium in the crystal growth, which contains 7.6% 6Li, amore » 10 mm Ø by 10 mm sample of LiAlO 2 has a 70.7% intrinsic thermal neutron capture efficiency. Furthermore, the pulse height spectra collected using a 241Am-Be neutron source demonstrated a distinct neutron peak.« less
Measurement of 173Lu(n,γ) Cross Sections at DANCE
NASA Astrophysics Data System (ADS)
Roig, O.; Theroine, C.; Ebran, A.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Nortier, F. M.; O'Donnell, J. M.; Rundberg, R. S.; Taylor, W. A.; Ullmann, J. L.; Vieira, D. J.
2014-05-01
A highly gamma-radioactive target, 3.7 GBq, of 173Lu isotope was placed inside the DANCE array (Detector for Advanced Neutron Capture Experiments) at Los Alamos to study the radiative neutron capture on an unstable isotope. The 173Lu element was produced by naturalHf(p,xn) reactions following by beta-decays at the Isotope Production Facility (IPF). Measurements of radiative neutron capture cross section on 173Lu were achieved at the Los Alamos Neutron Science Center (LANSCE) spallation neutron source facility over the neutron energy range from thermal up to 1 keV. A special configuration was necessary to perform the experiment using the DANCE [1] array due to the high gamma activity of the target. We will report on the target production, the experiment and the results obtained for the radiative neutron capture on 173Lu. The radiative capture cross section was obtained for the first time on this unstable nucleus. Some resonances have been characterized. A comparison with a recent data evaluation is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avery, S; Christodouleas, J; Delaney, K
2014-06-01
Purpose: Measuring Neutron Activation of Cardiac devices Irradiated during Proton Therapy using Indium Foils Methods: The foils had dimensions of 25mm x 25mm x 1mm. After being activated, the foils were placed in a Canberra Industries well chamber utilizing a NaI(Tl) scintillation detector. The resulting gamma spectrum was acquired and analyzed using Genie 2000 spectroscopy software. One activation foil was placed over the upper, left chest of RANDO where a pacemaker would be. The rest of the foils were placed over the midline of the patient at different distances, providing a spatial distribution over the phantom. Using lasers and BBsmore » to align the patient, 200 MU square fields were delivered to various treatment sites: the brain, the pancreas, and the prostate. Each field was shot at least a day apart, giving more than enough time for activity of the foil to decay (t1=2 = 54.12 min). Results: The net counts (minus background) of the three aforementioned peaks were used for our measurements. These counts were adjusted to account for detector efficiency, relative photon yields from decay, and the natural abundance of 115-In. The average neutron flux for the closed multi-leaf collimator irradiation was measured to be 1.62 x 106 - 0.18 x 106 cm2 s-1. An order of magnitude estimate of the flux for neutrons up to 1 keV from Diffenderfer et al. gives 3 x 106 cm2 s-1 which does agree on the order of magnitude. Conclusion: Lower energy neutrons have higher interaction cross-sections and are more likely to damage pacemakers. The thermal/slow neutron component may be enough to estimate the overall risk. The true test of the applicability of activation foils is whether or not measurements are capable of predicting cardiac device malfunction. For that, additional studies are needed to provide clinical evidence one way or the other.« less
Neutron spectrometry for UF 6 enrichment verification in storage cylinders
Mengesha, Wondwosen; Kiff, Scott D.
2015-01-29
Verification of declared UF 6 enrichment and mass in storage cylinders is of great interest in nuclear material nonproliferation. Nondestructive assay (NDA) techniques are commonly used for safeguards inspections to ensure accountancy of declared nuclear materials. Common NDA techniques used include gamma-ray spectrometry and both passive and active neutron measurements. In the present study, neutron spectrometry was investigated for verification of UF 6 enrichment in 30B storage cylinders based on an unattended and passive measurement approach. MCNP5 and Geant4 simulated neutron spectra, for selected UF 6 enrichments and filling profiles, were used in the investigation. The simulated neutron spectra weremore » analyzed using principal component analysis (PCA). The PCA technique is a well-established technique and has a wide area of application including feature analysis, outlier detection, and gamma-ray spectral analysis. Results obtained demonstrate that neutron spectrometry supported by spectral feature analysis has potential for assaying UF 6 enrichment in storage cylinders. Thus the results from the present study also showed that difficulties associated with the UF 6 filling profile and observed in other unattended passive neutron measurements can possibly be overcome using the approach presented.« less
Tamaki, S; Sakai, M; Yoshihashi, S; Manabe, M; Zushi, N; Murata, I; Hoashi, E; Kato, I; Kuri, S; Oshiro, S; Nagasaki, M; Horiike, H
2015-12-01
Mock-up experiment for development of accelerator based neutron source for Osaka University BNCT project was carried out at Birmingham University, UK. In this paper, spatial distribution of neutron flux intensity was evaluated by foil activation method. Validity of the design code system was confirmed by comparing measured gold foil activities with calculations. As a result, it was found that the epi-thermal neutron beam was well collimated by our neutron moderator assembly. Also, the design accuracy was evaluated to have less than 20% error. Copyright © 2015 Elsevier Ltd. All rights reserved.
Radiological risks from irradiation of cargo contents with EURITRACK neutron inspection systems
NASA Astrophysics Data System (ADS)
Giroletti, E.; Bonomi, G.; Donzella, A.; Viesti, G.; Zenoni, A.
2012-07-01
The radiological risk for the population related to the neutron irradiation of cargo containers with a tagged neutron inspection system has been studied. Two possible effects on the public health have been assessed: the modification of the nutritional and organoleptic properties of the irradiated materials, in particular foodstuff, and the neutron activation of consumer products (i.e. food and pharmaceuticals). The result of this study is that irradiation of food and foodstuff, pharmaceutical and medical devices in container cargoes would neither modify the properties of the irradiated material nor produce effective doses of concern for public health. Furthermore, the dose received by possible stowaways present inside the container during the inspection is less than the annual effective dose limit defined by European Legislation for the public.
Improved neutron activation prediction code system development
NASA Technical Reports Server (NTRS)
Saqui, R. M.
1971-01-01
Two integrated neutron activation prediction code systems have been developed by modifying and integrating existing computer programs to perform the necessary computations to determine neutron induced activation gamma ray doses and dose rates in complex geometries. Each of the two systems is comprised of three computational modules. The first program module computes the spatial and energy distribution of the neutron flux from an input source and prepares input data for the second program which performs the reaction rate, decay chain and activation gamma source calculations. A third module then accepts input prepared by the second program to compute the cumulative gamma doses and/or dose rates at specified detector locations in complex, three-dimensional geometries.
Determination of the composition of HgCdTe oxide films by neutron activation analysis
NASA Astrophysics Data System (ADS)
Gnade, B.; Simmons, A.; Little, D.; Strong, R.
1987-04-01
The composition of HgCdTe oxides grown by anodic oxidation in a standard KOH/ethylene glycol solution has been determined by neutron activation analysis (NAA). This technique is not hindered by the difficulties normally associated with methods using ion beams or electron beams. Neutron activation analysis has the advantage of being quantitative, and also NAA is not affected by the chemical composition of the matrix. The analysis of the KOH/ethylene glycol oxide film by neutron activation yields Hg:Cd:Te ratios of 0.534:0.19:1, in close agreement with Rutherford backscattering spectroscopy analysis (R.L. Strong et al., J. Vac. Sci. Technol. A4 (4) (1986) 1992).
Neutron star evolution and emission
NASA Astrophysics Data System (ADS)
Epstein, R. I.; Edwards, B. C.; Haines, T. J.
1997-01-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors investigated the evolution and radiation characteristics of individual neutron stars and stellar systems. The work concentrated on phenomena where new techniques and observations are dramatically enlarging the understanding of stellar phenomena. Part of this project was a study of x-ray and gamma-ray emission from neutron stars and other compact objects. This effort included calculating the thermal x-ray emission from young neutron stars, deriving the radio and gamma-ray emission from active pulsars and modeling intense gamma-ray bursts in distant galaxies. They also measured periodic optical and infrared fluctuations from rotating neutron stars and search for high-energy TeV gamma rays from discrete celestial sources.
SWAN - Detection of explosives by means of fast neutron activation analysis
NASA Astrophysics Data System (ADS)
Gierlik, M.; Borsuk, S.; Guzik, Z.; Iwanowska, J.; Kaźmierczak, Ł.; Korolczuk, S.; Kozłowski, T.; Krakowski, T.; Marcinkowski, R.; Swiderski, L.; Szeptycka, M.; Szewiński, J.; Urban, A.
2016-10-01
In this work we report on SWAN, the experimental, portable device for explosives detection. The device was created as part of the EU Structural Funds Project "Accelerators & Detectors" (POIG.01.01.02-14-012/08-00), with the goal to increase beneficiary's expertise and competencies in the field of neutron activation analysis. Previous experiences and budged limitations lead toward a less advanced design based on fast neutron interactions and unsophisticated data analysis with the emphasis on the latest gamma detection and spectrometry solutions. The final device has been designed as a portable, fast neutron activation analyzer, with the software optimized for detection of carbon, nitrogen and oxygen. SWAN's performance in the role of explosives detector is elaborated in this paper. We demonstrate that the unique features offered by neutron activation analysis might not be impressive enough when confronted with practical demands and expectations of a generic homeland security customer.
Radioactivity in atomic-bomb samples from exposure to environmental neutrons.
Endo, S; Shizuma, K; Tanaka, K; Ishikawa, M; Rühm, W; Egbert, S D; Hoshi, M
2007-12-01
For about one decade, activation measurements performed on environmental samples from a distance larger than 1 km from the hypocenter of the atomic-bomb explosion over Hiroshima suggested much higher thermal neutron fluences to the survivors than predicted. This caused concern among the radiation protection community and prompted a complete re-evaluation of all aspects of survivor dosimetry. While it was shown recently that secondary neutrons from cosmic radiation and other sources have probably been the reason for the high measured concentrations of the long-lived radioisotope 36Cl in these samples, the source for high measured concentrations of the short-lived radionuclides 152Eu and 60Co has not yet been investigated in detail. In order to quantify the production of 152Eu and 60Co in environmental samples by secondary neutrons from cosmic radiation, thermal neutron fluxes were measured by means of a He gas proportional counter in various buildings where these samples had been and still are being stored. Because a 252Cf neutron source has been operated occasionally close to one of the sample storage rooms, additional neutron flux measurements were carried out when the neutron source was in operation. The thermal neutron fluxes measured ranged from 0.00017 to 0.00093 n cm(-2) s(-1) and depended on the floor number of the investigated building. Based on the measured neutron fluxes, the specific activities from the reactions 151Eu(n,gamma)152Eu and 59Co(n,gamma)60Co in the atomic-bomb samples were estimated to be 7.9 mBq g(-1) Eu and 0.27 mBq g(-1) Co, respectively, in saturation. These activities are much lower than those recently measured in samples that had been exposed to atomic-bomb neutrons. It is therefore concluded that environmental and moderated 252Cf neutrons are not the source for the high activities that had been measured in these samples.
Cosmic Ray Interactions in Shielding Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.
2011-09-08
This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electronmore » volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.« less
Chau, Q; Bruguier, P
2007-01-01
In nuclear facilities, some activities such as reprocessing, recycling and production of bare fuel rods expose the workers to mixed neutron-photon fields. For several workplaces, particularly in glove boxes, some workers expose their hands to mixed fields. The mastery of the photon extremity dosimetry is relatively good, whereas the neutron dosimetry still raises difficulties. In this context, the Institute for Radiological Protection and Nuclear Safety (IRSN) has proposed a study on a passive neutron extremity dosemeter based on chemically etched CR-39 (PADC: polyallyldiglycolcarbonate), named PN-3, already used in routine practice for whole body dosimetry. This dosemeter is a chip of plastic sensitive to recoil protons. The chemical etching process amplifies the size of the impact. The reading system for tracks counting is composed of a microscope, a video camera and an image analyser. This system is combined with the dose evaluation algorithm. The performance of the dosemeter PN-3 has been largely studied and proved by several laboratories in terms of passive individual neutron dosemeter which is used in routine production by different companies. This study focuses on the sensitivity of the extremity dosemeter, as well as its performance in the function of the level of the neutron energy. The dosemeter was exposed to monoenergetic neutron fields in laboratory conditions and to mixed fields in glove boxes at workplaces.
USDA-ARS?s Scientific Manuscript database
Source output stability is important for accurate measurement in prompt gamma neutron activation. This is especially true when measuring low-concentration elements such as in vivo nitrogen (~2.5% of body weight). We evaluated the stability of the compact DT neutron generator within an in vivo nitrog...
NASA Astrophysics Data System (ADS)
Bhatia, C.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rundberg, R. S.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.
2014-09-01
A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.
Scaling beta-delayed neutron measurements to large detector areas
NASA Astrophysics Data System (ADS)
Sutanto, F.; Nattress, J.; Jovanovic, I.
2017-08-01
We explore the performance of a cargo screening system that consists of two large-sized composite scintillation detectors and a high-energy neutron interrogation source by modeling and simulation. The goal of the system is to measure β-delayed neutron emission from an illicit special nuclear material by use of active interrogation. This task is challenging because the β-delayed neutron yield is small in comparison with the yield of the prompt fission secondary products, β-delayed neutrons are emitted with relatively low energies, and high neutron and gamma backgrounds are typically present. Detectors used to measure delayed neutron emission must exhibit high intrinsic efficiency and cover a large solid angle, which also makes them sensitive to background neutron radiation. We present a case study where we attempt to detect the presence of 5 kg-scale quantities of 235U in a standard air-filled cargo container using 14 MeV neutrons as a probe. We find that by using a total measurement time of ˜11.6 s and a dose equivalent of ˜1.7 mrem, the presence of 235U can be detected with false positive and false negative probabilities that are both no larger than 0.1%.
Measurement of Activation Cross Sections Producing Short-Lived Nuclei with Pulsed Neutron Beam
NASA Astrophysics Data System (ADS)
Shimizu, Toshiaki; Arakita, Kazumasa; Miyazaki, Itaru; Shibata, Michihiro; Kawade, Kiyoshi; Hori, Jun-ichi; Ochiai, Kentaro; Nishitani, Takeo
2005-05-01
Activation cross sections for the (n, n') reaction were measured by means of the activation method at the neutron energies of 3.1 and 2.54 MeV by using a pulsed neutron beam. Target nuclei were 79Br, 90Zr, 197Au, and 207Pb, whose half-lives were between 0.8 and 8 s. The cross section for the 90Zr (n, n') 90mZr reaction was obtained for the first time in this energy range. The d-D neutrons were generated by bombarding a deuterated titanium target with a 350-keV d+ beam at the 80-degree beam line of the Fusion Neutronics Source at the Japan Atomic Energy Research Institute. In order to obtain reliable activation cross sections, careful attention was paid to correct the efficiency for a volume source, and the self-absorption of gamma rays in an irradiated sample. The systematics of the (n, n') reaction at the neutron energy of 3.1 MeV, which could be predicted within an accuracy of 50%, was proposed on the basis of our data.
Munaweera, Imalka; Levesque-Bishop, Daniel; Shi, Yi; Di Pasqua, Anthony J; Balkus, Kenneth J
2014-12-24
Radiation therapy is used as a primary treatment for inoperable tumors and in patients that cannot or will not undergo surgery. Radioactive holmium-166 ((166)Ho) is a viable candidate for use against skin cancer. Nonradioactive holmium-165 ((165)Ho) iron garnet nanoparticles have been incorporated into a bandage, which, after neutron-activation to (166)Ho, can be applied to a tumor lesion. The (165)Ho iron garnet nanoparticles ((165)HoIG) were synthesized and introduced into polyacrylonitrile (PAN) polymer solutions. The polymer solutions were then electrospun to produce flexible nonwoven bandages, which are stable to neutron-activation. The fiber mats were characterized using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis and inductively coupled plasma mass spectrometry. The bandages are stable after neutron-activation at a thermal neutron-flux of approximately 3.5 × 10(12) neutrons/cm(2)·s for at least 4 h and 100 °C. Different amounts of radioactivity can be produced by changing the amount of the (165)HoIG nanoparticles inside the bandage and the duration of neutron-activation, which is important for different stages of skin cancer. Furthermore, the radioactive bandage can be easily manipulated to irradiate only the tumor site by cutting the bandage into specific shapes and sizes that cover the tumor prior to neutron-activation. Thus, exposure of healthy cells to high energy β-particles can be avoided. Moreover, there is no leakage of radioactive material after neutron activation, which is critical for safe handling by healthcare professionals treating skin cancer patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, S. D.; Hamel, M. C.; Bourne, M. M.
Active interrogation creates an environment that is particularly challenging from a radiation-detection standpoint: the elevated background levels from the source can mask the desired signatures from the SNM. Neutron based interrogation experiments have shown that nanosecond-level timing is required to discriminate induced-fission neutrons from the scattered source neutrons. Previous experiments using high-energy bremsstrahlung X-rays have demonstrated the ability to induce and detect prompt photofission neutrons from single target materials; however, a real-world application would require spectroscopic capability to discern between photofission neutrons emitted by SNM and neutrons emitted by other reactions in non-SNM. Using digital pulseshape discrimination, organic liquid scintillatorsmore » are capable of reliably detecting neutrons in an intense gamma-ray field. Photon misclassification rates as low as 1 in 10 6 have been achieved, which is approaching the level of gaseous neutron detectors such as 3He without the need for neutron moderation. These scintillators also possess nanosecond-timing resolution, making them candidates for both neutron-and photon-driven active interrogation systems. Lastly, we have applied an array of liquid and NaI(Tl) scintillators to successfully image 13.7 kg of HEU interrogated by a DT neutron generator; the system was in the direct presence of the accelerator during the experiment.« less
A bismuth activation counter for high sensitivity pulsed 14 MeV neutrons
NASA Astrophysics Data System (ADS)
Burns, E. J. T.; Thacher, P. D.; Hassig, G. J.; Decker, R. D.; Romero, J. A.; Barrett, K. P.
2011-08-01
We have built a fast neutron bismuth activation counter that measures activation counts from pulsed 14-MeV neutron generators for incident neutron fluences between 30 and 300 neutrons/cm2 at 15.2 cm (6 in.). The activation counter consists of a large bismuth germanate (BGO) detector surrounded by a bismuth metal shield in front of and concentric with the cylindrical detector housing. The 14 MeV neutrons activate the 2.6-millisecond (ms) isomer in the shield and the detector by the reaction 209Bi (n,2nγ) 208mBi. The use of millisecond isomers and activation counting times minimizes the background from other activated materials and the environment. In addition to activation, the bismuth metal shields against other outside radiation sources. We have tested the bismuth activation counter, simultaneously, with two data acquisition systems (DASs) and both give similar results. The two-dimensional (2D) DAS and three dimensional (3D) DAS both consist of pulse height analysis (PHA) systems that can be used to discriminate against gamma radiations below 300 keV photon energy, so that the detector can be used strictly as a counter. If the counting time is restricted to less than 25 ms after the neutron pulse, there are less than 10 counts of background for single pulse operation in all our operational environments tested so far. High-fluence neutron generator operations are restricted by large dead times and pulse height saturation. When we operate our 3D DAS PHA system in list mode acquisition (LIST), real-time corrections to dead time or live time can be made on the scale of 1 ms time windows or dwell times. The live time correction is consistent with nonparalyzable models for dead time of 1.0±0.2 μs for our 3D DAS and 1.5±0.3 μs for our 2D DAS dominated by our fixed time width analog to digital converters (ADCs). With the same solid angle, we have shown that the bismuth activation counter has a factor of 4 increase in sensitivity over our lead activation counter, because of higher counts and negligible backgrounds.
Bugbee, S.J.; Hanson, V.F.; Babcock, D.F.
1959-02-01
A neutron density inonitoring means for reactors is described. According to this invention a tunnel is provided beneath and spaced from the active portion of the reactor and extends beyond the opposite faces of the activc portion. Neutron beam holes are provided between the active portion and the tunnel and open into the tunnel near the middle thereof. A carriage operates back and forth in the tunnel and is adapted to convey a neutron detector, such as an ion chamber, and position it beneath one of the neutron beam holes. This arrangement affords convenient access of neutron density measuring instruments to a location wherein direct measurement of neutron density within the piles can be made and at the same time affords ample protection to operating personnel.
Neutron counter based on beryllium activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.
2014-08-21
The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large areamore » gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.« less
Scintillator and solid-state neutron detectors and their applications
NASA Astrophysics Data System (ADS)
Carturan, Sara Maria; Marchi, Tommaso; Fanchini, Erica; De Vita, Raffaella; Finocchiaro, Paolo; Pappalardo, Alfio
2014-10-01
The application range of neutron detectors covers many topics, not only involving experimental research, but spanning tens of industrial, health, transport, cultural heritage fields of interest. Several studies focus on new scintillating materials where the light response, under fast and slow neutrons exposure, is triggered by proton recoil or by the presence of neutron capture materials as 10B, 6Li or 157Gd. Neutron monitors, where the robustness of silicon-based detectors can be fully exploited by coupling with suitable neutron absorber/converter materials, have recently proved their outstanding performances. Discrimination between neutron signals from other radiations, such as - or cosmic rays, is achieved through timing techniques or with pulse shape analysis. Furthermore, the choice of the detection/discrimination techniques depends on the type of application the detector will be used for. An example is Radiation Portal Monitors (RPM) for cargo inspection or luggage control that are required to satisfy specific international standards for and neutron detection efficiencies. This paper is an overview of some of the National Institute of Nuclear Physics (INFN) activities in the field of neutron detection, involving novel technologies. We will describe the most recent advances related to scintillators and silicon-based detectors coupled with thin films of suitable converters for neutron detection and we will discuss applications in the field of nuclear security.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halfon, S.; Feinberg, G.; Racah Institute of Physics, Hebrew University, Jerusalem 91904
2014-05-15
The free-surface Liquid-Lithium Target, recently developed at Soreq Applied Research Accelerator Facility (SARAF), was successfully used with a 1.9 MeV, 1.2 mA (2.3 kW) continuous-wave proton beam. Neutrons (∼2 × 10{sup 10} n/s having a peak energy of ∼27 keV) from the {sup 7}Li(p,n){sup 7}Be reaction were detected with a fission-chamber detector and by gold activation targets positioned in the forward direction. The setup is being used for nuclear astrophysics experiments to study neutron-induced reactions at stellar energies and to demonstrate the feasibility of accelerator-based boron neutron capture therapy.
Altered [99mTc]Tc-MDP biodistribution from neutron activation sourced 99Mo.
Demeter, Sandor; Szweda, Roman; Patterson, Judy; Grigoryan, Marine
2018-01-01
Given potential worldwide shortages of fission sourced 99 Mo/ 99m Tc medical isotopes there is increasing interest in alternate production strategies. A neutron activated 99 Mo source was utilized in a single center phase III open label study comparing 99m Tc, as 99m Tc Methylene Diphosphonate ([ 99m Tc]Tc-MDP), obtained from solvent generator separation of neutron activation produced 99 Mo, versus nuclear reactor produced 99 Mo (e.g., fission sourced) in oncology patients for which an [ 99m Tc]Tc-MDP bone scan would normally have been indicated. Despite the investigational [ 99m Tc]Tc-MDP passing all standard, and above standard of care, quality assurance tests, which would normally be sufficient to allow human administration, there was altered biodistribution which could lead to erroneous clinical interpretation. The cause of the altered biodistribution remains unknown and requires further research.
Use of .sup.3 He.sup.30 + ICRF minority heating to simulate alpha particle heating
Post, Jr., Douglass E.; Hwang, David Q.; Hovey, Jane
1986-04-22
Neutron activation due to high levels of neutron production in a first heated deuterium-tritium plasma is substantially reduced by using Ion Cyclotron Resonance Frequency (ICRF) heating of energetic .sup.3 He.sup.++ ions in a second deuterium-.sup.3 He.sup.++ plasma which exhibit an energy distribution and density similar to that of alpha particles in fusion reactor experiments to simulate fusion alpha particle heating in the first plasma. The majority of the fast .sup.3 He.sup.++ ions and their slowing down spectrum can be studied using either a modulated hydrogen beam source for producing excited states of He.sup.+ in combination with spectrometers or double charge exchange with a high energy neutral lithium beam and charged particle detectors at the plasma edge. The maintenance problems thus associated with neutron activation are substantially reduced permitting energetic alpha particle behavior to be studied in near term large fusion experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budayova-Spano, Monika, E-mail: spano@embl-grenoble.fr; Institut Laue-Langevin, 6 Rue Jules Horowitz, BP 156, 38042 Grenoble; Bonneté, Françoise
2006-03-01
Neutron diffraction data of hydrogenated recombinant urate oxidase enzyme (Rasburicase), complexed with a purine-type inhibitor 8-azaxanthin, was collected to 2.1 Å resolution from a crystal grown in D{sub 2}O by careful control and optimization of crystallization conditions via knowledge of the phase diagram. Deuterium atoms were clearly seen in the neutron-scattering density map. Crystallization and preliminary neutron diffraction measurements of rasburicase, a recombinant urate oxidase enzyme expressed by a genetically modified Saccharomyces cerevisiae strain, complexed with a purine-type inhibitor (8-azaxanthin) are reported. Neutron Laue diffraction data were collected to 2.1 Å resolution using the LADI instrument from a crystal (grownmore » in D{sub 2}O) with volume 1.8 mm{sup 3}. The aim of this neutron diffraction study is to determine the protonation states of the inhibitor and residues within the active site. This will lead to improved comprehension of the enzymatic mechanism of this important enzyme, which is used as a protein drug to reduce toxic uric acid accumulation during chemotherapy. This paper illustrates the high quality of the neutron diffraction data collected, which are suitable for high-resolution structural analysis. In comparison with other neutron protein crystallography studies to date in which a hydrogenated protein has been used, the volume of the crystal was relatively small and yet the data still extend to high resolution. Furthermore, urate oxidase has one of the largest primitive unit-cell volumes (space group I222, unit-cell parameters a = 80, b = 96, c = 106 Å) and molecular weights (135 kDa for the homotetramer) so far successfully studied with neutrons.« less
Organic metal neutron detector
Butler, M.A.; Ginley, D.S.
1984-11-21
A device for detection of neutrons comprises: as an active neutron sensing element, a conductive organic polymer having an electrical conductivity and a cross-section for said neutrons whereby a detectable change in said conductivity is caused by impingement of said neutrons on the conductive organic polymer which is responsive to a property of said polymer which is altered by impingement of said neutrons on the polymer; and means for associating a change in said alterable property with the presence of neutrons at the location of said device.
Gamma-ray background induced by atmospheric neutrons
NASA Astrophysics Data System (ADS)
Ma, Y.-Q.
1984-03-01
A small piggyback detector system is used to study the reduction of gamma-ray background induced by atmospheric neutrons in the type of actively shielded gamma-ray spectroscopes. The system consists of two 1.5 x 1.5 arcsec NaI crystal units, one of which is surrounded by some neutron shield material. The results of a balloon flight in 1981 are presented. The data show that a shield of 3 cm-thick pure paraffin cannot reduce the gamma-ray background. On the contrary, it may even cause some enhancement.
Towards radiation hard converter material for SiC-based fast neutron detectors
NASA Astrophysics Data System (ADS)
Tripathi, S.; Upadhyay, C.; Nagaraj, C. P.; Venkatesan, A.; Devan, K.
2018-05-01
In the present work, Geant4 Monte-Carlo simulations have been carried out to study the neutron detection efficiency of the various neutron to other charge particle (recoil proton) converter materials. The converter material is placed over Silicon Carbide (SiC) in Fast Neutron detectors (FNDs) to achieve higher neutron detection efficiency as compared to bare SiC FNDs. Hydrogenous converter material such as High-Density Polyethylene (HDPE) is preferred over other converter materials due to the virtue of its high elastic scattering reaction cross-section for fast neutron detection at room temperature. Upon interaction with fast neutrons, hydrogenous converter material generates recoil protons which liberate e-hole pairs in the active region of SiC detector to provide a detector signal. The neutron detection efficiency offered by HDPE converter is compared with several other hydrogenous materials viz., 1) Lithium Hydride (LiH), 2) Perylene, 3) PTCDA . It is found that, HDPE, though providing highest efficiency among various studied materials, cannot withstand high temperature and harsh radiation environment. On the other hand, perylene and PTCDA can sustain harsh environments, but yields low efficiency. The analysis carried out reveals that LiH is a better material for neutron to other charge particle conversion with competent efficiency and desired radiation hardness. Further, the thickness of LiH has also been optimized for various mono-energetic neutron beams and Am-Be neutron source generating a neutron fluence of 109 neutrons/cm2. The optimized thickness of LiH converter for fast neutron detection is found to be ~ 500 μm. However, the estimated efficiency for fast neutron detection is only 0.1%, which is deemed to be inadequate for reliable detection of neutrons. A sensitivity study has also been done investigating the gamma background effect on the neutron detection efficiency for various energy threshold of Low-Level Discriminator (LLD). The detection efficiency of a stacked structure concept has been explored by juxtaposing several converter-detector layers to improve the efficiency of LiH-SiC-based FNDs . It is observed that approximately tenfold efficiency improvement has been achieved—0.93% for ten layers stacked configuration vis-à-vis 0.1% of single converter-detector layer configuration. Finally, stacked detectors have also been simulated for different converter thicknesses to attain the efficiency as high as ~ 3.25% with the help of 50 stacked layers.
WINDOWS: a program for the analysis of spectral data foil activation measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stallmann, F.W.; Eastham, J.F.; Kam, F.B.K.
The computer program WINDOWS together with its subroutines is described for the analysis of neutron spectral data foil activation measurements. In particular, the unfolding of the neutron differential spectrum, estimated windows and detector contributions, upper and lower bounds for an integral response, and group fluxes obtained from neutron transport calculations. 116 references. (JFP)
Neutron-Activated Gamma-Emission: Technology Review
2012-01-01
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) January 2012 2. REPORT TYPE Progress 3... DATES COVERED (From - To) January to March 2010 4. TITLE AND SUBTITLE Neutron-Activated Gamma-Emission: Technology Review 5a. CONTRACT NUMBER...Backscatter Analysis Techniques........................................................................13 3. Sources of Neutrons 15 3.1 Radioisotope
CHARACTERIZATION OF A THIN SILICON SENSOR FOR ACTIVE NEUTRON PERSONAL DOSEMETERS.
Takada, M; Nunomiya, T; Nakamura, T; Matsumoto, T; Masuda, A
2016-09-01
A thin silicon sensor has been developed for active neutron personal dosemeters for use by aircrews and first responders. This thin silicon sensor is not affected by the funneling effect, which causes detection of cosmic protons and over-response to cosmic neutrons. There are several advantages to the thin silicon sensor: a decrease in sensitivity to gamma rays, an improvement of the energy detection limit for neutrons down to 0.8 MeV and an increase in the sensitivity to fast neutrons. Neutron response functions were experimentally obtained using 2.5 and 5 MeV monoenergy neutron beams and a (252)Cf neutron source. Simulation results using the Monte Carlo N-Particle transport code agree quite well with the experimental ones when an energy deposition region shaped like a circular truncated cone is used in place of a cylindrical region. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Technical basis for the use of a correlated neutron source in the uranium neutron coincidence collar
Root, Margaret A.; Menlove, Howard Olsen; Lanza, Richard C.; ...
2017-01-16
Active neutron coincidence systems are commonly used by international inspectorates to verify a material balance across the various stages of the nuclear fuel cycle. The Uranium Neutron Coincidence Collar (UNCL) is one such instrument; it is used to measure the linear density of 235U (g 235U/cm of active length in assembly) in fresh light water reactor fuel in nuclear fuel fabrication facilities. The UNCL and other active neutron interrogation detectors have historically relied on americium lithium ( 241AmLi) sources to induce fission within the sample in question. Californium-252 is under consideration as a possible alternative to the traditional 241AmLi source.more » Finally, this work relied upon a combination of experiments and Monte Carlo simulations to demonstrate the technical basis for the replacement of 241AmLi sources with 252Cf sources by evaluating the statistical uncertainty in the measurements incurred by each source and assessing the penetrability of neutrons from each source for the UNCL.« less
Technical basis for the use of a correlated neutron source in the uranium neutron coincidence collar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Root, Margaret A.; Menlove, Howard Olsen; Lanza, Richard C.
Active neutron coincidence systems are commonly used by international inspectorates to verify a material balance across the various stages of the nuclear fuel cycle. The Uranium Neutron Coincidence Collar (UNCL) is one such instrument; it is used to measure the linear density of 235U (g 235U/cm of active length in assembly) in fresh light water reactor fuel in nuclear fuel fabrication facilities. The UNCL and other active neutron interrogation detectors have historically relied on americium lithium ( 241AmLi) sources to induce fission within the sample in question. Californium-252 is under consideration as a possible alternative to the traditional 241AmLi source.more » Finally, this work relied upon a combination of experiments and Monte Carlo simulations to demonstrate the technical basis for the replacement of 241AmLi sources with 252Cf sources by evaluating the statistical uncertainty in the measurements incurred by each source and assessing the penetrability of neutrons from each source for the UNCL.« less
Study of different solutes for determination of neutron source strength based on the water bath
NASA Astrophysics Data System (ADS)
Khabaz, Rahim
2018-09-01
Time required for activation to saturation and background measurement is considered a limitation of strength determination of radionuclide neutron sources using manganese bath system (MBS). The objective of this research was to evaluate the other solutes based on water bath for presentation of the suitable replacement with MBS. With the aid Monte Carlo simulation, for three neutron sources, having different neutron spectra, immersed in six aqueous solutions, i.e., Na2SO4, VOSO4, MnSO4, Rh2(SO4)3, In2(SO4)3, I2O5, the correction factors in all nuclei of solutions for neutron losses with different process were obtained. The calculations results indicate that the Rh2(SO4)3 and VOSO4 are best options for replacing with MnSO4.
Gómez-Ros, J M; Bedogni, R; Bortot, D; Domingo, C; Esposito, A; Introini, M V; Lorenzoli, M; Mazzitelli, G; Moraleda, M; Pola, A; Sacco, D
2017-04-01
This communication describes two new instruments, based on multiple active thermal neutron detectors arranged within a single moderator, that permit to unfold the neutron spectrum (from thermal to hundreds of MeV) and to determine the corresponding integral quantities with only one exposure. This makes them especially advantageous for neutron field characterisation and workplace monitoring in neutron-producing facilities. One of the devices has spherical geometry and nearly isotropic response, the other one has cylindrical symmetry and it is only sensitive to neutrons incident along the cylinder axis. In both cases, active detectors have been specifically developed looking for the criteria of miniaturisation, high sensitivity, linear response and good photon rejection. The calculated response matrix has been validated by experimental irradiations in neutron reference fields with a global uncertainty of 3%. The measurements performed in realistic neutron fields permitted to determine the neutron spectra and the integral quantities, in particular H*(10). © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hep, J.; Konecna, A.; Krysl, V.
2011-07-01
This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weightingmore » is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV and RPV cavity of the VVER-440 reacto rand located axially at the position of maximum power and at the position of the weld. Both of these methods (the effective source and the adjoint function) are briefly described in the present paper. The paper also describes their application to the solution of fast neutron fluence and detectors activities for the VVER-440 reactor. (authors)« less
Monitoring of the Irradiated Neutron Fluence in the Neutron Transmutation Doping Process of Hanaro
NASA Astrophysics Data System (ADS)
Kim, Myong-Seop; Park, Sang-Jun
2009-08-01
Neutron transmutation doping (NTD) for silicon is a process of the creation of phosphorus impurities in intrinsic or extrinsic silicon by neutron irradiation to obtain silicon semiconductors with extremely uniform dopant distribution. HANARO has two vertical holes for the NTD, and the irradiation for 5 and 6 inch silicon ingots has been going on at one hole. In order to achieve the accurate neutron fluence corresponding to the target resistivity, the real time neutron flux is monitored by self-powered neutron detectors. After irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of activation detectors. In this work, a neutron fluence monitoring method using zirconium foils with the mass of 10 ~ 50 mg was applied to the NTD process of HANARO. We determined the proportional constant of the relationship between the resistivity of the irradiated silicon and the neutron fluence determined by using zirconium foils. The determined constant for the initially n-type silicon was 3.126 × 1019 n·Ω/cm. It was confirmed that the difference between this empirical value and the theoretical one was only 0.5%. Conclusively, the practical methodology to perform the neutron transmutation doping of silicon was established.
Goddard, Braden; Croft, Stephen; Lousteau, Angela; ...
2016-05-25
Safeguarding nuclear material is an important and challenging task for the international community. One particular safeguards technique commonly used for uranium assay is active neutron correlation counting. This technique involves irradiating unused uranium with ( α,n) neutrons from an Am-Li source and recording the resultant neutron pulse signal which includes induced fission neutrons. Although this non-destructive technique is widely employed in safeguards applications, the neutron energy spectra from an Am-Li sources is not well known. Several measurements over the past few decades have been made to characterize this spectrum; however, little work has been done comparing the measured spectra ofmore » various Am-Li sources to each other. This paper examines fourteen different Am-Li spectra, focusing on how these spectra affect simulated neutron multiplicity results using the code Monte Carlo N-Particle eXtended (MCNPX). Two measurement and simulation campaigns were completed using Active Well Coincidence Counter (AWCC) detectors and uranium standards of varying enrichment. The results of this work indicate that for standard AWCC measurements, the fourteen Am-Li spectra produce similar doubles and triples count rates. Finally, the singles count rates varied by as much as 20% between the different spectra, although they are usually not used in quantitative analysis.« less
Characterization of the graphite pile as a source of thermal neutrons
NASA Astrophysics Data System (ADS)
Vykydal, Zdenek; Králík, Miloslav; Jančář, Aleš; Kopecký, Zdeněk; Dressler, Jan; Veškrna, Martin
2015-11-01
A new graphite pile designed to serve as a standard source of thermal neutrons has been built at the Czech Metrology Institute. Actual dimensions of the pile are 1.95 m (W)×1.95 m (L)×2.0 m (H). At its center, there is a measurement channel whose dimensions are 0.4 m×0.4 m×1.25 m (depth). The channel is equipped with a calibration bench, which allows reproducible placement of the tested/calibrated device. At a distance of 80 cm from the channel axis, six holes are symmetrically located allowing the placement of radionuclide neutron sources of Pu-Be and/or Am-Be type. Spatial distribution of thermal neutron fluence in the cavity was calculated in detail with the MCNP neutron transport code. Experimentally, it was measured with two active detectors: a small 3He proportional detector by the French company LMT, type 0.5 NH 1/1 KF, and a silicon pixel detector Timepix with 10B converter foil. The relative values of thermal neutron fluence rate obtained with active detectors were converted to absolute ones using thermal neutron fluence rates measured by means of gold foil activation. The quality of thermal neutron field was characterized by the cadmium ratio.
Coyne, Mychaela Dawn; Neumann, Colby R; Zhang, Xinxin; Byrne, Patrick; Liu, Yingzi; Weaver, Connie M; Nie, Linda Huiling
2018-04-16
This study presents the development of a non-invasive method for monitoring Na in human bone. Many diseases, such as hypertension and osteoporosis, are closely associated with sodium (Na) retention in the human body. Na retention is generally evaluated by calculating the difference between dietary intake and excretion. There is currently no method to directly quantify Na retained in the body. Bone is a storage for many elements, including Na, which renders bone Na an ideal biomarker to study Na metabolism and retention. Approach: A customized compact deuterium-deuterium (DD) neutron generator was used to produce neutrons for in vivo neutron activation analysis (IVNAA), with a moderator/ reflector/ shielding assembly optimized for human hand irradiation in order to maximize the thermal neutron flux inside the irradiation cave and to limit radiation exposure to the hand and the whole body. Main Results: The experimental results show that the system is able to detect sodium levels in the bone as low as 12 g Na/g dry bone with an effective dose to the body of about 27 μSv. The simulation results agree with the numbers estimated from the experiment. Significance: This is expected to be a feasible method for measuring the change of Na in bone. The low detection limit indicates this will be a useful system to study the association between Na retention and related diseases. © 2018 Institute of Physics and Engineering in Medicine.
NASA Astrophysics Data System (ADS)
Bhike, Megha; Tornow, Werner
2014-09-01
The CUORE detector at Gran Sasso, aimed at searching for neutrinoless double-beta decay of 130Te, employs an array of TeO2 bolometer modules. To understand and identify the contribution of muon and (α,n) induced neutrons to the CUORE background, fast neutron cature cross-section data of the tellurium isotopes 126Te, 128Te and 130Te have been measured with the activation method at eight different energies in the neutron energy range 0.5-7.5 MeV. Plastic pill boxes of diameter 1.6 cm and width 1 cm containing Te were irradiated with mono-energetic neutrons produced via the 3H(p,n)3He and 2H(d,n)3He reactions. The cross-sections were determined relative to the 197Au(n, γ)198Au and 115In(n,n')115m In standard cross sections. The activities of the products were measured using 60% lead-shielded HPGe detectors at TUNL's low background counting facility. The present results are compared with the evaluated data from TENDL-2012, ENDF/B-VII.1, JEFF-3.2 and JENDL-4.0, as well as with literature data.
Internal exposure to neutron-activated 56Mn dioxide powder in Wistar rats: part 1: dosimetry.
Stepanenko, Valeriy; Rakhypbekov, Tolebay; Otani, Keiko; Endo, Satoru; Satoh, Kenichi; Kawano, Noriyuki; Shichijo, Kazuko; Nakashima, Masahiro; Takatsuji, Toshihiro; Sakaguchi, Aya; Kato, Hiroaki; Onda, Yuichi; Fujimoto, Nariaki; Toyoda, Shin; Sato, Hitoshi; Dyussupov, Altay; Chaizhunusova, Nailya; Sayakenov, Nurlan; Uzbekov, Darkhan; Saimova, Aisulu; Shabdarbaeva, Dariya; Skakov, Mazhin; Vurim, Alexandr; Gnyrya, Vyacheslav; Azimkhanov, Almas; Kolbayenkov, Alexander; Zhumadilov, Kasym; Kairikhanova, Yankar; Kaprin, Andrey; Galkin, Vsevolod; Ivanov, Sergey; Kolyzhenkov, Timofey; Petukhov, Aleksey; Yaskova, Elena; Belukha, Irina; Khailov, Artem; Skvortsov, Valeriy; Ivannikov, Alexander; Akhmedova, Umukusum; Bogacheva, Viktoria; Hoshi, Masaharu
2017-03-01
There were two sources of ionizing irradiation after the atomic bombings of Hiroshima and Nagasaki: (1) initial gamma-neutron irradiation at the moment of detonation and (2) residual radioactivity. Residual radioactivity consisted of two components: radioactive fallout containing fission products, including radioactive fissile materials from nuclear device, and neutron-activated radioisotopes from materials on the ground. The dosimetry systems DS86 and DS02 were mainly devoted to the assessment of initial radiation exposure to neutrons and gamma rays, while only brief considerations were given for the estimation of doses caused by residual radiation exposure. Currently, estimation of internal exposure of atomic bomb survivors due to dispersed radioactivity and neutron-activated radioisotopes from materials on the ground is a matter of some interest, in Japan. The main neutron-activated radionuclides in soil dust were 24 Na, 28 Al, 31 Si, 32 P, 38 Cl, 42 K, 45 Ca, 46 Sc, 56 Mn, 59 Fe, 60 Co, and 134 Cs. The radionuclide 56 Mn (T 1/2 = 2.58 h) is known as one of the dominant beta- and gamma emitters during the first few hours after neutron irradiation of soil and other materials on ground, dispersed in the form of dust after a nuclear explosion in the atmosphere. To investigate the peculiarities of biological effects of internal exposure to 56 Mn in comparison with external gamma irradiation, a dedicated experiment with Wistar rats exposed to neutron-activated 56 Mn dioxide powder was performed recently by Shichijo and coworkers. The dosimetry required for this experiment is described here. Assessment of internal radiation doses was performed on the basis of measured 56 Mn activity in the organs and tissues of the rats and of absorbed fractions of internal exposure to photons and electrons calculated with the MCNP-4C Monte Carlo using a mathematical rat phantom. The first results of this international multicenter study show that the internal irradiation due to incorporated 56 Mn powder is highly inhomogeneous, and that the most irradiated organs of the experimental animals are: large intestine, small intestine, stomach, and lungs. Accumulated absorbed organ doses were 1.65, 1.33, 0.24, 0.10 Gy for large intestine, small intestine, stomach, and lungs, respectively. Other organs were irradiated at lower dose levels. These results will be useful for interpretation of the biological effects of internal exposure of experimental rats to powdered 56 Mn as observed by Shichijo and coworkers.
NASA Technical Reports Server (NTRS)
Smathers, J. B.; Kuykendall, W. E., Jr.; Wright, R. E., Jr.; Marshall, J. R.
1973-01-01
Radioisotope measurement techniques and neutron activation analysis are evaluated for use in identifying and locating contamination sources in space environment simulation chambers. The alpha range method allows the determination of total contaminant concentration in vapor state and condensate state. A Cf-252 neutron activation analysis system for detecting oils and greases tagged with stable elements is described. While neutron activation analysis of tagged contaminants offers specificity, an on-site system is extremely costly to implement and provides only marginal detection sensitivity under even the most favorable conditions.
Investigating Structure and Dynamics of Proteins in Amorphous Phases Using Neutron Scattering.
Castellanos, Maria Monica; McAuley, Arnold; Curtis, Joseph E
2017-01-01
In order to increase shelf life and minimize aggregation during storage, many biotherapeutic drugs are formulated and stored as either frozen solutions or lyophilized powders. However, characterizing amorphous solids can be challenging with the commonly available set of biophysical measurements used for proteins in liquid solutions. Therefore, some questions remain regarding the structure of the active pharmaceutical ingredient during freezing and drying of the drug product and the molecular role of excipients. Neutron scattering is a powerful technique to study structure and dynamics of a variety of systems in both solid and liquid phases. Moreover, neutron scattering experiments can generally be correlated with theory and molecular simulations to analyze experimental data. In this article, we focus on the use of neutron techniques to address problems of biotechnological interest. We describe the use of small-angle neutron scattering to study the solution structure of biological molecules and the packing arrangement in amorphous phases, that is, frozen glasses and freeze-dried protein powders. In addition, we discuss the use of neutron spectroscopy to measure the dynamics of glassy systems at different time and length scales. Overall, we expect that the present article will guide and prompt the use of neutron scattering to provide unique insights on many of the outstanding questions in biotechnology.
Neutron detection devices with 6LiF converter layers
NASA Astrophysics Data System (ADS)
Finocchiaro, Paolo; Cosentino, Luigi; Meo, Sergio Lo; Nolte, Ralf; Radeck, Desiree
2018-01-01
The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of art of a promising lowcost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. Several configurations were studied with the GEANT4 simulation code, and then calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.
Study of neutron spectra in a water bath from a Pb target irradiated by 250 MeV protons
NASA Astrophysics Data System (ADS)
Li, Yan-Yan; Zhang, Xue-Ying; Ju, Yong-Qin; Ma, Fei; Zhang, Hong-Bin; Chen, Liang; Ge, Hong-Lin; Wan, Bo; Luo, Peng; Zhou, Bin; Zhang, Yan-Bin; Li, Jian-Yang; Xu, Jun-Kui; Wang, Song-Lin; Yang, Yong-Wei; Yang, Lei
2015-04-01
Spallation neutrons were produced by the irradiation of Pb with 250 MeV protons. The Pb target was surrounded by water which was used to slow down the emitted neutrons. The moderated neutrons in the water bath were measured by using the resonance detectors of Au, Mn and In with a cadmium (Cd) cover. According to the measured activities of the foils, the neutron flux at different resonance energies were deduced and the epithermal neutron spectra were proposed. Corresponding results calculated with the Monte Carlo code MCNPX were compared with the experimental data to check the validity of the code. The comparison showed that the simulation could give a good prediction for the neutron spectra above 50 eV, while the finite thickness of the foils greatly effected the experimental data in low energy. It was also found that the resonance detectors themselves had great impact on the simulated energy spectra. Supported by National Natural Science Foundation and Strategic Priority Research Program of the Chinese Academy of Sciences (11305229, 11105186, 91226107, 91026009, XDA03030300)
High conduction neutron absorber to simulate fast reactor environment in an existing test reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donna Post Guillen; Larry R. Greenwood; James R. Parry
2014-06-22
A new metal matrix composite material has been developed to serve as a thermal neutron absorber for testing fast reactor fuels and materials in an existing pressurized water reactor. The performance of this material was evaluated by placing neutron fluence monitors within shrouded and unshrouded holders and irradiating for up to four cycles. The monitor wires were analyzed by gamma and X-ray spectrometry to determine the activities of the activation products. Adjusted neutron fluences were calculated and grouped into three bins—thermal, epithermal, and fast—to evaluate the spectral shift created by the new material. A comparison of shrouded and unshrouded fluencemore » monitors shows a thermal fluence decrease of ~11 % for the shielded monitors. Radioisotope activity and mass for each of the major activation products is given to provide insight into the evolution of thermal absorption cross-section during irradiation. The thermal neutron absorption capability of the composite material appears to diminish at total neutron fluence levels of ~8 × 1025 n/m2. Calculated values for dpa in excess of 2.0 were obtained for two common structural materials (iron and nickel) of interest for future fast flux experiments.« less
SNS Sample Activation Calculator Flux Recommendations and Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClanahan, Tucker C.; Gallmeier, Franz X.; Iverson, Erik B.
The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) uses the Sample Activation Calculator (SAC) to calculate the activation of a sample after the sample has been exposed to the neutron beam in one of the SNS beamlines. The SAC webpage takes user inputs (choice of beamline, the mass, composition and area of the sample, irradiation time, decay time, etc.) and calculates the activation for the sample. In recent years, the SAC has been incorporated into the user proposal and sample handling process, and instrument teams and users have noticed discrepancies in the predicted activation of their samples.more » The Neutronics Analysis Team validated SAC by performing measurements on select beamlines and confirmed the discrepancies seen by the instrument teams and users. The conclusions were that the discrepancies were a result of a combination of faulty neutron flux spectra for the instruments, improper inputs supplied by SAC (1.12), and a mishandling of cross section data in the Sample Activation Program for Easy Use (SAPEU) (1.1.2). This report focuses on the conclusion that the SAPEU (1.1.2) beamline neutron flux spectra have errors and are a significant contributor to the activation discrepancies. The results of the analysis of the SAPEU (1.1.2) flux spectra for all beamlines will be discussed in detail. The recommendations for the implementation of improved neutron flux spectra in SAPEU (1.1.3) are also discussed.« less
Irazola, L; Terrón, J A; Bedogni, R; Pola, A; Lorenzoli, M; Sánchez-Nieto, B; Gómez, F; Sánchez-Doblado, F
2016-09-01
The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios. Copyright © 2016 Elsevier Ltd. All rights reserved.
A new method for measuring the neutron lifetime using an in situ neutron detector
Morris, Christopher L.; Adamek, Evan Robert; Broussard, Leah Jacklyn; ...
2017-05-30
Here, we describe a new method for measuring surviving neutrons in neutron lifetime measurements using bottled ultracold neutrons (UCN), which provides better characterization of systematic uncertainties and enables higher precision than previous measurement techniques. We also used an active detector that can be lowered into the trap to measure the neutron distribution as a function of height and measure the influence of marginally trapped UCN on the neutron lifetime measurement. Additionally, measurements have demonstrated phase-space evolution and its effect on the lifetime measurement.
A new method for measuring the neutron lifetime using an in situ neutron detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, Christopher L.; Adamek, Evan Robert; Broussard, Leah Jacklyn
Here, we describe a new method for measuring surviving neutrons in neutron lifetime measurements using bottled ultracold neutrons (UCN), which provides better characterization of systematic uncertainties and enables higher precision than previous measurement techniques. We also used an active detector that can be lowered into the trap to measure the neutron distribution as a function of height and measure the influence of marginally trapped UCN on the neutron lifetime measurement. Additionally, measurements have demonstrated phase-space evolution and its effect on the lifetime measurement.
Activation of Dosimeters Used in qa of Medical Linear Accelerators
NASA Astrophysics Data System (ADS)
Polaczek-Grelik, Kinga; Nowacka, Magdalena; Raczkowski, Maciej
2017-09-01
This paper presents the first results of a project intended to investigate γ-radiation activity induced in dosimeters used in clinical practice during routine quality assurance of high-energy photon beams emitted by electron linear accelerators. Two aspects of the activation via photonuclear reactions (X, n) of therapeutic beam and subsequent capture of secondary neutrons (n,γ) are under considerations: the influence of activation on intrinsic background of the dosimeters and exposure of dosimetrists who operate this equipment. The activation of several types of ionization chambers as well as the silicon diodes was studied after long-time exposure (10 000 MUs) of the 15 MV photon beam (Elekta Synergy). Photon fluxes obtained from spectra of γ-rays registered by HPGe spectrometer were subsequently converted to equivalent doses using appropriate coefficients. The main contribution to the induced activity comes from the neutron capture process on Al, Mn and Cu, therefore it decays quite fast with the half-lives of the order of 15 minutes. Nevertheless, the activation of chlorine was also observed. The estimated equivalent doses to skin and eye lens were in the range 0.19 - 0.62 μSv/min. However, no influence on intrinsic background signal of all studied dosimeters was observed. The preliminary results indicate that induced radioactivity of dosimeters is strongly influenced by therapeutic beam quality and neutron source strength of particular linac. This dependence will be studied deeper in order to quantify it more precisely.
An active target for the accelerator-based transmutation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grebyonkin, K.F.
1995-10-01
Consideration is given to the possibility of radical reduction in power requirements to the proton accelerator of the electronuclear reactor due to neutron multiplication both in the blanket and the target of an active material. The target is supposed to have the fast-neutron spectrum, and the blanket-the thermal one. The blanket and the target are separated by the thermal neutrons absorber, which is responsible for the neutron decoupling of the active target and blanket. Also made are preliminary estimations which illustrate that the realization of the idea under consideration can lead to significant reduction in power requirements to the protonmore » beam and, hence considerably improve economic characteristics of the electronuclear reactor.« less
Relativistic neutrons in active galactic nuclei
NASA Technical Reports Server (NTRS)
Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw
1989-01-01
The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.
NASA Astrophysics Data System (ADS)
Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.; Arens, E. E.
2014-02-01
The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.
NASA Astrophysics Data System (ADS)
Henzl, Vladimir; Daub, Brian; French, Jennifer; Matthews, June; Kovash, Michael; Wender, Stephen; Famiano, Michael; Koehler, Katrina; Yuly, Mark
2010-11-01
The determination of the light response of many organic scintillators to various types of radiation has been a subject of numerous experimental as well as theoretical studies in the past. But while the data on light response to particles with energies above 1 MeV are precise and abundant, the information on light response to very low energy particles (i.e. below 1 MeV) is scarce or completely missing. In this study we measured the light response of a BC-418 scintillator to protons with energies from 100 keV to 10 MeV. The experiment was performed at Weapons Neutron Research Facility at LANSCE, Los Alamos. The neutron beam from a spallation source is used to irradiate the active target made from BC-418 plastic scintillator. The recoiled protons detected in the active target are measured in coincidence with elastically scattered incident neutrons detected by and adjacent liquid scintillator. Time of flight of the incident neutron and the knowledge of scattering geometry allow for a kinematically complete and high-precision measurement of the light response as a function of the proton energy.
Michalczyk, Ryszard; Unkefer, Clifford J.; Bacik, John-Paul; Schrader, Tobias E.; Ostermann, Andreas; Kovalevsky, Andrey Y.; McKenna, Robert; Fisher, Suzanne Zoë
2015-01-01
Human carbonic anhydrase II (HCA II) uses a Zn-bound OH−/H2O mechanism to catalyze the reversible hydration of CO2. This catalysis also involves a separate proton transfer step, mediated by an ordered solvent network coordinated by hydrophilic residues. One of these residues, Tyr7, was previously shown to be deprotonated in the neutron crystal structure at pH 10. This observation indicated that Tyr7 has a perturbed pKa compared with free tyrosine. To further probe the pKa of this residue, NMR spectroscopic measurements of [13C]Tyr-labeled holo HCA II (with active-site Zn present) were preformed to titrate all Tyr residues between pH 5.4–11.0. In addition, neutron studies of apo HCA II (with Zn removed from the active site) at pH 7.5 and holo HCA II at pH 6 were conducted. This detailed interrogation of tyrosines in HCA II by NMR and neutron crystallography revealed a significantly lowered pKa of Tyr7 and how pH and Tyr proximity to Zn affect hydrogen-bonding interactions. PMID:25902526
Neutrons in active proton therapy: Parameterization of dose and dose equivalent.
Schneider, Uwe; Hälg, Roger A; Lomax, Tony
2017-06-01
One of the essential elements of an epidemiological study to decide if proton therapy may be associated with increased or decreased subsequent malignancies compared to photon therapy is an ability to estimate all doses to non-target tissues, including neutron dose. This work therefore aims to predict for patients using proton pencil beam scanning the spatially localized neutron doses and dose equivalents. The proton pencil beam of Gantry 1 at the Paul Scherrer Institute (PSI) was Monte Carlo simulated using GEANT. Based on the simulated neutron dose and neutron spectra an analytical mechanistic dose model was developed. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed model in order to calculate the neutron component of the delivered dose distribution for each treated patient. The neutron dose was estimated for two patient example cases. The analytical neutron dose model represents the three-dimensional Monte Carlo simulated dose distribution up to 85cm from the proton pencil beam with a satisfying precision. The root mean square error between Monte Carlo simulation and model is largest for 138MeV protons and is 19% and 20% for dose and dose equivalent, respectively. The model was successfully integrated into the PSI treatment planning system. In average the neutron dose is increased by 10% or 65% when using 160MeV or 177MeV instead of 138MeV. For the neutron dose equivalent the increase is 8% and 57%. The presented neutron dose calculations allow for estimates of dose that can be used in subsequent epidemiological studies or, should the need arise, to estimate the neutron dose at any point where a subsequent secondary tumour may occur. It was found that the neutron dose to the patient is heavily increased with proton energy. Copyright © 2016. Published by Elsevier GmbH.
Neutronic investigation and activation calculation for CFETR HCCB blankets
NASA Astrophysics Data System (ADS)
Shuling, XU; Mingzhun, LEI; Sumei, LIU; Kun, LU; Kun, XU; Kun, PEI
2017-12-01
The neutronic calculations and activation behavior of the proposed helium cooled ceramic breeder (HCCB) blanket were predicted for the Chinese Fusion Engineering Testing Reactor (CFETR) design model using the MCNP multi-particle transport code and its associated data library. The tritium self-sufficiency behavior of the HCCB blanket was assessed, addressing several important breeding-related arrangements inside the blankets. Two candidate first wall armor materials were considered to obtain a proper tritium breeding ratio (TBR). Presentations of other neutronic characteristics, including neutron flux, neutron-induced damages in terms of the accumulated dpa and helium production were also conducted. Activation, decay heat levels and contact dose rates of the components were calculated to estimate the neutron-induced radioactivity and personnel safety. The results indicate that neutron radiation is efficiently attenuated and slowed down by components placed between the plasma and toroidal field coil. The dominant nuclides and corresponding isotopes in the structural steel were discussed. A radioactivity comparison between pure beryllium and beryllium with specific impurities was also performed. After a millennium cooling time, the decay heat of all the concerned components and materials is less than 1 × 10-4 kW, and most associated in-vessel components qualify for recycling by remote handling. The results demonstrate that acceptable hands-on recycling and operation still require a further long waiting period to allow the activated products to decay.
In-vivo assessment of total body protein in rats by prompt-γ neutron activation analysis
NASA Astrophysics Data System (ADS)
Stamatelatos, Ion E.; Boozer, Carol N.; Ma, Ruimei; Yasumura, Seiichi
1997-02-01
A prompt-(gamma) neutron activation analysis facility for in vivo determination of total body protein (TBP) in rats has been designed. TBP is determined in vivo by assessment of total body nitrogen. The facility is based on a 252Cf radionuclide neutron source within a heavy water moderator assembly and two NaI(Tl) scintillation detectors. The in vivo precision of the technique, as estimated by three repeated measurements of 15 rats is 6 percent, for a radiation dose equivalent of 60 mSv. The radiation dose per measurement is sufficiently low to enable serial measurements on the same animal. MCNP-4A Monte Carlo transport code was utilized to calculate thermal neutron flux correction factors to account for differences in size and shape of the rats and calibration phantoms. Good agrement was observed in comparing body nitrogen assessment by prompt-(gamma) neutron activation and chemical carcass analysis.
Few-Nucleon Research at TUNL: Probing Two- and Three-Nucleon Interactions with Neutrons
NASA Astrophysics Data System (ADS)
Howell, C. R.; Tornow, W.; Witała, H.
2016-03-01
The central goal of few-nucleon research at the Triangle Universities Nuclear Laboratory (TUNL) is to perform measurements that contribute to advancing ab-initio calculations of nuclear structure and reactions. The program aims include evaluating theoretical treatments of few-nucleon reaction dynamics through strategically comparing theory predictions to data, determining properties of the neutron-neutron interaction that are not accessible in two-nucleon reactions, and searching for evidence of longrange features of three-nucleon interactions, e.g., spin and isospin dependence. This paper will review studies of three- and four-nucleon systems at TUNL conducted using unpolarized and polarized neutron beams. Measurements of neutron-induced reactions performed by groups at TUNL over the last six years are described in comparison with theory predictions. The results are discussed in the context of the program goals stated above. Measurements of vector analyzing powers for elastic scattering in A=3 and A=4 systems, differential cross sections for neutron-deuteron elastic scattering and neutrondeuteron breakup in several final-state configurations are described. The findings from these studies and plans for the coming three years are presented in the context of worldwide activities in this front, in particular, research presented in this session.
A study on artificial rare earth (RE2O3) based neutron absorber.
Kim, Kyung-O; Kyung Kim, Jong
2015-11-01
A new concept of a neutron absorption material (i.e., an artificial rare earth compound) was introduced for criticality control in a spent fuel storage system. In particular, spent nuclear fuels were considered as a potential source of rare earth elements because the nuclear fission of uranium produces a full range of nuclides. It was also found that an artificial rare earth compound (RE2O3) as a High-Level Waste (HLW) was naturally extracted from pyroprocessing technology developed for recovering uranium and transuranic elements (TRU) from spent fuels. In this study, various characteristics (e.g., activity, neutron absorption cross-section) were analyzed for validating the application possibility of this waste compound as a neutron absorption material. As a result, the artificial rare earth compound had a higher neutron absorption probability in the entire energy range, and it can be used for maintaining sub-criticality for more than 40 years on the basis of the neutron absorption capability of Boral™. Therefore, this approach is expected to vastly improve the efficiency of radioactive waste management by simultaneously keeping HLW and spent nuclear fuel in a restricted space. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surkov, A. V., E-mail: surkov.andrew@gmail.com; Kochkin, V. N.; Pesnya, Yu. E.
2015-12-15
A comparison of measured and calculated neutronic characteristics (fast neutron flux and fission rate of {sup 235}U) in the core and reflector of the IR-8 reactor is presented. The irradiation devices equipped with neutron activation detectors were prepared. The determination of fast neutron flux was performed using the {sup 54}Fe (n, p) and {sup 58}Ni (n, p) reactions. The {sup 235}U fission rate was measured using uranium dioxide with 10% enrichment in {sup 235}U. The determination of specific activities of detectors was carried out by measuring the intensity of characteristic gamma peaks using the ORTEC gamma spectrometer. Neutron fields inmore » the core and reflector of the IR-8 reactor were calculated using the MCU-PTR code.« less
Liu, Yiqun; Li, Chen; Liu, Cong; ...
2018-04-24
In situ contrast-matched neutron scattering was used to probe the electrolyte infiltration behavior of activated supercapacitor carbon electrodes using an aquoeus 1 M NaCl solution. It was found that only about 20% of the pore volume was infiltrated at chemical equilibrium. The partial infiltration can be attributed to the co-existence of hydrophilic and hydrophilic pores. As a result, the study suggests that for the achievement of optimal capacitance, supercapacitor electrodes should be evacuated before electrolyte infiltration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yiqun; Li, Chen; Liu, Cong
In situ contrast-matched neutron scattering was used to probe the electrolyte infiltration behavior of activated supercapacitor carbon electrodes using an aquoeus 1 M NaCl solution. It was found that only about 20% of the pore volume was infiltrated at chemical equilibrium. The partial infiltration can be attributed to the co-existence of hydrophilic and hydrophilic pores. As a result, the study suggests that for the achievement of optimal capacitance, supercapacitor electrodes should be evacuated before electrolyte infiltration.
NASA Astrophysics Data System (ADS)
Engle, J. W.; Kelsey, C. T.; Bach, H.; Ballard, B. D.; Fassbender, M. E.; John, K. D.; Birnbaum, E. R.; Nortier, F. M.
2012-12-01
In order to ascertain the potential for radioisotope production and material science studies using the Isotope Production Facility at Los Alamos National Lab, a two-pronged investigation has been initiated. The Monte Carlo for Neutral Particles eXtended (MCNPX) code has been used in conjunction with the CINDER 90 burnup code to predict neutron flux energy distributions as a result of routine irradiations and to estimate yields of radioisotopes of interest for hypothetical irradiation conditions. A threshold foil activation experiment is planned to study the neutron flux using measured yields of radioisotopes, quantified by HPGe gamma spectroscopy, from representative nuclear reactions with known thresholds up to 50 MeV.
Application of neutron transmutation doping method to initially p-type silicon material.
Kim, Myong-Seop; Kang, Ki-Doo; Park, Sang-Jun
2009-01-01
The neutron transmutation doping (NTD) method was applied to the initially p-type silicon in order to extend the NTD applications at HANARO. The relationship between the irradiation neutron fluence and the final resistivity of the initially p-type silicon material was investigated. The proportional constant between the neutron fluence and the resistivity was determined to be 2.3473x10(19)nOmegacm(-1). The deviation of the final resistivity from the target for almost all the irradiation results of the initially p-type silicon ingots was at a range from -5% to 2%. In addition, the burn-up effect of the boron impurities, the residual (32)P activity and the effect of the compensation characteristics for the initially p-type silicon were studied. Conclusively, the practical methodology to perform the neutron transmutation doping of the initially p-type silicon ingot was established.
Solid state neutron detector array
Seidel, John G.; Ruddy, Frank H.; Brandt, Charles D.; Dulloo, Abdul R.; Lott, Randy G.; Sirianni, Ernest; Wilson, Randall O.
1999-01-01
A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.
Transportable, Low-Dose Active Fast-Neutron Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihalczo, John T.; Wright, Michael C.; McConchie, Seth M.
2017-08-01
This document contains a description of the method of transportable, low-dose active fast-neutron imaging as developed by ORNL. The discussion begins with the technique and instrumentation and continues with the image reconstruction and analysis. The analysis discussion includes an example of how a gap smaller than the neutron production spot size and detector size can be detected and characterized depending upon the measurement time.
Active Interrogation for Spent Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swinhoe, Martyn Thomas; Dougan, Arden
2015-11-05
The DDA instrument for nuclear safeguards is a fast, non-destructive assay, active neutron interrogation technique using an external 14 MeV DT neutron generator for characterization and verification of spent nuclear fuel assemblies.
Novel methods for aircraft corrosion monitoring
NASA Astrophysics Data System (ADS)
Bossi, Richard H.; Criswell, Thomas L.; Ikegami, Roy; Nelson, James; Normand, Eugene; Rutherford, Paul S.; Shrader, John E.
1995-07-01
Monitoring aging aircraft for hidden corrosion is a significant problem for both military and civilian aircraft. Under a Wright Laboratory sponsored program, Boeing Defense & Space Group is investigating three novel methods for detecting and monitoring hidden corrosion: (1) atmospheric neutron radiography, (2) 14 MeV neutron activation analysis and (3) fiber optic corrosion sensors. Atmospheric neutron radiography utilizes the presence of neutrons in the upper atmosphere as a source for interrogation of the aircraft structure. Passive track-etch neutron detectors, which have been previously placed on the aircraft, are evaluated during maintenance checks to assess the presence of corrosion. Neutrons generated by an accelerator are used via activation analysis to assess the presence of distinctive elements in corrosion products, particularly oxygen. By using fast (14 MeV) neutrons for the activation, portable, high intensity sources can be employed for field testing of aircraft. The third novel method uses fiber optics as part of a smart structure technology for corrosion detection and monitoring. Fiber optic corrosion sensors are placed in the aircraft at locations known to be susceptible to corrosion. Periodic monitoring of the sensors is used to alert maintenance personnel to the presence and degree of corrosion at specific locations on the aircraft. During the atmospheric neutron experimentation, we identified a fourth method referred to as secondary emission radiography (SER). This paper discusses the development of these methods.
Photonuclear activation of pure isotopic mediums.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grohman, Mark A.; Lukosi, Eric Daniel
2010-06-01
This work simulated the response of idealized isotopic U-235, U-238, Th-232, and Pu-239 mediums to photonuclear activation with various photon energies. These simulations were conducted using MCNPX version 2.6.0. It was found that photon energies between 14-16 MeV produce the highest response with respect to neutron production rates from all photonuclear reactions. In all cases, Pu-239 responds the highest, followed by U-238. Th-232 produces more overall neutrons at lower photon energies then U-235 when material thickness is above 3.943 centimeters. The time it takes each isotopic material to reach stable neutron production rates in time is directly proportional to themore » material thickness and stopping power of the medium, where thicker mediums take longer to reach stable neutron production rates and thinner media display a neutron production plateau effect, due to the lack of significant attenuation of the activating photons in the isotopic mediums. At this time, no neutron sensor system has time resolutions capable of verifying these simulations, but various indirect methods are possible and should be explored for verification of these results.« less
Activation cross section and isomeric cross section ratio for the 76Ge(n,2n)75m,gGe process
NASA Astrophysics Data System (ADS)
Luo, Junhua; Jiang, Li; Wang, Xinxing
2018-04-01
We measured neutron-induced reaction cross sections for the 76Ge(n,2n)75m,gGe reactions and their isomeric cross section ratios σm/σg at three neutron energies between 13 and 15MeV by an activation and off-line γ-ray spectrometric technique using the K-400 Neutron Generator at the Chinese Academy of Engineering Physics (CAEP). Ge samples and Nb monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The monoenergetic neutron beams were formed via the 3H( d, n)4He reaction. The pure cross section of the ground state was derived from the absolute cross section of the metastable state and the residual nuclear decay analysis. The cross sections were also calculated using the nuclear model code TALYS-1.8 with different level density options at neutron energies varying from the reaction threshold to 20MeV. Results are discussed and compared with the corresponding literature data.
Stoupel, Eliyahu; Abramson, Evgeny; Israelevich, Peter
2011-11-02
Percutaneous coronary intervention (PCI) is one of the principal treatments of acute coronary syndrome (ACS), including acute myocardial infarction (AMI). This treatment largely expanded our knowledge on the pathophysiology of AMI and related coronary pathologies. Recent studies found a significant relationship of the timing of ACS with environmental physical activity: solar (SA), geomagnetic (GMA) and cosmic ray (CRA) activity. The aim of this study was to examine if the interrelationship of two principal culprit arteries, left anterior descending (LAD) and right coronary artery (RCA), are involved in the pathogenesis of AMI in different daily levels of GMA and CRA. Patients undergoing PCI for AMI on the day of symptoms of the disease (n=2011, 79.9% males) in the Rabin Medical Center in the years 2000-2010 were studied. The culprit arteries, LAD and RCA, correlated to AMI in zero and I0-IV0 of daily GMA and inversely to GMA related CRA (measured by neutron activity on the earth surface) and their ratio was compared. LAD (45.0%) and RCA (35.7%) were the main culprit arteries in AMI. LAD/RCA ratio increased inversely to GMA (zero=IV0, r=-0.94, p=0.017) and in correlation with daily neutron activity for LAD (r=0.97, p=0.03) and RCA (r=0.95, p=0.04). LAD/RCA ratio was 1 in IV0 of GMA (28% increase) and steadily increased to 1.62 (62% difference) at zero GMA (r=-0.94, p=0.0117), and increasing neutron activity was accompanied by increasing LAD involvement as a culprit artery in AMI. High daily neutron activity and low GMA are accompanied by increasing LAD as a culprit artery in AMI. The possible mechanisms of this finding are discussed.
Neutron-activation analysis applied to copper ores and artifacts
NASA Technical Reports Server (NTRS)
Linder, N. F.
1970-01-01
Neutron activation analysis is used for quantitative identification of trace metals in copper. Establishing a unique fingerprint of impurities in Michigan copper would enable identification of artifacts made from this copper.
NASA Technical Reports Server (NTRS)
Semones, Edward; Leitgab, Martin
2016-01-01
The ISS-RAD instrument was activated on ISS on February 1st, 2016. Integrated in ISS-RAD, the Fast Neutron Detector (FND) performs, for the first time on ISS, routine and precise direct neutron measurements between 0.5 and 8 MeV. Preliminary results for neutron dose equivalent and neutron flux energy distributions from online/on-board algorithms and offline ground analyses will be shown, along with comparisons to simulated data and previously measured neutron spectral data. On-orbit data quality and pre-launch analysis validation results will be discussed as well.
NASA Astrophysics Data System (ADS)
Trinh, N. D.; Fadil, M.; Lewitowicz, M.; Ledoux, X.; Laurent, B.; Thomas, J.-C.; Clerc, T.; Desmezières, V.; Dupuis, M.; Madeline, A.; Dessay, E.; Grinyer, G. F.; Grinyer, J.; Menard, N.; Porée, F.; Achouri, L.; Delaunay, F.; Parlog, M.
2018-07-01
Double differential neutron spectra (energy, angle) originating from a thick natCu target bombarded by a 12 MeV/nucleon 36S16+ beam were measured by the activation method and the Time-of-flight technique at the Grand Accélérateur National d'Ions Lourds (GANIL). A neutron spectrum unfolding algorithm combining the SAND-II iterative method and Monte-Carlo techniques was developed for the analysis of the activation results that cover a wide range of neutron energies. It was implemented into a graphical user interface program, called GanUnfold. The experimental neutron spectra are compared to Monte-Carlo simulations performed using the PHITS and FLUKA codes.
Manolopoulou, M; Stoulos, S; Fragopoulou, M; Brandt, R; Westmeier, W; Krivopustov, M; Sosnin, A; Zamani, M
2006-07-01
Various spallation sources have been used to transmute long-lived radioactive waste, mostly making use of the wide energy neutron fluence. In addition to neutrons, a large number of protons and gamma rays are also emitted from these sources. In this paper (nat)Cd is proved to be a useful activation detector for determining both thermal-epithermal neutron as well as secondary proton fluences. The fluences measured with (nat)Cd compared with other experimental data and calculations of DCM-DEM code were found to be in reasonable agreement. An accumulation of thermal-epithermal neutrons around the center of the target (i.e. after approx. 10 cm) and of secondary protons towards the end of the target is observed.
Characterisation of an accelerator-based neutron source for BNCT versus beam energy
NASA Astrophysics Data System (ADS)
Agosteo, S.; Curzio, G.; d'Errico, F.; Nath, R.; Tinti, R.
2002-01-01
Neutron capture in 10B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.
Watkinson, D; Rimmer, M; Kasztovszky, Z; Kis, Z; Maróti, B; Szentmiklósi, L
2014-01-01
Chloride (Cl) ions diffuse into iron objects during burial and drive corrosion after excavation. Located under corrosion layers, Cl is inaccessible to many analytical techniques. Neutron analysis offers non-destructive avenues for determining Cl content and distribution in objects. A pilot study used prompt gamma activation analysis (PGAA) and prompt gamma activation imaging (PGAI) to analyse the bulk concentration and longitudinal distribution of Cl in archaeological iron objects. This correlated with the object corrosion rate measured by oxygen consumption, and compared well with Cl measurement using a specific ion meter. High-Cl areas were linked with visible damage to the corrosion layers and attack of the iron core. Neutron techniques have significant advantages in the analysis of archaeological metals, including penetration depth and low detection limits. PMID:26028670
In-situ neutron diffraction characterization of temperature dependence deformation in α-uranium
NASA Astrophysics Data System (ADS)
Calhoun, C. A.; Garlea, E.; Sisneros, T. A.; Agnew, S. R.
2018-04-01
In-situ strain neutron diffraction measurements were conducted at temperature on specimens coming from a clock-rolled α-uranium plate, and Elasto-Plastic Self-Consistent (EPSC) modeling was employed to interpret the findings. The modeling revealed that the active slip systems exhibit a thermally activated response, while deformation twinning remains athermal over the temperature ranges explored (25-150 °C). The modeling also allowed assessment of the effects of thermal residual stresses on the mechanical response during compression. These results are consistent with those from a prior study of room-temperature deformation, indicating that the thermal residual stresses strongly influence the internal strain evolution of grain families, as monitored with neutron diffraction, even though accounting for these residual stresses has little effect on the macroscopic flow curve, except in the elasto-plastic transition.
Development of the prototype pneumatic transfer system for ITER neutron activation system.
Cheon, M S; Seon, C R; Pak, S; Lee, H G; Bertalot, L
2012-10-01
The neutron activation system (NAS) measures neutron fluence at the first wall and the total neutron flux from the ITER plasma, providing evaluation of the fusion power for all operational phases. The pneumatic transfer system (PTS) is one of the key components of the NAS for the proper operation of the system, playing a role of transferring encapsulated samples between the capsule loading machine, irradiation stations, counting stations, and disposal bin. For the validation and the optimization of the design, a prototype of the PTS was developed and capsule transfer tests were performed with the developed system.
Thermal neutron radiative capture cross-section of 186W(n, γ)187W reaction
NASA Astrophysics Data System (ADS)
Tan, V. H.; Son, P. N.
2016-06-01
The thermal neutron radiative capture cross section for 186W(n, γ)187W reaction was measured by the activation method using the filtered neutron beam at the Dalat research reactor. An optimal composition of Si and Bi, in single crystal form, has been used as neutron filters to create the high-purity filtered neutron beam with Cadmium ratio of Rcd = 420 and peak energy En = 0.025 eV. The induced activities in the irradiated samples were measured by a high resolution HPGe digital gamma-ray spectrometer. The present result of cross section has been determined relatively to the reference value of the standard reaction 197Au(n, γ)198Au. The necessary correction factors for gamma-ray true coincidence summing, and thermal neutron self-shielding effects were taken into account in this experiment by Monte Carlo simulations.
Translations on Eastern Europe, Scientific Affairs, No. 562
1977-10-28
remodeling and mod- ernization of the institute’s facilities resulted in an increase in the reactor’s neutron flux and power output capacity and...research technique involving the use of the experimental reactor is neutron activation analysis. Using this method it is possible to produce...artificial radioactivity through the bombardment of non-active substances with neutrons . This is one of the most sensitive methods of chemical analysis
NASA Astrophysics Data System (ADS)
Zhang, Jin-Zhao; Tuo, Xian-Guo
2014-07-01
We present the design and optimization of a prompt γ-ray neutron activation analysis (PGNAA) thermal neutron output setup based on Monte Carlo simulations using MCNP5 computer code. In these simulations, the moderator materials, reflective materials, and structure of the PGNAA 252Cf neutrons of thermal neutron output setup are optimized. The simulation results reveal that the thin layer paraffin and the thick layer of heavy water moderating effect work best for the 252Cf neutron spectrum. Our new design shows a significantly improved performance of the thermal neutron flux and flux rate, that are increased by 3.02 times and 3.27 times, respectively, compared with the conventional neutron source design.
NASA Astrophysics Data System (ADS)
Shizuma, Kiyoshi; Endo, Satoru; Shinozaki, Kenji; Fukushima, Hiroshi
2013-05-01
Fast neutron activation data for 63Ni in copper samples exposed to the Hiroshima atomic bomb are important in evaluating neutron doses to the survivors. Up to until now, accelerator mass spectrometry and liquid scintillation counting methods have been applied in 63Ni measurements and data were accumulated within 1500 m from the hypocenter. The slope of the activation curve versus distance shows reasonable agreement with the calculation result, however, data near the hypocenter are scarce. In the present work, two copper samples obtained from the Atomic bomb dome (155 m from the hypocenter) and the Bank of Japan building (392 m) were utilized in 63Ni beta-ray measurement with a Si surface barrier detector. Additionally, microscopic observation of the metal surfaces was performed for the first time. Only upper limit of 63Ni production was obtained for copper sample of the Atomic bomb dome. The result of the 63Ni measurement for Bank of Japan building show reasonable agreement with the AMS measurement and to fast neutron activation calculations based on the Dosimetry System 2002 (DS02) neutrons.
NASA Astrophysics Data System (ADS)
Windsor, Colin G.; Morgan, J. Guy
2017-11-01
The neutron and gamma ray fluxes within the shielded high-temperature superconducting central columns of proposed spherical tokamak power plants have been studied using the MCNP Monte-Carlo code. The spatial, energy and angular variations of the fluxes over the shield and superconducting core are computed and used to specify experimental studies relevant to radiation damage and activation. The mean neutron and gamma fluxes, averaged over energy and angle, are shown to decay exponentially through the shield and then to remain roughly constant in the core region. The mean energy of neutrons is shown to decay more slowly than the neutron flux through the shield while the gamma energy is almost constant around 2 MeV. The differential neutron and gamma fluxes as a function of energy are examined. The neutron spectrum shows a fusion peak around 1 MeV changing at lower energies into an epithermal E -0.85 variation and at thermal energies to a Maxwellian distribution. The neutron and gamma energy spectra are defined for the outer surface of the superconducting core, relevant to damage studies. The inclusion of tungsten boride in the shield is shown to reduce energy deposition. A series of plasma scenarios with varying plasma major radii between 0.6 and 2.5 m was considered. Neutron and gamma fluxes are shown to decay exponentially with plasma radius, except at low shield thickness. Using the currently known experimental fluence limitations for high temperature superconductors, the continuous running time before the fluence limit is reached has been calculated to be days at 1.4 m major radius increasing to years at 2.2 m. This work helps validate the concept of the spherical tokamak route to fusion power by demonstrating that the neutron shielding required for long lifetime fusion power generation can be accommodated in a compact device.
NASA Astrophysics Data System (ADS)
Zhadan, A.; Sotnikov, V.; Adam, J.; Solnyshkin, A.; Tyutyunnikov, S.; Voronko, V.; Zhivkov, P.; Zavorka, L.
2017-06-01
The possibility of medical radionuclide 64,67Cu production in spallation neutron spectrum induced by proton and deuteron beams has been studied. Experiments were performed on a massive natural uranium target at the accelerators Phasotron and Nuclotron JINR, Dubna. The main disadvantage of this method is a high 64Cu/67Cu ratio in the final product at EOB. Significantly reduce 64Cu/67Cu ratio is only possible if you use zinc target enriched with 68Zn or 67Zn. The MCNPX simulation of 67,64Cu production and definition of the theoretical limit of the specific activity of 67,64Cu by irradiation of natural zinc and zinc enriched by the 68 isotope were performed. The neutron flux density shouldnot be less than 5.1013 n/cm2/s if we want to obtain high specific activity (>200 GBq/mg) of 67Cu.
NASA Astrophysics Data System (ADS)
Batistoni, P.; Popovichev, S.; Cufar, A.; Ghani, Z.; Giacomelli, L.; Jednorog, S.; Klix, A.; Lilley, S.; Laszynska, E.; Loreti, S.; Packer, L.; Peacock, A.; Pillon, M.; Price, R.; Rebai, M.; Rigamonti, D.; Roberts, N.; Tardocchi, M.; Thomas, D.; Contributors, JET
2018-02-01
In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is ±10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e. the neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within ±5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.
Active-Interrogation Measurements of Fast Neutrons from Induced Fission in Low-Enriched Uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. L. Dolan; M. J. Marcath; M. Flaska
2014-02-01
A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre (JRC) in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutron to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials.
Non-destructive method for determining neutron exposure
Gold, R.; McElroy, W.N.
1983-11-01
A non-destructive method for determination of neutron exposure in an object, such as a reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure at regions of interest within the object.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Jay Prakash
The effective application of international safeguards to research reactors requires verification of spent fuel as well as fresh fuel. To accomplish this goal various nondestructive and destructive assay techniques have been developed in the US and around the world. The Advanced Experimental Fuel Counter (AEFC) is a nondestructive assay (NDA) system developed at Los Alamos National Laboratory (LANL) combining both neutron and gamma measurement capabilities. Since spent fuel assemblies are stored in water, the system was designed to be watertight to facilitate underwater measurements by inspectors. The AEFC is comprised of six 3He detectors as well as a shielded andmore » collimated ion chamber. The 3He detectors are used for active and passive neutron coincidence counting while the ion chamber is used for gross gamma counting. Active coincidence measurement data is used to measure residual fissile mass, whereas the passive coincidence measurement data along with passive gamma measurement can provide information about burnup, cooling time, and initial enrichment. In the past, most of the active interrogation systems along with the AEFC used an AmLi neutron interrogation source. Owing to the difficulty in obtaining an AmLi source, a 252Cf spontaneous fission (SF) source was used during a 2014 field trail in Uzbekistan as an alternative. In this study, experiments were performed to calibrate the AEFC instrument and compare use of the 252Cf spontaneous fission source and the AmLi (α,n) neutron emission source. The 252Cf source spontaneously emits bursts of time-correlated prompt fission neutrons that thermalize in the water and induce fission in the fuel assembly. The induced fission (IF) neutrons are also time correlated resulting in more correlated neutron detections inside the 3He detector, which helps reduce the statistical errors in doubles when using the 252Cf interrogation source instead of the AmLi source. In this work, two MTR fuel assemblies varying both in size and number of fuel plates were measured using 252Cf and AmLi active interrogation sources. This paper analyzes time correlated induced fission (TCIF) from fresh MTR fuel assemblies due to 252Cf and AmLi active interrogation sources.« less
Benchmarking of Neutron Flux Parameters at the USGS TRIGA Reactor in Lakewood, Colorado
NASA Astrophysics Data System (ADS)
Alzaabi, Osama E.
The USGS TRIGA Reactor (GSTR) located at the Denver Federal Center in Lakewood Colorado provides opportunities to Colorado School of Mines students to do experimental research in the field of neutron activation analysis. The scope of this thesis is to obtain precise knowledge of neutron flux parameters at the GSTR. The Colorado School of Mines Nuclear Physics group intends to develop several research projects at the GSTR, which requires the precise knowledge of neutron fluxes and energy distributions in several irradiation locations. The fuel burn-up of the new GSTR fuel configuration and the thermal neutron flux of the core were recalculated since the GSTR core configuration had been changed with the addition of two new fuel elements. Therefore, a MCNP software package was used to incorporate the burn up of reactor fuel and to determine the neutron flux at different irradiation locations and at flux monitoring bores. These simulation results were compared with neutron activation analysis results using activated diluted gold wires. A well calibrated and stable germanium detector setup as well as fourteen samplers were designed and built to achieve accuracy in the measurement of the neutron flux. Furthermore, the flux monitoring bores of the GSTR core were used for the first time to measure neutron flux experimentally and to compare to MCNP simulation. In addition, International Atomic Energy Agency (IAEA) standard materials were used along with USGS national standard materials in a previously well calibrated irradiation location to benchmark simulation, germanium detector calibration and sample measurements to international standards.
High yield neutron generators using the DD reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.
2013-04-19
A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 Multiplication-Sign 10{sup 9} n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber,more » increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 {mu}s have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.« less
High yield neutron generators using the DD reaction
NASA Astrophysics Data System (ADS)
Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T.; Ji, Qing; Ludewigt, B. A.; Jones, G.
2013-04-01
A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 × 109 n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 μs have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.
Solid state neutron detector array
Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.
1999-08-17
A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.
NASA Astrophysics Data System (ADS)
Yamamoto, T.; Matsumura, A.; Yamamoto, K.; Kumada, H.; Shibata, Y.; Nose, T.
2002-07-01
The aim of this study was to determine the in-phantom thermal neutron distribution derived from neutron beams for intraoperative boron neutron capture therapy (IOBNCT). Gold activation wires arranged in a cylindrical water phantom with (void-in-phantom) or without (standard phantom) a cylinder styrene form placed inside were irradiated by using the epithermal beam (ENB) and the mixed thermal-epithermal beam (TNB-1) at the Japan Research Reactor No 4. With ENB, we observed a flattened distribution of thermal neutron flux and a significantly enhanced thermal flux delivery at a depth compared with the results of using TNB-1. The thermal neutron distribution derived from both the ENB and TNB-1 was significantly improved in the void-in-phantom, and a double high dose area was formed lateral to the void. The flattened distribution in the circumference of the void was observed with the combination of ENB and the void-in-phantom. The measurement data suggest that the ENB may provide a clinical advantage in the form of an enhanced and flattened dose delivery to the marginal tissue of a post-operative cavity in which a residual and/or microscopically infiltrating tumour often occurs. The combination of the epithermal neutron beam and IOBNCT will improve the clinical results of BNCT for brain tumours.
A feasibility study of the Tehran research reactor as a neutron source for BNCT.
Kasesaz, Yaser; Khalafi, Hossein; Rahmani, Faezeh; Ezati, Arsalan; Keyvani, Mehdi; Hossnirokh, Ashkan; Shamami, Mehrdad Azizi; Monshizadeh, Mahdi
2014-08-01
Investigation on the use of the Tehran Research Reactor (TRR) as a neutron source for Boron Neutron Capture Therapy (BNCT) has been performed by calculating and measuring energy spectrum and the spatial distribution of neutrons in all external irradiation facilities, including six beam tubes, thermal column, and the medical room. Activation methods with multiple foils and a copper wire have been used for the mentioned measurements. The results show that (1) the small diameter and long length beam tubes cannot provide sufficient neutron flux for BNCT; (2) in order to use the medical room, the TRR core should be placed in the open pool position, in this situation the distance between the core and patient position is about 400 cm, so neutron flux cannot be sufficient for BNCT; and (3) the best facility which can be adapted for BNCT application is the thermal column, if all graphite blocks can be removed. The epithermal and fast neutron flux at the beginning of this empty column are 4.12×10(9) and 1.21×10(9) n/cm(2)/s, respectively, which can provide an appropriate neutron beam for BNCT by designing and constructing a proper Beam Shaping Assembly (BSA) structure. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rahmani, Faezeh; Shahriari, Majid; Minoochehr, Abdolhamid; Nedaie, Hasan
2011-06-01
A hybrid photoneutron target including natural uranium has been studied for a 20 MeV linear electron accelerator (Linac) based Boron Neutron Capture Therapy (BNCT) facility. In this study the possibility of using uranium to increase the neutron intensity has been investigated by focusing on the time dependence behavior of the build-up and decay of the delayed gamma rays from fission fragments and activation products through photo-fission reactions in the BSA (Beam Shaping Assembly) configuration design. Delayed components of neutrons and photons were calculated. The obtained BSA parameters are in agreement with the IAEA recommendation and compared to the hybrid photoneutron target without U. The epithermal flux in the suggested design is 2.67E9 (n/cm 2s/mA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.
2014-02-18
The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes inmore » two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.« less
Compensated gadolinium-loaded plastic scintillators for thermal neutron detection (and counting)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumazert, Jonathan; Coulon, Romain; Bertrand, Guillaume H. V.
2015-07-01
Plastic scintillator loading with gadolinium-rich organometallic complexes shows a high potential for the deployment of efficient and cost-effective neutron detectors. Due to the low-energy photon and electron signature of thermal neutron capture by gadolinium-155 and gadolinium-157, alternative treatment to Pulse Shape Discrimination has to be proposed in order to display a trustable count rate. This paper discloses the principle of a compensation method applied to a two-scintillator system: a detection scintillator interacts with photon radiation and is loaded with gadolinium organometallic compound to become a thermal neutron absorber, while a non-gadolinium loaded compensation scintillator solely interacts with the photon partmore » of the incident radiation. Posterior to the nonlinear smoothing of the counting signals, a hypothesis test determines whether the resulting count rate after photon response compensation falls into statistical fluctuations or provides a robust image of a neutron activity. A laboratory prototype is tested under both photon and neutron irradiations, allowing us to investigate the performance of the overall compensation system in terms of neutron detection, especially with regards to a commercial helium-3 counter. The study reveals satisfactory results in terms of sensitivity and orientates future investigation toward promising axes. (authors)« less
Absolute efficiency calibration of 6LiF-based solid state thermal neutron detectors
NASA Astrophysics Data System (ADS)
Finocchiaro, Paolo; Cosentino, Luigi; Lo Meo, Sergio; Nolte, Ralf; Radeck, Desiree
2018-03-01
The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of the art of a promising low-cost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. A few configurations were studied with the GEANT4 simulation code, and the intrinsic efficiency of the corresponding detectors was calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured intrinsic detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.
NASA Astrophysics Data System (ADS)
Pavlov, S. S.; Dmitriev, A. Yu.; Chepurchenko, I. A.; Frontasyeva, M. V.
2014-11-01
The automation system for measurement of induced activity of gamma-ray spectra for multi-element high volume neutron activation analysis (NAA) was designed, developed and implemented at the reactor IBR-2 at the Frank Laboratory of Neutron Physics. The system consists of three devices of automatic sample changers for three Canberra HPGe detector-based gamma spectrometry systems. Each sample changer consists of two-axis of linear positioning module M202A by DriveSet company and disk with 45 slots for containers with samples. Control of automatic sample changer is performed by the Xemo S360U controller by Systec company. Positioning accuracy can reach 0.1 mm. Special software performs automatic changing of samples and measurement of gamma spectra at constant interaction with the NAA database.
Hashikin, Nurul Ab. Aziz; Yeong, Chai-Hong; Abdullah, Basri Johan Jeet; Ng, Kwan-Hoong; Chung, Lip-Yong; Dahalan, Rehir; Perkins, Alan Christopher
2015-01-01
Introduction Samarium-153 (153Sm) styrene divinylbenzene microparticles were developed as a surrogate for Yttrium-90 (90Y) microspheres in liver radioembolization therapy. Unlike the pure beta emitter 90Y, 153Sm possess both therapeutic beta and diagnostic gamma radiations, making it possible for post-procedure imaging following therapy. Methods The microparticles were prepared using commercially available cation exchange resin, Amberlite IR-120 H+ (620–830 μm), which were reduced to 20–40 μm via ball mill grinding and sieve separation. The microparticles were labelled with 152Sm via ion exchange process with 152SmCl3, prior to neutron activation to produce radioactive 153Sm through 152Sm(n,γ)153Sm reaction. Therapeutic activity of 3 GBq was referred based on the recommended activity used in 90Y-microspheres therapy. The samples were irradiated in 1.494 x 1012 n.cm-2.s-1 neutron flux for 6 h to achieve the nominal activity of 3.1 GBq.g-1. Physicochemical characterisation of the microparticles, gamma spectrometry, and in vitro radiolabelling studies were carried out to study the performance and stability of the microparticles. Results Fourier Transform Infrared (FTIR) spectroscopy of the Amberlite IR-120 resins showed unaffected functional groups, following size reduction of the beads. However, as shown by the electron microscope, the microparticles were irregular in shape. The radioactivity achieved after 6 h neutron activation was 3.104 ± 0.029 GBq. The specific activity per microparticle was 53.855 ± 0.503 Bq. Gamma spectrometry and elemental analysis showed no radioactive impurities in the samples. Radiolabelling efficiencies of 153Sm-Amberlite in distilled water and blood plasma over 48 h were excellent and higher than 95%. Conclusion The laboratory work revealed that the 153Sm-Amberlite microparticles demonstrated superior characteristics for potential use in hepatic radioembolization. PMID:26382059
Comparison of Impurities in Charcoal Sorbents Found by Neutron Activation Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doll, Charles G.; Finn, Erin C.; Cantaloub, Michael G.
2013-01-01
Abstract: Neutron activation of gas samples in a reactor often requires a medium to retain sufficient amounts of the gas for analysis. Charcoal is commonly used to adsorb gas and hold it for activation; however, the amount of activated sodium in the charcoal after irradiation swamps most signals of interest. Neutron activation analysis (NAA) was performed on several commonly available charcoal samples in an effort to determine the activation background. The results for several elements, including the dominant sodium element, are reported. It was found that ECN charcoal had the lowest elemental background, containing sodium at 2.65 ± 0.05 ppm,more » as well as trace levels of copper and tungsten.« less
Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers
NASA Astrophysics Data System (ADS)
Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.
2014-05-01
To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.
Xie, Qingge; Liang, Jiangtao; Stoica, Alexandru Dan; ...
2017-05-17
Grain orientation dependent behavior during tension-compression type of fatigue loading in a TWIP steel was studied using in-situ neutron diffraction. Orientation zones with dominant behavior of (1) twinning-de-twinning, (2) twinning-re-twinning followed by twinning-de-twinning, (3) twinning followed by dislocation slip and (4) dislocation slip were identified. Jumps of the orientation density were evidenced in neutron diffraction peaks which explains the macroscopic asymmetric behavior. The asymmetric behavior in early stage of fatigue loading is mainly due to small volume fraction of twins in comparison with that at later stage. As a result, easy activation of the de-twin makes the macroscopically unloading behaviormore » nonlinear.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Qingge; Liang, Jiangtao; Stoica, Alexandru Dan
Grain orientation dependent behavior during tension-compression type of fatigue loading in a TWIP steel was studied using in-situ neutron diffraction. Orientation zones with dominant behavior of (1) twinning-de-twinning, (2) twinning-re-twinning followed by twinning-de-twinning, (3) twinning followed by dislocation slip and (4) dislocation slip were identified. Jumps of the orientation density were evidenced in neutron diffraction peaks which explains the macroscopic asymmetric behavior. The asymmetric behavior in early stage of fatigue loading is mainly due to small volume fraction of twins in comparison with that at later stage. As a result, easy activation of the de-twin makes the macroscopically unloading behaviormore » nonlinear.« less
Neutron activation determination of iridium, gold, platinum, and silver in geologic samples
Millard, H.T.
1987-01-01
Low-level methods for the determination of iridium and other noble metals have become increasingly important in recent years due to interest in locating abundance anomalies associated with the Cretaceous and Tertiary (K-T) boundary. Typical iridium anomalies are in the range of 1 to 100 ??g/kg (ppb). Thus methods with detection limits near 0.1 ??g/kg should be adequate to detect K-T boundary anomalies. Radiochemical neutron activation analysis methods continue to be required although instrumental neutron activation analysis techniques employing elaborate gamma-counters are under development. In the procedure developed in this study samples irradiated in the epithermal neutron facility of the U. S. Geological Survey TRIGA Reactor (Denver, Colorado) are treated with a mini-fire assay technique. The iridium, gold, and silver are collected in a 1-gram metallic lead button. Primary contaminants at this stage are arsenic and antimony. These can be removed by heating the button with a mixture of sodium perioxide and sodium hydroxide. The resulting 0.2-gram lead bead is counted in a Compton suppression spectrometer. Carrier yields are determined by reirradiation of the lead beads. This procedure has been applied to the U.S.G.S. Standard Rock PCC-1 and samples from K-T boundary sites in the Western Interior of North America. ?? 1987 Akade??miai Kiado??.
NASA Astrophysics Data System (ADS)
Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.
2012-08-01
A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).
Development of a lithium fluoride zinc sulfide based neutron multiplicity counter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowles, Christian; Behling, Spencer; Baldez, Phoenix
Past 3He shortages led to investigations into replacement options for neutron detectors in systems that previously used 3He-based technologies. The goal of this research was to investigate the feasibility of a full-scale lithium fluoride with silver activated zinc sulfide (LiF/ZnS) based neutron multiplicity counter. The LiF/ZnS based neutron multiplicity counter (LiNMC) was developed based on an iterative process between modeling and experimental measurements. Each active region of the LiNMC contains five sheets of LiF/ZnS sandwiched between six sheets of wavelength shifting plastic to form neutron detection stacks. The wavelength shifted scintillation light was collected by photomultiplier tubes located on eachmore » end of the stacks. Twelve such detector stacks were placed around a sample chamber in a square arrangement with lithiated high density polyethylene blocks in the corners to reflect high energy neutrons and capture low energy neutrons. Preliminary calibration with a 252Cf neutron source showed that the LiNMC was able to achieve 36% neutron detection efficiency (ε) and an 11.7 μs neutron die-away time (τ) for a doubles Figure-of-merit (ε2/ τ) of 109. This is the highest doubles Figure-of-merit performance measured to-date for a 3He-free neutron multiplicity counter system. By the end of this project, the LiNMC’s basic components were integrated into a single laboratory scale system capable of proof-of-concept measurements.« less
Use of Apollo 17 Epoch Neutron Spectrum as a Benchmark in Testing LEND Collimated Sensor
NASA Technical Reports Server (NTRS)
Chin, Gordon; Sagdeev, R.; Milikh, G.
2011-01-01
The Apollo 17 neutron experiment LPNE provided a unique set of data on production of neutrons in the Lunar soil bombarded by Galactic Cosmic Rays (GCR). It serves as valuable "ground-truth" in the age of orbital remote sensing. We used the neutron data attributed to Apollo 17 epoch as a benchmark for testing the LEND's collimated sensor, as introduced by the geometry of collimator and efficiency of He3 counters. The latter is defined by the size of gas counter and pressure inside it. The intensity and energy spectrum of neutrons escaping the lunar surface are dependent on incident flux of Galactic Cosmic Rays (GCR) whose variability is associated with Solar Cycle and its peculiarities. We obtain first the share of neutrons entering through the field of view of collimator as a fraction of the total neutron flux by using the angular distribution of neutron exiting the Moon described by our Monte Carlo code. We computed next the count rate of the 3He sensor by using the neutron energy spectrum from McKinney et al. [JGR, 2006] and by consider geometry and gas pressure of the LEND sensor. Finally the neutron count rate obtained for the Apollo 17 epoch characterized by intermediate solar activity was adjusted to the LRO epoch characterized by low solar activity. It has been done by taking into account solar modulation potential, which affects the GCR flux, and in turn changes the neutron albedo flux.
NASA Astrophysics Data System (ADS)
Remetti, Romolo; Gandolfo, Giada; Lepore, Luigi; Cherubini, Nadia
2017-10-01
In the frame of Chemical, Biological, Radiological, and Nuclear defense European activities, the ENEA, the Italian National Agency for New Technologies, Energy and Sustainable Economic Development, is proposing the Neutron Active Interrogation system (NAI), a device designed to find transuranic-based Radioactive Dispersal Devices hidden inside suspected packages. It is based on Differential Die-Away time Analysis, an active neutron technique targeted in revealing the presence of fissile material through detection of induced fission neutrons. Several Monte Carlo simulations, carried out by MCNPX code, and the development of ad-hoc design methods, have led to the realization of a first prototype based on a 14 MeV d-t neutron generator coupled with a tailored moderating structure, and an array of helium-3 neutron detectors. The complete system is characterized by easy transportability, light weight, and real-time response. First results have shown device's capability to detect gram quantities of fissile materials.
NASA Astrophysics Data System (ADS)
Lan, Chang-Lin; Zhang, Yi; Lv, Tao; Xie, Bao-Lin; Peng, Meng; Yao, Ze-En; Chen, Jin-Gen; Kong, Xiang-Zhong
2017-04-01
The 232Th(n, γ)233Th neutron capture reaction cross sections were measured at average neutron energies of 14.1 MeV and 14.8 MeV using the activation method. The neutron flux was determined using the monitor reaction 27Al(n,α)24Na. The induced gamma-ray activities were measured using a low background gamma ray spectrometer equipped with a high resolution HPGe detector. The experimentally determined cross sections were compared with the data in the literature, and the evaluated data of ENDF/B-VII.1, JENDL-4.0u+, and CENDL-3.1. The excitation functions of the 232Th(n,γ)233Th reaction were also calculated theoretically using the TALYS1.6 computer code. Supported by Chinese TMSR Strategic Pioneer Science and Technology Project-The Th-U Fuel Physics Term (XDA02010100) and National Natural Science Foundation of China (11205076, 21327801)
A large 2D PSD for thermal neutron detection
NASA Astrophysics Data System (ADS)
Knott, R. B.; Smith, G. C.; Watt, G.; Boldeman, J. W.
1997-02-01
A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 × 640 mm 2. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimise parallax, the gas mixture was 190 kPa 3He plus 100 kPa CF 4, and the active volume had a thickness of 30 mm. The design maximum neutron count rate of the detector was 10 5 events per secod. The (calculated) neutron detection efficiency was 60% for 2 Å neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 × 5 mm 2) was thereby defined by the wire geometry. A 16-channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise line width of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp, USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display.
Planetary Geochemistry Using Active Neutron and Gamma Ray Instrumentation
NASA Technical Reports Server (NTRS)
Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.
2010-01-01
The Pulsed Neutron Generator-Gamma Ray And Neutron Detector (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth, The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asterOIds, comets and the satellites of the outer planets, Gamma-Ray Spectrometers have been incorporated into numerous orbital planetary science missions and, especially in the case of Mars Odyssey, have contributed detailed maps of the elemental composition over the entire surface of Mars, Neutron detectors have also been placed onboard orbital missions such as the Lunar Reconnaissance Orbiter and Lunar Prospector to measure the hydrogen content of the surface of the moon, The DAN in situ experiment on the Mars Science Laboratory not only includes neutron detectors, but also has its own neutron generator, However, no one has ever combined the three into one instrument PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument that can determine subsurface elemental composition without drilling. We are testing PNG-GRAND at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 m x 1 m granite structure in an empty field, We will present data from the operation of PNG-GRAND in various experimental configurations on a known sample in a geometry that is identical to that which can be achieved on a planetary surface. We will also compare the material composition results inferred from our experiments to both an independent laboratory elemental composition analysis and MCNPX computer modeling results,
NASA Astrophysics Data System (ADS)
Panczyk, E.; Ligeza, M.; Walis, L.
1999-01-01
In the Institute of Nuclear Chemistry and Technology in Warsaw in collaboration with the Department of Preservation and Restoration of Works of Art of the Academy of Fine Arts in Cracow and National Museum in Warsaw systematic studies using nuclear methods, particulary instrumental neutron activation analysis and X-ray fluorescence analysis, have been carried out on the panel paintings from the Krakowska- Nowosadecka School and Silesian School of the period from the XIV-XVII century, Chinese and Thai porcelains and mummies fillings of Egyptian sarcophagi. These studies will provide new data to the existing data base, will permit to compare materials used by various schools and individual artists.
Active Neutron and Gamma-Ray Instrumentation for In Situ Planetary Science Applications
NASA Technical Reports Server (NTRS)
Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, A.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.;
2011-01-01
We describe the development of an instrument capable of detailed in situ bulk geochemical analysis of the surface of planets, moons, asteroids, and comets. This instrument technology uses a pulsed neutron generator to excite the solid materials of a planet and measures the resulting neutron and gamma-ray emission with its detector system. These time-resolved neutron and gamma-ray data provide detailed information about the bulk elemental composition, chemical context, and density distribution of the soil within 50 cm of the surface. While active neutron scattering and neutron-induced gamma-ray techniques have been used extensively for terrestrial nuclear well logging applications, our goal is to apply these techniques to surface instruments for use on any solid solar system body. As described, experiments at NASA Goddard Space Flight Center use a prototype neutron-induced gamma-ray instrument and the resulting data presented show the promise of this technique for becoming a versatile, robust, workhorse technology for planetary science, and exploration of any of the solid bodies in the solar system. The detection of neutrons at the surface also provides useful information about the material. This paper focuses on the data provided by the gamma-ray detector.
Schumann, Dorothea; Stowasser, Tanja; Volmert, Benjamin; Günther-Leopold, Ines; Linder, Hanspeter; Wieland, Erich
2014-06-03
The (14)C content in activated steel components from the Swiss Nuclear Power Plant (NPP) Gösgen and the Spallation Neutron Source SINQ at the Paul Scherrer Institute is determined using a wet chemistry digestion technique and liquid scintillation counting for (14)C activity measurements. The (14)C activity of an activated fuel assembly steel nut from the NPP is further compared with theoretical predictions made on the basis of a Monte Carlo reactor model for this NPP. Knowledge of the (14)C inventory in these activated steel materials is important in conjunction with future corrosion studies on these materials aimed at identifying the (14)C containing organic compounds possibly formed in the cement-based near field of a repository for radioactive waste.
Study on induced radioactivity of China Spallation Neutron Source
NASA Astrophysics Data System (ADS)
Wu, Qing-Biao; Wang, Qing-Bin; Wu, Jing-Min; Ma, Zhong-Jian
2011-06-01
China Spallation Neutron Source (CSNS) is the first High Energy Intense Proton Accelerator planned to be constructed in China during the State Eleventh Five-Year Plan period, whose induced radioactivity is very important for occupational disease hazard assessment and environmental impact assessment. Adopting the FLUKA code, the authors have constructed a cylinder-tunnel geometric model and a line-source sampling physical model, deduced proper formulas to calculate air activation, and analyzed various issues with regard to the activation of different tunnel parts. The results show that the environmental impact resulting from induced activation is negligible, whereas the residual radiation in the tunnels has a great influence on maintenance personnel, so strict measures should be adopted.
High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
David L. Chichester; James T. Johnson; Edward H. Seabury
2012-07-01
Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials.more » The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations and experiments, using fission-spectrum neutron sources to assess neutron transmission through composite low-Z attenuators.« less
Neutron activation analysis traces copper artifacts to geographical point of origin
NASA Technical Reports Server (NTRS)
Conway, M.; Fields, P.; Friedman, A.; Kastner, M.; Metta, D.; Milsted, J.; Olsen, E.
1967-01-01
Impurities remaining in the metallic copper are identified and quantified by spectrographic and neutron activation analysis. Determination of the type of ore used for the copper artifact places the geographic point of origin of the artifact.
Measurement of neutron dose equivalent outside and inside of the treatment vault of GRID therapy.
Wang, Xudong; Charlton, Michael A; Esquivel, Carlos; Eng, Tony Y; Li, Ying; Papanikolaou, Nikos
2013-09-01
To evaluate the neutron and photon dose equivalent rates at the treatment vault entrance (Hn,D and HG), and to study the secondary radiation to the patient in GRID therapy. The radiation activation on the grid was studied. A Varian Clinac 23EX accelerator was working at 18 MV mode with a grid manufactured by .decimal, Inc. The Hn,D and HG were measured using an Andersson-Braun neutron REM meter, and a Geiger Müller counter. The radiation activation on the grid was measured after the irradiation with an ion chamber γ-ray survey meter. The secondary radiation dose equivalent to patient was evaluated by etched track detectors and OSL detectors on a RANDO(®) phantom. Within the measurement uncertainty, there is no significant difference between the Hn,D and HG with and without a grid. However, the neutron dose equivalent to the patient with the grid is, on average, 35.3% lower than that without the grid when using the same field size and the same amount of monitor unit. The photon dose equivalent to the patient with the grid is, on average, 44.9% lower. The measured average half-life of the radiation activation in the grid is 12.0 (± 0.9) min. The activation can be categorized into a fast decay component and a slow decay component with half-lives of 3.4 (± 1.6) min and 15.3 (± 4.0) min, respectively. There was no detectable radioactive contamination found on the surface of the grid through a wipe test. This work indicates that there is no significant change of the Hn,D and HG in GRID therapy, compared with a conventional external beam therapy. However, the neutron and scattered photon dose equivalent to the patient decrease dramatically with the grid and can be clinical irrelevant. Meanwhile, the users of a grid should be aware of the possible high dose to the radiation worker from the radiation activation on the surface of the grid. A delay in handling the grid after the beam delivery is suggested.
NASA Astrophysics Data System (ADS)
Tornow, W.; Bhike, Megha
2015-05-01
A program is underway at the Triangle Universities Nuclear Laboratory (TUNL) to measure the neutron capture cross section in the 0.5 to 15 MeV energy range on nuclei whose radioactive daughters could potentially create backgrounds in searches for rare events. Here, we refer to neutrino-less double-beta decay and dark-matter searches, and to detectors built for neutrino and/or antineutrino studies. Neutron capture cross-section data obtained by using the activation method are reported for 40Ar, 74,76Ge, 128,130Te and 136Xe and compared to model calculations and evaluations.
Activation of hip prostheses in high energy radiotherapy and resultant dose to nearby tissue.
Keehan, Stephanie; Smith, Ryan L; Millar, Jeremy; Esser, Max; Taylor, Michael L; Lonski, Peta; Kron, Tomas; Franich, Rick D
2017-03-01
High energy radiotherapy can produce contaminant neutrons through the photonuclear effect. Patients receiving external beam radiation therapy to the pelvis may have high-density hip prostheses. Metallic materials such as those in hip prostheses, often have high cross-sections for neutron interaction. In this study, Thackray (UK) prosthetic hips have been irradiated by 18 MV radiotherapy beams to evaluate the additional dose to patients from the activation products. Hips were irradiated in- and out-of field at various distances from the beam isocenter to assess activation caused in-field by photo-activation, and neutron activation which occurs both in and out-of-field. NaI(Tl) scintillator detectors were used to measure the subsequent gamma-ray emissions and their half-lives. High sensitivity Mg, Cu, P doped LiF thermoluminescence dosimeter chips (TLD-100H) were used to measure the subsequent dose at the surface of a prosthesis over the 12 h following an in-field irradiation of 10,000 MU to a hip prosthesis located at the beam isocenter in a water phantom. 53 Fe, 56 Mn, and 52 V were identified within the hip following irradiation by radiotherapy beams. The dose measured at the surface of a prosthesis following irradiation in a water phantom was 0.20 mGy over 12 h. The dose at the surface of prostheses irradiated to 200 MU was below the limit of detection (0.05 mGy) of the TLD100H. Prosthetic hips are activated by incident photons and neutrons in high energy radiotherapy, however, the dose resulting from activation is very small. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Pulse-Shape Analysis of Neutron-Induced Scintillation Light in Ni-doped 6LiF/ZnS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowles, Christian C.; Behling, Richard S.; Imel, G. R.
Abstract–Alternatives to 3He are being investigated for gamma-ray insensitive neutron detection applications, including plutonium assay. One promising material is lithium-6 fluoride with silver activated zinc sulfide 6LiF/ZnS(Ag) in conjunction with a wavelength shifting plastic. Doping the 6LiF/ZnS(Ag) with nickel (Ni) has been proposed as a means of reducing the decay time of neutron signal pulses. This research performed a pulse shape comparison between Ni-doped and non-doped 6LiF/ZnS(Ag) neutron pulses. The Ni-doped 6LiF/ZnS(Ag) had a 32.7% ± 0.3 increase in neutron pulse height and a 32.4% ± 0.3 decrease in neutron pulse time compared to the non-doped 6LiF/ZnS(Ag). Doping 6LiF/ZnS(Ag) withmore » nickel may allow neutron detector operation with improved signal to noise ratios, and reduced pulse pileup affects, increasing the accuracy and range of source activities with which such a detector could operate.« less
NASA Technical Reports Server (NTRS)
Floyd, Samuel R.; Keller, John W.; Dworkin, Jason P.; Mildner, David F. R.
2004-01-01
Prompt Gamma Ray Activation Analysis (PGAA) from neutron capture is an important experimental method that yields information on the elemental abundance of target materials. Gamma ray analysis has been used in planetary exploration missions by taking advantage of the production of neutrons as a result of Galactic Cosmic Ray interaction within the planetary surfaces. The .gamma ray signal that can be obtained from the GCR production of neutrons is very low, so we seek a superior neutron source. NASA s Project Prometheus and the Dept. of Energy aim to develop a nuclear power system for planetary exploration. This provides us with a tremendous opportunity to harness the reactor as a source of neutrons that can be used for PGAA. We envision a narrow stream of neutrons from the reactor directed toward the surface of an asteroid or comet producing the prompt gamma ray signal for analysis. Under ideal conditions of neutron flux and spacecraft orbit, both the signal strength and the spatial resolution will improved by several orders of magnitude over previously missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.H. Seabury; D.L. Chichester; C.J. Wharton
2008-08-01
Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory’s PINS Chemical Assay System has traditionally used a Cf-252 isotopic neutron source, but recently a Deuterium-Tritium (DT) Electronic Neutron Generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) andmore » high explosive (HE) filled munitions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seabury, E. H.; Chichester, D. L.; Wharton, C. J.
2009-03-10
Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory's PINS Chemical Assay System has traditionally used a {sup 252}Cf isotopic neutron source, but recently a deuterium-tritium (DT) electronic neutron generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM)more » and high explosive (HE) filled munitions.« less
Least-Squares Neutron Spectral Adjustment with STAYSL PNNL
NASA Astrophysics Data System (ADS)
Greenwood, L. R.; Johnson, C. D.
2016-02-01
The STAYSL PNNL computer code, a descendant of the STAY'SL code [1], performs neutron spectral adjustment of a starting neutron spectrum, applying a least squares method to determine adjustments based on saturated activation rates, neutron cross sections from evaluated nuclear data libraries, and all associated covariances. STAYSL PNNL is provided as part of a comprehensive suite of programs [2], where additional tools in the suite are used for assembling a set of nuclear data libraries and determining all required corrections to the measured data to determine saturated activation rates. Neutron cross section and covariance data are taken from the International Reactor Dosimetry File (IRDF-2002) [3], which was sponsored by the International Atomic Energy Agency (IAEA), though work is planned to update to data from the IAEA's International Reactor Dosimetry and Fusion File (IRDFF) [4]. The nuclear data and associated covariances are extracted from IRDF-2002 using the third-party NJOY99 computer code [5]. The NJpp translation code converts the extracted data into a library data array format suitable for use as input to STAYSL PNNL. The software suite also includes three utilities to calculate corrections to measured activation rates. Neutron self-shielding corrections are calculated as a function of neutron energy with the SHIELD code and are applied to the group cross sections prior to spectral adjustment, thus making the corrections independent of the neutron spectrum. The SigPhi Calculator is a Microsoft Excel spreadsheet used for calculating saturated activation rates from raw gamma activities by applying corrections for gamma self-absorption, neutron burn-up, and the irradiation history. Gamma self-absorption and neutron burn-up corrections are calculated (iteratively in the case of the burn-up) within the SigPhi Calculator spreadsheet. The irradiation history corrections are calculated using the BCF computer code and are inserted into the SigPhi Calculator workbook for use in correcting the measured activities. Output from the SigPhi Calculator is automatically produced, and consists of a portion of the STAYSL PNNL input file data that is required to run the spectral adjustment calculations. Within STAYSL PNNL, the least-squares process is performed in one step, without iteration, and provides rapid results on PC platforms. STAYSL PNNL creates multiple output files with tabulated results, data suitable for plotting, and data formatted for use in subsequent radiation damage calculations using the SPECTER computer code (which is not included in the STAYSL PNNL suite). All components of the software suite have undergone extensive testing and validation prior to release and test cases are provided with the package.
NASA Astrophysics Data System (ADS)
Ravisankar, R.; Manikandan, E.; Dheenathayalu, M.; Rao, Brahmaji; Seshadreesan, N. P.; Nair, K. G. M.
2006-10-01
Beach rocks are a peculiar type of formation when compared to other types of rocks. Rare earth element (REE) concentrations in beach rock samples collected from the South East Coast of Tamilnadu, India, have been measured using the instrumental neutron activation analysis (INAA) single comparator K0 method. The irradiations were carried out using a thermal neutron flux of ˜10 11 n cm -2 s -1 at 20 kW power using the Kalpakkam mini reactor (KAMINI), IGCAR, Kalpakkam, Tamilnadu. Accuracy and precision were evaluated by assaying irradiated standard reference material (SRM 1646a estuarine sediment). The results being found to be in good agreement with certified values. REE elements have been determined from 15 samples using high-resolution gamma spectrometry. The geochemical behavior of REE in beach rock, in particular REE (chondrite-normalized) pattern has been studied.
Research on the self-absorption corrections for PGNAA of large samples
NASA Astrophysics Data System (ADS)
Yang, Jian-Bo; Liu, Zhi; Chang, Kang; Li, Rui
2017-02-01
When a large sample is analysed with the prompt gamma neutron activation analysis (PGNAA) neutron self-shielding and gamma self-absorption affect the accuracy, the correction method for the detection efficiency of the relative H of each element in a large sample is described. The influences of the thickness and density of the cement samples on the H detection efficiency, as well as the impurities Fe2O3 and SiO2 on the prompt γ ray yield for each element in the cement samples, were studied. The phase functions for Ca, Fe, and Si on H with changes in sample thickness and density were provided to avoid complicated procedures for preparing the corresponding density or thickness scale for measuring samples under each density or thickness value and to present a simplified method for the measurement efficiency scale for prompt-gamma neutron activation analysis.
Liu, Yingzi; Koltick, David; Byrne, Patrick; Wang, Haoyu; Zheng, Wei; Nie, Linda H
2013-12-01
This study was conducted to investigate the methodology and feasibility of developing a transportable neutron activation analysis (NAA) system to quantify manganese (Mn) in bone using a portable deuterium-deuterium (DD) neutron generator as the neutron source. Since a DD neutron generator was not available in our laboratory, a deuterium-tritium (DT) neutron generator was used to obtain experimental data and validate the results from Monte Carlo (MC) simulations. After validation, MC simulations using a DD generator as the neutron source were then conducted. Different types of moderators and reflectors were simulated, and the optimal thicknesses for the moderator and reflector were determined. To estimate the detection limit (DL) of the system, and to observe the interference of the magnesium (Mg) γ line at 844 keV to the Mn γ line at 847 keV, three hand phantoms with Mn concentrations of 30 parts per million (ppm), 150 ppm, and 500 ppm were made and irradiated by the DT generator system. The Mn signals in these phantoms were then measured using a 50% high-efficiency high-purity germanium (HPGe) detector. The DL was calculated to be about 4.4 ppm for the chosen irradiation, decay, and measurement time. This was calculated to be equivalent to a DL of about 3.3 ppm for the DD generator system. To achieve this DL with one 50% high-efficiency HPGe detector, the dose to the hand was simulated to be about 37 mSv, with the total body equivalent dose being about 23µSv. In conclusion, it is feasible to develop a transportable NAA system to quantify Mn in bone in vivo with an acceptable radiation exposure to the subject.
Liu, Yingzi; Koltick, David; Byrne, Patrick; Wang, Haoyu; Zheng, Wei; Nie, Linda H
2014-01-01
This study was conducted to investigate the methodology and feasibility of developing a transportable neutron activation analysis (NAA) system to quantify manganese (Mn) in bone using a portable deuterium–deuterium (DD) neutron generator as the neutron source. Since a DD neutron generator was not available in our laboratory, a deuterium–tritium (DT) neutron generator was used to obtain experimental data and validate the results from Monte Carlo (MC) simulations. After validation, MC simulations using a DD generator as the neutron source were then conducted. Different types of moderators and reflectors were simulated, and the optimal thicknesses for the moderator and reflector were determined. To estimate the detection limit (DL) of the system, and to observe the interference of the magnesium (Mg) γ line at 844 keV to the Mn γ line at 847 keV, three hand phantoms with Mn concentrations of 30 parts per million (ppm), 150 ppm, and 500 ppm were made and irradiated by the DT generator system. The Mn signals in these phantoms were then measured using a 50% high-efficiency high-purity germanium (HPGe) detector. The DL was calculated to be about 4.4 ppm for the chosen irradiation, decay, and measurement time. This was calculated to be equivalent to a DL of about 3.3 ppm for the DD generator system. To achieve this DL with one 50% high-efficiency HPGe detector, the dose to the hand was simulated to be about 37 mSv, with the total body equivalent dose being about 23μSv. In conclusion, it is feasible to develop a transportable NAA system to quantify Mn in bone in vivo with an acceptable radiation exposure to the subject. PMID:24165395
Neutron activation measurements over an extremely wide dynamic range (invited) (abstract)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, C.W.
1997-01-01
The DT program at the Tokamak Fusion Test Reactor (TFTR) created requirements on 14 MeV neutron measurements to measure from 10{sup 6} n/cm{sup 2} (for triton burnup and Ohmic tritium plasmas) to {gt}10{sup 12} n/cm{sup 2} (characteristic of {gt}10 MW DT plasmas) with an accuracy of 7% (one-sigma).1 To maintain an absolute calibration over this dynamic range with active neutron detectors required one to go from some absolute standard at one fluence level to a measurement at a much higher fluence. Maintaining accuracy requires an extremely linear set of measurements not systematically affected over this dynamic range. Neutron activation canmore » provide such linearity when care is taken with a number of effects such as gamma-ray detection efficiency and sample contamination.2 Absolutely calibrated neutron yield measurements using dosimetric (well-known cross section) reactions with thin (low-mass) elemental foils is be described. This technique makes the detector comparison to an absolute standard of gamma-ray activity correspond to all neutron fluences by reducing the sample mass while keeping the activation detectors operating in a linear counting mode; i.e., low count rates which minimize pileup effects. The International Thermonuclear Experimental Reactor is projected to have 1000 s burn durations at fluxes of few 10{sup 13} n/cm{sup 2}s, or more neutron fluence {ital per second} than entire TFTR discharges. Extrapolating neutron activation to these higher fluences will require yet more care. Some of the issues at such high fluences will be discussed.3 The National Ignition Facility (NIF) is projected to yield 10 MJ of fusion energy, or up to 10{sup 12} n/cm{sup 2} at the vacuum vessel wall, similar to TFTR DT conditions. It is expected that much interesting physics will be performed at yields far less than those from ignition, covering an even greater dynamic range than needed on TFTR. Thin foil techniques do not have the sensitivity required at low fluences.« less
Spectroscopic neutron detection using composite scintillators
NASA Astrophysics Data System (ADS)
Jovanovic, I.; Foster, A.; Kukharev, V.; Mayer, M.; Meddeb, A.; Nattress, J.; Ounaies, Z.; Trivelpiece, C.
2016-09-01
Shielded special nuclear material (SNM), especially highly enriched uranium, is exceptionally difficult to detect without the use of active interrogation (AI). We are investigating the potential use of low-dose active interrogation to realize simultaneous high-contrast imaging and photofission of SNM using energetic gamma-rays produced by low-energy nuclear reactions, such as 11B(d,nγ)12C and 12C(p,p‧)12C. Neutrons produced via fission are one reliable signature of the presence of SNM and are usually identified by their unique timing characteristics, such as the delayed neutron die-away. Fast neutron spectroscopy may provide additional useful discriminating characteristics for SNM detection. Spectroscopic measurements can be conducted by recoil-based or thermalization and capture-gated detectors; the latter may offer unique advantages since they facilitate low-statistics and event-by-event neutron energy measurements without spectrum unfolding. We describe the results of the development and characterization of a new type of capture-gated spectroscopic neutron detector based on a composite of scintillating polyvinyltoluene and lithium-doped scintillating glass in the form of millimeter-thick rods. The detector achieves >108 neutron-gamma discrimination resulting from its geometric properties and material selection. The design facilitates simultaneous pulse shape and pulse height discrimination, despite the fact that no materials intrinsically capable of pulse shape discrimination have been used to construct the detector. Accurate single-event measurements of neutron energy may be possible even when the energy is relatively low, such as with delayed fission neutrons. Simulation and preliminary measurements using the new composite detector are described, including those conducted using radioisotope sources and the low-dose active interrogation system based on low-energy nuclear reactions.
66.7-keV γ -line intensity of 171Tm determined via neutron activation
NASA Astrophysics Data System (ADS)
Weigand, M.; Heftrich, T.; Düllmann, Ch. E.; Eberhardt, K.; Fiebiger, S.; Glorius, J.; Göbel, K.; Haas, R.; Langer, C.; Lohse, S.; Reifarth, R.; Renisch, D.; Wolf, C.
2018-03-01
Background: About 50% of the heavy elements are produced in stars during the slow neutron capture process. The analysis of branching points allows to set constraints on the temperature and the neutron density in the interior of stars. The temperature dependence of the branch point 171Tm is weak. Hence, the 171Tm neutron capture cross section can be used to constrain the neutron density during the main component of the s process in thermally pulsing asymptotic giant branch stars. Purpose: In order to perform neutron capture experiments on 171Tm, sample material has to be produced and characterized. The characterization is done by γ spectroscopy, relying on the intensities of the involved γ lines. Only the 66.7-keV γ line can be observed whose intensity was uncertain so far. Method: An enriched 170Er sample was activated with thermal neutrons at the TRIGA (Training, Research, Isotopes, General Atomics) research reactor at the Johannes Gutenberg-Universität Mainz. The activation resulted in an easily quantifiable number of 171Er nuclei that subsequently decayed to 171Tm. Result: The intensity of the 66.7-keV γ line of the 171Tm decay was measured to Iγ=(0.144 ±0.010 )% . Conclusions: Our result is in good agreement with the value found in the literature.
Development of Techniques for Spent Fuel Assay – Differential Dieaway Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swinhoe, Martyn Thomas; Goodsell, Alison; Ianakiev, Kiril Dimitrov
This report summarizes the work done under a DNDO R&D funded project on the development of the differential dieaway method to measure plutonium in spent fuel. There are large amounts of plutonium that are contained in spent fuel assemblies, and currently there is no way to make quantitative non-destructive assay. This has led NA24 under the Next Generation Safeguards Initiative (NGSI) to establish a multi-year program to investigate, develop and implement measurement techniques for spent fuel. The techniques which are being experimentally tested by the existing NGSI project do not include any pulsed neutron active techniques. The present work coversmore » the active neutron differential dieaway technique and has advanced the state of knowledge of this technique as well as produced a design for a practical active neutron interrogation instrument for spent fuel. Monte Carlo results from the NGSI effort show that much higher accuracy (1-2%) for the Pu content in spent fuel assemblies can be obtained with active neutron interrogation techniques than passive techniques, and this would allow their use for nuclear material accountancy independently of any information from the operator. The main purpose of this work was to develop an active neutron interrogation technique for spent nuclear fuel.« less
Neutron capture studies with a short flight path
NASA Astrophysics Data System (ADS)
Walter, Stephan; Heil, Michael; Käppeler, Franz; Plag, Ralf; Reifarth, René
The time of flight (TOF) method is an important tool for the experimental determination of neu- tron capture cross sections which are needed for s-process nucleosynthesis in general, and for analyses of branchings in the s-process reaction path in particular. So far, sample masses of at least several milligrams are required to compensate limitations in the currently available neutron fluxes. This constraint leads to unacceptable backgrounds for most of the relevant unstable branch point nuclei, due to the decay activity of the sample. A possible solution has been proposed by the NCAP project at the University of Frankfurt. A first step in this direction is reported here, which aims at enhancing the sensitivity of the Karlsruhe TOF array by reducing the neutron flight path to only a few centimeters. Though sample masses in the microgram regime can be used by this approach, the increase in neutron flux has to be paid by a higher background from the prompt flash related to neutron production. Test measurements with Au samples are reported.
NICER observations of highly magnetized neutron stars: Initial results
NASA Astrophysics Data System (ADS)
Enoto, Teruaki; Arzoumanian, Zaven; Gendreau, Keith C.; Nynka, Melania; Kaspi, Victoria; Harding, Alice; Guver, Tolga; Lewandowska, Natalia; Majid, Walid; Ho, Wynn C. G.; NICER Team
2018-01-01
The Neutron star Interior Composition Explorer (NICER) was launched on June 3, 2017, and attached to the International Space Station. The large effective area of NICER in soft X-rays makes it a powerful tool not only for its primary science objective (diagnostics of the nuclear equation state) but also for studying neutron stars of various classes. As one of the NICER science working groups, the Magnetars and Magnetospheres (M&M) team coordinates monitoring and target of opportunity (ToO) observations of magnetized neutron stars, including magnetars, high-B pulsars, X-ray dim isolated neutron stars, and young rotation-powered pulsars. The M&M working group has performed simultaneous X-ray and radio observations of the Crab and Vela pulsars, ToO observations of the active anomalous X-ray pulsar 4U 0142+61, and a monitoring campaign for the transient magnetar SGR 0501+4516. Here we summarize the current status and initial results of the M&M group.
Analytical study of comet nucleus samples
NASA Technical Reports Server (NTRS)
Albee, A. L.
1989-01-01
Analytical procedures for studying and handling frozen (130 K) core samples of comet nuclei are discussed. These methods include neutron activation analysis, x ray fluorescent analysis and high resolution mass spectroscopy.
2016-05-31
UMKC-YIP-TR-2016 May 2016 Technical Report Prompt Neutron Spectrometry for Identification of SNM in Unknown Shielding...University of Missouri – Kansas City MSND: Micro-structured Neutron Detector HRM: Handheld Radiation Monitor PHS: Pulse Height Spectrum ANI: Active... Neutron Interrogation Distribution Statement A 6 Administrative Information and Acknowledgements Members of the University of Missouri
Conversion Factors Periodic Table of the Elements Chart of the Nuclides Map of the Nuclides Computer Index of (Atominstitut der Ãsterreichischen Universitäten) Neutron Activation Table of Elements Neutron Scattering at neutronsources.org. The information contained here in the Neutron Scattering Web has been
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franco, Manuel
The objective of this work was to characterize the neutron irradiation system consisting of americium-241 beryllium (241AmBe) neutron sources placed in a polyethylene shielding for use at Sandia National Laboratories (SNL) Low Dose Rate Irradiation Facility (LDRIF). With a total activity of 0.3 TBq (9 Ci), the source consisted of three recycled 241AmBe sources of different activities that had been combined into a single source. The source in its polyethylene shielding will be used in neutron irradiation testing of components. The characterization of the source-shielding system was necessary to evaluate the radiation environment for future experiments. Characterization of the sourcemore » was also necessary because the documentation for the three component sources and their relative alignment within the Special Form Capsule (SFC) was inadequate. The system consisting of the source and shielding was modeled using Monte Carlo N-Particle transport code (MCNP). The model was validated by benchmarking it against measurements using multiple techniques. To characterize the radiation fields over the full spatial geometry of the irradiation system, it was necessary to use a number of instruments of varying sensitivities. First, the computed photon radiography assisted in determining orientation of the component sources. With the capsule properly oriented inside the shielding, the neutron spectra were measured using a variety of techniques. A N-probe Microspec and a neutron Bubble Dosimeter Spectrometer (BDS) set were used to characterize the neutron spectra/field in several locations. In the third technique, neutron foil activation was used to ascertain the neutron spectra. A high purity germanium (HPGe) detector was used to characterize the photon spectrum. The experimentally measured spectra and the MCNP results compared well. Once the MCNP model was validated to an adequate level of confidence, parametric analyses was performed on the model to optimize for potential experimental configurations and neutron spectra for component irradiation. The final product of this work is a MCNP model validated by measurements, an overall understanding of neutron irradiation system including photon/neutron transport and effective dose rates throughout the system, and possible experimental configurations for future irradiation of components.« less
Neutron-induced reactions on AlF3 studied using the optical model
NASA Astrophysics Data System (ADS)
Ma, Chun-Wang; Lv, Cui-Juan; Zhang, Guo-Qiang; Wang, Hong-Wei; Zuo, Jia-Xu
2015-08-01
Neutron-induced reactions on 27Al and 19F nuclei are investigated using the optical model implemented in the TALYS 1.4 toolkit. Incident neutron energies in a wide range from 0.1 keV to 30 MeV are calculated. The cross sections for the main channels (n, np), (n, p), (n, α), (n, 2n), and (n, γ) and the total reaction cross section (n, tot) of the reactions are obtained. When the default parameters in TALYS 1.4 are adopted, the calculated results agree with the measured results. Based on the calculated results for the n + 27Al and n + 19F reactions, the results of the n + 27Al19F reactions are predicted. These results are useful both for the design of thorium-based molten salt reactors and for neutron activation analysis techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousseau, G.; Chambru, L.; Authier, N.
2015-07-01
In the context of criticality accident alarm system tests, several experiments were carried out in 2013 on the PROSPERO reactor to study the response to neutron and gamma of different devices and dosimeters, particularly on the SNAC2 dosimeter. This article presents the results of this criticality dosimeter in different configurations, and compares the experimental measurements with the results of calculation performed with the TRIPOLI-4 Monte-Carlo Neutral Particles transport code. PROSPERO is a metallic critical assembly managed by the Criticality, Neutron Science and Measurement Department located at the French CEA Research Center of Valduc. The core, surrounded by a reflector ofmore » depleted uranium, is composed of 2 horizontal cylindrical blocks made of a highly enriched uranium alloy which can be placed in contact, and of 4 depleted uranium control rods which allow the reactor to be driven. This reactor, placed in a cell 10 m x 8 m x 6 m high, with 1.4-meter-thick concrete walls, is used as a fast neutron spectrum source and is operated at stable power level in delayed critical state, which can vary from 3 mW to 3 kW. PROSPERO is extensively used for electronic hardening or to study the effect of the neutrons on various materials. The SNAC2 criticality dosimeter is a zone dosimeter allowing the off line measurement of criticality accident neutron doses. This dosimeter consists of the pile up of seven activation foils embedded into a 23 mm diameter x 21 mm height cadmium container. The activation measurement of each foil, using a gamma spectroscopy technique, gives information about the neutron reaction rates. The SNAC2 software allows the spectrum unfolding from these values, taking into account the hypothesis of a particular spectrum shape, in three components: a Maxwell spectrum component for the thermal range, a 1/E component for the epithermal range, and a Watt spectrum component for the high energy range. Moreover, from the neutron spectrum, the SNAC software can calculate the neutron fluence integrated by the dosimeter and the neutron dose. During the 3 weeks measurement campaign many radioprotection devices were used. To modify the spectrum seen by these devices, several shields of various thicknesses made of concrete or polyethylene, with or without cadmium covers, were placed in the PROSPERO cell. These devices allow the study of criticality accident spectra in several environments: from metal to pseudo liquid. The fluxes measured by the SNAC2 devices were compared with TRIPOLI-4 calculations. (authors)« less
Neutron-activatable radionuclide cancer therapy using graphene oxide nanoplatelets.
Kim, Junghyun; Jay, Michael
2017-09-01
Neutron-activation is a promising method of generating radiotherapeutics with minimal handling of radioactive materials. Graphene oxide nanoplatelets (GONs) were examined as a carrier for neutron-activatable holmium with the purpose of exploiting inherent characteristics for theranostic application. GONs were hypothesized to be an ideal candidate for this application owing to their desirable characteristics such as a rigid structure, high metal loading capacity, low density, heat resistance, and the ability to withstand harsh environments associated with the neutron-activation process. Non-covalently PEGylated GONs (GONs-PEG) offered enhanced dispersibility and biocompatibility, and also exhibited increased holmium loading capacity nearly two-fold greater than GONs. Holmium leaching was investigated over a wide pH range, including conditions that mimic the tumor microenvironment, following neutron irradiation. The in vitro cell-based cytotoxicity analysis of GONs-based formulations with non-radioactive holmium confirmed their safety profile within cells. The results demonstrate the potential of GONs as a carrier of neutron-activatable radiotherapeutic agents. Copyright © 2017 Elsevier Inc. All rights reserved.
Optimising the neutron environment of Radiation Portal Monitors: A computational study
NASA Astrophysics Data System (ADS)
Gilbert, Mark R.; Ghani, Zamir; McMillan, John E.; Packer, Lee W.
2015-09-01
Efficient and reliable detection of radiological or nuclear threats is a crucial part of national and international efforts to prevent terrorist activities. Radiation Portal Monitors (RPMs), which are deployed worldwide, are intended to interdict smuggled fissile material by detecting emissions of neutrons and gamma rays. However, considering the range and variety of threat sources, vehicular and shielding scenarios, and that only a small signature is present, it is important that the design of the RPMs allows these signatures to be accurately differentiated from the environmental background. Using Monte-Carlo neutron-transport simulations of a model 3He detector system we have conducted a parameter study to identify the optimum combination of detector shielding, moderation, and collimation that maximises the sensitivity of neutron-sensitive RPMs. These structures, which could be simply and cost-effectively added to existing RPMs, can improve the detector response by more than a factor of two relative to an unmodified, bare design. Furthermore, optimisation of the air gap surrounding the helium tubes also improves detector efficiency.
The energy spectrum of neutrons from 7Li(d,n)8Be reaction at deuteron energy 2.9 MeV
NASA Astrophysics Data System (ADS)
Mitrofanov, Konstantin V.; Piksaikin, Vladimir M.; Zolotarev, Konstantin I.; Egorov, Andrey S.; Gremyachkin, Dmitrii E.
2017-09-01
The neutron beams generated at the electrostatic accelerators using nuclear reactions T(p,n)3He, D(d,n)3He, 7Li(p,n)7Be, T(d,n)4He, 7Li(d,n)8Be, 9Be(d,n)10B are widely used in neutron physics and in many practical applications. Among these reactions the least studied reactions are 7Li(d,n)8Be and 9Be(d,n)10B. The present work is devoted to the measurement of the neutron spectrum from 7Li(d,n)8Be reaction at 0∘ angle to the deuteron beam axis on the electrostatic accelerator Tandetron (JSC "SSC RF - IPPE") using activation method and a stilbene crystal scintillation detector. The first time ever 7Li(d,n)8Be reaction was measured by activation method. The target was a thick lithium layer on metallic backing. The energy of the incident deuteron was 2.9 MeV. As activation detectors a wide range of nuclear reactions were used: 27Al(n,p)27Mg, 27Al(n,α)24Na, 113In(n,n')113mIn, 115In(n,n')115mIn, 115In(n,γ)116mIn, 58Ni(n,p)58mCo, 58Ni(n,2n)57Ni, 197Au(n,γ)198Au, 197Au(n,2n)196Au, 59Co(n,p)59Fe, 59Co(n,2n)58m+gCo, 59Co (n,g)60Co. Measurement of the induced gamma-activity was carried out using HPGe detector Canberra GX5019 [1]. The up-to-date evaluations of the cross sections for these reactions were used in processing of the data. The program STAYSL was used to unfold the energy spectra. The neutron spectra obtained by activation detectors is consistent with the corresponding data measured by a stilbene crystal scintillation detector within their uncertainties.
NASA Astrophysics Data System (ADS)
Cha, B. K.; kim, J. Y.; Kim, T. J.; Sim, C.; Cho, G.; Lee, D. H.; Seo, C.-W.; Jeon, S.; Huh, Y.
2011-01-01
In digital neutron radiography system, a thermal neutron imaging detector based on neutron-sensitive scintillating screens with CMOS(complementary metal oxide semiconductor) flat panel imager is introduced for non-destructive testing (NDT) application. Recently, large area CMOS APS (active-pixel sensor) in conjunction with scintillation films has been widely used in many digital X-ray imaging applications. Instead of typical imaging detectors such as image plates, cooled-CCD cameras and amorphous silicon flat panel detectors in combination with scintillation screens, we tried to apply a scintillator-based CMOS APS to neutron imaging detection systems for high resolution neutron radiography. In this work, two major Gd2O2S:Tb and 6LiF/ZnS:Ag scintillation screens with various thickness were fabricated by a screen printing method. These neutron converter screens consist of a dispersion of Gd2O2S:Tb and 6LiF/ZnS:Ag scintillating particles in acrylic binder. These scintillating screens coupled-CMOS flat panel imager with 25x50mm2 active area and 48μm pixel pitch was used for neutron radiography. Thermal neutron flux with 6x106n/cm2/s was utilized at the NRF facility of HANARO in KAERI. The neutron imaging characterization of the used detector was investigated in terms of relative light output, linearity and spatial resolution in detail. The experimental results of scintillating screen-based CMOS flat panel detectors demonstrate possibility of high sensitive and high spatial resolution imaging in neutron radiography system.
Cosmogenic activation of germanium used for tonne-scale rare event search experiments
NASA Astrophysics Data System (ADS)
Wei, W.-Z.; Mei, D.-M.; Zhang, C.
2017-11-01
We report a comprehensive study of cosmogenic activation of germanium used for tonne-scale rare event search experiments. The germanium exposure to cosmic rays on the Earth's surface are simulated with and without a shielding container using Geant4 for a given cosmic muon, neutron, and proton energy spectrum. The production rates of various radioactive isotopes are obtained for different sources separately. We find that fast neutron induced interactions dominate the production rate of cosmogenic activation. Geant4-based simulation results are compared with the calculation of ACTIVIA and the available experimental data. A reasonable agreement between Geant4 simulations and several experimental data sets is presented. We predict that cosmogenic activation of germanium can set limits to the sensitivity of the next generation of tonne-scale experiments.
NASA Astrophysics Data System (ADS)
Srivastava, Anjali
The determination of accurate material composition of a kidney stone is crucial for understanding the formation of the kidney stone as well as for preventive therapeutic strategies. Radiations probing instrumental activation analysis techniques are excellent tools for identification of involved materials present in the kidney stone. The X-ray fluorescence (XRF) and neutron activation analysis (NAA) experiments were performed and different kidney stones were analyzed. The interactions of X-ray photons and neutrons with matter are complementary in nature, resulting in distinctly different materials detection. This is the first approach to utilize combined X-ray fluorescence and neutron activation analysis for a comprehensive analysis of the kideny stones. Presently, experimental studies in conjunction with analytical techniques were used to determine the exact composition of the kidney stone. The use of open source program Python Multi-Channel Analyzer was utilized to unfold the XRF spectrum. A new type of experimental set-up was developed and utilized for XRF and NAA analysis of the kidney stone. To verify the experimental results with analytical calculation, several sets of kidney stones were analyzed using XRF and NAA technique. The elements which were identified from XRF technique are Br, Cu, Ga, Ge, Mo, Nb, Ni, Rb, Se, Sr, Y, Zr. And, by using Neutron Activation Analysis (NAA) are Au, Br, Ca, Er, Hg, I, K, Na, Pm, Sb, Sc, Sm, Tb, Yb, Zn. This thesis presents a new approach for exact detection of accurate material composition of kidney stone materials using XRF and NAA instrumental activation analysis techniques.
NASA Technical Reports Server (NTRS)
Parsons, A.; Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.;
2011-01-01
The Probing In situ with Neutrons and Gamma rays (PING) instrument is a promising planetary science application of the active neutron-gamma ray technology that has been used successfully in oil field well logging and mineral exploration on Earth for decades. Similar techniques can be very powerful for non-invasive in situ measurements of the subsurface elemental composition on other planets. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring instruments using this technology to the point where they can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets. PING combines a 14 MeV deuterium-tritium pulsed neutron generator with a gamma ray spectrometer and two neutron detectors to produce a landed instrument that can determine the elemental composition of a planet down to 30 - 50 cm below the planet's surface. The penetrating nature of.5 - 10 MeV gamma rays and 14 MeV neutrons allows such sub-surface composition measurements to be made without the need to drill into or otherwise disturb the planetary surface, thus greatly simplifying the lander design. We are currently testing a PING prototype at a unique outdoor neutron instrumentation test facility at NASA/GSFC that provides two large (1.8 m x 1.8 m x.9 m) granite and basalt test formations placed outdoors in an empty field. Since an independent trace elemental analysis has been performed on both the Columbia River basalt and Concord Gray granite materials, these samples present two known standards with which to compare PING's experimentally measured elemental composition results. We will present experimental results from PING measurements of both the granite and basalt test formations and show how and why the optimum PING instrument operating parameters differ for studying the two materials.
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Benyo, Theresa L.; Pines, Vladimir; Pines, Marianna; Forsley, Lawrence P.; Westmeyer, Paul A.; Chait, Arnon; Becks, Michael D.; Martin, Richard E.; Hendricks, Robert C.;
2017-01-01
Exposure of highly deuterated materials to a low-energy (nom. 2 MeV) photon beam resulted in nuclear activity of both the parent metals of hafnium and erbium and a witness material (molybdenum) mixed with the reactants. Gamma spectral analysis of all deuterated materials, ErD2.8+C36D74+Mo and HfD2+C36D74+Mo, showed that nuclear processes had occurred as shown by unique gamma signatures. For the deuterated erbium specimens, posttest gamma spectra showed evidence of radioisotopes of erbium ((163)Er and (171)Er) and of molybdenum ((99)Mo and (101)Mo) and by beta decay, technetium (99mTc and 101Tc). For the deuterated hafnium specimens, posttest gamma spectra showed evidence of radioisotopes of hafnium (180mHf and 181Hf) and molybdenum ((99)Mo and (101)Mo), and by beta decay, technetium ((99m)Tc and (101)Tc). In contrast, when either the hydrogenated or non-gas-loaded erbium or hafnium materials were exposed to the gamma flux, the gamma spectra revealed no new isotopes. Neutron activation materials showed evidence of thermal and epithermal neutrons. CR-39 solid-state nuclear track detectors showed evidence of fast neutrons with energies between 1.4 and 2.5 MeV and several instances of triple tracks, indicating (is) greater than 10 MeV neutrons. Further study is required to determine the mechanism causing the nuclear activity.
A large 2D PSD for thermal neutron detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knott, R.B.; Watt, G.; Boldeman, J.W.
1996-12-31
A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 x 640 mm{sup 2}. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimize parallax, the gas mixture was 190 kPa {sup 3}He plus 100 kPa CF{sub 4} and the active volume had a thickness of 30 mm. The design maximum neutron count-rate of the detector was 10{sup 5} events per second. The (calculated) neutron detection efficiency was 60% for 2{angstrom} neutrons and the (measured) neutron energy resolution on the anodemore » grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 x 5 mm{sup 2}) was thereby defined by the wire geometry. A 16 channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise linewidth of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display.« less
Thermal neutron capture and resonance integral cross sections of 45Sc
NASA Astrophysics Data System (ADS)
Van Do, Nguyen; Duc Khue, Pham; Tien Thanh, Kim; Thi Hien, Nguyen; Kim, Guinyun; Kim, Kwangsoo; Shin, Sung-Gyun; Cho, Moo-Hyun; Lee, Manwoo
2015-11-01
The thermal neutron cross section (σ0) and resonance integral (I0) of the 45Sc(n,γ)46Sc reaction have been measured relative to that of the 197Au(n,γ)198Au reaction by means of the activation method. High-purity natural scandium and gold foils without and with a cadmium cover of 0.5 mm thickness were irradiated with moderated pulsed neutrons produced from the Pohang Neutron Facility (PNF). The induced activities in the activated foils were measured with a high purity germanium (HPGe) detector. In order to improve the accuracy of the experimental results the counting losses caused by the thermal (Gth) and resonance (Gepi) neutron self-shielding, the γ-ray attenuation (Fg) and the true γ-ray coincidence summing effects were made. In addition, the effect of non-ideal epithermal spectrum was also taken into account by determining the neutron spectrum shape factor (α). The thermal neutron cross-section and resonance integral of the 45Sc(n,γ)46Sc reaction have been determined relative to the reference values of the 197Au(n,γ)198Au reaction, with σo,Au = 98.65 ± 0.09 barn and Io,Au = 1550 ± 28 barn. The present thermal neutron cross section has been determined to be σo,Sc = 27.5 ± 0.8 barn. According to the definition of cadmium cut-off energy at 0.55 eV, the present resonance integral cross section has been determined to be Io,Sc = 12.4 ± 0.7 barn. The present results are compared with literature values and discussed.
Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandel, M.; Bredeweg, T. A.; Fowler, M. M.
2009-01-28
Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in themore » center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) events from (n,f) events. The first direct observation of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.« less
Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandel, Marian
2008-01-01
Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 35 eV and 200 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented, where the fission events were actively triggered during the experiments. In these experiments, the Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in themore » center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) from (n,f) events. The first evidence of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.« less
Neutron production for 250 MeV protons bombarding on thick grain-made tungsten target
NASA Astrophysics Data System (ADS)
Zhang, Xueying; Zhang, Yanbin; Ma, Fei; Ju, Yongqin; Chen, Liang; Zhang, Hongbin; Li, Yanyan; Wan, Bo; Wang, Jianguo; Ge, Honglin
2015-08-01
Neutron yield for 250 MeV protons incident on a tungsten target has been measured using the water bath method. The target was made of many randomly placed tungsten grains. Through analyzing the activity of Au foils, the neutron flux distribution in water was obtained. The neutrons slowing down process shows that the neutrons from tungsten have an average energy lower than neutrons from the lead target. The neutron yield was experimentally determined to be 2.02 ± 0.15 neutron/proton. Detailed simulation was also performed with the Geant4 toolkit. Comparison has been made with the experimentally derived neutron yield. It was found that, around 250 MeV, experimental results were described satisfactorily with a combination of high-energy spallation, low-energy neutron reaction and scattering. It was shown that the grain-packed target does not affect much the main neutronic properties, which are of crucial importance for the design of the spallation target.
Prototyping an active neutron veto for SuperCDMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calkins, Robert; Loer, Ben
2015-08-17
Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results frommore » our R&D and prototyping efforts.« less
Prototyping an Active Neutron Veto for SuperCDMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calkins, Robert; Loer, Ben
2015-08-17
Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results frommore » our R&D and prototyping efforts.« less
NASA Astrophysics Data System (ADS)
Jallu, F.; Loche, F.
2008-08-01
Within the framework of radioactive waste control, non-destructive assay (NDA) methods may be employed. The active neutron interrogation (ANI) method is now well-known and effective in quantifying low α-activity fissile masses (mainly 235U, 239Pu, 241Pu) with low densities, i.e. less than about 0.4, in radioactive waste drums of volumes up to 200 l. The PROMpt Epithermal and THErmal interrogation Experiment (PROMETHEE [F. Jallu, A. Mariani, C. Passard, A.-C. Raoux, H. Toubon, Alpha low level waste control: improvement of the PROMETHEE 6 assay system performances. Nucl. Technol. 153 (January) (2006); C. Passard, A. Mariani, F. Jallu, J. Romeyer-Dherber, H. Recroix, M. Rodriguez, J. Loridon, C. Denis, PROMETHEE: an alpha low level waste assay system using passive and active neutron measurement methods. Nucl. Technol. 140 (December) (2002) 303-314]) based on ANI has been under development since 1996 to reach the incinerating α low level waste (LLW) criterion of about 50 Bq[α] per gram of crude waste (≈50 μg Pu) in 118 l drums on the date the drums are conditioned. Difficulties arise when dealing with matrices containing neutron energy moderators such as H and neutron absorbents such as Cl. These components may have a great influence on the fissile mass deduced from the neutron signal measured by ANI. For example, the calibration coefficient measured in a 118 l drum containing a cellulose matrix (density d = 0.144 g cm -3) may be 50 times higher than that obtained in a poly-vinyl-chloride matrix ( d = 0.253 g cm -3). Without any information on the matrix, the fissile mass is often overestimated due to safety procedures and by considering the most disadvantageous calibration coefficient corresponding to the most absorbing and moderating calibration matrix. The work discussed in this paper was performed at the CEA Nuclear Measurement Laboratory in France. It concerns the development of a matrix effect correction method, which consists in identifying and quantifying the matrix components by using prompt gamma-rays following neutron capture. The method aims to refine the value of the adequate calibration coefficient used for ANI analysis. This paper presents the final results obtained for 118 l waste drums with low α-activity and low density. This paper discusses the experimental and modelling studies and describes the development of correction abacuses based on gamma-ray spectrometry signals.
A multi-layered active target for the study of neutron-unbound nuclides at NSCL
NASA Astrophysics Data System (ADS)
Freeman, Jessica; Gueye, Paul; Redpath, Thomas; MoNA Collaboration
2017-01-01
The characteristics of neutron-unbound nuclides were investigated using a multi-layered Si/Be active target designed for use with the MoNA/LISA setup at the National Superconducting Cyclotron (NSCL). The setup consists of the MoNA/LISA arrays (for neutron detection) and a superconducting sweeper magnet (for charged separation) to identify products following the decay of neutron unbound states. The segmented target consisted of three 700 mg/cm2 beryllium targets and four 0.14 mm thick 62x62 mm2 silicon detectors. As a commissioning experiment for the target the decay of two-neutron unbound 26O populated in a one-proton removal reaction from a radioactive 27F beam was performed. The 27F secondary radioactive beam from the NSCL's Coupled Cyclotron Facility was produced from the fragmentation of a 140 MeV/u 48Ca beam incident on a thick beryllium target and then cleanly selected by the A1900 fragment separator. The energy loss and position spectra of the incoming beam and reaction products were used to calibrate the Silicon detectors to within 1.5% in both energy and position. A dedicated Geant4 model of the target was developed to simulate the energy loss within the target. A description of the experimental setup, simulation work, and energy and position calibration will be presented. DoE/NNSA - DE-NA0000979.
NASA Astrophysics Data System (ADS)
Vostrukhin, A.; Kozyrev, A.; Litvak, M.; Malakhov, A.; Mitrofanov, I.; Mokrousov, M.; Sanin, A.; Tretyakov, V.
2009-04-01
The Dynamic Albedo of Neutrons (DAN) instrument is contributed by Russian Space Agency to NASA for Mars Science Laboratory mission which was originally scheduled for 2009 and now is shifted to 2011. The design of DAN instrument is partially inherited from HEND instrument for NASA's Mars Odyssey, which now successfully operates providing global mapping of martian neutron albedo, searching the distribution of martian water and observing the martian seasonal cycles. DAN is specially designed as an active neutron instrument for surface operations onboard mobile platforms. It is able to focus science investigations on local surface area around rover with horizontal resolution about 1 meter and vertical penetration about 0.5 m. The primary goal of DAN is the exploration of the hydrogen content of the bulk Martian subsurface material. This data will be used to estimate the content of chemically bound water in the hydrated minerals. The concept of DAN operations is based on combination of neutron activation analysis and neutron well logging tequnique, which are commonly used in the Earth geological applications. DAN consists blocks of Detectors and Electronics (DE) and Pulse Neutron Generator (PNG). The last one is used to irradiate the martian subsurface by pulses of 14MeV neutrons with changeable frequency up to 10 Hz. The first one detects post-pulse afterglow of neutrons, as they were thermalized down to epithermal and thermal energies within the martian subsurface. The result of detections are so called die away curves of neutrons afterglow, which show flux and time profile of thermalized neutrons and bring to us the observational signature of layering structure of martian regolith in part of depth distribution of Hydrogen (most effective element for thermalization of neutrons). In this study we focus on the development, verification and validation of DAN fast data processing and commanding. It is necessary to perform deconvolution from counting statistic in DAN detectors (raw data) to the real science products such as estimated average content of Hydrgen content or its depth distribution along the rover trace. For the rover surface operations it is necessary to provide real time data analysis to combine DAN data with data from all another science instruments and to develop the best observation strategy for the future periods of operation activity. In our approach we use: 1) Onboard FPGA data processing for recording neutron die away curves for epthermal and thermal neutrons of post-pulse afterglow 2) Getting raw data of DAN at the Mission operation center 3) Validation of instrument parameters and operational performance 4) Fast first level science data processing (statistical analysis, background subtraction, normalization) 5) Fast deconvolution of detector counts into the Hydrogen content (including numerical simulation, comparison with the known standard models of regolith), 6) Comparison with known information obtained with another instruments 7) Development of the near-term and long-term strategy for next DAN operations onboard MSL. 8) Generation and testing commanding sequences for the next period of MSL autonomous operations All this activity shall be adjusted in the real time, so the steps 2-8 shall not exceed 2-3 hours. Before launch we plan to validate this approach trough the instrument calibrations, field tests and MSL science group activity. The first experience will be presented of fast data analysis and commanding for the field tests of DAN, which were performed in the testing facility of the Joint Institute of Nuclear Research (Russia). Also, we will discuss our plans of DAN operations for coming field tests in Antarctica.
NASA Astrophysics Data System (ADS)
Rennie, Adrian R.
2008-03-01
Approximately 700 delegates came to the small university city of Lund in southern Sweden at the end of June 2007 to attend the 4th European Conference on Neutron Scattering. The majority of these participants are primarily interested in specific areas of condensed matter science and use neutron techniques as a powerful tool to study the structure and dynamic behaviour of materials. These range from liquids, superconductors, magnetic materials and archaeological artefacts. The diversity of scientific problems is reflected by the attendance of many laboratories with specializations in numerous different disciplines. The maturity of the technique is shown by the fact that neutron scattering is now applied widely in so many areas. Most results from neutron scattering experiements are published as articles that primarily relate to a specific scientific discipline in the context of problem oriented research. The neutron scattering conference provided an opportunity to exchange ideas between different fields. It is hoped that this collection of papers, from participants that submitted articles on applications of neutron scattering, will continue to promote the exchange of ideas for new studies, as was seen at the conference. The papers that describe instrumentation and advances in methods of neutron scattering will appear separately in Measurement Science and Technology Worldwide activity in developing new facilities for neutron scattering and the motivation for substantial projects, such as the new target station at the ISIS facility in the UK or the proposed European Spallation Source, comes from unique information obtained from working with neutrons. The results reported in the following papers show that there is substantial exciting work still to be performed as the community of users expands into new fields. The participants, as well as the organizers, are extremely grateful to the numerous sponsors that helped to make the conference a resounding success. We are grateful to IOP Publishing for agreeing to publish these papers, and for their friendly service, and prompt and efficient organization of the refereeing and editorial process.
NASA Astrophysics Data System (ADS)
Bose, Satya Ranjan
2000-06-01
An in-pool small animal irradiation neutron tube (SAINT) facility was designed, constructed and installed at the University of Virginia Nuclear Research Reactor (UVAR). Thermal neutron flux profiles were measured by foil activation analysis (gold) and verified with DORT and MCNP computer code models. The gamma-ray absorbed dose in the neutron-gamma mixed field was determined from TLD measurements. The SAINT thermal neutron flux was used to investigate the well characterized human breast cancer cell line MCF-7B on both in-vitro samples and in- vivo animal subjects. Boronophenylalanine (BPA enriched in 95% 10B) was used as a neutron capturing agent. The in-vitro response of MCF-7B human breast carcinoma cells to BPA in a mixed field of neutron-gamma radiation or pure 60Co gamma radiation was investigated. The best result (lowest surviving fraction) was observed in cell cultures pre-incubated with BPA and given the neutron irradiation. The least effective treatment consisted of 60Co irradiation only. Immunologically deficient nude mice were inoculated subcutaneously with human breast cancer MCF-7B cells and estradiol pellets (to support tumor growth). The tumor volume in the mouse control group increased over time, as expected. The group of mice exposed only to neutron treatment exhibited initial tumor volume reduction lasting until 35 days following the treatment, followed by renewed tumor growth. Both groups given BPA plus neutron treatment showed continuous reduction in tumor volume over the 55-day observation period. The group given the higher BPA concentration showed the best tumor reduction response. The results on both in-vitro and in-vivo studies showed increased cell killing with BPA, substantiating the incorporation of BPA into the tumor or cell line. Therefore, BNCT may be a possible choice for the treatment of human breast carcinoma. However, prior to the initiation of any clinical studies, it is necessary to determine the therapeutic efficacy in a large animal model.
Analysis of body calcium (regional changes in body calcium by in vivo neutron activation analysis)
NASA Technical Reports Server (NTRS)
Suki, W.; Johnson, P. C.; Leblanc, A.; Evans, H. J.
1981-01-01
The effect of space flight on urine and fecal calcium loss was documented during the three long-term Skylab flights. Neutron activation analysis was used to determine regional calcium loss. Various designs for regional analysis were investigated.
A Californium-252 Neutron Source for Student Use
ERIC Educational Resources Information Center
Bowen, H. J.
1975-01-01
Describes an undergraduate chemistry experiment which utilizes small samples of Californium 252 as a neutron source for the activation of 12 other elements. The students prepare decay curves of the radioactive isotopes and perform nondestructive activation analyses for gram amounts of some elements. (MLH)
NASA Astrophysics Data System (ADS)
Martin, Philip N.; Clemett, Ceri D.; Hill, Cassie; O'Malley, John; Campbell, Ben
This paper describes and compares two approaches to the analysis of active interrogation data containing high photon backgrounds associated with mixed photon-neutron source flash active interrogation. Results from liquid scintillation detectors (EJ301/EJ309) fielded at the Naval Research Laboratory (NRL), in collaboration with the Atomic Weapons Establishment (AWE), using the NRL Mercury Inductive Voltage Adder (IVA) operating in both a photon and mixed photon-neutron mode at a Depleted Uranium (DU) target are presented. The standard approach applying a Figure of Merit (FOM) consisting of background sigma above background is compared with an approach looking to fit only the time-decaying photon signal with standard delayed photon emission from ∼10-MeV end-point-energy Bremsstrahlung photofission of DU. Examples where each approach does well and less well are presented together with a discussion of the relative limitations of both approaches to the type of mixed photon-neutron flash active interrogation being considered.
Activation cross section and isomeric cross-section ratio for the 151Eu(n,2n)150m,gEu process
NASA Astrophysics Data System (ADS)
Luo, Junhua; Li, Suyuan; Jiang, Li
2018-07-01
The cross sections of 151Eu(n,2n)150m,gEu reactions and their isomeric cross section ratios σm/σt have been measured experimentally. Cross sections are measured, relative to a reference 93Nb(n,2n)92mNb reaction cross section, by means of the activation technique at three neutron energies 13.5, 14.1, and 14.8 MeV. Monoenergetic neutron beams were formed via the 3H(d,n)4He reaction and both Eu2O3 samples and Nb monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The activities induced in the reaction products were measured using high-resolution gamma ray spectroscopy. Cross sections were also evaluated theoretically using the numerical nuclear model code, TALYS-1.8 with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawcett, L.R. Jr.; Roberts, R.R. II; Hunter, R.E.
1988-03-01
Tritium production and activation of radiochemical detector foils in a sphere of /sup 6/LiD with an oralloy core irradiated by a central source of 14-MeV neutrons have been calculated and compared with experimental measurements. The experimental assembly consisted of an oralloy sphere surrounded by three solid /sup 6/LiD concentric shells with ampules of /sup 6/LiH and /sup 7/LiH and activation foils located in several positions throughout the assembly. The Los Alamos Monte Carlo Neutron Photon Transport Code (MCNP) was used to calculate neutron transport throughout the system, tritium production in the ampules, and foil activation. The overall experimentally observed-to-calculated ratiosmore » of tritium production were 0.996 +- 2.5% in /sup 6/Li ampules and 0.903 +- 5.2% in /sup 7/Li ampules. Observed-to-calculated ratios for foil activation are also presented. 11 refs., 4 figs., 7 tabs.« less
Strategy for the absolute neutron emission measurement on ITER.
Sasao, M; Bertalot, L; Ishikawa, M; Popovichev, S
2010-10-01
Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10(10) n/s (neutron/second) for DT and 10(8) n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.
NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR
Young, G.J.
1959-06-30
The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.
Nondestructive test method accurately sorts mixed bolts
NASA Technical Reports Server (NTRS)
Dezeih, C. J.
1966-01-01
Neutron activation analysis method sorts copper plated steel bolts from nickel plated steel bolts. Copper and nickel plated steel bolt specimens of the same configuration are irradiated with thermal neutrons in a test reactor for a short time. After thermal neutron irradiation, the bolts are analyzed using scintillation energy readout equipment.
Hot background” of the mobile inelastic neutron scattering system for soil carbon analysis
USDA-ARS?s Scientific Manuscript database
The problem of gamma spectrum peaks identification arises when conducting soil carbon (and other elements) analysis using the mobile inelastic neutron scattering (MINS) system. Some gamma spectrum peaks could be associated with radioisotopes appearing due to neutron activation of both the MINS syste...
Absorbed dose rates in tissue from prompt gamma emissions from near-thermal neutron absorption
Schwahn, Scott O.
2015-10-01
Prompt gamma emission data from the International Atomic Energy Agency s Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.
Consolidated RXTE Observing Grants on Observation of Neutron Stars and Black Holes in Binaries
NASA Technical Reports Server (NTRS)
Prince, Thomas A.; Vaughan, Brian A.
1998-01-01
This final report is a study of neutron stars and black holes in binaries. The activities focused on observation made with the Rossi X-ray Timing Explorer. The following areas were covered: long term observations of accreting binary pulsars with the All-Sky Monitor (ASM); observations of Centaurus X-3 with the Proportional Counter Array (PCA) and the High-Energy X-ray Timing Experiment (HEXTE); observations of accreting pulsars with the PCA and HEXTE; studies of quasi-periodic oscillations (QPO); and investigations of accreting black-hole candidates.
Fast neutrons measured in copper from the Hiroshima atomic bomb dome.
Marchetti, A A; McAninch, J E; Rugel, G; Rühm, W; Korschinek, G; Martinelli, R E; Faestermann, T; Knie, K; Egbert, S D; Wallner, A; Wallner, C; Tanaka, K; Endo, S; Hoshi, M; Shizuma, K; Fujita, S; Hasai, H; Imanaka, T; Straume, T
2009-01-01
The first measurements of (63)Ni produced by A-bomb fast neutrons (above approximately 1 MeV) in copper samples from Hiroshima encompassed distances from approximately 380 to 5062 m from the hypocenter (the point on the ground directly under the bomb). They included the region of interest to survivor studies (approximately 900 to 1500 m) and provided the first direct validation of fast neutrons in that range. However, a significant measurement gap remained between the hypocenter and 380 m. Measurements close to the hypocenter are important as a high-value anchor for the slope of the curve for neutron activation as a function of distance. Here we report measurements of (63)Ni in copper samples from the historic Hiroshima Atomic Bomb Dome, which is located approximately 150 m from the hypocenter. These measurements extend the range of our previously published data for (63)Ni providing a more comprehensive and consistent A-bomb activation curve. The results are also in good agreement with calculations based on the current dosimetry system (DS02) and give further experimental support to the accuracy of this system that forms the basis for radiation risk estimates worldwide.
Reanalysis of tritium production in a sphere of /sup 6/LiD irradiated by 14-MeV neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawcett, L.R. Jr.
1985-08-01
Tritium production and activation of radiochemical detector foils in a sphere of /sup 6/LiD irradiated by a central source of 14-MeV neutrons has been reanalyzed. The /sup 6/LiD sphere consisted of 10 solid hemispherical nested shells with ampules of /sup 6/LiH, /sup 7/LiH, and activation foils located 2.2, 5, 7.7, 12.6, 20, and 30 cm from the center. The Los Alamos Monte Carlo Neutron Photon Transport Code (MCNP) was used to calculate neutron transport through the /sup 6/LiD, tritium production in the ampules, and foil activation. The MCNP input model was three-dimensional and employed ENDF/B-V cross sections for transport, tritiummore » production, and (where available) foil activation. The reanalyzed experimentally observed-to-calculated values of tritium production were 1.053 +- 2.1% in /sup 6/LiH and 0.999 +- 2.1% in /sup 7/LiH. The recalculated foil activation observed-to-calculated ratios were not generally improved over those reported in the original analysis.« less
Miniature Neutron-Alpha Activation Spectrometer
NASA Astrophysics Data System (ADS)
Rhodes, E.; Goldsten, J.
2001-01-01
We are developing a miniature neutron-alpha activation spectrometer for in situ analysis of samples including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform, that would meet the severe mass, power, and environmental constraints of missions to the outer planets. In the neutron-activation mode, a gamma-ray spectrometer will first perform a penetrating scan of soil, ice, and loose material underfoot (depths to 10 cm or more) to identify appropriate samples. Chosen samples will be analyzed in bulk in neutron-activation mode, and then the sample surfaces will be analyzed in alpha-activation mode using Rutherford backscatter and x-ray spectrometers. The instrument will provide sample composition over a wide range of elements, including rock-forming elements (such as Na, Mg, Si, Fe, and Ca), rare earths (Sm and Eu for example), radioactive elements (K, Th, and U), and light elements present in water, ices, and biological materials (mainly H, C, O, and N). The instrument is expected to have a mass of about l kg and to require less than 1 W power. Additional information is contained in the original extended abstract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.
Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less
Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; ...
2017-02-01
Here, the Probing In situ with Neutrons and Gamma rays (PING) instrument is an innovative application of active neutron-induced gamma-ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. As part 2 of a two-part submission, this manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. Part 1 of our submission models the associated regolith types. The modeled sensitivities show that in PING's active mode, where both a Pulsed Neutron Generator (PNG) and amore » Gamma-Ray Spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma-ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 minute that are sensitive to H and Cl.« less
NASA Astrophysics Data System (ADS)
Mostafaei, F.; McNeill, F. E.; Chettle, D. R.; Noseworthy, M. D.; Prestwich, W. V.
2015-11-01
The feasibility of using a 238Pu/Be-based in vivo prompt γ-ray neutron activation analysis (IVNAA) system, previously successfully used for measurements of muscle, for the detection of gadolinium (Gd) in bone was presented. Gd is extensively used in contrast agents in MR imaging. We present phantom measurement data for the measurement of Gd in the tibia. Gd has seven naturally occurring isotopes, of which two have extremely large neutron capture cross sections; 155Gd (14.8% natural abundance (NA), σ= 60,900 barns) and 157Gd (15.65% NA, σ= 254,000 barns). Our previous work focused on muscle but this only informs about the short term kinetics of Gd. We studied the possibility of measuring bone, as it may be a long term storage site for Gd. A human simulating bone phantom set was developed. The phantoms were doped with seven concentrations of Gd of concentrations 0.0, 25, 50, 75, 100, 120 and 150 ppm. Additional elements important for neutron activation analysis, Na, Cl and Ca, were also included to create an overall elemental composition consistent with Reference Man. The overall conclusion is that the potential application of this Pu-Be-based prompt in vivo NAA for the monitoring of the storage and retention of Gd in bone is not feasible.
Measurements of 89Y(n,2n)88Y and 89Y(n,3n)87Y, 87mY cross sections for fast neutrons at KIRAMS
NASA Astrophysics Data System (ADS)
In, Eun Jin; Bak, Sang-In; Ham, Cheolmin; Kim, Do Yoon; Myung, Hyunjeong; Shim, Chungbo; Shin, Jae Won; Min, Kyung Joo; Zhou, Yujie; Park, Tae-Sun; Hong, Seung-Woo; Bhoraskar, V. N.
2017-09-01
A proton cyclotron MC-50 in Korea Institute of Radiological & Medical Science (KIRAMS) is used to carry out neutron activation experiments with Y2O3 targets irradiated with neutron beams of a continuous spectrum produced by proton beams on a thick beryllium target. Neutrons are generated by 9Be (p, n) reaction with an incident proton intensity of 20 μA. The neutron spectra generated by proton beams of 30, 35, and 40 MeV are calculated by GEANT4 simulations. Nb powders are used for neutron flux monitoring by measuring the activities of 92mNb through the reaction 93Nb (n, 2n). By using a subtraction method, the average cross section of 89Y(n,2n) and 89Y(n,3n) reactions at the neutron energies of 29.8 ± 1.8 MeV and 34.8 ± 1.8 MeV are extracted and are found to be close to the existing cross sections from the EXFOR data and the evaluated nuclear data libraries such as TENDL-2015 or EAF-2010.
Staged Z-pinch Experiments at the 1MA Zebra pulsed-power generator: Neutron measurements
NASA Astrophysics Data System (ADS)
Ruskov, Emil; Darling, T.; Glebov, V.; Wessel, F. J.; Anderson, A.; Beg, F.; Conti, F.; Covington, A.; Dutra, E.; Narkis, J.; Rahman, H.; Ross, M.; Valenzuela, J.
2017-10-01
We report on neutron measurements from the latest Staged Z-pinch experiments at the 1MA Zebra pulsed-power generator. In these experiments a hollow shell of argon or krypton gas liner, injected between the 1 cm anode-cathode gap, compresses a deuterium plasma target of varying density. Axial magnetic field Bz <= 2 kGs, applied throughout the pinch region, stabilizes the Rayleigh-Taylor instability. The standard silver activation diagnostics and 4 plastic scintillator neutron Time of Flight (nTOF) detectors are augmented with a large area ( 1400 cm2) liquid scintillator detector to which fast gatedPhotek photomultipliers are attached. Sample data from these neutron diagnostics systems is presented. Consistently high neutron yields YDD >109 are measured, with highest yield of 2.6 ×109 . A pair of horizontally and vertically placed plastic scintillator nTOFs suggest isotropic i.e. thermonuclear origin of the neutrons produced. nTOF data from the liquid scintillator detector was cross-calibrated with the silver activation detector, and can be used for accurate calculation of the neutron yield. Funded by the Advanced Research Projects Agency - Energy, under Grant Number DE-AR0000569.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, J.; Alpan, F. A.; Fischer, G.A.
2011-07-01
Traditional two-dimensional (2D)/one-dimensional (1D) SYNTHESIS methodology has been widely used to calculate fast neutron (>1.0 MeV) fluence exposure to reactor pressure vessel in the belt-line region. However, it is expected that this methodology cannot provide accurate fast neutron fluence calculation at elevations far above or below the active core region. A three-dimensional (3D) parallel discrete ordinates calculation for ex-vessel neutron dosimetry on a Westinghouse 4-Loop XL Pressurized Water Reactor has been done. It shows good agreement between the calculated results and measured results. Furthermore, the results show very different fast neutron flux values at some of the former plate locationsmore » and elevations above and below an active core than those calculated by a 2D/1D SYNTHESIS method. This indicates that for certain irregular reactor internal structures, where the fast neutron flux has a very strong local effect, it is required to use a 3D transport method to calculate accurate fast neutron exposure. (authors)« less
Design of a novel instrument for active neutron interrogation of artillery shells.
Bélanger-Champagne, Camille; Vainionpää, Hannes; Peura, Pauli; Toivonen, Harri; Eerola, Paula; Dendooven, Peter
2017-01-01
The most common explosives can be uniquely identified by measuring the elemental H/N ratio with a precision better than 10%. Monte Carlo simulations were used to design two variants of a new prompt gamma neutron activation instrument that can achieve this precision. The instrument features an intense pulsed neutron generator with precise timing. Measuring the hydrogen peak from the target explosive is especially challenging because the instrument itself contains hydrogen, which is needed for neutron moderation and shielding. By iterative design optimization, the fraction of the hydrogen peak counts coming from the explosive under interrogation increased from [Formula: see text]% to [Formula: see text]% (statistical only) for the benchmark design. In the optimized design variants, the hydrogen signal from a high-explosive shell can be measured to a statistics-only precision better than 1% in less than 30 minutes for an average neutron production yield of 109 n/s.
Design of a novel instrument for active neutron interrogation of artillery shells
Vainionpää, Hannes; Peura, Pauli; Toivonen, Harri; Eerola, Paula; Dendooven, Peter
2017-01-01
The most common explosives can be uniquely identified by measuring the elemental H/N ratio with a precision better than 10%. Monte Carlo simulations were used to design two variants of a new prompt gamma neutron activation instrument that can achieve this precision. The instrument features an intense pulsed neutron generator with precise timing. Measuring the hydrogen peak from the target explosive is especially challenging because the instrument itself contains hydrogen, which is needed for neutron moderation and shielding. By iterative design optimization, the fraction of the hydrogen peak counts coming from the explosive under interrogation increased from 53-7+7% to 74-10+8% (statistical only) for the benchmark design. In the optimized design variants, the hydrogen signal from a high-explosive shell can be measured to a statistics-only precision better than 1% in less than 30 minutes for an average neutron production yield of 109 n/s. PMID:29211773
Active interrogation using low-energy nuclear reactions
NASA Astrophysics Data System (ADS)
Antolak, Arlyn; Doyle, Barney; Leung, Ka-Ngo; Morse, Daniel; Provencio, Paula
2005-09-01
High-energy photons and neutrons can be used to interrogate for heavily shielded fissile materials inside sealed cargo containers by detecting their prompt and/or delayed fission signatures. The FIND (Fissmat Inspection for Nuclear Detection) active interrogation system is based on a dual neutron+gamma source that uses low-energy (< 500 keV) proton- or deuteron-induced nuclear reactions to produce high intensities of mono-energetic gamma rays and/or neutrons. The source can be operated in either pulsed (e.g., to detect delayed photofission neutrons and gammas) or continuous (e.g., detecting prompt fission signatures) modes. For the gamma-rays, the source target can be segmented to incorporate different (p,γ) isotopes for producing gamma-rays at selective energies, thereby improving the probability of detection. The design parameters for the FIND system are discussed and preliminary accelerator-based measurements of gamma and neutron yields, background levels, and fission signals for several target materials under consideration are presented.
FY17 Status Report on NEAMS Neutronics Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C. H.; Jung, Y. S.; Smith, M. A.
2017-09-30
Under the U.S. DOE NEAMS program, the high-fidelity neutronics code system has been developed to support the multiphysics modeling and simulation capability named SHARP. The neutronics code system includes the high-fidelity neutronics code PROTEUS, the cross section library and preprocessing tools, the multigroup cross section generation code MC2-3, the in-house meshing generation tool, the perturbation and sensitivity analysis code PERSENT, and post-processing tools. The main objectives of the NEAMS neutronics activities in FY17 are to continue development of an advanced nodal solver in PROTEUS for use in nuclear reactor design and analysis projects, implement a simplified sub-channel based thermal-hydraulic (T/H)more » capability into PROTEUS to efficiently compute the thermal feedback, improve the performance of PROTEUS-MOCEX using numerical acceleration and code optimization, improve the cross section generation tools including MC2-3, and continue to perform verification and validation tests for PROTEUS.« less
Non-destructive method for determining neutron exposure and constituent concentrations of a body
Gold, Raymond; McElroy, William N.
1986-01-01
A non-destructive method for determination of neutron exposure and constituent concentrations in an object, such as reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure or the spatial constituent concentration at regions of interest within the object.
Non-destructive method for determining neutron exposure and constituent concentrations of a body
Gold, R.; McElroy, W.N.
1984-02-22
A non-destructive method for determination of neutron exposure and constituent concentrations in an object, such as a reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure or the spatial constituent concentrations at regions of interest within the object.
Tracing footprints of environmental events in tree ring chemistry using neutron activation analysis
NASA Astrophysics Data System (ADS)
Sahin, Dagistan
The aim of this study is to identify environmental effects on tree-ring chemistry. It is known that industrial pollution, volcanic eruptions, dust storms, acid rain and similar events can cause substantial changes in soil chemistry. Establishing whether a particular group of trees is sensitive to these changes in soil environment and registers them in the elemental chemistry of contemporary growth rings is the over-riding goal of any Dendrochemistry research. In this study, elemental concentrations were measured in tree-ring samples of absolutely dated eleven modern forest trees, grown in the Mediterranean region, Turkey, collected and dated by the Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology laboratory at Cornell University. Correlations between measured elemental concentrations in the tree-ring samples were analyzed using statistical tests to answer two questions. Does the current concentration of a particular element depend on any other element within the tree? And, are there any elements showing correlated abnormal concentration changes across the majority of the trees? Based on the detailed analysis results, the low mobility of sodium and bromine, positive correlations between calcium, zinc and manganese, positive correlations between trace elements lanthanum, samarium, antimony, and gold within tree-rings were recognized. Moreover, zinc, lanthanum, samarium and bromine showed strong, positive correlations among the trees and were identified as possible environmental signature elements. New Dendrochemistry information found in this study would be also useful in explaining tree physiology and elemental chemistry in Pinus nigra species grown in Turkey. Elemental concentrations in tree-ring samples were measured using Neutron Activation Analysis (NAA) at the Pennsylvania State University Radiation Science and Engineering Center (RSEC). Through this study, advanced methodologies for methodological, computational and experimental NAA were developed to ensure an acceptable accuracy and certainty in the elemental concentration measurements in tree-ring samples. Two independent analysis methods of NAA were used; the well known k-zero method and a novel method developed in this study, called the Multi-isotope Iterative Westcott (MIW) method. The MIW method uses reaction rate probabilities for a group of isotopes, which can be calculated by a neutronic simulation or measured by experimentation, and determines the representative values for the neutron flux and neutron flux characterization parameters based on Westcott convention. Elemental concentration calculations for standard reference material and tree-ring samples were then performed using the MIW and k-zero analysis methods of the NAA and the results were cross verified. In the computational part of this study, a detailed burnup coupled neutronic simulation was developed to analyze real-time neutronic changes in a TRIGA Mark III reactor core, in this study, the Penn State Breazeale Reactor (PSBR) core. To the best of the author`s knowledge, this is the first burnup coupled neutronic simulation with realistic time steps and full fuel temperature profile for a TRIGA reactor using Monte Carlo Utility for Reactor Evolutions (MURE) code and Monte Carlo Neutral-Particle Code (MCNP) coupling. High fidelity and flexibility in the simulation was aimed to replicate the real core operation through the day. This approach resulted in an enhanced accuracy in neutronic representation of the PSBR core with respect to previous neutronic simulation models for the PSBR core. An important contribution was made in the NAA experimentation practices employed in Dendrochemistry studies at the RSEC. Automated laboratory control and analysis software for NAA measurements in the RSEC Radionuclide Applications Laboratory was developed. Detailed laboratory procedures were written in this study comprising preparation, handling and measurements of tree-ring samples in the Radionuclide Applications Laboratory.
NASA Astrophysics Data System (ADS)
Maekawa, F.; Verzilov, Y. M.; Smith, D. L.; Ikeda, Y.
2000-12-01
Except for 3H and 14C, no radioactive nuclide is produced by neutron-induced reactions with lithium in lithium-containing materials such as Li 2O and Li 2CO 3. However, when the lithium-containing materials are irradiated by 14 MeV neutrons, radioactive 7Be is produced by sequential charged particle reactions (SCPR). In this study, we measured effective 7Be production cross-sections in several lithium-containing samples at 14 MeV: the cross-sections are in the order of μb. Estimation of the effective cross-sections is attempted, and the estimated values agreed well with the experimental data. It was shown that the 7Be activity in a unit volume of lithium-containing materials in D-T fusion reactors can exceed total activity of the same unit volume of the SiC structural material in a certain cooling time. Consequently, a careful consideration of the 7Be production by SCPR is required to assess radioactive inventories in lithium-containing D-T fusion blanket materials.
The National Spallation Neutron Source Target Station.
NASA Astrophysics Data System (ADS)
Gabriel, T. A.
1997-05-01
The technologies that are being utilized to design and build a state-of-the-art high powered (>= 1 MW), short pulsed (<= 1 μsec), and reliable spallation neutron source target station are discussed. The protons which directly and indirectly produce the neutrons will be obtained from a 1 GeV proton accelerator composed of an ion gun, rfq, linac, and storage ring. Many scientific and technical disciplines are required to produce a successful target station. These disciplines include engineering, remote handling, neutronics, materials, thermal hydraulics, shock analysis, etc. In the areas of engineering and remote handling special emphasis is being given to rapid and efficient assembly and disassembly of critical parts of the target station. In the neutronics area, emphasis is being given to neutron yield and pulse optimization from the moderators, and heating and activation rates throughout the station. Development of structural materials to withstand aggressive radiation environments and that are compatible with other materials is also an important area. Thermal hydraulics and shock analysis are being closely studied since large amounts of energy are being deposited in small volumes in relatively short time periods (< 1 μsec). These areas will be expanded upon in the paper.
A novel design for scintillator-based neutron and gamma imaging in inertial confinement fusion
NASA Astrophysics Data System (ADS)
Geppert-Kleinrath, Verena; Cutler, Theresa; Danly, Chris; Madden, Amanda; Merrill, Frank; Tybo, Josh; Volegov, Petr; Wilde, Carl
2017-10-01
The LANL Advanced Imaging team has been providing reliable 2D neutron imaging of the burning fusion fuel at NIF for years, revealing possible multi-dimensional asymmetries in the fuel shape, and therefore calling for additional views. Adding a passive imaging system using image plate techniques along a new polar line of sight has recently demonstrated the merit of 3D neutron image reconstruction. Now, the team is in the process of designing a new active neutron imaging system for an additional equatorial view. The design will include a gamma imaging system as well, to allow for the imaging of carbon in the ablator of the NIF fuel capsules, constraining the burning fuel shape even further. The selection of ideal scintillator materials for a position-sensitive detector system is the key component for the new design. A comprehensive study of advanced scintillators has been carried out at the Los Alamos Neutron Science Center and the OMEGA Laser Facility in Rochester, NY. Neutron radiography using a fast-gated CCD camera system delivers measurements of resolution, light output and noise characteristics. The measured performance parameters inform the novel design, for which we conclude the feasibility of monolithic scintillators over pixelated counterparts.
High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERN
NASA Astrophysics Data System (ADS)
Sabaté-Gilarte, M.; Barbagallo, M.; Colonna, N.; Gunsing, F.; Žugec, P.; Vlachoudis, V.; Chen, Y. H.; Stamatopoulos, A.; Lerendegui-Marco, J.; Cortés-Giraldo, M. A.; Villacorta, A.; Guerrero, C.; Damone, L.; Audouin, L.; Berthoumieux, E.; Cosentino, L.; Diakaki, M.; Finocchiaro, P.; Musumarra, A.; Papaevangelou, T.; Piscopo, M.; Tassan-Got, L.; Aberle, O.; Andrzejewski, J.; Bécares, V.; Bacak, M.; Baccomi, R.; Balibrea, J.; Barros, S.; Bečvář, F.; Beinrucker, C.; Belloni, F.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chiaveri, E.; Cortés, G.; Deo, K.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Frost, R. J. W.; Furman, V.; Göbel, K.; García, A. R.; Gawlik, A.; Gheorghe, I.; Glodariu, T.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Griesmayer, E.; Harada, H.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Licata, M.; Lo Meo, S.; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Nolte, R.; Oprea, A.; Palomo-Pinto, F. R.; Paradela, C.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, J. I.; Praena, J.; Quesada, J. M.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M. S.; Rout, P. C.; Rubbia, C.; Ryan, J. A.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Wolf, C.; Woods, P. J.; Weiss, C.; Wright, T.
2017-10-01
A new high flux experimental area has recently become operational at the n_TOF facility at CERN. This new measuring station, n_TOF-EAR2, is placed at the end of a vertical beam line at a distance of approximately 20m from the spallation target. The characterization of the neutron beam, in terms of flux, spatial profile and resolution function, is of crucial importance for the feasibility study and data analysis of all measurements to be performed in the new area. In this paper, the measurement of the neutron flux, performed with different solid-state and gaseous detection systems, and using three neutron-converting reactions considered standard in different energy regions is reported. The results of the various measurements have been combined, yielding an evaluated neutron energy distribution in a wide energy range, from 2meV to 100MeV, with an accuracy ranging from 2%, at low energy, to 6% in the high-energy region. In addition, an absolute normalization of the n_TOF-EAR2 neutron flux has been obtained by means of an activation measurement performed with 197Au foils in the beam.
Activation cross section and isomeric cross section ratios for the (n ,2 n ) reaction on 153Eu
NASA Astrophysics Data System (ADS)
Luo, Junhua; Jiang, Li; Li, Suyuan
2017-10-01
The 153Eu(n ,2 n ) m1,m2,g152Eu cross section was measured by means of the activation technique at three neutron energies in the range 13-15 MeV. The quasimonoenergetic neutron beam was formed via the 3H(d ,n ) 4He reaction, in the Pd-300 Neutron Generator at the Chinese Academy of Engineering Physics (CAEP). The activities induced in the reaction products were measured using high-resolution γ-ray spectroscopy. The cross section of the population of the second high-spin (8-) isomeric state was measured along with the reaction cross section populating both the ground (3-) and the first isomeric state (0-). Cross sections were also evaluated theoretically using the numerical code TALYS-1.8, with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.
A nuclear method to authenticate Buddha images
NASA Astrophysics Data System (ADS)
Khaweerat, S.; Ratanatongchai, W.; Channuie, J.; Wonglee, S.; Picha, R.; Promping, J.; Silva, K.; Liamsuwan, T.
2015-05-01
The value of Buddha images in Thailand varies dramatically depending on authentication and provenance. In general, people use their individual skills to make the justification which frequently leads to obscurity, deception and illegal activities. Here, we propose two non-destructive techniques of neutron radiography (NR) and neutron activation autoradiography (NAAR) to reveal respectively structural and elemental profiles of small Buddha images. For NR, a thermal neutron flux of 105 n cm-2s-1 was applied. NAAR needed a higher neutron flux of 1012 n cm-2 s-1 to activate the samples. Results from NR and NAAR revealed unique characteristic of the samples. Similarity of the profile played a key role in the classification of the samples. The results provided visual evidence to enhance the reliability of authenticity approval. The method can be further developed for routine practice which impact thousands of customers in Thailand.
Shutdown Dose Rate Analysis for the long-pulse D-D Operation Phase in KSTAR
NASA Astrophysics Data System (ADS)
Park, Jin Hun; Han, Jung-Hoon; Kim, D. H.; Joo, K. S.; Hwang, Y. S.
2017-09-01
KSTAR is a medium size fully superconducting tokamak. The deuterium-deuterium (D-D) reaction in the KSTAR tokamak generates neutrons with a peak yield of 3.5x1016 per second through a pulse operation of 100 seconds. The effect of neutron generation from full D-D high power KSTAR operation mode to the machine, such as activation, shutdown dose rate, and nuclear heating, are estimated for an assurance of safety during operation, maintenance, and machine upgrade. The nuclear heating of the in-vessel components, and neutron activation of the surrounding materials have been investigated. The dose rates during operation and after shutdown of KSTAR have been calculated by a 3D CAD model of KSTAR with the Monte Carlo code MCNP5 (neutron flux and decay photon), the inventory code FISPACT (activation and decay photon) and the FENDL 2.1 nuclear data library.
NASA Astrophysics Data System (ADS)
Radulović, Vladimir; Trkov, Andrej; Jaćimović, Radojko; Gregoire, Gilles; Destouches, Christophe
2016-12-01
A recent experimental irradiation and measurement campaign using containers made from boron nitride (BN) at the Jožef Stefan Institute (JSI) TRIGA Mark II reactor in Ljubljana, Slovenia, has shown the applicability of BN for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements. The first part of the paper focuses on the determination of the transmission function of a BN container through Monte Carlo calculations and experimental measurements. The second part presents the process of tayloring the sensitivity of integral activation measurements to specific needs and a selection of suitable radiative capture reactions for neutron spectrum characterization in the epithermal range. A BN container used in our experiments and its qualitative effect on the neutron spectrum in the irradiation position employed is displayed in the Graphical abstract.
Aluminium-gold reference material for the k0-standardisation of neutron activation analysis
NASA Astrophysics Data System (ADS)
Ingelbrecht, C.; Peetermans, F.; De Corte, F.; De Wispelaere, A.; Vandecasteele, C.; Courtijn, E.; D'Hondt, P.
1991-05-01
Gold is an excellent comparator material for the k0-standardisation of neutron activation analysis because of its convenient and well defined nuclear properties. The most suitable form for a reference material is a dilute aluminium-gold alloy, for which the self-shielding effect for neutrons is small. Castings of composition Al-0.1 wt.% Au were prepared by crucible-less levitation melting, which gives close control of ingot composition with minimal contamination of the melt. The alloy composition was checked using induction-coupled plasma source emission spectrometry. The homogeneity of the alloy was measured by neutron activation analysis and a relative standard deviation of the gold content of 0.30% was found (10 mg samples). Metallography revealed a homogeneous distribution of AuAl 2 particles. The alloy was certified as Reference Material CBNM-530, with certified gold mass fraction 0.100±0.002 wt.%.
Source terms, shielding calculations and soil activation for a medical cyclotron.
Konheiser, J; Naumann, B; Ferrari, A; Brachem, C; Müller, S E
2016-12-01
Calculations of the shielding and estimates of soil activation for a medical cyclotron are presented in this work. Based on the neutron source term from the 18 O(p,n) 18 F reaction produced by a 28 MeV proton beam, neutron and gamma dose rates outside the building were estimated with the Monte Carlo code MCNP6 (Goorley et al 2012 Nucl. Technol. 180 298-315). The neutron source term was calculated with the MCNP6 code and FLUKA (Ferrari et al 2005 INFN/TC_05/11, SLAC-R-773) code as well as with supplied data by the manufacturer. MCNP and FLUKA calculations yielded comparable results, while the neutron yield obtained using the manufacturer-supplied information is about a factor of 5 smaller. The difference is attributed to the missing channels in the manufacturer-supplied neutron source terms which considers only the 18 O(p,n) 18 F reaction, whereas the MCNP and FLUKA calculations include additional neutron reaction channels. Soil activation was performed using the FLUKA code. The estimated dose rate based on MCNP6 calculations in the public area is about 0.035 µSv h -1 and thus significantly below the reference value of 0.5 µSv h -1 (2011 Strahlenschutzverordnung, 9 Auflage vom 01.11.2011, Bundesanzeiger Verlag). After 5 years of continuous beam operation and a subsequent decay time of 30 d, the activity concentration of the soil is about 0.34 Bq g -1 .
NASA Astrophysics Data System (ADS)
Nowicki, Suzanne F.; Evans, Larry G.; Starr, Richard D.; Schweitzer, Jeffrey S.; Karunatillake, Suniti; McClanahan, Timothy P.; Moersch, Jeffrey E.; Parsons, Ann M.; Tate, Christopher G.
2017-02-01
The Probing In situ with Neutron and Gamma ray (PING) instrument is an innovative application of active neutron-induced gamma ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. This manuscript presents PING's sensitivities as a function of the Martian regolith depth and PING's uncertainties in the measurements as a function of observation time in passive and active mode. The modeled sensitivities show that in PING's active mode, where both a pulsed neutron generator (PNG) and a gamma ray spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe, and Th. The modeled uncertainties show that PING's use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 min that are sensitive to H and Cl.
NASA Astrophysics Data System (ADS)
Koga, K.; Muraki, Y.; Shibata, S.; Yamamoto, T.; Matsumoto, H.; Okudaira, O.; Kawano, H.; Yumoto, K.
2013-12-01
To support future space activities, it is crucial to acquire space environmental data related to the space-radiation degradation of space parts and materials, and spacecraft anomalies. Such data are useful for spacecraft design and manned space activity. SEDA-AP was mounted on 'Kibo' of the ISS (International Space Station) to measure the space environment at a 400-kilometer altitude. Neutrons are very harmful radiation, with electrical neutrality that makes them strongly permeable. SEDA-AP measures the energy of neutrons from thermal to 100 MeV in real time using a Bonner Ball Detector (BBND) and a Scintillation Fiber Detector (FIB). BBND detects neutrons using He-3 counters, which have high sensitivity to thermal neutrons. Neutron energy is derived using the relative response function of polyethylene moderators of 6 different thicknesses. FIB measures the tracks of recoil protons caused by neutrons within a cubic arrayed sensor of 512 scintillation fibers. The charged particles are excluded using an anti-scintillator which surrounds the cube sensor, and the neutron energy is obtained from the track length of a recoil proton. There are three sources of neutrons in space; 1. Albedo Neutrons Produced by reactions of galactic cosmic rays or radiation belt particles with the atmosphere 2. Local Neutrons Produced by the reactions of galactic cosmic rays or radiation belt particles with spacecraft 3. Solar Neutrons Produced by accelerated particles in solar flares An accurate energy spectrum of the solar neutrons includes important information on high-energy particle generation mechanism in a solar flare, because neutrons are unaffected by interplanetary magnetic fields. These data will become useful to forecast solar energetic particles in future. Some candidate events involving solar neutrons were found as a result of analyzing data of the solar flare of M>2 since September 2009. Moreover, it is important to measure albedo neutrons, since protons generated by neutron decays are thought to originate from the radiation belt. This theory is called CRAND (Cosmic Ray Albedo Neutron Decay). Our observation result is consistent with the CRAND theory prediction in the case of low-energy parts. Moreover, the flux and angular distribution of local neutrons were estimated using the nuclear simulation code 'PHITS' to evaluate the influence of local neutrons on the structure of SEDA-AP and 'Kibo'. The results of our analyses on solar and albedo neutrons are reported in this paper.
HPGe detector shielding optimization with MCNPX for the MEDINA PGNAA cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicol, T.; Perot, B.; Carasco, C.
2015-07-01
Radioactive waste repositories must guarantee the non-toxicity of the waste in the long term, not only regarding radioactivity but also regarding other environmental contamination such as toxic chemicals. Analytical methods already exist for chemical characterization (ICP-MS, ICP-AES...) but they are based on test sampling. A possible alternative, for waste packages with an appropriate gamma radiation level, is to use Prompt Gamma Neutron Activation Analysis (PGNAA), a non-destructive measurement technique sensitive to several toxic chemicals. In view of the characterization of radioactive wastes in Germany and France, collaboration between the CEA Cadarache (France) and the Forschungszentrum Juelich (Germany) was initiated amore » few years ago. FZJ holds a PGNAA graphite cell called MEDINA (Multi Element Detection based on Instrumental Neutron Activation), allowing the characterization of 225 L drums. Fast neutrons are emitted from a D-T pulsed 14 MeV neutron generator and thermalized in graphite to induced radiative captures in the waste materials. Prompt capture gamma rays are detected using a 104% relative efficiency n-type HPGe. However, HPGe crystal is sensitive to fast neutron damage and to thermal neutron activation. A thermal neutron shield made of lithium fluorine and lithium carbonate is already used around the detector. In order to further decrease the current of fast and thermal neutrons coming into the crystal without penalizing MEDINA sensitivity (by decreasing the thermal neutron flux and neutron die away time of the cell, the gamma detection efficiency, or increasing the gamma background), some configurations based on easy-to-implement modifications of MEDINA have been simulated with MCNPX with a model of the cell already validated by experiments. Results show that fast and thermal neutron incoming current in the HPGe could easily be reduced by about a factor of 2 by additional quantities of graphite and by replacing lithium carbonate by lithium fluorine with a higher {sup 6}Li concentration. In addition, these modifications slightly increase the thermal neutron flux in the cell without deteriorating the neutron die away time, and reduce the gamma background about a factor of 2 during the neutron pulse but 5 times less after it. More important changes have also been tested, such as the addition of polyethylene and lead between the neutron generator and the HPGe detector, which is more effective regarding neutron shielding but decreases the neutron die away time, partly compensated by a larger initial thermal neutron flux. Concerning gamma background, hydrogen capture gamma ray (2.23 MeV) is increased due to the presence of polyethylene but lead around the HPGe decreases the total gamma background. In conclusion, simple modifications are possible to improve detector shielding and life time before thermal annealing of the crystal, without reducing MEDINA cell performances. Some of these modifications will be tested in the coming months. (authors)« less
32 CFR 218.3 - Dose reconstruction methodology.
Code of Federal Regulations, 2013 CFR
2013-07-01
... effects of shot-specific parameters such as weapon type and yield, neutron and gamma output, source and... specific personnel activities. Due to the range of activities, times, geometries, shielding, and weapon... that could have led to atypical doses. Radiation dose from neutrons and dose commitments due to inhaled...
32 CFR 218.3 - Dose reconstruction methodology.
Code of Federal Regulations, 2014 CFR
2014-07-01
... effects of shot-specific parameters such as weapon type and yield, neutron and gamma output, source and... specific personnel activities. Due to the range of activities, times, geometries, shielding, and weapon... that could have led to atypical doses. Radiation dose from neutrons and dose commitments due to inhaled...
32 CFR 218.3 - Dose reconstruction methodology.
Code of Federal Regulations, 2012 CFR
2012-07-01
... effects of shot-specific parameters such as weapon type and yield, neutron and gamma output, source and... specific personnel activities. Due to the range of activities, times, geometries, shielding, and weapon... that could have led to atypical doses. Radiation dose from neutrons and dose commitments due to inhaled...
Associated Particle Tagging (APT) in Magnetic Spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, David V.; Baciak, James E.; Stave, Sean C.
2012-10-16
Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation.more » In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the alpha-particle spectrometer concept, and outlines challenges involved in the magnetic field design. Tagged photon interrogation: • We investigated a method for discriminating fissile from benign cargo-material response to an energy-tagged photon beam. The method relies upon coincident detection of the tagged photon and a photoneutron or photofission neutron produced in the target material. The method exploits differences in the shape of the neutron production cross section as a function of incident photon energy in order to discriminate photofission yield from photoneutrons emitted by non-fissile materials. Computational tests of the interrogation method as applied to material composition assay of a simple, multi-layer target suggest that the tagged-photon information facilitates precise (order 1% thickness uncertainty) reconstruction of the constituent thicknesses of fissile (uranium) and high-Z (Pb) constituents of the test targets in a few minutes of photon-beam exposure. We assumed an 18-MeV endpoint tagged photon beam for these simulations. • The report addresses several candidate design and data analysis issues for beamline infrastructure required to produce a tagged photon beam in a notional AI-dedicated facility, including the accelerator and tagging spectrometer.« less
Developments in capture-γ libraries for nonproliferation applications
NASA Astrophysics Data System (ADS)
Hurst, A. M.; Firestone, R. B.; Sleaford, B. W.; Bleuel, D. L.; Basunia, M. S.; Bečvář, F.; Belgya, T.; Bernstein, L. A.; Carroll, J. J.; Detwiler, B.; Escher, J. E.; Genreith, C.; Goldblum, B. L.; Krtička, M.; Lerch, A. G.; Matters, D. A.; McClory, J. W.; McHale, S. R.; Révay, Zs.; Szentmiklosi, L.; Turkoglu, D.; Ureche, A.; Vujic, J.
2017-09-01
The neutron-capture reaction is fundamental for identifying and analyzing the γ-ray spectrum from an unknown assembly because it provides unambiguous information on the neutron-absorbing isotopes. Nondestructive-assay applications may exploit this phenomenon passively, for example, in the presence of spontaneous-fission neutrons, or actively where an external neutron source is used as a probe. There are known gaps in the Evaluated Nuclear Data File libraries corresponding to neutron-capture γ-ray data that otherwise limit transport-modeling applications. In this work, we describe how new thermal neutron-capture data are being used to improve information in the neutron-data libraries for isotopes relevant to nonproliferation applications. We address this problem by providing new experimentally-deduced partial and total neutron-capture reaction cross sections and then evaluate these data by comparison with statistical-model calculations.
Neutron production in deuterium gas-puff z-pinch with outer plasma shell at current of 3 MA
NASA Astrophysics Data System (ADS)
Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Frusov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu.; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.; Krasa, J.
2015-11-01
Z-pinch experiments at the current of about 3 MA were carried out on the GIT-12 generator. The outer plasma shell of deuterium gas-puff was generated by the system of 48 plasma guns. This configuration exhibits a high efficiency of the production of DD fusion neutrons with the yield of above 1012 neutrons produced in a single shot with the duration of about 20 ns. The maximum energy of the neutrons produced in this pulse exceeded 30 MeV. The neutron radiation was measured using scintillation TOF detectors, CR-39 nuclear track detectors, bubble detectors BD-PND and BDS-10000 and by several types of nuclear activation detectors. These diagnostic tools were used to measure the anisotropy of neutron fluence and neutron energy spectra. It allows us to estimate the total number of DD neutrons, the contribution of other nuclear reactions, the amount of scattered neutrons, and other parameters of neutron production. This work was supported by the MSMT grants LH13283, LD14089.
A search for solar neutrons on a long duration balloon flight
NASA Technical Reports Server (NTRS)
Koga, R.; Frye, G. M., Jr.; Owens, A.; Denehy, B. V.; Mace, O.; Thomas, J.
1985-01-01
The EOSCOR 3 detector, designed to measure the flux of solar neutrons, was flown on a long duration RACOON balloon flight from Australia during Jan. through Feb, 1983. The Circum-global flight lasted 22 days. No major solar activity occurred during the flight and thus only an upper limit to the solar flare neutrons flux is given. The atmospheric neutron response is compared with that obtained on earlier flights from Palestine, Texas.
A search for solar neutrons on a long duration balloon flight
NASA Astrophysics Data System (ADS)
Koga, R.; Frye, G. M., Jr.; Owens, A.; Denehy, B. V.; Mace, O.; Thomas, J.
1985-08-01
The EOSCOR 3 detector, designed to measure the flux of solar neutrons, was flown on a long duration RACOON balloon flight from Australia during Jan. through Feb, 1983. The Circum-global flight lasted 22 days. No major solar activity occurred during the flight and thus only an upper limit to the solar flare neutrons flux is given. The atmospheric neutron response is compared with that obtained on earlier flights from Palestine, Texas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonigan, Andrew M.; Arutt, Charles N.; Parma, Edward J.
For this research, a bipolar-transistor-based sensor technique has been used to compare silicon displacement damage from known and unknown neutron energy spectra generated in nuclear reactor and high-energy-density physics environments. The technique has been shown to yield 1-MeV(Si) equivalent neutron fluence measurements comparable to traditional neutron activation dosimetry. This study significantly extends previous results by evaluating three types of bipolar devices utilized as displacement damage sensors at a nuclear research reactor and at a Pelletron particle accelerator. Ionizing dose effects are compensated for via comparisons with 10-keV x-ray and/or cobalt-60 gamma ray irradiations. Non-ionizing energy loss calculations adequately approximate themore » correlations between particle-device responses and provide evidence for the use of one particle type to screen the sensitivity of the other.« less
The Neutron Star Interior Composition Explorer (NICER)
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Gendreau, K.; Arzoumanian, Z.
2014-01-01
The Neutron Star Interior Composition Explorer (NICER) is an approved NASA Explorer Mission of Opportunity dedicated to the study of the extraordinary gravitational, electromagnetic, and nuclear-physics environments embodied by neutron stars. Scheduled to be launched in 2016 as an International Space Station payload, NICER will explore the exotic states of matter, using rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft (0.2-12 keV) X-ray band. Grazing-incidence "concentrator" optics coupled with silicon drift detectors, actively pointed for a full hemisphere of sky coverage, will provide photon-counting spectroscopy and timing registered to GPS time and position, with high throughput and relatively low background. The NICER project plans to implement a Guest Observer Program, which includes competitively selected user targets after the first year of flight operations. I will describe NICER and discuss ideas for potential Be/X-ray binary science.
Tonigan, Andrew M.; Arutt, Charles N.; Parma, Edward J.; ...
2017-11-16
For this research, a bipolar-transistor-based sensor technique has been used to compare silicon displacement damage from known and unknown neutron energy spectra generated in nuclear reactor and high-energy-density physics environments. The technique has been shown to yield 1-MeV(Si) equivalent neutron fluence measurements comparable to traditional neutron activation dosimetry. This study significantly extends previous results by evaluating three types of bipolar devices utilized as displacement damage sensors at a nuclear research reactor and at a Pelletron particle accelerator. Ionizing dose effects are compensated for via comparisons with 10-keV x-ray and/or cobalt-60 gamma ray irradiations. Non-ionizing energy loss calculations adequately approximate themore » correlations between particle-device responses and provide evidence for the use of one particle type to screen the sensitivity of the other.« less
NASA Astrophysics Data System (ADS)
Čufar, Aljaž; Batistoni, Paola; Conroy, Sean; Ghani, Zamir; Lengar, Igor; Milocco, Alberto; Packer, Lee; Pillon, Mario; Popovichev, Sergey; Snoj, Luka; JET Contributors
2017-03-01
At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium-tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle-energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.
Activation experiment for concrete blocks using thermal neutrons
NASA Astrophysics Data System (ADS)
Okuno, Koichi; Tanaka, Seiichiro
2017-09-01
Activation experiments for ordinary concrete, colemanite-peridotite concrete, B4C-loaded concrete, and limestone concrete are carried out using thermal neutrons. The results reveal that the effective dose for gamma rays from activated nuclides of colemanite-peridotite concrete is lower than that for the other types of concrete. Therefore, colemanite-peridotite concrete is useful for reducing radiation exposure for workers.
Determination of the thermal and epithermal neutron sensitivities of an LBO chamber.
Endo, Satoru; Sato, Hitoshi; Shimazaki, Takuto; Nakajima, Erika; Kotani, Kei; Suda, Mitsuru; Hamano, Tsuyoshi; Kajimoto, Tsuyoshi; Tanaka, Kenichi; Hoshi, Masaharu
2017-08-01
An LBO (Li 2 B 4 O 7 ) walled ionization chamber was designed to monitor the epithermal neutron fluence in boron neutron capture therapy clinical irradiation. The thermal and epithermal neutron sensitivities of the device were evaluated using accelerator neutrons from the 9 Be(d, n) reaction at a deuteron energy of 4 MeV (4 MeV d-Be neutrons). The response of the chamber in terms of the electric charge induced in the LBO chamber was compared with the thermal and epithermal neutron fluences measured using the gold-foil activation method. The thermal and epithermal neutron sensitivities obtained were expressed in units of pC cm 2 , i.e., from the chamber response divided by neutron fluence (cm -2 ). The measured LBO chamber sensitivities were 2.23 × 10 -7 ± 0.34 × 10 -7 (pC cm 2 ) for thermal neutrons and 2.00 × 10 -5 ± 0.12 × 10 -5 (pC cm 2 ) for epithermal neutrons. This shows that the LBO chamber is sufficiently sensitive to epithermal neutrons to be useful for epithermal neutron monitoring in BNCT irradiation.
The quality assessment of radial and tangential neutron radiography beamlines of TRR
NASA Astrophysics Data System (ADS)
Choopan Dastjerdi, M. H.; Movafeghi, A.; Khalafi, H.; Kasesaz, Y.
2017-07-01
To achieve a quality neutron radiographic image in a relatively short exposure time, the neutron radiography beam must be of good quality and relatively high neutron flux. Characterization of a neutron radiography beam, such as determination of the image quality and the neutron flux, is vital for producing quality radiographic images and also provides a means to compare the quality of different neutron radiography facilities. This paper provides a characterization of the radial and tangential neutron radiography beamlines at the Tehran research reactor. This work includes determination of the facilities category according to the American Society for Testing and Materials (ASTM) standards, and also uses the gold foils to determine the neutron beam flux. The radial neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. The tangential beam is a Category IV neutron radiography facility. Gold foil activation experiments show that the measured neutron flux for radial beamline with length-to-diameter ratio (L/D) =150 is 6.1× 106 n cm-2 s-1 and for tangential beamline with (L/D)=115 is 2.4× 104 n cm-2 s-1.
Determination of shell content by activation analysis : final report.
DOT National Transportation Integrated Search
1978-08-01
The objective of this study is to determine if neutron activation analysis technique, developed under Research Project 70-1ST, can be used to determine the shell content of a sand-shell mixture. : In order to accomplish this objective, samples of san...
In situ investigation of deformation mechanisms in magnesium-based metal matrix composites
NASA Astrophysics Data System (ADS)
Farkas, Gergely; Choe, Heeman; Máthis, Kristián; Száraz, Zoltán; Noh, Yoonsook; Trojanová, Zuzanka; Minárik, Peter
2015-07-01
We studied the effect of short fibers on the mechanical properties of a magnesium alloy. In particular, deformation mechanisms in a Mg-Al-Sr alloy reinforced with short alumina fibers were studied in situ using neutron diffraction and acoustic emission methods. The fibers' plane orientation with respect to the loading axis was found to be a key parameter, which influences the acting deformation processes, such as twinning or dislocation slip. Furthermore, the twinning activity was much more significant in samples with parallel fiber plane orientation, which was confirmed by both acoustic emission and electron backscattering diffraction results. Neutron diffraction was also used to assist in analyzing the acoustic emission and electron backscattering diffraction results. The simultaneous application of the two in situ methods, neutron diffraction and acoustic emission, was found to be beneficial for obtaining complementary datasets about the twinning and dislocation slip in the magnesium alloys and composites used in this study.
Carbon Atmosphere Discovered On Neutron Star
NASA Astrophysics Data System (ADS)
2009-11-01
Evidence for a thin veil of carbon has been found on the neutron star in the Cassiopeia A supernova remnant. This discovery, made with NASA's Chandra X-ray Observatory, resolves a ten-year mystery surrounding this object. "The compact star at the center of this famous supernova remnant has been an enigma since its discovery," said Wynn Ho of the University of Southampton and lead author of a paper that appears in the latest issue of Nature. "Now we finally understand that it can be produced by a hot neutron star with a carbon atmosphere." By analyzing Chandra's X-ray spectrum - akin to a fingerprint of energy - and applying it to theoretical models, Ho and his colleague Craig Heinke, from the University of Alberta, determined that the neutron star in Cassiopeia A, or Cas A for short, has an ultra-thin coating of carbon. This is the first time the composition of an atmosphere of an isolated neutron star has been confirmed. The Chandra "First Light" image of Cas A in 1999 revealed a previously undetected point-like source of X-rays at the center. This object was presumed to be a neutron star, the typical remnant of an exploded star, but researchers were unable to understand its properties. Defying astronomers' expectations, this object did not show any X-ray or radio pulsations or any signs of radio pulsar activity. By applying a model of a neutron star with a carbon atmosphere to this object, Ho and Heinke found that the region emitting X-rays would uniformly cover a typical neutron star. This would explain the lack of X-ray pulsations because -- like a lightbulb that shines consistently in all directions -- this neutron star would be unlikely to display any changes in its intensity as it rotates. Scientists previously have used a neutron star model with a hydrogen atmosphere giving a much smaller emission area, corresponding to a hot spot on a typical neutron star, which should produce X-ray pulsations as it rotates. Interpreting the hydrogen atmosphere model without pulsations would require a tiny size, consistent only with exotic stars made of strange quark matter. "Our carbon veil solves one of the big questions about the neutron star in Cas A," said Craig Heinke. "People have been willing to consider some weird explanations, so it's a relief to discover a less peculiar solution." Unlike most astronomical objects, neutron stars are small enough to understand on a human scale. For example, neutron stars typically have a diameter of about 14 miles, only slightly longer than a half-marathon. The atmosphere of a neutron star is on an even smaller scale. The researchers calculate that the carbon atmosphere is only about 4 inches thick, because it has been compressed by a surface gravity that is 100 billion times stronger than on Earth. "For people who are used to hearing about immense sizes of things in space, it might be a surprise that we can study something so small," said Ho. "It's also funny to think that such a thin veil over this star played a key role in frustrating researchers." In Earth's time frame, the estimated age of the neutron star in Cas A is only several hundred years, making it about ten times younger than other neutron stars with detected surface emission. Therefore, the Cas A neutron star gives a unique window into the early life of a cooling neutron star. The carbon itself comes from a combination of material that has fallen back after the supernova, and nuclear reactions on the hot surface of the neutron star which convert hydrogen and helium into carbon. The X-ray spectrum and lack of pulsar activity suggest that the magnetic field on the surface of this neutron star is relatively weak. Similarly low magnetic fields are implied for several other young neutron stars by study of their weak X-ray pulsations. It is not known whether these neutron stars will have low magnetic fields for their entire lives, and never become radio pulsars, or whether processes in their interior will lead to the development of stronger magnetic fields as they age. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.
Measuring neutron spectra in radiotherapy using the nested neutron spectrometer.
Maglieri, Robert; Licea, Angel; Evans, Michael; Seuntjens, Jan; Kildea, John
2015-11-01
Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation-maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors' measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. The NNS may be used to reliably measure the neutron spectrum of a radiotherapy beam in less than 1 h, including setup and data unfolding. This work thus represents a new, fast, and practical method for neutron spectral measurements in radiotherapy.
Neutron Reference Benchmark Field Specification: ACRR Free-Field Environment (ACRR-FF-CC-32-CL).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vega, Richard Manuel; Parma, Edward J.; Griffin, Patrick J.
2015-07-01
This report was put together to support the International Atomic Energy Agency (IAEA) REAL- 2016 activity to validate the dosimetry community’s ability to use a consistent set of activation data and to derive consistent spectral characterizations. The report captures details of integral measurements taken in the Annular Core Research Reactor (ACRR) central cavity free-field reference neutron benchmark field. The field is described and an “a priori” calculated neutron spectrum is reported, based on MCNP6 calculations, and a subject matter expert (SME) based covariance matrix is given for this “a priori” spectrum. The results of 31 integral dosimetry measurements in themore » neutron field are reported.« less
DOSE PROFILE MODELING OF IDAHO NATIONAL LABORATORY’S ACTIVE NEUTRON INTERROGATION TEST FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. L. Chichester; E. H. Seabury; J. M. Zabriskie
2009-06-01
A new research and development laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for DT fusion (14.1 MeV) neutron generators (2 x 108 neutrons per second), DD fusion (2.5 MeV) neutron generators (up to 2 x 106 neutrons per second), and 252Cf spontaneous fission neutron sources (6.7 x 107 neutrons per second, 30 micrograms). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault.more » The larger vault is designed to allow operation of the DT generator and has walls 3.8 m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for 252Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield wall and entrance maze and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.« less
Induced radioactivity of LDEF materials and structural components
NASA Technical Reports Server (NTRS)
Harmon, B. A.; Laird, C. E.; Fishman, G. J.; Parnell, T. A.; Camp, D. C.; Frederick, C. E.; Hurley, D. L.; Lindstrom, D. J.; Moss, C. E.; Reedy, R. C.;
1996-01-01
We present an overview of the Long Duration Exposure Facility (LDEF) induced activation measurements. The LDEF, which was gravity-gradient stabilized, was exposed to the low Earth orbit (LEO) radiation environment over a 5.8 year period. Retrieved activation samples and structural components from the spacecraft were analyzed with low and ultra-low background HPGe gamma spectrometry at several national facilities. This allowed a very sensitive measurement of long-lived radionuclides produced by proton- and neutron-induced reactions in the time-dependent, non-isotropic LEO environment. A summary of major findings from this study is given that consists of directionally dependent activation, depth profiles, thermal neutron activation, and surface beryllium-7 deposition from the upper atmosphere. We also describe a database of these measurements that has been prepared for use in testing radiation environmental models and spacecraft design.
In vivo neutron activation analysis: body composition studies in health and disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, K.J.; Cohn, S.H.
1984-01-01
In vivo analysis of body elements by neutron activation is an important tool in medical research. It has provided a direct quantitative measure of body composition of human beings in vivo. Basic physiological differences related to age, sex, race, and body size have been assessed by this noninvasive technique. The diagnosis and management of patients with various metabolic disorders and diseases has also been demonstrated. Two major facilities at Brookhaven are being utilized exclusively for in vivo neutron activation analysis (IVNAA) of calcium, phosphorus, sodium, chlorine, nitrogen, hydrogen, and potassium. These elements serve as the basis for a four compartmentmore » model of body composition: protein, water, mineral ash, and fat. Variations in these compartments are demonstrated in clinical research programs investigating obesity, anorexia, cancer, renal failure, osteoporosis, and normal aging. IVNAA continues to provide a unique approach to the evaluation of clinical diagnosis, efficacy of therapeutic regimens, and monitoring of the aging process. Classical balance studies usually require the patient to be admitted to a hospital for extended periods of confinement. IVNAA, however, allows for clinical management of the patient on an out-patient basis, an important aspect for treatment of chronic diseases. 25 references, 3 figures, 5 tables.« less
Performance characteristics of the MIT fission converter based epithermal neutron beam.
Riley, K J; Binns, P J; Harling, O K
2003-04-07
A pre-clinical characterization of the first fission converter based epithermal neutron beam (FCB) designed for boron neutron capture therapy (BNCT) has been performed. Calculated design parameters describing the physical performance of the aluminium and Teflon filtered beam were confirmed from neutron fluence and absorbed dose rate measurements performed with activation foils and paired ionization chambers. The facility currently provides an epithermal neutron flux of 4.6 x 10(9) n cm(-2) s(-1) in-air at the patient position that makes it the most intense BNCT source in the world. This epithermal neutron flux is accompanied by very low specific photon and fast neutron absorbed doses of 3.5 +/- 0.5 and 1.4 +/- 0.2 x 10(-13) Gy cm2, respectively. A therapeutic dose rate of 1.7 RBE Gy min(-1) is achievable at the advantage depth of 97 mm when boronated phenylalanine (BPA) is used as the delivery agent, giving an average therapeutic ratio of 5.7. In clinical trials of normal tissue tolerance when using the FCB, the effective prescribed dose is due principally to neutron interactions with the nonselectively absorbed BPA present in brain. If an advanced compound is considered, the dose to brain would instead be predominately from the photon kerma induced by thermal neutron capture in hydrogen and advantage parameters of 0.88 Gy min(-1), 121 mm and 10.8 would be realized for the therapeutic dose rate, advantage depth and therapeutic ratio, respectively. This study confirms the success of a new approach to producing a high intensity, high purity epithermal neutron source that attains near optimal physical performance and which is well suited to exploit the next generation of boron delivery agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, Kimberly A.
2009-08-01
The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples.
A secular technetium-molybdenum generator
NASA Astrophysics Data System (ADS)
Araujo, Wagner L.; Campos, Tarcisio P. R.
2015-05-01
A compact secular molybdenium generator is subject of this paper. This generator represents a nuclear system that comprises a hydrogen-isotopes fusor, moderator, reflector and shield. Deuterium fusion reactions in a tritiated or deuterated target provide the neutron source. A moderation fluid slowdown the neutron energy which increases 98Mo(n,γ)99Mo capture reaction rates. Neutron reflection minimizes the neutron escape and the radiation shield encloses the device. The neutron yield calculation along with electromagnetic and nuclear simulations were addressed. Results revealed the accelerator equipotential surfaces ranging from -30 to 150 kV, the ion trajectories and the energy beam profile define a deuteron current of 1 A with energy of 180 keV at the target, the spatial distribution of the neutron flux, and the 99Mo and 99mTc activities in function of transmuter operation time. The kinetics of the 99mTc correlated to its precursor activity demonstrates a secular equilibrium providing 2 Ci in a operational time of 150 h. As conclusion, the investigated nuclear and electromagnetic features have demonstrated that such generator shall have a notable potential for feeding the 99mTc clinical application.
Time-of-flight and activation experiments on 147Pm and 171Tm for astrophysics
NASA Astrophysics Data System (ADS)
Guerrero, C.; Lerendegui-Marco, J.; Domingo-Pardo, C.; Casanovas, A.; Dressler, R.; Halfon, S.; Heinitz, S.; Kivel, N.; Köster, U.; Paul, M.; Quesada-Molina, J. M.; Schumann, D.; Tarifeño-Saldivia, A.; Tessler, M.; Weissman, L.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea, J.; Barbagallo, M.; Becvar, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Göbel, K.; García, A. R.; Gawlik, A.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González, E.; Griesmayer, E.; Gunsing, F.; Harada, H.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Kavrigin, P.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krticka, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Meo, S. Lo; Lonsdale, S. J.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Musumarra, A.; Negret, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Radeck, D.; Rauscher, T.; Reifarth, R.; Rout, P. C.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weiss, C.; Woods, P. J.; Wright, T.; Žugec, P.
2017-09-01
The neutron capture cross section of several key unstable isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n,γ) measurement, for which high neutron fluxes and effective background rejection capabilities are required. As part of a new program to measure some of these important branching points, radioactive targets of 147Pm and 171Tm have been produced by irradiation of stable isotopes at the ILL high flux reactor. Neutron capture on 146Nd and 170Er at the reactor was followed by beta decay and the resulting matrix was purified via radiochemical separation at PSI. The radioactive targets have been used for time-of-flight measurements at the CERN n_TOF facility using the 19 and 185 m beam lines during 2014 and 2015. The capture cascades were detected using a set of four C6D6 scintillators, allowing to observe the associated neutron capture resonances. The results presented in this work are the first ever determination of the resonance capture cross section of 147Pm and 171Tm. Activation experiments on the same 147Pm and 171Tm targets with a high-intensity 30 keV quasi-Maxwellian flux of neutrons will be performed using the SARAF accelerator and the Liquid-Lithium Target (LiLiT) in order to extract the corresponding Maxwellian Average Cross Section (MACS). The status of these experiments and preliminary results will be presented and discussed as well.
2013-06-21
neutron activation detectors (FNADS) 2013-049951s2.ppt Detector locations • Average rR ~ 1 g/cm2 • ~ 50% variations Motivates new 2D backlit imaging...of the implosion Motivates Compton radiography for stagnated fuel shape g/cm2 DrR rR map from neutron Activation Detectors (90Zr(n,2n) 89Zr...high energy cosmic rays Oxford Univ./LLNL LLNL Novel phases of compressed diamond Synthesis of elements heavier than iron 1545 Neutron flux in
NEUTRON MEASURING METHOD AND APPARATUS
Seaborg, G.T.; Friedlander, G.; Gofman, J.W.
1958-07-29
A fast neutron fission detecting apparatus is described consisting of a source of fast neutrons, an ion chamber containing air, two electrodes within the ion chamber in confronting spaced relationship, a high voltage potential placed across the electrodes, a shield placed about the source, and a suitable pulse annplifier and recording system in the electrode circuit to record the impulse due to fissions in a sannple material. The sample material is coated onto the active surface of the disc electrode and shielding means of a material having high neutron capture capabilities for thermal neutrons are provided in the vicinity of the electrodes and about the ion chamber so as to absorb slow neutrons of thermal energy to effectively prevent their diffusing back to the sample and causing an error in the measurement of fast neutron fissions.
Casey, D T; Frenje, J A; Gatu Johnson, M; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Knauer, J P; Meyerhofer, D D; Sangster, T C; Bionta, R M; Bleuel, D L; Döppner, T; Glenzer, S; Hartouni, E; Hatchett, S P; Le Pape, S; Ma, T; MacKinnon, A; McKernan, M A; Moran, M; Moses, E; Park, H-S; Ralph, J; Remington, B A; Smalyuk, V; Yeamans, C B; Kline, J; Kyrala, G; Chandler, G A; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A J; Fletcher, K; Kilkenny, J; Farrell, M; Jasion, D; Paguio, R
2012-10-01
A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.
Nuclear Forensics and Radiochemistry: Cross Sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rundberg, Robert S.
The neutron activation of components in a nuclear device can provide useful signatures of weapon design or sophistication. This lecture will cover some of the basics of neutron reaction cross sections. Nuclear reactor cross sections will also be presented to illustrate the complexity of convolving neutron energy spectra with nuclear excitation functions to calculate useful effective reactor cross sections. Deficiencies in the nuclear database will be discussed along with tools available at Los Alamos to provide new neutron cross section data.
A brief History of Neutron Scattering at the Oak Ridge High Flux Isotope Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagler, Stephen E; Mook Jr, Herbert A
2008-01-01
Neutron scattering at the Oak Ridge National Laboratory dates back to 1945 when Ernest Wollan installed a modified x-ray diffractometer on a beam port of the original graphite reactor. Subsequently, Wollan and Clifford Shull pioneered neutron diffraction and laid the foundation for an active neutron scattering effort that continued through the 1950s, using the Oak Ridge Research reactor after 1958, and, starting in 1966, the High Flux Isotope Reactor, or HFIR.
Ship Effect Neutron Measurements And Impacts On Low-Background Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Siciliano, Edward R.
2013-10-01
The primary particles entering the upper atmosphere as cosmic rays create showers in the atmosphere that include a broad spectrum of secondary neutrons, muons and protons. These cosmic-ray secondaries interact with materials at the surface of the Earth, yielding prompt backgrounds in radiation detection systems, as well as inducing long-lived activities through spallation events, dominated by the higher-energy neutron secondaries. For historical reasons, the multiple neutrons produced in spallation cascade events are referred to as “ship effect” neutrons. Quantifying the background from cosmic ray induced activities is important to low-background experiments, such as neutrino-less double beta decay. Since direct measurementsmore » of the effects of shielding on the cosmic-ray neutron spectrum are not available, Monte Carlo modeling is used to compute such effects. However, there are large uncertainties (orders of magnitude) in the possible cross-section libraries and the cosmic-ray neutron spectrum for the energy range needed in such calculations. The measurements reported here were initiated to validate results from Monte Carlo models through experimental measurements in order to provide some confidence in the model results. The results indicate that the models provide the correct trends of neutron production with increasing density, but there is substantial disagreement between the model and experimental results for the lower-density materials of Al, Fe and Cu.« less
Irazola, L; Praena, J; Fernández, B; Macías, M; Bedogni, R; Terrón, J A; Sánchez-Nieto, B; Arias de Saavedra, F; Porras, I; Sánchez-Doblado, F
2016-01-01
Active thermal neutron detectors are used in a wide range of measuring devices in medicine, industry and research. For many applications, the long-term stability of these devices is crucial, so that very well controlled neutron fields are needed to perform calibrations and repeatability tests. A way to achieve such reference neutron fields, relying on a 3 MV Tandem Pelletron accelerator available at the CNA (Seville, Spain), is reported here. This paper shows thermal neutron field production and reproducibility characteristics over few days. Copyright © 2015 Elsevier Ltd. All rights reserved.
Design of a setup for 252Cf neutron source for storage and analysis purpose
NASA Astrophysics Data System (ADS)
Hei, Daqian; Zhuang, Haocheng; Jia, Wenbao; Cheng, Can; Jiang, Zhou; Wang, Hongtao; Chen, Da
2016-11-01
252Cf is a reliable isotopic neutron source and widely used in the prompt gamma ray neutron activation analysis (PGNAA) technique. A cylindrical barrel made by polymethyl methacrylate contained with the boric acid solution was designed for storage and application of a 5 μg 252Cf neutron source. The size of the setup was optimized with Monte Carlo code. The experiments were performed and the results showed the doses were reduced with the setup and less than the allowable limit. The intensity and collimating radius of the neutron beam could also be adjusted through different collimator.
First Observation of Three-Neutron Sequential Emission from 25O
NASA Astrophysics Data System (ADS)
Sword, C.; Brett, J.; Deyoung, P. A.; Frank, N.; Karrick, H.; Kuchera, A. N.; MoNA Collaboration
2017-09-01
An active area of nuclear physics research is to evaluate models of the nuclear force by studying the structure of neutron-rich isotopes. In this experiment, a 101.3 MeV/u 27Ne beam from the National Superconducting Cyclotron Laboratory collided with a liquid deuterium target. The collision resulted in two-proton removal from the 27Ne beam which created excited 25O that decayed into three neutrons and an 22O fragment. The neutrons were detected by arrays of scintillating plastic bars, while a 4-Tesla dipole magnet placed directly after the target redirected charged fragments to a series of charged-particle detectors. From measured velocities of the neutrons and 22O fragments, the decay energy of 25O was calculated on an event-by-event basis with invariant mass spectroscopy. Using GEANT4, we simulated the decay of all nuclei that could have been created by the beam collision. By successfully fitting simulated decay processes to experimental data, we determined the decay processes present in the experiment. This work is supported by the National Science Foundation under Grants No. PHY-1306074 and No. PHY-1613188.
SELF-REACTIVATING NEUTRON SOURCE FOR A NEUTRONIC REACTOR
Newson, H.W.
1959-02-01
Reactors of the type employing beryllium in a reflector region around the active portion and to a neutron source for use therewith are discussed. The neutron source is comprised or a quantity of antimony permanently incorporated in, and as an integral part of, the reactor in or near the beryllium reflector region. During operation of the reactor the natural occurring antimony isotope of atomic weight 123 absorbs neutrons and is thereby transformed to the antimony isotope of atomic weight 124, which is radioactive and emits gamma rays. The gamma rays react with the beryllium to produce neutrons. The beryllium and antimony thus cooperate to produce a built in neutron source which is automatically reactivated by the operation of the reactor itself and which is of sufficient strength to maintain the slow neutron flux at a sufficiently high level to be reliably measured during periods when the reactor is shut down.
Characterization of boron coated vitreous carbon foam for neutron detection
NASA Astrophysics Data System (ADS)
Lavelle, C. M.; Deacon, Ryan M.; Hussey, Daniel S.; Coplan, Michael; Clark, Charles W.
2013-11-01
Reticulated vitreous carbon (RVC) foams coated with 3-11 μm thick layers of boron carbide (B4C) are experimentally characterized for use as an active material for neutron detection. The potential advantage of this material over thin films is that it can be fabricated in any shape and its porous structure may enhance the emission surface area for ionizing charged particles following thermal neutron capture. A coated foam is also advantageous because the neutron-absorbing material is only on the surface, which is more efficient for α particle emission on a per captured neutron basis. Measurements of the B4C layer thickness of an RVC coated foam, and determination of its elemental composition, are performed using scanning electron microscopy. Neutron transmission measurements using neutron radiography are presented and α particle emission from the coated foam in response to a moderated 252Cf thermal neutron source is demonstrated.
NASA Astrophysics Data System (ADS)
Sierra, O.; Parrado, G.; Cañón, Y.; Porras, A.; Alonso, D.; Herrera, D. C.; Peña, M.; Orozco, J.
2016-07-01
This paper presents the progress made by the Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey (SGC in its Spanish acronym), towards the characterization of its gamma spectrometric systems for Instrumental Neutron Activation Analysis (INAA), with the aim of introducing corrections to the measurements by variations in sample geometry. Characterization includes the empirical determination of the interaction point of gamma radiation inside the Germanium crystal, through the application of a linear model and the use of a fast Monte Carlo N-Particle (MCNP) software to estimate correction factors for differences in counting efficiency that arise from variations in sample density between samples and standards.
NASA Astrophysics Data System (ADS)
Randle, K.; Al-Jundi, J.; Mamas, C. J. V.; Sokhi, R. S.; Earwaker, L. G.
1993-06-01
Our work on heavy metals in the estuarine environment has involved the use of two multielement techniques: neutron activation analysis (NAA) and proton-induced X-ray emission (PIXE) analysis. As PIXE is essentially a surface analytical technique problems may arise due to sample inhomogeneity and surface roughness. In order to assess the contribution of these effects we have compared the results from PIXE analysis with those from a technique which analyzes a larger bulk sample rather than just the surface. An obvious method was NAA. A series of sediment samples containing particles of variable diameter were compared. Pellets containing a few mg of sediment were prepared from each sample and analyzed by the PIXE technique using both an absolute and a comparitive method. For INAA the rest of the sample was then irradiated with thermal neutrons and element concentrations determined from analyses of the subsequent gamma-ray spectrum. Results from the two methods are discussed.
The feasibility of well-logging measurements of arsenic levels using neutron-activation analysis
Oden, C.P.; Schweitzer, J.S.; McDowell, G.M.
2006-01-01
Arsenic is an extremely toxic metal, which poses a significant problem in many mining environments. Arsenic contamination is also a major problem in ground and surface waters. A feasibility study was conducted to determine if neutron-activation analysis is a practical method of measuring in situ arsenic levels. The response of hypothetical well-logging tools to arsenic was simulated using a readily available Monte Carlo simulation code (MCNP). Simulations were made for probes with both hyperpure germanium (HPGe) and bismuth germanate (BGO) detectors using accelerator and isotopic neutron sources. Both sources produce similar results; however, the BGO detector is much more susceptible to spectral interference than the HPGe detector. Spectral interference from copper can preclude low-level arsenic measurements when using the BGO detector. Results show that a borehole probe could be built that would measure arsenic concentrations of 100 ppm by weight to an uncertainty of 50 ppm in about 15 min. ?? 2006 Elsevier Ltd. All rights reserved.
Isotope effect in heavy/light water suspensions of optically active gold nanoparticles
NASA Astrophysics Data System (ADS)
Kutsenko, V. Y.; Artykulnyi, O. P.; Petrenko, V. I.; Avdeev, M. V.; Marchenko, O. A.; Bulavin, L. A.; Snegir, S. V.
2018-04-01
Aqueous suspensions of optically active gold nanoparticles coated with trisodium citrate were synthesized in light (H2O) water and mixture of light and heavy (H2O/D2O) water using the modified Turkevich protocol. The objective of the paper was to verify sensitivity of neutron scattering methods (in particular, neutron reflectometry) to the potential isotope H/D substitution in the stabilizing organic shell around particles in colloidal solutions. First, the isotope effect was studied with respect to the changes in the structural properties of metal particles (size, shape, crystalline morphology) in solutions by electron microscopy including high-resolution transmission electron microscopy from dried systems. The structural factors determining the variation in the adsorption spectra in addition to the change in the optical properties of surrounding medium were discussed. Then, neutron reflectometry was applied to the layered nanoparticles anchored on a silicon wafer via 3-aminopropyltriethoxysilane molecules to reveal the presence of deuterated water molecules in the shell presumably formed by citrate molecules around the metallic core.
NASA Astrophysics Data System (ADS)
Gooden, M. E.; Bredeweg, T. A.; Champine, B.; Combs, D. C.; Finch, S.; Hayes-Sterbenz, A.; Henry, E.; Krishichayan, Rundberg, R.; Tornow, W.; Wilhelmy, J.; Yeamans, C.
2017-08-01
At the National Ignition Facility, experiments are being performed to measure charged-particle stopping powers in the previously unexplored warm dense plasma regime. These measurements are done using reaction-in-flight (RIF) neutrons from an inertial confinement fusion system. RIF neutrons are produced with a continuum of energies up to 30 MeV. By making activation measurements utilizing threshold reactions for neutrons in the energy range of 15
Gooden, M. E.; Bredeweg, T. A.; Champine, B.; ...
2017-08-01
At the National Ignition Facility, experiments are being performed to measure charged-particle stopping powers in the previously unexplored warm dense plasma regime. These measurements are done using reaction-in-flight (RIF) neutrons from an inertial confinement fusion system. RIF neutrons are produced with a continuum of energies up to 30 MeV. By making activation measurements utilizing threshold reactions for neutrons in the energy range of 15 < E n < 30 MeV , the number of RIF neutrons can be determined and from this the stopping power of the deuterium and tritium ions that produced the RIF neutrons can be inferred. Currently,more » the 169 Tm ( n , 3 n ) 167 Tm reaction has been used. However, in an effort to provide a secondary complimentary measurement, efforts are underway to make use of the 209 Bi ( n , 4 n ) 206 Bi reaction, with a threshold of 22.5 MeV. The cross sections were measured at the 10 MV tandem Van De Graaff accelerator at the Triangle Universities Nuclear Laboratory with quasimonoenergetic neutrons between 23.5 and 30.5 MeV, where few previous measurements have been made. Cross-section data are compared to calculations and other available measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gooden, M. E.; Bredeweg, T. A.; Champine, B.
At the National Ignition Facility, experiments are being performed to measure charged-particle stopping powers in the previously unexplored warm dense plasma regime. These measurements are done using reaction-in-flight (RIF) neutrons from an inertial confinement fusion system. RIF neutrons are produced with a continuum of energies up to 30 MeV. By making activation measurements utilizing threshold reactions for neutrons in the energy range of 15 < E n < 30 MeV , the number of RIF neutrons can be determined and from this the stopping power of the deuterium and tritium ions that produced the RIF neutrons can be inferred. Currently,more » the 169 Tm ( n , 3 n ) 167 Tm reaction has been used. However, in an effort to provide a secondary complimentary measurement, efforts are underway to make use of the 209 Bi ( n , 4 n ) 206 Bi reaction, with a threshold of 22.5 MeV. The cross sections were measured at the 10 MV tandem Van De Graaff accelerator at the Triangle Universities Nuclear Laboratory with quasimonoenergetic neutrons between 23.5 and 30.5 MeV, where few previous measurements have been made. Cross-section data are compared to calculations and other available measurements.« less
The neutrons for science facility at SPIRAL-2
NASA Astrophysics Data System (ADS)
Ledoux, X.; Aïche, M.; Avrigeanu, M.; Avrigeanu, V.; Balanzat, E.; Ban-d'Etat, B.; Ban, G.; Bauge, E.; Bélier, G.; Bém, P.; Borcea, C.; Caillaud, T.; Chatillon, A.; Czajkowski, S.; Dessagne, P.; Doré, D.; Fischer, U.; Frégeau, M. O.; Grinyer, J.; Guillous, S.; Gunsing, F.; Gustavsson, C.; Henning, G.; Jacquot, B.; Jansson, K.; Jurado, B.; Kerveno, M.; Klix, A.; Landoas, O.; Lecolley, F. R.; Lecouey, J. L.; Majerle, M.; Marie, N.; Materna, T.; Mrázek, J.; Negoita, F.; Novák, J.; Oberstedt, S.; Oberstedt, A.; Panebianco, S.; Perrot, L.; Plompen, A. J. M.; Pomp, S.; Prokofiev, A. V.; Ramillon, J. M.; Farget, F.; Ridikas, D.; Rossé, B.; Sérot, O.; Simakov, S. P.; Šimečková, E.; Štefánik, M.; Sublet, J. C.; Taïeb, J.; Tarrío, D.; Tassan-Got, L.; Thfoin, I.; Varignon, C.
2017-09-01
Numerous domains, in fundamental research as well as in applications, require the study of reactions induced by neutrons with energies from few MeV up to few tens of MeV. Reliable measurements also are necessary to improve the evaluated databases used by nuclear transport codes. This energy range covers a large number of topics like transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. A new facility called Neutrons For Science (NFS) is being built for this purpose on the GANIL site at Caen (France). NFS is composed of a pulsed neutron beam for time-of-flight facility as well as irradiation stations for cross-section measurements. Neutrons will be produced by the interaction of deuteron and proton beams, delivered by the SPIRAL-2 linear accelerator, with thick or thin converters made of beryllium or lithium. Continuous and quasi-mono-energetic spectra will be available at NFS up to 40 MeV. In this fast energy region, the neutron flux is expected to be up to 2 orders of magnitude higher than at other existing time-of-flight facilities. In addition, irradiation stations for neutron-, proton- and deuteron-induced reactions will allow performing cross-section measurements by the activation technique. After a description of the facility and its characteristics, the experiments to be performed in the short and medium term will be presented.
Nuclear Diagnostics at the National Ignition Facility, 2013-2015
NASA Astrophysics Data System (ADS)
Yeamans, C. B.; Cassata, W. S.; Church, J. A.; Fittinghoff, D. N.; Gatu Johnson, M.; Gharibyan, N.; Határik, R.; Sayre, D. B.; Sio, H. W.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cerjan, C. J.; Cooper, G. W.; Eckart, M. J.; Edwards, E. R.; Faye, S. A.; Forrest, C. J.; Frenje, J. A.; Glebov, V. Yu; Grant, P. M.; Grim, G. P.; Hartouni, E. P.; Herrmann, H. W.; Kilkenny, J. D.; Knauer, J. P.; Mackinnon, A. J.; Merrill, F. E.; Moody, K. J.; Moran, M. J.; Petrasso, R. D.; Phillips, T. W.; Rinderknecht, H. G.; Schneider, D. H. G.; Sepke, S. M.; Shaughnessy, D. A.; Stoeffl, W.; Velsko, C. A.; Volegov, P.
2016-05-01
The National Ignition Facility (NIF) relies on a suite of nuclear diagnostics to measure the neutronic output of experiments. Neutron time-of-flight (NTOF) and neutron activation diagnostics (NAD) provide performance metrics of absolute neutron yield and neutron spectral content: spectral width and non-thermal content, from which implosion physical quantities of temperature and scattering mass are inferred. Spatially-distributed flange- mounted NADs (FNAD) measure, with nearly identical systematic uncertainties, primary DT neutron emission to infer a whole-sky neutron field. An automated FNAD system is being developed. A magnetic recoil spectrometer (MRS) shares few systematics with comparable NTOF and NAD devices, and as such is deployed for independent measurement of the primary neutronic quantities. The gas-Cherenkov Gamma Reaction History (GRH) instrument records four energy channels of time-resolved gamma emission to measure nuclear bang time and burn width, as well as to infer carbon areal density in experiments utilizing plastic or diamond capsules. A neutron imaging system (NIS) takes two images of the neutron source, typically gated to create coregistered 13-15 MeV primary and 6-12 MeV downscattered images. The radiochemical analysis of gaseous samples (RAGS) instrument pumps target chamber gas to a chemical reaction and fractionation system configured with gamma counters, allowing measurement of radionuclides with half-lives as short as 8 seconds. Solid radiochemistry collectors (SRC) with backing NAD foils collect target debris, where activated materials from the target assembly are used as indicators of neutron spectrum content, and also serve as the primary diagnostic for nuclear forensic science experiments. Particle time-of-flight (PTOF) measures compression-bang time using DT- or DD-neutrons, as well as shock bang-time using D3He-protons for implosions with lower x-ray background. In concert, these diagnostics serve to measure the basic and advanced quantities required to understand NIF experimental results.
Croft, Stephen; Burr, Thomas Lee; Favalli, Andrea; ...
2015-12-10
We report that the declared linear density of 238U and 235U in fresh low enriched uranium light water reactor fuel assemblies can be verified for nuclear safeguards purposes using a neutron coincidence counter collar in passive and active mode, respectively. The active mode calibration of the Uranium Neutron Collar – Light water reactor fuel (UNCL) instrument is normally performed using a non-linear fitting technique. The fitting technique relates the measured neutron coincidence rate (the predictor) to the linear density of 235U (the response) in order to estimate model parameters of the nonlinear Padé equation, which traditionally is used to modelmore » the calibration data. Alternatively, following a simple data transformation, the fitting can also be performed using standard linear fitting methods. This paper compares performance of the nonlinear technique to the linear technique, using a range of possible error variance magnitudes in the measured neutron coincidence rate. We develop the required formalism and then apply the traditional (nonlinear) and alternative approaches (linear) to the same experimental and corresponding simulated representative datasets. Lastly, we find that, in this context, because of the magnitude of the errors in the predictor, it is preferable not to transform to a linear model, and it is preferable not to adjust for the errors in the predictor when inferring the model parameters« less
NASA Astrophysics Data System (ADS)
Deyglun, Clément; Carasco, Cédric; Pérot, Bertrand
2014-06-01
The detection of Special Nuclear Materials (SNM) by neutron interrogation is extensively studied by Monte Carlo simulation at the Nuclear Measurement Laboratory of CEA Cadarache (French Alternative Energies and Atomic Energy Commission). The active inspection system is based on the Associated Particle Technique (APT). Fissions induced by tagged neutrons (i.e. correlated to an alpha particle in the DT neutron generator) in SNM produce high multiplicity coincidences which are detected with fast plastic scintillators. At least three particles are detected in a short time window following the alpha detection, whereas nonnuclear materials mainly produce single events, or pairs due to (n,2n) and (n,n'γ) reactions. To study the performances of an industrial cargo container inspection system, Monte Carlo simulations are performed with the MCNP-PoliMi transport code, which records for each neutron history the relevant information: reaction types, position and time of interactions, energy deposits, secondary particles, etc. The output files are post-processed with a specific tool developed with ROOT data analysis software. Particles not correlated with an alpha particle (random background), counting statistics, and time-energy resolutions of the data acquisition system are taken into account in the numerical model. Various matrix compositions, suspicious items, SNM shielding and positions inside the container, are simulated to assess the performances and limitations of an industrial system.
NECTAR—A fission neutron radiography and tomography facility
NASA Astrophysics Data System (ADS)
Bücherl, T.; Lierse von Gostomski, Ch.; Breitkreutz, H.; Jungwirth, M.; Wagner, F. M.
2011-09-01
NECTAR (Neutron Computerized Tomography and Radiography) is a versatile facility for radiographic and tomographic investigations as well as for neutron activation experiments using fission neutrons. The radiation sources for this facility are two plates of highly enriched uranium situated in the moderator vessel in FRM II. Thermal neutrons originating from the main fuel element of the reactor generate in these plates fast neutrons. These can escape through a horizontal beam tube without moderation. The beam can be filtered and manipulated in order to reduce the accompanying gamma radiation and to match the specific experimental tasks. A summary of the main parameters required for experimental set-up and (quantitative) data evaluation is presented. The (measured) spectra of the neutron and gamma radiations are shown along with the effect of different filters on their behavior. The neutron and gamma fluxes, dose rates, L/ D-ratios, etc. and the main parameters of the actually used detection systems for neutron imaging are given, too.
Gamma-ray, neutron, and hard X-ray studies and requirements for a high-energy solar physics facility
NASA Technical Reports Server (NTRS)
Ramaty, R.; Dennis, B. R.; Emslie, A. G.
1988-01-01
The requirements for future high-resolution spatial, spectral, and temporal observation of hard X-rays, gamma rays and neutrons from solar flares are discussed in the context of current high-energy flare observations. There is much promise from these observations for achieving a deep understanding of processes of energy release, particle acceleration and particle transport in a complicated environment such as the turbulent and highly magnetized atmosphere of the active sun.
Baedecker, P.A.; Rowe, J.J.; Steinnes, E.
1977-01-01
The instrumental activation analysis of silicate rocks using epithermal neutrons has been studied using both high resolution coaxial Ge(Li) detectors and low energy photon detectors, and applied to the determination of 23 elements in eight new U.S.G.S. standard rocks. The analytical use X-ray peaks associated with electron capture or internal conversion processes has been evaluated. Of 28 elements which can be considered to be determinable by instrumental means, the epithermal activation approach is capable of giving improved sensitivity and precision in 16 cases, over the normal INAA procedure. In eleven cases the use of the low energy photon detector is thought to show advantages over convertional coaxial Ge(Li) spectroscopy. ?? 1977 Akade??miai Kiado??.
Early Years of Neutron Scattering and Its Manpower Development in Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsongkohadi
In this paper I shall give a short history of the development of neutron scattering at the Research Centre for Nuclear Techniques (PPTN), in Bandung, and the early development of a more advanced facilities at the Neutron Scattering Laboratory (NSL BATAN), Centre of Technology for Nuclear Industrial Materials, in Serpong. The first research reactor in Indonesia was the TRIGA MARK II in Bandung, which became operational in 1965, with a power of 250 KW, upgraded to 1 MW in 1971, and to 2 MW in 2000. The neutron scattering activities was started in 1967, with the design and construction ofmore » the first powder diffractometer, and put in operation in 1970. It was followed by the second instrument, the filter detector spectrometer built in 1975 in collaboration with the Bhabha Atomic Research Centre (BARC), India. A powder diffractometer for magnetic studies was built in 1980, and finally, a modification of the filter detector spectrometer to measure textures was made in 1986. A brief description of the design and construction of the instruments, and a highlight of some research topics will be presented. Early developments of neutron scattering activities at the 30 MW, RSG-GAS reactor in Serpong in choosing suitable research program, which will be mainly centred around materials testing/characterization, and materials/condensed matter researches has been agreed. Instrument planning and layout which were appropriate to carry out the program had been decided. Manpower development for the neutron scattering laboratory is a severe problem. The efforts to overcome this problem has been solved. International Cooperation through workshops and on the job trainings also support the supply of qualified manpower.« less
Study of (n,2n) reaction on 191,193Ir isotopes and isomeric cross section ratios
NASA Astrophysics Data System (ADS)
Vlastou, R.; Kalamara, A.; Kokkoris, M.; Patronis, N.; Serris, M.; Georgoulakis, M.; Hassapoglou, S.; Kobothanasis, K.; Axiotis, M.; Lagoyannis, A.
2017-09-01
The cross section of 191Ir(n,2n)190Irg+m1 and 191Ir(n,2n)190Irm2 reactions has been measured at 17.1 and 20.9 MeV neutron energies at the 5.5 MV tandem T11/25 Accelerator Laboratory of NCSR "Demokritos", using the activation method. The neutron beams were produced by means of the 3H(d,n)4He reaction at a flux of the order of 2 × 105 n/cm2s. The neutron flux has been deduced implementing the 27Al(n,α) reaction, while the flux variation of the neutron beam was monitored by using a BF3 detector. The 193Ir(n,2n)192Ir reaction cross section has also been determined, taking into account the contribution from the contaminant 191Ir(n,γ)192Ir reaction. The correction method is based on the existing data in ENDF for the contaminant reaction, convoluted with the neutron spectra which have been extensively studied by means of simulations using the NeusDesc and MCNP codes. Statistical model calculations using the code EMPIRE 3.2.2 and taking into account pre-equilibrium emission, have been performed on the data measured in this work as well as on data reported in literature.
Neutron Measurements for Radiation Protection in Low Earth Orbit - History and Future
NASA Technical Reports Server (NTRS)
Golightly, M. J.; Se,pmes. E/
2003-01-01
The neutron environment inside spacecraft has been of interest from a scientific and radiation protection perspective since early in the history of manned spaceflight. With 1:.1e exception of a few missions which carried plutonium-fueled radioisotope thermoelectric generators, all of the neutrons inside the spacecraft are secondary radiations resulting from interactions of high-energy charged particles with nuclei in the Earth's atmosphere, spacecraft structural materials, and the astronaut's own bodies. Although of great interest, definitive measurements of the spacecraft neutron field have been difficult due to the wide particle energy range and the limited available volume and power for traditional techniques involving Bonner spheres. A multitude of measurements, however, have been made of the neutron environment inside spacecraft. The majority of measurements were made using passive techniques including metal activation fo ils, fission foils, nuclear photoemulsions, plastic track detectors, and thermoluminescent detectors. Active measurements have utilized proton recoil spectrometers (stilbene), Bonner Spheres eRe proportional counter based), and LiI(Eu)phoswich scintillation detectors. For the International Space Station (ISS), only the plastic track! thermoluminescent detectors are used with any regularity. A monitoring program utilizing a set of active Bonner spheres was carried out in the ISS Lab module from March - December 200l. These measurements provide a very limited look at the crew neutron exposure, both in time coverage and neutron energy coverage. A review of the currently published data from past flights will be made and compared with the more recent results from the ISS. Future measurement efforts using currently available techniques and those in development will be also discussed.
Natto, S A; Lewis, D G; Ryde, S J
1998-01-01
The Monte Carlo computer code MCNP (version 4A) has been used to develop a personal computer-based model of the Swansea in vivo neutron activation analysis (IVNAA) system. The model included specification of the neutron source (252Cf), collimators, reflectors and shielding. The MCNP model was 'benchmarked' against fast neutron and thermal neutron fluence data obtained experimentally from the IVNAA system. The Swansea system allows two irradiation geometries using 'short' and 'long' collimators, which provide alternative dose rates for IVNAA. The data presented here relate to the short collimator, although results of similar accuracy were obtained using the long collimator. The fast neutron fluence was measured in air at a series of depths inside the collimator. The measurements agreed with the MCNP simulation within the statistical uncertainty (5-10%) of the calculations. The thermal neutron fluence was measured and calculated inside the cuboidal water phantom. The depth of maximum thermal fluence was 3.2 cm (measured) and 3.0 cm (calculated). The width of the 50% thermal fluence level across the phantom at its mid-depth was found to be the same by both MCNP and experiment. This benchmarking exercise has given us a high degree of confidence in MCNP as a tool for the design of IVNAA systems.
Experimental characterization of HOTNES: A new thermal neutron facility with large homogeneity area
NASA Astrophysics Data System (ADS)
Bedogni, R.; Sperduti, A.; Pietropaolo, A.; Pillon, M.; Pola, A.; Gómez-Ros, J. M.
2017-01-01
A new thermal neutron irradiation facility, called HOTNES (HOmogeneous Thermal NEutron Source), was established in the framework of a collaboration between INFN-LNF and ENEA-Frascati. HOTNES is a polyethylene assembly, with about 70 cmx70 cm square section and 100 cm height, including a large, cylindrical cavity with diameter 30 cm and height 70 cm. The facility is supplied by a 241Am-B source located at the bottom of this cavity. The facility was designed in such a way that the iso-thermal-fluence surfaces, characterizing the irradiation volume, coincide with planes parallel to the cavity bottom. The thermal fluence rate across a given isofluence plane is as uniform as 1% on a disk with 30 cm diameter. Thermal fluence rate values from about 700 cm-2 s-1 to 1000 cm-2 s-1 can be achieved. The facility design, previously optimized by Monte Carlo simulation, was experimentally verified. The following techniques were used: gold activation foils to assess the thermal fluence rate, semiconductor-based active detector for mapping the irradiation volume, and Bonner Sphere Spectrometer to determine the complete neutron spectrum. HOTNES is expected to be attractive for the scientific community involved in neutron metrology, neutron dosimetry and neutron detector testing.
Nondestructive examination using neutron activated positron annihilation
Akers, Douglas W.; Denison, Arthur B.
2001-01-01
A method is provided for performing nondestructive examination of a metal specimen using neutron activated positron annihilation wherein the positron emitter source is formed within the metal specimen. The method permits in situ nondestructive examination and has the advantage of being capable of performing bulk analysis to determine embrittlement, fatigue and dislocation within a metal specimen.
Neutron activation analysis: trends in developments and applications
NASA Astrophysics Data System (ADS)
de Goeij, J. J.; Bode, P.
1995-03-01
New developments in instrumentation for, and methodology of, Instrumental Neutron Activation Analysis (INAA) may lead to new niches for this method of elemental analysis. This paper describes the possibilities of advanced detectors, automated irradiation and counting stations, and very large sample analysis. An overview is given of some typical new fields of application.
Notes on LCW Activation Calculation for Neutron Imaging Operations in the North Cave of Building 194
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, S. G.
This note estimates the amount of activation that could be produced in the Facilities-provided Low Conductivity Water (LCW) that is proposed to be used for cooling of electromagnets and beam stops in the Neutron Imaging (NI) accelerator project in the North Cave of Building 194.
USDA-ARS?s Scientific Manuscript database
Total Body Nitrogen (TBN) can be used to estimate Total Body Protein (TBP), an important body composition component at the molecular level. A system using the associated particle technique in conjunction with prompt gamma neutron activation analysis has been developed for the measurement of TBN in ...
Radiography apparatus using gamma rays emitted by water activated by fusion neutrons
Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo
1996-11-05
Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the {sup 16}O(n,p){sup 16}N reaction using {sup 14}N-MeV neutrons produced at the neutron source via the {sup 3}H(d,n){sup 4}He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second {sup 16}N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1--2 minutes. 15 figs.
Radiography apparatus using gamma rays emitted by water activated by fusion neutrons
Smith, Donald L.; Ikeda, Yujiro; Uno, Yoshitomo
1996-01-01
Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the .sup.16 O(n,p).sup.16 N reaction using .sup.14 -MeV neutrons produced at the neutron source via the .sup.3 H(d,n).sup.4 He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second .sup.16 N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1-2 minutes.
Neutron Capture Gamma-Ray Libraries for Nuclear Applications
NASA Astrophysics Data System (ADS)
Sleaford, B. W.; Firestone, R. B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H. D.
2011-06-01
The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.
Incoherent neutron scattering in acetanilide and three deuterated derivatives
NASA Astrophysics Data System (ADS)
Barthes, Mariette; Almairac, Robert; Sauvajol, Jean-Louis; Moret, Jacques; Currat, Roland; Dianoux, José
1991-03-01
Incoherent-neutron-scattering measurements of the vibrational density of states of acetanilide and three deuterated derivatives are presented. These data allow one to identify an intense maximum, assigned to the N-H out-of-plane bending mode. The data display the specific behavior of the methyl torsional modes: large isotopic shift and strong low-temperature intensity; confirm our previous inelastic-neutron-scattering studies, indicating no obvious anomalies in the range of frequency of the acoustic phonons. In addition, the data show the existence of thermally activated quasielastic scattering above 100 K, assigned to the random diffusive motion of the methyl protons. These results are discussed in the light of recent theoretical models proposed to explain the anomalous optical properties of this crystal.
Dual neutron flux/temperature measurement sensor
Mihalczo, J.T.; Simpson, M.L.; McElhaney, S.A.
1994-10-04
Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination. 3 figs.
Dual neutron flux/temperature measurement sensor
Mihalczo, John T.; Simpson, Marc L.; McElhaney, Stephanie A.
1994-01-01
Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Samuel S.; Beck, Chelsie L.; Bowen, James M.
Environmental tungsten (W) analyses are inhibited by a lack of reference materials and practical methods to remove isobaric and radiometric interferences. We present a method that evaluates the potential use of commercially available sediment, Basalt Columbia River-2 (BCR-2), as a reference material using neutron activation analysis (NAA) and mass spectrometry. Tungsten concentrations using both methods are in statistical agreement at the 95% confidence interval (92 ± 4 ng/g for NAA and 100 ±7 ng/g for mass spectrometry) with recoveries greater than 95%. These results indicate that BCR-2 may be suitable as a reference material for future studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Patrick J.
2016-10-05
The code is used to provide an unfolded/adjusted energy-dependent fission reactor neutron spectrum based upon an input trial spectrum and a set of measured activities. This is part of a neutron environment characterization that supports doing testing in a given reactor environment. An iterative perturbation method is used to obtain a "best fit" neutron flux spectrum for a given input set of infinitely dilute foil activities. The calculational procedure consists of the selection of a trial flux spectrum to serve as the initial approximation to the solution, and subsequent iteration to a form acceptable as an appropriate solution. The solutionmore » is specified either as time-integrated flux (fluence) for a pulsed environment or as a flux for a steady-state neutron environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vega, Richard Manuel; Parma, Edward J.; Griffin, Patrick J.
2015-07-01
This report was put together to support the International Atomic Energy Agency (IAEA) REAL- 2016 activity to validate the dosimetry community’s ability to use a consistent set of activation data and to derive consistent spectral characterizations. The report captures details of integral measurements taken in the Annular Core Research Reactor (ACRR) central cavity with the 44 inch Lead-Boron (LB44) bucket, reference neutron benchmark field. The field is described and an “a priori” calculated neutron spectrum is reported, based on MCNP6 calculations, and a subject matter expert (SME) based covariance matrix is given for this “a priori” spectrum. The results ofmore » 31 integral dosimetry measurements in the neutron field are reported.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vega, Richard Manuel; Parm, Edward J.; Griffin, Patrick J.
2015-07-01
This report was put together to support the International Atomic Energy Agency (IAEA) REAL- 2016 activity to validate the dosimetry community’s ability to use a consistent set of activation data and to derive consistent spectral characterizations. The report captures details of integral measurements taken in the Annular Core Research Reactor (ACRR) central cavity with the Polyethylene-Lead-Graphite (PLG) bucket, reference neutron benchmark field. The field is described and an “a priori” calculated neutron spectrum is reported, based on MCNP6 calculations, and a subject matter expert (SME) based covariance matrix is given for this “a priori” spectrum. The results of 37 integralmore » dosimetry measurements in the neutron field are reported.« less
NASA Astrophysics Data System (ADS)
Bromberger, B.; Bar, D.; Brandis, M.; Dangendorf, V.; Goldberg, M. B.; Kaufmann, F.; Mor, I.; Nolte, R.; Schmiedel, M.; Tittelmeier, K.; Vartsky, D.; Wershofen, H.
2012-03-01
An air cargo inspection system combining two nuclear reaction based techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy Gamma Radiography is currently being developed. This system is expected to allow detection of standard and improvised explosives as well as special nuclear materials. An important aspect for the applicability of nuclear techniques in an airport inspection facility is the inventory and lifetimes of radioactive isotopes produced by the neutron radiation inside the cargo, as well as the dose delivered by these isotopes to people in contact with the cargo during and following the interrogation procedure. Using MCNPX and CINDER90 we have calculated the activation levels for several typical inspection scenarios. One example is the activation of various metal samples embedded in a cotton-filled container. To validate the simulation results, a benchmark experiment was performed, in which metal samples were activated by fast-neutrons in a water-filled glass jar. The induced activity was determined by analyzing the gamma spectra. Based on the calculated radioactive inventory in the container, the dose levels due to the induced gamma radiation were calculated at several distances from the container and in relevant time windows after the irradiation, in order to evaluate the radiation exposure of the cargo handling staff, air crew and passengers during flight. The possibility of remanent long-lived radioactive inventory after cargo is delivered to the client is also of concern and was evaluated.
NASA Astrophysics Data System (ADS)
Juste, B.; Morató, S.; Miró, R.; Verdú, G.; Díez, S.
2017-08-01
Unwanted neutrons in radiation therapy treatments are typically generated by photonuclear reactions. High-energy beams emitted by medical Linear Accelerators (LinAcs) interact with high atomic number materials situated in the accelerator head and release neutrons. Since neutrons have a high relative biological effectiveness, even low neutron doses may imply significant exposure of patients. It is also important to study radioactivity induced by these photoneutrons when interacting with the different materials and components of the treatment head facility and the shielding room walls, since persons not present during irradiation (e.g. medical staff) may be exposed to them even when the accelerator is not operating. These problems are studied in this work in order to contribute to challenge the radiation protection in these treatment locations. The work has been performed by simulation using the latest state of the art of Monte-Carlo computer code MCNP6. To that, a detailed model of particles transport inside the bunker and treatment head has been carried out using a meshed geometry model. The LinAc studied is an Elekta Precise accelerator with a treatment photon energy of 15 MeV used at the Hospital Clinic Universitari de Valencia, Spain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Samuel S.; Clark, Sue B.; Eggemeyer, Tere A.
Activation analysis of gold (Au) is used to estimate neutron fluence resulting from a criticality event; however, such analyses are complicated by simultaneous production of other gamma-emitting fission products. Confidence in neutron fluence estimates can be increased by quantifying additional activation products such as platinum (Pt), tantalum (Ta), and tungsten (W). This work describes a radiochemical separation procedure for the determination of these activation products. Anion exchange chromatography is used to separate anionic forms of these metals in a nitric acid matrix; thiourea is used to isolate the Au and Pt fraction, followed by removal of the Ta fraction usingmore » hydrogen peroxide. W, which is not retained on the first anion exchange column, is transposed to an HCl/HF matrix to enhance retention on a second anion exchange column and finally eluted using HNO3/HF. Chemical separations result in a reduction in the minimum detectable activity by a factor of 287, 207, 141, and 471 for 182Ta, 187W, 197Pt, and 198Au respectively, with greater than 90% recovery for all elements. These results represent the highest recoveries and lowest minimum detectable activities for 182Ta, 187W, 197Pt, and 198Au from mixed fission-activation product samples to date, enabling considerable refinement in the measurement uncertainties for neutron fluences in highly complex sample matrices.« less
Monte Carlo based dosimetry for neutron capture therapy of brain tumors
NASA Astrophysics Data System (ADS)
Zaidi, Lilia; Belgaid, Mohamed; Khelifi, Rachid
2016-11-01
Boron Neutron Capture Therapy (BNCT) is a biologically targeted, radiation therapy for cancer which combines neutron irradiation with a tumor targeting agent labeled with a boron10 having a high thermal neutron capture cross section. The tumor area is subjected to the neutron irradiation. After a thermal neutron capture, the excited 11B nucleus fissions into an alpha particle and lithium recoil nucleus. The high Linear Energy Transfer (LET) emitted particles deposit their energy in a range of about 10μm, which is of the same order of cell diameter [1], at the same time other reactions due to neutron activation with body component are produced. In-phantom measurement of physical dose distribution is very important for BNCT planning validation. Determination of total absorbed dose requires complex calculations which were carried out using the Monte Carlo MCNP code [2].
Detecting fission from special nuclear material sources
Rowland, Mark S [Alamo, CA; Snyderman, Neal J [Berkeley, CA
2012-06-05
A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a graphing component that displays the plot of the neutron distribution from the unknown source over a Poisson distribution and a plot of neutrons due to background or environmental sources. The system further includes a known neutron source placed in proximity to the unknown source to actively interrogate the unknown source in order to accentuate differences in neutron emission from the unknown source from Poisson distributions and/or environmental sources.
Neutrons Flux Distributions of the Pu-Be Source and its Simulation by the MCNP-4B Code
NASA Astrophysics Data System (ADS)
Faghihi, F.; Mehdizadeh, S.; Hadad, K.
Neutron Fluence rate of a low intense Pu-Be source is measured by Neutron Activation Analysis (NAA) of 197Au foils. Also, the neutron fluence rate distribution versus energy is calculated using the MCNP-4B code based on ENDF/B-V library. Theoretical simulation as well as our experimental performance are a new experience for Iranians to make reliability with the code for further researches. In our theoretical investigation, an isotropic Pu-Be source with cylindrical volume distribution is simulated and relative neutron fluence rate versus energy is calculated using MCNP-4B code. Variation of the fast and also thermal neutrons fluence rate, which are measured by NAA method and MCNP code, are compared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biondo, Elliott D.; Wilson, Paul P. H.
In fusion energy systems (FES) neutrons born from burning plasma activate system components. The photon dose rate after shutdown from resulting radionuclides must be quantified. This shutdown dose rate (SDR) is calculated by coupling neutron transport, activation analysis, and photon transport. The size, complexity, and attenuating configuration of FES motivate the use of hybrid Monte Carlo (MC)/deterministic neutron transport. The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) method can be used to optimize MC neutron transport for coupled multiphysics problems, including SDR analysis, using deterministic estimates of adjoint flux distributions. When used for SDR analysis, MS-CADIS requires the formulation ofmore » an adjoint neutron source that approximates the transmutation process. In this work, transmutation approximations are used to derive a solution for this adjoint neutron source. It is shown that these approximations are reasonably met for typical FES neutron spectra and materials over a range of irradiation scenarios. When these approximations are met, the Groupwise Transmutation (GT)-CADIS method, proposed here, can be used effectively. GT-CADIS is an implementation of the MS-CADIS method for SDR analysis that uses a series of single-energy-group irradiations to calculate the adjoint neutron source. For a simple SDR problem, GT-CADIS provides speedups of 200 100 relative to global variance reduction with the Forward-Weighted (FW)-CADIS method and 9 ± 5 • 104 relative to analog. As a result, this work shows that GT-CADIS is broadly applicable to FES problems and will significantly reduce the computational resources necessary for SDR analysis.« less
Biondo, Elliott D.; Wilson, Paul P. H.
2017-05-08
In fusion energy systems (FES) neutrons born from burning plasma activate system components. The photon dose rate after shutdown from resulting radionuclides must be quantified. This shutdown dose rate (SDR) is calculated by coupling neutron transport, activation analysis, and photon transport. The size, complexity, and attenuating configuration of FES motivate the use of hybrid Monte Carlo (MC)/deterministic neutron transport. The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) method can be used to optimize MC neutron transport for coupled multiphysics problems, including SDR analysis, using deterministic estimates of adjoint flux distributions. When used for SDR analysis, MS-CADIS requires the formulation ofmore » an adjoint neutron source that approximates the transmutation process. In this work, transmutation approximations are used to derive a solution for this adjoint neutron source. It is shown that these approximations are reasonably met for typical FES neutron spectra and materials over a range of irradiation scenarios. When these approximations are met, the Groupwise Transmutation (GT)-CADIS method, proposed here, can be used effectively. GT-CADIS is an implementation of the MS-CADIS method for SDR analysis that uses a series of single-energy-group irradiations to calculate the adjoint neutron source. For a simple SDR problem, GT-CADIS provides speedups of 200 100 relative to global variance reduction with the Forward-Weighted (FW)-CADIS method and 9 ± 5 • 104 relative to analog. As a result, this work shows that GT-CADIS is broadly applicable to FES problems and will significantly reduce the computational resources necessary for SDR analysis.« less
New perspectives for undoped CaF2 scintillator as a threshold activation neutron detector
NASA Astrophysics Data System (ADS)
Sibczynski, Pawel; Dziedzic, Andrzej; Grodzicki, Krystian; Iwanowska-Hanke, Joanna; Moszyński, Marek; Swiderski, Lukasz; Syntfeld-Każuch, Agnieszka; Wolski, Dariusz; Carrel, Frédérick; Grabowski, Amélie; Hamel, Matthieu; Laine, Frederic; Sari, Adrien; Iovene, Alessandro; Tintori, Carlo; Fontana, Cristiano; Pino, Felix
2018-01-01
In this paper we present the prompt photofission neutron detection performance of undoped CaF2 scintillator using Threshold Activation Detection (TAD). The study is carried out in the frame of C-BORD Horizon 2020 project, during which an efficient toolbox for high volume freight non-intrusive inspection (NII) is under development. Technologies for radiation monitoring are the part of the project. Particularly, detection of various radiological threats on country borders plays an important significant role in Homeland Security applications. Detection of illegal transfer of Special Nuclear Material (SNM) - 235U, 233U and 239Pu - is particular due to the potential use for production of nuclear weapon as well as radiological dispersal device (RDD) V known also as a "dirty bomb". This technique relies on activation of 19F nuclei in the scintillator medium by fast neutrons and registration of high-energy β particles and γ-rays from the decay of reaction products. The radiation from SNM is detected after irradiation in order to avoid detector blinding. Despite the low 19F(n,α)16N or 19F(n,p)19O reaction cross-section, the method could be a good solution for detection of shielded nuclear material. Results obtained with the CaF2 detector were compared with the previous study done for BaF2 and 3He detector. These experimental results were obtained using 252Cf source and 9 MeV Varian Linatron M9 linear accelerator (LINAC). Finally, performance of the prompt neutron detection system based on CaF2 will be validated at Rotterdam Seaport during field trails in 2018.
Neutron-capture cross-section measurements of Xe136 between 0.4 and 14.8 MeV
NASA Astrophysics Data System (ADS)
Bhike, Megha; Tornow, W.
2014-03-01
Fast-neutron-capture cross-section data on Xe136 have been measured with the activation method between 0.4 and 14.8 MeV. The cross section was found to be of the order of 1 mb at the eleven energies investigated. This result is important to interpret potential neutron-induced backgrounds in the enriched xenon observatory and KamLAND-Zen neutrinoless double-β decay searches that use xenon as both source and detector. A high-pressure sphere filled with Xe136 was irradiated with monoenergetic neutrons produced by the reactions 3H(p ,n)3He, 2H(d ,n)3He, and 3H(d ,n)4He. Indium and gold monitor foils were irradiated simultaneously with the Xe136 to determine the incident neutron flux. The activities of the reaction products were measured with high-resolution γ-ray spectroscopy. The present results are compared to predictions from ENDF/B-VII.1 and TENDL-2012.
Enhancement of thermal neutron shielding of cement mortar by using borosilicate glass powder.
Jang, Bo-Kil; Lee, Jun-Cheol; Kim, Ji-Hyun; Chung, Chul-Woo
2017-05-01
Concrete has been used as a traditional biological shielding material. High hydrogen content in concrete also effectively attenuates high-energy fast neutrons. However, concrete does not have strong protection against thermal neutrons because of the lack of boron compound. In this research, boron was added in the form of borosilicate glass powder to increase the neutron shielding property of cement mortar. Borosilicate glass powder was chosen in order to have beneficial pozzolanic activity and to avoid deleterious expansion caused by an alkali-silica reaction. According to the experimental results, borosilicate glass powder with an average particle size of 13µm showed pozzolanic activity. The replacement of borosilicate glass powder with cement caused a slight increase in the 28-day compressive strength. However, the incorporation of borosilicate glass powder resulted in higher thermal neutron shielding capability. Thus, borosilicate glass powder can be used as a good mineral additive for various radiation shielding purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ruiz, C L; Chandler, G A; Cooper, G W; Fehl, D L; Hahn, K D; Leeper, R J; McWatters, B R; Nelson, A J; Smelser, R M; Snow, C S; Torres, J A
2012-10-01
The 350-keV Cockroft-Walton accelerator at Sandia National laboratory's Ion Beam facility is being used to calibrate absolutely a total DT neutron yield diagnostic based on the (63)Cu(n,2n)(62)Cu(β+) reaction. These investigations have led to first-order uncertainties approaching 5% or better. The experiments employ the associated-particle technique. Deuterons at 175 keV impinge a 2.6 μm thick erbium tritide target producing 14.1 MeV neutrons from the T(d,n)(4)He reaction. The alpha particles emitted are measured at two angles relative to the beam direction and used to infer the neutron flux on a copper sample. The induced (62)Cu activity is then measured and related to the neutron flux. This method is known as the F-factor technique. Description of the associated-particle method, copper sample geometries employed, and the present estimates of the uncertainties to the F-factor obtained are given.
Consequences of Relativistic Neutron Outflow beyond the Accretion Disks of Active Galaxies
NASA Astrophysics Data System (ADS)
Ekejiuba, I. E.; Okeke, P. N.
1993-05-01
Three channels of relativistic electron injection in the jets of extragalactic radio sources (EGRSs) are discussed. With the assumption that an active galactic nucleus (AGN) is powered by a spinning supermassive black hole of mass ~ 10(8) M_⊙ which sits at the center of the nucleus and ingests matter and energy through an accretion disk, a model for extracting relativistic neutrons from the AGN is forged. In this model, the inelastic proton--proton and proton--photon interactions within the accretion disk, of relativistic protons with background thermal protons and photons, respectively, produce copious amounts of relativistic neutrons. These neutrons travel ballistically for ~ 10(3gamma_n ) seconds and escape from the disk before they decay. The secondary particles produced from the neutron decays then interact with the ambient magnetic field and/or other particles to produce the radio emissions observed in the jets of EGRSs. IEE acknowledges the support of the World Bank and the Federal University of Technology, Yola, Nigeria as well as the hospitality of Georgia State University.
NASA Astrophysics Data System (ADS)
Hubert, G.
2016-10-01
In this paper are described a new neutron spectrometer which operate in the Concordia station (Antarctica, Dome C) since December 2015. This instrument complements a network including neutron spectrometers operating in the Pic-du-Midi and the Pico dos Dias. Thus, this work present an analysis of cosmic ray induced-neutron based on spectrometers operated simultaneously in the Pic-du-Midi and the Concordia stations during a quiet solar activity. The both high station platforms allow for investigating the long period dynamics to analyze the spectral variation and effects of local and seasonal changes, but also the short term dynamics during solar flare events. A first part is devoted to analyze the count rates, the spectrum and the neutron fluxes, implying cross-comparisons between data obtained in the both stations. In a second part, measurements analyses were reinforced by modeling based on simulations of atmospheric cascades according to primary spectra which only depend on the solar modulation potential.
Feasibility of measuring selenium in humans using in vivo neutron activation analysis.
Tahir, S N A; Chettle, D R; Byun, S H; Prestwich, W V
2015-11-01
Selenium (Se) is an element that, in trace quantities, plays an important role in the normal function of a number of biological processes in humans. Many studies have demonstrated that selenium deficiency in the body may contribute to an increased risk for certain neoplastic, cardiovascular, osseous, and nervous system diseases including retardation of bone formation. However, at higher concentrations Se is cytotoxic. For these reasons it is desirable to have a means of monitoring selenium concentration in humans.This paper presents the outcome of a feasibility study carried out for measuring selenium in humans using in vivo neutron activation analysis (IVNAA). In this technique a small dose of neutrons is delivered to the organ of interest, the neutrons are readily captured by the target nuclei, and the γ-rays given off are detected outside of the body. For the present study, human hand (bone) tissue equivalent phantoms were prepared with varying amounts of Se. These were irradiated by a low energy fast neutron beam produced by the (7)Li(p,n)(7)Be reaction employing the high beam current Tandetron accelerator. The counting data saved using a 4π NaI(TI) detection system were analyzed. The selenium was detected via the neutron capture reaction, (76)Se(n,γ)(77 m)Se, whereas calcium was detected through the (48)Ca(n,γ)(49)Ca reaction for the purpose of normalization of the Se signals to the calcium signals. From the calibration lines drawn between Se/Ca concentrations and Se/Ca counts ratio, the minimum detection limits (MDLs) were computed for two sets of phantoms irradiated under different irradiation parameters.In this study the optimized MDL value was determined to be 81 ng g(-1) (Se/phantom mass) for an equivalent dose of 188 mSv to the phantom. This MDL was found at least 10 times lower than the reported data on Se concentration measured in bone tissues. It was concluded that the NAA technique would be a feasible means of performing in vivo measurements of selenium in humans. Currently the data on in vivo measurement of selenium in humans are limited; the results of the present study would greatly contribute to the present data.
NASA Astrophysics Data System (ADS)
Eftekhari Zadeh, E.; Feghhi, S. A. H.; Roshani, G. H.; Rezaei, A.
2016-05-01
Due to variation of neutron energy spectrum in the target sample during the activation process and to peak overlapping caused by the Compton effect with gamma radiations emitted from activated elements, which results in background changes and consequently complex gamma spectrum during the measurement process, quantitative analysis will ultimately be problematic. Since there is no simple analytical correlation between peaks' counts with elements' concentrations, an artificial neural network for analyzing spectra can be a helpful tool. This work describes a study on the application of a neural network to determine the percentages of cement elements (mainly Ca, Si, Al, and Fe) using the neutron capture delayed gamma-ray spectra of the substance emitted by the activated nuclei as patterns which were simulated via the Monte Carlo N-particle transport code, version 2.7. The Radial Basis Function (RBF) network is developed with four specific peaks related to Ca, Si, Al and Fe, which were extracted as inputs. The proposed RBF model is developed and trained with MATLAB 7.8 software. To obtain the optimal RBF model, several structures have been constructed and tested. The comparison between simulated and predicted values using the proposed RBF model shows that there is a good agreement between them.
Study of radioactive impurities in neutron transmutation doped germanium
NASA Astrophysics Data System (ADS)
Mathimalar, S.; Dokania, N.; Singh, V.; Nanal, V.; Pillay, R. G.; Shrivastava, A.; Jagadeesan, K. C.; Thakare, S. V.
2015-02-01
A program to develop low temperature (mK) sensors with neutron transmutation doped Ge for rare event studies with a cryogenic bolometer has been initiated. For this purpose, semiconductor grade Ge wafers are irradiated with thermal neutron flux from Dhruva reactor at Bhabha Atomic Research Centre (BARC), Mumbai. Spectroscopic studies of irradiated samples have revealed that the environment of the capsule used for irradiating the sample leads to significant levels of 65Zn, 110mAg and 182Ta impurities, which can be reduced by chemical etching of approximately 50 μm thick surface layer. From measurements of the etched samples in the low background counting setup, activity due to trace impurities of 123Sb in bulk Ge is estimated to be 1 Bq / g after irradiation. These estimates indicate that in order to use the NTD Ge sensors for rare event studies, a cooldown period of 2 years would be necessary to reduce the radioactive background to ≤ 1 mBq / g.
Boatner, Lynn A.; Comer, Eleanor P.; Wright, Gomez W.; ...
2017-02-21
Monovalent alkali halides such as NaI, CsI, and LiI are widely used as inorganic scintillators for radiation detection due to their light yield, the capability for the growth of large single crystals, relatively low cost, and other favorable characteristics. These materials are frequently activated through the addition of small amounts (e.g., a few hundred ppm) of elements such as thallium - or sodium in the case of CsI. The monovalent alkali halide scintillators can also be activated with low concentrations of Eu 2+, however Eu activation has previously not been widely employed due to the non-uniform segregation of the divalentmore » Eu dopant that leads to the formation of unwanted phases during Bridgman or other solidification crystal-growth methods. Specifically, for Eu concentrations near and above ~0.5%, Suzuki Phase precipitates form in the course of the melt-growth process, and these Suzuki Phase particles scatter the scintillation light. This adversely affects the scintillator performance via reduction in the optical transmission of the material, and depending on the crystal thickness and precipitated-particle concentration, this reduction can occur up to the point of opacity. Here we describe a post-growth process for the removal of Suzuki Phase precipitates from single crystals of the neutron scintillator LiI activated with Eu 2+ at concentrations up to and in excess of 3 wt.%, and we correlate the resulting neutron-detection performance with the thermal processing methods used to remove the Suzuki Phase particles. Furthermore, the resulting improved scintillator properties using increased Eu activator levels are applicable to neutron imaging and active interrogation systems, and pulse-height gamma-ray spectroscopy rather than pulse-shape discrimination can be used to discriminate between gamma ray and neutron interaction events.« less
NASA Astrophysics Data System (ADS)
Boatner, L. A.; Comer, E. P.; Wright, G. W.; Ramey, J. O.; Riedel, R. A.; Jellison, G. E.; Kolopus, J. A.
2017-05-01
Monovalent alkali halides such as NaI, CsI, and LiI are widely used as inorganic scintillators for radiation detection due to their light yield, the capability for the growth of large single crystals, relatively low cost, and other favorable characteristics. These materials are frequently activated through the addition of small amounts (e.g., a few hundred ppm) of elements such as thallium - or sodium in the case of CsI. The monovalent alkali halide scintillators can also be activated with low concentrations of Eu2+, however Eu activation has previously not been widely employed due to the non-uniform segregation of the divalent Eu dopant that leads to the formation of unwanted phases during Bridgman or other solidification crystal-growth methods. Specifically, for Eu concentrations near and above 0.5%, Suzuki Phase precipitates form in the course of the melt-growth process, and these Suzuki Phase particles scatter the scintillation light. This adversely affects the scintillator performance via reduction in the optical transmission of the material, and depending on the crystal thickness and precipitated-particle concentration, this reduction can occur up to the point of opacity. Here we describe a post-growth process for the removal of Suzuki Phase precipitates from single crystals of the neutron scintillator LiI activated with Eu2+ at concentrations up to and in excess of 3 wt%, and we correlate the resulting neutron-detection performance with the thermal processing methods used to remove the Suzuki Phase particles. The resulting improved scintillator properties using increased Eu activator levels are applicable to neutron imaging and active interrogation systems, and pulse-height gamma-ray spectroscopy rather than pulse-shape discrimination can be used to discriminate between gamma ray and neutron interaction events.
NASA Astrophysics Data System (ADS)
Sharma, Rajiv; Tanna, V. L.; Rao, C. V. S.; Abhangi, Mitul; Vala, Sudhirsinh; Sundaravel; Varatharajan, S.; Sivakumar, S.; Sasi, K.; Pradhan, S.
2017-02-01
Epoxy based glass fiber reinforced composites are the main insulation system for the superconducting magnets of fusion machines. 14MeV neutrons are generated during the DT fusion process, however the energy spectra and flux gets modified to a great extent when they reach the superconducting magnets. Mechanical properties of the GFRP insulation material is reported to degrade up to 30%. As a part of R & D activity, a joint collaboration with IGCAR, Kalpakkam has been established. The indigenous insulation material is subjected to fast neutron fluence of 1014 - 1019 n/m2 (E>0.1 MeV) in FBTR and KAMINI Reactor, India. TRIM software has been used to simulate similar kind of damage produced by neutrons by ion irradiation with 5 MeV Al ions and 3 MeV protons. Fluence of the ions was adjusted to get the same dpa. We present the test experiment of neutron irradiation of the composite material (E-glass, S-glass fiber boron free and DGEBA epoxy). The test results of tensile, inter laminar shear and electrical breakdown strength as per ASTM standards, assessment of micro-structure surface degradation before and after irradiation will be presented. MCNP simulations are carried out for neutron flux, dose and damages produced in the insulation material.
NASA Astrophysics Data System (ADS)
Stamatopoulos, A.; Kanellakopoulos, A.; Kalamara, A.; Diakaki, M.; Tsinganis, A.; Kokkoris, M.; Michalopoulou, V.; Axiotis, M.; Lagoyiannis, A.; Vlastou, R.
2018-01-01
The 234U neutron-induced fission cross-section has been measured at incident neutron energies of 452, 550, 651 keV and 7.5, 8.7, 10 MeV using the 7Li ( p, n) and the 2H( d, n) reactions, respectively, relative to the 235U( n, f ) and 238U( n, f ) reference reactions. The measurement was performed at the neutron beam facility of the National Center for Scientific Research "Demokritos", using a set-up based on Micromegas detectors. The active mass of the actinide samples and the corresponding impurities were determined via α-spectroscopy using a surface barrier silicon detector. The neutron spectra intercepted by the actinide samples have been thoroughly studied by coupling the NeuSDesc and MCNP5 codes, taking into account the energy and angular straggling of the primary ion beams in the neutron source targets in addition to contributions from competing reactions ( e.g. deuteron break-up) and neutron scattering in the surrounding materials. Auxiliary Monte Carlo simulations were performed making combined use of the FLUKA and GEF codes, focusing particularly on the determination of the fission fragment detection efficiency. The developed methodology and the final results are presented.
Validation of Monte Carlo simulation of neutron production in a spallation experiment
Zavorka, L.; Adam, J.; Artiushenko, M.; ...
2015-02-25
A renewed interest in experimental research on Accelerator-Driven Systems (ADS) has been initiated by the global attempt to produce energy from thorium as a safe(r), clean(er) and (more) proliferation-resistant alternative to the uranium-fuelled thermal nuclear reactors. The ADS research has been actively pursued at the Joint Institute for Nuclear Research (JINR), Dubna, since decades. Most recently, the emission of fast neutrons was experimentally investigated at the massive (m = 512 kg) natural uranium spallation target QUINTA. The target has been irradiated with the relativistic deuteron beams of energy from 0.5 AGeV up to 4 AGeV at the JINR Nuclotron acceleratormore » in numerous experiments since 2011. Neutron production inside the target was studied through the gamma-ray spectrometry measurement of natural uranium activation detectors. Experimental reaction rates for (n,γ), (n,f) and (n,2n) reactions in uranium have provided valuable information about the neutron distribution over a wide range of energies up to some GeV. The experimental data were compared to the predictions of Monte Carlo simulations using the MCNPX 2.7.0 code. In conclusion, the results are presented and potential sources of partial disagreement are discussed later in this work.« less
Performance assessment of imaging plates for the JHR transfer Neutron Imaging System
NASA Astrophysics Data System (ADS)
Simon, E.; Guimbal, P. AB(; )
2018-01-01
The underwater Neutron Imaging System to be installed in the Jules Horowitz Reactor (JHR-NIS) is based on a transfer method using a neutron activated beta-emitter like Dysprosium. The information stored in the converter is to be offline transferred on a specific imaging system, still to be defined. Solutions are currently under investigation for the JHR-NIS in order to anticipate the disappearance of radiographic films commonly used in these applications. We report here the performance assessment of Computed Radiography imagers (Imaging Plates) performed at LLB/Orphée (CEA Saclay). Several imaging plate types are studied, in one hand in the configuration involving an intimate contact with an activated dysprosium foil converter: Fuji BAS-TR, Fuji UR-1 and Carestream Flex XL Blue imaging plates, and in the other hand by using a prototypal imaging plate doped with dysprosium and thus not needing any contact with a separate converter foil. The results for these imaging plates are compared with those obtained with gadolinium doped imaging plate used in direct neutron imaging (Fuji BAS-ND). The detection performances of the different imagers are compared regarding resolution and noise. The many advantages of using imaging plates over radiographic films (high sensitivity, linear response, high dynamic range) could palliate its lower intrinsic resolution.
Neutron capture cross sections of 69Ga and 71Ga at 25 keV and Epeak = 90 keV
NASA Astrophysics Data System (ADS)
Göbel, Kathrin; Beinrucker, Clemens; Erbacher, Philipp; Fiebiger, Stefan; Fonseca, Micaela; Heftrich, Michael; Heftrich, Tanja; Käppeler, Franz; Krása, Antonin; Lederer-Woods, Claudia; Plag, Ralf; Plompen, Arjan; Reifarth, René; Schmidt, Stefan; Sonnabend, Kerstin; Weigand, Mario
2017-09-01
We measured the neutron capture cross sections of 69Ga and 71Ga for a quasi-stellar spectrum at kBT = 25 keV and a spectrum with a peak energy at 90 keV by the activation technique at the Joint Research Centre (JRC) in Geel, Belgium. Protons were provided by an electrostatic Van de Graaff accelerator to produce neutrons via the reaction 7Li(p,n). The produced activity was measured via the γ emission of the product nuclei by high-purity germanium detectors. We present preliminary results.
Ligand-induced dynamical change of G-protein-coupled receptor revealed by neutron scattering
NASA Astrophysics Data System (ADS)
Shrestha, Utsab R.; Bhowmik, Debsindhu; Mamontov, Eugene; Chu, Xiang-Qiang
Light activation of the visual G-protein-coupled receptor rhodopsin leads to the significant change in protein conformation and structural fluctuations, which further activates the cognate G-protein (transducin) and initiates the biological signaling. In this work, we studied the rhodopsin activation dynamics using state-of-the-art neutron scattering technique. Our quasi-elastic neutron scattering (QENS) results revealed a broadly distributed relaxation rate of the hydrogen atom in rhodopsin on the picosecond to nanosecond timescale (beta-relaxation region), which is crucial for the protein function. Furthermore, the application of mode-coupling theory to the QENS analysis uncovers the subtle changes in rhodopsin dynamics due to the retinal cofactor. Comparing the dynamics of the ligand-free apoprotein, opsin versus the dark-state rhodopsin, removal of the retinal cofactor increases the relaxation time in the beta-relaxation region, which is due to the possible open conformation. Moreover, we utilized the concept of free-energy landscape to explain our results for the dark-state rhodopsin and opsin dynamics, which can be further applied to other GPCR systems to interpret various dynamic behaviors in ligand-bound and ligand-free protein.
NASA Astrophysics Data System (ADS)
Rybin, V. V.; Kursevich, I. P.; Lapin, A. N.
1998-10-01
Effects of neutron irradiation to fluence of 2.0 × 10 24 n/m 2 ( E > 0.5 MeV) in temperature range 70-300°C on mechanical properties and structure of the experimental reduced-activation ferritic 0.1%C-(2.5-12)%Cr-(1-2)%W-(0.2-0.7)%V alloys were investigated. The steels were studied in different initial structural conditions obtained by changing the modes of heat treatments. Effect of neutron irradiation estimated by a shift in ductile-brittle transition temperature (ΔDBTT) and reduction of upper shelf energy (ΔUSE) highly depends on both irradiation condition and steel chemical composition and structure. For the steel with optimum chemical composition (9Cr-1.5WV) after irradiation to 2 × 10 24 n/m 2 ( E ⩾ 0.5 MeV) at 280°C the ΔDBTT does not exceed 25°C. The shift in DBTT increased from 35°C to 110°C for the 8Cr-1.5WV steel at a decrease in irradiation temperature from 300°C to 70°C. The CCT diagrams are presented for several reduced-activated steels.
Design of a boron neutron capture enhanced fast neutron therapy assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhonglu
The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator nearmore » the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm 2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm 2 collimation was 21.9% per 100-ppm 10B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm 2 fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm 2 collimator. Five 1.0-cm thick 20x20 cm 2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The measured dose enhancement at 5.0-cm depth in the head phantom for the 5.0-cm thick tungsten filter is (16.6 ± 1.8)%, which agrees well with the MCNP simulation of the simplified BNCEFNT assembly, (16.4 ± 0.5)%. The error in the calculated dose enhancement only considers the statistical uncertainties. The total dose rate measured at 5.0-cm depth using the non-borated ion chamber is (0.765 ± 0.076) Gy/MU, about 61% of the fast neutron standard dose rate (1.255Gy/MU) at 5.0-cm depth for the standard 10x10 cm 2 treatment beam. The increased doses to other organs due to the use of the BNCEFNT assembly were calculated using MCNP5 and a MIRD phantom. The activities of the activation products produced in the BNCEFNT assembly after neutron beam delivery were computed. The photon ambient dose rate due to the radioactive activation products was also estimated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigotti, D.L.; McNeilly, J.H.; Brady, R.E.
1985-09-01
The objectives of this project were (1) to measure free-field neutron flux and spectrum as required in support of other projects; (2) to document the neutron flux versus ground range; and (3) to determine the effect of various blast containers and shields on detector activation.
Determination of rhenium in molybdenite by neutron-activation analysis.
Terada, K; Yoshimura, Y; Osaki, S; Kiba, T
1967-01-01
A neutron-activation method is described for the determination of rhenium in molybdenite. Radiochemical separation by a carrier technique was carried out very rapidly by means of successive liquid-liquid extraction processes. The recovery of rhenium, which was determined by a spectrophotometric method, was about 93%. About 10 samples could be analysed within 6 hr in parallel runs.
Minimum activation martensitic alloys for surface disposal after exposure to neutron flux
Lechtenberg, Thomas
1985-01-01
Steel alloys for long-term exposure to neutron flux have a martensitic microstructure and contain chromium, carbon, tungsten, vanadium and preferably titanium. Activation of the steel is held to within acceptable limits for eventual surface disposal by stringently controlling the impurity levels of Ni, Mo, Cu, N, Co, Nb, Al and Mn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra, O., E-mail: osierra@sgc.gov.co; Parrado, G., E-mail: gparrado@sgc.gov.co; Cañón, Y.
This paper presents the progress made by the Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey (SGC in its Spanish acronym), towards the characterization of its gamma spectrometric systems for Instrumental Neutron Activation Analysis (INAA), with the aim of introducing corrections to the measurements by variations in sample geometry. Characterization includes the empirical determination of the interaction point of gamma radiation inside the Germanium crystal, through the application of a linear model and the use of a fast Monte Carlo N-Particle (MCNP) software to estimate correction factors for differences in counting efficiency that arise from variations in samplemore » density between samples and standards.« less
NASA Astrophysics Data System (ADS)
Medina, Daniel C.; Li, Xin; Springer, Charles S., Jr.
2005-05-01
In addition to its common usage as a tracer in metabolic and physiological studies, deuterium possesses anti-tumoural activity and confers protection against γ-irradiation. A more recent interest in deuterium emanates from the search for alternatives capable of improving neutron penetrance whilst reducing healthy tissue radiation dose deposition in boron neutron capture therapy of malignant brain tumours. Despite this potential clinical application, deuterium induces brain oedema, which is detrimental to neutron capture therapy. In this study, five adult male rats were titrated with deuterated drinking water while brain oedema was monitored via water proton magnetic resonance imaging. This report concludes that deuterium, as well as deuterium-induced brain oedema, possesses a uniform brain bio-distribution. At a steady-state blood fluid deuteration value of 16%, when the deuterium isotope fraction in drinking water was 25%, a mean oedematous volume change of 9 ± 2% (p-value <0.001) was observed in the rat brain—this may account for neurological and behavioural abnormalities found in mammals drinking highly deuterated water. In addition to characterizing the pharmaco-thermodynamics of deuterium-induced oedema, this report also estimates the impact of oedema on thermal neutron enhancement and effective dose reduction factors using simple linear transport calculations. While body fluid deuteration enhances thermal neutron flux penetrance and reduces dose deposition, oedema has the opposite effect because it increases the volume of interest, e.g., the brain volume. Thermal neutron enhancement and effective dose reduction factors could be reduced by as much as ~10% in the presence of a 9% water volume increase (oedema). All three authors have contributed equally to this work.
NASA Astrophysics Data System (ADS)
Kehayias, Joseph J.; Ma, Ruimei; Zhuang, Hong; Moore, Robert; Dowling, Lisa
1995-03-01
Non-invasive in vivo elemental analysis is a technique used to assess human body composition which is indicative of nutritional status and health condition. The in vivo measurement of the body's major elements is used for a variety of medical studies requiring the determination of the body's compartments (protein, fat, water, bone). Whole body gamma-ray counters, consisting of Nal(Tl) crystal detectors in a shielded room, are used for measuring in vivo the body's Ca, Cl, Na and P by delayed neutron activation analysis. Thermal neutrons from a moderated 238Pu-Be source are used for the measurement of total body nitrogen (and thus protein) and chlorine at low radiation exposure (0.80 mSv). The resulting high energy prompt gamma-rays from nitrogen (10.83 MeV) and chlorine (6.11 MeV) are detected simultaneously with the irradiation. Body fat (the main energy store) and fat distribution (which relates to risk for cardiovascular disease) are measured by detecting C and O in vivo through fast neutron inelastic scattering. A small sealed D-T neutron generator is used for the pulsed (4 - 8 KHz) production of fast neutrons. Carbon and oxygen are detected by counting the 4.44 and 6.13 MeV gamma-rays resulting from the inelastic scattering of the fast neutrons from the 12C and 16O nuclei, respectively. One use of this method is the systematic study of the mechanisms driving the age-associated depletion of the metabolizing, oxygen-consuming cellular compartment of the body. The understanding of this catabolism may suggest ways to maintain lean tissue and thus to preserve quality of life for the very old.
The Thermal Neutron Beam Option for NECTAR at MLZ
NASA Astrophysics Data System (ADS)
Mühlbauer, M. J.; Bücherl, T.; Genreith, C.; Knapp, M.; Schulz, M.; Söllradl, S.; Wagner, F. M.; Ehrenberg, H.
The beam port SR10 at the neutron source FRM II of Heinz Maier-Leibnitz Zentrum (MLZ) is equipped with a moveable assembly of two uranium plates, which can be placed in front of the entrance window of the beam tube via remote control. With these plates placed in their operating position the thermal neutron spectrum produced by the neutron source FRM II is converted to fission neutrons with 1.9 MeV of mean energy. This fission neutron spectrum is routinely used for medical applications at the irradiation facility MEDAPP, for neutron radiography and tomography experiments at the facility NECTAR and for materials testing. If, however, the uranium plates are in their stand-by position far off the tip of the beam tube and the so-called permanent filter for thermal neutrons is removed, thermal neutrons originating from the moderator tank enter the beam tube and a thermal spectrum becomes available for irradiation or activation of samples. By installing a temporary flight tube the beam may be used for thermal neutron radiography and tomography experiments at NECTAR. The thermal neutron beam option not only adds a pure thermal neutron spectrum to the energy ranges available for neutron imaging at MLZ instruments but it also is an unique possibility to combine two quite different neutron energy ranges at a single instrument including their respective advantages. The thermal neutron beam option for NECTAR is funded by BMBF in frame of research project 05K16VK3.
Monte carlo simulations of Yttrium reaction rates in Quinta uranium target
NASA Astrophysics Data System (ADS)
Suchopár, M.; Wagner, V.; Svoboda, O.; Vrzalová, J.; Chudoba, P.; Tichý, P.; Kugler, A.; Adam, J.; Závorka, L.; Baldin, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Solnyshkin, A.; Tsoupko-Sitnikov, V.; Tyutyunnikov, S.; Bielewicz, M.; Kilim, S.; Strugalska-Gola, E.; Szuta, M.
2017-03-01
The international collaboration Energy and Transmutation of Radioactive Waste (E&T RAW) performed intensive studies of several simple accelerator-driven system (ADS) setups consisting of lead, uranium and graphite which were irradiated by relativistic proton and deuteron beams in the past years at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. The most recent setup called Quinta, consisting of natural uranium target-blanket and lead shielding, was irradiated by deuteron beams in the energy range between 1 and 8 GeV in three accelerator runs at JINR Nuclotron in 2011 and 2012 with yttrium samples among others inserted inside the setup to measure the neutron flux in various places. Suitable activation detectors serve as one of possible tools for monitoring of proton and deuteron beams and for measurements of neutron field distribution in ADS studies. Yttrium is one of such suitable materials for monitoring of high energy neutrons. Various threshold reactions can be observed in yttrium samples. The yields of isotopes produced in the samples were determined using the activation method. Monte Carlo simulations of the reaction rates leading to production of different isotopes were performed in the MCNPX transport code and compared with the experimental results obtained from the yttrium samples.
Kimura, T; Takano, N; Iba, T; Fujita, S; Watanabe, T; Maruyama, T; Hamada, T
1990-06-01
Specific activity 60Co/Co in two steel samples taken at 687m S and 1295m NNW from the hypocenter was measured by gamma-ray spectrometry and neutron activation analysis. The results were, respectively, (2.64 +/- 0.38) x 10(1) and (3.09 +/- 0.48) x 10(-1) dpm/mg Co at the time of bombing, which are consistent with previous data by Hashizume et al. for steel rings on the surface of roofs of buildings. The present data are expected to serve as verification of the bomb neutron transport calculations. Content of nickel and copper in the samples, determined by colorimetric and neutron activation methods, respectively, was too small to account for any significant 60Co production by the (n,p) and (n, alpha) reactions.
Microtron MT 25 as a source of neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kralik, M.; Solc, J.; Chvatil, D.
2012-08-15
The objective was to describe Microtron MT25 as a source of neutrons generated by bremsstrahlung induced photonuclear reactions in U and Pb targets. Bremsstrahlung photons were produced by electrons accelerated at energy 21.6 MeV. Spectral fluence of the generated neutrons was calculated with MCNPX code and then experimentally determined at two positions by means of a Bonner spheres spectrometer in which the detector of thermal neutrons was replaced by activation Mn tablets or track detectors CR-39 with a {sup 10}B radiator. The measured neutron spectral fluence and the calculated anisotropy served for the estimation of neutron yield from the targetsmore » and for the determination of ambient dose equivalent rate at the place of measurement. Microtron MT25 is intended as one of the sources for testing neutron sensitive devices which will be sent into the space.« less
Two hump-shaped angular distributions of neutrons and soft X-rays in a small plasma focus device.
Habibi, Morteza
2018-03-01
Angular distributions of soft X-rays (SXRs) and neutrons emitted by a small plasma focus device (PFD) were investigated simultaneously using TLD-100 dosimeters and Geiger-Muller activation counters, respectively. The distributions represented two humps with a small dip at the angular position 0° and reduced from the angles of ± 15° and ± 30° for the neutrons and SXRs, respectively. The maximum yield of 2.98 × 10 8 neutrons per shot of the device was obtained at 13.5kV and 6.5mbar. A time of flight (TOF) of 75.2ns between the hard X-ray and the neutron peaks corresponds to neutrons with energy of 2.67MeV. A similar behavior was observed between the angular distributions of neutron and soft X-ray emissions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Golabian, A; Hosseini, M A; Ahmadi, M; Soleimani, B; Rezvanifard, M
2018-01-01
Miniature neutron source reactors (MNSRs) are among the safest and economic research reactors with potentials to be used for neutron studies. This manuscript explores the feasibility of 177 Lu production in Isfahan MNSR reactor using direct production route. In this study, to assess the specific activity of the produced radioisotope, a simulation was carried out through the MCNPX2.6 code. The simulation was validated by irradiating a lutetium disc-like (99.98 chemical purity) at the thermal neutron flux of 5 × 10 11 ncm 2 s -1 and an irradiation time of 4min. After the spectrometry of the irradiated sample, the experimental results of 177 Lu production were compared with the simulation results. In addition, factor from the simulation was extracted by replacing it in the related equations in order to calculate specific activity through a multi-stage approach, and by using different irradiation techniques. The results showed that the simulation technique designed in this study is in agreement with the experimental approach (with a difference of approximately 3%). It was also found that the maximum 177 Lu production at the maximum flux and irradiation time allows access to 723.5mCi/g after 27 cycles. Furthermore, the comparison of irradiation techniques showed that increasing the irradiation time is more effective in 177 Lu production efficiency than increasing the number of irradiation cycles. In a way that increasing the irradiation time would postpone the saturation of the productions. On the other hand, it was shown that the choice of an appropriate irradiation technique for 177 Lu production can be economically important in term of the effective fuel consumption in the reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Neutron Diffractometer for a Long Pulsed Neutron Source
NASA Astrophysics Data System (ADS)
Sokol, Paul; Wang, Cailin
Long pulsed neutron sources are being actively developed as small university based sources and are being considered for the next generation of high powered sources, such as the European Neutron Source (ESS) and the Spallation Neutron Source (SNS) second target station. New instrumentation concepts will be required to effectively utilize the full spectrum of neutrons generated by these sources. Neutron diffractometers, which utilize time-of-flight (TOF) techniques for wavelength resolution, are particularly problematic. We describe an instrument for a long pulsed source that provides resolution comparable to that obtained on short pulsed sources without the need of long incident flight paths. We accomplish this by utilizing high speed choppers to impose a time structure on the spectrum of incident neutrons. By strategically positioning these choppers the response matrix assumes a convenient form that can be deconvoluted from the measured TOF spectrum to produce the diffraction pattern of the sample. We compare the performance of this instrument to other possible diffraction instruments that could be utilized on a long pulsed source.
Neutronics calculation of RTP core
NASA Astrophysics Data System (ADS)
Rabir, Mohamad Hairie B.; Zin, Muhammad Rawi B. Mohamed; Karim, Julia Bt. Abdul; Bayar, Abi Muttaqin B. Jalal; Usang, Mark Dennis Anak; Mustafa, Muhammad Khairul Ariff B.; Hamzah, Na'im Syauqi B.; Said, Norfarizan Bt. Mohd; Jalil, Muhammad Husamuddin B.
2017-01-01
Reactor calculation and simulation are significantly important to ensure safety and better utilization of a research reactor. The Malaysian's PUSPATI TRIGA Reactor (RTP) achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. Since early 90s, neutronics modelling were used as part of its routine in-core fuel management activities. The are several computer codes have been used in RTP since then, based on 1D neutron diffusion, 2D neutron diffusion and 3D Monte Carlo neutron transport method. This paper describes current progress and overview on neutronics modelling development in RTP. Several important parameters were analysed such as keff, reactivity, neutron flux, power distribution and fission product build-up for the latest core configuration. The developed core neutronics model was validated by means of comparison with experimental and measurement data. Along with the RTP core model, the calculation procedure also developed to establish better prediction capability of RTP's behaviour.
NASA Astrophysics Data System (ADS)
Kabadi, N. V.; Sio, H.; Glebov, V.; Gatu Johnson, M.; MacPhee, A.; Frenje, J. A.; Li, C. K.; Seguin, F.; Petrasso, R.; Forrest, C.; Knauer, J.; Rinderknecht, H. G.
2016-11-01
The particle-time-of-flight (pTOF) detector at the National Ignition Facility (NIF) is used routinely to measure nuclear bang-times in inertial confinement fusion implosions. The active detector medium in pTOF is a chemical vapor deposition diamond. Calibration of the detectors sensitivity to neutrons and protons would allow measurement of nuclear bang times and hot spot areal density (ρR) on a single diagnostic. This study utilizes data collected at both NIF and Omega in an attempt to determine pTOF's absolute sensitivity to neutrons. At Omega pTOF's sensitivity to DT-n is found to be stable to within 8% at different bias voltages. At the NIF pTOF's sensitivity to DD-n varies by up to 59%. This variability must be decreased substantially for pTOF to function as a neutron yield detector at the NIF. Some possible causes of this variability are ruled out.
Kabadi, N. V.; Sio, H.; Glebov, V.; ...
2016-08-09
The particle-time-of-flight (pTOF) detector at the National Ignition Facility (NIF) is used routinely to measure nuclear bang-times in inertial confinement fusion implosions. The active detector medium in pTOF is a chemical vapor deposition diamond. Calibration of the detectors sensitivity to neutrons and protons would allow measurement of nuclear bang times and hot spot areal density (ρR) on a single diagnostic. This study utilizes data collected at both NIF and Omega in an attempt to determine pTOF’s absolute sensitivity to neutrons. At Omega pTOF’s sensitivity to DT-n is found to be stable to within 8% at different bias voltages. At themore » NIF pTOF’s sensitivity to DD-n varies by up to 59%. This variability must be decreased substantially for pTOF to function as a neutron yield detector at the NIF. As a result, some possible causes of this variability are ruled out.« less