Sample records for neutron albedo reactivity

  1. Spent fuel measurements. passive neutron albedo reactivity (PNAR) and photon signatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eigenbrodt, Julia; Menlove, Howard Olsen

    2016-03-29

    The International Atomic Energy Agency’s (IAEA) safeguards technical objective is the timely detection of a diversion of a significant quantity of nuclear material from peaceful activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. An important IAEA task towards meeting this objective is the ability to accurately and reliably measure spent nuclear fuel (SNF) to verify reactor operating parameters and verify that the fuel has not been removed from reactors or SNF storage facilities. This dissertation analyzes a method to improvemore » the state-of-the-art of nuclear material safeguards measurements using two combined measurement techniques: passive neutron albedo reactivity (PNAR) and passive spectral photon measurements.« less

  2. Measuring spent fuel assembly multiplication in borated water with a passive neutron albedo reactivity instrument

    NASA Astrophysics Data System (ADS)

    Tobin, Stephen J.; Peura, Pauli; Bélanger-Champagne, Camille; Moring, Mikael; Dendooven, Peter; Honkamaa, Tapani

    2018-07-01

    The performance of a passive neutron albedo reactivity (PNAR) instrument to measure neutron multiplication of spent nuclear fuel in borated water is investigated as part of an integrated non-destructive assay safeguards system. To measure the PNAR Ratio, which is proportional to the neutron multiplication, the total neutron count rate is measured in high- and low-multiplying environments by the PNAR instrument. The integrated system also contains a load cell and a passive gamma emission tomograph, and as such meets all the recommendations of the IAEA's recent ASTOR Experts Group report. A virtual spent fuel library for VVER-440 fuel was used in conjunction with MCNP simulations of the PNAR instrument to estimate the measurement uncertainties from (1) variation in the water boron content, (2) assembly positioning in the detector and (3) counting statistics. The estimated aggregate measurement uncertainty on the PNAR Ratio measurement is 0.008, to put this uncertainty in context, the difference in the PNAR Ratio between a fully irradiated assembly and this same assembly when fissile isotopes only absorb neutrons, but do not emit neutrons, is 0.106, a 13-sigma effect. The 1-sigma variation of 0.008 in the PNAR Ratio is estimated to correspond to a 3.2 GWd/tU change in assembly burnup.

  3. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, Daniel L.; Micklich, Bradley J.

    1986-01-01

    An arrangement is provided for controlling neutron albedo in toroidal fusion devices having inboard and outboard vacuum vessel walls for containment of the neutrons of a fusion plasma. Neutron albedo material is disposed immediately adjacent the inboard wall, and is movable, preferably in vertical directions, so as to be brought into and out of neutron modifying communication with the fusion neutrons. Neutron albedo material preferably comprises a liquid form, but may also take pebble, stringer and curtain-like forms. A neutron flux valve, rotatable about a vertical axis is also disclosed.

  4. Earth albedo neutrons from 10 to 100 MeV.

    NASA Technical Reports Server (NTRS)

    Preszler, A. M.; Simnett, G. M.; White, R. S.

    1972-01-01

    We report the measurement of the energy and angular distributions of earth albedo neutrons from 10 to 100 MeV at 40 deg N geomagnetic latitude from a balloon at 120,000 ft, below 4.65 g/sq cm. The albedo-neutron omnidirectional energy distribution is flat to 50 MeV, then decreases with energy. The absolute neutron energy distribution is of the correct strength and shape for the albedo neutrons to be the source of the protons trapped in earth's inner radiation belt.

  5. Albedo Neutron Dosimetry in a Deep Geological Disposal Repository for High-Level Nuclear Waste.

    PubMed

    Pang, Bo; Becker, Frank

    2017-04-28

    Albedo neutron dosemeter is the German official personal neutron dosemeter in mixed radiation fields where neutrons contribute to personal dose. In deep geological repositories for high-level nuclear waste, where neutrons can dominate the radiation field, it is of interest to investigate the performance of albedo neutron dosemeter in such facilities. In this study, the deep geological repository is represented by a shielding cask loaded with spent nuclear fuel placed inside a rock salt emplacement drift. Due to the backscattering of neutrons in the drift, issues concerning calibration of the dosemeter arise. Field-specific calibration of the albedo neutron dosemeter was hence performed with Monte Carlo simulations. In order to assess the applicability of the albedo neutron dosemeter in a deep geological repository over a long time scale, spent nuclear fuel with different ages of 50, 100 and 500 years were investigated. It was found out, that the neutron radiation field in a deep geological repository can be assigned to the application area 'N1' of the albedo neutron dosemeter, which is typical in reactors and accelerators with heavy shielding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Neutron Fading Characteristics of Copper Doped Lithium Fluoride (LiF: MCP) Thermoluminescent Dosimeters (TLDs)

    DTIC Science & Technology

    2008-05-21

    Albedo Dosimetry TLDs that are used for neutron or neutron-photon personnel dosimetry are albedo dosimeters. The word albedo simply means the proportion... dosimetry . When LiF: MCP is exposed to thermal neutron irradiation, there is no obvious change in the glow curve shape. In the case of TLD -100, the...LiF: MCP undergoes compared to TLD -100. Therefore, LET results in significant variations in TL output for LiF: MCP. Limitations of Albedo Dosimetry

  7. FIELD CALIBRATION OF A TLD ALBEDO DOSEMETER IN THE HIGH-ENERGY NEUTRON FIELD OF CERF.

    PubMed

    Haninger, T; Kleinau, P; Haninger, S

    2017-04-28

    The new albedo dosemeter-type AWST-TL-GD 04 has been calibrated in the CERF neutron field (Cern-EU high-energy Reference Field). This type of albedo dosemeter is based on thermoluminescent detectors (TLDs) and used by the individual monitoring service of the Helmholtz Zentrum München (AWST) since 2015 for monitoring persons, who are exposed occupationally against photon and neutron radiation. The motivation for this experiment was to gain a field specific neutron correction factor Nn for workplaces at high-energy particle accelerators. Nn is a dimensionless factor relative to a basic detector calibration with 137Cs and is used to calculate the personal neutron dose in terms of Hp(10) from the neutron albedo signal. The results show that the sensitivity of the albedo dosemeter for this specific neutron field is not significantly lower as for fast neutrons of a radionuclide source like 252Cf. The neutron correction factor varies between 0.73 and 1.16 with a midrange value of 0.94. The albedo dosemeter is therefore appropriate to monitor persons, which are exposed at high-energy particle accelerators. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Ground albedo neutrons produced by cosmic radiations

    NASA Astrophysics Data System (ADS)

    Kodama, M.

    1983-05-01

    Day-to-day variations of cosmic-ray-produced neutron fluxes near the earth's ground surface are measured by using three sets of paraffin-moderated BF3 counters, which are installed in different locations, 3 m above ground, ground level, and 20 cm under ground. Neutron flux decreases observed by these counters when snowcover exists show that there are upward-moving neutrons, that is, ground albedo neutron near the ground surface. The amount of albedo neutrons is estimated to be about 40 percent of total neutron flux in the energy range 1-10 to the 6th eV.

  9. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, D.L.; Micklich, B.J.

    1983-06-01

    This invention pertains to methods of controlling in the steady state, neutron albedo in toroidal fusion devices, and in particular, to methods of controlling the flux and energy distribution of collided neutrons which are incident on an outboard wall of a toroidal fusion device.

  10. Space Weather Effects on Range Operations

    DTIC Science & Technology

    2013-02-01

    to give a significant albedo neutron flux at LEO spacecraft. The decay of these albedo neutrons into protons is believed to populate the inner...significant fluxes of secondary neutrons . This mechanism is thought to be the dominant SEE hazard for current and near future avionics at most... neutron monitor at Climax. A version of the CREAM detector made regular flights on-board Concorde G-BOAB between November 1988 and December 1992. Results

  11. Detecting Low-Contrast Features in the Cosmic Ray Albedo Proton Map of the Moon

    NASA Technical Reports Server (NTRS)

    Wilson, J. K.; Schwadron, N.; Spence, H. E.; Golightly, M. J.; Case, A. W.; Smith, S.; Blake, J. B.; Kasper, J.; Looper, M. D.; Mazur, J. E.; hide

    2014-01-01

    High energy cosmic rays constantly bombard the lunar regolith, producing (via nuclear evaporation) secondary 'albedo' or 'splash' particles like protons and neutrons, some of which escape back to space. Lunar Prospector and the Lunar Reconnaissance Orbiter (LRO), have shown that the energy distribution of albedo neutrons is modulated by the elemental composition of the lunar regolith, and by ice deposits in permanently shadowed polar craters. Here we investigate an analogous phenomenon with high energy ((is) approximately 100 MeV) lunar albedo protons.

  12. A neutron Albedo system with time rejection for landmine and IED detection

    NASA Astrophysics Data System (ADS)

    Kovaltchouk, V. D.; Andrews, H. R.; Clifford, E. T. H.; Faust, A. A.; Ing, H.; McFee, J. E.

    2011-10-01

    A neutron Albedo system has been developed for imaging of buried landmines and improvised explosive devices (IEDs). It involves irradiating the ground with fast neutrons and subsequently detecting the thermalized neutrons that return. A scintillating 6Li loaded ZnS(Ag) screen with a sensitive area of 40 cm×40 cm is used as a thermal neutron detector. Scintillation light is captured by orthogonal arrays of wavelength-shifting fibers placed on either side of the scintillator surface and then transferred to X and Y multi-pixel PMTs. A timing circuit, used with pulsed neutron sources, records the time when a neutron detection takes place relative to an external synchronization pulse from the pulsed source. Experimental tests of the Albedo system performance have been done in a sand box with a 252Cf neutron source (no time gating) and with pulsed D-D (2.6 MeV) neutrons from the Defense R&D Ottawa Van de Graaff accelerator (with time gating). Information contained in the time evolution of the thermal neutron field provided improved detection capability and image reconstruction. The detector design is described and experimental results are discussed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafleur, Adrienne M.; Ulrich, Timothy J. II; Menlove, Howard O.

    Objective is to investigate the use of Passive Neutron Albedo Reactivity (PNAR) and Self-Interrogation Neutron Resonance Densitometry (SINRD) to quantify fissile content in FUGEN spent fuel assemblies (FAs). Methodology used is: (1) Detector was designed using fission chambers (FCs); (2) Optimized design via MCNPX simulations; and (3) Plan to build and field test instrument in FY13. Significance was to improve safeguards verification of spent fuel assemblies in water and increase sensitivity to partial defects. MCNPX simulations were performed to optimize the design of the SINRD+PNAR detector. PNAR ratio was less sensitive to FA positioning than SINRD and SINRD ratio wasmore » more sensitive to Pu fissile mass than PNAR. Significance was that the integration of these techniques can be used to improve verification of spent fuel assemblies in water.« less

  14. Neutron measurements in near-Earth orbit with COMPTEL

    NASA Technical Reports Server (NTRS)

    Morris, D. J.; Aarts, H.; Bennett, K.; Lockwood, J. A.; Mcconnell, M. L.; Ryan, J. M.; Schoenfelder, V.; Steinle, H.; Peng, X.

    1995-01-01

    The fast neutron flux in near-Earth orbit has been measured with the COMPTEL instrument on the Compton Gamma Ray Observatory (CGRO). For this measurement one of COMPTEL's seven liquid scintillator modules was used as an uncollimated neutron detector with threshold of 12.8 MeV. The measurements cover a range of 4.8 to 15.5 GV in vertical cutoff rigidity and 3 deg to 177 deg in spacecraft geocenter zenith angle. One of the measurements occurred near the minimum of the deepest Forbush decrease ever observed by ground-level neutron monitors. After correction for solar modulation, the total flux is well fitted by separable functions in rigidity and zenith angle. With the spacecraft pointed near the nadir the flux is consistent with balloon measurements of the atmospheric neutron albedo. The flux varies by about a factor of 4 between the extremes of rigidity and a factor of 2 between the extremes of zenith angle. The effect of the spacecraft mass in shielding the detector from the atmospheric neutron albedo is much more important than its role as a source of additional secondary neutrons. The neutron spectral hardness varies little with rigidity or zenith angle and lies in the range spanned by earlier atmospheric neutron albedo measurements.

  15. Measurement of thermal neutrons reflection coefficients for two-layer reflectors.

    PubMed

    Azimkhani, S; Zolfagharpour, F; Ziaie, F

    2018-05-01

    In this research, thermal neutrons albedo coefficients and relative number of excess counts have been measured experimentally for different thicknesses of two-layer reflectors by using 241 Am-Be neutron source (5.2Ci) and BF 3 detector. Our used reflectors consist of two-layer which are combinations of water, graphite, polyethylene, and lead materials. Experimental results reveal that thermal neutron reflection coefficients slightly increased by addition of the second layer. The maximum value of growth for thermal neutrons albedo is obtained for lead-polyethylene compound (0.72 ± 0.01). Also, there is suitable agreement between the experimental values and simulation results by using MCNPX code. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Signatures of Volatiles in the Lunar Proton Albedo

    NASA Technical Reports Server (NTRS)

    Schwadron, N. A.; Wilson, J. K.; Looper, M. D.; Jordan, A. P.; Spence, H. E.; Blake, J. B.; Case, A. W.; Iwata, Y.; Kasper, J. C.; Farrell, W. M.; hide

    2015-01-01

    We find evidence for hydrated material in the lunar regolith using "albedo protons" measured with the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO). Fluxes of these albedo protons, which are emitted from the regolith due to steady bombardment by high energy radiation (Galactic Cosmic Rays), are observed to peak near the poles, and are inconsistent with the latitude trends of heavy element enrichment (e.g., enhanced Fe abundance). The latitudinal distribution of albedo protons anti-correlates with that of epithermal or high energy neutrons. The high latitude enhancement may be due to the conversion of upward directed secondary neutrons from the lunar regolith into tertiary protons due to neutron-proton collisions in hydrated regolith that is more prevalent near the poles. The CRaTER instrument may thus provide important measurements of volatile distributions within regolith at the Moon and potentially, with similar sensors and observations, at other bodies within the Solar System.

  17. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    NASA Astrophysics Data System (ADS)

    Artem'ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.

    2016-01-01

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2-5 nm and for neutron energies 3 × 10-7-10-3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.

  18. Integral Quantification of Soil Water Content at the Intermediate Catchment Scale by Ground Albedo Neutron Sensing (GANS)

    NASA Astrophysics Data System (ADS)

    Rivera Villarreyes, C. A.; Baroni, G.; Oswald, S. E.

    2012-04-01

    Soil water content at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. However, so far only few methods are on the way to close this gap between point measurements and remote sensing. One new measurement methodology for integral quantifications of mean areal soil water content at the intermediate catchment scale is the aboveground sensing of cosmic-ray neutrons, more precisely ground albedo neutron sensing (GANS). Ground albedo natural neutrons, are generated by collisions of secondary cosmic rays with land surface materials (soil, water, biomass, snow, etc). Neutrons measured at the air/ground interface correlate with soil moisture contained in a footprint of ca. 600 m diameter and a depth ranging down to a few decimeters. This correlation is based on the crucial role of hydrogen as neutron moderator compared to others landscape materials. The present study performed ground albedo neutron sensing in different locations in Germany under different vegetative situations (cropped and bare field) and different seasonal conditions (summer, autumn and winter). Ground albedo neutrons were measured at (i) a farmland close to Potsdam (Brandenburg, Germany) cropped with corn in 2010 and sunflowers in 2011, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains, Germany) in 2011. In order to test this method, classical soil moisture devices and meteorological data were used for comparison. Moreover, calibration approach, and transferability of calibration parameters to different times and locations are also evaluated. Our observations suggest that GANS can overcome the lack of data for hydrological processes at the intermediate scale. Soil water content from GANS compared quantitatively with mean water content values derived from a network of classical devices (RMSE = 0.02 m3/m3 and r2 = 0.98) in three calibration periods with cropped-field conditions. Then, same calibration parameters corresponded well under different field conditions. Moreover, GANS approach responded well to precipitation events in both experimental sites through summer and autumn, and soil water content estimations were affected by water stored in snow.

  19. Modeling of ground albedo neutrons to investigate seasonal cosmic ray-induced neutron variations measured at high-altitude stations

    NASA Astrophysics Data System (ADS)

    Hubert, G.; Pazianotto, M. T.; Federico, C. A.

    2016-12-01

    This paper investigates seasonal cosmic ray-induced neutron variations measured over a long-term period (from 2011 to 2016) in both the high-altitude stations located in medium geomagnetic latitude and Antarctica (Pic-du-Midi and Concordia, respectively). To reinforce analysis, modeling based on ground albedo neutrons simulations of extensive air showers and the solar modulation potential was performed. Because the local environment is well known and stable over time in Antarctica, data were used to validate the modeling approach. A modeled scene representative to the Pic-du-Midi was simulated with GEANT4 for various hydrogen properties (composition, density, and wet level) and snow thickness. The orders of magnitudes of calculated thermal fluence rates are consistent with measurements obtained during summers and winters. These variations are dominant in the thermal domain (i.e., En < 0.5 eV) and lesser degree in epithermal and evaporation domains (i.e., 0.5 eV < En < 0.1 MeV and 0.1 MeV < En < 20 MeV, respectively). Cascade neutron (En > 20 MeV) is weakly impacted. The role of hydrogen content on ground albedo neutron generation was investigated with GEANT4 simulations. These investigations focused to mountain environment; nevertheless, they demonstrate the complexity of the local influences on neutron fluence rates.

  20. Measurement result of the neutron monitor onboard the Space Environment Data Acquisition Equipment - Attached Payload (SEDA-AP)

    NASA Astrophysics Data System (ADS)

    Koga, K.; Muraki, Y.; Shibata, S.; Yamamoto, T.; Matsumoto, H.; Okudaira, O.; Kawano, H.; Yumoto, K.

    2013-12-01

    To support future space activities, it is crucial to acquire space environmental data related to the space-radiation degradation of space parts and materials, and spacecraft anomalies. Such data are useful for spacecraft design and manned space activity. SEDA-AP was mounted on 'Kibo' of the ISS (International Space Station) to measure the space environment at a 400-kilometer altitude. Neutrons are very harmful radiation, with electrical neutrality that makes them strongly permeable. SEDA-AP measures the energy of neutrons from thermal to 100 MeV in real time using a Bonner Ball Detector (BBND) and a Scintillation Fiber Detector (FIB). BBND detects neutrons using He-3 counters, which have high sensitivity to thermal neutrons. Neutron energy is derived using the relative response function of polyethylene moderators of 6 different thicknesses. FIB measures the tracks of recoil protons caused by neutrons within a cubic arrayed sensor of 512 scintillation fibers. The charged particles are excluded using an anti-scintillator which surrounds the cube sensor, and the neutron energy is obtained from the track length of a recoil proton. There are three sources of neutrons in space; 1. Albedo Neutrons Produced by reactions of galactic cosmic rays or radiation belt particles with the atmosphere 2. Local Neutrons Produced by the reactions of galactic cosmic rays or radiation belt particles with spacecraft 3. Solar Neutrons Produced by accelerated particles in solar flares An accurate energy spectrum of the solar neutrons includes important information on high-energy particle generation mechanism in a solar flare, because neutrons are unaffected by interplanetary magnetic fields. These data will become useful to forecast solar energetic particles in future. Some candidate events involving solar neutrons were found as a result of analyzing data of the solar flare of M>2 since September 2009. Moreover, it is important to measure albedo neutrons, since protons generated by neutron decays are thought to originate from the radiation belt. This theory is called CRAND (Cosmic Ray Albedo Neutron Decay). Our observation result is consistent with the CRAND theory prediction in the case of low-energy parts. Moreover, the flux and angular distribution of local neutrons were estimated using the nuclear simulation code 'PHITS' to evaluate the influence of local neutrons on the structure of SEDA-AP and 'Kibo'. The results of our analyses on solar and albedo neutrons are reported in this paper.

  1. MCNP SIMULATION OF THE HP(10) ENERGY RESPONSE OF A BRAZILIAN TLD ALBEDO NEUTRON INDIVIDUAL DOSEMETER, FROM THERMAL TO 20 MeV.

    PubMed

    Freitas, B M; Martins, M M; Pereira, W W; da Silva, A X; Mauricio, C L P

    2016-09-01

    The Brazilian Instituto de Radioproteção e Dosimetria (IRD) runs a neutron individual monitoring system with a home-made TLD albedo dosemeter. It has already been characterised and calibrated in some reference fields. However, the complete energy response of this dosemeter is not known, and the calibration factors for all monitored workplace neutron fields are difficult to be obtained experimentally. Therefore, to overcome such difficulties, Monte Carlo simulations have been used. This paper describes the simulation of the HP(10) neutron response of the IRD TLD albedo dosemeter using the MCNPX transport code, for energies from thermal to 20 MeV. The validation of the MCNPX modelling is done comparing the simulated results with the experimental measurements for ISO standard neutron fields of (241)Am-Be, (252)Cf, (241)Am-B and (252)Cf(D2O) and also for (241)Am-Be source moderated with paraffin and silicone. Bare (252)Cf are used for normalisation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Next Generation Fast Neutron Detector for Space Exploration (Mini-FND)

    NASA Astrophysics Data System (ADS)

    Hassler, D. M.; Ehresmann, B.

    2018-02-01

    SwRI has developed a miniature Fast Neutron Detector (mini-FND), for use in the Deep Space Gateway, to characterize the neutron albedo radiation. Mini-FND will provide coverage of the biologically relevant neutrons at energies of 500 keV and greater.

  3. The Trapped Radiation Handbook, Change 3,

    DTIC Science & Technology

    1974-12-02

    Geomagnetic Field by the U Solar Wind," Physics of Geomagnetic Phenomena, II, 1153-1202, ed. by S. Matsu3hita and W. H. Campbell, Academic Press, New...Ray Albedo Neutron Theory .I of Trapped Radiation Ielt Formation Tlhe albedo neutron theory of the trapped particle belts may be briefly outlined...by B. Adler, S. Fernbach, rd I and M. Rothenberg, Academic Press, New York, 1-42, 1963. 56. B. G. Carlson and G. I. Bell. "Solution of the Transport

  4. Direct detection of albedo neutron decay electrons at the inner edge of the radiation belt and experimental determination of neutron density in near-Earth space

    NASA Astrophysics Data System (ADS)

    Li, X.; Selesnick, R.; Schiller, Q. A.; Zhang, K.; Zhao, H.; Baker, D. N.; Temerin, M. A.

    2017-12-01

    The galaxy is filled with cosmic ray particles, mostly protons with kinetic energy above hundreds of mega-electron volts (MeV). Soon after the discovery of Earth's Van Allen radiation belts almost six decades ago, it was recognized that the main source of inner belt protons, with kinetic energies of tens to hundreds of MeV, is Cosmic Ray Albedo Neutron Decay (CRAND). In this process, cosmic rays reaching the upper atmosphere from throughout the galaxy interact with neutral atoms to produce albedo neutrons which, being unstable to 𝛽 decay, are a potential source of geomagnetically trapped protons and electrons. Protons retain most of the neutrons' kinetic energy while the electrons have lower energies, mostly below 1 MeV. The viability of the electron source was, however, uncertain because measurements showed that electron intensity can vary greatly while the neutron decay rate should be almost constant. Recent measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) onboard the Colorado Student Space Weather Experiment (CSSWE) CubeSat now show that CRAND is the main electron source for the radiation belt near its inner edge, and also contributes to the inner belt elsewhere. Furthermore, measurement of the CRAND electron intensity provides the first experimental determination of the neutron density in near-Earth space, 2x10-9/cm3, confirming earlier theoretical estimates.

  5. Energetic neutron and gamma-ray spectra under the earth radiation belts according to ``SALUTE-7''-``KOSMOS-1686'' orbital complex and ``CORONAS-I'' satellite data

    NASA Astrophysics Data System (ADS)

    Bogomolov, A. V.; Dmitriev, A. V.; Myagkova, I. N.; Ryumin, S. P.; Smirnova, O. N.; Sobolevsky, I. M.

    The spectra of neutrons > 10 MeV and gamma-rays 1.5-100 MeV under the Earth Radiation Belts, restored from the data, obtained onboard orbital complex ``SALUTE-7''-``KOSMOS-1686'', are presented. The spectra shapes are similar to those for albedo neutrons and gamma-rays, but absolute values of their fluxes (0.2 cm^-2 s^-1 for neutrons, 0.8 cm^-2 s^-1 for gamma-rays at the equator and 1.2 cm^-2 s^-1, 1.9 cm^-2 s^-1, accordingly, at L=1.9) are several times as large. It is possibly explained by the fact that most of the detected particles were produced by the cosmic ray interactions with the orbital complex matter. Neutron and gamma-ray fluxes obtained from ``CORONAS-I'' data are near those for albedo particles.

  6. Measurement of electrons from albedo neutron decay and neutron density in near-Earth space.

    PubMed

    Li, Xinlin; Selesnick, Richard; Schiller, Quintin; Zhang, Kun; Zhao, Hong; Baker, Daniel N; Temerin, Michael A

    2017-12-21

    The Galaxy is filled with cosmic-ray particles, mostly protons with kinetic energies greater than hundreds of megaelectronvolts. Around Earth, trapped energetic protons, electrons and other particles circulate at altitudes from about 500 to 40,000 kilometres in the Van Allen radiation belts. Soon after these radiation belts were discovered six decades ago, it was recognized that the main source of inner-belt protons (with kinetic energies of tens to hundreds of megaelectronvolts) is cosmic-ray albedo neutron decay (CRAND). In this process, cosmic rays that reach the upper atmosphere interact with neutral atoms to produce albedo neutrons, which, being prone to β-decay, are a possible source of geomagnetically trapped protons and electrons. These protons would retain most of the kinetic energy of the neutrons, while the electrons would have lower energies, mostly less than one megaelectronvolt. The viability of CRAND as an electron source has, however, been uncertain, because measurements have shown that the electron intensity in the inner Van Allen belt can vary greatly, while the neutron-decay rate should be almost constant. Here we report measurements of relativistic electrons near the inner edge of the inner radiation belt. We demonstrate that the main source of these electrons is indeed CRAND, and that this process also contributes to electrons in the inner belt elsewhere. Furthermore, measurement of the intensity of electrons generated by CRAND provides an experimental determination of the neutron density in near-Earth space-2 × 10 -9 per cubic centimetre-confirming theoretical estimates.

  7. Ground tests of the Dynamic Albedo of Neutron instrument operation in the passive mode with a Martian soil model

    NASA Astrophysics Data System (ADS)

    Shvetsov, V. N.; Dubasov, P. V.; Golovin, D. V.; Kozyrev, A. S.; Krylov, A. R.; Krylov, V. A.; Litvak, M. L.; Malakhov, A. V.; Mitrofanov, I. G.; Mokrousov, M. I.; Sanin, A. B.; Timoshenko, G. N.; Vostrukhin, A. A.; Zontikov, A. O.

    2017-07-01

    The results of the Dynamic Albedo of Neutrons (DAN) instrument ground tests in the passive mode of operation are presented in comparison with the numerical calculations. These test series were conducted to support the current surface measurements of DAN onboard the MSL Curiosity rover. The instrument sensitivity to detect thin subsurface layers of water ice buried at different depths in the analog of Martian soil has been evaluated during these tests. The experiments have been done with a radioisotope Pu-Be neutron source (analog of the MMRTG neutron source onboard the Curiosity rover) and the Martian soil model assembled from silicon-rich window glass pane. Water ice layers were simulated with polyethylene sheets. All experiments have been performed at the test facility built at the Joint Institute for Nuclear Research (Dubna, Russia).

  8. Development of prototype induced-fission-based Pu accountancy instrument for safeguards applications.

    PubMed

    Seo, Hee; Lee, Seung Kyu; An, Su Jung; Park, Se-Hwan; Ku, Jeong-Hoe; Menlove, Howard O; Rael, Carlos D; LaFleur, Adrienne M; Browne, Michael C

    2016-09-01

    Prototype safeguards instrument for nuclear material accountancy (NMA) of uranium/transuranic (U/TRU) products that could be produced in a future advanced PWR fuel processing facility has been developed and characterized. This is a new, hybrid neutron measurement system based on fast neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) methods. The FNEM method is sensitive to the induced fission rate by fast neutrons, while the PNAR method is sensitive to the induced fission rate by thermal neutrons in the sample to be measured. The induced fission rate is proportional to the total amount of fissile material, especially plutonium (Pu), in the U/TRU product; hence, the Pu amount can be calibrated as a function of the induced fission rate, which can be measured using either the FNEM or PNAR method. In the present study, the prototype system was built using six (3)He tubes, and its performance was evaluated for various detector parameters including high-voltage (HV) plateau, efficiency profiles, dead time, and stability. The system's capability to measure the difference in the average neutron energy for the FNEM signature also was evaluated, using AmLi, PuBe, (252)Cf, as well as four Pu-oxide sources each with a different impurity (Al, F, Mg, and B) and producing (α,n) neutrons with different average energies. Future work will measure the hybrid signature (i.e., FNEM×PNAR) for a Pu source with an external interrogating neutron source after enlarging the cavity size of the prototype system to accommodate a large-size Pu source (~600g Pu). Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Location of DAN on Curiosity

    NASA Image and Video Library

    2012-08-21

    This image of NASA Curiosity rover shows the location of the two components of the Dynamic Albedo of Neutrons instrument. The neutron generator is mounted on the right hip and the detectors are on the opposite hip.

  10. Energetic neutron and gamma-ray spectra under the earth radiation belts according to "SALYUT-7" [correction of "SALUTE-7"]-"KOSMOS-1686" orbital complex and "CORONAS-I" satellite data.

    PubMed

    Bogomolov, A V; Dmitriev, A V; Myagkova, I N; Ryumin, S P; Smirnova, O N; Sobolevsky, I M

    1998-01-01

    The spectra of neutrons >10 MeV and gamma-rays 1.5-100 MeV under the Earth Radiation Belts, restored from the data, obtained onboard orbital complex "SALYUT-7" [correction of "SALUTE-7"]-"KOSMOS-1686", are presented. The spectra shapes are similar to those for albedo neutrons and gamma-rays, but absolute values of their fluxes (0.2 cm-2 s-1 for neutrons, 0.8 cm-2 s-1 for gamma-rays at the equator and 1.2 cm-2 s-1, 1.9 cm-2 s-1, accordingly, at L=1.9) are several times as large. It is possibly explained by the fact that most of the detected particles were produced by the cosmic ray interactions with the orbital complex matter. Neutron and gamma-ray fluxes obtained from "CORONAS-1" data are near those for albedo particles.

  11. Investigation of the response characteristics of OSL albedo neutron dosimeters in a 241AmBe reference neutron field

    NASA Astrophysics Data System (ADS)

    Liamsuwan, T.; Wonglee, S.; Channuie, J.; Esoa, J.; Monthonwattana, S.

    2017-06-01

    The objective of this work was to systematically investigate the response characteristics of optically stimulated luminescence Albedo neutron (OSLN) dosimeters to ensure reliable personal dosimetry service provided by Thailand Institute of Nuclear Technology (TINT). Several batches of InLight® OSLN dosimeters were irradiated in a reference neutron field generated by the in-house 241AmBe neutron irradiator. The OSL signals were typically measured 24 hours after irradiation using the InLight® Auto 200 Reader. Based on known values of delivered neutron dose equivalent, the reading correction factor to be used by the reader was evaluated. Subsequently, batch homogeneity, dose linearity, lower limit of detection and fading of the OSLN dosimeters were examined. Batch homogeneity was evaluated to be 0.12 ± 0.05. The neutron dose response exhibited a linear relationship (R2=0.9974) within the detectable neutron dose equivalent range under test (0.4-3 mSv). For this neutron field, the lower limit of detection was between 0.2 and 0.4 mSv. Over different post-irradiation storage times of up to 180 days, the readings fluctuated within ±5%. Personal dosimetry based on the investigated OSLN dosimeter is considered to be reliable under similar neutron exposure conditions, i.e. similar neutron energy spectra and dose equivalent values.

  12. Observed diurnal variations in Mars Science Laboratory Dynamic Albedo of Neutrons passive mode data

    NASA Astrophysics Data System (ADS)

    Tate, C. G.; Moersch, J.; Jun, I.; Mitrofanov, I.; Litvak, M.; Boynton, W. V.; Drake, D.; Fedosov, F.; Golovin, D.; Hardgrove, C.; Harshman, K.; Kozyrev, A. S.; Kuzmin, R.; Lisov, D.; Maclennan, E.; Malakhov, A.; Mischna, M.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Starr, R.; Vostrukhin, A.

    2018-06-01

    The Mars Science Laboratory Dynamic Albedo of Neutrons (DAN) experiment measures the martian neutron leakage flux in order to estimate the amount of water equivalent hydrogen present in the shallow regolith. When DAN is operating in passive mode, it is sensitive to neutrons produced through the interactions of galactic cosmic rays (GCR) with the regolith and atmosphere and neutrons produced by the rover's Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). During the mission, DAN passive mode data were collected over the full diurnal cycle at the locations known as Rocknest (sols 60-100) and John Klein (sols 166-272). A weak, but unexpected, diurnal variation was observed in the neutron count rates reported at these locations. We investigate different hypotheses that could be causing these observed variations. These hypotheses are variations in subsurface temperature, atmospheric pressure, the exchange of water vapor between the atmosphere and regolith, and instrumental effects on the neutron count rates. Our investigation suggests the most likely factors contributing to the observed diurnal variations in DAN passive data are instrumental effects and time-variable preferential shielding of alpha particles, with other environmental effects only having small contributions.

  13. Ground Albedo Neutron Sensing (GANS) for Measurement of Integral Soil Water Content at the Small Catchment Scale

    NASA Astrophysics Data System (ADS)

    Rivera Villarreyes, C.; Baroni, G.; Oswald, S. E.

    2012-12-01

    Soil water content at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. One largest initiative to cover the measuring gap of soil moisture between point scale and remote sensing observations is the COSMOS network (Zreda et al., 2012). Here, cosmic-ray neutron sensing, which may be more precisely named ground albedo neutron sensing (GANS), is applied. The measuring principle is based on the crucial role of hydrogen as neutron moderator compared to others landscape materials. Soil water content contained in a footprint of ca. 600 m diameter and a depth ranging down to a few decimeters is inversely correlated to the neutron flux at the air-ground interface. This approach is now implemented, e.g. in USA (Zreda et al., 2012) and Germany (Rivera Villarreyes et al., 2011), based on its simple installation and integral measurement of soil moisture at the small catchment scale. The present study performed Ground Albedo Neutron Sensing on farmland at two locations in Germany under different vegetative situations (cropped and bare field) and different seasonal conditions (summer, autumn and winter). Ground albedo neutrons were measured at (i) a farmland close to Potsdam and Berlin cropped with corn in 2010, sunflower in 2011 and winter rye in 2012, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains) since middle 2011. In order to test this methodology, classical soil moisture devices and meteorological data were used for comparison. Moreover, several calibration approaches, role of vegetation cover and transferability of calibration parameters to different times and locations were also evaluated. Observations suggest that GANS can overcome the lack of data for hydrological processes at the intermediate scale. Soil moisture from GANS compared quantitatively with mean values derived from a network of classical devices under vegetated and non- vegetated conditions. The GANS approach responded well to precipitation events through summer and autumn, but soil water content estimations were affected by water stored in snow and partly biomass. Thus, when calibration parameters were transferred to different crops (e.g. from sunflower to rye), the changes in biomass water will have to be considered. Finally, these results imply that GANS measurements can be a reliable ground-truthing possibility as well as additional constraint for hydrological models. References (1) Rivera Villarreyes, C.A., Baroni, G., and Oswald, S.E. (2011): Integral quantification of seasonal soil moisture changes in farmland by cosmic-ray neutrons, Hydrol. Earth Syst. Sci., 15, 3843-3859. (2) Rivera Villarreyes, C.A., Baroni, G., and Oswald, S.E. (2012): Evaluation of the Ground Albedo Neutron Sensing (GANS) method for soil moisture estimations in different crop fields (in preparation for Hydrological Processes). (3) Zreda, M., Shuttleworth, W.J., Zeng, X., Zweck, C., Desilets, D., Franz, T., Rosolem, R., and Ferre, T.P.A. (2012): COSMOS: The COsmic-ray Soil Moisture Observing System. Hydrol. Earth Syst. Sci. Discuss., 9, 4505-4551.

  14. Airborne Detection of Cosmic-Ray Albedo Neutrons for Regional-Scale Surveys of Root-Zone Soil Water on Earth

    NASA Astrophysics Data System (ADS)

    Schrön, M.; Bannehr, L.; Köhli, M.; Zreda, M. G.; Weimar, J.; Zacharias, S.; Oswald, S. E.; Bumberger, J.; Samaniego, L. E.; Schmidt, U.; Zieger, P.; Dietrich, P.

    2017-12-01

    While the detection of albedo neutrons from cosmic rays became a standard method in planetary space science, airborne neutron sensing has never been conceived for hydrological research on Earth. We assessed the applicability of atmospheric neutrons to sense root-zone soil moisture averaged over tens of hectares using neutron detectors on an airborne vehicle. Large-scale quantification of near-surface water content is an urgent challenge in hydrology. Information about soil and plant water is crucial to accurately assess the risks for floods and droughts, to adjust regional weather forecasts, and to calibrate and validate the corresponding models. However, there is a lack of data at scales relevant for these applications. Most conventional ground-based geophysical instruments provide root-zone soil moisture only within a few tens of m2, while electromagnetic signals from conventional remote-sensing instruments can only penetrate the first few centimeters below surface, though at larger spatial areas.In the last couple of years, stationary and roving neutron detectors have been used to sense the albedo component of cosmic-ray neutrons, which represents the average water content within 10—15 hectares and 10—50 cm depth. However, the application of these instruments is limited by inaccessible terrain and interfering local effects from roads. To overcome these limitations, we have pioneered first simulations and experiments of such sensors in the field of airborne geophysics. Theoretical investigations have shown that the footprint increases substantially with height above ground, while local effects smooth out throughout the whole area. Campaigns with neutron detectors mounted on a lightweight gyrocopter have been conducted over areas of various landuse types including agricultural fields, urban areas, forests, flood plains, and lakes. The neutron signal showed influence of soil moisture patterns in heights of up to 180 m above ground. We found correlation with ground-truthing data, using mobile cosmic-ray neutron sensors, local soil samples, TDR, and buried wireless soil moisture monitoring networks. The work opens the path towards further systematic assessment of airborne neutron sensing, which could become a valuable addition - or even an alternative - to conventional remote-sensing methods.

  15. Russian Hydrogen-Checking Instrument on Curiosity Fires 2 Millionth Pulse

    NASA Image and Video Library

    2014-01-29

    Dynamic Albedo of Neutrons DAN, measures the flow of neutrons with different energy levels returning from the ground, and their delay times, as an indication of the amount and depth of hydrogen in the ground beneath the NASA rover, Curiosity.

  16. Bulk Hydrogen Content OF High-Silica Rocks in Gale Crater With the Active Dynamic Albedo of Neutrons Experiment

    NASA Technical Reports Server (NTRS)

    Gabriel, T. S. J.; Hardgrove, C.; Litvak, M.; Mitrofanov, I.; Boynton, W. V.; Fedosov, F.; Golovin, D.; Jun, I.; Mischna, M.; Tate, C. G.; hide

    2017-01-01

    The Mars Science Laboratory (MSL) Curiosity rover recently traversed over plateaus of mafic aeolian sandstones (the 'Stimson' formation) that overlie mudstones (the 'Murray' formation). Within the Stimson formation we observed many lighter-toned, halo-forming features, that are potentially indicative of fluid alteration (see Fig. 1). These halo features extend for tens of meters laterally and are approx.1 meter wide. The halo features were characterized by Curiosity's geochemical instruments: Alpha Proton X-Ray Spectrometer (APXS), Chemin, Chemcam and Sample Analysis at Mars (SAM). With respect to the host (unaltered) Stimson rocks, fracture halos were significantly enriched in silicon and low in iron [1]. Changes in hydrogen abundance (due to its large neutron scattering cross section) greatly influence the magnitude of the thermal neutron response from the Dynamic Albedo of Neutrons (DAN) instrument [2]. There are also some elemental species, e.g. chlorine, iron, and nickel, that have significant microscopic neutron absorption cross sections. These elements can be abundant and variable results provide a useful estimate of the lower bound for bulk hydrogen content (assuming a homogeneous distribution).

  17. Exclusion Area Radiation Release during the MIT Reactor Design Basis Accident.

    DTIC Science & Technology

    1983-05-06

    Concrete Wall 116 6.2 Concrete Albedo Dose 121 6.3 Steel Door Scattering Dose 124 7.1 Total Dose Results 133 A.1 Values of N /NO for Neutron -Capture...plate fuel elements arranged in x a compact hexagonal core. This core design maximizes the neutron flux in the DO2 reflector region where numerous...sec) V = Volume of the fuel (cm 3 f Ef = Macroscopic fission cross section (cm ) = Thermal neutron flux ( neutrons /cm2 - sec) = Core-averaged value Yi

  18. Optimization of hybrid-type instrumentation for Pu accountancy of U/TRU ingot in pyroprocessing.

    PubMed

    Seo, Hee; Won, Byung-Hee; Ahn, Seong-Kyu; Lee, Seung Kyu; Park, Se-Hwan; Park, Geun-Il; Menlove, Spencer H

    2016-02-01

    One of the final products of pyroprocessing for spent nuclear fuel recycling is a U/TRU ingot consisting of rare earth (RE), uranium (U), and transuranic (TRU) elements. The amounts of nuclear materials in a U/TRU ingot must be measured as precisely as possible in order to secure the safeguardability of a pyroprocessing facility, as it contains the most amount of Pu among spent nuclear fuels. In this paper, we propose a new nuclear material accountancy method for measurement of Pu mass in a U/TRU ingot. This is a hybrid system combining two techniques, based on measurement of neutrons from both (1) fast- and (2) thermal-neutron-induced fission events. In technique #1, the change in the average neutron energy is a signature that is determined using the so-called ring ratio method, according to which two detector rings are positioned close to and far from the sample, respectively, to measure the increase of the average neutron energy due to the increased number of fast-neutron-induced fission events and, in turn, the Pu mass in the ingot. We call this technique, fast-neutron energy multiplication (FNEM). In technique #2, which is well known as Passive Neutron Albedo Reactivity (PNAR), a neutron population's changes resulting from thermal-neutron-induced fission events due to the presence or absence of a cadmium (Cd) liner in the sample's cavity wall, and reflected in the Cd ratio, is the signature that is measured. In the present study, it was considered that the use of a hybrid, FNEM×PNAR technique would significantly enhance the signature of a Pu mass. Therefore, the performance of such a system was investigated for different detector parameters in order to determine the optimal geometry. The performance was additionally evaluated by MCNP6 Monte Carlo simulations for different U/TRU compositions reflecting different burnups (BU), initial enrichments (IE), and cooling times (CT) to estimate its performance in real situations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Studies on new neutron-sensitive dosimeters using an optically stimulated luminescence technique

    NASA Astrophysics Data System (ADS)

    Kulkarni, M. S.; Luszik-Bhadra, M.; Behrens, R.; Muthe, K. P.; Rawat, N. S.; Gupta, S. K.; Sharma, D. N.

    2011-07-01

    The neutron response of detectors prepared using α-Al 2O 3:C phosphor developed using a melt processing technique and mixed with neutron converters was studied in monoenergetic neutron fields. The detector pellets were arranged in two different pairs: α-Al 2O 3:C + 6LiF/α-Al 2O 3:C + 7LiF and α-Al 2O 3:C + high-density polyethylene/α-Al 2O 3:C + Teflon, for neutron dosimetry using albedo and recoil proton techniques. The optically stimulated luminescence response of the Al 2O 3:C + 6,7LiF dosimeter to radiation from a 252Cf source was 0.21, in terms of personal dose equivalent Hp(10) and relative to radiation from a 137Cs source. This was comparable to results obtained with similar detectors prepared using commercially available α-Al 2O 3:C phosphor. The Hp(10) response of the α-Al 2O 3:C + 6,7LiF dosimeters was found to decrease by more than two orders of magnitude with increasing neutron energy, as expected for albedo dosimeters. The response of the α-Al 2O 3:C + high-density polyethylene/α-Al 2O 3:C + Teflon dosimeters was small, of the order of 1% to 2% in terms of Hp(10) and relative to radiation from a 137Cs source, for neutron energies greater than 1 MeV.

  20. Differential neutron energy spectra measured on spacecraft low Earth orbit

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Dudkin, E. V.; Potapov, Yu. V.; Akopova, A. B.; Melkumyan, L. V.

    1995-01-01

    Two methods for measuring neutrons in the range from thermal energies to dozens of MeV were used. In the first method, alpha-particles emitted from the (sup 6) Li(n.x)T reaction are detected with the help of plastic nuclear track detectors, yielding results on thermal and resonance neutrons. Also, fission foils are used to detect fast neutrons. In the second method, fast neutrons are recorded by nuclear photographic emulsions (NPE). The results of measurements on board various satellites are presented. The neutron flux density does not appear to correlate clearly with orbital parameters. Up to 50% of neutrons are due to albedo neutrons from the atmosphere while the fluxes inside the satellites are 15-20% higher than those on the outside. Estimates show that the neutron contribution to the total equivalent radiation dose reaches 20-30%.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugent, C. R.; Cutri, R. M.; Mainzer, A.

    The Near-Earth Object Wide-Field Infrared Survey Explorer (NEOWISE) mission continues to detect, track, and characterize minor planets. We present diameters and albedos calculated from observations taken during the second year since the spacecraft was reactivated in late 2013. These include 207 near-Earth asteroids (NEAs) and 8885 other asteroids. Of the NEAs, 84% NEAs did not have previously measured diameters and albedos by the NEOWISE mission. Comparison of sizes and albedos calculated from NEOWISE measurements with those measured by occultations, spacecraft, and radar-derived shapes shows accuracy consistent with previous NEOWISE publications. Diameters and albedos fall within ±∼20% and ±∼40%, 1-sigma, respectively,more » of those measured by these alternate techniques. NEOWISE continues to preferentially discover near-Earth objects which are large (>100 m), and have low albedos.« less

  2. Quantitative Assessment of CRAND Contribution to the Inner Belt Electron Intensity

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Li, X.; Selesnick, R.; Schiller, Q. A.; Zhao, H.; Baker, D. N.; Temerin, M. A.

    2017-12-01

    Following the direct identification and measurements of Cosmic Ray Albedo Neutron Decay (CRAND) produced electrons near the inner edge of the inner belt by Colorado Student Space Weather Experiment (CSSWE)1, we extend the study by addressing more comprehensive questions: (1) what is the relative CRAND contribution to the inner belt compared with electrons injected from further out? (2) How does this relative contribution vary with geomagnetic activity and electron energy? (3) What is the solar cycle dependence of CRAND electrons? In order to answer the above questions, extended data of relativistic electrons in the inner belt are needed for a much longer time period and also finer energy resolution is required. Therefore, we will show results regarding the above questions based on data including other low Earth orbit measurements in addition to CSSWE, such as SAMPEX/PET, DEMETER/IDP, and PROBA-V/EPT. [1] Li, Xinlin, Richard Selesnick, Quintin Schiller, Kun Zhang, Hong Zhao, Daniel Baker, and Michael Temerin (2017), Direct detection of albedo neutron decay electrons at the inner edge of the radiation belt and determination of neutron density in near-Earth space, Nature, under review.

  3. Lunar Proton Albedo Anomalies: Soil, Surveyors, and Statistics

    NASA Astrophysics Data System (ADS)

    Wilson, J. K.; Schwadron, N.; Spence, H. E.; Case, A. W.; Golightly, M. J.; Jordan, A.; Looper, M. D.; Petro, N. E.; Robinson, M. S.; Stubbs, T. J.; Zeitlin, C. J.; Blake, J. B.; Kasper, J. C.; Mazur, J. E.; Smith, S. S.; Townsend, L. W.

    2014-12-01

    Since the launch of LRO in 2009, the CRaTER instrument has been mapping albedo protons (~100 MeV) from the Moon. These protons are produced by nuclear spallation, a consequence of galactic cosmic ray (GCR) bombardment of the lunar regolith. Just as spalled neutrons and gamma rays reveal elemental abundances in the lunar regolith, albedo protons may be a complimentary method for mapping compositional variations. We presently find that the lunar maria have an average proton yield 0.9% ±0.3% higher than the average yield in the highlands; this is consistent with neutron data that is sensitive to the regolith's average atomic weight. We also see cases where two or more adjacent pixels (15° × 15°) have significantly anomalous yields above or below the mean. These include two high-yielding regions in the maria, and three low-yielding regions in the far-side highlands. Some of the regions could be artifacts of Poisson noise, but for completeness we consider possible effects from compositional anomalies in the lunar regolith, including pyroclastic flows, antipodes of fresh craters, and so-called "red spots". We also consider man-made landers and crash sites that may have brought elements not normally found in the lunar regolith.

  4. Two Types of Modeling of Subsurface Water

    NASA Image and Video Library

    2013-03-18

    The Dynamic Albedo of Neutrons DAN instrument on NASA Mars rover Curiosity detects even very small amounts of water in the ground beneath the rover, primarily water bound into the crystal structure of hydrated minerals.

  5. DETERMINATION OF SPECIFIC NEUTRONIC REACTIVITY

    DOEpatents

    Dessauer, G.

    1960-05-10

    A method is given for production-line determination of the specific neutronic reactivity of such objects as individual nuclear fuel or neutron absorber elements and is notable for rapidity and apparatus simplicity. The object is incorporated in a slightly sub-critical chain fission reactive assembly having a discrete neutron source, thereby establishing a K/sub eff/ within the crucial range of 0.95 to 0.995. The range was found to afford, uniquely, flux- transient damped response in a niatter of seconds simultaneously with acceptable analytical sensitivity. The resulting neutron flux measured at a situs spaced from both object and source within the assembly serves as a calibrable indication of said reactivity.

  6. Ground Albedo Neutron Sensing (GANS) method for measurements of soil moisture in cropped fields

    NASA Astrophysics Data System (ADS)

    Andres Rivera Villarreyes, Carlos; Baroni, Gabriele; Oswald, Sascha E.

    2013-04-01

    Measurement of soil moisture at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. However, so far only few methods are on the way to close this gap between point measurements and remote sensing. This study evaluates the applicability of the Ground Albedo Neutron Sensing (GANS) for integral quantification of seasonal soil moisture in the root zone at the scale of a field or small watershed, making use of the crucial role of hydrogen as neutron moderator relative to other landscape materials. GANS measurements were performed at two locations in Germany under different vegetative situations and seasonal conditions. Ground albedo neutrons were measured at (i) a lowland Bornim farmland (Brandenburg) cropped with sunflower in 2011 and winter rye in 2012, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains) since middle 2011. At both sites depth profiles of soil moisture were measured at several locations in parallel by frequency domain reflectometry (FDR) for comparison and calibration. Initially, calibration parameters derived from a previous study with corn cover were tested under sunflower and winter rye periods at the same farmland. GANS soil moisture based on these parameters showed a large discrepancy compared to classical soil moisture measurements. Therefore, two new calibration approaches and four different ways of integration the soil moisture profile to an integral value for GANS were evaluated in this study. This included different sets of calibration parameters based on different growing periods of sunflower. New calibration parameters showed a good agreement with FDR network during sunflower period (RMSE = 0.023 m3 m-3), but they underestimated soil moisture in the winter rye period. The GANS approach resulted to be highly affected by temporal changes of biomass and crop types which suggest the need of neutron corrections for long-term observations with crop rotation. Finally, Bornim sunflower parameters were transferred to Schaefertal catchment for further evaluation. This study proves GANS potential to close the measurement gap between point scale and remote sensing scale; however, its calibration needs to be adapted for vegetation in cropped fields.

  7. A large area detector for neutrons between 2 and 100 MeV

    NASA Technical Reports Server (NTRS)

    Grannan, R. T.; Koga, R.; Millard, W. A.; Preszler, A. M.; Simnett, G. M.; White, R. S.

    1972-01-01

    A neutron detector sensitive from 2 to 100 MeV is described. The detector is designed for high altitude balloon flight to measure the flux, energy and direction of albedo neutrons from the earth and to search for solar neutrons. A neutron scatter from a proton is required in each of two liquid scintillator tanks spaced 1 meter apart. The energy of the recoil proton in the first tank is obtained from pulse height analysis of the scintillator output. The energy of the recoil neutron is obtained from its time of flight between the tanks. The detector has been calibrated with 15.3 MeV neutrons and mu mesons. The minimum detectable flux is 10(-4) neutron/sq cm/sec at a counting rate of one per minute; the energy resolution is 12% at 15 MeV and 30% at 100 MeV. The angle between the incoming neutron and the recoil neutron is measured to + or - 10 deg.

  8. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Howard, D.F.; Motta, E.E.

    1961-06-27

    A method for controlling the excess reactivity in a nuclear reactor throughout the core life while maintaining the neutron flux distribution at the desired level is described. The control unit embodies a container having two electrodes of different surface area immersed in an electrolytic solution of a good neutron sbsorbing metal ion such as boron, gadolinium, or cadmium. Initially, the neutron absorber is plated on the larger electrode to control the greater neutron flux of a freshly refueled core. As the fuel burns up, the excess reactivity decreases and the neutron absorber is then plated onto the smaller electrode so that the number of neutrons absorbed also decreases. The excess reactivity in the core may thus be maintained without the introduction of serious perturbations in the neutron flux distributibn.

  9. Variation in Water Content in Martian Subsurface Along Curiosity Traverse

    NASA Image and Video Library

    2013-03-18

    This set of graphs shows variation in the amount and the depth of water detected beneath NASA Mars rover Curiosity by use of the rover Dynamic Albedo of Neutrons DAN instrument at different points the rover has driven.

  10. On formation of the asymptotic spectrum of delayed neutron emitters in measuring the VVER-1000 scram system effectiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shishkov, L. K., E-mail: slk@vver.kiae.ru; Zizin, M. N., E-mail: zizin_m@mail.ru

    The process of formation of an asymptotic distribution of the neutron flux density in the reactor systems after introducing different negative reactivities is considered. The impact of two factors after the reactivity introduction is evaluated: (1) nonuniformity of perturbation of core properties, on one hand, and (2) a sharp reduction in the density of prompt neutrons, which prevents the appearance of new delayed neutron emitters distributed in accordance with the “new” prompt neutron distribution, on the other hand. The results of calculations show that the errors of measuring the scram system effectiveness using the method of inverse solution of themore » kinetics equation are caused by the fact that, after the negative reactivity insertion, the sources of prompt and delayed neutrons have different spatial distributions. In the case of high negative reactivities, this difference remains while the system still has neutrons, which can be measured.« less

  11. Parallel Study of HEND, RAD, and DAN Instrument Response to Martian Radiation and Surface Conditions

    NASA Technical Reports Server (NTRS)

    Martiniez Sierra, Luz Maria; Jun, Insoo; Litvak, Maxim; Sanin, Anton; Mitrofanov, Igor; Zeitlin, Cary

    2015-01-01

    Nuclear detection methods are being used to understand the radiation environment at Mars. JPL (Jet Propulsion Laboratory) assets on Mars include: Orbiter -2001 Mars Odyssey [High Energy Neutron Detector (HEND)]; Mars Science Laboratory Rover -Curiosity [(Radiation Assessment Detector (RAD); Dynamic Albedo Neutron (DAN))]. Spacecraft have instruments able to detect ionizing and non-ionizing radiation. Instrument response on orbit and on the surface of Mars to space weather and local conditions [is discussed] - Data available at NASA-PDS (Planetary Data System).

  12. Boltzmann Transport Equation Algorithms for Infinite-Slab Buildup and Albedo Factors

    DTIC Science & Technology

    1990-09-30

    DATA FOR LEAD, G EO M ETR Y A ................................................................................................. 40 17 MODEL FITS TO...NEUTRON BUILDUP FACTOR MODEL CONSTANTS AND LEAST- SQUARES FUNCTION VALUES FOR IRON, GEOMETRY A ................ 47 17 NEUTRON BUILDUP FACTOR MODEL...hs 4- * Co ) 4y-hs N’I -96sin 5) g-po) ( E-E0) (8a) and ’ 4ph ,+TEf2(-gA)] =0 (8b) for 4[0,1] and OE[0,2n]. Here p specifies lateral position in

  13. Measuring and monitoring KIPT Neutron Source Facility Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yan; Gohar, Yousry; Zhong, Zhaopeng

    2015-08-01

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on developing and constructing a neutron source facility at Kharkov, Ukraine. The facility consists of an accelerator-driven subcritical system. The accelerator has a 100 kW electron beam using 100 MeV electrons. The subcritical assembly has k eff less than 0.98. To ensure the safe operation of this neutron source facility, the reactivity of the subcritical core has to be accurately determined and continuously monitored. A technique which combines the area-ratio method and the flux-to-current ratio method is purposed to determine themore » reactivity of the KIPT subcritical assembly at various conditions. In particular, the area-ratio method can determine the absolute reactivity of the subcritical assembly in units of dollars by performing pulsed-neutron experiments. It provides reference reactivities for the flux-to-current ratio method to track and monitor the reactivity deviations from the reference state while the facility is at other operation modes. Monte Carlo simulations are performed to simulate both methods using the numerical model of the KIPT subcritical assembly. It is found that the reactivities obtained from both the area-ratio method and the flux-to-current ratio method are spatially dependent on the neutron detector locations and types. Numerical simulations also suggest optimal neutron detector locations to minimize the spatial effects in the flux-to-current ratio method. The spatial correction factors are calculated using Monte Carlo methods for both measuring methods at the selected neutron detector locations. Monte Carlo simulations are also performed to verify the accuracy of the flux-to-current ratio method in monitoring the reactivity swing during a fuel burnup cycle.« less

  14. Mars: Detaching of the Free Water Signature (FWS) Presence Regions on the Base of HEND/ODYSSEY Data and Their Correlation with Some Permafrost Features from MOC Data

    NASA Technical Reports Server (NTRS)

    Kuzmin, R. O.; Mitrofanov, I. G.; Litvak, M. L.; Boynton, M. V.; Saunders, R. S.

    2003-01-01

    The first results from global mapping of the neutron albedo from Mars by HEND instrument have shown the noticeable deficit of both the epithermal (EN) and the fast (FN) neutrons counts rate in the high latitudes regions of both hemispheres of the planet. The deficit is indicative for high enriching of the surface regolith by hydrogen, which may correspond to amount of any water phases and forms. The objectives of our study are the spatial and temporal variations of the free water (ice) signature in the Martian surface layer on the base of HEND/ODYSSEY data and their correlation with spatial spreading of some permafrost features, mapped on the base of MOC images. For the study we used the results of the global mapping (pixel 5 x5 ) of EN and FN albedo, realized by HEND/ODYSSEY in the period from 17 February to 10 December 2002 year.

  15. Effects of geochemical composition on neutron die-away measurements: Implications for Mars Science Laboratory's Dynamic Albedo of Neutrons experiment

    NASA Astrophysics Data System (ADS)

    Hardgrove, C.; Moersch, J.; Drake, D.

    2011-12-01

    The Dynamic Albedo of Neutrons (DAN) experiment, part of the scientific payload of the Mars Science Laboratory (MSL) rover mission, will have the ability to assess both the abundance and the burial depth of subsurface hydrogen as the rover traverses the Martian surface. DAN will employ a method of measuring neutron fluxes called “neutron die-away” that has not been used in previous planetary exploration missions. This method requires the use of a pulsed neutron generator that supplements neutrons produced via spallation in the subsurface by the cosmic ray background. It is well established in neutron remote sensing that low-energy (thermal) neutrons are sensitive not only to hydrogen content, but also to the macroscopic absorption cross-section of near-surface materials. To better understand the results that will be forthcoming from DAN, we model the effects of varying abundances of high absorption cross-section elements that are likely to be found on the Martian surface (Cl, Fe) on neutron die-away measurements made from a rover platform. Previously, the Mars Exploration Rovers (MER) Spirit and Opportunity found that elevated abundances of these two elements are commonly associated with locales that have experienced some form of aqueous activity in the past, even though hydrogen-rich materials are not necessarily still present. By modeling a suite of H and Cl compositions, we demonstrate that (for abundance ranges reasonable for Mars) both the elements will significantly affect DAN thermal neutron count rates. Additionally, we show that the timing of thermal neutron arrivals at the detector can be used together with the thermal neutron count rates to independently determine the abundances of hydrogen and high neutron absorption cross-section elements (the most important being Cl). Epithermal neutron die-away curves may also be used to separate these two components. We model neutron scattering in actual Martian compositions that were determined by the MER Alpha Proton X-Ray Spectrometer (APXS), as examples of local geochemical anomalies that DAN would be sensitive to if they were present at the MSL landing site. These MER targets, named “Eileen Dean,” “Jack Russell,” and “Kenosha Comets,” all have unusually high or low Cl or Fe abundances as a result of geochemical interactions involving water. Using these examples we demonstrate that DAN can be used not only to assess the amount of present-day hydrogen in the near-surface but also to identify locations that may preserve a geochemical record of past aqueous processes.

  16. Photon Luminescence of the Moon

    NASA Technical Reports Server (NTRS)

    Wilson, T.L.; Lee, K.T.

    2009-01-01

    Luminescence is typically described as light emitted by objects at low temperatures, induced by chemical reactions, electrical energy, atomic interactions, or acoustical and mechanical stress. An example is photoluminescence created when photons (electromagnetic radiation) strike a substance and are absorbed, resulting in the emission of a resonant fluorescent or phosphorescent albedo. In planetary science, there exists X-ray fluorescence induced by sunlight absorbed by a regolith a property used to measure some of the chemical composition of the Moon s surface during the Apollo program. However, there exists an equally important phenomenon in planetary science which will be designated here as photon luminescence. It is not conventional photoluminescence because the incoming radiation that strikes the planetary surface is not photons but rather cosmic rays (CRs). Nevertheless, the result is the same: the generation of a photon albedo. In particular, Galactic CRs (GCRs) and solar energetic particles (SEPs) both induce a photon albedo that radiates from the surface of the Moon. Other particle albedos are generated as well, most of which are hazardous (e.g. neutrons). The photon luminescence or albedo of the lunar surface induced by GCRs and SEPs will be derived here, demonstrating that the Moon literally glows in the dark (when there is no sunlight or Earthshine). This extends earlier work on the same subject [1-4]. A side-by-side comparison of these two albedos and related mitigation measures will also be discussed.

  17. Neutron Spectrometer Prospecting in the Mojave Volatiles Project Analog Field Test

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Heldmann, J. L.; Colaprete, A.; Hunt, D. R.; Deans, M. C.; Lim, D. S.; Foil, G.; Fong, T.

    2015-01-01

    We know that volatiles are sequestered at the poles of the Moon. While we have evidence of water ice and a number of other compounds based on remote sensing, the detailed distribution, and physical and chemical form are largely unknown. Additional orbital studies of lunar polar volatiles may yield further insights, but the most important next step is to use landed assets to fully characterize the volatile composition and distribution at scales of tens to hundreds of meters. To achieve this range of scales, mobility is needed. Because of the proximity of the Moon, near real-time operation of the surface assets is possible, with an associated reduction in risk and cost. This concept of operations is very different from that of rovers on Mars, and new operational approaches are required to carry out such real-time robotic exploration. The Mojave Volatiles Project (MVP) was a Moon-Mars Analog Mission Activities (MMAMA) program project aimed at (1) determining effective approaches to operating a real-time but short-duration lunar surface robotic mission, and (2) performing prospecting science in a natural setting, as a test of these approaches. Here we describe some results from the first such test, carried out in the Mojave Desert between 16 and 24 October, 2014. The test site was an alluvial fan just E of the Soda Mountains, SW of Baker, California. This site contains desert pavements, ranging from the late Pleistocene to early-Holocene in age. These pavements are undergoing dissection by the ongoing development of washes. A principal objective was to determine the hydration state of different types of desert pavement and bare ground features. The mobility element of the test was provided by the KREX-2 rover, designed and operated by the Intelligent Robotics Group at NASA Ames Research Center. The rover-borne neutron spectrometer measured the neutron albedo at both thermal and epithermal energies. Assuming uniform geochemistry and material bulk density, hydrogen as either hydroxyl/water in mineral assemblages or as moisture will significantly enhance the return of thermalized neutrons. However, in the Mojave test setting there is little uniformity, especially in bulk material density. We find that lighter toned materials (immature pavements, bar and swale, and wash materials) have lower thermal neutron flux, while mature, darker pavements with the greatest desert varnish development have higher neutron fluxes. Preliminary analysis of samples from the various terrain types in the test area indicates a prevailing moisture content of 2-3 wt% H2O. However, soil mineralogy suggests that the welldeveloped Av1 soil horizon beneath the topmost dark pavement clast layer contains the highest clay content. Structural water (including hydroxyl) in these clays may explain the enhanced neutron albedo over dark pavements. On the other hand, surface and subsurface bulk density can also play a role in neutron albedo - lower density of materials found in washes, for example, can result in a reduction in neutron flux. Analysis is ongoing.

  18. Control system for a small fission reactor

    DOEpatents

    Burelbach, James P.; Kann, William J.; Saiveau, James G.

    1986-01-01

    A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired. In another embodiment, a plurality of flexible hollow tubes each containing a neutron absorber are positioned adjacent to one another in spaced relation around the periphery of the reactor vessel and inside the outer neutron reflector with reactivity controlled by the extension and compression of all or some of the coiled hollow tubes. Yet another embodiment of the invention envisions the neutron reflector in the form of an expandable coil spring positioned in an annular space between the reactor vessel and an outer neutron absorbing structure for controlling the neutron flux reflected back into the reactor vessel.

  19. Method and apparatus for measuring reactivity of fissile material

    DOEpatents

    Lee, David M.; Lindquist, Lloyd O.

    1985-01-01

    Given are a method and apparatus for measuring nondestructively and non-invasively (i.e., using no internal probing) the burnup, reactivity, or fissile content of any material which emits neutrons and which has fissionable components. No external neutron-emitting interrogation source or fissile material is used and no scanning is required, although if a profile is desired scanning can be used. As in active assays, here both reactivity and content of fissionable material can be measured. The assay is accomplished by altering the return flux of neutrons into the fuel assembly. The return flux is altered by changing the reflecting material. The existing passive neutron emissions in the material being assayed are used as the source of interrogating neutrons. Two measurements of either emitted neutron or emitted gamma-ray count rates are made and are then correlated to either reactivity, burnup, or fissionable content of the material being assayed, thus providing a measurement of either reactivity, burnup, or fissionable content of the material being assayed. Spent fuel which has been freshly discharged from a reactor can be assayed using this method and apparatus. Precisions of 1000 MWd/tU appear to be feasible.

  20. Method and apparatus for measuring reactivity of fissile material

    DOEpatents

    Lee, D.M.; Lindquist, L.O.

    1982-09-07

    Given are a method and apparatus for measuring nondestructively and noninvasively (i.e., using no internal probing) the burnup, reactivity, or fissile content of any material which emits neutrons and which has fissionable components. The assay is accomplished by altering the return flux of neutrons into the fuel assembly by means of changing the reflecting material. The existing passive neutron emissions in the material being assayed are used as the source of interrogating neutrons. Two measurements of either emitted neutron or emitted gamma-ray count rates are made and are then correlated to either reactivity, burnup, or fissionable content of the material being assayed, thus providing a measurement of either reactivity, burnup, or fissionable content of the material being assayed. Spent fuel which has been freshly discharged from a reactor can be assayed using this method and apparatus. Precisions of 1000 MWd/tU appear to be feasible.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugent, C. R.; Cutri, R. M.; Mainzer, A.

    We present preliminary diameters and albedos for 7956 asteroids detected in the first year of the NEOWISE Reactivation mission. Of those, 201 are near-Earth asteroids and 7755 are Main Belt or Mars-crossing asteroids. 17% of these objects have not been previously characterized using the Near-Earth Object Wide-field Infrared Survey Explorer, or “NEOWISE” thermal measurements. Diameters are determined to an accuracy of ∼20% or better. If good-quality H magnitudes are available, albedos can be determined to within ∼40% or better.

  2. NEUTRONIC REACTOR CONTROL ELEMENT

    DOEpatents

    Newson, H.W.

    1960-09-13

    A novel composite neutronic reactor control element is offered. The element comprises a multiplicity of sections arranged in end-to-end relationship, each of the sections having a markedly different neutron-reactive characteristic. For example, a three-section control element could contain absorber, moderator, and fuel sections. By moving such an element longitudinally through a reactor core, reactivity is decreased by the absorber, increased slightly by the moderator, or increased substantially by the fuel. Thus, control over a wide reactivity range is provided.

  3. Studies of neutron and proton nuclear activation in low-Earth orbit

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1982-01-01

    The expected induced radioactivity of experimental material in low Earth orbit was studied for characteristics of activating particles such as cosmic rays, high energy Earth albedo neutrons, trapped protons, and secondary protons and neutrons. The activation cross sections for the production of long lived radioisotopes and other existing nuclear data appropriate to the study of these reactions were compiled. Computer codes which are required to calculate the expected activation of orbited materials were developed. The decreased computer code used to predict the activation of trapped protons of materials placed in the expected orbits of LDEF and Spacelab II. Techniques for unfolding the fluxes of activating particles from the measured activation of orbited materials are examined.

  4. Neutronic safety parameters and transient analyses for Poland's MARIA research reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bretscher, M. M.; Hanan, N. A.; Matos, J. E.

    1999-09-27

    Reactor kinetic parameters, reactivity feedback coefficients, and control rod reactivity worths have been calculated for the MARIA Research Reactor (Swierk, Poland) for M6-type fuel assemblies with {sup 235}U enrichments of 80% and 19.7%. Kinetic parameters were evaluated for family-dependent effective delayed neutron fractions, decay constants, and prompt neutron lifetimes and neutron generation times. Reactivity feedback coefficients were determined for fuel Doppler coefficients, coolant (H{sub 2}O) void and temperature coefficients, and for in-core and ex-core beryllium temperature coefficients. Total and differential control rod worths and safety rod worths were calculated for each fuel type. These parameters were used to calculate genericmore » transients for fast and slow reactivity insertions with both HEU and LEU fuels. The analyses show that the HEU and LEU cores have very similar responses to these transients.« less

  5. Control system for a small fission reactor

    DOEpatents

    Burelbach, J.P.; Kann, W.J.; Saiveau, J.G.

    1985-02-08

    A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired.

  6. Pocked surface neutron detector

    DOEpatents

    McGregor, Douglas; Klann, Raymond

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  7. Predictions of secondary neutrons and their importance to radiation effects inside the International Space Station

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    2001-01-01

    As part of a study funded by NASA MSFC to assess thecontribution of secondary particles in producing radiation damage to optoelectronics devices located on the International Space Station (IS), Monte Carlo calculations have been made to predict secondary spectra vs. shielding inside ISS modules and in electronics boxes attached on the truss (Armstrong and Colborn, 1998). The calculations take into account secondary neutron, proton, and charged pion production from the ambient galactic cosmic-ray (GCR) proton, trapped proton, and neutron albedo environments. Comparisons of the predicted neutron spectra with measurments made on the Mir space station and other spacecraft have also been made (Armstrong and Colborn, 1998). In this paper, some initial results from folding the predicted neutron spectrum inside ISS modules from Armstrong and Colborn (1998) with several types of radiation effects response functions related to electronics damage and astronaut-dose are given. These results provide an estimate of the practical importance of neutrons compared to protons in assessing radiation effects for the ISS. Also, the important neutron energy ranges for producing these effects have been estimated, which provides guidance for onboard neutron measurement requirements.

  8. Study of neutron shielding collimators for curved beamlines at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Santoro, V.; DiJulio, D. D.; Ansell, S.; Cherkashyna, N.; Muhrer, G.; Bentley, P. M.

    2018-06-01

    The European Spallation Source is being constructed in Lund, Sweden and is planned to be the world’s brightest pulsed spallation neutron source for cold and thermal neutron beams (≤ 1 eV). The facility uses a 2 GeV proton beam to produce neutrons from a tungsten target. The neutrons are then moderated in a moderator assembly consisting of both liquid hydrogen and water compartments. Surrounding the moderator are 22 beamports, which view the moderator’s outside surfaces. The beamports are connected to long neutron guides that transport the moderated neutrons to the sample position via reflections. As well as the desired moderated neutrons, fast neutrons coming directly from the target can find their way down the beamlines. These can create unwanted sources of background for the instruments. To mitigate such a kind of background, several instruments will use curved guides to lose direct line-of-sight (LoS) to the moderator and the target. In addition instruments can also use shielding collimators to reduce the amount of fast neutrons further traveling down the guide due to albedo reflections or streaming. Several different materials have been proposed for this purpose. We present the results of a study of different options for collimators and identify the optimal choices that balance cost, background and activation levels.

  9. Fast, epithermal and thermal photoneutron dosimetry in air and in tissue equivalent phantom for a high-energy X-ray medical accelerator.

    PubMed

    Sohrabi, Mehdi; Hakimi, Amir

    2018-02-01

    Photoneutron (PN) dosimetry in fast, epithermal and thermal energy ranges originated from the beam and albedo neutrons in high-energy X-ray medical accelerators is highly important from scientific, technical, radiation protection and medical physics points of view. Detailed dose equivalents in the fast, epithermal and thermal PN energy ranges in air up to 2m as well as at 35 positions from the central axis of 12 cross sections of the phantom at different depths were determined in 18MV X-ray beams of a Siemens ONCOR accelerator. A novel dosimetry method based on polycarbonate track dosimeters (PCTD)/ 10 B (with/without cadmium cover) was used to determine and separate different PN dose equivalents in air and in a multilayer polyethylene phantom. Dose equivalent distributions of PNs, as originated from the main beam and/or albedo PNs, on cross-plane, in-plane and diagonal axes in 10cm×10cm fields are reported. PN dose equivalent distributions on the 3 axes have their maxima at the isocenter. Epithermal and thermal PN depth dose equivalent distributions in the phantom for different positions studied peak at ∼3cm depth. The neutron dosimeters used for the first time in such studies are highly effective for separating dose equivalents of PNs in the studied energy ranges (beam and/or albedo). The PN dose equivalent data matrix made available in this paper is highly essential for detailed patient dosimetry in general and for estimating secondary cancer risks in particular. Copyright © 2017. Published by Elsevier GmbH.

  10. Neutron Spectroscopy Can Constrain the Composition and Provenance of Phobos and Deimos

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Lee, P.; Zolensky, M. E.; Mittlefehldt, D. W.; Lim, L. F.; Colaprete, A.

    2016-01-01

    The origin of the martian moons Phobos and Deimos is obscure and enigmatic. Hypotheses include the capture of small bodies originally from the outer main belt or beyond, residual material left over from Mars' formation, and accreted ejecta from a large impact on Mars, among others. Measurements of reflectance spectra indicate a similarity to low-albedo, red D-type asteroids, but could indicate a highly space-weathered veneer. Here we suggest a way of constraining the near-surface composition of the two moons, for comparison with known meteoritic compositions. Neutron spectroscopy, particularly the thermal and epithermal neutron flux, distinguishes clearly between various classes of meteorites and varying hydrogen (water) abundances. Perhaps most surprising of all, a rendezvous with Phobos or Deimos is not necessary to achieve this. Multiple flybys suffice.

  11. Results from the dynamic albedo of neutrons (DAN) passive mode experiment: Yellowknife Bay to Amargosa Valley (Sols 201-753)

    NASA Astrophysics Data System (ADS)

    Tate, C. G.; Moersch, J.; Mitrofanov, I.; Litvak, M.; Bellutta, P.; Boynton, W. V.; Drake, D.; Ehresmann, B.; Fedosov, F.; Golovin, D.; Hardgrove, C.; Harshman, K.; Hassler, D. M.; Jun, I.; Kozyrev, A. S.; Lisov, D.; Malakhov, A.; Ming, D. W.; Mischna, M.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Starr, R.; Vostrukhin, A.; Zeitlin, C.

    2018-01-01

    The Mars Science Laboratory (Curiosity rover) Dynamic Albedo of Neutrons (DAN) experiment detects neutrons for the purpose of searching for hydrogen in the shallow subsurface of Mars. DAN has two modes of operation, active and passive. In passive mode, the instrument detects neutrons produced by Galactic Cosmic Ray interactions in the atmosphere and regolith and by the rover's Multi-Mission Radioisotope Thermoelectric Generator. DAN passive data from Yellowknife Bay to Amargosa Valley (sols 201 through 753) are presented and analyzed here. Water equivalent hydrogen (WEH) estimates from this portion of Curiosity's traverse range from 0.0 wt. % up to 15.3 wt. %. Typical uncertainties on these WEH estimates are ∼0.5 wt. % but in some cases can be as high as ∼4.0 wt. % depending on the specific circumstances of a given measurement. Here we also present a new way of reporting results from the passive mode of the experiment, the DAN passive geochemical index (DPGI). This index is sensitive to some key geochemical variations, but it does not require assumptions about the abundances of high thermal neutron absorption cross section elements, which are needed to estimate WEH. DPGI variations in this section of the traverse indicate that the shallow regolith composition is changing on both the local (∼meters) and regional (∼100 s of meters) scales. This variability is thought to be representative of the diverse composition of source regions for sediments within the crater floor. Kolmogorov-Smirnov Tests on the populations of WEH estimates and DPGI values demonstrate there are statistically significant differences between nearly all of the geologic units investigated along the rover's traverse. We also present updated previous DAN passive results from Bradbury Landing to John Klein that make use of revised DAN active mode results for calibration, however, no qualitative changes in the interpretations made in Tate et al. (2015b) are incurred.

  12. SELF-REACTIVATING NEUTRON SOURCE FOR A NEUTRONIC REACTOR

    DOEpatents

    Newson, H.W.

    1959-02-01

    Reactors of the type employing beryllium in a reflector region around the active portion and to a neutron source for use therewith are discussed. The neutron source is comprised or a quantity of antimony permanently incorporated in, and as an integral part of, the reactor in or near the beryllium reflector region. During operation of the reactor the natural occurring antimony isotope of atomic weight 123 absorbs neutrons and is thereby transformed to the antimony isotope of atomic weight 124, which is radioactive and emits gamma rays. The gamma rays react with the beryllium to produce neutrons. The beryllium and antimony thus cooperate to produce a built in neutron source which is automatically reactivated by the operation of the reactor itself and which is of sufficient strength to maintain the slow neutron flux at a sufficiently high level to be reliably measured during periods when the reactor is shut down.

  13. Measurements of effective delayed neutron fraction in a fast neutron reactor using the perturbation method

    NASA Astrophysics Data System (ADS)

    Zhou, Hao-Jun; Yin, Yan-Peng; Fan, Xiao-Qiang; Li, Zheng-Hong; Pu, Yi-Kang

    2016-06-01

    A perturbation method is proposed to obtain the effective delayed neutron fraction β eff of a cylindrical highly enriched uranium reactor. Based on reactivity measurements with and without a sample at a specified position using the positive period technique, the reactor reactivity perturbation Δρ of the sample in β eff units is measured. Simulations of the perturbation experiments are performed using the MCNP program. The PERT card is used to provide the difference dk of effective neutron multiplication factors with and without the sample inside the reactor. Based on the relationship between the effective multiplication factor and the reactivity, the equation β eff = dk/Δρ is derived. In this paper, the reactivity perturbations of 13 metal samples at the designable position of the reactor are measured and calculated. The average β eff value of the reactor is given as 0.00645, and the standard uncertainty is 3.0%. Additionally, the perturbation experiments for β eff can be used to evaluate the reliabilities of the delayed neutron parameters. This work shows that the delayed neutron data of 235U and 238U from G.R. Keepin’s publication are more reliable than those from ENDF-B6.0, ENDF-B7.0, JENDL3.3 and CENDL2.2. Supported by Foundation of Key Laboratory of Neutron Physics, China Academy of Engineering Physics (2012AA01, 2014AA01), National Natural Science Foundation (11375158, 91326104)

  14. FAST NEUTRONIC REACTOR

    DOEpatents

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  15. Fiscal Year (FY) 2017 Activities for the Spent Fuel Nondestructive Assay Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trellue, Holly Renee; Trahan, Alexis Chanel; McMath, Garrett Earl

    The main focus of research in the NA-241 spent fuel nondestructive assay (NDA) project in FY17 has been completing the fabrication and testing of two prototype instruments for upcoming spent fuel measurements at the Clab interim storage facility in Sweden. One is a passive instrument: Differential Die-away Self Interrogation-Passive Neutron Albedo Reactivity (DDSI), and one is an active instrument: Differential Die-Away-Californium Interrogation with Prompt Neutron (DDA). DDSI was fabricated and tested with fresh fuel at Los Alamos National Laboratory in FY15 and FY16, then shipped to Sweden at the beginning of FY17. Research was performed in FY17 to simplify resultsmore » from the data acquisition system, which is complex because signals from 56 different 3He detectors must be processed using list mode data. The DDA instrument was fabricated at the end of FY16. New high count rate electronics better suited for a spent fuel environment (i.e., KM-200 preamplifiers) were built specifically for this instrument in FY17, and new Tygon tubing to house electrical cables was purchased and installed. Fresh fuel tests using the DDA instrument with numerous configurations of fuel rods containing depleted uranium (DU), low enriched uranium (LEU), and LEU with burnable poisons (Gd) were successfully performed and compared to simulations.1 Additionally, members of the spent fuel NDA project team travelled to Sweden for a “spent fuel characterization and decay heat” workshop involving simulations of spent fuel and analysis of uncertainties in decay heat calculations.« less

  16. Neutron Environment Calculations for Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Clowdsley, M. S.; Wilson, J. W.; Shinn, J. L.; Badavi, F. F.; Heinbockel, J. H.; Atwell, W.

    2001-01-01

    The long term exposure of astronauts on the developing International Space Station (ISS) requires an accurate knowledge of the internal exposure environment for human risk assessment and other onboard processes. The natural environment is moderated by the solar wind, which varies over the solar cycle. The HZETRN high charge and energy transport code developed at NASA Langley Research Center can be used to evaluate the neutron environment on ISS. A time dependent model for the ambient environment in low earth orbit is used. This model includes GCR radiation moderated by the Earth's magnetic field, trapped protons, and a recently completed model of the albedo neutron environment formed through the interaction of galactic cosmic rays with the Earth's atmosphere. Using this code, the neutron environments for space shuttle missions were calculated and comparisons were made to measurements by the Johnson Space Center with onboard detectors. The models discussed herein are being developed to evaluate the natural and induced environment data for the Intelligence Synthesis Environment Project and eventual use in spacecraft optimization.

  17. Use of Apollo 17 Epoch Neutron Spectrum as a Benchmark in Testing LEND Collimated Sensor

    NASA Technical Reports Server (NTRS)

    Chin, Gordon; Sagdeev, R.; Milikh, G.

    2011-01-01

    The Apollo 17 neutron experiment LPNE provided a unique set of data on production of neutrons in the Lunar soil bombarded by Galactic Cosmic Rays (GCR). It serves as valuable "ground-truth" in the age of orbital remote sensing. We used the neutron data attributed to Apollo 17 epoch as a benchmark for testing the LEND's collimated sensor, as introduced by the geometry of collimator and efficiency of He3 counters. The latter is defined by the size of gas counter and pressure inside it. The intensity and energy spectrum of neutrons escaping the lunar surface are dependent on incident flux of Galactic Cosmic Rays (GCR) whose variability is associated with Solar Cycle and its peculiarities. We obtain first the share of neutrons entering through the field of view of collimator as a fraction of the total neutron flux by using the angular distribution of neutron exiting the Moon described by our Monte Carlo code. We computed next the count rate of the 3He sensor by using the neutron energy spectrum from McKinney et al. [JGR, 2006] and by consider geometry and gas pressure of the LEND sensor. Finally the neutron count rate obtained for the Apollo 17 epoch characterized by intermediate solar activity was adjusted to the LRO epoch characterized by low solar activity. It has been done by taking into account solar modulation potential, which affects the GCR flux, and in turn changes the neutron albedo flux.

  18. Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludewigt, Bernhard A; Quiter, Brian J.; Ambers, Scott D.

    2011-01-14

    The Next Generation Safeguard Initiative (NGSI) of the U.S Department of Energy is supporting a multi-lab/university collaboration to quantify the plutonium (Pu) mass in spent nuclear fuel (SNF) assemblies and to detect the diversion of pins with non-destructive assay (NDA) methods. The following 14 NDA techniques are being studied: Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Lead Slowing Down Spectrometer, Neutron Multiplicity, Passive Neutron Albedo Reactivity, Total Neutron (Gross Neutron), X-Ray Fluorescence, {sup 252}Cf Interrogation with Prompt Neutron Detection, Delayed Gamma, Nuclear Resonance Fluorescence, Passive Prompt Gamma, Self-integration Neutron Resonance Densitometry, and Neutron Resonance Transmission Analysis. Understanding and maturity ofmore » the techniques vary greatly, ranging from decades old, well-understood methods to new approaches. Nuclear Resonance Fluorescence (NRF) is a technique that had not previously been studied for SNF assay or similar applications. Since NRF generates isotope-specific signals, the promise and appeal of the technique lies in its potential to directly measure the amount of a specific isotope in an SNF assay target. The objectives of this study were to design and model suitable NRF measurement methods, to quantify capabilities and corresponding instrumentation requirements, and to evaluate prospects and the potential of NRF for SNF assay. The main challenge of the technique is to achieve the sensitivity and precision, i.e., to accumulate sufficient counting statistics, required for quantifying the mass of Pu isotopes in SNF assemblies. Systematic errors, considered a lesser problem for a direct measurement and only briefly discussed in this report, need to be evaluated for specific instrument designs in the future. Also, since the technical capability of using NRF to measure Pu in SNF has not been established, this report does not directly address issues such as cost, size, development time, nor concerns related to the use of Pu in measurement systems. This report discusses basic NRF measurement concepts, i.e., backscatter and transmission methods, and photon source and {gamma}-ray detector options in Section 2. An analytical model for calculating NRF signal strengths is presented in Section 3 together with enhancements to the MCNPX code and descriptions of modeling techniques that were drawn upon in the following sections. Making extensive use of the model and MCNPX simulations, the capabilities of the backscatter and transmission methods based on bremsstrahlung or quasi-monoenergetic photon sources were analyzed as described in Sections 4 and 5. A recent transmission experiment is reported on in Appendix A. While this experiment was not directly part of this project, its results provide an important reference point for our analytical estimates and MCNPX simulations. Used fuel radioactivity calculations, the enhancements to the MCNPX code, and details of the MCNPX simulations are documented in the other appendices.« less

  19. Water equivalent hydrogen estimates from the first 200 sols of Curiosity's traverse (Bradbury Landing to Yellowknife Bay): Results from the Dynamic Albedo of Neutrons (DAN) passive mode experiment

    NASA Astrophysics Data System (ADS)

    Tate, C. G.; Moersch, J.; Jun, I.; Ming, D. W.; Mitrofanov, I.; Litvak, M.; Behar, A.; Boynton, W. V.; Deflores, L.; Drake, D.; Ehresmann, B.; Fedosov, F.; Golovin, D.; Hardgrove, C.; Harshman, K.; Hassler, D. M.; Kozyrev, A. S.; Kuzmin, R.; Lisov, D.; Malakhov, A.; Milliken, R.; Mischna, M.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Starr, R.; Varenikov, A.; Vostrukhin, A.; Zeitlin, C.

    2015-12-01

    The Dynamic Albedo of Neutrons (DAN) experiment on the Mars Science Laboratory (MSL) rover Curiosity is designed to detect neutrons to determine hydrogen abundance within the subsurface of Mars (Mitrofanov, I.G. et al. [2012]. Space Sci. Rev. 170, 559-582. http://dx.doi.org/10.1007/s11214-012-9924-y; Litvak, M.L. et al. [2008]. Astrobiology 8, 605-613. http://dx.doi.org/10.1089/ast.2007.0157). While DAN has a pulsed neutron generator for active measurements, in passive mode it only measures the leakage spectrum of neutrons produced by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and Galactic Cosmic Rays (GCR). DAN passive measurements provide better spatial coverage than the active measurements because they can be acquired while the rover is moving. Here we compare DAN passive-mode data to models of the instrument's response to compositional differences in a homogeneous regolith in order to estimate the water equivalent hydrogen (WEH) content along the first 200 sols of Curiosity's traverse in Gale Crater, Mars. WEH content is shown to vary greatly along the traverse. These estimates range from 0.5 ± 0.1 wt.% to 3.9 ± 0.2 wt.% for fixed locations (usually overnight stops) investigated by the rover and 0.6 ± 0.2 wt.% to 7.6 ± 1.3 wt.% for areas that the rover has traversed while continuously acquiring DAN passive data between fixed locations. Estimates of WEH abundances at fixed locations based on passive mode data are in broad agreement with those estimated at the same locations using active mode data. Localized (meter-scale) anomalies in estimated WEH values from traverse measurements have no particular surface expression observable in co-located images. However at a much larger scale, the hummocky plains and bedded fractured units are shown to be distinct compositional units based on the hydrogen content derived from DAN passive measurements. DAN passive WEH estimates are also shown to be consistent with geologic models inferred from other MSL instruments, which indicate that fluvial/lacustrine activity occurred at certain locations (e.g., Yellowknife Bay).

  20. Hybrid nuclear reactor grey rod to obtain required reactivity worth

    DOEpatents

    Miller, John V.; Carlson, William R.; Yarbrough, Michael B.

    1991-01-01

    Hybrid nuclear reactor grey rods are described, wherein geometric combinations of relatively weak neutron absorber materials such as stainless steel, zirconium or INCONEL, and relatively strong neutron absorber materials, such as hafnium, silver-indium cadmium and boron carbide, are used to obtain the reactivity worths required to reach zero boron change load follow. One embodiment includes a grey rod which has combinations of weak and strong neutron absorber pellets in a stainless steel cladding. The respective pellets can be of differing heights. A second embodiment includes a grey rod with a relatively thick stainless steel cladding receiving relatively strong neutron absorber pellets only. A third embodiment includes annular relatively weak netron absorber pellets with a smaller diameter pellet of relatively strong absorber material contained within the aperture of each relatively weak absorber pellet. The fourth embodiment includes pellets made of a homogeneous alloy of hafnium and a relatively weak absorber material, with the percentage of hafnium chosen to obtain the desired reactivity worth.

  1. ISOTOPE CONVERSION DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

    1957-12-01

    This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

  2. Improved calibration of reflectance data from the LRO Lunar Orbiter Laser Altimeter (LOLA) and implications for space weathering

    NASA Astrophysics Data System (ADS)

    Lemelin, M.; Lucey, P. G.; Neumann, G. A.; Mazarico, E. M.; Barker, M. K.; Kakazu, A.; Trang, D.; Smith, D. E.; Zuber, M. T.

    2016-07-01

    The Lunar Orbiter Laser Altimeter (LOLA) experiment on Lunar Reconnaissance Orbiter (LRO) is a laser altimeter that also measures the strength of the return pulse from the lunar surface. These data have been used to estimate the reflectance of the lunar surface, including regions lacking direct solar illumination. A new calibration of these data is presented that features lower uncertainties overall and more consistent results in the polar regions. We use these data, along with newly available maps of the distribution of lunar maria, also derived from LRO instrument data, to investigate a newly discovered dependence of the albedo of the lunar maria on latitude (Hemingway et al., [2015]). We confirm that there is an increase in albedo with latitude in the lunar maria, and confirm that this variation is not an artifact arising from the distribution of compositions within the lunar maria, using data from the Lunar Prospector Neutron Spectrometer. Radiative transfer modeling of the albedo dependence within the lunar maria is consistent with the very weak to absent dependence of albedo on latitude in the lunar highlands; the lower abundance of the iron source for space weathering products in the lunar highlands weakens the latitude dependence to the extent that it is only weakly detectable in current data. In addition, photometric models and normalization may take into account the fact that the lunar albedo is latitude dependent, but this dependence can cause errors in normalized reflectance of at most 2% for the majority of near-nadir geometries. We also investigate whether the latitude dependent albedo may have obscured detection of small mare deposits at high latitudes. We find that small regions at high latitudes with low roughness similar to the lunar maria are not mare deposits that may have been misclassified owing to high albedos imposed by the latitude dependence. Finally, we suggest that the only modest correlations among space weathering indicators defined for the lunar samples may be due to mixing of soils from distinct latitudes.

  3. Improved Calibration of Reflectance Data from the LRO Lunar Orbiter Laser Altimeter (LOLA) and Implications for Space Weathering

    NASA Technical Reports Server (NTRS)

    Lemelin, M.; Lucey, P. G.; Neumann, G. A.; Mazarico, E. M.; Barker, M. K.; Kakazu, A.; Trang, D.; Smith, D. E.; Zuber, M. T.

    2016-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) experiment on Lunar Reconnaissance Orbiter (LRO) is a laser altimeter that also measures the strength of the return pulse from the lunar surface. These data have been used to estimate the reflectance of the lunar surface, including regions lacking direct solar illumination. A new calibration of these data is presented that features lower uncertainties overall and more consistent results in the polar regions. We use these data, along with newly available maps of the distribution of lunar maria, also derived from LRO instrument data, to investigate a newly discovered dependence of the albedo of the lunar maria on latitude (Hemingway et al., [2015]). We confirm that there is an increase in albedo with latitude in the lunar maria, and confirm that this variation is not an artifact arising from the distribution of compositions within the lunar maria, using data from the Lunar Prospector Neutron Spectrometer. Radiative transfer modeling of the albedo dependence within the lunar maria is consistent with the very weak to absent dependence of albedo on latitude in the lunar highlands; the lower abundance of the iron source for space weathering products in the lunar highlands weakens the latitude dependence to the extent that it is only weakly detectable in current data. In addition, photometric mod- els and normalization may take into account the fact that the lunar albedo is latitude dependent, but this dependence can cause errors in normalized reflectance of at most 2% for the majority of near-nadir geometries. We also investigate whether the latitude dependent albedo may have obscured detection of small mare deposits at high latitudes. We find that small regions at high latitudes with low roughness similar to the lunar maria are not mare deposits that may have been misclassified owing to high albedos imposed by the latitude dependence. Finally, we suggest that the only modest correlations among space weathering indicators defined for the lunar samples may be due to mixing of soils from distinct latitudes.

  4. Neutron economic reactivity control system for light water reactors

    DOEpatents

    Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.; Gregurech, Steve

    1989-01-01

    A neutron reactivity control system for a LWBR incorporating a stationary seed-blanket core arrangement. The core arrangement includes a plurality of contiguous hexagonal shaped regions. Each region has a central and a peripheral blanket area juxapositioned an annular seed area. The blanket areas contain thoria fuel rods while the annular seed area includes seed fuel rods and movable thoria shim control rods.

  5. Albedo in the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Sokolskaya, N. V.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Case, G.; Christl, M.; Chang, J.; Fazely, A. R.; Ganel, O.; hide

    2002-01-01

    ATIC(Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure the cosmic ray composition for elements from hydrogen to iron and their energy spectra from approx.50 GeV to near 100 TeV. It consists of a Si-matrix detector to determine the charge of a CR particle, a scintillator hodoscope for tracking, carbon interaction targets and a fully active BGO calorimeter. ATIC had its first 16-day flight from McMurdo, Antarctica from 28/12/2000 to 13/01/2000. The ATIC flight collected approximately 25 million events. To measure charge of primary particle in presence of radiation scattered back from the interaction and subsequent shower development in the calorimeter a charge detector must be a mosaic of small detector pads so that the pad containing the signal from the incident particle has no additional signal from albedo particles. Therefore the silicon matrix was built of 4480 individual silicon pads each 2 cm x 1.5 cm. The matrix consists of four planes of detectors and the active detector area, in these planes are partially overlapped to completely cover the aperture. The lateral and amplitude distributions of albedo signals in Si-matrix are analyzed for different primary nuclei and different energy deposits in BGO calorimeter. The greater part of albedo signals has Q near 1, where Q = square root of Amplitude(MIP). The albedo distribution exponentially decreases up to Q near 8. These high values are produced by slow protons and plans. There are also a small number of signals of Q > 8, mainly for heavy nucleus primaries. These signals are apparently generated by neutrons. The comparison of the experimental data and simulations with GEANT 3-21 code using QGSM generator for nucleus-nucleus interactions is presented.

  6. Preliminary estimates of nucleon fluxes in a water target exposed to solar-flare protons: BRYNTRN versus Monte Carlo code

    NASA Technical Reports Server (NTRS)

    Shinn, Judy L.; Wilson, John W.; Lone, M. A.; Wong, P. Y.; Costen, Robert C.

    1994-01-01

    A baryon transport code (BRYNTRN) has previously been verified using available Monte Carlo results for a solar-flare spectrum as the reference. Excellent results were obtained, but the comparisons were limited to the available data on dose and dose equivalent for moderate penetration studies that involve minor contributions from secondary neutrons. To further verify the code, the secondary energy spectra of protons and neutrons are calculated using BRYNTRN and LAHET (Los Alamos High-Energy Transport code, which is a Monte Carlo code). These calculations are compared for three locations within a water slab exposed to the February 1956 solar-proton spectrum. Reasonable agreement was obtained when various considerations related to the calculational techniques and their limitations were taken into account. Although the Monte Carlo results are preliminary, it appears that the neutron albedo, which is not currently treated in BRYNTRN, might be a cause for the large discrepancy seen at small penetration depths. It also appears that the nonelastic neutron production cross sections in BRYNTRN may underestimate the number of neutrons produced in proton collisions with energies below 200 MeV. The notion that the poor energy resolution in BRYNTRN may cause a large truncation error in neutron elastic scattering requires further study.

  7. Elemental mapping by Dawn reveals exogenic H in Vesta's regolith

    USGS Publications Warehouse

    Prettyman, Thomas H.; Mittlefehldt, David W.; Yamashita, Naoyuki; Lawrence, David J.; Beck, Andrew W.; Feldman, William C.; McCoy, Timothy J.; McSween, Harry Y.; Toplis, Michael J.; Titus, Timothy N.; Tricarico, Pasquale; Reedy, Robert C.; Hendricks, John S.; Forni, Olivier; Le Corre, Lucille; Li, Jian-Yang; Mizzon, Hugau; Reddy, Vishnu; Raymond, Carol A.; Russell, Christopher T.

    2012-01-01

    Using Dawn’s Gamma Ray and Neutron Detector, we tested models of Vesta’s evolution based on studies of howardite, eucrite, and diogenite (HED) meteorites. Global Fe/O and Fe/Si ratios are consistent with HED compositions. Neutron measurements confirm that a thick, diogenitic lower crust is exposed in the Rheasilvia basin, which is consistent with global magmatic differentiation. Vesta’s regolith contains substantial amounts of hydrogen. The highest hydrogen concentrations coincide with older, low-albedo regions near the equator, where water ice is unstable. The young, Rheasilvia basin contains the lowest concentrations. These observations are consistent with gradual accumulation of hydrogen by infall of carbonaceous chondrites—observed as clasts in some howardites—and subsequent removal or burial of this material by large impacts.

  8. Saturn Neutron Exosphere as Source for Inner and Innermost Radiation Belts

    NASA Technical Reports Server (NTRS)

    Cooper, John; Lipatov, Alexander; Sittler, Edward; Sturner, Steven

    2011-01-01

    Energetic proton and electron measurements by the ongoing Cassini orbiter mission are expanding our knowledge of the highest energy components of the Saturn magnetosphere in the inner radiation belt region after the initial discoveries of these belts by the Pioneer 11 and Voyager 2 missions. Saturn has a neutron exosphere that extends throughout the magnetosphere from the cosmic ray albedo neutron source at the planetary main rings and atmosphere. The neutrons emitted from these sources at energies respectively above 4 and 8 eV escape the Saturn system, while those at lower energies are gravitationally bound. The neutrons undergo beta decay in average times of about 1000 seconds to provide distributed sources of protons and electrons throughout Saturn's magnetosphere with highest injection rates close to the Saturn and ring sources. The competing radiation belt source for energetic electrons is rapid inward diffusion and acceleration of electrons from the middle magnetosphere and beyond. Minimal losses during diffusive transport across the moon orbits, e.g. of Mimas and Enceladus, and local time asymmetries in electron intensity, suggest that drift resonance effects preferentially boost the diffusion rates of electrons from both sources. Energy dependences of longitudinal gradient-curvature drift speeds relative to the icy moons are likely responsible for hemispheric differences (e.g., Mimas, Tethys) in composition and thermal properties as at least partly produced by radiolytic processes. A continuing mystery is the similar radial profiles of lower energy (<10 MeV) protons in the inner belt region. Either the source of these lower energy protons is also neutron decay, but perhaps alternatively from atmospheric albedo, or else all protons from diverse distributed sources are similarly affected by losses at the moon' orbits, e.g. because the proton diffusion rates are extremely low. Enceladus cryovolcanism, and radiolytic processing elsewhere on the icy moon and ring surfaces, are additional sources of protons via ionization and charge exchange from breakup of water molecules. But one must then account somehow for local acceleration to the observed keV-MeV energies, since moon sweeping and E-ring absorption would remove protons diffusing inward from the middle magnetosphere. Although the main rings block further inward diffusion from the inner radiation belts, the exospheric neutron-decay source, combined with much slower diffusion of protons relative to electrons, may produce an innermost radiation belt in the gap between the upper atmosphere and the D-ring. This innermost belt will first be explored in-situ during the final proximal orbits of the Cassini mission.

  9. Modeling of central reactivity worth measurements in Lady Godiva

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenz, T.R.; Busch, R.D.

    The central reactivity worth measurements performed in Lady Godiva were duplicated using TWODANT, a deterministic neutron transport code, and the 16-group Hansen-Roach cross-section library. The purpose of this work was to determine how well the Hansen-Roach library predicts the reactivity worths for a fast neutron system. Lady Godiva is a spherical uranium metal (93.7 wt% [sup 235]U) critical assembly with a neutron flux distribution dominant in the first five groups of the Hansen-Roach energy structure (0.1 MeV and up). Provided that the cross sections of the replacement material do not undergo large variations (less than an order of magnitude) inmore » any of the aforementioned groups, the calculated reactivities were within 10% of the experimental values. For cases where the reactivities were outside this range, a large variation in the cross section was found to exist in one of the groups, which was not fully accounted for in the Hansen-Roach group structure. However, even in the cases where the agreement between calculation and experiment was not good, the calculated reactivity appeared to be an extremum in that the effect was found to be either more negative or more positive than the experimental value.« less

  10. Medusae Fossae-Elysium Region, Mars: Depression in the HEND/Odyssey Map of Mars Epithermal Neutrons

    NASA Technical Reports Server (NTRS)

    Ivanov, M. A.; Litvak, M. L.; Mitrofanov, I. G.; Boynton, W.; Saunders, R. S.

    2003-01-01

    The first data from the Gamma Ray Spectrometer (GRS) onboard Mars Odyssey spacecraft showed that the low neutron fluxes characterize both subpolar regions of Mars. The low neutron fluxes mean the presence of hydrogen-rich soils and have been interpreted as an indication on abundant water ice in these areas. The equatorial region of Mars (equatorward of approx. 50 deg) is characterized by higher fluxes of both epithermal (0.4 eV-100 keV, come from depth 1-2 m) and fast (3.4-7.3 MeV, come from depth 0.2-0.3 m) neutrons meaning that this area is mostly dry. The pattern of distribution of the neutron fluxes is in a good agreement with the theoretical predictions on the stability of ground ice on present Mars. The actual distribution of the ice, however, depends on variations of thermal inertia of soils and albedo of the surface. The flux of the epithermal neutrons detected by the HEND instrument, which is part of GRS, has two noticeable depressions in the equatorial region, one in Arabia Terra and another in the Medusae Fossae-Elysium region (MFER). Here we present the initial results of analysis of characteristics of the neutron fluxes and regional geological setting of the epithermal neutron depression in this area. The main goal of our study was to put some constraints on the time of the anomaly formation and to assess possible form of hydrogen (ground ice vs. chemically bound water) there.

  11. STEAM FORMING NEUTRONIC REACTOR AND METHOD OF OPERATING IT

    DOEpatents

    Untermyer, S.

    1960-05-10

    The heterogeneous reactor is liquid moderated and cooled by a steam forming coolant and is designed to produce steam from the coolant directly within the active portion of the reactor while avoiding the formation of bubbles in the liquid moderator. This reactor achieves inherent stability as a result of increased neutron leakage and increased neutron resonance absorption in the U/sup 238/ fuel with the formation of bubbles. The invention produces certain conditions under which the formation of vapor bubbles as a result of a neutron flux excursion from the injection of a reactivity increment into the reactor will operate to nullify the reactivity increment within a sufficiently short period of time to prevent unsafe reactor operating conditions from developing. This is obtained by disposing a plurality of fuel elements within a mass of steam forming coolant in the core with the ratio of the volume of steam forming coolant to the volume of fissionable isotopes being within the range yielding a multiplication factor greater than unity and a negative reactivity to core void coefficient at the boiling temperature of the coolant.

  12. Validation of DRAGON4/DONJON4 simulation methodology for a typical MNSR by calculating reactivity feedback coefficient and neutron flux

    NASA Astrophysics Data System (ADS)

    Al Zain, Jamal; El Hajjaji, O.; El Bardouni, T.; Boukhal, H.; Jaï, Otman

    2018-06-01

    The MNSR is a pool type research reactor, which is difficult to model because of the importance of neutron leakage. The aim of this study is to evaluate a 2-D transport model for the reactor compatible with the latest release of the DRAGON code and 3-D diffusion of the DONJON code. DRAGON code is then used to generate the group macroscopic cross sections needed for full core diffusion calculations. The diffusion DONJON code, is then used to compute the effective multiplication factor (keff), the feedback reactivity coefficients and neutron flux which account for variation in fuel and moderator temperatures as well as the void coefficient have been calculated using the DRAGON and DONJON codes for the MNSR research reactor. The cross sections of all the reactor components at different temperatures were generated using the DRAGON code. These group constants were used then in the DONJON code to calculate the multiplication factor and the neutron spectrum at different water and fuel temperatures using 69 energy groups. Only one parameter was changed where all other parameters were kept constant. Finally, Good agreements between the calculated and measured have been obtained for every of the feedback reactivity coefficients and neutron flux.

  13. The Maturely, Immature Orientale Impact Basin

    NASA Astrophysics Data System (ADS)

    Cahill, J. T.; Lawrence, D. J.; Stickle, A. M.; Delen, O.; Patterson, G.; Greenhagen, B. T.

    2015-12-01

    Lunar surface maturity is consistently examined using the NIR optical maturity parameter (OMAT) [1]. However, the NIR only provides a perspective of the upper microns of the lunar surface. Recent studies of Lunar Prospector (LP) and Lunar Reconnaissance Orbiter data sets are now demonstrating additional measures of maturity with sensitivities to greater depths (~2 m) in the regolith. These include thermal infrared, S-band radar, and epithermal neutron data sets [2-4]. Interestingly, each of these parameters is directly comparable to OMAT despite each measuring slightly different aspects of the regolith. This is demonstrated by Lawrence et al. [3] where LP-measured non-polar highlands epithermal neutrons trend well with albedo, OMAT, and the Christensen Feature (CF). Lawrence et al. [3] used these data to derive and map highlands hydrogen (H) which is dominantly a function of H-implantation. With this in mind, areas of enriched-H are mature, while areas of depleted H are immature. Surface roughness as measured by S-band radar [4], also provides a measure of maturity. In this case, the circular polarization ratio (CPR) is high when rough and immature, and low when smooth and mature. Knowing this, one can recognize areas in the non-polar lunar highlands that show contradictory measures of maturity. For example, while many lunar localities show consistently immature albedo, OMAT, CF, CPR, and H concentrations (e.g., Tycho), others do not. Orientale basin is the most prominent example, shown to have immature CPR, CF, and H concentrations despite a relatively mature albedo and OMAT values as well as an old age determination (~3.8 Ga). To better understand how the lunar regolith is weathering in the upper 1-2 m of regolith with time we examine the Orientale basin relative to other highlands regions. [1] Lucey et al. (2000) JGR, 105, 20377; [2] Lucey et al. (2013) LPSC, 44, 2890; [3] Lawrence et al. (2015) Icarus, j.icarus.2015.01.005; [4] Neish et al. (2013) JGR, 118, 2247.

  14. A Search for Black Holes and Neutron Stars in the Kepler Field

    NASA Astrophysics Data System (ADS)

    Orosz, Jerome; Short, Donald; Welsh, William; Windmiller, Gur; Dabney, David

    2018-01-01

    Black holes and neutron stars represent the final evolutionary stages of the most massive stars. In addition to their use as probes into the evolution of massive stars, black holes and neutron stars are ideal laboratories to test General Relativity in the strong field limit. The number of neutron stars and black holes in the Milky Way is not precisely known, but there are an estimated one billion neutron stars in the galaxy based on the observed numbers of radio pulsars. The number of black holes is about 100 million, based on the behavior of the Initial Mass Function at high stellar masses.All of the known steller-mass black holes (and a fair number of neutron stars) are in ``X-ray binaries'' that were discovered because of their luminous X-ray emission. The requirement to be in an X-ray-emitting binary places a strong observational bias on the discovery of stellar-mass black holes. Thus the 21 known black hole binaries represent only the very uppermost tip of the population iceberg.We have conducted an optical survey using Kepler data designed to uncover black holes and neutron stars in both ``quiescent'' X-ray binaries and ``pre-contact'' X-ray binaries. We discuss how the search was conducted, including how potentially interesting light curves were classified and the how variability types were identified. Although we did not find any convincing candidate neutron star or black hole systems, we did find a few noteworthy binary systems, including two binaries that contain low-mass stars with unusually low albedos.

  15. NEOWISE Reactivation Mission Year Three: Asteroid Diameters and Albedos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masiero, Joseph R.; Mainzer, A. K.; Kramer, E.

    The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) reactivation mission has completed its third year of surveying the sky in the thermal infrared for near-Earth asteroids and comets. NEOWISE collects simultaneous observations at 3.4 and 4.6  μ m of solar system objects passing through its field of regard. These data allow for the determination of total thermal emission from bodies in the inner solar system, and thus the sizes of these objects. In this paper, we present thermal model fits of asteroid diameters for 170 NEOs and 6110 Main Belt asteroids (MBAs) detected during the third year of the survey,more » as well as the associated optical geometric albedos. We compare our results with previous thermal model results from NEOWISE for overlapping sample sets, as well as diameters determined through other independent methods, and find that our diameter measurements for NEOs agree to within 26% (1 σ ) of previously measured values. Diameters for the MBAs are within 17% (1 σ ). This brings the total number of unique near-Earth objects characterized by the NEOWISE survey to 541, surpassing the number observed during the fully cryogenic mission in 2010.« less

  16. APPARATUS FOR CONTROLLING NEUTRONIC REACTORS

    DOEpatents

    Dietrich, J.R.; Harrer, J.M.

    1958-09-16

    A device is described for rapidly cortrolling the reactivity of an active portion of a reactor. The inveniion consists of coaxially disposed members each having circumferenital sections of material having dlfferent neutron absorbing characteristics and means fur moving the members rotatably and translatably relative to each other within the active portion to vary the neutron flux therein. The angular and translational movements of any member change the neutron flux shadowing effect of that member upon the other member.

  17. Perforated semiconductor neutron detectors for battery operated portable modules

    NASA Astrophysics Data System (ADS)

    McGregor, Douglas S.; Bellinger, Steven L.; Bruno, David; McNeil, Walter J.; Patterson, Eric; Shultis, J. Kenneth; Solomon, C. J.; Unruh, Troy

    2007-09-01

    Perforated semiconductor diode detectors have been under development for several years at Kansas State University for a variety of neutron detection applications. The fundamental device configuration is a pin diode detector fabricated from high-purity float zone refined Si wafers. Perforations are etched into the diode surface with inductively-coupled plasma (ICP) reactive ion etching (RIE) and backfilled with 6LiF neutron reactive material. The perforation shapes and depths can be optimized to yield a flat response to neutrons over a wide variation of angles. The prototype devices delivered over 3.8% thermal neutron detection efficiency while operating on only 15 volts. The highest efficiency devices thus far have delivered over 12% thermal neutron detection efficiency. The miniature devices are 5.6 mm in diameter and require minimal power to operate, ranging from 3.3 volts to 15 volts, depending upon the amplifying electronics. The battery operated devices have been incorporated into compact modules with a digital readout. Further, the new modules have incorporated wireless readout technology and can be monitored remotely. The neutron detection modules can be used for neutron dosimetry and neutron monitoring. When coupled with high-density polyethylene, the detectors can be used to measure fission neutrons from spontaneous fission sources. Monto Carlo analysis indicates that the devices can be used in cargo containers as a passive search tool for spontaneous fission sources, such as 240Pu. Measurements with a 252Cf source are being conducted for verification.

  18. Personnel neutron dosimetry using electrochemically etched CR-39 foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankins, D.E.; Homann, S.; Westermark, J.

    1986-09-17

    A personnel neutron dosimetry system has been developed based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This Cr-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. The dosimetry system employs an electrochemical etch procedure that be used to process large numbers of Cr-39 dosimeters. The etch procedure is suitable for operations where the number of personnelmore » requires that many CR-39 dosimeters be processed. Experience shows that one full-time technician can etch and evaluate 2000 foils per month. The energy response to neutrons is fairly flat from about 80 keV to 3.5 MeV, but drops by about a factor of three in the 13 to 16 MeV range. The sensitivity of the dosimetry system is about 7 tracks/cm/sup 2//mrem, with a background equivalent to about 8 mrem for new CR-39 foils. The limit of sensitivity is approximately 10 mrem. The dosimeter has a significant variation in directional dependence, dropping to about 20% at 90/sup 0/. This dosimeter has been used for personnel neutron dosimetry at the Lawrence Livermore National Laboratory for more tha 18 months. 6 refs., 23 figs., 2 tabs.« less

  19. Martian Neutron Energy Spectrometer (MANES)

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Roth, D. R.; Kinnison, J. D.; Goldsten, J. O.; Fainchtein, R.; Badhwar, G.

    2000-01-01

    High energy charged particles of extragalactic, galactic, and solar origin collide with spacecraft structures and planetary atmospheres. These primaries create a number of secondary particles inside the structures or on the surfaces of planets to produce a significant radiation environment. This radiation is a threat to long term inhabitants and travelers for interplanetary missions and produces an increased risk of carcinogenesis, central nervous system (CNS) and DNA damage. Charged particles are readily detected; but, neutrons, being electrically neutral, are much more difficult to monitor. These secondary neutrons are reported to contribute 30-60% of the dose equivalent in the Shuttle and MIR station. The Martian atmosphere has an areal density of 37 g/sq cm primarily of carbon dioxide molecules. This shallow atmosphere presents fewer mean free paths to the bombarding cosmic rays and solar particles. The secondary neutrons present at the surface of Mars will have undergone fewer generations of collisions and have higher energies than at sea level on Earth. Albedo neutrons produced by collisions with the Martian surface material will also contribute to the radiation environment. The increased threat of radiation damage to humans on Mars occurs when neutrons of higher mean energy traverse the thin, dry Martian atmosphere and encounter water in the astronaut's body. Water, being hydrogeneous, efficiently moderates the high energy neutrons thereby slowing them as they penetrate deeply into the body. Consequently, greater radiation doses can be deposited in or near critical organs such as the liver or spleen than is the case on Earth. A second significant threat is the possibility of a high energy heavy ion or neutron causing a DNA double strand break in a single strike.

  20. Reactivity control assembly for nuclear reactor. [LMFBR

    DOEpatents

    Bollinger, L.R.

    1982-03-17

    This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

  1. YALINA-booster subcritical assembly pulsed-neutron e xperiments: detector dead time and apatial corrections.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Y.; Gohar, Y.; Nuclear Engineering Division

    In almost every detector counting system, a minimal dead time is required to record two successive events as two separated pulses. Due to the random nature of neutron interactions in the subcritical assembly, there is always some probability that a true neutron event will not be recorded because it occurs too close to the preceding event. These losses may become rather severe for counting systems with high counting rates, and should be corrected before any utilization of the experimental data. This report examines the dead time effects for the pulsed neutron experiments of the YALINA-Booster subcritical assembly. The nonparalyzable modelmore » is utilized to correct the experimental data due to dead time. Overall, the reactivity values are increased by 0.19$ and 0.32$ after the spatial corrections for the YALINA-Booster 36% and 21% configurations respectively. The differences of the reactivities obtained with He-3 long or short detectors at the same detector channel diminish after the dead time corrections of the experimental data for the 36% YALINA-Booster configuration. In addition, better agreements between reactivities obtained from different experimental data sets are also observed after the dead time corrections for the 21% YALINA-Booster configuration.« less

  2. Nondestrucive analysis of fuel pins

    DOEpatents

    Stepan, I.E.; Allard, N.P.; Suter, C.R.

    1972-11-03

    Disclosure is made of a method and a correspondingly adapted facility for the nondestructive analysis of the concentation of fuel and poison in a nuclear reactor fuel pin. The concentrations of fuel and poison in successive sections along the entire length of the fuel pin are determined by measuring the reactivity of a thermal reactor as each successive small section of the fuel pin is exposed to the neutron flux of the reactor core and comparing the measured reactivity with the reactivities measured for standard fuel pins having various known concentrations. Only a small section of the length of the fuel pin is exposed to the neutron flux at any one time while the remainder of the fuel pin is shielded from the neutron flux. In order to expose only a small section at any one time, a boron-10-lined dry traverse tube is passed through the test region within the core of a low-power thermal nuclear reactor which has a very high fuel sensitivity. A narrow window in the boron-10 lining is positioned at the core center line. The fuel pins are then systematically traversed through the tube past the narrow window such that successive small sections along the length of the fuel pin are exposed to the neutron flux which passes through the narrow window.

  3. A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    NASA Technical Reports Server (NTRS)

    Dugan, E. T.; Kahook, S. D.; Diaz, N. J.

    1996-01-01

    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the strength of the negative reactivity feedback in the UTVR, it is found that external reactivity insertions alone are inadequate for bringing about significant power level changes during normal reactor operations. Additional methods of reactivity control such as variations in the gaseous fuel mass flow rate, are needed to achieve the desired power level oontrol.

  4. Wireless, in-vessel neutron monitor for initial core-loading of advanced breeder reactors

    NASA Technical Reports Server (NTRS)

    Delorenzo, J. T.; Kennedy, E. J.; Blalock, T. V.; Rochelle, J. M.; Chiles, M. M.; Valentine, K. H.

    1981-01-01

    An experimental wireless, in-vessel neutron monitor was developed to measure the reactivity of an advanced breeder reactor as the core is loaded for the first time to preclude an accidental critically incident. The environment is liquid sodium at a temperature of approx. 220 C, with negligible gamma or neutron radiation. With ultrasonic transmission of neutron data, no fundamental limitation was observed after tests at 230 C for 2000 h. The neutron sensitivity was approx. 1 count/s-nv, and the potential data transmission rate was approx. 10,000 counts/s.

  5. Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies

    DOE PAGES

    Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.; ...

    2018-06-20

    Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less

  6. Time Serial Analysis of the Induced LEO Environment within the ISS 6A

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Nealy, John E.; Tomov, B. T.; Cucinotta, Francis A.; Badavi, Frank F.; DeAngelis, Giovanni; Atwell, William; Leutke, N.

    2006-01-01

    Anisotropies in the low Earth orbit (LEO) radiation environment were found to influence the thermoluminescence detectors (TLD) dose within the (International Space Station) ISS 7A Service Module. Subsequently, anisotropic environmental models with improved dynamic time extrapolation have been developed including westward and northern drifts using AP8 Min & Max as estimates of the historic spatial distribution of trapped protons in the 1965 and 1970 era, respectively. In addition, a directional dependent geomagnetic cutoff model was derived for geomagnetic field configurations from the 1945 to 2020 time frame. A dynamic neutron albedo model based on our atmospheric radiation studies has likewise been required to explain LEO neutron measurements. The simultaneous measurements of dose and dose rate using four Liulin instruments at various locations in the US LAB and Node 1 has experimentally demonstrated anisotropic effects in ISS 6A and are used herein to evaluate the adequacy of these revised environmental models.

  7. Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.

    Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less

  8. DAN instrument for NASA`s MSL mission: fast science data processing and instrument commanding for Mars surface operations and for field tests

    NASA Astrophysics Data System (ADS)

    Vostrukhin, A.; Kozyrev, A.; Litvak, M.; Malakhov, A.; Mitrofanov, I.; Mokrousov, M.; Sanin, A.; Tretyakov, V.

    2009-04-01

    The Dynamic Albedo of Neutrons (DAN) instrument is contributed by Russian Space Agency to NASA for Mars Science Laboratory mission which was originally scheduled for 2009 and now is shifted to 2011. The design of DAN instrument is partially inherited from HEND instrument for NASA's Mars Odyssey, which now successfully operates providing global mapping of martian neutron albedo, searching the distribution of martian water and observing the martian seasonal cycles. DAN is specially designed as an active neutron instrument for surface operations onboard mobile platforms. It is able to focus science investigations on local surface area around rover with horizontal resolution about 1 meter and vertical penetration about 0.5 m. The primary goal of DAN is the exploration of the hydrogen content of the bulk Martian subsurface material. This data will be used to estimate the content of chemically bound water in the hydrated minerals. The concept of DAN operations is based on combination of neutron activation analysis and neutron well logging tequnique, which are commonly used in the Earth geological applications. DAN consists blocks of Detectors and Electronics (DE) and Pulse Neutron Generator (PNG). The last one is used to irradiate the martian subsurface by pulses of 14MeV neutrons with changeable frequency up to 10 Hz. The first one detects post-pulse afterglow of neutrons, as they were thermalized down to epithermal and thermal energies within the martian subsurface. The result of detections are so called die away curves of neutrons afterglow, which show flux and time profile of thermalized neutrons and bring to us the observational signature of layering structure of martian regolith in part of depth distribution of Hydrogen (most effective element for thermalization of neutrons). In this study we focus on the development, verification and validation of DAN fast data processing and commanding. It is necessary to perform deconvolution from counting statistic in DAN detectors (raw data) to the real science products such as estimated average content of Hydrgen content or its depth distribution along the rover trace. For the rover surface operations it is necessary to provide real time data analysis to combine DAN data with data from all another science instruments and to develop the best observation strategy for the future periods of operation activity. In our approach we use: 1) Onboard FPGA data processing for recording neutron die away curves for epthermal and thermal neutrons of post-pulse afterglow 2) Getting raw data of DAN at the Mission operation center 3) Validation of instrument parameters and operational performance 4) Fast first level science data processing (statistical analysis, background subtraction, normalization) 5) Fast deconvolution of detector counts into the Hydrogen content (including numerical simulation, comparison with the known standard models of regolith), 6) Comparison with known information obtained with another instruments 7) Development of the near-term and long-term strategy for next DAN operations onboard MSL. 8) Generation and testing commanding sequences for the next period of MSL autonomous operations All this activity shall be adjusted in the real time, so the steps 2-8 shall not exceed 2-3 hours. Before launch we plan to validate this approach trough the instrument calibrations, field tests and MSL science group activity. The first experience will be presented of fast data analysis and commanding for the field tests of DAN, which were performed in the testing facility of the Joint Institute of Nuclear Research (Russia). Also, we will discuss our plans of DAN operations for coming field tests in Antarctica.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margaret A. Marshall; John D. Bess; Yevgeniy Rozhikhin

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared withmore » the GODIVA I experiments[1]. Part of the experimental series was the measurement of the delayed neutron fraction, ßeff, using time correlation measurements and using the central void reactivity measurement. The time correlations measurements were rejected by the experimenter. The measurements using the central void reactivity measurement yielded a ßeff value of 0.00657, which agrees well with the value measured with GODIVA I (0.0066). This measurement is evaluated, found to be acceptable, and discussed in extensive detail in “ORSphere: Physics Measurements for Bare, HEU(93.2) Metal Sphere”[2]. In order to determine the delayed neutron fraction using the central void reactivity delayed neutron parameters must be used. The experimenter utilized the delayed neutron parameters set forth by Keepin, Wimment, and Zeigler[3]. If the derivation of the ßeff is repeated with different delayed neutron parameters from various modern nuclear data sets the resulting values vary greatly from the expected results.« less

  10. A novel concept of QUADRISO particles. Part II: Utilization for excess reactivity control.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamo, A.

    2010-07-01

    In high temperature reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this paper QUADRISO particles are proposed to manage the initial excess reactivity of high temperature reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This mechanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the initialmore » excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, more neutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic high temperature reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.« less

  11. A novel concept of QUADRISO particles : Part II Utilization for excess reactivity control.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamo, A.

    2011-01-01

    In high temperature reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this paper QUADRISO particles are proposed to manage the initial excess reactivity of high temperature reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This mechanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the initialmore » excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, more neutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic high temperature reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.« less

  12. Control rod calibration and reactivity effects at the IPEN/MB-01 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinto, Letícia Negrão; Gonnelli, Eduardo; Santos, Adimir dos

    2014-11-11

    Researches that aim to improve the performance of neutron transport codes and quality of nuclear cross section databases are very important to increase the accuracy of simulations and the quality of the analysis and prediction of phenomena in the nuclear field. In this context, relevant experimental data such as reactivity worth measurements are needed. Control rods may be made of several neutron absorbing materials that are used to adjust the reactivity of the core. For the reactor operation, these experimental data are also extremely important: with them it is possible to estimate the reactivity worth by the movement of themore » control rod, understand the reactor response at each rod position and to operate the reactor safely. This work presents a temperature correction approach for the control rod calibration problem. It is shown the control rod calibration data of the IPEN/MB-01 reactor, the integral and differential reactivity curves and a theoretical analysis, performed by the MCNP-5 reactor physics code, developed and maintained by Los Alamos National Laboratory, using the ENDF/B-VII.0 nuclear data library.« less

  13. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    DOE PAGES

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; ...

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elasticmore » and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr 64Ni 36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).« less

  14. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauro, N. A., E-mail: namauro@noctrl.edu; Vogt, A. J.; Derendorf, K. S.

    2016-01-15

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elasticmore » and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr{sub 64}Ni{sub 36} measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg)« less

  15. Scoping estimates of the LDEF satellite induced radioactivity

    NASA Technical Reports Server (NTRS)

    Armstrong, Tony W.; Colborn, B. L.

    1990-01-01

    The Long Duration Exposure Facility (LDEF) satellite was recovered after almost six years in space. It was well-instrumented with ionizing radiation dosimeters, including thermoluminescent dosimeters, plastic nuclear track detectors, and a variety of metal foil samples for measuring nuclear activation products. The extensive LDEF radiation measurements provide the type of radiation environments and effects data needed to evaluate and help resolve uncertainties in present radiation models and calculational methods. A calculational program was established to aid in LDEF data interpretation and to utilize LDEF data for assessing the accuracy of current models. A summary of the calculational approach is presented. The purpose of the reported calculations is to obtain a general indication of: (1) the importance of different space radiation sources (trapped, galactic, and albedo protons, and albedo neutrons); (2) the importance of secondary particles; and (3) the spatial dependence of the radiation environments and effects expected within the spacecraft. The calculational method uses the High Energy Transport Code (HETC) to estimate the importance of different sources and secondary particles in terms of fluence, absorbed dose in tissue and silicon, and induced radioactivity as a function of depth in aluminum.

  16. Multi-Group Formulation of the Temperature-Dependent Resonance Scattering Model and its Impact on Reactor Core Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghrayeb, Shadi Z.; Ougouag, Abderrafi M.; Ouisloumen, Mohamed

    2014-01-01

    A multi-group formulation for the exact neutron elastic scattering kernel is developed. It incorporates the neutron up-scattering effects, stemming from lattice atoms thermal motion and accounts for it within the resulting effective nuclear cross-section data. The effects pertain essentially to resonant scattering off of heavy nuclei. The formulation, implemented into a standalone code, produces effective nuclear scattering data that are then supplied directly into the DRAGON lattice physics code where the effects on Doppler Reactivity and neutron flux are demonstrated. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering,more » which in turn affect the estimation of core reactivity and burnup characteristics. The results show an increase in values of Doppler temperature feedback coefficients up to -10% for UOX and MOX LWR fuels compared to the corresponding values derived using the traditional asymptotic elastic scattering kernel. This paper also summarizes the results done on this topic to date.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Margaret A.

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an effort to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with themore » GODIVA I experiments. Additionally, various material reactivity worths, the surface material worth coefficient, the delayed neutron fraction, the prompt neutron decay constant, relative fission density, and relative neutron importance were all measured. The critical assembly, material reactivity worths, the surface material worth coefficient, and the delayed neutron fraction were all evaluated as benchmark experiment measurements. The reactor physics measurements are the focus of this paper; although for clarity the critical assembly benchmark specifications are briefly discussed.« less

  18. Reactor Physics Measurements and Benchmark Specifications for Oak Ridge Highly Enriched Uranium Sphere (ORSphere)

    DOE PAGES

    Marshall, Margaret A.

    2014-11-04

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an effort to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with themore » GODIVA I experiments. Additionally, various material reactivity worths, the surface material worth coefficient, the delayed neutron fraction, the prompt neutron decay constant, relative fission density, and relative neutron importance were all measured. The critical assembly, material reactivity worths, the surface material worth coefficient, and the delayed neutron fraction were all evaluated as benchmark experiment measurements. The reactor physics measurements are the focus of this paper; although for clarity the critical assembly benchmark specifications are briefly discussed.« less

  19. Passive Safety Features Evaluation of KIPT Neutron Source Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Zhaopeng; Gohar, Yousry

    2016-06-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have cooperated on the development, design, and construction of a neutron source facility. The facility was constructed at Kharkov, Ukraine and its commissioning process is underway. It will be used to conduct basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The facility has an electron accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100 MeV electrons. Tungsten or natural uranium is the target material for generating neutrons driving the subcritical assembly. The subcritical assemblymore » is composed of WWR-M2 - Russian fuel assemblies with U-235 enrichment of 19.7 wt%, surrounded by beryllium reflector assembles and graphite blocks. The subcritical assembly is seated in a water tank, which is a part of the primary cooling loop. During normal operation, the water coolant operates at room temperature and the total facility power is ~300 KW. The passive safety features of the facility are discussed in in this study. Monte Carlo computer code MCNPX was utilized in the analyses with ENDF/B-VII.0 nuclear data libraries. Negative reactivity temperature feedback was consistently observed, which is important for the facility safety performance. Due to the design of WWR-M2 fuel assemblies, slight water temperature increase and the corresponding water density decrease produce large reactivity drop, which offset the reactivity gain by mistakenly loading an additional fuel assembly. The increase of fuel temperature also causes sufficiently large reactivity decrease. This enhances the facility safety performance because fuel temperature increase provides prompt negative reactivity feedback. The reactivity variation due to an empty fuel position filled by water during the fuel loading process is examined. Also, the loading mistakes of removing beryllium reflector assemblies and replacing them with dummy assemblies were analyzed. In all these circumstances, the reactivity change results do not cause any safety concerns.« less

  20. In-flight neutron spectra as an ICF diagnostic for implosion asymmetries

    NASA Astrophysics Data System (ADS)

    Cerjan, C.; Sayre, D. B.; Sepke, S. M.

    2018-02-01

    The yield and spectral shape of the neutrons produced during in-flight reactions provide stringent constraints upon the symmetry of the fully compressed fuel conditions in Inertial Confinement Fusion implosions. Neutron production from a specific deuterium gas-filled implosion is simulated in detail and compared with the experimental neutron spectra along two lines-of-sight. An approximate reactivity formulation is applied to obtain further insight into the underlying fuel configuration. This analysis suggests that the differences observed in the observed spectra correspond to angularly dependent triton velocity distributions created by an asymmetric plasma configuration.

  1. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core.

    PubMed

    Lashkari, A; Khalafi, H; Kazeminejad, H

    2013-05-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change.

  2. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core

    PubMed Central

    Lashkari, A.; Khalafi, H.; Kazeminejad, H.

    2013-01-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change. PMID:24976672

  3. On fundamental quality of fission chain reaction to oppose rapid runaways of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Kulikov, G. G.; Shmelev, A. N.; Apse, V. A.; Kulikov, E. G.

    2017-01-01

    It has been shown that the in-hour equation characterizes the barriers and resistibility of fission chain reaction (FCR) against rapid runaways in nuclear reactors. Traditionally, nuclear reactors are characterized by the presence of barriers based on delayed and prompt neutrons. A new barrier based on the reflector neutrons that can occur when the fast reactor core is surrounded by a weakly absorbing neutron reflector with heavy atomic weight was proposed. It has been shown that the safety of this fast reactor is substantially improved, and considerable elongation of prompt neutron lifetime "devalues" the role of delayed neutron fraction as the maximum permissible reactivity for the reactor safety.

  4. Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors

    DOE PAGES

    George, Nathan Michael; Terrani, Kurt A.; Powers, Jeffrey J.; ...

    2014-09-29

    A study analyzed the neutronics of alternate cladding materials in a pressurized water reactor (PWR) environment. Austenitic type 310 (310SS) and 304 stainless steels, ferritic Fe-20Cr-5Al (FeCrAl) and APMT™ alloys, and silicon carbide (SiC)-based materials were considered and compared with Zircaloy-4. SCALE 6.1 was used to analyze the associated neutronics penalty/advantage, changes in reactivity coefficients, and spectral variations once a transition in the cladding was made. In the cases examined, materials containing higher absorbing isotopes invoked a reduction in reactivity due to an increase in neutron absorption in the cladding. Higher absorbing materials produced a harder neutron spectrum in themore » fuel pellet, leading to a slight increase in plutonium production. A parametric study determined the geometric conditions required to match cycle length requirements for each alternate cladding material in a PWR. A method for estimating the end of cycle reactivity was implemented to compare each model to that of standard Zircaloy-4 cladding. By using a thinner cladding of 350 μm and keeping a constant outer diameter, austenitic stainless steels require an increase of no more than 0.5 wt% enriched 235U to match fuel cycle requirements, while the required increase for FeCrAl was about 0.1%. When modeling SiC (with slightly lower thermal absorption properties than that of Zircaloy), a standard cladding thickness could be implemented with marginally less enriched uranium (~0.1%). Moderator temperature and void coefficients were calculated throughout the depletion cycle. Nearly identical reactivity responses were found when coolant temperature and void properties were perturbed for each cladding material. By splitting the pellet into 10 equal areal sections, relative fission power as a function of radius was found to be similar for each cladding material. FeCrAl and 310SS cladding have a slightly higher fission power near the pellet’s periphery due to the harder neutron spectrum in the system, causing more 239Pu breeding. An economic assessment calculated the change in fuel pellet production costs for use of each cladding. Furthermore, implementing FeCrAl alloys would increase fuel pellet production costs about 15% because of increased 235U enrichment and the additional UO 2 pellet volume enabled by using thinner cladding.« less

  5. Neutron Absorption Measurements Constrain Eucrite-Diogenite Mixing in Vesta's Regolith

    NASA Technical Reports Server (NTRS)

    Prettyman, T. H.; Mittlefehldt, D. W.; Feldman, W. C.; Hendricks, J. S.; Lawrence, D. J.; Peplowski, P. N.; Toplis, M. J.; Yamashita, N.; Beck, A.; LeCorre, L.; hide

    2013-01-01

    The NASA Dawn Mission s Gamma Ray and Neutron Detector (GRaND) [1] acquired mapping data during 5 months in a polar, low altitude mapping orbit (LAMO) with approx.460-km mean radius around main-belt asteroid Vesta (264-km mean radius) [2]. Neutrons and gamma rays are produced by galactic cosmic ray interactions and by the decay of natural radioelements (K, Th, U), providing information about the elemental composition of Vesta s regolith to depths of a few decimeters beneath the surface. From the data acquired in LAMO, maps of vestan neutron and gamma ray signatures were determined with a spatial resolution of approx.300 km full-width-at-half-maximum (FWHM), comparable in scale to the Rheasilvia impact basin (approx.500 km diameter). The data from Vesta encounter are available from the NASA Planetary Data System. Based on an analysis of gamma-ray spectra, Vesta s global-average regolith composition was found to be consistent with the Howardite, Eucrite, and Diogenite (HED) meteorites, reinforcing the HED-Vesta connection [2-7]. Further, an analysis of epithermal neutrons revealed variations in the abundance of hydrogen on Vesta s surface, reaching values up to 400 micro-g/g [2]. The association of high concentrations of hydrogen with equatorial, low-albedo surface regions indicated exogenic delivery of hydrogen by the infall of carbonaceous chondrite (CC) materials. This finding was buttressed by the presence of minimally-altered CC clasts in howardites, with inferred bulk hydrogen abundances similar to that found by GRaND, and by studies using data from Dawn s Framing Camera (FC) and VIR instruments [8-10]. In addition, from an analysis of neutron absorption, spatial-variations in the abundance of elements other than hydrogen were detected [2].

  6. FREND experiment on ESA's TGO mission: science tasks, initial space data and expected results

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Igor; Malakhov, Aleksey; Golovin, Dmitry; Litvak, Maxim; Sanin, Anton; Semkova, Jordanka

    2017-04-01

    The main science tasks are presented in details of the Fine Resolution Epithermal Neutron Detector (FREND) onboard the ESA's Trace Gas Orbiter (TGO). They are (I) mapping of water distribution in the shallow subsurface of Mars with the special resolution about 40 km, (II) measuring of the seasonal depositions of atmospheric carbon dioxide on the southern and northern hemispheres of Mars, and (III) monitoring of galactic cosmic rays (GCRs) and solar particle events (SPEs) on the low Mars orbit. The initial science data of FREND are described measured during the interplanetary cruise and at the initial stage of the orbital flight. These data allow to estimate the local radiation environment of TGO, which is produced by GCRs, and also the neutron albedo of the Mars surface, which is also produced by the bombardment by GCRs. Using the first FREND space data for in-space calibration, the background components are estimated for the future low-orbit mapping of neutrons from Mars. Using the first experimental data, expected science results of FREND are discussed. It is shown that joint analysis of the orbital neutron data from FREND onboard the TGO, the orbital neutron data from HEND onboard the Mars Odyssey and the surface neutron data from DAN onboard the Curiosity rover should allow to characterize the ground water/ice distribution on the surface of Mars and also to build the seasonal maps of atmospheric CO2 depositions for different intervals of Ls. Special and temporal variations of the Martian radiation environment should be measured as well. Finally, the most ambitious goal of the TGO multi-instrument studies could be testing the cross-correspondence between the water-rich spots on the surface with the local enhancements of methane in the atmosphere

  7. Thermonuclear Reaction Rate of T(t,2n) α Measured in ICF Plasmas

    NASA Astrophysics Data System (ADS)

    Brune, C. R.; Casey, D. T.; Caggiano, J. A.; Hatarik, R.; McNabb, D. P.; Sayre, D. B.; Smalyuk, V. A.; Bacher, A. D.; Frenje, J. A.; Gatu-Johnson, M.; Zylstra, A. B.; Couder, M.

    2014-09-01

    Measurements of charged-particle reactivity have been performed in inertial confinement fusion experiments at the National Ignition Facility. Time-of-flight detectors were used to measure neutrons from the T(t,2n) and T(d,n) reactions produced by implosions with tritium-filled targets (0.1% deuterium). Along with the measured target fuel composition and reactant ion temperature, the well-known T(d,n) reactivity was used to convert the measured neutron yields into a T(t,2n) reactivity. The ion temperature was determined to be 3.3(3) keV, corresponding to an effective energy of 16 keV. In comparison to accelerator measurements of the low-energy T(t,2n) cross section, the source of all previous data, our experiment has resulted in T(t,2n) data with better statistics and lower backgrounds.

  8. Safety and control of accelerator-driven subcritical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rief, H.; Takahashi, H.

    1995-10-01

    To study control and safety of accelertor driven nuclear systems, a one point kinetic model was developed and programed. It deals with fast transients as a function of reactivity insertion. Doppler feedback, and the intensity of an external neutron source. The model allows for a simultaneous calculation of an equivalent critical reactor. It was validated by a comparison with a benchmark specified by the Nuclear Energy Agency Committee of Reactor Physics. Additional features are the possibility of inserting a linear or quadratic time dependent reactivity ramp which may account for gravity induced accidents like earthquakes, the possibility to shut downmore » the external neutron source by an exponential decay law of the form exp({minus}t/{tau}), and a graphical display of the power and reactivity changes. The calculations revealed that such boosters behave quite benignly even if they are only slightly subcritical.« less

  9. Photonuclear Contributions to SNS Pulse Shapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClanahan, Tucker C.; Iverson, Erik B.; Gallmeier, Franz X.

    Short-pulsed sources like the Spallation Neutron Source (SNS) and ISIS produce bursts of neutron pulses at rates of 10-60 Hz, with sub-microsecond proton pulses impacting on high-Z target materials. Moderators are grouped around the target to receive the fast neutrons generated from spallation reactions to moderate them effciently to thermal and sub-thermal energies and to feed narrow neutron pulses to neutron scattering instruments. The scattering instruments use the neutrons as a probe for material investigations, and make use of time-of-flight (TOF) methods for resolving the neutron energy. The energy resolution of scattering instruments depends on the narrow time-structure of themore » neutron pulses, while neutrons in the long tail of the emission time distributions can degrade the instrument performance and add undesired background to measurements. The SNS neutronics team is investigating a possible source term impacting the background at short-pulsed spallation sources. The ISIS TS2 project claims to have significantly reduced neutron scattering instrument background levels by the elimination or reduction of iron shielding in the target-moderator-reflector assembly. An alternative hypothesis, also proposed by ISIS, suggests that this apparent reduction arises from moving beamline shielding away from the neutron guide channels, reducing albedo down the beamlines. In both hypotheses, the background neutrons in question are believed to be generated by photonuclear reactions. If the background neutrons are indeed generated via photonuclear channels, then they are generated in a time-dependent fashion, since most of the high-energy photons capable of inducing photonuclear production are gone within a few microseconds following the proton pulse. To evaluate this e ect, we have enabled photonuclear reactions in a series of studies for the SNS first target station (FTS) taking advantage of its Monte Carlo model. Using a mixture of ENDF/B VII.0 and TENDL-2014 photonuclear cross sections available and the CEM03 physics model within MCNPX 2.6.0 in the simulation, we are able to estimate the impact of photoneutron production on both overall neutron production and delayed neutron production. We find that a significant number of photon-induced neutrons are produced a few milliseconds after the proton pulse, following prompt gamma emission through the capture of neutrons in the slowing-down and thermalization processes. We name these "slowing-down delayed neutrons" to distinguish them from either "activation-delayed neutrons" or "beta-delayed neutrons." The beta-delayed and activation-delayed neutrons were not part of this study, and will be addressed elsewhere. While these other delayed neutron channels result in the time-independent (constant) production of fast neutrons outside of the prompt pulse, the slowing-down delayed neutrons also a ect the shape of the pulses. Although numerically insignificant in most cases, we describe a set of scenarios related to T0-chopper operation in which the slowing-down delayed neutrons may be important.« less

  10. Neutronics qualification of the Jules Horowitz reactor fuel by interpretation of the VALMONT experimental program - Transposition of the uncertainties on the reactivity of JHR with JEF2.2 and JEFF3.1.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leray, O.; Hudelot, J. P.; Antony, M.

    2011-07-01

    The new European material testing Jules Horowitz Reactor (JHR), currently under construction in Cadarache center (CEA France), will use LEU (20% enrichment in {sup 235}U) fuels (U{sub 3}Si{sub 2} for the start up and UMoAl in the future) which are quite different from the industrial oxide fuel, for which an extensive neutronics qualification database has been established. The HORUS3D/N neutronics calculation scheme, used for the design and safety studies of the JHR, is being developed within the framework of a rigorous verification-validation-qualification methodology. In this framework, the experimental VALMONT (Validation of Aluminium Molybdenum uranium fuel for Neutronics) program has beenmore » performed in the MINERVE facility of CEA Cadarache (France), in order to qualify the capability of HORUS3D/N to accurately calculate the reactivity of the JHR reactor. The MINERVE facility using the oscillation technique provides accurate measurements of reactivity effect of samples. The VALMONT program includes oscillations of samples of UAl{sub x}/Al and UMo/Al with enrichments ranging from 0.2% to 20% and Uranium densities from 2.2 to 8 g/cm{sup 3}. The geometry of the samples and the pitch of the experimental lattice ensure maximum representativeness with the neutron spectrum expected for JHR. By comparing the effect of the sample with the one of a known fuel specimen, the reactivity effect can be measured in absolute terms and be compared to computational results. Special attention was paid to the rigorous determination and reduction of the experimental uncertainties. The calculational analysis of the VALMONT results was performed with the French deterministic code APOLLO2. A comparison of the impact of the different calculation methods, data libraries and energy meshes that were tested is presented. The interpretation of the VALMONT experimental program allowed the qualification of JHR fuel UMoAl8 (with an enrichment of 19.75% {sup 235}U) by the Minerve-dedicated interpretation tool: PIMS. The effect of energy meshes and evaluations put forward the JEFF3.1.1/SHEM scheme that leads to a better calculation of the reactivity effect of VALMONT samples. Then, in order to quantify the impact of the uncertainties linked to the basic nuclear data, their propagation from the cross section measurement to the final computational result was analysed in a rigorous way by using a nuclear data re-estimation method based on Gauss-Newton iterations. This study concludes that the prior uncertainties due to nuclear data (uranium, aluminium, beryllium and water) on the reactivity of the Begin Of Cycle (BOC) for the JHR core reach 1217 pcm at 2{sigma}. Now, the uppermost uncertainty on the JHR reactivity is due to aluminium. (authors)« less

  11. Ionizing radiation calculations and comparisons with LDEF data

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.; Watts, J. W., Jr.

    1992-01-01

    In conjunction with the analysis of LDEF ionizing radiation dosimetry data, a calculational program is in progress to aid in data interpretation and to assess the accuracy of current radiation models for future mission applications. To estimate the ionizing radiation environment at the LDEF dosimeter locations, scoping calculations for a simplified (one dimensional) LDEF mass model were made of the primary and secondary radiations produced as a function of shielding thickness due to trapped proton, galactic proton, and atmospheric (neutron and proton cosmic ray albedo) exposures. Preliminary comparisons of predictions with LDEF induced radioactivity and dose measurements were made to test a recently developed model of trapped proton anisotropy.

  12. Neutronics calculation of RTP core

    NASA Astrophysics Data System (ADS)

    Rabir, Mohamad Hairie B.; Zin, Muhammad Rawi B. Mohamed; Karim, Julia Bt. Abdul; Bayar, Abi Muttaqin B. Jalal; Usang, Mark Dennis Anak; Mustafa, Muhammad Khairul Ariff B.; Hamzah, Na'im Syauqi B.; Said, Norfarizan Bt. Mohd; Jalil, Muhammad Husamuddin B.

    2017-01-01

    Reactor calculation and simulation are significantly important to ensure safety and better utilization of a research reactor. The Malaysian's PUSPATI TRIGA Reactor (RTP) achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. Since early 90s, neutronics modelling were used as part of its routine in-core fuel management activities. The are several computer codes have been used in RTP since then, based on 1D neutron diffusion, 2D neutron diffusion and 3D Monte Carlo neutron transport method. This paper describes current progress and overview on neutronics modelling development in RTP. Several important parameters were analysed such as keff, reactivity, neutron flux, power distribution and fission product build-up for the latest core configuration. The developed core neutronics model was validated by means of comparison with experimental and measurement data. Along with the RTP core model, the calculation procedure also developed to establish better prediction capability of RTP's behaviour.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mainzer, A.; Bauer, J.; Masiero, J.

    NASA's Wide-field Infrared Survey Explorer (WISE) spacecraft has been brought out of hibernation and has resumed surveying the sky at 3.4 and 4.6 μm. The scientific objectives of the NEOWISE reactivation mission are to detect, track, and characterize near-Earth asteroids and comets. The search for minor planets resumed on 2013 December 23, and the first new near-Earth object (NEO) was discovered 6 days later. As an infrared survey, NEOWISE detects asteroids based on their thermal emission and is equally sensitive to high and low albedo objects; consequently, NEOWISE-discovered NEOs tend to be large and dark. Over the course of itsmore » three-year mission, NEOWISE will determine radiometrically derived diameters and albedos for ∼2000 NEOs and tens of thousands of Main Belt asteroids. The 32 months of hibernation have had no significant effect on the mission's performance. Image quality, sensitivity, photometric and astrometric accuracy, completeness, and the rate of minor planet detections are all essentially unchanged from the prime mission's post-cryogenic phase.« less

  14. Nuclear instrumentation in VENUS-F

    NASA Astrophysics Data System (ADS)

    Wagemans, J.; Borms, L.; Kochetkov, A.; Krása, A.; Van Grieken, C.; Vittiglio, G.

    2018-01-01

    VENUS-F is a fast zero power reactor with 30 wt% U fuel and Pb/Bi as a coolant simulator. Depending on the experimental configuration, various neutron spectra (fast, epithermal, and thermal islands) are present. This paper gives a review of the nuclear instrumentation that is applied for reactor control and in a large variety of physics experiments. Activation foils and fission chambers are used to measure spatial neutron flux profiles, spectrum indices, reactivity effects (with positive period and compensation method or the MSM method) and kinetic parameters (with the Rossi-alpha method). Fission chamber calibrations are performed in the standard irradiation fields of the BR1 reactor (prompt fission neutron spectrum and Maxwellian thermal neutron spectrum).

  15. Advanced gray rod control assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drudy, Keith J; Carlson, William R; Conner, Michael E

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber tomore » enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.« less

  16. Two Successive Martian Years on the Orbit: Similarities and Differences of CO2 Seasonal Cycle from HEND/ODYSSEY Data

    NASA Technical Reports Server (NTRS)

    Litvak, M. L.; Mitrofanov, I. G.; Kozyrev, A. S.; Sanin, A. B.; Tretyakov, V.; Boynton, W. V.; Hamara, D. K.; Shinohara, C.; Saunders, R. S.

    2005-01-01

    The three years of Mars Odyssey successful work on the martian orbit provide a lot of new information about peculiarities of long term variations of CO2 seasonal cycle. To start such analysis we have used observations of neutron albedo of Mars obtained by High Energy Neutron detector (HEND) mounted onboard Mars Odyssey spacecraft. The high latitude northern and southern regions of Mars are affected by global redistribution of atmospheric CO2 which resulted in 25% of atmospheric mass condensed on martian surface of these regions during winter period of time. The seasonal deposit is formed starting from 60N/60S latitudes and achieve its maximal thickness about 1 m at latitudes close to martian poles. Changes of CO2 deposit thickness is the reason for significant variations of neutron flux above martian poles from summer to winter seasons because CO2 frost effectively hides upper water rich surface layers from the orbit observations in neutrons and gamma-rays. This effect was used to estimate column density of CO2 deposit at different latitudes on North and South of Mars and reconstruct multidimensional model of CO2 deposit showing how snow depth varies as function of latitude, longitude and time. In this presentation we tried to make a next step in our study of martian seasonal CO2 cycle and look for similarities and differences between two successive martian years.

  17. Bulk hydrogen abundances in the lunar highlands: Measurements from orbital neutron data

    NASA Astrophysics Data System (ADS)

    Lawrence, David J.; Peplowski, Patrick N.; Plescia, Jeffrey B.; Greenhagen, Benjamin T.; Maurice, Sylvestre; Prettyman, Thomas H.

    2015-07-01

    The first map of bulk hydrogen concentrations in the lunar highlands region is reported. This map is derived using data from the Lunar Prospector Neutron Spectrometer (LP-NS). We resolve prior ambiguities in the interpretation of LP-NS data with respect to non-polar hydrogen concentrations by comparing the LP-NS data with maps of the 750 nm albedo reflectance, optical maturity, and the wavelength position of the thermal infrared Christiansen Feature. The best explanation for the variations of LP-NS epithermal neutron data in the lunar highlands is variable amounts of solar-wind-implanted hydrogen. The average hydrogen concentration across the lunar highlands and away from the lunar poles is 65 ppm. The highest hydrogen values range from 120 ppm to just over 150 ppm. These values are consistent with the range of hydrogen concentrations from soils and regolith breccias at the Apollo 16 highlands landing site. Based on a moderate-to-strong correlation of epithermal neutrons and orbit-based measures of surface maturity, the map of highlands hydrogen concentration represents a new global maturity index that can be used for studies of the lunar soil maturation process. We interpret these hydrogen concentrations to represent a bulk soil property related to the long-term impact of the space environment on the lunar surface. Consequently, the derived hydrogen concentrations are not likely related to the surficial enhancements (top tens to hundreds of microns) or local time variations of OH/H2O measured with spectral reflectance data.

  18. Burnable absorber arrangement for fuel bundle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.; Townsend, D.B.

    1986-12-16

    This patent describes a boiling water reactor core whose operation is characterized by a substantial proportion of steam voids with concomitantly reduced moderation toward the top of the core when the reactor is in its hot operating condition. The reduced moderation leads to slower burnup and greater conversion ratio in an upper core region so that when the reactor is in its cold shut down condition the resulting relatively increased moderation in the upper core region is accompanied by a reactivity profile that peaks in the upper core region. A fuel assembly is described comprising; a component of fissile materialmore » distributed over a substantial axial extent of the fuel assembly; and a component of neutron absorbing material having an axial distribution characterized by an enhancement in an axial zone of the fuel assembly, designated the cold shutdown control zone, corresponding to at least a portion of the axial region of the core when the cold shutdown reactivity peaks. The aggregate amount of neutron absorbing material in the cold shutdown zone of the fuel assembly is greater than the aggregate amount of neutron absorbing material in the axial zones of the fuel assembly immediately above and immediately below the cold shutdown control zone whereby the cold shutdown reactivity peak is reduced relative to the cold shutdown reactivity in the zones immediately above and immediately below the cold shutdown control zone. The cold shutdown zone has an axial extent measured from the bottom of the fuel assembly in the range between 68-88 percent of the height of the fissile material in the fuel assembly.« less

  19. Absolute reactivity calibration of accelerator-driven systems after RACE-T experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jammes, C. C.; Imel, G. R.; Geslot, B.

    2006-07-01

    The RACE-T experiments that were held in november 2005 in the ENEA-Casaccia research center near Rome allowed us to improve our knowledge of the experimental techniques for absolute reactivity calibration at either startup or shutdown phases of accelerator-driven systems. Various experimental techniques for assessing a subcritical level were inter-compared through three different subcritical configurations SC0, SC2 and SC3, about -0.5, -3 and -6 dollars, respectively. The area-ratio method based of the use of a pulsed neutron source appears as the most performing. When the reactivity estimate is expressed in dollar unit, the uncertainties obtained with the area-ratio method were lessmore » than 1% for any subcritical configuration. The sensitivity to measurement location was about slightly more than 1% and always less than 4%. Finally, it is noteworthy that the source jerk technique using a transient caused by the pulsed neutron source shutdown provides results in good agreement with those obtained from the area-ratio technique. (authors)« less

  20. Simulation of neutron production using MCNPX+MCUNED.

    PubMed

    Erhard, M; Sauvan, P; Nolte, R

    2014-10-01

    In standard MCNPX, the production of neutrons by ions cannot be modelled efficiently. The MCUNED patch applied to MCNPX 2.7.0 allows to model the production of neutrons by light ions down to energies of a few kiloelectron volts. This is crucial for the simulation of neutron reference fields. The influence of target properties, such as the diffusion of reactive isotopes into the target backing or the effect of energy and angular straggling, can be studied efficiently. In this work, MCNPX/MCUNED calculations are compared with results obtained with the TARGET code for simulating neutron production. Furthermore, MCUNED incorporates more effective variance reduction techniques and a coincidence counting tally. This allows the simulation of a TCAP experiment being developed at PTB. In this experiment, 14.7-MeV neutrons will be produced by the reaction T(d,n)(4)He. The neutron fluence is determined by counting alpha particles, independently of the reaction cross section. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Comparison and Validation of FLUKA and HZETRN as Tools for Investigating the Secondary Neutron Production in Large Space Vehicles

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2015-01-01

    NASA's exploration goals are focused on deep space travel and Mars surface operations. To accomplish these goals, large structures will be necessary to transport crew and logistics in the initial stages, and NASA will need to keep the crew and the vehicle safe during transport and any surface activities. One of the major challenges of deep space travel is the space radiation environment and its impacts on the crew, the electronics, and the vehicle materials. The primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle. These interactions lead to some of the primary radiation being absorbed, being modified, or producing secondary radiation (primarily neutrons). With all vehicles, the high energy primary radiation is of most concern. However, with larger vehicles that have large shielding masses, there is more opportunity for secondary radiation production, and this secondary radiation can be significant enough to cause concern. When considering surface operations, there is also a secondary radiation source from the surface of the planet, known as albedo, with neutrons being one of the most significant species. Given new vehicle designs for deep space and Mars missions, the secondary radiation environment and the implications of that environment is currently not well understood. Thus, several studies are necessary to fill the knowledge gaps of this secondary radiation environment. In this paper, we put forth the initial steps to increasing our understanding of neutron production from large vehicles by comparing the neutron production resulting from our radiation transport codes and providing a preliminary validation of our results against flight data. This paper will review the details of these results and discuss the finer points of the analysis.

  2. Evaluation of coarse scale land surface remote sensing albedo product over rugged terrain

    NASA Astrophysics Data System (ADS)

    Wen, J.; Xinwen, L.; You, D.; Dou, B.

    2017-12-01

    Satellite derived Land surface albedo is an essential climate variable which controls the earth energy budget and it can be used in applications such as climate change, hydrology, and numerical weather prediction. The accuracy and uncertainty of surface albedo products should be evaluated with a reliable reference truth data prior to applications. And more literatures investigated the validation methods about the albedo validation in a flat or homogenous surface. However, the albedo performance over rugged terrain is still unknow due to the validation method limited. A multi-validation strategy is implemented to give a comprehensive albedo validation, which will involve the high resolution albedo processing, high resolution albedo validation based on in situ albedo, and the method to upscale the high resolution albedo to a coarse scale albedo. Among them, the high resolution albedo generation and the upscale method is the core step for the coarse scale albedo validation. In this paper, the high resolution albedo is generated by Angular Bin algorithm. And a albedo upscale method over rugged terrain is developed to obtain the coarse scale albedo truth. The in situ albedo located 40 sites in mountain area are selected globally to validate the high resolution albedo, and then upscaled to the coarse scale albedo by the upscale method. This paper takes MODIS and GLASS albedo product as a example, and the prelimarily results show the RMSE of MODIS and GLASS albedo product over rugged terrain are 0.047 and 0.057, respectively under the RMSE with 0.036 of high resolution albedo.

  3. A New Perspective on Trapped Radiation Belts in Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Diaz, A.; Lodhi, M. A. K.; Wilson, T. L.

    2005-01-01

    The charged particle fluxes trapped in the magnetic dipole fields of certain planets in our Solar System are interesting signatures of planetary properties in space physics. They also represent a source of potentially hazardous radiation to spacecraft during planetary and interplanetary exploration. The Earth s trapped radiation belts have been studied for years and the physical mechanisms by which primary radiation from the Sun and Galaxy is captured is well understood. The higher-energy particles collide with molecules in the planetary atmosphere and initiate large cascades of secondary radiation which itself becomes trapped by the magnetic dipole field of the planet. Some of it is even backscattered as albedo neutrons.

  4. Preliminary neutronic analysis of a cavity test reactor

    NASA Technical Reports Server (NTRS)

    Whitmarsh, C. L., Jr.

    1973-01-01

    A reference configuration was calculated for a cavity test reactor to be used for testing the gascore nuclear rocket concept. A thermal flux of 4.1 x 10 to the 14th power neutrons per square centimeter per second in the cavity was provided by a driver fuel loading of 6.4 kg of enriched uranium in MTR fuel elements. The reactor was moderated and cooled by heavy water and reflected with 25.4 cm of beryllium. Power generation of 41.3 MW in the driver fuel is rejected to a heat sink. Design effort was directed toward minimization of driver power while maintaining 2.7 MW in the cavity during a test run. Ancillary data on material reactivity worths, reactivity coefficients, flux spectra, and power distributions are reported.

  5. Parallel computation safety analysis irradiation targets fission product molybdenum in neutronic aspect using the successive over-relaxation algorithm

    NASA Astrophysics Data System (ADS)

    Susmikanti, Mike; Dewayatna, Winter; Sulistyo, Yos

    2014-09-01

    One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo99 used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 106 cm-1) in a tube, their delta reactivities are the still within safety limits; however, for 7.9542 g and 8.838 g (× 106 cm-1) the limits were exceeded.

  6. Radiation measurement above the lunar surface by Kaguya gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Hasebe, Nobuyuki; Nagaoka, Hiroshi; Kusano, Hiroki; Hareyama, Matoko; Ideguchi, Yusuke; Shimizu, Sota; Shibamura, Eido

    The lunar surface is filled with various ionizing radiations such as high energy galactic particles, albedo particles and secondary radiations of neutrons, gamma rays and other elementary particles. A high-resolution Kaguya Gamma-Ray Spectrometer (KGRS) was carried on the Japan’s lunar explorer SELENE (Kaguya), the largest lunar orbiter since the Apollo missions. The KGRS instrument employed, for the first time in lunar exploration, a high-purity Ge crystal to increase the identification capability of elemental gamma-ray lines. The Ge detector is surrounded by BGO and plastic counters as for anticoincidence shields. The KGRS measured gamma rays in the energy range from 200 keV to 13 MeV with high precision to determine the chemical composition of the lunar surface. It provided data on the abundance of major elements over the entire lunar surface. In addition to the gamma-ray observation by the KGRS, it successfully measured the global distribution of fast neutrons. In the energy spectra of gamma-rays observed by the KGRS, several saw-tooth- peaks of Ge are included, which are formed by the collision interaction of lunar fast neutrons with Ge atoms in the Ge crystal. With these saw-tooth-peaks analysis, global distribution of neutrons emitted from the lunara surface was successfully created, which was compared with the previous results obtained by Lunar Prospector neutron maps. Another anticoincidence counter, the plastic counter with 5 mm thickness, was used to veto radiation events mostly generated by charged particles. A single photomultiplier serves to count scintillation light from the plastic scintillation counter. The global map of counting rates observed by the plastic counter was also created, implying that the radiation counting rate implies the geological distribution, in spite that the plastic counter mostly measures high energy charged particles and energetic neutrons. These results are presented and discussed.

  7. Impact of uncertainties in the uranium 235 cross section resonance structure on characteristics measured in the BFS-79 critical assemblies

    NASA Astrophysics Data System (ADS)

    Andrianova, Olga; Lomakov, Gleb; Manturov, Gennady

    2017-09-01

    The report presents the results of an analysis of benchmark experiments form the international ICSBEP Handbook (HEU-MET-INTER-005) carried out at the the SSC RF - IPPE in cooperation with the Idaho National Laboratory (INL, USA) applicable to the verification of calculations of a wide range of tasks related to safe storage of vitrified radioactive waste. Experiments on the BFS assemblies make it possible to perform a large series of studies needed for neutron data refinement, including measurements of reactivity effects which allow testing the neutron cross section resonance structure. This series of studies is considered as a sample joint analysis framework for differential and integral experiments required to correct nuclea data files of the ROSFOND evaluated neutron data library. Thus, it is shown that despite the wide range of available experimental data, in so far as it relates to the resonance region refinement, the experiments on reactivity measurement make it possible to more subtly reflect the resonance structure peculiarities in addition to the time-of-flight measurement method.

  8. Analysis of Strong Wintertime Ozone Events in an Area of Extensive Oil and Gas Extraction

    NASA Astrophysics Data System (ADS)

    Rappenglück, Bernhard; Ackermann, Luis; Alvarez, Sergio; Golovko, Julia; Buhr, Martin; Field, Robert; Soltis, Jeff; Montague, Derek C.; Hauze, Bill; Scott, Adamson; Risch, Dan; Wilkerson, George; Bush, David; Stoeckenius, Till; Keslar, Cara

    2015-04-01

    During recent years, elevated ozone (O3) values have been observed repeatedly in the Upper Green River Basin (UGRB), Wyoming during wintertime. This paper presents an analysis of high ozone days in late winter 2011 (1-hour average up to 166 ppbv). Intensive Observational Periods (IOPs) were performed which included comprehensive surface and boundary layer measurements. Low windspeeds in combination with low mixing layer heights (~50 m agl) are essential for accumulation of pollutants. Air masses contain substantial amounts of reactive nitrogen (NOx) and non-methane hydrocarbons (NMHC) emitted from fossil fuel exploration activities in the Pinedale Anticline. On IOP days in the morning hours reactive nitrogen (up to 69%), then aromatics and alkanes (each ~10-15%; mostly ethane and propane) are major contributors to the hydroxyl (OH) reactivity. This time frame largely coincides with lowest NMHC/NOx ratios (~50), reflecting a relatively low NMHC mixture, and a change from a NOx-limited regime towards a NMHC limited regime. OH production on IOP days is mainly due to nitrous acid (HONO). On a 24-hr basis and as determined for a measurement height of 1.80 m above the surface HONO photolysis on IOP days can contribute ~83% to OH production on average, followed by alkene ozonolysis (~9%). Photolysis by ozone and HCHO photolysis contributes about 4% each to hydroxyl formation. High HONO levels (maximum hourly median on IOP days: 1,096 pptv) are favored by a combination of shallow boundary layer conditions and enhanced photolysis rates due to the high albedo of the snow surface. HONO is most likely formed through (i) abundant nitric acid (HNO3) produced in atmospheric oxidation of NOx, deposited onto the snow surface and undergoing photo-enhanced heterogeneous conversion to HONO and (ii) combustion related emission of HONO. HONO production is confined to the lowermost 10 m of the boundary layer. HONO, serves as the most important precursor for OH, strongly enhanced due to the high albedo of the snow cover.

  9. Coated semiconductor devices for neutron detection

    DOEpatents

    Klann, Raymond T.; McGregor, Douglas S.

    2002-01-01

    A device for detecting neutrons includes a semi-insulated bulk semiconductor substrate having opposed polished surfaces. A blocking Schottky contact comprised of a series of metals such as Ti, Pt, Au, Ge, Pd, and Ni is formed on a first polished surface of the semiconductor substrate, while a low resistivity ("ohmic") contact comprised of metals such as Au, Ge, and Ni is formed on a second, opposed polished surface of the substrate. In one embodiment, n-type low resistivity pinout contacts comprised of an Au/Ge based eutectic alloy or multi-layered Pd/Ge/Ti/Au are also formed on the opposed polished surfaces and in contact with the Schottky and ohmic contacts. Disposed on the Schottky contact is a neutron reactive film, or coating, for detecting neutrons. The coating is comprised of a hydrogen rich polymer, such as a polyolefin or paraffin; lithium or lithium fluoride; or a heavy metal fissionable material. By varying the coating thickness and electrical settings, neutrons at specific energies can be detected. The coated neutron detector is capable of performing real-time neutron radiography in high gamma fields, digital fast neutron radiography, fissile material identification, and basic neutron detection particularly in high radiation fields.

  10. THERMAL NEUTRONIC REACTOR

    DOEpatents

    Spinrad, B.I.

    1960-01-12

    A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

  11. Movable-molybdenum-reflector reactivity experiments for control studies of compact space power reactor concepts

    NASA Technical Reports Server (NTRS)

    Fox, T. A.

    1973-01-01

    An experimental reflector reactivity study was made with a compact cylindrical reactor using a uranyl fluoride - water fuel solution. The reactor was axially unreflected and radially reflected with segments of molybdenum. The reflector segments were displaced incrementally in both the axial and radial dimensions, and the shutdown of each configuration was measured by using the pulsed-neutron source technique. The reactivity effects for axial and radial displacement of reflector segments are tabulated separately and compared. The experiments provide data for control-system studies of compact-space-power-reactor concepts.

  12. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less

  13. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    DOE PAGES

    Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; ...

    2015-12-17

    In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less

  14. High-efficiency neutron detectors and methods of making same

    DOEpatents

    McGregor, Douglas S.; Klann, Raymond

    2007-01-16

    Neutron detectors, advanced detector process techniques and advanced compound film designs have greatly increased neutron-detection efficiency. One embodiment of the detectors utilizes a semiconductor wafer with a matrix of spaced cavities filled with one or more types of neutron reactive material such as 10B or 6LiF. The cavities are etched into both the front and back surfaces of the device such that the cavities from one side surround the cavities from the other side. The cavities may be etched via holes or etched slots or trenches. In another embodiment, the cavities are different-sized and the smaller cavities extend into the wafer from the lower surfaces of the larger cavities. In a third embodiment, multiple layers of different neutron-responsive material are formed on one or more sides of the wafer. The new devices operate at room temperature, are compact, rugged, and reliable in design.

  15. MOX fuel assembly design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reese, A.P.; Crowther, R.L. Jr.

    1992-02-18

    This patent describes improvement in a boiling water reactor core having a plurality of vertically upstanding fuel bundles; each fuel bundle containing longitudinally extending sealed rods with fissile material therein; the improvement comprises the fissile material including a mixture of uranium and recovered plutonium in rods of the fuel bundle at locations other than the corners of the fuel bundle; and, neutron absorbing material being located in rods of the fuel bundle at rod locations adjacent the corners of the fuel bundles whereby the neutron absorbing material has decreased shielding from the plutonium and maximum exposure to thermal neutrons formore » shaping the cold reactivity shutdown zone in the fuel bundle.« less

  16. CASIS PCG 6

    NASA Image and Video Library

    2017-06-06

    iss052e000508 (June 6, 2017) --- View of astronaut Jack Fischer working with the Neutron Crystallographic Studies of Human Acetylcholinesterase for the Design of Accelerated Reactivators (CASIS PCG 6) experiment in the Japanese Experiment Module

  17. METHOD OF PRODUCING NEUTRONS

    DOEpatents

    Imhoff, D.H.; Harker, W.H.

    1964-02-01

    A method for producing neutrons is described in which there is employed a confinement zone defined between longitudinally spaced localized gradient regions of an elongated magnetic field. Changed particles and neutralizing electrons, more specifically deuterons and tritons and neutralizng electrons, are injected into the confinement field from ion sources located outside the field. The rotational energy of the parrticles is increased at the gradients by imposing an oscillating transverse electrical field thereacross. The imposition of such oscillating transverse electrical fields improves the reflection capability of such gradient fielda so that the reactive particles are retained more effectively within the zone. With the attainment of appropriate densities of plasma particles and provided that such particles are at a sufficiently high temperature, neutron-producing reactions ensue and large quantities of neutrons emerge from the containment zone. (AEC)

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syarifah, Ratna Dewi, E-mail: syarifah.physics@gmail.com; Suud, Zaki, E-mail: szaki@fi.itb.ac.id

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the additionmore » of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.« less

  19. Reactivity effects in VVER-1000 of the third unit of the kalinin nuclear power plant at physical start-up. Computations in ShIPR intellectual code system with library of two-group cross sections generated by UNK code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zizin, M. N.; Zimin, V. G.; Zizina, S. N., E-mail: zizin@adis.vver.kiae.ru

    2010-12-15

    The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit ofmore » the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.« less

  20. Reactivity effects in VVER-1000 of the third unit of the kalinin nuclear power plant at physical start-up. Computations in ShIPR intellectual code system with library of two-group cross sections generated by UNK code

    NASA Astrophysics Data System (ADS)

    Zizin, M. N.; Zimin, V. G.; Zizina, S. N.; Kryakvin, L. V.; Pitilimov, V. A.; Tereshonok, V. A.

    2010-12-01

    The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit of the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.

  1. Estimation of effective soil hydraulic properties at field scale via ground albedo neutron sensing

    NASA Astrophysics Data System (ADS)

    Rivera Villarreyes, C. A.; Baroni, G.; Oswald, S. E.

    2012-04-01

    Upscaling of soil hydraulic parameters is a big challenge in hydrological research, especially in model applications of water and solute transport processes. In this contest, numerous attempts have been made to optimize soil hydraulic properties using observations of state variables such as soil moisture. However, in most of the cases the observations are limited at the point-scale and then transferred to the model scale. In this way inherent small-scale soil heterogeneities and non-linearity of dominate processes introduce sources of error that can produce significant misinterpretation of hydrological scenarios and unrealistic predictions. On the other hand, remote-sensed soil moisture over large areas is also a new promising approach to derive effective soil hydraulic properties over its observation footprint, but it is still limited to the soil surface. In this study we present a new methodology to derive soil moisture at the intermediate scale between point-scale observations and estimations at the remote-sensed scale. The data are then used for the estimation of effective soil hydraulic parameters. In particular, ground albedo neutron sensing (GANS) was used to derive non-invasive soil water content in a footprint of ca. 600 m diameter and a depth of few decimeters. This approach is based on the crucial role of hydrogen compared to other landscape materials as neutron moderator. As natural neutron measured aboveground depends on soil water content, the vertical footprint of the GANS method, i.e. its penetration depth, does also. Firstly, this study was designed to evaluate the dynamics of GANS vertical footprint and derive a mathematical model for its prediction. To test GANS-soil moisture and its penetration depth, it was accompanied by other soil moisture measurements (FDR) located at 5, 20 and 40 cm depths over the GANS horizontal footprint in a sunflower field (Brandenburg, Germany). Secondly, a HYDRUS-1D model was set up with monitored values of crop height and meteorological variables as input during a four-month period. Parameter estimation (PEST) software was coupled to HYDRUS-1D in order to calibrate soil hydraulic properties based on soil water content data. Thirdly, effective soil hydraulic properties were derived from GANS-soil moisture. Our observations show the potential of GANS to compensate the lack of information at the intermediate scale, soil water content estimation and effective soil properties. Despite measurement volumes, GANS-derived soil water content compared quantitatively to FDRs at several depths. For one-hour estimations, root mean square error was estimated as 0.019, 0.029 and 0.036 m3/m3 for 5 cm, 20 cm and 40 cm depths, respectively. In the context of soil hydraulic properties, this first application of GANS method succeed and its estimations were comparable to those derived by other approaches.

  2. NEUTRONIC REACTOR CONSTRUCTION AND OPERATION

    DOEpatents

    West, J.M.; Weills, J.T.

    1960-03-15

    A method is given for operating a nuclear reactor having a negative coefficient of reactivity to compensate for the change in reactor reactivity due to the burn-up of the xenon peak following start-up of the reactor. When it is desired to start up the reactor within less than 72 hours after shutdown, the temperature of the reactor is lowered prior to start-up, and then gradually raised after start-up.

  3. Operation and reactivity measurements of an accelerator driven subcritical TRIGA reactor

    NASA Astrophysics Data System (ADS)

    O'Kelly, David Sean

    Experiments were performed at the Nuclear Engineering Teaching Laboratory (NETL) in 2005 and 2006 in which a 20 MeV linear electron accelerator operating as a photoneutron source was coupled to the TRIGA (Training, Research, Isotope production, General Atomics) Mark II research reactor at the University of Texas at Austin (UT) to simulate the operation and characteristics of a full-scale accelerator driven subcritical system (ADSS). The experimental program provided a relatively low-cost substitute for the higher power and complexity of internationally proposed systems utilizing proton accelerators and spallation neutron sources for an advanced ADSS that may be used for the burning of high-level radioactive waste. Various instrumentation methods that permitted ADSS neutron flux monitoring in high gamma radiation fields were successfully explored and the data was used to evaluate the Stochastic Pulsed Feynman method for reactivity monitoring.

  4. Experimental Measurements at the MASURCA Facility

    NASA Astrophysics Data System (ADS)

    Assal, W.; Bosq, J. C.; Mellier, F.

    2012-12-01

    Dedicated to the neutronics studies of fast and semi-fast reactor lattices, MASURCA (meaning “mock-up facility for fast breeder reactor studies at CADARACHE”) is an airflow cooled fast reactor operating at a maximum power of 5 kW playing an important role in the CEA research activities. At this facility, a lot of neutron integral experimental programs were undertaken. The purpose of this poster is to show a panorama of the facility from this experimental measurement point of view. A hint at the forthcoming refurbishment will be included. These programs include various experimental measurements (reactivity, distributions of fluxes, reaction rates), performed essentially with fission chambers, in accordance with different methods (noise methods, radial or axial traverses, rod drops) and involving several devices systems (monitors, fission chambers, amplifiers, power supplies, data acquisition systems ...). For this purpose are implemented electronics modules to shape the signals sent from the detectors in various mode (fluctuation, pulse, current). All the electric and electronic devices needed for these measurements and the relating wiring will be fully explained through comprehensive layouts. Data acquired during counting performed at the time of startup phase or rod drops are analyzed by the mean of a Neutronic Measurement Treatment (TMN in French) programmed on the basis of the MATLAB software. This toolbox gives the opportunity of data files management, reactivity valuation from neutronics measurements and transient or divergence simulation at zero power. Particular TMN using at MASURCA will be presented.

  5. Revisiting surface albedo changes over Greenland since 1980s using satellite data from GLASS, CLARA, MODIS, and Landsat

    NASA Astrophysics Data System (ADS)

    He, T.; Liang, S.; Zhang, Y.

    2017-12-01

    Massive melting events over Greenland have been observed over the past few decades. Accompanying the melting events are the surface albedo changes, which had temporal and spatial variations. Albedo changes over Greenland during the past few decades have been reported in previous studies with the help of satellite observations; however, magnitudes and timing in albedo trends differ greatly in those studies. This has limited our understanding of albedo change mechanisms over Greenland. In this study, we present an analysis of surface albedo change over Greenland since 1980s combining four satellite albedo datasets, namely MODIS, GLASS, CLARA, and Landsat. MODIS, GLASS, and CLARA albedo data are publicly available and Landsat albedos were derived in our earlier study trying to bridge the scale difference between coarse resolution data and ground measurements available from early 1980s. Inter-comparisons were made among the satellite albedos and against ground measurements. We have several new findings. First, trends in surface albedo change among the satellite albedo datasets generally agree with each other and with ground measurements. Second, all datasets showed negative albedo trends after 2000, but magnitudes differ greatly. Third, trends before 2000 from coarse resolution data are not significant but Landsat data observed positive albedo changes. Fourth, the turning point of albedo trend was found to be earlier than 2000. Those findings may bring new research topics on timing and magnitude, and an improved understanding mechanisms of the albedo changes over Greenland during the past few decades.

  6. The New Global Gapless GLASS Albedo Product from 1981 to 2014

    NASA Astrophysics Data System (ADS)

    Dou, B.; Liu, Q.; Qu, Y.; Wang, L.; Feng, Y.; Nie, A.; Li, X.; Zhang, J.; Niu, H.; Cai, E.; Zhao, L.

    2016-12-01

    Long-time series and various spatial resolution albedo products are needed for climate change and environmental studies at both global and regional scale. To meet these requirements, GLASS (Global LAnd Surface Satellites) gapless albedo product from 1981 to 2010 was firstly released in 2012 and widely used in long-term earth change researches. However, only shortwave albedo product in spatial resolution of 0.05 degree and 1 km were provided, which limits extensive applications for visible and near-infrared bands. Thus, new GLASS albedo product are produced and comprehensively enhanced in time series, algorithm and product content. Five major updates are conducted: 1) Time region is expanded from 1981-2010 to 1981-2014; 2) Physically ART (radiative transfer theory) and TCOWA (Three-Component Ocean Water Albedo) models rather than previous RTLSR (Rose-Thick Li-Sparse Reciprocal kernel combination) model are adopted for snow and inland water albedo estimation, respectively; 3) global shortwave, visible, and near-infrared albedos in spatial resolution of 0.05 degree and 1 km are released; 4) Clear-sky albedo is provided beyond the traditional black-sky albedo and white sky-albedo for amateurish user; 5) 250 m albedo product is provided in part of global for regional application. In this study, we firstly detail the updates of this inspiring product. Then the product is compared with the previous GLASS albedo product and preliminary assessed against field measurements under various land covers. Significant improvements are reported for snow and water albedo. The results demonstrate that the new GLASS albedo product is a gapless, long-term continuous, and self-consistent data-set. Comparing to previous GLASS albedo product, lower black-sky albedo and higher white-sky albedo are proved for permanent snow-cover region. Moreover, higher albedo of inland water and seasonal snow-cover mountain are captured. This product brings new chance and view to understanding long-term earth process and change.

  7. Morse Monte Carlo Radiation Transport Code System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmett, M.B.

    1975-02-01

    The report contains sections containing descriptions of the MORSE and PICTURE codes, input descriptions, sample problems, deviations of the physical equations and explanations of the various error messages. The MORSE code is a multipurpose neutron and gamma-ray transport Monte Carlo code. Time dependence for both shielding and criticality problems is provided. General three-dimensional geometry may be used with an albedo option available at any material surface. The PICTURE code provide aid in preparing correct input data for the combinatorial geometry package CG. It provides a printed view of arbitrary two-dimensional slices through the geometry. By inspecting these pictures one maymore » determine if the geometry specified by the input cards is indeed the desired geometry. 23 refs. (WRF)« less

  8. COUPLED FAST-THERMAL POWER BREEDER REACTOR

    DOEpatents

    Avery, R.

    1961-07-18

    A nuclear reactor having a region operating predominantly on fast neutrons and another region operating predominantly on slow neutrons is described. The fast region is a plutonium core and the slow region is a natural uranium blanket around the core. Both of these regions are free of moderator. A moderating reflector surrounds the uranium blanket. The moderating material and thickness of the reflector are selected so that fissions in the uranium blanket make a substantial contribution to the reactivity of the reactor.

  9. NEUTRONIC REACTOR

    DOEpatents

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makowska, Małgorzata G., E-mail: malg@dtu.dk; European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund; Theil Kuhn, Luise

    High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experimentsmore » successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less

  11. Validation of the new code package APOLLO2.8 for accurate PWR neutronics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santamarina, A.; Bernard, D.; Blaise, P.

    2013-07-01

    This paper summarizes the Qualification work performed to demonstrate the accuracy of the new APOLLO2.S/SHEM-MOC package based on JEFF3.1.1 nuclear data file for the prediction of PWR neutronics parameters. This experimental validation is based on PWR mock-up critical experiments performed in the EOLE/MINERVE zero-power reactors and on P.I. Es on spent fuel assemblies from the French PWRs. The Calculation-Experiment comparison for the main design parameters is presented: reactivity of UOX and MOX lattices, depletion calculation and fuel inventory, reactivity loss with burnup, pin-by-pin power maps, Doppler coefficient, Moderator Temperature Coefficient, Void coefficient, UO{sub 2}-Gd{sub 2}O{sub 3} poisoning worth, Efficiency ofmore » Ag-In-Cd and B4C control rods, Reflector Saving for both standard 2-cm baffle and GEN3 advanced thick SS reflector. From this qualification process, calculation biases and associated uncertainties are derived. This code package APOLLO2.8 is already implemented in the ARCADIA new AREVA calculation chain for core physics and is currently under implementation in the future neutronics package of the French utility Electricite de France. (authors)« less

  12. Multigroup computation of the temperature-dependent Resonance Scattering Model (RSM) and its implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghrayeb, S. Z.; Ouisloumen, M.; Ougouag, A. M.

    2012-07-01

    A multi-group formulation for the exact neutron elastic scattering kernel is developed. This formulation is intended for implementation into a lattice physics code. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. A computer program has been written to test the formulation for various nuclides. Results of the multi-group code have been verified against the correct analytic scattering kernel. In both cases neutrons were started at various energies and temperatures and the corresponding scattering kernels were tallied.more » (authors)« less

  13. The role of accelerators in the nuclear fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Hiroshi.

    1990-01-01

    The use of neutrons produced by the medium energy proton accelerator (1 GeV--3 GeV) has considerable potential in reconstructing the nuclear fuel cycle. About 1.5 {approximately} 2.5 ton of fissile material can be produced annually by injecting a 450 MW proton beam directly into fertile materials. A source of neutrons, produced by a proton beam, to supply subcritical reactors could alleviate many of the safety problems associated with critical assemblies, such as positive reactivity coefficients due to coolant voiding. The transient power of the target can be swiftly controlled by controlling the power of the proton beam. Also, the usemore » of a proton beam would allow more flexibility in the choice of fuel and structural materials which otherwise might reduce the reactivity of reactors. This paper discusses the rate of accelerators in the transmutation of radioactive wastes of the nuclear fuel cycles. 34 refs., 17 figs., 9 tabs.« less

  14. Variability of albedo and utility of the MODIS albedo product in forested wetlands

    USGS Publications Warehouse

    Sumner, David M.; Wu, Qinglong; Pathak, Chandra S.

    2011-01-01

    Albedo was monitored over a two-year period (beginning April 2008) at three forested wetland sites in Florida, USA using up- and down-ward facing pyranometers. Water level, above and below land surface, is the primary control on the temporal variability of daily albedo. Relatively low reflectivity of water accounts for the observed reductions in albedo with increased inundation of the forest floor. Enhanced canopy shading of the forest floor was responsible for lower sensitivity of albedo to water level at the most dense forest site. At one site, the most dramatic reduction in daily albedo was observed during the inundation of a highly-reflective, calcareous periphyton-covered land surface. Satellite-based Moderate-Resolution Imaging Spectroradiometer (MODIS) estimates of albedo compare favorably with measured albedo. Use of MODIS albedo values in net radiation computations introduced a root mean squared error of less than 4.7 W/m2 and a mean, annual bias of less than 2.3 W/m2 (1.7%). These results suggest that MODIS-estimated albedo values can reliably be used to capture areal and temporal variations in albedo that are important to the surface energy balance.

  15. Formulation and experimental evaluation of closed-form control laws for the rapid maneuvering of reactor neutronic power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, J.A.

    1989-09-01

    This report describes both the theoretical development and the experimental evaluation of a novel, robust methodology for the time-optimal adjustment of a reactor's neutronic power under conditions of closed-loop digital control. Central to the approach are the MIT-SNL Period-Generated Minimum Time Control Laws' which determine the rate at which reactivity should be changed in order to cause a reactor's neutronic power to conform to a specified trajectory. Using these laws, reactor power can be safely raised by five to seven orders of magnitude in a few seconds. The MIT-SNL laws were developed to facilitate rapid increases of neutronic power onmore » spacecraft reactors operating in an SDI environment. However, these laws are generic and have other applications including the rapid recovery of research and test reactors subsequent to an unanticipated shutdown, power increases following the achievement of criticality on commercial reactors, power adjustments on commercial reactors so as to minimize thermal stress, and automated startups. The work reported here was performed by the Massachusetts Institute of Technology under contract to the Sandia National Laboratories. Support was also provided by the US Department of Energy's Division of University and Industry Programs. The work described in this report is significant in that a novel solution to the problem of time-optimal control of neutronic power was identified, in that a rigorous description of a reactor's dynamics was derived in that the rate of change of reactivity was recognized as the proper control signal, and in that extensive experimental trials were conducted of these newly developed concepts on actual nuclear reactors. 43 refs., 118 figs., 11 tabs.« less

  16. GUINEVERE experiment: Kinetic analysis of some reactivity measurement methods by deterministic and Monte Carlo codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bianchini, G.; Burgio, N.; Carta, M.

    The GUINEVERE experiment (Generation of Uninterrupted Intense Neutrons at the lead Venus Reactor) is an experimental program in support of the ADS technology presently carried out at SCK-CEN in Mol (Belgium). In the experiment a modified lay-out of the original thermal VENUS critical facility is coupled to an accelerator, built by the French body CNRS in Grenoble, working in both continuous and pulsed mode and delivering 14 MeV neutrons by bombardment of deuterons on a tritium-target. The modified lay-out of the facility consists of a fast subcritical core made of 30% U-235 enriched metallic Uranium in a lead matrix. Severalmore » off-line and on-line reactivity measurement techniques will be investigated during the experimental campaign. This report is focused on the simulation by deterministic (ERANOS French code) and Monte Carlo (MCNPX US code) calculations of three reactivity measurement techniques, Slope ({alpha}-fitting), Area-ratio and Source-jerk, applied to a GUINEVERE subcritical configuration (namely SC1). The inferred reactivity, in dollar units, by the Area-ratio method shows an overall agreement between the two deterministic and Monte Carlo computational approaches, whereas the MCNPX Source-jerk results are affected by large uncertainties and allow only partial conclusions about the comparison. Finally, no particular spatial dependence of the results is observed in the case of the GUINEVERE SC1 subcritical configuration. (authors)« less

  17. Assessment of the 3He pressure inside the CABRI transient rods - Development of a surrogate model based on measurements and complementary CFD calculations

    NASA Astrophysics Data System (ADS)

    Clamens, Olivier; Lecerf, Johann; Hudelot, Jean-Pascal; Duc, Bertrand; Cadiou, Thierry; Blaise, Patrick; Biard, Bruno

    2018-01-01

    CABRI is an experimental pulse reactor, funded by the French Nuclear Safety and Radioprotection Institute (IRSN) and operated by CEA at the Cadarache research center. It is designed to study fuel behavior under RIA conditions. In order to produce the power transients, reactivity is injected by depressurization of a neutron absorber (3He) situated in transient rods inside the reactor core. The shapes of power transients depend on the total amount of reactivity injected and on the injection speed. The injected reactivity can be calculated by conversion of the 3He gas density into units of reactivity. So, it is of upmost importance to properly master gas density evolution in transient rods during a power transient. The 3He depressurization was studied by CFD calculations and completed with measurements using pressure transducers. The CFD calculations show that the density evolution is slower than the pressure drop. Surrogate models were built based on CFD calculations and validated against preliminary tests in the CABRI transient system. Studies also show that it is harder to predict the depressurization during the power transients because of neutron/3He capture reactions that induce a gas heating. This phenomenon can be studied by a multiphysics approach based on reaction rate calculation thanks to Monte Carlo code and study the resulting heating effect with the validated CFD simulation.

  18. Neutronic calculation of fast reactors by the EUCLID/V1 integrated code

    NASA Astrophysics Data System (ADS)

    Koltashev, D. A.; Stakhanova, A. A.

    2017-01-01

    This article considers neutronic calculation of a fast-neutron lead-cooled reactor BREST-OD-300 by the EUCLID/V1 integrated code. The main goal of development and application of integrated codes is a nuclear power plant safety justification. EUCLID/V1 is integrated code designed for coupled neutronics, thermomechanical and thermohydraulic fast reactor calculations under normal and abnormal operating conditions. EUCLID/V1 code is being developed in the Nuclear Safety Institute of the Russian Academy of Sciences. The integrated code has a modular structure and consists of three main modules: thermohydraulic module HYDRA-IBRAE/LM/V1, thermomechanical module BERKUT and neutronic module DN3D. In addition, the integrated code includes databases with fuel, coolant and structural materials properties. Neutronic module DN3D provides full-scale simulation of neutronic processes in fast reactors. Heat sources distribution, control rods movement, reactivity level changes and other processes can be simulated. Neutron transport equation in multigroup diffusion approximation is solved. This paper contains some calculations implemented as a part of EUCLID/V1 code validation. A fast-neutron lead-cooled reactor BREST-OD-300 transient simulation (fuel assembly floating, decompression of passive feedback system channel) and cross-validation with MCU-FR code results are presented in this paper. The calculations demonstrate EUCLID/V1 code application for BREST-OD-300 simulating and safety justification.

  19. [Temporal and Spatial Characteristics of Lake Taihu Surface Albedo and Its Impact Factors].

    PubMed

    Cao, Chang; Li, Xu-hui; Zhang, Mi; Liu, Shou-dong; Xiao, Wei; Xiao, Qi-tao; Xu, Jia-ping

    2015-10-01

    Lake surface albedo determines energy balance of water-atmospheric interface and water physical environment. Solar elevation angle, cloudiness, wind speed, water quality and other factors can affect lake surface albedo. Using solar radiation, wind speed, and water quality data (turbidity and chlorophyll-a concentration) which were observed in four eddy covariance sites (Meiliangwan, Dapukou, Bifenggang and Xiaoleishan i. e. MLW, DPK, BFG and XLS) in Lake Taihu and clearness index (k(t)), the influence of these factors on Lake Taihu surface albedo and the reasons that led to its spatial difference were investigated. The results showed that solar elevation angle played a leading role in the diurnal and seasonal change of lake surface albedo; lake surface albedo reached two peaks in 0 < k(t) < 0.1 and 0.4 < k(t) < 0.6 respectively, when solar elevation angle was below 35 degrees. The surface albedo increased with the increasing wind speed, turbidity and chlorophyll-a concentration. However, wind could indirectly affect surface albedo through leading to the changes in sediment resuspension and chlorophyll-a distribution. The sequence of albedo in the four sites was XLS > BFG > DPK > MLW. XLS and BFG belonged to the higher albedo group, while DPK and MLW belonged to the lower albedo group. The different biological environments caused by aquatic macrophytes and algae resulting in the spatial variation of Lake Taihu surface albedo. The relationship between albedo and chlorophyll-a concentration was not a very sensitive factor for indicating the outbreak of algae. This study can provide theoretical reference for lake albedo parameterization.

  20. Obtaining higher-accuracy estimates of water-rich rocks and water-poor sand dunes on Mars in active neutron experiments

    NASA Astrophysics Data System (ADS)

    Gabriel, T. S. J.; Hardgrove, C.; Litvak, M. L.; Nowicki, S.; Mitrofanov, I. G.; Boynton, W. V.; Fedosov, F.; Golovin, D.; Jun, I.; Mischna, M.; Tate, C. G.; Moersch, J.; Harshman, K.; Kozyrev, A.; Malakhov, A. V.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Vostrukhin, A.; Thompson, L. M.

    2017-12-01

    The Dynamic Albedo of Neutrons (DAN) experiment on the Mars Science Laboratory Curiosity Rover delivers high-energy (14.1 MeV) pulses of neutrons into the surface when operating in "active" mode. Neutrons are moderated in the subsurface and return to two detectors to provide a time-of-flight profile in 64 time-bins in epithermal and thermal energy ranges. Results are compared to simulations of the experiment in the Monte Carlo N-Particle Transport Code where several aspects are modeled including the DAN detectors, neutron source, rover components, and underlying rock. Models can be improved by increasing the fidelity of the rock geochemistry as informed by instruments including the Alpha Particle X-Ray Spectrometer (APXS). Furthermore, increasing the fidelity of the rock morphology in models is enabled by the suite of imaging instruments on the rover.To rapidly interpret DAN data a set of pre-simulated generic rock density and bulk geochemistry models are compared to several DAN active observations. While, to first order, this methodology provides an indication of significant geochemical changes in the subsurface, higher-fidelity models should be used to provide accurate constraints on water content, depth of geologic layers, or abundance of neutron absorbers. For example, in high-silicon, low-iron rocks observed along the rover's traverse, generic models can differ by several wt%H2O from models that use APXS measurements of nearby drill samples. Accurate measurements of high-silicon targets are necessary in outlining the extent of aqueous alteration and hydrothermal activity in Gale Crater. Additionally, we find that for DAN active experiments over sand dunes best-fit models can differ by greater than 0.5 wt%HO when the upper layer density is reduced by 0.6 g/cm3 to account for the low-bulk density of sand. In areas where the rock geochemistry differs little from generic models the difference in results is expectedly less disparate. We report refined wt%HO values for high-silicon, aqueously-altered rock and comparatively dry sand dunes along the rover traverse. We also outline the methodology for providing accurate geochemical and morphological constraints using DAN active measurements.

  1. The determination of surface albedo from meteorological satellites

    NASA Technical Reports Server (NTRS)

    Johnson, W. T.

    1977-01-01

    A surface albedo was determined from visible data collected by the NOAA-4 polar orbiting meteorological satellite. To filter out the major cause of atmospheric reflectivity, namely clouds, techniques were developed and applied to the data resulting in a map of global surface albedo. Neglecting spurious surface albedos for regions with persistent cloud cover, sun glint effects, insufficient reflected light and, at this time, some unresolved influences, the surface albedos retrieved from satellite data closely matched those of a global surface albedo map produced from surface and aircraft measurements and from characteristic albedos for land type and land use.

  2. Low-power lead-cooled fast reactor loaded with MOX-fuel

    NASA Astrophysics Data System (ADS)

    Sitdikov, E. R.; Terekhova, A. M.

    2017-01-01

    Fast reactor for the purpose of implementation of research, education of undergraduate and doctoral students in handling innovative fast reactors and training specialists for atomic research centers and nuclear power plants (BRUTs) was considered. Hard neutron spectrum achieved in the fast reactor with compact core and lead coolant. Possibility of prompt neutron runaway of the reactor is excluded due to the low reactivity margin which is less than the effective fraction of delayed neutrons. The possibility of using MOX fuel in the BRUTs reactor was examined. The effect of Keff growth connected with replacement of natural lead coolant to 208Pb coolant was evaluated. The calculations and reactor core model were performed using the Serpent Monte Carlo code.

  3. Fission and activation of uranium by fusion-plasma neutrons

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Mcfarland, D. R.

    1978-01-01

    Fusion-fission hybrid reactors are discussed in terms of two main purposes: to breed fissile materials (Pu 233 and Th 233 from U 238 or Th 232) for use in low-reactivity breeders, and to produce tritium from lithium to refuel fusion plasma cores. Neutron flux generation is critical for both processes. Various methods for generating the flux are described, with attention to new geometries for multiple plasma focus arrays, e.g., hypocycloidal pinch and staged plasma focus devices. These methods are evaluated with reference to their applicability to D-D fusion reactors, which will ensure a virtually unlimited energy supply. Accurate observations of the neutron flux from such schemes are obtained by using different target materials in the plasma focus.

  4. Effect of land cover change on snow free surface albedo across the continental United States

    USGS Publications Warehouse

    Wickham, J.; Nash, M.S.; Barnes, Christopher A.

    2016-01-01

    Land cover changes (e.g., forest to grassland) affect albedo, and changes in albedo can influence radiative forcing (warming, cooling). We empirically tested albedo response to land cover change for 130 locations across the continental United States using high resolution (30 m-×-30 m) land cover change data and moderate resolution (~ 500 m-×-500 m) albedo data. The land cover change data spanned 10 years (2001 − 2011) and the albedo data included observations every eight days for 13 years (2001 − 2013). Empirical testing was based on autoregressive time series analysis of snow free albedo for verified locations of land cover change. Approximately one-third of the autoregressive analyses for woody to herbaceous or forest to shrub change classes were not significant, indicating that albedo did not change significantly as a result of land cover change at these locations. In addition, ~ 80% of mean differences in albedo arising from land cover change were less than ± 0.02, a nominal benchmark for precision of albedo measurements that is related to significant changes in radiative forcing. Under snow free conditions, we found that land cover change does not guarantee a significant albedo response, and that the differences in mean albedo response for the majority of land cover change locations were small.

  5. Coarse Scale In Situ Albedo Observations over Heterogeneous Land Surfaces and Validation Strategy

    NASA Astrophysics Data System (ADS)

    Xiao, Q.; Wu, X.; Wen, J.; BAI, J., Sr.

    2017-12-01

    To evaluate and improve the quality of coarse-pixel land surface albedo products, validation with ground measurements of albedo is crucial over the spatially and temporally heterogeneous land surface. The performance of albedo validation depends on the quality of ground-based albedo measurements at a corresponding coarse-pixel scale, which can be conceptualized as the "truth" value of albedo at coarse-pixel scale. The wireless sensor network (WSN) technology provides access to continuously observe on the large pixel scale. Taking the albedo products as an example, this paper was dedicated to the validation of coarse-scale albedo products over heterogeneous surfaces based on the WSN observed data, which is aiming at narrowing down the uncertainty of results caused by the spatial scaling mismatch between satellite and ground measurements over heterogeneous surfaces. The reference value of albedo at coarse-pixel scale can be obtained through an upscaling transform function based on all of the observations for that pixel. We will devote to further improve and develop new method that that are better able to account for the spatio-temporal characteristic of surface albedo in the future. Additionally, how to use the widely distributed single site measurements over the heterogeneous surfaces is also a question to be answered. Keywords: Remote sensing; Albedo; Validation; Wireless sensor network (WSN); Upscaling; Heterogeneous land surface; Albedo truth at coarse-pixel scale

  6. Areal-Averaged Spectral Surface Albedo in an Atlantic Coastal Area: Estimation from Ground-Based Transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, Evgueni; Barnard, James; Flynn, Connor

    Tower-based data combined with high-resolution satellite products have been used to produce surface albedo at various spatial scales over land. Because tower-based albedo data are available at only a few sites, surface albedos using these combined data are spatially limited. Moreover, tower-based albedo data are not representative of highly heterogeneous regions. To produce areal-averaged and spectrally-resolved surface albedo for regions with various degrees of surface heterogeneity, we have developed a transmission-based retrieval and demonstrated its feasibility for relatively homogeneous land surfaces. Here we demonstrate its feasibility for a highly heterogeneous coastal region. We use the atmospheric transmission measured during amore » 19-month period (June 2009 – December 2010) by a ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR) at five wavelengths (0.415, 0.5, 0.615, 0.673 and 0.87 µm) at the Department of Energy’s Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) site located on Graciosa Island. We compare the MFRSR-retrieved areal-averaged surface albedo with albedo derived from Moderate Resolution Imaging Spectroradiometer (MODIS) observations, and also a composite-based albedo. Lastly, we demonstrate that these three methods produce similar spectral signatures of surface albedo; however, the MFRSR-retrieved albedo, is higher on average (≤0.04) than the MODIS-based areal-averaged surface albedo and the largest difference occurs in winter.« less

  7. Areal-Averaged Spectral Surface Albedo in an Atlantic Coastal Area: Estimation from Ground-Based Transmission

    DOE PAGES

    Kassianov, Evgueni; Barnard, James; Flynn, Connor; ...

    2017-07-12

    Tower-based data combined with high-resolution satellite products have been used to produce surface albedo at various spatial scales over land. Because tower-based albedo data are available at only a few sites, surface albedos using these combined data are spatially limited. Moreover, tower-based albedo data are not representative of highly heterogeneous regions. To produce areal-averaged and spectrally-resolved surface albedo for regions with various degrees of surface heterogeneity, we have developed a transmission-based retrieval and demonstrated its feasibility for relatively homogeneous land surfaces. Here we demonstrate its feasibility for a highly heterogeneous coastal region. We use the atmospheric transmission measured during amore » 19-month period (June 2009 – December 2010) by a ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR) at five wavelengths (0.415, 0.5, 0.615, 0.673 and 0.87 µm) at the Department of Energy’s Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) site located on Graciosa Island. We compare the MFRSR-retrieved areal-averaged surface albedo with albedo derived from Moderate Resolution Imaging Spectroradiometer (MODIS) observations, and also a composite-based albedo. Lastly, we demonstrate that these three methods produce similar spectral signatures of surface albedo; however, the MFRSR-retrieved albedo, is higher on average (≤0.04) than the MODIS-based areal-averaged surface albedo and the largest difference occurs in winter.« less

  8. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    NASA Astrophysics Data System (ADS)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-09-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.

  9. Mountain glaciers darkening: geochemical characterizazion of cryoconites and their radiative impact on the Vadret da Morteratsch (Swiss Alps)

    NASA Astrophysics Data System (ADS)

    Di Mauro, Biagio; Baccolo, Giovanni; Garzonio, Roberto; Piazzalunga, Andrea; Massabò, Dario; Colombo, Roberto

    2016-04-01

    Mountain glaciers represent an important source of fresh water across the globe. It is well known that these reservoirs are seriously threatened by global climate change, and a widespread reduction of glacier extension has been observed in recent years. Surface processes that promote ice melting are driven both by air temperature/precipitation and surface albedo. This latter is mainly influenced by the growth of snow grains and by the impurities content (such as mineral dust, soot, ash etc.). The origin of these light-absorbing impurities can be local or distal, and often, as a consequence of melting processes, they can aggregate on the glacier tongue, forming characteristics cryoconites, that decrease ice albedo and hence promote the melting. In this contribution, we coupled satellite images (EO1 - Hyperion and Landsat 8 - OLI) and ground hyperspectral data (ASD field spectrometer) for characterizing ice and snow surface reflectance of the Vadret da Morteratsch glacier (Swiss Alps). On the glacier ablation zone, we sampled ice, snow, surface dust and cryoconite material. To evaluate the possible impact of anthropogenic and natural emissions on cryoconites formation, we determined their geochemical composition (through the Neutron Activation Analysis, NAA) and the concentration of Black Carbon (BC), Organic Carbon (OC), Elemental Carbon (EC) and Levoglucosan. From satellite data, we computed the Snow Darkening Index (SDI), which is non-linearly correlated with dust content in snow. Results showed that, during 2015 summer season, ice albedo in the ablation zone reached very low values of about 0.1-0.2. The darkening of the glacier can be attributed to the impact of surface dust (from lateral moraine and Saharan desert) and cryoconites, coupled with grain growth driven by the extremely warm 2015 summer. The geochemical characterization of non-ice material contained in the cryoconites can provide important information regarding their source and the possible impact of anthropogenic emissions on cryoconites formation and evolution.

  10. The ionizing radiation environment of LDEF prerecovery predictions

    NASA Technical Reports Server (NTRS)

    Watts, John W., Jr.; Derrickson, James H.; Parnell, T. A.; Fishman, G. J.; Harmon, A.; Benton, E. V.; Frank, A. L.; Heinrich, Wolfgang

    1991-01-01

    The Long Duration Exposure Facility (LDEF) was exposed to several sources of ionizing radiation while in orbit. The principal ones were trapped belt protons and electrons, galactic cosmic rays, and albedo particles (protons and neutrons) from the atmosphere. Large solar flares in 1989 may have caused a small contribution. Prior to the recovery of the spacecraft, a number of calculations and estimates were made to predict the radiation exposure of the spacecraft and experiments. These were made to assess whether measurable radiation effects might exist, and to plan the analysis of the large number of radiation measurements available on the LDEF. Calculations and estimates of total dose, particle fluences, linear energy transfer spectra, and induced radioactivity were made. The principal sources of radiation is described, and the preflight predictions are summarized.

  11. A SPACE TRAJECTORY RADIATION EXPOSURE PROCEDURE FOR CISLUNAR MISSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cranford, W.; Falkenbury, R.F.; Miller, R.A.

    1962-07-31

    The Space Trajectory Radiation Exposure Procedure (STREP) is designed for use in computing the timeintegrated spectra for any specified trajectory in cislunar space for any combination of the several components of space radiations. These components include Van Allen protons and electrons; solar-flare protons, electrons, heavy particles, and gamma radiation; cosmic protons and heavy particles; albedo neutrons, and aurora borealis gamma radiation. The program can also be used to calculate the accumulated dose behind a thin vehicle skin at any time after the start of the mission. The technique of interpolation for intermediate points along the prescribed space trajectory is describedmore » in detail. The method of representation of the space radiation data as input for the calculation of the dose and time-integrated spectra is discussed. (auth)« less

  12. Analysis of global land surface albedo climatology and spatial-temporal variation during 1981-2010 from multiple satellite products

    NASA Astrophysics Data System (ADS)

    He, Tao; Liang, Shunlin; Song, Dan-Xia

    2014-09-01

    For several decades, long-term time series data sets of multiple global land surface albedo products have been generated from satellite observations. These data sets have been used as one of the key variables in climate change studies. This study aims to assess the surface albedo climatology and to analyze long-term albedo changes, from nine satellite-based data sets for the period 1981-2010, on a global basis. Results show that climatological surface albedo data sets derived from satellite observations can be used to validate, calibrate, and further improve surface albedo simulations and parameterizations in current climate models. However, the albedo products derived from the International Satellite Cloud Climatology Project and the Global Energy and Water Exchanges Project have large seasonal biases. At latitudes higher than 50°, the maximal difference in winter zonal albedo ranges from 0.1 to 0.4 among the nine satellite data sets. Satellite-based albedo data sets agree relatively well during the summer at high latitudes, with a standard deviation of 0.04 for the 70°-80° zone in both hemispheres. The fine-resolution (0.05°) data sets agree well with each other for all the land cover types in middle to low latitudes; however, large spread was identified for their albedos at middle to high latitudes over land covers with mixed snow and sparse vegetation. By analyzing the time series of satellite-based albedo products over the past three decades, albedo of the Northern Hemisphere was found to be decreasing in July, likely due to the shrinking snow cover. Meanwhile, albedo in January was found to be increasing, likely because of the expansion of snow cover in northern winter. However, to improve the albedo estimation at high latitudes, and ultimately the climate models used for long-term climate change studies, a still better understanding of differences between satellite-based albedo data sets is required.

  13. Combining NLCD and MODIS to create a land cover-albedo database for the continental United States

    USGS Publications Warehouse

    Wickham, J.; Barnes, Christopher A.; Nash, M.S.; Wade, T.G.

    2015-01-01

    Land surface albedo is an essential climate variable that is tightly linked to land cover, such that specific land cover classes (e.g., deciduous broadleaf forest, cropland) have characteristic albedos. Despite the normative of land-cover class specific albedos, there is considerable variability in albedo within a land cover class. The National Land Cover Database (NLCD) and the Moderate Resolution Imaging Spectroradiometer (MODIS) albedo product were combined to produce a long-term (14 years) integrated land cover-albedo database for the continental United States that can be used to examine the temporal behavior of albedo as a function of land cover. The integration identifies areas of homogeneous land cover at the nominal spatial resolution of the MODIS (MCD43A) albedo product (500 m × 500 m) from the NLCD product (30 m × 30 m), and provides an albedo data record per 500 m × 500 m pixel for 14 of the 16 NLCD land cover classes. Individual homogeneous land cover pixels have up to 605 albedo observations, and 75% of the pixels have at least 319 MODIS albedo observations (≥ 50% of the maximum possible number of observations) for the study period (2000–2013). We demonstrated the utility of the database by conducting a multivariate analysis of variance of albedo for each NLCD land cover class, showing that locational (pixel-to-pixel) and inter-annual variability were significant factors in addition to expected seasonal (intra-annual) and geographic (latitudinal) effects.

  14. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Gaustad, K. L.; Mlawer, E. J.; Long, C. N.; Delamere, J.

    2011-09-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  15. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Gaustad, K. L.; Mlawer, E. J.; Long, C. N.; Delamere, J.

    2011-05-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  16. The effects of stainless steel radial reflector on core reactivity for small modular reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Jung Kil, E-mail: jkkang@email.kings.ac.kr; Hah, Chang Joo, E-mail: changhah@kings.ac.kr; Cho, Sung Ju, E-mail: sungju@knfc.co.kr

    Commercial PWR core is surrounded by a radial reflector, which consists of a baffle and water. Radial reflector is designed to reflect neutron back into the core region to improve the neutron efficiency of the reactor and to protect the reactor vessels from the embrittling effects caused by irradiation during power operation. Reflector also helps to flatten the neutron flux and power distributions in the reactor core. The conceptual nuclear design for boron-free small modular reactor (SMR) under development in Korea requires to have the cycle length of 4∼5 years, rated power of 180 MWth and enrichment less than 5more » w/o. The aim of this paper is to analyze the effects of stainless steel radial reflector on the performance of the SMR using UO{sub 2} fuels. Three types of reflectors such as water, water/stainless steel 304 mixture and stainless steel 304 are selected to investigate the effect on core reactivity. Additionally, the thickness of stainless steel and double layer reflector type are also investigated. CASMO-4/SIMULATE-3 code system is used for this analysis. The results of analysis show that single layer stainless steel reflector is the most efficient reflector.« less

  17. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolodosky, A.; Fratoni, M.

    2014-11-20

    Pre-conceptual fusion blanket designs require research and development to reflect important proposed changes in the design of essential systems, and the new challenges they impose on related fuel cycle systems. One attractive feature of using liquid lithium as the breeder and coolant is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. If the chemical reactivity of lithium could be overcome, the result would have a profound impact on fusion energy and associated safety basis.more » The overriding goal of this project is to develop a lithium-based alloy that maintains beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns. To minimize the number of alloy combinations that must be explored, only those alloys that meet certain nuclear performance metrics will be considered for subsequent thermodynamic study. The specific scope of this study is to evaluate the neutronics performance of lithium-based alloys in the blanket of an inertial confinement fusion (ICF) engine. The results of this study will inform the development of lithium alloys that would guarantee acceptable neutronics performance while mitigating the chemical reactivity issues of pure lithium.« less

  18. Extending the maximum operation time of the MNSR reactor.

    PubMed

    Dawahra, S; Khattab, K; Saba, G

    2016-09-01

    An effective modification to extend the maximum operation time of the Miniature Neutron Source Reactor (MNSR) to enhance the utilization of the reactor has been tested using the MCNP4C code. This modification consisted of inserting manually in each of the reactor inner irradiation tube a chain of three polyethylene-connected containers filled of water. The total height of the chain was 11.5cm. The replacement of the actual cadmium absorber with B(10) absorber was needed as well. The rest of the core structure materials and dimensions remained unchanged. A 3-D neutronic model with the new modifications was developed to compare the neutronic parameters of the old and modified cores. The results of the old and modified core excess reactivities (ρex) were: 3.954, 6.241 mk respectively. The maximum reactor operation times were: 428, 1025min and the safety reactivity factors were: 1.654 and 1.595 respectively. Therefore, a 139% increase in the maximum reactor operation time was noticed for the modified core. This increase enhanced the utilization of the MNSR reactor to conduct a long time irradiation of the unknown samples using the NAA technique and increase the amount of radioisotope production in the reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Snow Cover and Vegetation-Induced Decrease in Global Albedo From 2002 to 2016

    NASA Astrophysics Data System (ADS)

    Li, Qiuping; Ma, Mingguo; Wu, Xiaodan; Yang, Hong

    2018-01-01

    Land surface albedo is an essential parameter in regional and global climate models, and it is markedly influenced by land cover change. Variations in the albedo can affect the surface radiation budget and further impact the global climate. In this study, the interannual variation of albedo from 2002 to 2016 was estimated on the global scale using Moderate Resolution Imaging Spectroradiometer (MODIS) datasets. The presence and causes of the albedo changes for each specific region were also explored. From 2002 to 2016, the MODIS-based albedo decreased globally, snow cover declined by 0.970 (percent per pixel), while the seasonally integrated normalized difference vegetation index increased by 0.175. Some obvious increases in the albedo were detected in Central Asia, northeastern China, parts of the boreal forest in Canada, and the temperate steppe in North America. In contrast, noticeable decreases in the albedo were found in the Siberian tundra, Europe, southeastern Australia, and northeastern regions of North America. In the Northern Hemisphere, the greening trend at high latitudes made more contribution to the decline in the albedo. However, the dramatic fluctuation of snow-cover at midlatitudes predominated in the change of albedo. Our analysis can help to understand the roles that vegetation and snow cover play in the variation of albedo on global and regional scales.

  20. A Continental United States High Resolution NLCD Land Cover – MODIS Albedo Database to Examine Albedo and Land Cover Change Relationships

    EPA Science Inventory

    Surface albedo influences climate by affecting the amount of solar radiation that is reflected at the Earth’s surface, and surface albedo is, in turn, affected by land cover. General Circulation Models typically use modeled or prescribed albedo to assess the influence of land co...

  1. Relationship Between Topography and the Eastern Equatorial Hydrogen Signal on Mars

    NASA Astrophysics Data System (ADS)

    Clevy, J. R.; Elphic, R. C.; Feldman, W. C.; Kattenhorn, S. A.

    2005-12-01

    Epithermal neutron flux data received from the Neutron Spectrometer, part of the Gamma Ray Spectrometer suite on board NASA's Mars Odyssey, indicates elevated equatorial hydrogen deposits partially encircle the Schiaparelli Basin. Deconvolution of the hydrogen signal statistically increased the resolution over the spectrometer's original 600 km footprint. The resulting map of hydrogen concentrations was further refined by ignoring all data <8.9% Water Equivalent Hydrogen (WEH). In so doing, this study provides the most detailed map to date of the hydrogen concentration maxima in this region and serves as a guide for future exploration. Projecting the Eastern Equatorial Hydrogen map onto the digital elevation model for the Schiaparelli Basin reveals several areas of interest. For simplification, these areas are identified by clock position relative to Schiaparelli. At the twelve o'clock position, a maximum exceeding 10% WEH occupies the upper, northern slope of a saddle between Henry Crater and unnamed craters west of Henry. Viking images of the nameless craters demonstrate wind streaks from the north veer to the southwest here, following topography. Surface drainage channels are apparent on the slope below the local WEH maximum. The 2:30 maximum lies over Tuscaloosa Crater and Verde Vallis. This >10% WEH maximum has the greatest aerial extent, roughly 200 km in diameter. At 5 o'clock, the fringing range adjacent to Brazos Valles lies within the surficially dark region called Sinus Sabaeus. It should be noted that projection of the albedo map over the terrain reveals dark grains concentrating in low areas, presumably having moved short distances by wind and gravity. The absence or presence of these grains does not seem to affect the measured WEH concentration as the signal's local maximum, about 10.2%, crosses areas of high and low albedo without an increase or decrease in signal strength. At 6 o'clock, two 10.4% WEH maxima line the north-facing slope of another mountain range. Both maxima are elongated, east to west. The maximum at the top of the peak overlaps the cirque-like bowl of an unnamed, degraded crater. Below the collapsed north wall of this crater sits another maximum, 100 km long by 50 km wide. The eastern end of this lower maximum contains a crater with a 6 km wide, 40 km long drainage channel leading out of the crater and down the slope toward Schiaparelli. The final WEH maximum, at 6:30, is 150 km wide by 180 km long and is centered over Evros Vallis. The maximum extends beyond Sabaeus into Noachis Terra without visibly increasing or decreasing at the albedo boundary. From this study it is clear that albedo features do not control the hydrogen signal. WEH concentrations were found both within and outside Sabaeus. It is also apparent that drainage channels are present near each maximum. This proximity may implicate areas of high WEH as the source of channel-carving fluids. Finally, WEH is not tied to a specific stratigraphic layer. The locations of the maxima can be grouped into north-facing slopes, both peaks and saddles, and broad plains containing well-developed drainage systems flowing away from the WEH maxima. The former could indicate up-slope orographic deposition of hydrogen in the form of water ice as air masses rise and cool, preferentially coating north-facing slopes. High signals in low plains may be related to subsequent drainage when temperatures were warm enough to permit flow without immediate sublimation.

  2. Spectral and diurnal variations in clear sky planetary albedo

    NASA Technical Reports Server (NTRS)

    Briegleb, B.; Ramanathan, V.

    1982-01-01

    Spectral and diurnal variations in the clear sky planetary albedo of the earth are calculated using a radiative transfer model to obtain January and July values for a 5 deg x 5 deg global grid. The model employs observed climatological values of temperatures, humidities, snow and sea-ice cover. The diurnal cycle of clear sky albedo is calculated in the following intervals: 0.2-0.5, 0.5-0.7, and 0.7-4 microns. Observed ozone distribution is specified as a function of latitude and season. The 0.2-0.5 micron spectral albedo is 10-20% higher than the total albedo for all latitudes because of Rayleigh scattering; the 0.5-0.7 micron albedo differs from the total albedo by 1-2% for most latitudes, while the 0.7-4 micron albedo is 5-10% lower than the total because of strong atmospheric absorption. Planetary albedo decreases from morning to local noon, with diurnal variations being particularly strong over water.

  3. Enhancement of the MODIS Daily Snow Albedo Product

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Schaaf, Crystal B.; Wang, Zhuosen; Riggs, George A.

    2009-01-01

    The MODIS daily snow albedo product is a data layer in the MOD10A1 snow-cover product that includes snow-covered area and fractional snow cover as well as quality information and other metadata. It was developed to augment the MODIS BRDF/Albedo algorithm (MCD43) that provides 16-day maps of albedo globally at 500-m resolution. But many modelers require daily snow albedo, especially during the snowmelt season when the snow albedo is changing rapidly. Many models have an unrealistic snow albedo feedback in both estimated albedo and change in albedo over the seasonal cycle context, Rapid changes in snow cover extent or brightness challenge the MCD43 algorithm; over a 16-day period, MCD43 determines whether the majority of clear observations was snow-covered or snow-free then only calculates albedo for the majority condition. Thus changes in snow albedo and snow cover are not portrayed accurately during times of rapid change, therefore the current MCD43 product is not ideal for snow work. The MODIS daily snow albedo from the MOD10 product provides more frequent, though less robust maps for pixels defined as "snow" by the MODIS snow-cover algorithm. Though useful, the daily snow albedo product can be improved using a daily version of the MCD43 product as described in this paper. There are important limitations to the MOD10A1 daily snow albedo product, some of which can be mitigated. Utilizing the appropriate per-pixel Bidirectional Reflectance Distribution Functions (BRDFs) can be problematic, and correction for anisotropic scattering must be included. The BRDF describes how the reflectance varies with view and illumination geometry. Also, narrow-to-broadband conversion specific for snow on different surfaces must be calculated and this can be difficult. In consideration of these limitations of MOD10A1, we are planning to improve the daily snow albedo algorithm by coupling the periodic per-pixel snow albedo from MCD43, with daily surface ref|outanoom, In this paper, we compare a daily version of MCD43B3 with the daily albedo from MOD10A1. and MCD43B3 with a 16-day average of MOD10A1, over Greenland. We also discuss some near-future planned enhancements to MOD10A1.

  4. Estimating big bluestem albedo from directional reflectance measurements

    NASA Technical Reports Server (NTRS)

    Irons, J. R.; Ranson, K. J.; Daughtry, C. S. T.

    1988-01-01

    Multidirectional reflectance factor measurements acquired in the summer of 1986 are used to make estimates of big bluestem grass albedo, evaluating the variation of albedo with changes in solar zenith angle and phenology. On any given day, the albedo was observed to increase by at least 19 percent as solar zenith angle increased. Changes in albedo were found to correspond to changes in the green leaf area index of the grass canopy. Estimates of albedo made using reflectance data acquired within only one or two azimuthal planes and at a restricted range of view zenith angle were evaluated and compared to 'true' albedos derived from all available reflectance factor data. It was found that even a limited amount of multiple direction reflectance data was preferable to a single nadir reflectance factor for the estimation of prarie grass albedo.

  5. Long-term record of top-of-atmosphere albedo generated from AVHRR data

    NASA Astrophysics Data System (ADS)

    Song, Z.

    2017-12-01

    Top-of-Atmosphere (TOA) albedo is a fundamental component of Earth's energy budget. Previously, long-term accurate TOA albedo products did not exist due to the lack of stable broadband observations. With a new albedo estimation methodology based on multispectral observations, TOA albedo since 1981 has been retrieved using data from the Advanced Very High Resolution Radiometer (AVHRR), which provides the longest record of satellite observations across the globe. To develop the long-term TOA albedo record, the instantaneous TOA albedo was calculated by the direct estimation method, which was built on training data pairs from coincident AVHRR TOA reflectance and Moderate Resolution Imaging Spectroradiometer (MODIS) TOA albedo. The instantaneous TOA albedo was then converted to daily mean and monthly mean albedo based on the diurnal curves from geostationary satellites. The TOA albedo results (AVHRR-TAL) were compared with Clouds and the Earth's Radiant Energy System (CERES) flux products for 2007. The monthly mean AVHRR-TAL agreed well with the CERES products, with a root mean square difference (RMSD) of 0.032 and a bias of 0.013. In addition, AVHRR-TAL showed similar seasonal variations to those seen in the CERES products. Further analysis on long-term time series showed good consistency between the two datasets (R2 > 0.95 and relative RMSD < 4%) from 2000 to 2015. Although some calibration issues remain to be solved, our datasets show the potential ability to observe the global TOA albedo from 1981 to the present.

  6. Assessment of NPP VIIRS Albedo Over Heterogeneous Crop Land in Northern China

    NASA Astrophysics Data System (ADS)

    Wu, Xiaodan; Wen, Jianguang; Xiao, Qing; Yu, Yunyue; You, Dongqin; Hueni, Andreas

    2017-12-01

    In this paper, the accuracy of Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) land surface albedo, which is derived from the direct estimation algorithm, was assessed using ground-based albedo observations from a wireless sensor network over a heterogeneous cropland in the Huailai station, northern China. Data from six nodes spanning 2013-2014 over vegetation, bare soil, and mixed terrain surfaces were utilized to provide ground reference at VIIRS pixel scale. The performance of VIIRS albedo was also compared with Global LAnd Surface Satellite (GLASS) and Moderate Resolution Imaging Spectroradiometer (MODIS) albedos (Collection 5 and 6). The results indicate that the current granular VIIRS albedo has a high accuracy with a root-mean-square error of 0.02 for typical land covers. They are significantly correlated with ground references indicated by a correlation coefficient (R) of 0.73. The VIIRS albedo shows distinct advantages to GLASS and MODIS albedos over bare soil and mixed-cover surfaces, while it is inferior to the other two products over vegetated surfaces. Furthermore, its time continuity and the ability to capture the abrupt change of surface albedo are better than that of GLASS and MODIS albedo.

  7. Albedo, Land Cover, and Daytime Surface Temperature Variation Across an Urbanized Landscape

    NASA Astrophysics Data System (ADS)

    Trlica, A.; Hutyra, L. R.; Schaaf, C. L.; Erb, A.; Wang, J. A.

    2017-11-01

    Land surface albedo is a key parameter controlling the local energy budget, and altering the albedo of built surfaces has been proposed as a tool to mitigate high near-surface temperatures in the urban heat island. However, most research on albedo in urban landscapes has used coarse-resolution data, and few studies have attempted to relate albedo to other urban land cover characteristics. This study provides an empirical description of urban summertime albedo using 30 m remote sensing measurements in the metropolitan area around Boston, Massachusetts, relating albedo to metrics of impervious cover fraction, tree canopy coverage, population density, and land surface temperature (LST). At 30 m spatial resolution, median albedo over the study area (excluding open water) was 0.152 (0.112-0.187). Trends of lower albedo with increasing urbanization metrics and temperature emerged only after aggregating data to 500 m or the boundaries of individual towns, at which scale a -0.01 change in albedo was associated with a 29 (25-35)% decrease in canopy cover, a 27 (24-30)% increase in impervious cover, and an increase in population from 11 to 386 km-2. The most intensively urbanized towns in the region showed albedo up to 0.035 lower than the least urbanized towns, and mean mid-morning LST 12.6°C higher. Trends in albedo derived from 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) measurements were comparable, but indicated a strong contribution of open water at this coarser resolution. These results reveal linkages between albedo and urban land cover character, and offer empirical context for climate resilient planning and future landscape functional changes with urbanization.

  8. MISR Level 3 Products

    Atmospheric Science Data Center

    2015-06-04

    ... nm), approximated from visible bands. Derived from a linear combination of MISR bands found in the Level 2 LAND, DHR field. Weiss et ... Level 2 ALBEDO, AlbedoRestrictive field. Local Albedo Local albedo, for 4 MISR spectral bands + broadband ...

  9. High-pressure and high-temperature neutron reflectometry cell for solid-fluid interface studies

    NASA Astrophysics Data System (ADS)

    Wang, P.; Lerner, A. H.; Taylor, M.; Baldwin, J. K.; Grubbs, R. K.; Majewski, J.; Hickmott, D. D.

    2012-07-01

    A new high pressure-temperature ( P - T Neutron Reflectometry (NR) cell developed at Los Alamos National Laboratory (LANL) is described that significantly extends the capabilities of solid/fluid interface investigations up to 200MPa ( ensuremath ˜ 30000 psi) and 200 ° C. The cell's simple aluminum construction makes it light and easy to operate while thinned neutron windows allow up to 74% neutron transmission. The wide-open neutron window geometry provides a maximum theoretical ensuremath Qz range of 0.31Å-1. Accurate T and P controls are integrated on the cell's control panel. Built-in powder wells provide the ability to saturate fluids with reactive solids, producing aqueous species and/or decomposing into gaseous phases. The cell is designed for samples up to 50.8mm in diameter and 10.0mm in thickness. An experiment investigating the high P - T corrosion behavior of aluminum on LANL's Surface ProfilE Analysis Reflectometer (SPEAR) is presented, demonstrating the functioning and capability of the cell. Finally, outlooks on high P - T NR applications and perspectives on future research are discussed.

  10. Sea Ice, Clouds, Sunlight, and Albedo: The Umbrella Versus the Blanket

    NASA Astrophysics Data System (ADS)

    Perovich, D. K.

    2017-12-01

    The Arctic sea ice cover has undergone a major decline in recent years, with reductions in ice extent, ice thickness, and ice age. Understanding the feedbacks and forcing driving these changes is critical in improving predictions. The surface radiation budget plays a central role in summer ice melt and is governed by clouds and surface albedo. Clouds act as an umbrella reducing the downwelling shortwave, but also serve as a blanket increasing the downwelling longwave, with the surface albedo also determining the net balance. Using field observations from the SHEBA program, pairs of clear and cloudy days were selected for each month from May through September and the net radiation flux was calculated for different surface conditions and albedos. To explore the impact of albedo we calculated a break even albedo, where the net radiation for cloudy skies is the same as clear skies. For albedos larger than the break-even value the net radiation flux is smaller under clear skies compared to cloudy skies. Break-even albedos ranged from 0.30 in September to 0.58 in July. For snow covered or bare ice, clear skies always resulted in less radiative heat input. In contrast, leads always had, and ponds usually had, more radiative heat input under clear skies than cloudy skies. Snow covered ice had a net radiation flux that was negative or near zero under clear skies resulting in radiative cooling. We combined the albedo of individual ice types with the area of those ice types to calculate albedos averaged over a 50 km x 50 km area. The July case had the smallest areally averaged albedo of 0.50. This was less than the breakeven albedo, so cloudy skies had a smaller net radiation flux than clear skies. For the cases from the other four months, the areally averaged albedo was greater than the break-even albedo. The areally averaged net radiation flux was negative under clear skies for the May and September cases.

  11. Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000-2013)

    NASA Astrophysics Data System (ADS)

    Alexander, P. M.; Tedesco, M.; Fettweis, X.; van de Wal, R. S. W.; Smeets, C. J. P. P.; van den Broeke, M. R.

    2014-12-01

    Accurate measurements and simulations of Greenland Ice Sheet (GrIS) surface albedo are essential, given the role of surface albedo in modulating the amount of absorbed solar radiation and meltwater production. In this study, we assess the spatio-temporal variability of GrIS albedo during June, July, and August (JJA) for the period 2000-2013. We use two remote sensing products derived from data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS), as well as outputs from the Modèle Atmosphérique Régionale (MAR) regional climate model (RCM) and data from in situ automatic weather stations. Our results point to an overall consistency in spatio-temporal variability between remote sensing and RCM albedo, but reveal a difference in mean albedo of up to ~0.08 between the two remote sensing products north of 70° N. At low elevations, albedo values simulated by the RCM are positively biased with respect to remote sensing products by up to ~0.1 and exhibit low variability compared with observations. We infer that these differences are the result of a positive bias in simulated bare ice albedo. MODIS albedo, RCM outputs, and in situ observations consistently indicate a decrease in albedo of -0.03 to -0.06 per decade over the period 2003-2013 for the GrIS ablation area. Nevertheless, satellite products show a decline in JJA albedo of -0.03 to -0.04 per decade for regions within the accumulation area that is not confirmed by either the model or in situ observations. These findings appear to contradict a previous study that found an agreement between in situ and MODIS trends for individual months. The results indicate a need for further evaluation of high elevation albedo trends, a reconciliation of MODIS mean albedo at high latitudes, and the importance of accurately simulating bare ice albedo in RCMs.

  12. Generalized Calibration of the Polarimetric Albedo Scale of Asteroids

    NASA Astrophysics Data System (ADS)

    Lupishko, D. F.

    2018-03-01

    Six different calibrations of the polarimetric albedo scale of asteroids have been published so far. Each of them contains its particular random and systematic errors and yields its values of geometric albedo. On the one hand, this complicates their analysis and comparison; on the other hand, it becomes more and more difficult to decide which of the proposed calibrations should be used. Moreover, in recent years, new databases on the albedo of asteroids obtained from the radiometric surveys of the sky with the orbital space facilities (the InfraRed Astronomical Satellite (IRAS), the Japanese astronomical satellite AKARI (which means "light"), the Wide-field Infrared Survey Explorer (WISE), and the Near-Earth Object Wide-field Survey Explorer (NEOWISE)) have appeared; and the database on the diameters and albedos of asteroids obtained from their occultations of stars has substantially increased. Here, we critically review the currently available calibrations and propose a new generalized calibration derived from the interrelations between the slope h and the albedo and between P min and the albedo. This calibration is based on all of the available series of the asteroid albedos and the most complete data on the polarization parameters of asteroids. The generalized calibration yields the values of the polarimetric albedo of asteroids in the system unified with the radiometric albedos and the albedos obtained from occultations of stars by asteroids. This, in turn, removes the difficulties in their comparison, joint analysis, etc.

  13. Close packing effects on clean and dirty snow albedo and associated climatic implications

    NASA Astrophysics Data System (ADS)

    He, C.; Liou, K. N.; Takano, Y.

    2017-12-01

    Previous modeling of snow albedo, a key climate feedback parameter, follows the independent scattering approximation (ISA) such that snow grains are considered as a number of separate units with distances longer than wavelengths. Here we develop a new snow albedo model for widely observed close-packed snow grains internally mixed with black carbon (BC) and demonstrate that albedo simulations match closer to observations. Close packing results in a stronger light absorption for clean and BC-contaminated snow. Compared with ISA, close packing reduces pure snow albedos by up to 0.05, whereas it enhances BC-induced snow albedo reduction and associated surface radiative forcing by up to 15% (20%) for fresh (old) snow, with larger enhancements for stronger structure packing. Finally, our results suggest that BC-snow albedo forcing and snow albedo feedback (climate sensitivity) are underestimated in previous modeling studies, making snow close packing consideration a necessity in climate modeling and analysis.

  14. Close packing effects on clean and dirty snow albedo and associated climatic implications

    NASA Astrophysics Data System (ADS)

    He, Cenlin; Takano, Yoshi; Liou, Kuo-Nan

    2017-04-01

    Previous modeling of snow albedo, a key climate feedback parameter, follows the independent scattering approximation (ISA) such that snow grains are considered as a number of separate units with distances longer than wavelengths. Here we develop a new snow albedo model for widely observed close-packed snow grains internally mixed with black carbon (BC) and demonstrate that albedo simulations match closer to observations. Close packing results in a stronger light absorption for clean and BC-contaminated snow. Compared with ISA, close packing reduces pure snow albedos by up to 0.05, whereas it enhances BC-induced snow albedo reduction and associated surface radiative forcing by up to 15% (20%) for fresh (old) snow, with larger enhancements for stronger structure packing. Finally, our results suggest that BC-snow albedo forcing and snow albedo feedback (climate sensitivity) are underestimated in previous modeling studies, making snow close packing consideration a necessity in climate modeling and analysis.

  15. Albedo Spatial Variability and Causes on the Western Greenland Ice Sheet Percolation Zone

    NASA Astrophysics Data System (ADS)

    Lewis, G.; Osterberg, E. C.; Hawley, R. L.; Koffman, B. G.; Marshall, H. P.; Birkel, S. D.; Dibb, J. E.

    2016-12-01

    Many recent studies have concluded that Greenland Ice Sheet (GIS) mass loss has been accelerating over recent decades, but spatial and temporal variations in GIS mass balance remain poorly understood due to a complex relationship among precipitation and temperature changes, increasing melt and runoff, ice discharge, and surface albedo. Satellite measurements from MODerate resolution Imaging Spectroradiometer (MODIS) indicate that albedo has been declining over the past decade, but the cause and extent of GIS albedo change remains poorly constrained by field data. As fresh snow (albedo > 0.85) warms and melts, its albedo decreases due to snow grain growth, promoting solar absorption, higher snowpack temperatures and further melt. However, dark impurities like soot and dust can also significantly reduce snow albedo, even in the dry snow zone. While many regional climate models (e.g. the Regional Atmospheric Climate MOdel - RACMO2) calculate albedo spatial resolutions on the order of 10-30 km, and MODIS averages albedo over 500 m, surface features like sastrugi can affect albedo on much smaller scales. Here we assess the relative importance of grain size and shape vs. impurity concentrations on albedo in the western GIS percolation zone. We collected broadband albedo measurements (300-2500 nm at 3-8 nm resolution) at 35 locations using an ASD FieldSpec4 spectroradiometer to simultaneously quantify radiative fluxes and spectral reflectance. Measurements were collected on 10 x 10 m, 1 x 1 km, 5 x 5 km, and 10 x 10 km grids to determine the spatial variability of albedo as part of the 850-km Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) traverse from Raven/Dye 2 to Summit. Additionally, we collected shallow (0-50 cm) snow pit samples every 5 cm at ASD measurement sites to quantify black carbon and mineral dust concentrations and size distributions using a Single Particle Soot Photometer and Coulter Counter, respectively. Preliminary results indicate larger albedo variability in the infrared than visible and near infrared. We compare our in situ field measurements with co-located albedo data from airplanes, satellites, and climate models, and discuss implications for GIS surface mass balance.

  16. Evaluation of Operational Albedo Algorithms For AVHRR, MODIS and VIIRS: Case Studies in Southern Africa

    NASA Astrophysics Data System (ADS)

    Privette, J. L.; Schaaf, C. B.; Saleous, N.; Liang, S.

    2004-12-01

    Shortwave broadband albedo is the fundamental surface variable that partitions solar irradiance into energy available to the land biophysical system and energy reflected back into the atmosphere. Albedo varies with land cover, vegetation phenological stage, surface wetness, solar angle, and atmospheric condition, among other variables. For these reasons, a consistent and normalized albedo time series is needed to accurately model weather, climate and ecological trends. Although an empirically-derived coarse-scale albedo from the 20-year NOAA AVHRR record (Sellers et al., 1996) is available, an operational moderate resolution global product first became available from NASA's MODIS sensor. The validated MODIS product now provides the benchmark upon which to compare albedo generated through 1) reprocessing of the historic AVHRR record and 2) operational processing of data from the future National Polar-Orbiting Environmental Satellite System's (NPOESS) Visible/Infrared Imager Radiometer Suite (VIIRS). Unfortunately, different instrument characteristics (e.g., spectral bands, spatial resolution), processing approaches (e.g., latency requirements, ancillary data availability) and even product definitions (black sky albedo, white sky albedo, actual or blue sky albedo) complicate the development of the desired multi-mission (AVHRR to MODIS to VIIRS) albedo time series -- a so-called Climate Data Record. This presentation will describe the different albedo algorithms used with AVHRR, MODIS and VIIRS, and compare their results against field measurements collected over two semi-arid sites in southern Africa. We also describe the MODIS-derived VIIRS proxy data we developed to predict NPOESS albedo characteristics. We conclude with a strategy to develop a seamless Climate Data Record from 1982- to 2020.

  17. Nuclear reactivity control using laser induced polarization

    DOEpatents

    Bowman, Charles D.

    1991-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  18. Transition Core Properties during Conversion of the NBSR from HEU to LEU Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, A. L.; Diamond, D.

    2013-10-31

    The transition of the NBSR from HEU to LEU fuel is challenging due to reactivity constraints and the need to maintain an uninterrupted science program, the mission of the NBSR. The transition cannot occur with a full change of HEU to LEU fuel elements since the excess reactivity would be large enough that the NBSR would violate the technical specification for shutdown margin. Manufacturing LEU fuel elements to represent irradiated fuel elements would be cost prohibitive since 26 one-of-a-kind fuel elements would need to be manufactured. For this report a gradual transition from the present HEU fuel to the proposedmore » LEU fuel was studied. The gradual change approach would follow the present fuel management scheme and replace four HEU fuel elements with four LEU fuel elements each cycle. This manuscript reports the results of a series of calculations to predict the neutronic characteristics and how the neutronics will change during the transition from HEU to LEU in the NBSR.« less

  19. Central-engine-powered Bright X-Ray Flares in Short Gamma-Ray Bursts: A Hint of a Black Hole–Neutron Star Merger?

    NASA Astrophysics Data System (ADS)

    Mu, Hui-Jun; Gu, Wei-Min; Mao, Jirong; Hou, Shu-Jin; Lin, Da-Bin; Liu, Tong

    2018-05-01

    Short gamma-ray bursts may originate from the merger of a double neutron star (NS) or the merger of a black hole (BH) and an NS. We propose that the bright X-ray flare related to the central engine reactivity may indicate a BH–NS merger, since such a merger can provide more fallback materials and therefore a more massive accretion disk than the NS–NS merger. Based on the 49 observed short bursts with the Swift/X-ray Telescope follow-up observations, we find that three bursts have bright X-ray flares, among which three flares from two bursts are probably related to the central engine reactivity. We argue that these two bursts may originate from the BH–NS merger rather than the NS–NS merger. Our suggested link between the central-engine-powered bright X-ray flare and the BH–NS merger event can be checked by future gravitational wave detections from advanced LIGO and Virgo.

  20. Neutronics and Transient Calculations for the Conversion of the Transient Reactor Rest Facility (TREAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontogeorgakos, Dimitrios C.; Connaway, Heather M.; Papadias, Dionissios D.

    2015-01-01

    The Transient Reactor Test Facility (TREAT) is a graphite-reflected, graphitemoderated, and air-cooled reactor fueled with 93.1% enriched UO2 particles dispersed in graphite, with a carbon-to-235U ratio of ~10000:1. TREAT was used to simulate accident conditions by subjecting fuel test samples placed at the center of the core to high energy transient pulses. The transient pulse production is based on the core’s selflimiting nature due to the negative reactivity feedback provided by the fuel graphite as the core temperature rises. The analysis of the conversion of TREAT to low enriched uranium (LEU) is currently underway. This paper presents the analytical methodsmore » used to calculate the transient performance of TREAT in terms of power pulse production and resulting peak core temperatures. The validation of the HEU neutronics TREAT model, the calculation of the temperature distribution and the temperature reactivity feedback as well as the number of fissions generated inside fuel test samples are discussed.« less

  1. Global Albedo

    Atmospheric Science Data Center

    2013-04-19

    ... the albedo. Bright surfaces have albedo near unity, and dark surfaces have albedo near zero. The DHR refers to the amount of spectral ... Atmospheric Science Data Center's  MISR Level 3 Imagery web site . The Multi-angle Imaging SpectroRadiometer observes the daylit ...

  2. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.

    PubMed

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of which is almost comparable to that due to CO2 (2.83 W m-2) increases since 1750. Our results thus highlight the necessity of realistic representation of snow albedo in the model and demonstrate the use of satellite-based snow albedo to improve model behaviors, which opens new avenues for constraining snow albedo feedback in earth system models.

  3. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations

    PubMed Central

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of which is almost comparable to that due to CO2 (2.83 W m-2) increases since 1750. Our results thus highlight the necessity of realistic representation of snow albedo in the model and demonstrate the use of satellite-based snow albedo to improve model behaviors, which opens new avenues for constraining snow albedo feedback in earth system models. PMID:26366564

  4. Assessment of VIIRS daily BRDF/Albedo product using in situ measurement of SURFRAD sites and MODIS V006 daily BRDF/Albedo product

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wang, Z.; Sun, Q.; Schaaf, C.; Roman, M. O.

    2014-12-01

    Surface albedo is defined as the ratio of upwelling to downwelling radiative flux. It's important for understanding the global energy budget. Remote sensing albedo products provide global time continuous coverage to help capture global energy variability and change. The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi-NPP satellite, launched on October 28, 2011, is aiming to provide continues data record with the MODerate resolution Imaging Spectroradiometer (MODIS), which has been providing Bidirectional Reflectance Distribution Function (BRDF)/Albedo product since 2000. By utilizing the same approach that was used for the most recently V006 daily MODIS BRDF/Albedo product, VIIRS has the ability to keep providing products for research and operational users. Validating albedo product of VIIRS using in situmeasured albedo can assure the quality for land surface climate and biosphere models, and comparing with MODIS product can assure time continues of BRDF/albedo product. The daily BRDF/Albedo product still uses 16-day period multispectral, cloud-cleared, atmospherically-corrected surface reflectances to fit the Ross-Thick/Li-Sparse-Reciprocal semi-empirical BRDF model. But the multiday observations are also weighted based on proximity to the production date in order to emphasis on that individual day. Surface Radiation Budget Network (SURFRAD) was established in 1993 through the support of NOAA's Office of Global Programs. In situ albedo was driven from downwelling and upwelling radiative flux measured from the towers. Fraction of diffuse sky light was calculated using the direct and diffuse solar recorded in the data. It was further used to translate VIIRS, MODIS black sky and white sky albedos into actual albedo at local solar noon. Results show that VIIRS, MODIS and in situ albedo agree well at SURFARD spatially representative sites. While the VIIRS surface reflectance, snow, and cloud algorithms are still undergoing revision, the result shows that VIIRS can provide comparable albedo products with MODIS. The accuracy of both products can meet the requirement for climate and biosphere models. In situ albedo also can be gained from Baseline Surface Radiation Network (BSRN), FLUXNET and Long Term Ecological Research network (LTER) etc., which will be used in future validation work.

  5. Simulated cold bias being improved by using MODIS time-varying albedo in the Tibetan Plateau in WRF model

    NASA Astrophysics Data System (ADS)

    Meng, X.; Lyu, S.; Zhang, T.; Zhao, L.; Li, Z.; Han, B.; Li, S.; Ma, D.; Chen, H.; Ao, Y.; Luo, S.; Shen, Y.; Guo, J.; Wen, L.

    2018-04-01

    Systematic cold biases exist in the simulation for 2 m air temperature in the Tibetan Plateau (TP) when using regional climate models and global atmospheric general circulation models. We updated the albedo in the Weather Research and Forecasting (WRF) Model lower boundary condition using the Global LAnd Surface Satellite Moderate-Resolution Imaging Spectroradiometer albedo products and demonstrated evident improvement for cold temperature biases in the TP. It is the large overestimation of albedo in winter and spring in the WRF model that resulted in the large cold temperature biases. The overestimated albedo was caused by the simulated precipitation biases and over-parameterization of snow albedo. Furthermore, light-absorbing aerosols can result in a large reduction of albedo in snow and ice cover. The results suggest the necessity of developing snow albedo parameterization using observations in the TP, where snow cover and melting are very different from other low-elevation regions, and the influence of aerosols should be considered as well. In addition to defining snow albedo, our results show an urgent call for improving precipitation simulation in the TP.

  6. Intercomparison Between in situ and AVHRR Polar Pathfinder-Derived Surface Albedo over Greenland

    NASA Technical Reports Server (NTRS)

    Stroeve, Julienne C.; Box, Jason E.; Fowler, Charles; Haran, Terence; Key, Jeffery

    2001-01-01

    The Advanced Very High Resolution (AVHRR) Polar Pathfinder Data (APP) provides the first long time series of consistent, calibrated surface albedo and surface temperature data for the polar regions. Validations of these products have consisted of individual studies that analyzed algorithm performance for limited regions and or time periods. This paper reports on comparisons made between the APP-derived surface albedo and that measured at fourteen automatic weather stations (AWS) around the Greenland ice sheet from January 1997 to August 1998. Results show that satellite-derived surface albedo values are on average 10% less than those measured by the AWS stations. However, the station measurements tend to be biased high by about 4% and thus the differences in absolute albedo may be less (e.g. 6%). In regions of the ice sheet where the albedo variability is small, such as the dry snow facies, the APP albedo uncertainty exceeds the natural variability. Further work is needed to improve the absolute accuracy of the APP-derived surface albedo. Even so, the data provide temporally and spatially consistent estimates of the Greenland ice sheet albedo.

  7. The nature of albedo features on Mercury, with maps for the telescopic observer. Part II: The nature of the albedo markings

    NASA Astrophysics Data System (ADS)

    Graham, D. L.

    1995-04-01

    Part One of this paper (J. Brit. Astron. Assoc., 105(1), 1995) reviewed the classical telescopic observations of albedo markings on Mercury and reproduced the definitive albedo map to assist visual observers of the planet. In Part Two, an investigation into the relationship between albedo and physiography is conducted, and the significance of the historical observations is discussed.

  8. Impact of weather events on Arctic sea ice albedo evolution

    NASA Astrophysics Data System (ADS)

    Arntsen, A. E.; Perovich, D. K.; Polashenski, C.; Stwertka, C.

    2015-12-01

    Arctic sea ice undergoes a seasonal evolution from cold snow-covered ice to melting snow to bare ice with melt ponds. Associated with this physical evolution is a decrease in the albedo of the ice cover. While the change in albedo is often considered as a steady seasonal decrease, weather events during melt, such as rain or snow, can impact the albedo evolution. Measurements on first year ice in the Chukchi Sea showed a decrease in visible albedo to 0.77 during the onset of melt. New snow from 4 - 6 June halted melting and increased the visible albedo to 0.87. It took 12 days for the albedo to decrease to levels prior to the snowfall. Incident solar radiation is large in June and thus a change in albedo has a large impact on the surface heat budget. The snowfall increased the albedo by 0.1 and reduced the absorbed sunlight from 5 June to 17 June by approximately 32 MJ m-2. The total impact of the snowfall will be even greater, since the delay in albedo reduction will be propagated throughout the entire summer. A rain event would have the opposite impact, increasing solar heat input and accelerating melting. Snow or rain in May or June can impact the summer melt cycle of Arctic sea ice.

  9. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.

    PubMed

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong

    2017-12-01

    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  10. Simulation and Analysis of Topographic Effect on Land Surface Albedo over Mountainous Areas

    NASA Astrophysics Data System (ADS)

    Hao, D.; Wen, J.; Xiao, Q.

    2017-12-01

    Land surface albedo is one of the significant geophysical variables affecting the Earth's climate and controlling the surface radiation budget. Topography leads to the formation of shadows and the redistribution of incident radiation, which complicates the modeling and estimation of the land surface albedo. Some studies show that neglecting the topography effect may lead to significant bias in estimating the land surface albedo for the sloping terrain. However, for the composite sloping terrain, the topographic effects on the albedo remain unclear. Accurately estimating the sub-topographic effect on the land surface albedo over the composite sloping terrain presents a challenge for remote sensing modeling and applications. In our study, we focus on the development of a simplified estimation method for land surface albedo including black-sky albedo (BSA) and white-sky albedo (WSA) of the composite sloping terrain at a kilometer scale based on the fine scale DEM (30m) and quantitatively investigate and understand the topographic effects on the albedo. The albedo is affected by various factors such as solar zenith angle (SZA), solar azimuth angle (SAA), shadows, terrain occlusion, and slope and aspect distribution of the micro-slopes. When SZA is 30°, the absolute and relative deviations between the BSA of flat terrain and that of rugged terrain reaches 0.12 and 50%, respectively. When the mean slope of the terrain is 30.63° and SZA=30°, the absolute deviation of BSA caused by SAA can reach 0.04. The maximal relative and relative deviation between the WSA of flat terrain and that of rugged terrain reaches 0.08 and 50%. These results demonstrate that the topographic effect has to be taken into account in the albedo estimation.

  11. Use of Moderate-Resolution Imaging Spectroradiometer bidirectional reflectance distribution function products to enhance simulated surface albedos

    NASA Astrophysics Data System (ADS)

    Roesch, Andreas; Schaaf, Crystal; Gao, Feng

    2004-06-01

    Moderate-Resolution Imaging Spectroradiometer (MODIS) surface albedo at high spatial and spectral resolution is compared with other remotely sensed climatologies, ground-based data, and albedos simulated with the European Center/Hamburg 4 (ECHAM4) global climate model at T42 resolution. The study demonstrates the importance of MODIS data in assessing and improving albedo parameterizations in weather forecast and climate models. The remotely sensed PINKER surface albedo climatology follows the MODIS estimates fairly well in both the visible and near-infrared spectra, whereas ECHAM4 simulates high positive albedo biases over snow-covered boreal forests and the Himalayas. In contrast, the ECHAM4 albedo is probably too low over the Sahara sand desert and adjacent steppes. The study clearly indicates that neglecting albedo variations within T42 grid boxes leads to significant errors in the simulated regional climate and horizontal fluxes, mainly in mountainous and/or snow-covered regions. MODIS surface albedo at 0.05 resolution agrees quite well with in situ field measurements collected at Baseline Surface Radiation Network (BSRN) sites during snow-free periods, while significant positive biases are found under snow-covered conditions, mainly due to differences in the vegetation cover at the BSRN site (short grass) and the vegetation within the larger MODIS grid box. Black sky (direct beam) albedo from the MODIS bidirectional reflectance distribution function model captures the diurnal albedo cycle at BSRN sites with sufficient accuracy. The greatest negative biases are generally found when the Sun is low. A realistic approach for relating albedo and zenith angle has been proposed. Detailed evaluations have demonstrated that ignoring the zenith angle dependence may lead to significant errors in the surface energy balance.

  12. Analysis of fluid fuel flow to the neutron kinetics on molten salt reactor FUJI-12

    NASA Astrophysics Data System (ADS)

    Aji, Indarta Kuncoro; Waris, Abdul; Permana, Sidik

    2015-09-01

    Molten Salt Reactor is a reactor are operating with molten salt fuel flowing. This condition interpret that the neutron kinetics of this reactor is affected by the flow rate of the fuel. This research analyze effect by the alteration velocity of the fuel by MSR type Fuji-12, with fuel composition LiF-BeF2-ThF4-233UF4 respectively 71.78%-16%-11.86%-0.36%. Calculation process in this study is performed numerically by SOR and finite difference method use C programming language. Data of reactivity, neutron flux, and the macroscopic fission cross section for calculation process obtain from SRAC-CITATION (Standard thermal Reactor Analysis Code) and JENDL-4.0 data library. SRAC system designed and developed by JAEA (Japan Atomic Energy Agency). This study aims to observe the effect of the velocity of fuel salt to the power generated from neutron precursors at fourth year of reactor operate (last critical condition) with number of multiplication effective; 1.0155.

  13. The Dependence of the Ice-Albedo Feedback on Atmospheric Properties

    PubMed Central

    Selsis, F.; Kitzmann, D.; Rauer, H.

    2013-01-01

    Abstract Ice-albedo feedback is a potentially important destabilizing effect for the climate of terrestrial planets. It is based on the positive feedback between decreasing surface temperatures, an increase of snow and ice cover, and an associated increase in planetary albedo, which then further decreases surface temperature. A recent study shows that for M stars, the strength of the ice-albedo feedback is reduced due to the strong spectral dependence of stellar radiation and snow/ice albedos; that is, M stars primarily emit in the near IR, where the snow and ice albedo is low, and less in the visible, where the snow/ice albedo is high. This study investigates the influence of the atmosphere (in terms of surface pressure and atmospheric composition) on this feedback, since an atmosphere was neglected in previous studies. A plane-parallel radiative transfer model was used for the calculation of planetary albedos. We varied CO2 partial pressures as well as the H2O, CH4, and O3 content in the atmosphere for planets orbiting Sun-like and M type stars. Results suggest that, for planets around M stars, the ice-albedo effect is significantly reduced, compared to planets around Sun-like stars. Including the effects of an atmosphere further suppresses the sensitivity to the ice-albedo effect. Atmospheric key properties such as surface pressure, but also the abundance of radiative trace gases, can considerably change the strength of the ice-albedo feedback. For dense CO2 atmospheres of the order of a few to tens of bar, atmospheric rather than surface properties begin to dominate the planetary radiation budget. At high CO2 pressures, the ice-albedo feedback is strongly reduced for planets around M stars. The presence of trace amounts of H2O and CH4 in the atmosphere also weakens the ice-albedo effect for both stellar types considered. For planets around Sun-like stars, O3 could also lead to a very strong decrease of the ice-albedo feedback at high CO2 pressures. Key Words: Atmospheric compositions—Extrasolar terrestrial planets—Snowball Earth—Planetary atmospheres—Radiative transfer. Astrobiology 13, 899–909. PMID:24111995

  14. Surface albedo in relation to disturbance and early stand dynamics in the boreal forest: Implications for climate models

    NASA Astrophysics Data System (ADS)

    Halim, M. A.; Thomas, S. C.

    2017-12-01

    Surface albedo is the most important biophysical radiative forcing in the boreal forest. General Circulation Model studies have suggested that harvesting of boreal forest has a net cooling effect, in contrast to other terrestrial biomes, by increasing surface albedo. However, albedo estimation in these models has been achieved by simplifying processes governing albedo at a coarse scale (both spatial and temporal). Biophysical processes that determine albedo likely operate on small spatial and temporal scales, requiring more direct estimates of effects of landcover change on net radiation. We established a chronosequence study in post-fire and post-clearcut sites (2013, 2006, 1998), logging data from July 2013 to July 2017 in boreal forest sites in northwestern Ontario, Canada. Each age-class X disturbance had 3 three replicates, matched to 18 permanent circular plots (10-m radius) each with an instrumented tower measuring surface albedo, air and soil temperature, and soil moisture. We also measured leaf area index, species composition and soil organic matter content at each site. BRDF-corrected surface albedo was calculated from daily 30m x 30m reflectance data fused from the MODIS MOD09GA product and Landsat 7 reflectance data. Calculated albedo was verified using ground-based measurements. Results show that fire sites generally had lower (15-25%) albedo than clearcut sites in all seasons. Because of rapid forest regrowth, large perturbations of clearcut harvests on forest albedo started to fade out within a year. Albedo differences between fire and clearcut sites also declined sharply with stand age. Younger stands generally had higher albedo than older stands mainly due to the presence of broadleaf species (for example, Populus tremuloides). In spring, snow melted 10-12 days earlier in recent (2013) clearcut sites compared to closed-canopy sites, causing a sharp reduction in surface albedo in comparison to old clearcut/fire sites (2006 and 1998). Snow melted faster in post-fire sites than in clearcut sites, with concomitant effects on albedo associated with snow. Findings of this study strongly suggest that harvests in boreal forest do not have as strong a radiative cooling effect as previously inferred from GCM experiments based on coarse-resolution data or "biome substitution" approaches.

  15. Multi-modal albedo distributions in the ablation area of the southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S. E.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J. R.; Koenig, L. S.; Hom, M. G.; Shuman, C. A.

    2015-05-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface and, thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates, earlier snowmelt, and amplified melt-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation area albedo and meltwater production is still relatively unknown. In this study, we analyze albedo and ablation rates using in situ and remotely sensed data. Observations include (1) a new high-quality in situ spectral albedo data set collected with an Analytical Spectral Devices Inc. spectroradiometer measuring at 325-1075 nm along a 1.25 km transect during 3 days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August 2012 and 2013. We find that seasonal ablation area albedos in 2013 have a bimodal distribution, with snow and ice facies characterizing the two peaks. Our results show that a shift from a distribution dominated by high to low albedos corresponds to an observed melt rate increase of 51.5% (between 10-14 July and 20-24 July 2013). In contrast, melt rate variability caused by albedo changes before and after this shift was much lower and varied between ~10 and 30% in the melting season. Ablation area albedos in 2012 exhibited a more complex multimodal distribution, reflecting a transition from light to dark-dominated surface, as well as sensitivity to the so called "dark-band" region in southwest Greenland. In addition to a darkening surface from ice crystal growth, our findings demonstrate that seasonal changes in GrIS ablation area albedos are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. Thus, seasonal variability in ablation area albedos appears to be regulated primarily as a function of bare ice expansion at the expense of snow, surface meltwater ponding, and melting of outcropped ice layers enriched with mineral materials, enabling dust and impurities to accumulate. As climate change continues in the Arctic region, understanding the seasonal evolution of ice sheet surface types in Greenland's ablation area is critical to improve projections of mass loss contributions to sea level rise.

  16. Applications of remanent supermirror polarizers

    NASA Astrophysics Data System (ADS)

    Böni, P.; Clemens, D.; Kumar, M. Senthil; Pappas, C.

    1999-06-01

    Recent developments in sputtering techniques allow the fabrication of multilayers with a high degree of perfection over large areas. We show, that using reactive sputtering, it is possible to adjust the index of refraction for neutrons, ni, of the individual layers. This property is particularly important for polarizing mirrors, where nnm for the non-magnetic layers can be matched to nm of the magnetic layers such that neutrons for one spin-eigenstate are not reflected by the coating, whereas the reflectivity is high for the other spin-eigenstate. In addition, by using anisotropic sputtering conditions it is possible to orient the easy axis of magnetization within the plane of the mirrors in any particular direction resulting in a simultaneous appearance of a pronounced remanence and coercivity. Remanent polarizers can be used as broad band spin selectors at continuous and in particular at pulsed neutron sources thus eliminating the need of spin flippers, whose performance depends on the wavelength of the neutrons and is often strongly influenced by stray magnetic fields from the sample environment. The possibility to operate remanent supermirrors in arbitrary small fields leads to attractive applications of polarizing devices in low field environments such as they occur in neutron-spin-echo or in spin selective neutron guides. We present applications, where several tasks like polarizing, focusing and spin selection are performed in one single device thus reducing the problem of phase space matching between different neutron optical components.

  17. Neutron Nucleic Acid Crystallography.

    PubMed

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.

  18. Increase in surface albedo caused by agricultural plastic film

    NASA Astrophysics Data System (ADS)

    Fan, X.; Chen, H.; Xia, X.

    2016-12-01

    The area of agricultural greenhouses and cropland covered by plastic film has increased inChina over the past three decades. Construction of large-area plastic greenhouse potentiallychanges the physical and radiative properties of the surface and its albedo, thereby potentiallyaffecting the surface energy budget and climate change. This study aims to investigate theeffect of the plastic-film cover on surface albedo based on computationswith a simplified modeland several field observation experiments. The results showed that surface albedo increasedby ˜23.5 and ˜33.9% on clear and overcast days, respectively, if grassland was covered byplastic film. Surface albedo of bare soil covered by plastic film increased by ˜16.6% underclear sky conditions. A larger increase in surface albedo was derived for surface types withsmaller surface albedo. Model calculations were in good agreement with field observations.

  19. The potential impacts of climate change induced changes to tropical leaf albedo and its feedback on global climate

    NASA Astrophysics Data System (ADS)

    Doughty, C.; Shenkin, A.; Bentley, L. P.; Malhi, Y.

    2017-12-01

    Tropical forest leaf albedo plays a critical role in global climate by determining how much radiation the planet absorbs near the equator. However, little is known about how tropical leaf albedo could be affected by climate change and how any such changes in albedo could, in turn, impact global climate. Here we measure sunlit leaf albedo along two elevation temperature gradients (a 3000-meter gradient in Peru (10 plots) and a 1500 m gradient in Australia (10 plots) and along two wet to dry transects (a 2000 mm yr-1 gradient in Ghana (10 plots) and a 2000 mm yr-1 gradient in Brazil (10 plots). We found a highly significant increase in visible leaf albedo with wetness at both wet to dry gradients. We also found a marginally significant trend of increased albedo with warmer temperatures along one of the elevation gradients. Leaf albedo can also be impacted by changes in species composition, variations in interspecific variation, and changes in leaf chlorophyll concentrations. We removed the dominant two species from the basal area weighting for each plots but found no significant change, a directional change of interspecific variation could change albedo by 0.01 in the NIR, and changes in chlorophyll could decrease visible albedo by 0.005. We then simulated changes in tropical leaf albedo with a climate model and show that such changes could act as a small negative feedback on climate, but most likely will not have a large impact on future climate.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mainzer, A.; Masiero, J.; Hand, E.

    The NEOWISE data set offers the opportunity to study the variations in albedo for asteroid classification schemes based on visible and near-infrared observations for a large sample of minor planets. We have determined the albedos for nearly 1900 asteroids classified by the Tholen, Bus, and Bus-DeMeo taxonomic classification schemes. We find that the S-complex spans a broad range of bright albedos, partially overlapping the low albedo C-complex at small sizes. As expected, the X-complex covers a wide range of albedos. The multiwavelength infrared coverage provided by NEOWISE allows determination of the reflectivity at 3.4 and 4.6 {mu}m relative to themore » visible albedo. The direct computation of the reflectivity at 3.4 and 4.6 {mu}m enables a new means of comparing the various taxonomic classes. Although C, B, D, and T asteroids all have similarly low visible albedos, the D and T types can be distinguished from the C and B types by examining their relative reflectance at 3.4 and 4.6 {mu}m. All of the albedo distributions are strongly affected by selection biases against small, low albedo objects, as all objects selected for taxonomic classification were chosen according to their visible light brightness. Due to these strong selection biases, we are unable to determine whether or not there are correlations between size, albedo, and space weathering. We argue that the current set of classified asteroids makes any such correlations difficult to verify. A sample of taxonomically classified asteroids drawn without significant albedo bias is needed in order to perform such an analysis.« less

  1. A computationally simple model for determining the time dependent spectral neutron flux in a nuclear reactor core

    NASA Astrophysics Data System (ADS)

    Schneider, E. A.; Deinert, M. R.; Cady, K. B.

    2006-10-01

    The balance of isotopes in a nuclear reactor core is key to understanding the overall performance of a given fuel cycle. This balance is in turn most strongly affected by the time and energy-dependent neutron flux. While many large and involved computer packages exist for determining this spectrum, a simplified approach amenable to rapid computation is missing from the literature. We present such a model, which accepts as inputs the fuel element/moderator geometry and composition, reactor geometry, fuel residence time and target burnup and we compare it to OECD/NEA benchmarks for homogeneous MOX and UOX LWR cores. Collision probability approximations to the neutron transport equation are used to decouple the spatial and energy variables. The lethargy dependent neutron flux, governed by coupled integral equations for the fuel and moderator/coolant regions is treated by multigroup thermalization methods, and the transport of neutrons through space is modeled by fuel to moderator transport and escape probabilities. Reactivity control is achieved through use of a burnable poison or adjustable control medium. The model calculates the buildup of 24 actinides, as well as fission products, along with the lethargy dependent neutron flux and the results of several simulations are compared with benchmarked standards.

  2. Effect of land cover change on snow free surface albedo across the continental United States

    EPA Science Inventory

    Land cover changes (e.g., forest to grassland) affect albedo, and changes in albedo can influence radiative forcing (warming, cooling). We empirically tested albedo response to land cover change for 130 locations across the continental United States using high resolution (30 m-&t...

  3. Void reactivity feedback analysis for U-based and Th-based LWR incineration cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindley, B.A.; Parks, G.T.; Franceschini, F.

    2013-07-01

    In reduced-moderation LWRs, an external supply of transuranic (TRU) can be incinerated by mixing it with a fertile isotope ({sup 238}U or {sup 232}Th) and recycling all the actinides after each cycle. Performance is limited by coolant reactivity feedback - the moderator density coefficient (MDC) must be kept negative. The MDC is worse when more TRU is loaded, but TRU feed is also needed to maintain criticality. To assess the performance of this fuel cycle in different neutron spectra, three LWRs are considered: 'reference' PWRs and reduced-moderation PWRs and BWRs. The MDC of the equilibrium cycle is analysed by reactivitymore » decomposition with perturbed coolant density by isotope and neutron energy. The results show that using {sup 232}Th as a fertile isotope yields superior performance to {sup 238}U. This is due essentially to the high resonance η of U bred from Th (U3), which increases the fissility of the U3-TRU isotope vector in the Th-fueled system relative to the U-fueled system, and also improves the MDC in a sufficiently hard spectrum. Spatial separation of TRU and U3 in the Th-fueled system renders further improvement by hardening the neutron spectrum in the TRU and softening it in the U3. This improves the TRU η and increases the negative MDC contribution from reduced thermal fission in U3. (authors)« less

  4. Simulated Response of a Tissue-equivalent Proportional Counter on the Surface of Mars.

    PubMed

    Northum, Jeremy D; Guetersloh, Stephen B; Braby, Leslie A; Ford, John R

    2015-10-01

    Uncertainties persist regarding the assessment of the carcinogenic risk associated with galactic cosmic ray (GCR) exposure during a mission to Mars. The GCR spectrum peaks in the range of 300(-1) MeV n to 700 MeV n(-1) and is comprised of elemental ions from H to Ni. While Fe ions represent only 0.03% of the GCR spectrum in terms of particle abundance, they are responsible for nearly 30% of the dose equivalent in free space. Because of this, radiation biology studies focusing on understanding the biological effects of GCR exposure generally use Fe ions. Acting as a thin shield, the Martian atmosphere alters the GCR spectrum in a manner that significantly reduces the importance of Fe ions. Additionally, albedo particles emanating from the regolith complicate the radiation environment. The present study uses the Monte Carlo code FLUKA to simulate the response of a tissue-equivalent proportional counter on the surface of Mars to produce dosimetry quantities and microdosimetry distributions. The dose equivalent rate on the surface of Mars was found to be 0.18 Sv y(-1) with an average quality factor of 2.9 and a dose mean lineal energy of 18.4 keV μm(-1). Additionally, albedo neutrons were found to account for 25% of the dose equivalent. It is anticipated that these data will provide relevant starting points for use in future risk assessment and mission planning studies.

  5. Continuous versus discontinuous albedo representations in a simple diffusive climate model

    NASA Astrophysics Data System (ADS)

    Simmons, P. A.; Griffel, D. H.

    1988-07-01

    A one-dimensional annually and zonally averaged energy-balance model, with diffusive meridional heat transport and including icealbedo feedback, is considered. This type of model is found to be very sensitive to the form of albedo used. The solutions for a discontinuous step-function albedo are compared to those for a more realistic smoothly varying albedo. The smooth albedo gives a closer fit to present conditions, but the discontinuous form gives a better representation of climates in earlier epochs.

  6. Simulation numerique de l'effet du reflecteur radial sur les cellules rep en utilisant les codes DRAGON et DONJON

    NASA Astrophysics Data System (ADS)

    Bejaoui, Najoua

    The pressurized water nuclear reactors (PWRs) is the largest fleet of nuclear reactors in operation around the world. Although these reactors have been studied extensively by designers and operators using efficient numerical methods, there are still some calculation weaknesses, given the geometric complexity of the core, still unresolved such as the analysis of the neutron flux's behavior at the core-reflector interface. The standard calculation scheme is a two steps process. In the first step, a detailed calculation at the assembly level with reflective boundary conditions, provides homogenized cross-sections for the assemblies, condensed to a reduced number of groups; this step is called the lattice calculation. The second step uses homogenized properties in each assemblies to calculate reactor properties at the core level. This step is called the full-core calculation or whole-core calculation. This decoupling of the two calculation steps is the origin of methodological bias particularly at the interface core reflector: the periodicity hypothesis used to calculate cross section librairies becomes less pertinent for assemblies that are adjacent to the reflector generally represented by these two models: thus the introduction of equivalent reflector or albedo matrices. The reflector helps to slowdown neutrons leaving the reactor and returning them to the core. This effect leads to two fission peaks in fuel assemblies localised at the core/reflector interface, the fission rate increasing due to the greater proportion of reentrant neutrons. This change in the neutron spectrum arises deep inside the fuel located on the outskirts of the core. To remedy this we simulated a peripheral assembly reflected with TMI-PWR reflector and developed an advanced calculation scheme that takes into account the environment of the peripheral assemblies and generate equivalent neutronic properties for the reflector. This scheme is tested on a core without control mechanisms and charged with fresh fuel. The results of this study showed that explicit representation of reflector and calculation of peripheral assembly with our advanced scheme allow corrections to the energy spectrum at the core interface and increase the peripheral power by up to 12% compared with that of the reference scheme.

  7. Radiative transfer in dusty nebulae. III - The effects of dust albedo

    NASA Technical Reports Server (NTRS)

    Petrosian, V.; Dana, R. A.

    1980-01-01

    The effects of an albedo of internal dust, such as ionization structure and temperature of dust grain, were studied by the quasi-diffusion method with an iterative technique for solving the radiative heat transfer equations. It was found that the generalized on-the-spot approximation solution is adequate for most astrophysical applications for a zero albedo; for a nonzero albedo, the Eddington approximation is more accurate. The albedo increases the average energy of the diffuse photons, increasing the ionization level of hydrogen and heavy elements if the Eddington approximation is applied; the dust thermal gradient is reduced so that the infrared spectrum approaches blackbody spectrum with an increasing albedo.

  8. Isotopic Transmutations in Irradiated Beryllium and Their Implications on MARIA Reactor Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrzejewski, Krzysztof J.; Kulikowska, Teresa A

    2004-04-15

    Beryllium irradiated by neutrons with energies above 0.7 MeV undergoes (n,{alpha}) and (n,2n) reactions. The Be(n,{alpha}) reaction results in subsequent buildup of {sup 6}Li and {sup 3}He isotopes with large thermal neutron absorption cross sections causing poisoning of irradiated beryllium. The amount of the poison isotopes depends on the neutron flux level and spectrum. The high-flux MARIA reactor operated in Poland since 1975 consists of a beryllium matrix with fuel channels in cutouts of beryllium blocks. As the experimental determination of {sup 6}Li, {sup 3}H, and {sup 3}He content in the operational reactor is impossible, a systematic computational study ofmore » the effect of {sup 3}He and {sup 6}Li presence in beryllium blocks on MARIA reactor reactivity and power density distribution has been undertaken. The analysis of equations governing the transmutation has been done for neutron flux parameters typical for MARIA beryllium blocks. Study of the mutual influence of reactor operational parameters and the buildup of {sup 6}Li, {sup 3}H, and {sup 3}He in beryllium blocks has shown the necessity of a detailed spatial solution of transmutation equations in the reactor, taking into account the whole history of its operation. Therefore, fuel management calculations using the REBUS code with included chains for Be(n,{alpha})-initiated reactions have been done for the whole reactor lifetime. The calculated poisoning of beryllium blocks has been verified against the critical experiment of 1993. Finally, the current {sup 6}Li, {sup 3}H, and {sup 3}He contents, averaged for each beryllium block, have been calculated. The reactivity drop caused by this poisoning is {approx}7%.« less

  9. Correction of broadband albedo measurements affected by unknown slope and sensor tilts

    NASA Astrophysics Data System (ADS)

    Weiser, Ursula; Olefs, Marc; Schöner, Wolfgang; Weyss, Gernot; Hynek, Bernhard

    2017-02-01

    Geometric effects induced by the underlying terrain slope or by tilt errors of radiation sensors lead to an erroneous measurement of snow or ice albedo. Consequently, diurnal albedo variations are observed. A general method to correct tilt errors of albedo measurements in cases where tilts of both the sensors and the slopes are not accurately measured or known is presented. Atmospheric parameters for this correction method can either be taken from a nearby well-maintained and horizontally levelled measurement of global radiation or alternatively from a solar radiation model. In a next step the model is fitted to the measured data to determine tilts and directions of the sensors and the underlying terrain slope. This then allows to correct the measured albedo, the radiative balance and the energy balance. Depending on the direction of the slope and the sensors a comparison between measured and corrected albedo values reveals obvious over-or underestimations of albedo.

  10. Generating multi-scale albedo look-up maps using MODIS BRDF/Albedo products and landsat imagery

    USDA-ARS?s Scientific Manuscript database

    Surface albedo determines radiative forcing and is a key parameter for driving Earth’s climate. Better characterization of surface albedo for individual land cover types can reduce the uncertainty in estimating changes to Earth’s radiation balance due to land cover change. This paper presents a mult...

  11. Correction of broadband snow albedo measurements affected by unknown slope and sensor tilts

    NASA Astrophysics Data System (ADS)

    Weiser, Ursula; Olefs, Marc; Schöner, Wolfgang; Weyss, Gernot; Hynek, Bernhard

    2016-04-01

    Geometric effects induced by the underlying terrain slope or by tilt errors of the radiation sensors lead to an erroneous measurement of snow or ice albedo. Consequently, artificial diurnal albedo variations in the order of 1-20 % are observed. The present paper proposes a general method to correct tilt errors of albedo measurements in cases where tilts of both the sensors and the slopes are not accurately measured or known. We demonstrate that atmospheric parameters for this correction model can either be taken from a nearby well-maintained and horizontally levelled measurement of global radiation or alternatively from a solar radiation model. In a next step the model is fitted to the measured data to determine tilts and directions of sensors and the underlying terrain slope. This then allows us to correct the measured albedo, the radiative balance and the energy balance. Depending on the direction of the slope and the sensors a comparison between measured and corrected albedo values reveals obvious over- or underestimations of albedo. It is also demonstrated that differences between measured and corrected albedo are generally highest for large solar zenith angles.

  12. Albedo indicating land degradation around the Badain Jaran Desert for better land resources utilization.

    PubMed

    Liu, Fengshan; Chen, Ying; Lu, Haiying; Shao, Hongbo

    2017-02-01

    Surface albedo is an easy access parameter in reflecting the status of both human disturbed soil and indirectly influenced area, whose characteristic is an important indicator in sustainable development under the background of global climate change. In this study, we employed meteorological data, MODIS 8-day BRDF/Albedo and LAI products from 2000 to 2014 to show the amelioration and mechanism around the Badain Jaran Desert. Results showed that the human-dominated afforestation activities significantly increased the leaf area index (LAI) in summer and autumn. Lower reflectance at visible band was sensed inside the desert compared with the ecozone and the lowest albedo at forested area. The contribution of soil and vegetation reflectance to surface albedo determined the linear sensitivity of albedo to LAI variation. Decreased albedo dominated the spatial-temporal pattern of the Badain Jaran Desert. This study suggested that surface albedo can be regarded as a useful index in indicating the change process and evaluating the sustainable development of biological management around the Badain Jaran Desert. Copyright © 2016. Published by Elsevier B.V.

  13. Nimbus 7 earth radiation budget wide field of view climate data set improvement. I - The earth albedo from deconvolution of shortwave measurements

    NASA Technical Reports Server (NTRS)

    Hucek, Richard R.; Ardanuy, Philip E.; Kyle, H. Lee

    1987-01-01

    A deconvolution method for extracting the top of the atmosphere (TOA) mean, daily albedo field from a set of wide-FOV (WFOV) shortwave radiometer measurements is proposed. The method is based on constructing a synthetic measurement for each satellite observation. The albedo field is represented as a truncated series of spherical harmonic functions, and these linear equations are presented. Simulation studies were conducted to determine the sensitivity of the method. It is observed that a maximum of about 289 pieces of data can be extracted from a set of Nimbus 7 WFOV satellite measurements. The albedos derived using the deconvolution method are compared with albedos derived using the WFOV archival method; the developed albedo field achieved a 20 percent reduction in the global rms regional reflected flux density errors. The deconvolution method is applied to estimate the mean, daily average TOA albedo field for January 1983. A strong and extensive albedo maximum (0.42), which corresponds to the El Nino/Southern Oscillation event of 1982-1983, is detected over the south central Pacific Ocean.

  14. Assessing Chemical Transformation of Reactive, Interfacial Thin Films Made of End-Tethered Poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA) Chains

    DOE PAGES

    Aden, Bethany; Kite, Camille M.; Hopkins, Benjamin W.; ...

    2017-01-24

    Designing thin films or surface scaffolds with an appropriate display of chemical functionality is useful for biomedical applications, sensing platforms, adhesives, and barrier coatings. Relationships between the structural characteristics of model thin films based on reactive poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA) brushes and the amount and distribution of primary amines used to chemically functionalize these layers in situ are quantitatively detailed via neutron reflectometry and compared with results from ellipsometry. After functionalization, the PVDMA brush thickness increases as a result of the primary amines reacting with the azlactone rings. Both techniques show that the extent of functionalization by small-molecule amines depends onmore » the size of the amine, the grafting density of brush chains, and their molecular weight. However, constrained analysis of neutron reflectivity data predicated on that technique’s sensitivity to isotopic substitution and its ability to resolve structure at the nanoscale shows that the extent of functionalization is not accurately represented by the average extent of functionalization determined from ellipsometric thickness: reactive modification is not uniform, even in modestly dense brushes, except when the penetrant is small. In addition, there appears to be a loss of PVDMA chains during functionalization, attributed to chain scission resulting from additional stretching brought about by functionalization. In conclusion, these findings provide unprecedented insight into the alteration of surface properties by reactive modification and broadly support efforts to produce tailored surfaces in which properties such as friction, colloidal stability, adhesion, wettability, and biocompatibility can be modulated in situ by chemical modification.« less

  15. Analysis on variability and trend in Antarctic sea ice albedo between 1983 and 2009

    NASA Astrophysics Data System (ADS)

    Seo, Minji; Kim, Hyun-cheol; Choi, Sungwon; Lee, Kyeong-sang; Han, Kyung-soo

    2017-04-01

    Sea ice is key parameter in order to understand the cryosphere climate change. Several studies indicate the different trend of sea ice between Antarctica and Arctic. Albedo is important factor for understanding the energy budget and factors for observing of environment changes of Cryosphere such as South Pole, due to it mainly covered by ice and snow with high albedo value. In this study, we analyzed variability and trend of long-term sea ice albedo data to understand the changes of sea ice over Antarctica. In addiction, sea ice albedo researched the relationship with Antarctic oscillation in order to determine the atmospheric influence. We used the sea ice albedo data at The Satellite Application Facility on Climate Monitoring and Antarctic Oscillation data at NOAA Climate Prediction Center (CPC). We analyzed the annual trend in albedo using linear regression to understand the spatial and temporal tendency. Antarctic sea ice albedo has two spatial trend. Weddle sea / Ross sea sections represent a positive trend (0.26% ˜ 0.04% yr-1) and Bellingshausen Amundsen sea represents a negative trend (- 0.14 ˜ -0.25%yr-1). Moreover, we performed the correlation analysis between albedo and Antarctic oscillation. As a results, negative area indicate correlation coefficient of - 0.3639 and positive area indicates correlation coefficient of - 0.0741. Theses results sea ice albedo has regional trend according to ocean. Decreasing sea ice trend has negative relationship with Antarctic oscillation, its represent a possibility that sea ice influence atmospheric factor.

  16. Changes in summer sea ice, albedo, and portioning of surface solar radiation in the Pacific sector of Arctic Ocean during 1982-2009

    NASA Astrophysics Data System (ADS)

    Lei, Ruibo; Tian-Kunze, Xiangshan; Leppäranta, Matti; Wang, Jia; Kaleschke, Lars; Zhang, Zhanhai

    2016-08-01

    SSM/I sea ice concentration and CLARA black-sky composite albedo were used to estimate sea ice albedo in the region 70°N-82°N, 130°W-180°W. The long-term trends and seasonal evolutions of ice concentration, composite albedo, and ice albedo were then obtained. In July-August 1982-2009, the linear trend of the composite albedo and the ice albedo was -0.069 and -0.046 units per decade, respectively. During 1 June to 19 August, melting of sea ice resulted in an increase of solar heat input to the ice-ocean system by 282 MJ·m-2 from 1982 to 2009. However, because of the counter-balancing effects of the loss of sea ice area and the enhanced ice surface melting, the trend of solar heat input to the ice was insignificant. The summer evolution of ice albedo matched the ice surface melting and ponding well at basin scale. The ice albedo showed a large difference between the multiyear and first-year ice because the latter melted completely by the end of a melt season. At the SHEBA geolocations, a distinct change in the ice albedo has occurred since 2007, because most of the multiyear ice has been replaced by first-year ice. A positive polarity in the Arctic Dipole Anomaly could be partly responsible for the rapid loss of summer ice within the study region in the recent years by bringing warmer air masses from the south and advecting more ice toward the north. Both these effects would enhance ice-albedo feedback.

  17. Impact of Grain Shape and Multiple Black Carbon Internal Mixing on Snow Albedo: Parameterization and Radiative Effect Analysis

    NASA Astrophysics Data System (ADS)

    He, Cenlin; Liou, Kuo-Nan; Takano, Yoshi; Yang, Ping; Qi, Ling; Chen, Fei

    2018-01-01

    We quantify the effects of grain shape and multiple black carbon (BC)-snow internal mixing on snow albedo by explicitly resolving shape and mixing structures. Nonspherical snow grains tend to have higher albedos than spheres with the same effective sizes, while the albedo difference due to shape effects increases with grain size, with up to 0.013 and 0.055 for effective radii of 1,000 μm at visible and near-infrared bands, respectively. BC-snow internal mixing reduces snow albedo at wavelengths < 1.5 μm, with negligible effects at longer wavelengths. Nonspherical snow grains show less BC-induced albedo reductions than spheres with the same effective sizes by up to 0.06 at ultraviolet and visible bands. Compared with external mixing, internal mixing enhances snow albedo reduction by a factor of 1.2-2.0 at visible wavelengths depending on BC concentration and snow shape. The opposite effects on albedo reductions due to snow grain nonsphericity and BC-snow internal mixing point toward a careful investigation of these two factors simultaneously in climate modeling. We further develop parameterizations for snow albedo and its reduction by accounting for grain shape and BC-snow internal/external mixing. Combining the parameterizations with BC-in-snow measurements in China, North America, and the Arctic, we estimate that nonspherical snow grains reduce BC-induced albedo radiative effects by up to 50% compared with spherical grains. Moreover, BC-snow internal mixing enhances the albedo effects by up to 30% (130%) for spherical (nonspherical) grains relative to external mixing. The overall uncertainty induced by snow shape and BC-snow mixing state is about 21-32%.

  18. The influence of canopy shading of snow on effective albedo in forested environments

    NASA Astrophysics Data System (ADS)

    Webster, C.; Jonas, T.

    2017-12-01

    The overlap of highly reflective snow and absorbent forested areas creates strong heterogeneity in the effective surface albedo compared to forest-free areas. Current errors in calculations of effective forest snow albedo arise due to uncertainties in how models should treat masking of snow by vegetation but improvement of local and large scale models is currently limited by a lack of measurements that demonstrate both spatial and temporal variability over forests. We present above-canopy measurements of winter-time effective forest snow albedo using up- and down-looking radiometers mounted on an octocopter UAV for a total of fifteen flights on eight different days. Ground-view fractions across the flight path were between 0.12 and 0.81. Correlations between effective albedo and both ground-view fraction and canopy height were statistically significant during 14 out of 15 flights, but varied between flights due to solar angle and snow cover. Measured effective albedo across the flight path differed by up to 0.33 during snow-on canopy conditions. A comparison between maximum interception and no interception showed effective albedo varied by up 0.17, which was the same variation between effective albedo during high (46°) and low (23°) solar elevation angles. Temporal and spatial variations in effective albedo caused by canopy shading of the snow surface are therefore as important as temporal variations caused by interception of snow by the canopy. Calculation of effective albedo over forested areas therefore requires careful consideration of canopy height, canopy coverage, solar angle and interception load. The results of this study should be used to inform snow albedo and canopy structure parametrisations in local and larger scale land surface models.

  19. Estimation of snow albedo reduction by light absorbing impurities using Monte Carlo radiative transfer model

    NASA Astrophysics Data System (ADS)

    Sengupta, D.; Gao, L.; Wilcox, E. M.; Beres, N. D.; Moosmüller, H.; Khlystov, A.

    2017-12-01

    Radiative forcing and climate change greatly depends on earth's surface albedo and its temporal and spatial variation. The surface albedo varies greatly depending on the surface characteristics ranging from 5-10% for calm ocean waters to 80% for some snow-covered areas. Clean and fresh snow surfaces have the highest albedo and are most sensitive to contamination with light absorbing impurities that can greatly reduce surface albedo and change overall radiative forcing estimates. Accurate estimation of snow albedo as well as understanding of feedbacks on climate from changes in snow-covered areas is important for radiative forcing, snow energy balance, predicting seasonal snowmelt, and run off rates. Such information is essential to inform timely decision making of stakeholders and policy makers. Light absorbing particles deposited onto the snow surface can greatly alter snow albedo and have been identified as a major contributor to regional climate forcing if seasonal snow cover is involved. However, uncertainty associated with quantification of albedo reduction by these light absorbing particles is high. Here, we use Mie theory (under the assumption of spherical snow grains) to reconstruct the single scattering parameters of snow (i.e., single scattering albedo ῶ and asymmetry parameter g) from observation-based size distribution information and retrieved refractive index values. The single scattering parameters of impurities are extracted with the same approach from datasets obtained during laboratory combustion of biomass samples. Instead of using plane-parallel approximation methods to account for multiple scattering, we have used the simple "Monte Carlo ray/photon tracing approach" to calculate the snow albedo. This simple approach considers multiple scattering to be the "collection" of single scattering events. Using this approach, we vary the effective snow grain size and impurity concentrations to explore the evolution of snow albedo over a wide wavelength range (300 nm - 2000 nm). Results will be compared with the SNICAR model to better understand the differences in snow albedo computation between plane-parallel methods and the statistical Monte Carlo methods.

  20. Quantifying the missing link between forest albedo and productivity in the boreal zone

    NASA Astrophysics Data System (ADS)

    Hovi, Aarne; Liang, Jingjing; Korhonen, Lauri; Kobayashi, Hideki; Rautiainen, Miina

    2016-11-01

    Albedo and fraction of absorbed photosynthetically active radiation (FAPAR) determine the shortwave radiation balance and productivity of forests. Currently, the physical link between forest albedo and productivity is poorly understood, yet it is crucial for designing optimal forest management strategies for mitigating climate change. We investigated the relationships between boreal forest structure, albedo and FAPAR using a radiative transfer model called Forest Reflectance and Transmittance model FRT and extensive forest inventory data sets ranging from southern boreal forests to the northern tree line in Finland and Alaska (N = 1086 plots). The forests in the study areas vary widely in structure, species composition, and human interference, from intensively managed in Finland to natural growth in Alaska. We show that FAPAR of tree canopies (FAPARCAN) and albedo are tightly linked in boreal coniferous forests, but the relationship is weaker if the forest has broadleaved admixture, or if canopies have low leaf area and the composition of forest floor varies. Furthermore, the functional shape of the relationship between albedo and FAPARCAN depends on the angular distribution of incoming solar irradiance. We also show that forest floor can contribute to over 50 % of albedo or total ecosystem FAPAR. Based on our simulations, forest albedos can vary notably across the biome. Because of larger proportions of broadleaved trees, the studied plots in Alaska had higher albedo (0.141-0.184) than those in Finland (0.136-0.171) even though the albedo of pure coniferous forests was lower in Alaska. Our results reveal that variation in solar angle will need to be accounted for when evaluating climate effects of forest management in different latitudes. Furthermore, increasing the proportion of broadleaved trees in coniferous forests is the most important means of maximizing albedo without compromising productivity: based on our findings the potential of controlling forest density (i.e., basal area) to increase albedo may be limited compared to the effect of favoring broadleaved species.

  1. Spatio-temporal Variability of Albedo and its Impact on Glacier Melt Modelling

    NASA Astrophysics Data System (ADS)

    Kinnard, C.; Mendoza, C.; Abermann, J.; Petlicki, M.; MacDonell, S.; Urrutia, R.

    2017-12-01

    Albedo is an important variable for the surface energy balance of glaciers, yet its representation within distributed glacier mass-balance models is often greatly simplified. Here we study the spatio-temporal evolution of albedo on Glacier Universidad, central Chile (34°S, 70°W), using time-lapse terrestrial photography, and investigate its effect on the shortwave radiation balance and modelled melt rates. A 12 megapixel digital single-lens reflex camera was setup overlooking the glacier and programmed to take three daily images of the glacier during a two-year period (2012-2014). One image was chosen for each day with no cloud shading on the glacier. The RAW images were projected onto a 10m resolution digital elevation model (DEM), using the IMGRAFT software (Messerli and Grinsted, 2015). A six-parameter camera model was calibrated using a single image and a set of 17 ground control points (GCPs), yielding a georeferencing accuracy of <1 pixel in image coordinates. The camera rotation was recalibrated for new images based on a set of common tie points over stable terrain, thus accounting for possible camera movement over time. The reflectance values from the projected image were corrected for topographic and atmospheric influences using a parametric solar irradiation model, following a modified algorithm based on Corripio (2004), and then converted to albedo using reference albedo measurements from an on-glacier automatic weather station (AWS). The image-based albedo was found to compare well with independent albedo observations from a second AWS in the glacier accumulation area. Analysis of the albedo maps showed that the albedo is more spatially-variable than the incoming solar radiation, making albedo a more important factor of energy balance spatial variability. The incorporation of albedo maps within an enhanced temperature index melt model revealed that the spatio-temporal variability of albedo is an important factor for the calculation of glacier-wide meltwater fluxes.

  2. The global blue-sky albedo change between 2000 - 2015 seen from MODIS

    NASA Astrophysics Data System (ADS)

    Chrysoulakis, N.; Mitraka, Z.; Gorelick, N.

    2016-12-01

    The land surface albedo is a critical physical variable, which influences the Earth's climate by affecting the energy budget and distribution in the Earth-atmosphere system. Blue-sky albedo estimates provide a quantitative means for better constraining global and regional scale climate models. The Moderate Resolution Imaging Spectroradiometer (MODIS) albedo product includes parameters for the estimation of both the directional-hemispherical surface reflectance (black-sky albedo) and the bi-hemispherical surface reflectance (white-sky albedo). This dataset was used here for the blue-sky albedo estimation over the globe on an 8-day basis at 0.5 km spatial resolution for the whole time period covered by MODIS acquisitions (i.e. 2000 until today). To estimate the blue-sky albedo, the fraction of the diffused radiation is needed, a function of the Aerosol Optical Thickness (AOT). Required AOT information was acquired from the MODIS AOT product at 1̊ × 1̊ spatial resolution. Since the blue-sky albedo depends on the solar zenith angle (SZA), the 8-day mean blue-sky albedo values were computed as averages of the corresponding values for the representative SZAs covering the 24-hour day. The estimated blue-sky albedo time series was analyzed to capture changes during the 15 period. All computation were performed using the Google Earth Engine (GEE). The GEE provided access to all the MODIS products needed for the analysis without the need of searching or downloading. Moreover, the combination of MODIS products in both temporal and spatial terms was fast and effecting using the GEE API (Application Program Interface). All the products covering the globe and for the time period of 15 years were processed via a single collection. Most importantly, GEE allowed for including the calculation of SZAs covering the 24-hour day which improves the quality of the overall product. The 8-day global products of land surface albedo are available through http://www.rslab.gr/downloads.html

  3. Bimodal albedo distributions in the ablation zone of the southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S. E.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J. R.

    2014-09-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface, and thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates and amplified ice-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation zone albedo and meltwater production is still relatively unknown, and excluded in surface mass balance models. In this study, we analyze albedo and ablation rates using in situ and remotely-sensed data. Observations include: (1) a new high-quality in situ spectral albedo dataset collected with an Analytical Spectral Devices (ASD) spectroradiometer measuring at 325-1075 nm, along a 1.25 km transect during three days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August. We find that seasonal ablation zone albedos have a bimodal distribution, with two alternate states. This suggests that an abrupt switch from high to low albedo can be triggered by a modest melt event, resulting in amplified surface ablation rates. Our results show that such a shift corresponds to an observed melt rate percent difference increase of 51.6% during peak melt season (between 10-14 and 20-24 July 2013). Furthermore, our findings demonstrate that seasonal changes in GrIS ablation zone albedo are not exclusively a function of a darkening surface from ice crystal growth, but rather are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. As the climate continues to warm, regional climate models should consider the seasonal evolution of ice surface types in Greenland's ablation zone to improve projections of mass loss contributions to sea level rise.

  4. Bimodal Albedo Distributions in the Ablation Zone of the Southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J.; Koenig, L.

    2014-12-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface, and thus meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates and amplified ice-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation zone albedo and meltwater production is still relatively unknown, and excluded in surface mass balance models. In this study, we analyze albedo and ablation rates (m d-1) using in situ and remotely-sensed data. Observations include: 1) a new high-quality in situ spectral albedo dataset collected with an Analytical Spectral Devices (ASD) spectroradiometer measuring at 325-1075 nm, along a 1.25 km transect during three days in June 2013; 2) broadband albedo at two automatic weather stations; and 3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August. We find that seasonal ablation zone albedos have a bimodal distribution, with two alternate states. This suggests that an abrupt switch from high to low albedo can be triggered by a modest melt event, resulting in amplified ablation rates. Our results show that such a shift corresponds to an observed melt rate percent difference increase of 51.6% during peak melt season (between 10-14 July and 20-24 July, 2013). Furthermore, our findings demonstrate that seasonal changes in GrIS ablation zone albedo are not exclusively a function of a darkening surface from ice crystal growth, but rather are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. As the climate continues to warm, regional climate models should consider the seasonal evolution of ice surface types in Greenland's ablation zone to improve projections of mass loss contributions to sea level rise.

  5. Phenology and species determine growing-season albedo increase at the altitudinal limit of shrub growth in the sub-Arctic.

    PubMed

    Williamson, Scott N; Barrio, Isabel C; Hik, David S; Gamon, John A

    2016-11-01

    Arctic warming is resulting in reduced snow cover and increased shrub growth, both of which have been associated with altered land surface-atmospheric feedback processes involving sensible heat flux, ground heat flux and biogeochemical cycling. Using field measurements, we show that two common Arctic shrub species (Betula glandulosa and Salix pulchra), which are largely responsible for shrub encroachment in tundra, differed markedly in albedo and that albedo of both species increased as growing season progressed when measured at their altitudinal limit. A moveable apparatus was used to repeatedly measure albedo at six precise spots during the summer of 2012, and resampled in 2013. Contrary to the generally accepted view of shrub-covered areas having low albedo in tundra, full-canopy prostrate B. glandulosa had almost the highest albedo of all surfaces measured during the peak of the growing season. The higher midsummer albedo is also evident in localized MODIS albedo aggregated from 2000 to 2013, which displays a similar increase in growing-season albedo. Using our field measurements, we show the ensemble summer increase in tundra albedo counteracts the generalized effect of earlier spring snow melt on surface energy balance by approximately 40%. This summer increase in albedo, when viewed in absolute values, is as large as the difference between the forest and tundra transition. These results indicate that near future (<50 years) changes in growing-season albedo related to Arctic vegetation change are unlikely to be particularly large and might constitute a negative feedback to climate warming in certain circumstances. Future efforts to calculate energy budgets and a sensible heating feedback in the Arctic will require more detailed information about the relative abundance of different ground cover types, particularly shrub species and their respective growth forms and phenology. © 2016 John Wiley & Sons Ltd.

  6. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product

    NASA Astrophysics Data System (ADS)

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingsong; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Román, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A.

    2017-07-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a bias within the range of ±0.006. These synthetic time series provide much greater spatial detail than the 500 m gridded MODIS data, especially over more heterogeneous surfaces, which improves the efforts to characterize and monitor the spatial variation across species and communities. The mean of the difference between maximum and minimum synthetic time series of albedo within the MODIS pixels over a subset of satellite data of Harvard Forest (16 km by 14 km) was as high as 0.2 during the snow-covered period and reduced to around 0.1 during the snow-free period. Similarly, we have used STARFM to also couple MODIS Nadir BRDF Adjusted Reflectances (NBAR) values with Landsat 5 reflectances to generate daily synthetic times series of NBAR and thus Enhanced Vegetation Index (NBAR-EVI) at a 30 m resolution. While normally STARFM is used with directional reflectances, the use of the view angle corrected daily MODIS NBAR values will provide more consistent time series. These synthetic times series of EVI are shown to capture seasonal vegetation dynamics with finer spatial and temporal details, especially over heterogeneous land surfaces.

  7. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product

    USGS Publications Warehouse

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingson; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Roman, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A.

    2017-01-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a bias within the range of ±0.006. These synthetic time series provide much greater spatial detail than the 500 m gridded MODIS data, especially over more heterogeneous surfaces, which improves the efforts to characterize and monitor the spatial variation across species and communities. The mean of the difference between maximum and minimum synthetic time series of albedo within the MODIS pixels over a subset of satellite data of Harvard Forest (16 km by 14 km) was as high as 0.2 during the snow-covered period and reduced to around 0.1 during the snow-free period. Similarly, we have used STARFM to also couple MODIS Nadir BRDF Adjusted Reflectances (NBAR) values with Landsat 5 reflectances to generate daily synthetic times series of NBAR and thus Enhanced Vegetation Index (NBAR-EVI) at a 30 m resolution. While normally STARFM is used with directional reflectances, the use of the view angle corrected daily MODIS NBAR values will provide more consistent time series. These synthetic times series of EVI are shown to capture seasonal vegetation dynamics with finer spatial and temporal details, especially over heterogeneous land surfaces.

  8. An Approach for the Long-Term 30-m Land Surface Snow-Free Albedo Retrieval from Historic Landsat Surface Reflectance and MODIS-based A Priori Anisotropy Knowledge

    NASA Technical Reports Server (NTRS)

    Shuai, Yanmin; Masek, Jeffrey G.; Gao, Feng; Schaaf, Crystal B.; He, Tao

    2014-01-01

    Land surface albedo has been recognized by the Global Terrestrial Observing System (GTOS) as an essential climate variable crucial for accurate modeling and monitoring of the Earth's radiative budget. While global climate studies can leverage albedo datasets from MODIS, VIIRS, and other coarse-resolution sensors, many applications in heterogeneous environments can benefit from higher-resolution albedo products derived from Landsat. We previously developed a "MODIS-concurrent" approach for the 30-meter albedo estimation which relied on combining post-2000 Landsat data with MODIS Bidirectional Reflectance Distribution Function (BRDF) information. Here we present a "pre-MODIS era" approach to extend 30-m surface albedo generation in time back to the 1980s, through an a priori anisotropy Look-Up Table (LUT) built up from the high quality MCD43A BRDF estimates over representative homogenous regions. Each entry in the LUT reflects a unique combination of land cover, seasonality, terrain information, disturbance age and type, and Landsat optical spectral bands. An initial conceptual LUT was created for the Pacific Northwest (PNW) of the United States and provides BRDF shapes estimated from MODIS observations for undisturbed and disturbed surface types (including recovery trajectories of burned areas and non-fire disturbances). By accepting the assumption of a generally invariant BRDF shape for similar land surface structures as a priori information, spectral white-sky and black-sky albedos are derived through albedo-to-nadir reflectance ratios as a bridge between the Landsat and MODIS scale. A further narrow-to-broadband conversion based on radiative transfer simulations is adopted to produce broadband albedos at visible, near infrared, and shortwave regimes.We evaluate the accuracy of resultant Landsat albedo using available field measurements at forested AmeriFlux stations in the PNW region, and examine the consistency of the surface albedo generated by this approach respectively with that from the "concurrent" approach and the coincident MODIS operational surface albedo products. Using the tower measurements as reference, the derived Landsat 30-m snow-free shortwave broadband albedo yields an absolute accuracy of 0.02 with a root mean square error less than 0.016 and a bias of no more than 0.007. A further cross-comparison over individual scenes shows that the retrieved white sky shortwave albedo from the "pre-MODIS era" LUT approach is highly consistent (R(exp 2) = 0.988, the scene-averaged low RMSE = 0.009 and bias = -0.005) with that generated by the earlier "concurrent" approach. The Landsat albedo also exhibits more detailed landscape texture and a wider dynamic range of albedo values than the coincident 500-m MODIS operational products (MCD43A3), especially in the heterogeneous regions. Collectively, the "pre-MODIS" LUT and "concurrent" approaches provide a practical way to retrieve long-term Landsat albedo from the historic Landsat archives as far back as the 1980s, as well as the current Landsat-8 mission, and thus support investigations into the evolution of the albedo of terrestrial biomes at fine resolution.

  9. Using Remote Sensing to Quantify Roof Albedo in Seven California Cities

    NASA Astrophysics Data System (ADS)

    Ban-Weiss, G. A.; Woods, J.; Millstein, D.; Levinson, R.

    2013-12-01

    Cool roofs reflect sunlight and therefore can reduce cooling energy use in buildings. Further, since roofs cover about 20-25% of cities, wide spread deployment of cool roofs could mitigate the urban heat island effect and partially counter urban temperature increases associated with global climate change. Accurately predicting the potential for increasing urban albedo using reflective roofs and its associated energy use and climate benefits requires detailed knowledge of the current stock of roofs at the city scale. Until now this knowledge has been limited due to a lack of availability of albedo data with sufficient spatial coverage, spatial resolution, and spectral information. In this work we use a novel source of multiband aerial imagery to derive the albedos of individual roofs in seven California cities: Los Angeles, Long Beach, San Diego, Bakersfield, Sacramento, San Francisco, and San Jose. The radiometrically calibrated, remotely sensed imagery has high spatial resolution (1 m) and four narrow (less than 0.1 μm wide) band reflectances: blue, green, red, and near-infrared. To derive the albedo of roofs in each city, we first locate roof pixels within GIS building outlines. Next we use laboratory measurements of the solar spectral reflectances of 190 roofing products to empirically relate solar reflectance (albedo) to reflectances in the four narrow bands; the root-mean-square of the residuals for the albedo prediction is 0.016. Albedos computed from remotely sensed reflectances are calibrated to ground measurements of roof albedo in each city. The error (both precision and accuracy) of albedo values is presented for each city. The area-weighted mean roof albedo (× standard deviation) for each city ranges from 0.17 × 0.08 (Los Angeles) to 0.29 × 0.15 (San Diego). In each city most roofs have low albedo in the range of 0.1 to 0.3. Roofs with albedo greater than 0.4 comprise less than 3% of total roofs and 7% of total roof area in each city. The California Building Energy Efficiency Standard (Title-24, Part 6) includes the use of high-albedo surfaces on low-sloped roofs on non-residential buildings. Analyzing a subset of large presumably commercial buildings, we find high albedo roofs represent 0.5% and 10% of total roofs and roof surface area, respectively. The potential for high albedo roofs to reduce urban temperatures was investigated for a California city (Bakersfield) with warm summers using a state-of-the-art meteorological model (Weather Research and Forecasting, WRF). Base case and cool roof scenarios were simulated with the only difference being that the surface albedo was increased under the cool roof scenario. Roof albedos derived from the aerial imagery were used as an input to the climate model in the base case scenario. Simulation results indicate that seasonal average afternoon (1500 h) temperatures could be reduced by up to 0.2 °C across Bakersfield during both the summer and winter. While temperature changes are similar during winter and summer, only summer shows statistically significant temperature changes downwind (southeast) from Bakersfield. This indicates that reduced summertime temperatures may be felt over a distance that is 2 or 3 times the length scale of the region with high albedo roofs.

  10. Reactivity effects of moderator voids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlfeld, C.E.; Pryor, R.J.

    1975-01-01

    Reactivity worths for large moderator voids similar to those produced by steaming in postulated reactor transients were measured in the Process Development Pile (PDP) reactor. The experimental results were compared to the computed void worths obtained from techniques currently used in routine safety analyses. Neutron energy spectrum measurements were used to verify a modified lattice pattern that correctly computed the measured spectrum, and consequently, improved macroscopic cross sections. In addition, a special two-dimensional transport calculation was performed to obtain an axially defined diffusion coefficient for the void region. The combination of the modified lattice calculations and the axial diffusion coefficientmore » yielded void reactivity worths which agreed very well with experiment. It was concluded that the computational modules available in the JOSHUA system (GLASS, GRIMHX) would yield accurate void reactivity worths in SLR--SRP safety analysis studies, provided the above mentioned modifications were made.« less

  11. Small Sample Reactivity Measurements in the RRR/SEG Facility: Reanalysis using TRIPOLI-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hummel, Andrew; Palmiotti, Guiseppe

    2016-08-01

    This work involved reanalyzing the RRR/SEG integral experiments performed at the Rossendorf facility in Germany throughout the 1970s and 80s. These small sample reactivity worth measurements were carried out using the pile oscillator technique for many different fission products, structural materials, and standards. The coupled fast-thermal system was designed such that the measurements would provide insight into elemental data, specifically the competing effects between neutron capture and scatter. Comparing the measured to calculated reactivity values can then provide adjustment criteria to ultimately improve nuclear data for fast reactor designs. Due to the extremely small reactivity effects measured (typically less thanmore » 1 pcm) and the specific heterogeneity of the core, the tool chosen for this analysis was TRIPOLI-4. This code allows for high fidelity 3-dimensional geometric modeling, and the most recent, unreleased version, is capable of exact perturbation theory.« less

  12. Reactivity Coefficient Calculation for AP1000 Reactor Using the NODAL3 Code

    NASA Astrophysics Data System (ADS)

    Pinem, Surian; Malem Sembiring, Tagor; Tukiran; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    The reactivity coefficient is a very important parameter for inherent safety and stability of nuclear reactors operation. To provide the safety analysis of the reactor, the calculation of changes in reactivity caused by temperature is necessary because it is related to the reactor operation. In this paper, the temperature reactivity coefficients of fuel and moderator of the AP1000 core are calculated, as well as the moderator density and boron concentration. All of these coefficients are calculated at the hot full power condition (HFP). All neutron diffusion constant as a function of temperature, water density and boron concentration were generated by the SRAC2006 code. The core calculations for determination of the reactivity coefficient parameter are done by using NODAL3 code. The calculation results show that the fuel temperature, moderator temperature and boron reactivity coefficients are in the range between -2.613 pcm/°C to -4.657pcm/°C, -1.00518 pcm/°C to 1.00649 pcm/°C and -9.11361 pcm/ppm to -8.0751 pcm/ppm, respectively. For the water density reactivity coefficients, the positive reactivity occurs at the water temperature less than 190 °C. The calculation results show that the reactivity coefficients are accurate because the results have a very good agreement with the design value.

  13. Report on the ALPO LTP observing program. [for establishing albedo scale for lunar features

    NASA Technical Reports Server (NTRS)

    Cameron, W. S.

    1974-01-01

    Observations of lunar transient phenomena for the Association of Lunar and Planetary Observers (ALPO) are reported. The procedures for making visual observations for estimating albedo are described, and the reported albedo analyzed for lunar topographic features. It is shown that a catalog or scale of albedos can be established for each feature.

  14. Surface albedo observations at Gusev Crater and Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Rice, M. S.; Johnson, J. R.; Hare, T. M.

    2008-05-01

    During the Mars Exploration Rover mission, the Pancam instrument has periodically acquired large-scale panoramic images with its broadband (739 +/- 338 nm) filter in order to estimate the Lambert bolometric albedo of the surface along each rover's traverse. In this work we present the full suite of such estimated albedo values measured to date by the Spirit and Opportunity rovers along their traverses in Gusev Crater and Meridiani Planum, respectively. We include estimated bolometric albedo values of individual surface features (e.g., outcrops, dusty plains, aeolian bed forms, wheel tracks, light-toned soils, and crater walls) as well as overall surface averages of the 43 total panoramic albedo data sets acquired to date. We also present comparisons to estimated Lambert albedo values taken from the Mars Global Surveyor Mars Orbiter Camera (MOC) along the rovers' traverses, and to the large-scale bolometric albedos of the sites from the Viking Orbiter Infrared Thermal Mapper (IRTM) and Mars Global Surveyor/Thermal Emission Spectrometer (TES). The ranges of Pancam-derived albedos at Gusev Crater (0.14 to 0.25) and in Meridiani Planum (0.10 to 0.18) are in good agreement with IRTM, TES, and MOC orbital measurements. These data sets will be a useful tool and benchmark for future investigations of albedo variations with time, including measurements from orbital instruments like the Context Camera and High Resolution Imaging Science Experiment on Mars Reconnaissance Orbiter. Long-term, accurate albedo measurements could also be important for future efforts in climate modeling as well as for studies of active surface processes.

  15. Impacts of Synoptic Weather Patterns on Snow Albedo at Sites in New England

    NASA Astrophysics Data System (ADS)

    Adolph, A. C.; Albert, M. R.; Lazarcik, J.; Dibb, J. E.; Amante, J.; Price, A. N.

    2015-12-01

    Winter snow in the northeastern United States has changed over the last several decades, resulting in shallower snow packs, fewer days of snow cover and increasing precipitation falling as rain in the winter. In addition to these changes which cause reductions in surface albedo, increasing winter temperatures also lead to more rapid snow grain growth, resulting in decreased snow reflectivity. We present in-situ measurements and analyses to test the sensitivity of seasonal snow albedo to varying weather conditions at sites in New England. In particular, we investigate the impact of temperature on snow albedo through melt and grain growth, the impact of precipitation event frequency on albedo through snow "freshening," and the impact of storm path on snow structure and snow albedo. Over three winter seasons between 2013 and 2015, in-situ snow characterization measurements were made at three non-forested sites across New Hampshire. These near-daily measurements include spectrally resolved albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density and local meteorological parameters. Combining this information with storm tracks derived from HYSPLIT modeling, we quantify the current sensitivity of northeastern US snow albedo to temperature as well as precipitation type, frequency and path. Our analysis shows that southerly winter storms result in snow with a significantly lower albedo than storms which come from across the continental US or the Atlantic Ocean. Interannual variability in temperature and statewide spatial variability in snowfall rates at our sites show the relative importance of snowfall amount and temperatures in albedo evolution over the course of the winter.

  16. Improvement of Mars surface snow albedo modeling in LMD Mars GCM with SNICAR

    NASA Astrophysics Data System (ADS)

    Singh, D.; Flanner, M.; Millour, E.

    2017-12-01

    The current version of Laboratoire de Météorologie Dynamique (LMD) Mars GCM (original-MGCM) uses annually repeating (prescribed) albedo values from the Thermal Emission Spectrometer observations. We integrate the Snow, Ice, and Aerosol Radiation (SNICAR) model with MGCM (SNICAR-MGCM) to prognostically determine H2O and CO2 ice cap albedos interactively in the model. Over snow-covered regions mean SNICAR-MGCM albedo is higher by about 0.034 than original-MGCM. Changes in albedo and surface dust content also impact the shortwave energy flux at the surface. SNICAR-MGCM model simulates a change of -1.26 W/m2 shortwave flux on a global scale. Globally, net CO2 ice deposition increases by about 4% over one Martian annual cycle as compared to original-MGCM simulations. SNICAR integration reduces the net mean global surface temperature, and the global surface pressure of Mars by about 0.87% and 2.5% respectively. Changes in albedo also show a similar distribution as dust deposition over the globe. The SNICAR-MGCM model generates albedos with higher sensitivity to surface dust content as compared to original-MGCM. For snow-covered regions, we improve the correlation between albedo and optical depth of dust from -0.91 to -0.97 with SNICAR-MGCM as compared to original-MGCM. Using new diagnostic capabilities with this model, we find that cryospheric surfaces (with dust) increase the global surface albedo of Mars by 0.022. The cryospheric effect is severely muted by dust in snow, however, which acts to decrease the planet-mean surface albedo by 0.06.

  17. Albedo climatology for European land surfaces retrieved from AVHRR data (1990-2014) and its spatial and temporal analysis from green-up to vegetation senescence

    NASA Astrophysics Data System (ADS)

    Sütterlin, M.; Stöckli, R.; Schaaf, C. B.; Wunderle, S.

    2016-07-01

    Satellite-based, long-term records of surface albedo characterization that accurately capture spatial and temporal patterns are essential to develop climate models and to monitor the impact of land use changes on the terrestrial energy and water balance. This study presents the first Bidirectional Reflectance Distribution Function (BRDF) and albedo data set derived from the Advanced Very High Resolution Radiometer (AVHRR) Local Area Coverage reflectance data acquired on board National Oceanic and Atmospheric Administration and Meteorological Operational platforms from 1990 to 2014 over Europe. The objectives of this paper are to describe the data set's surface albedo climatology and anomalies in the visible, near-infrared, and shortwave broadbands for the growing season months of May to September in order to facilitate utilization of the data by the climate modeling communities. The results demonstrate that the AVHRR BRDF and albedo data have temporal and spatial patterns that are appropriate for the underlying predominant land cover type and accurately reflect the associated climate variation. Visible and near-infrared broadband albedo anomalies are found to be contrasting in most years, and their spatial distributions depict responses of vegetation to climate events (e.g., heat waves). Visible albedo of crops and near-infrared albedo of pastures show a higher interannual variation than respective albedos of other snow-free land covers, while the interannual standard deviations are found to be lower than 0.015. Our findings indicate the importance of taking into account the spectrally distinct variability of surface albedo when analyzing its complex spatiotemporal dynamics in climate-related research.

  18. Analysis on Reactor Criticality Condition and Fuel Conversion Capability Based on Different Loaded Plutonium Composition in FBR Core

    NASA Astrophysics Data System (ADS)

    Permana, Sidik; Saputra, Geby; Suzuki, Mitsutoshi; Saito, Masaki

    2017-01-01

    Reactor criticality condition and fuel conversion capability are depending on the fuel arrangement schemes, reactor core geometry and fuel burnup process as well as the effect of different fuel cycle and fuel composition. Criticality condition of reactor core and breeding ratio capability have been investigated in this present study based on fast breeder reactor (FBR) type for different loaded fuel compositions of plutonium in the fuel core regions. Loaded fuel of Plutonium compositions are based on spent nuclear fuel (SNF) of light water reactor (LWR) for different fuel burnup process and cooling time conditions of the reactors. Obtained results show that different initial fuels of plutonium gives a significant chance in criticality conditions and fuel conversion capability. Loaded plutonium based on higher burnup process gives a reduction value of criticality condition or less excess reactivity. It also obtains more fuel breeding ratio capability or more breeding gain. Some loaded plutonium based on longer cooling time of LWR gives less excess reactivity and in the same time, it gives higher breeding ratio capability of the reactors. More composition of even mass plutonium isotopes gives more absorption neutron which affects to decresing criticality or less excess reactivity in the core. Similar condition that more absorption neutron by fertile material or even mass plutonium will produce more fissile material or odd mass plutonium isotopes to increase the breeding gain of the reactor.

  19. Examples of cooler reflective streets for urban heat-island mitigation : Portland cement concrete and chip seals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomerantz, M.; Akbari, H.; Chang, S.-C.

    Part of the urban heat island effect can be attributed to dark pavements that are commonly used on streets and parking lots. In this paper we consider two light colored, hence cooler, alternative paving materials that are in actual use in cities today. These are Portland cement concrete (PCC) pavements and chip seals. We report measurements of the albedos of some PCC and chip sealed pavements in the San Francisco Bay Area. The albedos of the PCC pavements ranged from about 0.18 to 0.35. The temperatures of some PCC pavements are also measured and calculated. We then consider how themore » albedos of the constituent materials of the PCC (stone, sand and cement) contribute to the albedos of the resulting finished concrete. The albedos of a set of chip sealed pavements in San Jose, CA, were measured and correlated with the times of their placement. It is found that the albedos decrease with age (and use) but remain higher than that of standard asphalt concrete (AC) for about five years. After t hat, the albedos of the chip seals are about 0.12, similar to aged AC. The fact that many PCC pavements have albedos at least twice as high as aged AC suggests that it is possible to have pavement albedos that remain high for many years.« less

  20. Decay-ratio calculation in the frequency domain with the LAPUR code using 1D-kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Cobo, J. L.; Escriva, A.; Garcia, C.

    This paper deals with the problem of computing the Decay Ratio in the frequency domain codes as the LAPUR code. First, it is explained how to calculate the feedback reactivity in the frequency domain using slab-geometry i.e. 1D kinetics, also we show how to perform the coupling of the 1D kinetics with the thermal-hydraulic part of the LAPUR code in order to obtain the reactivity feedback coefficients for the different channels. In addition, we show how to obtain the reactivity variation in the complex domain by solving the eigenvalue equation in the frequency domain and we compare this result withmore » the reactivity variation obtained in first order perturbation theory using the 1D neutron fluxes of the base case. Because LAPUR works in the linear regime, it is assumed that in general the perturbations are small. There is also a section devoted to the reactivity weighting factors used to couple the reactivity contribution from the different channels to the reactivity of the entire reactor core in point kinetics and 1D kinetics. Finally we analyze the effects of the different approaches on the DR value. (authors)« less

  1. Evaluation of the global MODIS 30 arc-second spatially and temporally complete snow-free land surface albedo and reflectance anisotropy dataset

    NASA Astrophysics Data System (ADS)

    Sun, Qingsong; Wang, Zhuosen; Li, Zhan; Erb, Angela; Schaaf, Crystal B.

    2017-06-01

    Land surface albedo is an essential variable for surface energy and climate modeling as it describes the proportion of incident solar radiant flux that is reflected from the Earth's surface. To capture the temporal variability and spatial heterogeneity of the land surface, satellite remote sensing must be used to monitor albedo accurately at a global scale. However, large data gaps caused by cloud or ephemeral snow have slowed the adoption of satellite albedo products by the climate modeling community. To address the needs of this community, we used a number of temporal and spatial gap-filling strategies to improve the spatial and temporal coverage of the global land surface MODIS BRDF, albedo and NBAR products. A rigorous evaluation of the gap-filled values shows good agreement with original high quality data (RMSE = 0.027 for the NIR band albedo, 0.020 for the red band albedo). This global snow-free and cloud-free MODIS BRDF and albedo dataset (established from 2001 to 2015) offers unique opportunities to monitor and assess the impact of the changes on the Earth's land surface.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masiero, Joseph R.; Mainzer, A. K.; Nugent, C. R.

    We present revised near-infrared albedo fits of 2835 main-belt asteroids observed by WISE/NEOWISE over the course of its fully cryogenic survey in 2010. These fits are derived from reflected-light near-infrared images taken simultaneously with thermal emission measurements, allowing for more accurate measurements of the near-infrared albedos than is possible for visible albedo measurements. Because our sample requires reflected light measurements, it undersamples small, low-albedo asteroids, as well as those with blue spectral slopes across the wavelengths investigated. We find that the main belt separates into three distinct groups of 6%, 16%, and 40% reflectance at 3.4 μm. Conversely, the 4.6more » μm albedo distribution spans the full range of possible values with no clear grouping. Asteroid families show a narrow distribution of 3.4 μm albedos within each family that map to one of the three observed groupings, with the (221) Eos family being the sole family associated with the 16% reflectance 3.4 μm albedo group. We show that near-infrared albedos derived from simultaneous thermal emission and reflected light measurements are important indicators of asteroid taxonomy and can identify interesting targets for spectroscopic follow-up.« less

  3. Albedo Boundary

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-510, 11 October 2003

    The sharp, nearly straight line that runs diagonally across the center of this April 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is an albedo boundary. Albedois a term that refers to reflectance of sunlight. A surface with a low albedo is one that appears dark because it reflects less light than a high albedo (bright) surface. On Mars, albedo boundaries occur between two materials of differing texture, particle size, or composition, or some combination of these three factors. The boundary shown here is remarkable because it is so sharp and straight. This is caused by wind. Most likely, the entire surface was once covered with the lower-albedo (darker) material that is now seen in the upper half of the image. At some later time, wind stripped away this darker material from the surfaces in the lower half of the image. The difference in albedo here might be related to composition, and possibly particle size. This picture is located near the southwest rim of Schiaparelli Basin at 5.5oS, 345.9oW. The picture covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the left.

  4. Field Measured Spectral Albedo-Four Years of Data from the Western U.S. Prairie

    NASA Astrophysics Data System (ADS)

    Michalsky, Joseph J.; Hodges, Gary B.

    2013-01-01

    This paper presents an initial look at four years of spectral measurements used to calculate albedo for the Colorado prairie just east of the Rocky Mountain range foothills. Some issues associated with calculating broadband albedo from thermopile sensors are discussed demonstrating that uncorrected instrument issues have led to incorrect conclusions. Normalized Difference Vegetative Index (NDVI) is defined for the spectral instruments in this study and used to demonstrate the dramatic changes that can be monitored with this very sensitive product. Examples of albedo wavelength and solar-zenith angle dependence for different stages of vegetative growth and senescence are presented. The spectral albedo of fresh snow and its spectral and solar-zenith angle dependence are discussed and contrasted with other studies of these dependencies. We conclude that fresh snow is consistent with a Lambertian reflector over the solar incidence angles measured; this is contrary to most snow albedo results. Even a slope of a degree or two in the viewed surface can explain the asymmetry in the morning and afternoon albedos for snow and vegetation. Plans for extending these spectral measurements for albedo to longer wavelengths and to additional sites are described.

  5. Climate changes impact the surface albedo of a forest ecosystem based on MODIS satellite data

    NASA Astrophysics Data System (ADS)

    Zoran, M. A.; Nemuc, A. V.

    2007-10-01

    Surface albedo is one of the most important biophysical parameter responsible for energy balance control and the surface temperature and boundary-layer structure of the atmosphere. Forest land surface albedo is also highly variable temporally showing both diurnal as well as seasonal variations. In forest systems, albedo controls the microclimate conditions which affects ecosystem physical, physiological, and biogeochemical processes such as energy balance, evapotranspiration, photosynthesis. Due to anthropogenic and natural factors, land cover and land use changes result is the land surfaces albedo change. The main aim of this paper is to investigate the albedo patterns due to the impact of atmospheric pollution and climate variations of a forest ecosystem Branesti-Cernica, placed to the North-East of Bucharest city, Romania based on satellite Landsat ETM+, IKONOS and MODIS data and climate station observations. Our study focuses on 3 years of data (2003-2005), each of which had a different climatic regime. As the physical climate system is very sensitive to surface albedo, forest ecosystems could significantly feedback to the projected climate change modeling scenarios through albedo changes. The results of this research have a number of applications in weather forecasting, climate change, and forest ecosystem studies.

  6. Albedo Drop on the Greenland Ice Sheet: Relative Impacts of Wet and Dry Snow Processes

    NASA Astrophysics Data System (ADS)

    Chen, J.; Polashenski, C.

    2014-12-01

    The energy balance of the Greenland Ice Sheet (GIS) is strongly impacted by changes in snow albedo. MODIS (Moderate Resolution Imaging Spectroradiometer) observations indicate that the GIS albedo has dropped since the early part of this century. We analyze data from the MODIS products MOD10A1 for broadband snow albedo and MOD09A1 for surface spectral reflectance since 2001 to better explain the physical mechanisms driving these changes. The MODIS products are filtered, and the data is masked using microwave-derived surface melt maps to isolate albedo changes due to dry snow processes from those driven by melt impacts. Results show that the majority of recent changes in the GIS albedo - even at high elevations - are driven by snow wetting rather than dry snow processes such as grain metamorphosis and aerosol impurity deposition. The spectral signature of the smaller changes occurring within dry snow areas suggests that grain metamorphosis dominates the albedo decline in these regions.

  7. UV/visible albedos from airborne measurements

    NASA Astrophysics Data System (ADS)

    Webb, A.; Kylling, A.; Stromberg, I.

    2003-04-01

    During the INSPECTRO campaign effective surface albedo was measured at UV and visible wavelengths from two airborne platforms, a Cessna light aircraft and a hot air balloon. On board the Cessna was a scanning spectroradiometer measuring from 300 - 500nm at 10nm intervals. The NILU cube, with 6 faces and two UV channels at 312 and 340nm, was suspended beneath the hot air balloon. Flights took place over East Anglia during September, 2002. Balloon flights were made below cloud layers, while the Cessna flew both above and below cloud. The Cessna also flew over Barton Bendish, where surface albedos have been measured for ground truthing of satellite data, and measured the effective albedo at four visible wave- lengths in the centres of the satellite bandpass functions. Results of measurements from the different platforms are compared, and model simulations used to deduce the surface albedo from the effective albedo at altitude, giving, for example, an albedo of 0.02 ± 0.01 at 340nm.

  8. Postfire influences of snag attrition on albedo and radiative forcing

    NASA Astrophysics Data System (ADS)

    O'Halloran, Thomas L.; Acker, Steven A.; Joerger, Verena M.; Kertis, Jane; Law, Beverly E.

    2014-12-01

    This paper examines albedo perturbation and radiative forcing after a high-severity fire in a mature forest in the Oregon Cascade Range. Correlations between postfire albedo and seedling, sapling, and snag (standing dead tree) density were investigated across fire severity classes and seasons for years 4-15 after fire. Albedo perturbation was 14 times larger in winter compared to summer and increased with fire severity class for the first several years. Albedo perturbation increased linearly with time over the study period. Correlations between albedo perturbations and the vegetation densities were strongest with snags, and significant in all fire classes in both summer and winter (R < -0.92, p < 0.01). The resulting annual radiative forcing at the top of the atmosphere became more negative linearly at a rate of -0.86 W m-2 yr-1, reaching -15 W m-2 in year 15 after fire. This suggests that snags can be the dominant controller of postfire albedo on decadal time scales.

  9. Calculation and Experiment of Adding Top Beryllium Shims for Iran MNSR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebadati, Javad; Rezvanifard, Mehdi; Shahabi, Iraj

    2006-07-01

    Miniature Neutron Source Reactor which is called MNSR were put into operation on June 1994 in Esfahan Nuclear Technology Center (ENTC). At that time the excess reactivity at the cold condition was 3.85 mk. After 7 years of operation and fuel consumption the reactivity was reduced to 2.90 mk. To compensate this reduction and upgrade the reactor, Beryllium Shim were used at the top of the core. This paper discusses the steps for this accurate and sensitive task. Finally a layer of 1.5 mm Beryllium were added to restore the reactor life. (authors)

  10. Leap Frog and Time Step Sub-Cycle Scheme for Coupled Neutronics and Thermal-Hydraulic Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, S.

    2002-07-01

    As the result of the advancing TCP/IP based inter-process communication technology, more and more legacy thermal-hydraulic codes have been coupled with neutronics codes to provide best-estimate capabilities for reactivity related reactor transient analysis. Most of the coupling schemes are based on closely coupled serial or parallel approaches. Therefore, the execution of the coupled codes usually requires significant CPU time, when a complicated system is analyzed. Leap Frog scheme has been used to reduce the run time. The extent of the decoupling is usually determined based on a trial and error process for a specific analysis. It is the intent ofmore » this paper to develop a set of general criteria, which can be used to invoke the automatic Leap Frog algorithm. The algorithm will not only provide the run time reduction but also preserve the accuracy. The criteria will also serve as the base of an automatic time step sub-cycle scheme when a sudden reactivity change is introduced and the thermal-hydraulic code is marching with a relatively large time step. (authors)« less

  11. Synthesis of a potential semiconductor neutron detector crystal LiGa(Se/Te)2: materials purity and compatibility effects

    NASA Astrophysics Data System (ADS)

    Stowe, Ashley C.; Morrell, J.; Battacharya, Pijush; Tupitsyn, Eugene; Burger, Arnold

    2011-09-01

    Lithium containing AIBIIICVI semiconductors are being considered as alternative materials for room temperature neutron detection. One of the primary challenges in growing a high quality crystal of such a material is the reactivity of lithium metal. The presence of nitrides, oxides, and a variety of alkali and alkaline earth metal impurities prevent pure synthesis and truncate crystal growth by introducing multiple nucleation centers during growth. Multiple lithium metal purification methods have been investigated which ultimately raised the metal purity to 99.996%. Multi-cycle vacuum distillation removed all but 40 ppm of metal impurities in lithium metal. LiGa(Se/Te)2 was then synthesized with the high purity lithium metal by a variety of conditions. Lithium metal reacts violently with many standard crucible materials, and thermodynamic studies were undertaken to insure that an appropriate crucible choice was made, with high purity iron and boron nitride crucibles being the least reactive practical materials. Once conditions were optimized for synthesis of the chalcopyrite, vertical Bridgman crystal growth resulted in red crystals. The optical, electronic, and thermodynamic properties were collected.

  12. Monitoring Land Surface Albedo and Vegetation Dynamics Using High Spatial and Temporal Resolution Synthetic Time Series from Landsat and the MODIS BRDF/NBAR/Albedo Product

    NASA Technical Reports Server (NTRS)

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Quingsong; Kim, Jihyun; Erb, Angela M.; Gao, Feng; Roman, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.; hide

    2017-01-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warmingcooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500-meter Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF (Bidirectional Reflectance Distribution Function) / NBAR (Nadir BRDF-Adjusted Reflectance) / albedo products and 30-meter Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDFAlbedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30-meter Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30-meter albedos for the intervening daily time steps in this study. These enhanced daily 30-meter spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a bias within the range of 0.006. These synthetic time series provide much greater spatial detail than the 500 meter gridded MODIS data, especially over more heterogeneous surfaces, which improves the efforts to characterize and monitor the spatial variation across species and communities. The mean of the difference between maximum and minimum synthetic time series of albedo within the MODIS pixels over a subset of satellite data of Harvard Forest (16 kilometers by 14 kilometers) was as high as 0.2 during the snow-covered period and reduced to around 0.1 during the snow-free period. Similarly, we have used STARFM to also couple MODIS Nadir BRDF-Adjusted Reflectances (NBAR) values with Landsat 5 reflectances to generate daily synthetic times series of NBAR and thus Enhanced Vegetation Index (NBAR-EVI) at a 30-meter resolution. While normally STARFM is used with directional reflectances, the use of the view angle corrected daily MODIS NBAR values will provide more consistent time series. These synthetic times series of EVI are shown to capture seasonal vegetation dynamics with finer spatial and temporal details, especially over heterogeneous land surfaces.

  13. A study of the effect of space-dependent neutronics on stochastically-induced bifurcations in BWR dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Analytis, G.T.

    1995-09-01

    A non-linear one-group space-dependent neutronic model for a finite one-dimensional core is coupled with a simple BWR feed-back model. In agreement with results obtained by the authors who originally developed the point-kinetics version of this model, we shall show numerically that stochastic reactivity excitations may result in limit-cycles and eventually in a chaotic behaviour, depending on the magnitude of the feed-back coefficient K. In the framework of this simple space-dependent model, the effect of the non-linearities on the different spatial harmonics is studied and the importance of the space-dependent effects is exemplified and assessed in terms of the importance ofmore » the higher harmonics. It is shown that under certain conditions, when the limit-cycle-type develop, the neutron spectra may exhibit strong space-dependent effects.« less

  14. Quasielastic and inelastic neutron scattering study of the hydration of monoclinic and triclinic tricalcium silicate

    NASA Astrophysics Data System (ADS)

    Peterson, Vanessa K.; Brown, Craig M.; Livingston, Richard A.

    2006-08-01

    The hydration of Mg-stabilized triclinic and monoclinic tricalcium silicate samples were studied using quasielastic neutron scattering to follow the fixation of hydrogen into the reaction products and by applying hydration models to the data. The quantity of Ca(OH) 2 produced during hydration was also determined using inelastic neutron scattering. The monoclinic form was found to be intrinsically less reactive that the triclinic form. The monoclinic form was also confirmed to produce more product than the triclinic form after 50 h, a process found to occur through a longer, rather than earlier, nucleation and growth regime. Results indicated an increase in the permeability of the hydration layer product relative to the triclinic form and the increase in the length of the nucleation and growth regime was thus attributed to an alteration in morphology or structure of the hydration layer product, extending the time for diffusion limited mechanics to be reached.

  15. Suprathermal Ion Populations in ICF Plasmas - Implications for Diagnostics and Ignition

    NASA Astrophysics Data System (ADS)

    Knapp, Patrick; Schmit, Paul; Sinars, Daniel

    2013-10-01

    We report on investigations into the effects of suprathermal ion populations on neutron production in Inertial Confinement and Magneto-Inertial Fusion plasmas. In a recent article we showed that a suprathermal population taking the form of a power-law in energy will significantly modify the shape and width of the neutron spectrum and can dramatically increase the fusion reactivity compared to the Maxwellian case. Specific diagnostic signatures are discussed in detail. We build on this work to include the effect of an applied magnetic field on the neutron spectra, isotropy and production rate. Finally, the impact that these modifications have on the ability to reach high fusion yields and ignition is discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration.

  16. Neutronics Analysis of SMART Small Modular Reactor using SRAC 2006 Code

    NASA Astrophysics Data System (ADS)

    Ramdhani, Rahmi N.; Prastyo, Puguh A.; Waris, Abdul; Widayani; Kurniadi, Rizal

    2017-07-01

    Small modular reactors (SMRs) are part of a new generation of nuclear reactor being developed worldwide. One of the advantages of SMR is the flexibility to adopt the advanced design concepts and technology. SMART (System integrated Modular Advanced ReacTor) is a small sized integral type PWR with a thermal power of 330 MW that has been developed by KAERI (Korea Atomic Energy Research Institute). SMART core consists of 57 fuel assemblies which are based on the well proven 17×17 array that has been used in Korean commercial PWRs. SMART is soluble boron free, and the high initial reactivity is mainly controlled by burnable absorbers. The goal of this study is to perform neutronics evaluation of SMART core with UO2 as main fuel. Neutronics calculation was performed by using PIJ and CITATION modules of SRAC 2006 code with JENDL 3.3 as nuclear data library.

  17. Surface features on Mars: Ground-based albedo and radar compared with Mariner 9 topography

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1973-01-01

    Earth-based albedo maps of Mars were compared with Mariner 9 television data and ground-based radar profiles to investigate the nature of the bright and dark albedo features. Little correlation was found except at the boundaries of classical albedo features, where some topographic control is indicated. Wind-blown dust models for seasonal and secular albedo variations are supported, but it is not clear whether the fines are derived from bright or dark parent rock. Mars, like the Earth and Moon, has probably generated two distinct types of crustal material.

  18. Natural versus anthropogenic factors affecting low-level cloud albedo over the North Atlantic

    NASA Technical Reports Server (NTRS)

    Falkowski, Paul G.; Kim, Yongseung; Kolber, Zbigniew; Wilson, Cara; Wirick, Creighton; Cess, Robert

    1992-01-01

    Cloud albedo plays a key role in regulating earth's climate. Cloud albedo depends on column-integrated liquid water content and the density of cloud condensation nuclei, which consists primarily of submicrometer-sized aerosol sulfate particles. A comparison of two independent satellite data sets suggests that, although anthropogenic sulfate emissions may enhance cloud albedo immediately adjacent to the east coast of the United States, over the central North Atlantic Ocean the variability in albedo can be largely accounted for by natural marine and atmospheric processes that probably have remained relatively constant since the beginning of the industrial revolution.

  19. Putting the Capital 'A' in CoCoRAHS: A Pilot Program to Measure Albedo using the Community Collaborative Rain, Hail, and Snow (CoCoRaHS) Network

    NASA Astrophysics Data System (ADS)

    Burakowski, E. A.; Stampone, M. D.; Wake, C. P.; Dibb, J. E.

    2012-12-01

    The Community Collaborative Rain, Hail, and Snow (CoCoRaHS) Network, started in 1998 as a community-based network of volunteer weather observer in Colorado, is the single largest provider of daily precipitation observations in the United States. We embrace the CoCoRaHS mission to use low-cost measurement tools, provide training and education, and utilize an interactive website to collect high quality albedo data for research and education applications. We trained a select sub-set of CoCoRaHS's eighteen most enthusiastic, self-proclaimed 'weather nuts' in the state of New Hampshire to collect surface albedo, snow depth, and snow density measurements between 23-Nov-2011 and 15-Mar-2012. At less than 700 per observer, the low-cost albedo data falls within ±0.05 of albedo values collected from a First Class Kipp and Zonen Albedometer (CMA6) at local solar noon. CoCoRaHS albedo values range from 0.99 for fresh snow to 0.34 for shallow, aged snow. Snow-free albedo ranges from 0.09 to 0.39, depending on ground cover. Albedo is found to increase logarithmically with snow depth and decrease linearly with snow density. The latter relationship with snow density is inferred to be a proxy for increasing snow grain size as snowpack ages and compacts, supported by spectral albedo measurements collected with an ASD FieldSpec4 spectrometer. The newly established albedo network also serves as a development test bed for interactive online mapping and graphing applications for CoCoRaHS observers to investigate spatial and temporal patterns in albedo, snow depth, and snow density (www.cocorahs-albedo.org). The 2012-2013 field season will include low-cost infrared temperature guns (<40 each) to investigate the relationship between surface albedo and skin temperature. We have also recruited middle- and high-schools as volunteer observers and are working with the teachers to develop curriculum and lesson plans that utilize the low-cost measurement tools provided by CoCoRAHS. CoCoRAHS data will provide critical spatially distributed measurements of surface data that will be used to validate and improve land surface modeling of New Hampshire climate under different land cover scenarios. Building on the success of the first season, the newly established albedo network shows promise to put the capital 'A' in CoCoRAHS.Figure 1. (a) Map of Community Collaborative Rain, Hail, and Snow (CoCoRAHS) volunteers participating in the pilot albedo project, and (b) CoCoRAHS snow measurement kit.

  20. Global warming related transient albedo feedback in the Arctic and its relation to the seasonality of sea ice

    NASA Astrophysics Data System (ADS)

    Andry, Olivier; Bintanja, Richard; Hazeleger, Wilco

    2015-04-01

    The Arctic is warming two to three times faster than the global average. Arctic sea ice cover is very sensitive to this warming and has reached historic minima in late summer in recent years (i.e. 2007, 2012). Considering that the Arctic Ocean is mainly ice-covered and that the albedo of sea ice is very high compared to that of open water, the change in sea ice cover is very likely to have a strong impact on the local surface albedo feedback. Here we quantify the temporal changes in surface albedo feedback in response to global warming. Usually feedbacks are evaluated as being representative and constant for long time periods, but we show here that the strength of climate feedbacks in fact varies strongly with time. For instance, time series of the amplitude of the surface albedo feedback, derived from future climate simulations (CIMP5, RCP8.5 up to year 2300) using a kernel method, peaks around the year 2100. This maximum is likely caused by an increased seasonality in sea-ice cover that is inherently associated with sea ice retreat. We demonstrate that the Arctic average surface albedo has a strong seasonal signature with a maximum in spring and a minimum in late summer/autumn. In winter when incoming solar radiation is minimal the surface albedo doesn't have an important effect on the energy balance of the climate system. The annual mean surface albedo is thus determined by the seasonality of both downwelling shortwave radiation and sea ice cover. As sea ice cover reduces the seasonal signature is modified, the transient part from maximum sea ice cover to its minimum is shortened and sharpened. The sea ice cover is reduced when downwelling shortwave radiation is maximum and thus the annual surface albedo is drastically smaller. Consequently the change in annual surface albedo with time will become larger and so will the surface albedo feedback. We conclude that a stronger seasonality in sea ice leads to a stronger surface albedo feedback, which accelerates melting of sea ice. Hence, the change in seasonality and the associated change in feedback strength is an integral part of the positive surface albedo feedback leading to Arctic amplification and diminishing sea ice cover in the next century when global climate warms.

  1. Albedo and its Relationship to Land Cover and the Urban Heat Island in the Boston Metropolitan Region

    NASA Astrophysics Data System (ADS)

    Trlica, A.; Hutyra, L.; Wang, J.; Schaaf, C.; Erb, A.

    2016-12-01

    The urban built environment creates key changes in the biophysical character of the landscape, including the creation of Urban Heat Islands (UHIs) with increased near-surface temperatures in and around cities. Alteration in surface albedo is believed to partially drive UHIs through greater absorption of solar energy, but few empirical studies have specifically quantified albedo across a heterogeneous urban landscape, or investigated linkages between albedo, the UHI, and other surface socio-biophysical characteristics at a high enough spatial resolution to discern urban-scale features. This study used data derived from observations by Landsat and other remote sensing platforms to measure albedo across a varied urban landscape centered on Boston, Massachusetts, and examined the relationship between albedo, several key indicators of urban surface character (canopy cover, impervious fraction, and population density) and land surface temperature at resolutions of both 30 and 500 m. Albedo tended to be lower in areas with highest urbanization intensity indicators compared to rural undeveloped areas, and areas with lower albedo tended also to have higher median daytime summer surface temperatures. A k-means classification utilizing all the data available for each pixel revealed several distinct patterns of urban land cover corresponding mainly to the density of population and constructed surfaces and their impact on tree canopy cover. Mean 30-m summer surface temperatures ranged from 40.0 °C (SD = 2.6) in urban core areas to 26.2 °C (SD = 1.1) in nearby forest, but we only observed correspondingly large albedo decreases in the highest density urban core, with mean albedo of 0.116 (SD = 0.015) compared with 0.155 (SD = 0.015) in forest. Observations show that lower albedo in the Boston metropolitan region may be an important component of the local UHI in the most densely built-up urban core regions, while the UHI temperature effect in less densely settled peripheral regions is more likely to be driven primarily by reduced evapotranspiration due to diminished tree canopy and greater impervious surface coverage. These results empirically characterize surface albedo across a suite of land cover categories and biophysical characteristics and reveal how albedo relates to surface temperatures in this urbanized region.

  2. Albedo boundaries on Mars in 1972: Results from Mariner 9

    USGS Publications Warehouse

    Batson, R.M.; Inge, J.L.

    1976-01-01

    A map of "albedo" boundaries (light and dark markings) on Mars was prepared from Mariner 9 images. After special digital processing, these pictures provide detailed locations of albedo boundaries, which is significant in interpreting recent eolian activity. Derivation of absolute albedo values from the spacecraft data was not attempted. The map correlates well with telescopic observations of Mars after the 1971 dust storm. ?? 1976.

  3. Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods

    Treesearch

    Zhuosen Wang; Crystal B. Schaaf; Alan H. Strahler; Mark J. Chopping; Miguel O. Román; Yanmin Shuai; Curtis E. Woodcock; David Y. Hollinger; David R. Fitzjarrald

    2014-01-01

    This study assesses the Moderate-resolution Imaging Spectroradiometer (MODIS) BRDF/albedo 8 day standard product and products from the daily Direct Broadcast BRDF/albedo algorithm, and shows that these products agree well with ground-based albedo measurements during the more difficult periods of vegetation dormancy and snow cover. Cropland, grassland, deciduous and...

  4. Snow driven Radiative Forcing in High Latitude Areas of Disturbance Using Higher Resolution Albedo Products from Landsat and Sentinel-2

    NASA Astrophysics Data System (ADS)

    Erb, A.; Li, Z.; Schaaf, C.; Wang, Z.; Rogers, B. M.

    2017-12-01

    Land surface albedo plays an important role in the surface energy budget and radiative forcing by determining the proportion of absorbed incoming solar radiation available to drive photosynthesis and surface heating. In Arctic regions, albedo is particularly sensitive to land cover and land use change (LCLUC) and modeling efforts have shown it to be the primary driver of effective radiative forcing from the biogeophysical effects of LCLUC. In boreal forests, the effects of these changes are complicated during snow covered periods when newly exposed, highly reflective snow can serve as the primary driver of radiative forcing. In Arctic biomes disturbance scars from fire, pest and harvest can remain in the landscape for long periods of time. As such, understanding the magnitude and persistence of these disturbances, especially in the shoulder seasons, is critical. The Landsat and Sentinel-2 Albedo Products couple 30m and 20m surface reflectances with concurrent 500m BRDF Products from the MODerate resolution Imaging Spectroradiometer (MODIS). The 12 bit radiometric fidelity of Sentinel-2 and Landsat-8 allow for the inclusion of high-quality, unsaturated albedo calculations over snow covered surfaces at scales more compatible with fragmented landscapes. Recent work on the early spring albedo of fire scars has illustrated significant post-fire spatial heterogeneity of burn severity at the landscape scale and highlights the need for a finer spatial resolution albedo record. The increased temporal resolution provided by multiple satellite instruments also allows for a better understanding of albedo dynamics during the dynamic shoulder seasons and in historically difficult high latitude locations where persistent cloud cover limits high quality retrievals. Here we present how changes in the early spring albedo of recent boreal forest disturbance in Alaska and central Canada affects landscape-scale radiative forcing. We take advantage of the long historical Landsat record to examine pre-disturbance albedo trends and to link historical land cover and disturbance history to post-disturbance early spring albedo values. We examine the impact of landscape heterogeneity on albedo in the growing and dormant seasons and quantify the effects of snow exposure changes from over-story canopy loss.

  5. Analysis of fluid fuel flow to the neutron kinetics on molten salt reactor FUJI-12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aji, Indarta Kuncoro, E-mail: indartaaji@s.itb.ac.id; Waris, Abdul, E-mail: awaris@fi.itb.ac.id; Permana, Sidik

    Molten Salt Reactor is a reactor are operating with molten salt fuel flowing. This condition interpret that the neutron kinetics of this reactor is affected by the flow rate of the fuel. This research analyze effect by the alteration velocity of the fuel by MSR type Fuji-12, with fuel composition LiF-BeF{sub 2}-ThF{sub 4}-{sup 233}UF{sub 4} respectively 71.78%-16%-11.86%-0.36%. Calculation process in this study is performed numerically by SOR and finite difference method use C programming language. Data of reactivity, neutron flux, and the macroscopic fission cross section for calculation process obtain from SRAC-CITATION (Standard thermal Reactor Analysis Code) and JENDL-4.0 datamore » library. SRAC system designed and developed by JAEA (Japan Atomic Energy Agency). This study aims to observe the effect of the velocity of fuel salt to the power generated from neutron precursors at fourth year of reactor operate (last critical condition) with number of multiplication effective; 1.0155.« less

  6. Delayed Neutrons Effect on Power Reactor with Variation of Fluid Fuel Velocity at MSR Fuji-12

    NASA Astrophysics Data System (ADS)

    Kuncoro Aji, Indarta; Pramuditya, Syeilendra; Novitrian; Irwanto, Dwi; Waris, Abdul

    2017-01-01

    As the nuclear reactor operate with liquid fuel, controlling velocity of the fuel flow on the Molten salt reactor very influence on the neutron kinetics in that reactor system. The effect of the pace fuel changes to the populations number of neutrons and power density on vertical direction (1 dimension) from the first until fifth year reactor operating had been analyzed on this research. This research had been conducted on MSR Fuji-12 with a two meters core high, and LiF-BeF2-ThF4-233UF4 as fuel composition respectively 71.78%-16%-11.86%-0.36%. Data of reactivity, neutron flux, and the macroscopic fission cross section obtained from ouput of SRAC (neutronic calculation code has been developed by JAEA, with JENDL-4.0 as data library on the SRAC calculation) was being used for the calculation process of this research. The calculation process of this research had been performed numerically by SOR (successive over relaxation) and finite difference methode, as well as using C programing language. From the calculation, regarding to the value of power density resulting from delayed neutrons, concluded that 20 m/s is the optimum fuel flow velocity in all the years reactor had operated. Where the increases number of power are inversely proportional with the fuel flow speed.

  7. A Comparison of the Seasonal Change of Albedo across Glaciers and Ice-Covered Lakes of the Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Gooseff, M. N.; Bergstrom, A.

    2016-12-01

    The Dry Valleys of Antarctica are a polar desert ecosystem consisting of piedmont and alpine glaciers, ice-covered lakes, and vast expanses of bare soil. The ecosystem is highly dependent on glacial melt a water source. Because average summer temperatures are close to freezing, glacier ice and lake ice are very closely linked to the energy balance. A slight increase in incoming radiation or decrease in albedo can have large effects on the timing and volume of available liquid water. However, we have yet to fully characterize the seasonal evolution of albedo in the valleys. In this study, we used a camera, gps, and short wave radiometer to characterize the albedo within and across landscape types in the Taylor Valley. These instruments were attached to a helicopter and flown on a prescribed path along the valley at approximately 300 feet above the ground surface five different times throughout the season from mid-November to mid-January, 2015-2016. We used these data to calculate the albedo of each glacier, lake, and the soil surface of the lake basins in the valley for each flight. As expected, we found that all landscape types had significantly different albedo, with the glaciers consistently the highest throughout the season and the bare soils the lowest (p-value < 0.05). We hypothesized that albedo would decrease throughout the season with snow melt and increasing sediment exposure on the glacier and lake surfaces. However, small snow events (< 3 cm) caused somewhat persistent high albedo on the lakes and glaciers. Furthermore, there was a range in albedo across glaciers and each responded to seasonal snow and melt differently. These findings highlight the importance of understanding the spatial and temporal variability in albedo and the close coupling of climate and landscape response. We can use this new understanding of landscape albedo to better predict how the Dry Valley ecosystems will respond to changing climate at the basin scale.

  8. a Physical Parameterization of Snow Albedo for Use in Climate Models.

    NASA Astrophysics Data System (ADS)

    Marshall, Susan Elaine

    The albedo of a natural snowcover is highly variable ranging from 90 percent for clean, new snow to 30 percent for old, dirty snow. This range in albedo represents a difference in surface energy absorption of 10 to 70 percent of incident solar radiation. Most general circulation models (GCMs) fail to calculate the surface snow albedo accurately, yet the results of these models are sensitive to the assumed value of the snow albedo. This study replaces the current simple empirical parameterizations of snow albedo with a physically-based parameterization which is accurate (within +/- 3% of theoretical estimates) yet efficient to compute. The parameterization is designed as a FORTRAN subroutine (called SNOALB) which can be easily implemented into model code. The subroutine requires less then 0.02 seconds of computer time (CRAY X-MP) per call and adds only one new parameter to the model calculations, the snow grain size. The snow grain size can be calculated according to one of the two methods offered in this thesis. All other input variables to the subroutine are available from a climate model. The subroutine calculates a visible, near-infrared and solar (0.2-5 μm) snow albedo and offers a choice of two wavelengths (0.7 and 0.9 mu m) at which the solar spectrum is separated into the visible and near-infrared components. The parameterization is incorporated into the National Center for Atmospheric Research (NCAR) Community Climate Model, version 1 (CCM1), and the results of a five -year, seasonal cycle, fixed hydrology experiment are compared to the current model snow albedo parameterization. The results show the SNOALB albedos to be comparable to the old CCM1 snow albedos for current climate conditions, with generally higher visible and lower near-infrared snow albedos using the new subroutine. However, this parameterization offers a greater predictability for climate change experiments outside the range of current snow conditions because it is physically-based and not tuned to current empirical results.

  9. Validation of GEOLAND-2 Spot/vgt Albedo Products by Using Ceos Olive Methodology

    NASA Astrophysics Data System (ADS)

    Camacho de Coca, F.; Sanchez, J.; Schaaf, C.; Baret, F.; Weiss, M.; Cescatti, A.; Lacaze, R. N.

    2012-12-01

    This study evaluates the scientific merit of the global surface albedo products developed in the framework of the Geoland-2 project based on SPOT/VEGETATION observations. The methodology follows the OLIVE (On-Line Validation Exercise) approach supported by the CEOS Land Product Validation subgroup (calvalportal.ceos.org/cvp/web/olive). First, the spatial and temporal consistency of SPOT/VGT albedo products was assessed by intercomparison with reference global products (MODIS/Terra+Aqua and POLDER-3/PARASOL) for the period 2006-2007. A bulk statistical analysis over a global network of 420 homogeneous sites (BELMANIP-2) was performed and analyzed per biome types. Additional sites were included to study albedo under snow conditions. Second, the accuracy and realism of temporal variations were evaluated using a number of ground measurements from FLUXNET sites suitable for use in direct comparison to the co-located satellite data. Our results show that SPOT/VGT albedo products present reliable spatial and temporal distribution of retrievals. The SPOT/VGT albedo performs admirably with MODIS, with a mean bias and RMSE for the shortwave black-sky albedo over BELMANIP-2 sites lower than 0.006 and 0.03 (13% in relative terms) respectively, and even better for snow free pixels. Similar results were found for the white-sky albedo quantities. Discrepancies are larger when comparing with POLDER-3 products: for the shortwave black-sky albedo a mean bias of -0.014 and RMSE of 0.04 (20%) was found. This overall performance figures are however land-cover dependent and larger uncertainties were found over some biomes (or regions) or specific periods (e.g. winter in the north hemisphere). The comparison of SPOT/VGT blue-sky albedo estimates with ground measurements (mainly over Needle-leaf forest sites) show a RMSE of 0.04 and a bias of 0.003 when only snow-free pixels are considered. Moreover, this work shows that the OLIVE tool is also suitable for validation of global albedo products.

  10. Early Spring Post-Fire Snow Albedo Dynamics in High Latitude Boreal Forests Using Landsat-8 OLI Data

    NASA Technical Reports Server (NTRS)

    Wang, Zhuosen; Erb, Angela M.; Schaaf, Crystal B.; Sun, Qingsong; Liu, Yan; Yang, Yun; Shuai, Yanmin; Casey, Kimberly A.; Roman, Miguel O.

    2016-01-01

    Taking advantage of the improved radiometric resolution of Landsat-8 OLI which, unlike previous Landsat sensors, does not saturate over snow, the progress of fire recovery progress at the landscape scale (less than 100 m) is examined. High quality Landsat-8 albedo retrievals can now capture the true reflective and layered character of snow cover over a full range of land surface conditions and vegetation densities. This new capability particularly improves the assessment of post-fire vegetation dynamics across low- to high-burn severity gradients in Arctic and boreal regions in the early spring, when the albedos during recovery show the greatest variation. We use 30 m resolution Landsat-8 surface reflectances with concurrent coarser resolution (500 m) MODIS high quality full inversion surface Bidirectional Reflectance Distribution Functions (BRDF) products to produce higher resolution values of surface albedo. The high resolution full expression shortwave blue sky albedo product performs well with an overall RMSE of 0.0267 between tower and satellite measures under both snow-free and snow-covered conditions. While the importance of post-fire albedo recovery can be discerned from the MODIS albedo product at regional and global scales, our study addresses the particular importance of early spring post-fire albedo recovery at the landscape scale by considering the significant spatial heterogeneity of burn severity, and the impact of snow on the early spring albedo of various vegetation recovery types. We found that variations in early spring albedo within a single MODIS gridded pixel can be larger than 0.6. Since the frequency and severity of wildfires in Arctic and boreal systems is expected to increase in the coming decades, the dynamics of albedo in response to these rapid surface changes will increasingly impact the energy balance and contribute to other climate processes and physical feedback mechanisms. Surface radiation products derived from Landsat-8 data will thus play an important role in characterizing the carbon cycle and ecosystem processes of high latitude systems.

  11. Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data

    PubMed Central

    Wang, Zhuosen; Erb, Angela M.; Schaaf, Crystal B.; Sun, Qingsong; Liu, Yan; Yang, Yun; Shuai, Yanmin; Casey, Kimberly A.; Román, Miguel O.

    2018-01-01

    Taking advantage of the improved radiometric resolution of Landsat-8 OLI which, unlike previous Landsat sensors, does not saturate over snow, the progress of fire recovery progress at the landscape scale (< 100m) is examined. High quality Landsat-8 albedo retrievals can now capture the true reflective and layered character of snow cover over a full range of land surface conditions and vegetation densities. This new capability particularly improves the assessment of post-fire vegetation dynamics across low- to high- burn severity gradients in Arctic and boreal regions in the early spring, when the albedos during recovery show the greatest variation. We use 30 m resolution Landsat-8 surface reflectances with concurrent coarser resolution (500m) MODIS high quality full inversion surface Bidirectional Reflectance Distribution Functions (BRDF) products to produce higher resolution values of surface albedo. The high resolution full expression shortwave blue sky albedo product performs well with an overall RMSE of 0.0267 between tower and satellite measures under both snow-free and snow-covered conditions. While the importance of post-fire albedo recovery can be discerned from the MODIS albedo product at regional and global scales, our study addresses the particular importance of early spring post-fire albedo recovery at the landscape scale by considering the significant spatial heterogeneity of burn severity, and the impact of snow on the early spring albedo of various vegetation recovery types. We found that variations in early spring albedo within a single MODIS gridded pixel can be larger than 0.6. Since the frequency and severity of wildfires in Arctic and boreal systems is expected to increase in the coming decades, the dynamics of albedo in response to these rapid surface changes will increasingly impact the energy balance and contribute to other climate processes and physical feedback mechanisms. Surface radiation products derived from Landsat-8 data will thus play an important role in characterizing the carbon cycle and ecosystem processes of high latitude systems. PMID:29769751

  12. Evaluation of MODIS and VIIRS Albedo Products Using Ground and Airborne Measurements and Development of Ceos/Wgcv/Lpv Albedo Ecv Protocols

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Roman, M. O.; Schaaf, C.; Sun, Q.; Liu, Y.; Saenz, E. J.; Gatebe, C. K.

    2014-12-01

    Surface albedo, defined as the ratio of the hemispheric reflected solar radiation flux to the incident flux upon the surface, is one of the essential climate variables and quantifies the radiation interaction between the atmosphere and the land surface. An absolute accuracy of 0.02-0.05 for global surface albedo is required by climate models. The MODerate resolution Imaging Spectroradiometer (MODIS) standard BRDF/albedo product makes use of a linear "kernel-driven" RossThick-LiSparse Reciprocal (RTLSR) BRDF model to describe the reflectance anisotropy. The surface albedo is calculated by integrating the BRDF over the above ground hemisphere. While MODIS Terra was launched in Dec 1999 and MODIS Aqua in 2002, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi-NPP satellite was launched more recently on October 28, 2011. Thus a long term record of BRDF, albedo and Nadir BRDF-Adjusted Reflectance (NBAR) products from VIIRS can be generated through MODIS heritage algorithms. Several investigations have evaluated the MODIS albedo products during the growing season, as well as during dormant and snow covered periods. The Land Product Validation (LPV) sub-group of the Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV) aims to address the challenges associated with the validation of global land products. The validation of global surface radiation/albedo products is one of the LPV subgroup activities. In this research, a reference dataset covering various land surface types and vegetation structure is assembled to assess the accuracy of satellite albedo products. This dataset includes in situ data (Baseline Surface Radiation Network (BSRN), FLUXNET and Long Term Ecological Research network (LTER) etc.) and airborne measurements (e.g. Cloud Absorption Radiometer (CAR)). Spatially representative analysis is applied to each site to establish whether the ground measurements can adequately represent moderate spatial resolution remotely sensed albedo products.

  13. Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data.

    PubMed

    Wang, Zhuosen; Erb, Angela M; Schaaf, Crystal B; Sun, Qingsong; Liu, Yan; Yang, Yun; Shuai, Yanmin; Casey, Kimberly A; Román, Miguel O

    2016-11-01

    Taking advantage of the improved radiometric resolution of Landsat-8 OLI which, unlike previous Landsat sensors, does not saturate over snow, the progress of fire recovery progress at the landscape scale (< 100m) is examined. High quality Landsat-8 albedo retrievals can now capture the true reflective and layered character of snow cover over a full range of land surface conditions and vegetation densities. This new capability particularly improves the assessment of post-fire vegetation dynamics across low- to high- burn severity gradients in Arctic and boreal regions in the early spring, when the albedos during recovery show the greatest variation. We use 30 m resolution Landsat-8 surface reflectances with concurrent coarser resolution (500m) MODIS high quality full inversion surface Bidirectional Reflectance Distribution Functions (BRDF) products to produce higher resolution values of surface albedo. The high resolution full expression shortwave blue sky albedo product performs well with an overall RMSE of 0.0267 between tower and satellite measures under both snow-free and snow-covered conditions. While the importance of post-fire albedo recovery can be discerned from the MODIS albedo product at regional and global scales, our study addresses the particular importance of early spring post-fire albedo recovery at the landscape scale by considering the significant spatial heterogeneity of burn severity, and the impact of snow on the early spring albedo of various vegetation recovery types. We found that variations in early spring albedo within a single MODIS gridded pixel can be larger than 0.6. Since the frequency and severity of wildfires in Arctic and boreal systems is expected to increase in the coming decades, the dynamics of albedo in response to these rapid surface changes will increasingly impact the energy balance and contribute to other climate processes and physical feedback mechanisms. Surface radiation products derived from Landsat-8 data will thus play an important role in characterizing the carbon cycle and ecosystem processes of high latitude systems.

  14. Arctic sea ice albedo from AVHRR

    NASA Technical Reports Server (NTRS)

    Lindsay, R. W.; Rothrock, D. A.

    1994-01-01

    The seasonal cycle of surface albedo of sea ice in the Arctic is estimated from measurements made with the Advanced Very High Resolution Radiometer (AVHRR) on the polar-orbiting satellites NOAA-10 and NOAA-11. The albedos of 145 200-km-square cells are analyzed. The cells are from March through September 1989 and include only those for which the sun is more than 10 deg above the horizon. Cloud masking is performed manually. Corrections are applied for instrument calibration, nonisotropic reflection, atmospheric interference, narrowband to broadband conversion, and normalization to a common solar zenith angle. The estimated albedos are relative, with the instrument gain set to give an albedo of 0.80 for ice floes in March and April. The mean values for the cloud-free portions of individual cells range from 0.18 to 0.91. Monthly averages of cells in the central Arctic range from 0.76 in April to 0.47 in August. The monthly averages of the within-cell standard deviations in the central Arctic are 0.04 in April and 0.06 in September. The surface albedo and surface temperature are correlated most strongly in March (R = -0.77) with little correlation in the summer. The monthly average lead fraction is determined from the mean potential open water, a scaled representation of the temperature or albedo between 0.0 (for ice) and 1.0 (for water); in the central Arctic it rises from an average 0.025 in the spring to 0.06 in September. Sparse data on aerosols, ozone, and water vapor in the atmospheric column contribute uncertainties to instantaneous, area-average albedos of 0.13, 0.04, and 0.08. Uncertainties in monthly average albedos are not this large. Contemporaneous estimation of these variables could reduce the uncertainty in the estimated albedo considerably. The poor calibration of AVHRR channels 1 and 2 is another large impediment to making accurate albedo estimates.

  15. Observations of Surfzone Albedo

    NASA Astrophysics Data System (ADS)

    Sinnett, G.; Feddersen, F.

    2014-12-01

    The surfzone environment (where waves break) contains several unique and previously unconsidered processes that affect the heat budget. Entering short-wave radiation is a dominant term in both shelf and surfzone heat budgets. In contrast to the shelf, however, depth limited wave breaking in the surfzone generates spray, whitewater and suspended sediments, elevating the surface albedo (ratio of reflected to incident short-wave radiation). Elevated albedo reduces the level of solar short-wave radiation entering the water, potentially resulting in less heating. Additionally, surfzone water quality is often impacted by fecal bacteria contamination. As bacteria mortality is related to short-wave solar radiation, elevated surfzone albedo could reduce pathogen mortality, impacting human health. Albedo in the open ocean has been frequently studied and parameterizations often consider solar zenith angle, wind speed and ocean chlorophyll concentration, producing albedo values typically near 0.06. However, surfzone albedo observations have been extremely sparse, yet show depth limited wave breaking may increase the albedo by nearly a factor of 10 up to 0.5. Here, we present findings from a field study at the Scripps Institution of Oceanography pier to observe the affect of waves on surfzone albedo. Concurrent measurements were taken with a four-way radiometer (to measure both downwelling and upwelling short-wave and long wave radiation) mounted above the surfzone. A co-located GoPro camera was used to relate visual aspects of the surfzone to measured reflectance, and wave height and period were observed with a bottom mounted pressure sensor in 5 m water depth just outside the surfzone. Wind speed and direction were observed on the pier 10 m above the water surface. Here, we will examine the surfzone albedo dependence on surfzone parameters, such as wave height.

  16. Migration of Frosts from High-Albedo Regions of Pluto: what New Horizons Reveals

    NASA Astrophysics Data System (ADS)

    Buratti, Bonnie J.; Stern, S. A.; Weaver, Hal A.; Young, Leslie A.; Olkin, Cathy B.; Ennico, Kimberly; Binzel, Richard P.; Zangari, Amanda; Earle, Alissa M.

    2015-11-01

    With its high eccentricity and obliquity, Pluto should exhibit seasonal volatile transport on its surface. Several lines of evidence support this transport: doubling of Pluto’s atmospheric pressure over the past two decades (Young et al., 2013, Ap. J. 766, L22; Olkin et al., 2015, Icarus 246, 230); changes in its historical rotational light curve, once all variations due to viewing geometry have been modelled (Buratti et al., 2015; Ap. J. 804, L6); and changes in HST albedo maps (Buie et al., 2010, Astron. J. 139, 1128). New Horizons LORRI images reveal that the region of greatest albedo change is not the polar cap(s) of Pluto, but the feature informally named Tombaugh Regio (TR). This feature has a normal reflectance as high as ~0.8 in some places, and it is superposed on older, lower-albedo pre-existing terrain with an albedo of only ~0.10. This contrast is larger than any other body in the Solar System, except for Iapetus. This albedo dichotomy leads to a complicated system of cold-trapping and thermal segregation, beyond the simple picture of seasonal volatile transport. Whatever the origin of TR, it initially acted as a cold trap, as the temperature differential between the high and low albedo regions could be enormous, possibly approaching 20K, based on their albedo differences and assuming their normalized phase curves are similar. This latter assumption will be refined as the full New Horizons data set is returned.Over six decades of ground-based photometry suggest that TR has been decreasing in albedo over the last 25 years. Possible causes include changing insolation angles, or sublimation from the edges where the high-albedo material impinges on a much warmer substrate.Funding by the NASA New Horizons Project acknowledged.

  17. Quantification of seasonal to annual mass balances from glacier surface albedo derived from optical satellite images, application on 30 glaciers in the French Alps for the period 2000-2015.

    NASA Astrophysics Data System (ADS)

    Davaze, Lucas; Rabatel, Antoine; Arnaud, Yves; Sirguey, Pascal; Six, Delphine; Letreguilly, Anne; Dumont, Marie

    2017-04-01

    Increasing the number of glaciers monitored for surface mass balance is very challenging, especially using laborious methods based on in situ data. Complementary methods are therefore required to quantify the surface mass balance of unmonitored glaciers. The current study relies on the so-called albedo method, based on the analysis of albedo maps retrieved from optical satellite imagery acquired since 2000 by the MODIS sensor, onboard of TERRA satellite. Recent studies performed on single glaciers in the French Alps, the Himalayas or the Southern Alps of New Zealand revealed substantial relationships between summer minimum glacier-wide surface albedo and annual mass balance, because this minimum surface albedo is directly related to accumulation-area ratio and the equilibrium-line altitude. On the basis of 30 glaciers located in the French Alps where annual surface mass balance are available, our study conducted on the period 2000-2015 confirms the robustness and reliability of the relationship between the summer minimum surface albedo and the annual surface mass balance. At the seasonal scale, the integrated summer surface albedo is significantly correlated with the summer mass balance of the six glaciers seasonally surveyed. For the winter season, four of the six glaciers showed a significant correlation when linking the winter surface mass balance and the integrated winter surface albedo, using glacier-dependent thresholds to filter the albedo signal. Sensitivity study on the computed cloud detection algorithm revealed high confidence in retrieved albedo maps. These results are promising to monitor both annual and seasonal glacier-wide surface mass balances of individual glaciers at a regional scale using optical satellite images.

  18. Global albedos of Pluto and Charon from LORRI New Horizons observations

    NASA Astrophysics Data System (ADS)

    Buratti, B. J.; Hofgartner, J. D.; Hicks, M. D.; Weaver, H. A.; Stern, S. A.; Momary, T.; Mosher, J. A.; Beyer, R. A.; Verbiscer, A. J.; Zangari, A. M.; Young, L. A.; Lisse, C. M.; Singer, K.; Cheng, A.; Grundy, W.; Ennico, K.; Olkin, C. B.

    2017-05-01

    The exploration of the Pluto-Charon system by the New Horizons spacecraft represents the first opportunity to understand the distribution of albedo and other photometric properties of the surfaces of objects in the Solar System's ;Third Zone; of distant ice-rich bodies. Images of the entire illuminated surface of Pluto and Charon obtained by the Long Range Reconnaissance Imager (LORRI) camera provide a global map of Pluto that reveals surface albedo variegations larger than any other Solar System world except for Saturn's moon Iapetus. Normal reflectances on Pluto range from 0.08-1.0, and the low-albedo areas of Pluto are darker than any region of Charon. Charon exhibits a much blander surface with normal reflectances ranging from 0.20-0.73. Pluto's albedo features are well-correlated with geologic features, although some exogenous low-albedo dust may be responsible for features seen to the west of the area informally named Tombaugh Regio. The albedo patterns of both Pluto and Charon are latitudinally organized, with the exception of Tombaugh Regio, with darker regions concentrated at the Pluto's equator and Charon's northern pole. The phase curve of Pluto is similar to that of Triton, the large moon of Neptune believed to be a captured Kuiper Belt Object (KBO), while Charon's is similar to that of the Moon. Preliminary Bond albedos are 0.25 ± 0.03 for Charon and 0.72 ± 0.07 for Pluto. Maps of an approximation to the Bond albedo for both Pluto and Charon are presented for the first time. Our work shows a connection between very high albedo (near unity) and planetary activity, a result that suggests the KBO Eris may be currently active.

  19. Evaluation of MuSyQ land surface albedo based on LAnd surface Parameters VAlidation System (LAPVAS)

    NASA Astrophysics Data System (ADS)

    Dou, B.; Wen, J.; Xinwen, L.; Zhiming, F.; Wu, S.; Zhang, Y.

    2016-12-01

    satellite derived Land surface albedo is an essential climate variable which controls the earth energy budget and it can be used in applications such as climate change, hydrology, and numerical weather prediction. However, the accuracy and uncertainty of surface albedo products should be evaluated with a reliable reference truth data prior to applications. A new comprehensive and systemic project of china, called the Remote Sensing Application Network (CRSAN), has been launched recent years. Two subjects of this project is developing a Multi-source data Synergized Quantitative Remote Sensin g Production System ( MuSyQ ) and a Web-based validation system named LAnd surface remote sensing Product VAlidation System (LAPVAS) , which aims to generate a quantitative remote sensing product for ecosystem and environmental monitoring and validate them with a reference validation data and a standard validation system, respectively. Land surface BRDF/albedo is one of product datasets of MuSyQ which has a pentad period with 1km spatial resolution and is derived by Multi-sensor Combined BRDF Inversion ( MCBI ) Model. In this MuSyQ albedo evaluation, a multi-validation strategy is implemented by LAPVAS, including directly and multi-scale validation with field measured albedo and cross validation with MODIS albedo product with different land cover. The results reveal that MuSyQ albedo data with a 5-day temporal resolution is in higher sensibility and accuracy during land cover change period, e.g. snowing. But results without regard to snow or changed land cover, MuSyQ albedo generally is in similar accuracy with MODIS albedo and meet the climate modeling requirement of an absolute accuracy of 0.05.

  20. A photometric study of Enceladus

    NASA Technical Reports Server (NTRS)

    Verbiscer, Anne J.; Veverka, Joseph

    1994-01-01

    We have supplemented Voyager imaging data from Enceladus (limited to phase angles of 13 deg-43 deg) with recent Earth-based CCD observations to obtain an improved determination of the Bond albedo, to construct an albedo map of the satellite, and to constrain parameters in Hapke's (1986) photometric equation. A major result is evidence of regional variations in the physical properties of Enceladus' surface. The average global photometric properties are described by single scattering albedo omega(sub 0) average = 0.998 +/- 0.001, macroscopic roughness parameter theta average = 6 +/- 1 deg, and Henyey-Greenstein asymmetry parameter g = -0.399 +/- 0.005. The value of theta average is smaller than the 14 deg found by fitting whole-disk data, which include all terrains on Enceladus. The opposition surge amplitude B(sub 0) = 0.21 +/- 0.07 and regolith compaction parameter h = 0.014 +/- 0.02 are loosely constrained by the scarcity of and uncertainty in near-opposition observations. From the solar phase curve we determine the geometric albedo of Enceladus p(sub v) = 0.99 +/- 0.06 and phase integral q = 0.92 +/- 0.05, which corresponds to a spherical albedo A = p(sub v)q = 0.91 +/- 0.1. Since the spectrum of Enceladus is fairly flat, we can approximate the Bond albedo A(sub B) with the spherical albedo. Our photometric analysis is summarized in terms of an albedo map which generally reproduces the satellite's observed lightcurve and indicates that normal reflectances range from 0.9 on the leading hemisphere to 1.4 on the trailing one. The albedo map also revels an albedo variation of 15% from longitudes 170 deg to 200 deg, corresponding to the boundary between the leading and trailing hemispheres.

  1. EXOMARS IRAS (DOSE) radiation measurements.

    NASA Astrophysics Data System (ADS)

    Federico, C.; Di Lellis, A. M.; Fonte, S.; Pauselli, C.; Reitz, G.; Beaujean, R.

    The characterization and the study of the radiations on their interaction with organic matter is of great interest in view of the human exploration on Mars. The Ionizing RAdiation Sensor (IRAS) selected in the frame of the ExoMars/Pasteur ESA mission is a lightweight particle spectrometer combining various techniques of radiation detection in space. It characterizes the first time the radiation environment on the Mars surface, and provide dose and dose equivalent rates as precursor information absolutely necessary to develop ways to mitigate the radiation risks for future human exploration on Mars. The Martian radiation levels are much higher than those found on Earth and they are relatively low for space. Measurements on the surface will show if they are similar or not to those seen in orbit (modified by the presence of ``albedo'' neutrons produced in the regolith and by the thin Martian atmosphere). IRAS consists of a telescope based on segmented silicon detectors of about 40\\userk\\milli\\metre\\user;k diameter and 300\\user;k\\micro\\metre\\user;k thickness, a segmented organic scintillator, and of a thermoluminescence dosimeter. The telescope will continuously monitor temporal variation of the particle count rate, the dose rate, particle and LET (Linear Energy Transfer) spectra. Tissue equivalent BC430 scintillator material will be used to measure the neutron dose. Neutrons are selected by a criteria requiring no signal in the anti-coincidence. Last, the passive thermoluminescence dosimeter, based on LiF:Mg detectors, regardless the on board operation timing, will measure the total dose accumulated during the exposure period and due to beta and gamma radiation, with a responsivity very close to that of a human tissue.

  2. Glacier albedo change and its relationship to surface temperature change from MODIS data: Queen Elizabeth Islands, Arctic Canada, 2001-2015

    NASA Astrophysics Data System (ADS)

    Mortimer, C.; Sharp, M. J.

    2016-12-01

    Glacier and ice cap surface albedo change over the Canadian High Arctic is assessed using measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors for the period 2001-2015. Mean summer black-sky broadband surface albedo (MCD43A3 v05) over all glaciated surfaces in the Queen Elizabeth Islands south of 80°N decreased at a rate of 0.0038 ± 0.0037 yr-1 over that period. The bulk of this albedo decrease occurred from 2008 to 2012 when mean summer albedo was anomalously low. Albedo declines were greatest in the west of the QEI and at lower elevations on the ice caps. The period 2005-2012 included some of the warmest summers in the region since at least the 1950s. Between 2001 and 2015, mean summer glacier surface temperatures for the QEI (south of 80°N), derived from MODIS data (MOD11A2 v05), increased at a rate of 0.034 ± 0.037 °C yr-1. Net shortwave energy is modulated by changes in the surface albedo and is the largest source of summer melt energy in the QEI. During 2001-2015, the summer albedo record was negatively correlated with the mean summer glacier surface temperature record across 91% of the region; clusters of positive correlations between surface temperature and albedo were observed at high elevations in eastern Ellesmere Island.

  3. Growing season carries stronger contributions to albedo dynamics on the Tibetan plateau

    PubMed Central

    2017-01-01

    The Tibetan Plateau has experienced higher-than-global-average climate warming in recent decades, resulting in many significant changes in ecosystem structure and function. Among them is albedo, which bridges the causes and consequences of land surface processes and climate. The plateau is covered by snow/ice and vegetation in the non-growing season (nGS) and growing season (GS), respectively. Based on the MODIS products, we investigated snow/ice cover and vegetation greenness in relation to the spatiotemporal changes of albedo on the Tibetan Plateau from 2000 through 2013. A synchronous relationship was found between the change in GSNDVI and GSalbedo over time and across the Tibetan landscapes. We found that the annual average albedo had a decreasing trend, but that the albedo had slightly increased during the nGS and decreased during the GS. Across the landscapes, the nGSalbedo fluctuated in a synchronous pattern with snow/ice cover. Temporally, monthly snow/ice coverage also had a high correspondence with albedo, except in April and October. We detected clear dependencies of albedo on elevation. With the rise in altitude, the nGSalbedo decreased below 4000 m, but increased for elevations of 4500–5500 m. Above 5500 m, the nGSalbedo decreased, which was in accordance with the decreased amount of snow/ice coverage and the increased soil moisture on the plateau. More importantly, the decreasing albedo in the most recent decade appeared to be caused primarily by lowered growing season albedo. PMID:28886037

  4. Growing season carries stronger contributions to albedo dynamics on the Tibetan plateau.

    PubMed

    Tian, Li; Chen, Jiquan; Zhang, Yangjian

    2017-01-01

    The Tibetan Plateau has experienced higher-than-global-average climate warming in recent decades, resulting in many significant changes in ecosystem structure and function. Among them is albedo, which bridges the causes and consequences of land surface processes and climate. The plateau is covered by snow/ice and vegetation in the non-growing season (nGS) and growing season (GS), respectively. Based on the MODIS products, we investigated snow/ice cover and vegetation greenness in relation to the spatiotemporal changes of albedo on the Tibetan Plateau from 2000 through 2013. A synchronous relationship was found between the change in GSNDVI and GSalbedo over time and across the Tibetan landscapes. We found that the annual average albedo had a decreasing trend, but that the albedo had slightly increased during the nGS and decreased during the GS. Across the landscapes, the nGSalbedo fluctuated in a synchronous pattern with snow/ice cover. Temporally, monthly snow/ice coverage also had a high correspondence with albedo, except in April and October. We detected clear dependencies of albedo on elevation. With the rise in altitude, the nGSalbedo decreased below 4000 m, but increased for elevations of 4500-5500 m. Above 5500 m, the nGSalbedo decreased, which was in accordance with the decreased amount of snow/ice coverage and the increased soil moisture on the plateau. More importantly, the decreasing albedo in the most recent decade appeared to be caused primarily by lowered growing season albedo.

  5. Dominance of grain size impacts on seasonal snow albedo at open sites in New Hampshire

    NASA Astrophysics Data System (ADS)

    Adolph, Alden C.; Albert, Mary R.; Lazarcik, James; Dibb, Jack E.; Amante, Jacqueline M.; Price, Andrea

    2017-01-01

    Snow cover serves as a major control on the surface energy budget in temperate regions due to its high reflectivity compared to underlying surfaces. Winter in the northeastern United States has changed over the last several decades, resulting in shallower snowpacks, fewer days of snow cover, and increasing precipitation falling as rain in the winter. As these climatic changes occur, it is imperative that we understand current controls on the evolution of seasonal snow albedo in the region. Over three winter seasons between 2013 and 2015, snow characterization measurements were made at three open sites across New Hampshire. These near-daily measurements include spectral albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density, black carbon content, local meteorological parameters, and analysis of storm trajectories using the Hybrid Single-Particle Lagrangian Integrated Trajectory model. Using analysis of variance, we determine that land-based winter storms result in marginally higher albedo than coastal storms or storms from the Atlantic Ocean. Through multiple regression analysis, we determine that snow grain size is significantly more important in albedo reduction than black carbon content or snow density. And finally, we present a parameterization of albedo based on days since snowfall and temperature that accounts for 52% of variance in albedo over all three sites and years. Our improved understanding of current controls on snow albedo in the region will allow for better assessment of potential response of seasonal snow albedo and snow cover to changing climate.

  6. Inversion of the Earth spherical albedo from radiation-pressure

    NASA Astrophysics Data System (ADS)

    Wilkman, Olli; Herranen, Joonas; Näränen, Jyri; Virtanen, Jenni; Koivula, Hannu; Poutanen, Markku; Penttilä, Antti; Gritsevich, Maria; Muinonen, Karri

    2017-04-01

    We are studying the retrieval of the spherical albedo and net radiation of the Earth from the perturbations caused by the planet's radiation on the dynamics of its satellites. The spherical or Bond albedo gives the ratio of the fluxes incident on and scattered by the planet. The net radiation represents the net heat input into the planet's climate system and drives changes in its atmospheric, surface, and ocean temperatures. The ultimate aim of the study is inverting the problem and estimating the Earth albedo based on observations of satellites, simultaneously improving the space-geodetic positioning accuracy. Here we investigate the effect of the spherical albedo on satellite orbits with the help of a simplified model. We simulate the propagation of satellite orbits using a new simulation software. The simulation contains the main perturbing forces on medium and high Earth orbits, used by, e.g., navigation satellites, including the radiation pressure of reflected sunlight from the Earth. An arbitrary satellite shape model can be used, and the rotation of the satellite is modeled. In this first study, we use a box-wing satellite model with a simple surface BRDF. We also assume a diffusely reflecting Earth with a single global albedo value. We vary the Earth albedo and search for systematic effects on different orbits. Thereafter, we estimate the dependence of the albedo accuracy on the satellite positioning and timing data available. We show that the inversion of the spherical albedo with reasonable accuracy is feasible from the current space-geodetic measurements.

  7. CONCEPTUAL DESIGN OF A LUNAR REGOLITH CLUSTERED-REACTOR SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Darrell Bess

    2009-06-01

    It is proposed that a fast-fission, heatpipe-cooled, lunar-surface power reactor system be divided into subcritical units that could be launched safely without the incorporation of additional spectral shift absorbers or other complex means of control. The reactor subunits are to be emplaced directly into the lunar regolith utilizing the regolith not just for shielding but as the reflector material to increase the neutron economy of the system. While a single subunit cannot achieve criticality by itself, coordinated placement of additional subunits will provide a critical reactor system for lunar surface power generation. A lunar regolith clustered-reactor system promotes reliability, safety,more » and ease of manufacture and testing at the cost of a slight increase in launch mass per rated power level and an overall reduction in neutron economy when compared to a single-reactor system. Additional subunits may be launched with future missions to increase the cluster size and power according to desired lunar base power demand and lifetime. The results address the potential uncertainties associated with the lunar regolith material and emplacement of the subunit systems. Physical distance between subunits within the clustered emplacement exhibits the most significant feedback regarding changes in overall system reactivity. Narrow, deep holes will be the most effective in reducing axial neutron leakage from the core. The variation in iron concentration in the lunar regolith can directly influence the overall system reactivity although its effects are less than the more dominant factors of subunit emplacement.« less

  8. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    DTIC Science & Technology

    2013-09-30

    Sea Ice , and the Ice Albedo Feedback in a...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Sunlight, Sea Ice , and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover 5a...during a period when incident solar irradiance is large increasing solar heat input to the ice . Seasonal sea ice typically has a smaller albedo

  9. Albedo of Carbon Dioxide Ice in Mars' Residual South Polar Cap

    NASA Astrophysics Data System (ADS)

    James, P. B.; Wolff, M. J.; Bonev, B.

    2015-12-01

    The albedo of surface CO2 deposits in the Residual South Polar Cap (RSPC) of Mars controls their net condensation / sublimation over a martian year and is therefore a crucial parameter in determining RSPC stability. The albedo used in previous analyses is obtained by dividing I/F, determined from radiometrically calibrated imaging data, by the cosine of the incidence angle. Because of atmospheric aerosols, the albedo calculated from I/F above the atmosphere is not the surface albedo that enters into stability considerations. In order to determine the surface albedo, we interpolate optical depths determined from CRISM EPF measurements to provide estimates of the dust and ice opacities over the RSPC (Wolff et al., 2009) and use these to determine the actual surface albedos from MARCI images using the radiative transport program DISORT (Stamnes et al., 1988). Assuming that dust is the only contributor to atmospheric opacity, the retrieved surface albedos for the longer wavelength MARCI filters in MY 28 and 29 are found to be consistent despite very different dust opacities in the two years (James et al., 2014). However, this model fails to reproduce the short wavelength behavior in early summer and suggests either an additional opacity source or modification of the CRISM dust opacity or the dust phase function. The consequences of these changes will be discussed.

  10. Albedo of Surface CO2 Deposits in Mars' Residual South Polar Cap

    NASA Astrophysics Data System (ADS)

    James, P. B.; Wolff, M. J.; Bonev, B.

    2014-12-01

    The albedo of surface CO2 deposits in the Residual South Polar Cap (RSPC) of Mars controls their net condensation / sublimation over a martian year and is therefore a crucial parameter in determining RSPC stability. The albedo used in previous analyses is obtained by dividing I/F, determined from radiometrically calibrated imaging data, by the cosine of the incidence angle. Because of atmospheric aerosols, the albedo calculated from I/F above the atmosphere is not the surface albedo that enters into stability considerations. In order to determine the surface albedo, we interpolate optical depths determined from CRISM EPF measurements to provide estimates of the dust and ice opacities over the RSPC (Wolff et al., 2009) and use these to determine the actual surface albedos from MARCI images using the radiative transport program DISORT (Stamnes et al., 1988). Assuming that dust is the only contributor to atmospheric opacity, the retrieved surface albedos for the longer wavelength MARCI filters in MY 28 and 29 are found to be consistent despite very different dust opacities in the two years (James et al., 2014). However, this model fails to reproduce the short wavelength behavior in early summer. We consider possible modifications of the dust only model that could explain the discrepancy.

  11. Spectral Reflectance and Albedo of Snow-Covered Heterogeneous Landscapes in New Hampshire, USA: Comparison of Ground-based, Airborne Hyperspectral, and MODIS Satellite Data

    NASA Astrophysics Data System (ADS)

    Burakowski, E. A.; Ollinger, S. V.; Martin, M.; Lepine, L. C.; Hollinger, D. Y.; Dibb, J. E.

    2013-12-01

    This study evaluates the accuracy of hyperspectral imagery (HSI) and MODIS daily 500-m snow albedo over forested, deforested, and mixed land use types under snow-covered conditions in New Hampshire, USA. HSI spectral reflectance generally agrees well with tower-based measurements above a mixed forest canopy. Over cleared pasture, HSI spectral reflectance is lower than ground-based measurements collected using a spectrometer, and greatly underestimates reflectance at wavelengths less than 430 nm. Based on tower-based albedo measurements, HSI shortwave broadband albedo meets the absolute accuracy requirement of ×0.05 recommended for climate modeling. When HSI 5-m fine-resolution imagery is aggregated to MODIS 500-m resolution and integrated to shortwave broadband albedo, MOD10A1 daily snow-covered surface albedo exhibits a negative bias of -0.0033 and root mean square error (RMSE) of 0.067 compared to HSI shortwave broadband albedo, just outside the range of the absolute accuracy requirement of ×0.05 recommended for climate modeling. Spectral albedo collected over a deciduous broadleaf canopy under snow-covered and snow-free conditions will expand the existing spectral library and contribute to future validation efforts of multi-spectral remote sensing products (e.g., HyspIRI).

  12. Estimation of shortwave hemispherical reflectance (albedo) from bidirectionally reflected radiance data

    NASA Technical Reports Server (NTRS)

    Starks, Patrick J.; Norman, John M.; Blad, Blaine L.; Walter-Shea, Elizabeth A.; Walthall, Charles L.

    1991-01-01

    An equation for estimating albedo from bidirectional reflectance data is proposed. The estimates of albedo are found to be greater than values obtained with simultaneous pyranometer measurements. Particular attention is given to potential sources of systematic errors including extrapolation of bidirectional reflectance data out to a view zenith angle of 90 deg, the use of inappropriate weighting coefficients in the numerator of the albedo equation, surface shadowing caused by the A-frame instrumentation used to measure the incoming and outgoing radiation fluxes, errors in estimates of the denominator of the proposed albedo equation, and a 'hot spot' contribution in bidirectional data measured by a modular multiband radiometer.

  13. Determining the Magnitude of Neutron and Galactic Cosmic Ray (GCR) Fluxes at the Moon using the Lunar Exploration Neutron Detector during the Historic Space-Age Era of High GCR Flux

    NASA Astrophysics Data System (ADS)

    Chin, G.; Sagdeev, R.; Boynton, W. V.; Mitrofanov, I. G.; Milikh, G. M.; Su, J. J.; Livengood, T. A.; McClanahan, T. P.; Evans, L.; Starr, R. D.; litvak, M. L.; Sanin, A.

    2013-12-01

    The Lunar Reconnaissance Orbiter (LRO) was launched June 18, 2009 during an historic space-age era of minimum solar activity [1]. The lack of solar sunspot activity signaled a complex set of heliospheric phenomena [2,3,4] that also gave rise to a period of unprecedentedly high Galactic Cosmic Ray (GCR) flux [5]. These events coincided with the primary mission of the Lunar Exploration Neutron Detector (LEND, [6]), onboard LRO in a nominal 50-km circular orbit of the Moon [7]. Methods to calculate the emergent neutron albedo population using Monte Carlo techniques [8] rely on an estimate of the GCR flux and spectra calibrated at differing periods of solar activity [9,10,11]. Estimating the actual GCR flux at the Moon during the LEND's initial period of operation requires a correction using a model-dependent heliospheric transport modulation parameter [12] to adjust the GCR flux appropriate to this unique solar cycle. These corrections have inherent uncertainties depending on model details [13]. Precisely determining the absolute neutron and GCR fluxes is especially important in understanding the emergent lunar neutrons measured by LEND and subsequently in estimating the hydrogen/water content in the lunar regolith [6]. LEND is constructed with a set of neutron detectors to meet differing purposes [6]. Specifically there are two sets of detector systems that measure the flux of epithermal neutrons: a) the uncollimated Sensor for Epi-Thermal Neutrons (SETN) and b) the Collimated Sensor for Epi-Thermal Neutrons (CSETN). LEND SETN and CSETN observations form a complementary set of simultaneous measurements that determine the absolute scale of emergent lunar neutron flux in an unambiguous fashion and without the need for correcting to differing solar-cycle conditions. LEND measurements are combined with a detailed understanding of the sources of instrumental back-ground, and the performance of CSETN and SETN. This comparison allows us to calculate a constant scale factor that determines the absolute flux of neutrons at the Moon and then subsequently to deduce the proper scale of the GCR flux. References: [1] H. S. Ahluwakia and R. C. Ygbuhay (2010) Twelfth International Solar Wind Conference, 699-702. [2] F. B. McDonald et al. (2010) JRL, 37, L18101. [3] H. Moraal and P. H. Stoker (2010) JGR, 115, 12109-12118. [4] R. Kataoka et al. (2012) Space Weather, 10, 11001-11007. [4] C-L. Huang et al. (2009), JRL, 37, L09109-L09104. [5] R. A. Mewaldt et al. (2010) Ap. J Lett., 723, L1-L6. [6] I. G. Mitrofanov et al. (2010) Space Science Rev., 150, 283-207. [7] C. R. Tooley et al. (2010) Space Science Rev., 150, 23-62. [8] G. W. McKinney et al. (2006) JGR, 111, 6004-6018. [9] P. M. O'Neil (2010) IEEE Trans. Nucl. Sci., 57(6), 3148-3153. [10] American National Standards Institute Tech. Rep. ISO 15390 (2004). [11] I. G. Usokin et al. (2008) JGR, 110, A12108. [12] M. D. Looper et al. (2013) Space Weather, 11, 142-152. [13] A. I. Mrigakshi et al. (2012) JGR, 117, A08109-A08121.

  14. Performance of U3Si2 Fuel in a Reactivity Insertion Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lap Y.; Cuadra, Arantxa; Todosow, Michael

    In this study we examined the performance of the U3Si2 fuel cladded with Zircaloy (Zr) in a reactivity insertion accident (RIA) in a PWR core. The power excursion as a result of a $1 reactivity insertion was calculated by a TRACE PWR plant model using point-kinetics, for alternative cores with UO2 and U3Si2 fuel assemblies. The point-kinetics parameters (feedback coefficients, prompt-neutron lifetime and group constants for six delayed-neutron groups) were obtained from beginning-of-cycle equilibrium full core calculations with PARCS. In the PARCS core calculations, the few-group parameters were developed utilizing the TRITON/NEWT tools in the SCALE package. In order tomore » assess the fuel response in finer detail (e.g. the maximum fuel temperature) the power shape and thermal boundary conditions from the TRACE/PARCS calculations were used to drive a BISON model of a fuel pin with U3Si2 and UO2 respectively. For a $1 reactivity transient both TRACE and BISON predicted a higher maximum fuel temperature for the UO2 fuel than the U3Si2 fuel. Furthermore, BISON is noted to calculate a narrower gap and a higher gap heat transfer coefficient than TRACE. This resulted in BISON predicting consistently lower fuel temperatures than TRACE. This study also provides a systematic comparison between TRACE and BISON using consistent transient boundary conditions. The TRACE analysis of the RIA only reflects the core-wide response in power. A refinement to the analysis would be to predict the local peaking in a three-dimensional core as a result of control rod ejection.« less

  15. [Characteristics and numerical simulation of surface albedo in temperate desert steppe in Inner Mongolia].

    PubMed

    Yang, Fu-lin; Zhou, Guang-sheng; Zhang, Feng; Wang, Feng-yu; Bao, Fang; Ping, Xiao-yan

    2009-12-01

    Based on the meteorological and biological observation data from the temperate desert steppe ecosystem research station in Sunitezuoqi of Inner Mongolia during growth season (from May 1st to October 15th, 2008), the diurnal and seasonal characteristics of surface albedo in the steppe were analyzed, with related model constructed. In the steppe, the diurnal variation of surface albedo was mainly affected by solar altitude, being higher just after sunrise and before sunset and lower in midday. During growth season, the surface albedo was from 0.20 to 0.34, with an average of 0.25, and was higher in May, decreased in June, kept relatively stable from July to September, and increased in October. This seasonal variation was related to the phenology of canopy leaf, and affected by precipitation process. Soil water content (SWC) and leaf area index (LAI) were the key factors affecting the surface albedo. A model for the surface albedo responding to SWC and LAI was developed, which showed a good performance in consistent between simulated and observed surface albedo.

  16. Albedo of surface CO2 deposits in Mars' Residual South Polar Cap

    NASA Astrophysics Data System (ADS)

    James, P. B.; Wolff, M. J.; Bonev, B.

    2013-12-01

    The albedo of surface CO2 deposits in the Residual South Polar Cap (RSPC) controls their net condensation / sublimation over a martian year and is therefore a crucial parameter in determining RSPC stability. The Lambert albedo used in previous analyses is obtained by dividing I/F, determined from radiometrically calibrated imaging data, by the cosine of the incidence angle. Because of atmospheric dust, this albedo calculated from I/F above the atmosphere is not the surface albedo that enters into stability considerations. In order to investigate the real surface albedo, we interpolate optical depths determined from CRISM EPF measurements to provide estimates of the opacites over the RSPC and use these to determine the actual surface albedos from MARCI images using the radiative transport program DISORT (Stamnes et al., 1988). The assumption that the surface is a Lambertian diffuse reflector can then also be tested. MARCI images acquired in one-day span a significant range of emission angles; the set of images acquired during one sol is similar to EPF observations except that diurnal opacity variations could be important.

  17. Development of a Research Reactor Protocol for Neutron Multiplication Measurements

    DOE PAGES

    Arthur, Jennifer Ann; Bahran, Rian Mustafa; Hutchinson, Jesson D.; ...

    2018-03-20

    A new series of subcritical measurements has been conducted at the zero-power Walthousen Reactor Critical Facility (RCF) at Rensselaer Polytechnic Institute (RPI) using a 3He neutron multiplicity detector. The Critical and Subcritical 0-Power Experiment at Rensselaer (CaSPER) campaign establishes a protocol for advanced subcritical neutron multiplication measurements involving research reactors for validation of neutron multiplication inference techniques, Monte Carlo codes, and associated nuclear data. There has been increased attention and expanded efforts related to subcritical measurements and analyses, and this work provides yet another data set at known reactivity states that can be used in the validation of state-of-the-art Montemore » Carlo computer simulation tools. The diverse (mass, spatial, spectral) subcritical measurement configurations have been analyzed to produce parameters of interest such as singles rates, doubles rates, and leakage multiplication. MCNP ®6.2 was used to simulate the experiment and the resulting simulated data has been compared to the measured results. Comparison of the simulated and measured observables (singles rates, doubles rates, and leakage multiplication) show good agreement. This work builds upon the previous years of collaborative subcritical experiments and outlines a protocol for future subcritical neutron multiplication inference and subcriticality monitoring measurements on pool-type reactor systems.« less

  18. Development of a Research Reactor Protocol for Neutron Multiplication Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, Jennifer Ann; Bahran, Rian Mustafa; Hutchinson, Jesson D.

    A new series of subcritical measurements has been conducted at the zero-power Walthousen Reactor Critical Facility (RCF) at Rensselaer Polytechnic Institute (RPI) using a 3He neutron multiplicity detector. The Critical and Subcritical 0-Power Experiment at Rensselaer (CaSPER) campaign establishes a protocol for advanced subcritical neutron multiplication measurements involving research reactors for validation of neutron multiplication inference techniques, Monte Carlo codes, and associated nuclear data. There has been increased attention and expanded efforts related to subcritical measurements and analyses, and this work provides yet another data set at known reactivity states that can be used in the validation of state-of-the-art Montemore » Carlo computer simulation tools. The diverse (mass, spatial, spectral) subcritical measurement configurations have been analyzed to produce parameters of interest such as singles rates, doubles rates, and leakage multiplication. MCNP ®6.2 was used to simulate the experiment and the resulting simulated data has been compared to the measured results. Comparison of the simulated and measured observables (singles rates, doubles rates, and leakage multiplication) show good agreement. This work builds upon the previous years of collaborative subcritical experiments and outlines a protocol for future subcritical neutron multiplication inference and subcriticality monitoring measurements on pool-type reactor systems.« less

  19. Early Student Support to Investigate the Role of Sea Ice-Albedo Feedback in Sea Ice Predictions

    DTIC Science & Technology

    2014-09-30

    Ice - Albedo Feedback in Sea Ice Predictions Cecilia M. Bitz Atmospheric Sciences MS351640 University of Washington Seattle, WA 98196-1640 phone...TERM GOALS The overarching goals of this project are to understand the role of sea ice - albedo feedback on sea ice predictability, to improve how... sea - ice albedo is modeled and how sea ice predictions are initialized, and then to evaluate how these improvements

  20. Albedos of Small Hilda Asteroids

    NASA Astrophysics Data System (ADS)

    Ryan, Erin L.; Woodward, C. E.

    2010-10-01

    We present albedo results for 70 small Hilda dynamical family members detected by the Spitzer Space Telescope in multiple archival programs. This Spitzer data samples Hildas with diameters between 2 and 11 kilometers. Our preliminary analysis reveals that the mean geometric albedo for this sample is pv = 0.05, matching the mean albedo derived for large (20 to 160 km) Hilda asteroids observed by IRAS (Ryan and Woodward 2010). This mean albedo is significantly darker than the mean albedo of asteroids in the outer main belt (2.8 AU < a < 3.5 AU), possibly suggesting that these asteroids did not originate from the outer main belt . This is in direct conflict with some dynamical models which suggest that the HIldas are field asteroids trapped from an inward migration of Jupiter (Franklin et al. 2004), and may provide additional observation support for delivery of dark Kuiper Belt contaminants to the inner solar system as per the Nice Model (Levison et al. 2009).

  1. KINETICS OF LOW SOURCE REACTOR STARTUPS. PART I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurwitz, H. Jr.; MacMillan, D.B.; Smith, J.H.

    1962-06-01

    Statistical fluctuntions of neutron populations in reactors are analyzed by means of an approximate theoretical model. Development of the model is given in detail; also included are extensive numerical results derived from its application to systems with time-dependent reactivity, namely, a reactor during start-up. The special relationships of fluctuations to safety considerations are discussed. (auth)

  2. Nuclear Engineering Computer Modules: Reactor Dynamics, RD-1 and RD-2.

    ERIC Educational Resources Information Center

    Onega, Ronald J.

    The objective of the Reactor Dynamics Module, RD-1, is to obtain the kinetics equation without feedback and solve the kinetics equations numerically for one to six delayed neutron groups for time varying reactivity insertions. The computer code FUMOKI (Fundamental Mode Kinetics) will calculate the power as a function of time for either uranium or…

  3. LRO Lyman Alpha Mapping Project (LAMP) Far-UV Investigations of Lunar Composition, Porosity, and Space Weathering

    NASA Astrophysics Data System (ADS)

    Retherford, K. D.; Greathouse, T. K.; Mandt, K. E.; Gladstone, R.; Hendrix, A.; Cahill, J. T.; Liu, Y.; Grava, C.; Hurley, D.; Egan, A.; Kaufmann, D. E.; Raut, U.; Byron, B. D.; Magana, L. O.; Stickle, A. M.; Wyrick, D. Y.; Pryor, W. R.

    2017-12-01

    Far ultraviolet reflectance measurements of the Moon, icy satellites, comets, and asteroids have proven surprisingly useful for advancing our understanding of planetary surfaces. This new appreciation for planetary far-UV imaging spectroscopy is provided in large part thanks to nearly a decade of investigations with the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP). LAMP has demonstrated an innovative nightside observing technique, putting a new light on permanently shadowed regions (PSRs) and other features on the Moon. Dayside far-UV albedo maps complement the nightside data, enabling comparisons of direct and hemispheric (diffuse) illumination derived albedos. We'll discuss the strengths of the far-UV reflectance imaging spectroscopy technique with respect to several new LAMP results. Detections of water frost and hydration signatures near 165 nm, for example, provide constraints on composition that complement infrared spectroscopy, visible imaging, neutron spectroscopy, radar, and other techniques. LRO's polar orbit and high data downlink capabilities enable searches for diurnal variations in spectral signals. At far-UV wavelengths a relatively blue spectral slope is diagnostic of space weathering, which is opposite of the spectral reddening indicator of maturity at wavelengths longward of 180 nm. By utilizing natural diffuse illumination sources on the nightside the far-UV technique is able to identify relative increases in porosity within the PSRs, and provides an additional tool for determining relative surface ages. On October 6, 2016 LAMP enacted a new, more sensitive dayside operating mode that expands its ability to search for diurnally varying hydration signals associated with different regions and features.

  4. Surface albedo observations at Gusev Crater and Meridiani Planum, Mars

    USGS Publications Warehouse

    Bell, J.F.; Rice, M.S.; Johnson, J. R.; Hare, T.M.

    2008-01-01

    During the Mars Exploration Rover mission, the Pancam instrument has periodically acquired large-scale panoramic images with its broadband (739??338 nm) filter in order to estimate the Lambert bolometric albedo of the surface along each rover's traverse. In this work we present the full suite of such estimated albedo values measured to date by the Spirit and Opportunity rovers along their traverses in Gusev Crater and Meridiani Planum, respectively. We include estimated bolometric albedo values of individual surface features (e.g., outcrops, dusty plains, aeolian bed forms, wheel tracks, light-toned soils, and crater walls) as well as overall surface averages of the 43 total panoramic albedo data sets acquired to date. We also present comparisons to estimated Lambert albedo values taken from the Mars Global Surveyor Mars Orbiter Camera (MOC) along the rovers' traverses, and to the large-scale bolometric albedos of the sites from the Viking Orbiter Infrared Thermal Mapper (IRTM) and Mars Global Surveyor/Thermal Emission Spectrometer (TES). The ranges of Pancam-derived albedos at Gusev Crater (0.14 to 0.25) and in Meridiani Planum. (0.10 to 0.18) are in good agreement with IRTM, TES, and MOC orbital measurements. These data sets will be a useful tool and benchmark for future investigations of albodo variations with time, including measurements from orbital instruments like the Context Camera and High Resolution Imaging Science Experiment on Mars Reconnaissance Orbiter. Long-term, accurate albedo measurements could also be important for future efforts in climate modeling as well as for studies of active surface processes. Copyright 2008 by the American Geophysical Union.

  5. Validation and application of MODIS-derived clean snow albedo and dust radiative forcing

    NASA Astrophysics Data System (ADS)

    Rittger, K. E.; Bryant, A. C.; Seidel, F. C.; Bair, E. H.; Skiles, M.; Goodale, C. E.; Ramirez, P.; Mattmann, C. A.; Dozier, J.; Painter, T.

    2012-12-01

    Snow albedo is an important control on snowmelt. Though albedo evolution of aging snow can be roughly modeled from grain growth, dust and other light absorbing impurities are extrinsic and therefore must be measured. Estimates of clean snow albedo and surface radiative forcing from impurities, which can be inferred from MODIS 500 m surface reflectance products, can provide this driving data for snowmelt models. Here we use MODSCAG (MODIS snow covered area and grain size) to estimate the clean snow albedo and MODDRFS (MODIS dust radiative forcing of snow) to estimate the additional absorbed solar radiation from dust and black carbon. With its finer spatial (20 m) and spectral (10 nm) resolutions, AVIRIS provides a way to estimate the accuracy of MODIS products and understand variability of snow albedo at a finer scale that we explore though a range of topography. The AVIRIS database includes images from late in the accumulation season through the melt season when we are most interested in changes in snow albedo. In addition to the spatial validation, we employ the best estimate of albedo from MODIS in an energy balance reconstruction model to estimate the maximum snow water equivalent. MODDRFS calculates radiative forcing only in pixels that are completely snow-covered, so we spatially interpolate the product to estimate the forcing in all pixels where MODSCAG has given us estimates of clean snow albedo. Comparisons with snow pillows and courses show better agreement when the radiative forcing from absorbing impurities is included in the energy balance reconstruction.

  6. Bright is the New Black - Multi-Year Performance of Generic High-Albedo Roofs in an Urban Climate

    NASA Technical Reports Server (NTRS)

    Gaffin, S. R.; Imhoff, M.; Rosenzweig, C.; Khanbilvardi, R.; Pasqualini, A.; Kong, A. Y. Y.; Grillo, D.; Freed, A.; Hillel, D.; Hartung, E.

    2012-01-01

    High-albedo white and cool roofing membranes are recognized as a fundamental strategy that dense urban areas can deploy on a large scale, at low cost, to mitigate the urban heat island effect. We are monitoring three generic white membranes within New York City that represent a cross-section of the dominant white membrane options for U.S. flat roofs: (1) an ethylene propylene diene monomer (EPDM) rubber membrane; (2) a thermoplastic polyolefin (TPO) membrane and; (3) an asphaltic multi-ply built-up membrane coated with white elastomeric acrylic paint. The paint product is being used by New York City s government for the first major urban albedo enhancement program in its history. We report on the temperature and related albedo performance of these three membranes at three different sites over a multi-year period. The results indicate that the professionally installed white membranes are maintaining their temperature control effectively and are meeting the Energy Star Cool Roofing performance standards requiring a three-year aged albedo above 0.50. The EPDM membrane however shows evidence of low emissivity. The painted asphaltic surface shows high emissivity but lost about half of its initial albedo within two years after installation. Given that the acrylic approach is an important "do-it-yourself," low-cost, retrofit technique, and, as such, offers the most rapid technique for increasing urban albedo, further product performance research is recommended to identify conditions that optimize its long-term albedo control. Even so, its current multi-year performance still represents a significant albedo enhancement for urban heat island mitigation.

  7. The Influence of a Sandy Substrate, Seagrass, or Highly Turbid Water on Albedo and Surface Heat Flux

    NASA Astrophysics Data System (ADS)

    Fogarty, M. C.; Fewings, M. R.; Paget, A. C.; Dierssen, H. M.

    2018-01-01

    Sea-surface albedo is a combination of surface-reflected and water-leaving irradiance, but water-leaving irradiance typically contributes less than 15% of the total albedo in open-ocean conditions. In coastal systems, however, the bottom substrate or suspended particulate matter can increase the amount of backscattered light, thereby increasing albedo and decreasing net shortwave surface heat flux. Here a sensitivity analysis using observations and models predicts the effect of light scattering on albedo and the net shortwave heat flux for three test cases: a bright sand bottom, a seagrass canopy, and turbid water. After scaling to the full solar shortwave spectrum, daytime average albedo for the test cases is up to 0.20 and exceeds the value of 0.05 predicted using a commonly applied parameterization. Daytime net shortwave heat flux into the water is significantly reduced, particularly for waters with bright sediments, dense horizontal seagrass canopies < 0.25 m from the sea surface, or highly turbid waters with suspended particulate matter concentration ≥ 50 g m-3. Observations of a more vertical seagrass canopy within 0.2 and 1 m of the surface indicate the increase in albedo compared to the common parameterization is negligible. Therefore, we suggest that the commonly applied albedo lookup table can be used in coastal heat flux estimates in water as shallow as 1 m unless the bottom substrate is highly reflective or the water is highly turbid. Our model results provide guidance to researchers who need to determine albedo in highly reflective or highly turbid conditions but have no direct observations.

  8. Surface Albedo Darkening from wildfires in Northern Sub-Saharan Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Ichoku, C. M.; Poudal, R.; Roman, M. O.; Wilcox, E.

    2014-01-01

    Wildfires are recognized as a key physical disturbance of terrestrial ecosystems and a major source of atmospheric trace gases and aerosols. They are known to produce changes in landscape patterns and lead to changes in surface albedo that can persist for long periods. Here, we estimate the darkening of surface albedo due to wildfires in different land cover ecosystems in the Northern Sub-Saharan Africa using data from the Moderate Resolution Imaging Spectroradiometer (MODIS). We determined a decrease in albedo after fires over most land cover types (e.g. woody savannas: (-0.00352 0.00003) and savannas: (- 0.003910.00003), which together accounted for >86% of the total MODIS fire count between 2003 and 2011). Grasslands had a higher value (-0.00454 0.00003) than the savannas, but accounted for only about 5% of the total fire count. A few other land cover types (e.g. Deciduous broad leaf: (0.00062 0.00015), and barren: 0.00027 0.00019), showed an increase in albedo after fires, but accounted for less than 1% of the total fires. Albedo change due to wildfires is more important during the fire season (October-February). The albedo recovery progresses rapidly during the first year after fires, where savannas show the greatest recovery (>77%) within one year, while deciduous broadleaf, permanent wetlands and barren lands show the least one-year recovery (56%). The persistence of surface albedo darkening in most land cover types is limited to about six to seven years, after which at least 98% of the burnt pixels recover to their pre-fire albedo.

  9. The Effect of Bond Albedo on Venus' Atmospheric and Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Bullock, M. A.; Limaye, S. S.; Grinspoon, D. H.; Way, M.

    2017-12-01

    In spite of Venus' high planetary albedo, sufficient solar energy reaches the surface to drive a powerful greenhouse effect. The surface temperature is three times higher than it would be without an atmosphere. However, the details of the energy balance within Venus' atmosphere are poorly understood. Half of the solar energy absorbed within the clouds, where most of the solar energy is absorbed, is due to an unknown agent. One of the challenges of modeling Venus' atmosphere has been to account for all the sources of opacity sufficient to generate a globally averaged surface temperature of 735 K, when only 2% of the incoming solar energy is deposited at the surface. The wavelength and spherically integrated albedo, or Bond albedo, has typically been cited as between 0.7 and 0.82 (Colin 1983). Yet, recent photometry of Venus at extended phase angles between 2 and 179° indicate a Bond albedo of 0.90 (Mallama et al., 2006). The authors note an increase in cloud top brightness at phase angles < 2°, which effectively increases the spherically integrated albedo. They suggest that forward scattering by the H2SO4/H2O aerosols of the upper cloud is responsible for Venus' high albedo at very low phase angles. The present work investigates the implications of such a high albedo for understanding and modeling the energy balance of Venus' atmosphere. Using the successful 1D radiative transfer model SimVenus that incorporates the opacity due to 9 major gases in Venus' atmosphere, as well as multiple scattering calculations of radiation within the clouds, the sensitivity of surface temperature was studied as a function of Bond albedo. Results of these model calculations are shown in Fig. 1. Figure 1a (left). Venus' atmospheric temperature profile for different values of Bond albedo. The structure and radiative effects of the clouds are fixed. Figure 1b (right). Venus surface temperature as Bond Albedo changes. Radiative-convective equilibrium models predict the correct globally averaged surface temperature at a=0.81. Calculations here show that a Bond albedo of a=0.9 would yield a surface temperature of 666.4 K, about 70 K too low, unless there is additional thermal absorption within the atmosphere that is not understood. Colin, L.,, Venus, University of Arizona Press, Tucson, 1983, pp 10-26. Mallama, A., et al., 2006. Icarus. 182, 10-22.

  10. Atmospheric effects on the mapping of Martian thermal inertia and thermally derived albedo

    NASA Technical Reports Server (NTRS)

    Hayashi, J. N.; Jakosky, B. M.; Haberle, R. M.

    1994-01-01

    The most widely used thermal inertia data for Mars assumes the atmospheric contribution is constant and equal to 2 percent of the maximum solar insolation. Haberle and Jakosky investigated the effect of including a dusty CO2 atmosphere and sensible heat exchange with the surface on thermal inertia. We recently utilized Haberle and Jakosky's coupled surface-atmosphere model to investigate the effects of such an atmosphere on the thermally derived albedo. The thermally derived albedo is the albedo which, together with the thermal inertia, provides model surface temperatures which best match the observed temperatures. New maps are presented of thermal inertia and thermally derived albedo which incorporate dust opacities derived from IRTM data.

  11. The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager IRIS data

    NASA Technical Reports Server (NTRS)

    Pearl, J. C.; Conrath, B. J.; Hanel, R. A.; Pirraglia, J. A.; Coustenis, A.

    1990-01-01

    The albedo, T(eff), and energy balance of Uranus are presently derived from Voyager IR Spectrometer and Radiometer data. By obtaining the absolute phase curve of Uranus, it has become possible to evaluate the Bond albedo without making separate determinations of the geometric albedo and phase integral. An orbital mean value for the bolometric Bond albedo of 0.3 + or - 0.049 yields an equilibrium temperature of 58.2 + or - 1.0 K. Thermal spectra from pole-to-pole latitude coverage establish a T(eff) of 59.1 + or - 0.3 K, leading to an energy balance of 1.06 + or - 0.08 for Uranus.

  12. The seasonal cycle of snow cover, sea ice and surface albedo

    NASA Technical Reports Server (NTRS)

    Robock, A.

    1980-01-01

    The paper examines satellite data used to construct mean snow cover caps for the Northern Hemisphere. The zonally averaged snow cover from these maps is used to calculate the seasonal cycle of zonally averaged surface albedo. The effects of meltwater on the surface, solar zenith angle, and cloudiness are parameterized and included in the calculations of snow and ice albedo. The data allows a calculation of surface albedo for any land or ocean 10 deg latitude band as a function of surface temperature ice and snow cover; the correct determination of the ice boundary is more important than the snow boundary for accurately simulating the ice and snow albedo feedback.

  13. Evaluation of Moderate-Resolution Imaging Spectroradiometer (MODIS) Snow Albedo Product (MCD43A) over Tundra

    NASA Technical Reports Server (NTRS)

    Wang, Zhuosen; Schaaf, Crystal B.; Chopping, Mark J.; Strahler, Alan H.; Wang, Jindi; Roman, Miguel O.; Rocha, Adrian V.; Woodcock, Curtis E.; Shuai, Yanmin

    2012-01-01

    This study assesses the MODIS standard Bidirectional Reflectance Distribution Function (BRDF)/Albedo product, and the daily Direct Broadcast BRDF/Albedo algorithm at tundra locations under large solar zenith angles and high anisotropic diffuse illumination and multiple scattering conditions. These products generally agree with ground-based albedo measurements during the snow cover period when the Solar Zenith Angle (SZA) is less than 70deg. An integrated validation strategy, including analysis of the representativeness of the surface heterogeneity, is performed to decide whether direct comparisons between field measurements and 500- m satellite products were appropriate or if the scaling of finer spatial resolution airborne or spaceborne data was necessary. Results indicate that the Root Mean Square Errors (RMSEs) are less than 0.047 during the snow covered periods for all MCD43 albedo products at several Alaskan tundra areas. The MCD43 1- day daily albedo product is particularly well suited to capture the rapidly changing surface conditions during the spring snow melt. Results also show that a full expression of the blue sky albedo is necessary at these large SZA snow covered areas because of the effects of anisotropic diffuse illumination and multiple scattering. In tundra locations with dark residue as a result of fire, the MODIS albedo values are lower than those at the unburned site from the start of snowmelt.

  14. Greenland surface albedo changes in July 1981-2012 from satellite observations

    NASA Astrophysics Data System (ADS)

    He, Tao; Liang, Shunlin; Yu, Yunyue; Wang, Dongdong; Gao, Feng; Liu, Qiang

    2013-12-01

    Significant melting events over Greenland have been observed over the past few decades. This study presents an analysis of surface albedo change over Greenland using a 32-year consistent satellite albedo product from the global land surface satellite (GLASS) project together with ground measurements. Results show a general decreasing trend of surface albedo from 1981 to 2012 (-0.009 ± 0.002 decade-1, p < 0.01). However, a large decrease has occurred since 2000 (-0.028 ± 0.008 decade-1, p < 0.01) with most significant decreases at elevations between 1000 and 1500 m (-0.055 decade-1, p < 0.01) which may be associated with surface temperature increases. The surface radiative forcing from albedo changes is 2.73 W m-2 decade-1 and 3.06 W m-2 decade-1 under full-sky and clear-sky conditions, respectively, which indicates that surface albedo changes are likely to have a larger impact on the surface shortwave radiation budget than that caused by changes in the atmosphere over Greenland. A comparison made between satellite albedo products and data output from the Coupled Model Inter-comparison Project 5 (CMIP5) general circulation models (GCMs) shows that most of the CMIP5 models do not detect the significantly decreasing trends of albedo in recent decades. This suggests that more efforts are needed to improve our understanding and simulation of climate change at high latitudes.

  15. Changes in Arctic Vegetation Amplify High-Latitude Warming Through Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    Swann, A.; Fung, I.; Levis, S.; Bonan, G. B.; Doney, S. C.

    2009-12-01

    Changes in vegetation cover are recognized to modify climate and the energy budget of the Earth through changes in albedo in high latitudes and evapotranspiration (ET) in the tropics. In snow-covered regions, the springtime growth of leaves enhances solar absorption because surface albedo is reduced from the albedo of snow (~0.8) towards the albedo of leaves (~0.1). Leaves also play a hydrologic role, transpiring soil water to the atmosphere. It has been suggested that broad-leaf deciduous trees may invade warming tundra more effectively than boreal evergreen trees and these trees have higher rates of transpiration than needle-leaf trees. Here we use a global climate model with an interactive biosphere to investigate the effects of adding deciduous trees on bare ground at high northern latitudes. We find that the top-of-atmosphere radiative imbalance from enhanced transpiration (associated with the expanded forest cover) is 2.4 times larger than the direct forcing due to albedo change from the forest. Albedo change is considered to be the dominant mechanism by which trees directly modify climate at high-latitudes, but our findings suggest an additional mechanism through transpiration. Furthermore, the greenhouse warming by additional water vapor melts sea ice and triggers a positive feedback through changes in ocean albedo and evaporation. Vegetation feedbacks through albedo and transpiration produce a strong warming if they act in combination with sea-ice processes.

  16. VIS and NIR land surface albedo sensitivity of the Ent Terrestrial Biosphere Model to forcing leaf area index

    NASA Astrophysics Data System (ADS)

    Montes, C.; Kiang, N. Y.; Ni-Meister, W.; Yang, W.; Schaaf, C.; Aleinov, I. D.; Jonas, J.; Zhao, F. A.; Yao, T.; Wang, Z.; Sun, Q.; Carrer, D.

    2016-12-01

    Land surface albedo is a major controlling factor in vegetation-atmosphere transfers, modifying the components of the energy budget, the ecosystem productivity and patterns of regional and global climate. General Circulation Models (GCMs) are coupled to Dynamic Global Vegetation Models (DGVMs) to solve vegetation albedo by using simple schemes prescribing albedo based on vegetation classification, and approximations of canopy radiation transport for multiple plant functional types (PFTs). In this work, we aim at evaluating the sensitivity of the NASA Ent Terrestrial Biosphere Model (TBM), a demographic DGVM coupled to the NASA Goddard Institute for Space Studies (GISS) GCM, in estimating VIS and NIR surface albedo by using variable forcing leaf area index (LAI). The Ent TBM utilizes a new Global Vegetation Structure Dataset (GVSD) to account for geographically varying vegetation tree heights and densities, as boundary conditions to the gap-probability based Analytical Clumped Two-Stream (ACTS) canopy radiative transfer scheme (Ni-Meister et al., 2010). Land surface and vegetation characteristics for the Ent GVSD are obtained from a number of earth observation platforms and algorithms, including the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and plant functional types (PFTs) (Friedl et al., 2010), soil albedo derived from MODIS (Carrer et al., 2014), and vegetation height from the Geoscience Laser Altimeter System (GLAS) on board ICESat (Ice, Cloud, and land Elevation Satellite) (Simard et al., 2011; Tang et al., 2014). Three LAI products are used as input to ACTS/Ent TBM: MODIS MOD15A2H product (Yang et al., 2006), Beijing Normal University LAI (Yuan et al., 2011), and Global Data Sets of Vegetation (LAI3g) (Zhu et al. 2013). The sensitivity of the Ent TBM VIS and NIR albedo to the three LAI products is assessed, compared against the previous GISS GCM vegetation classification and prescribed Lambertian albedoes (Matthews, 1984), and against MODIS snow-free black-sky and white-sky albedo estimates. In addition, we test the sensitivity of the Ent/ACTS albedo to different sets of leaf spectral albedos derived from the literature.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usui, Fumihiko; Hasegawa, Sunao; Matsuhara, Hideo

    We present an analysis of the albedo properties of main belt asteroids (MBAs) detected by the All-Sky Survey of the infrared astronomical satellite AKARI. The characteristics of 5120 asteroids detected by the survey, including their sizes and albedos, were cataloged in the Asteroid Catalog Using AKARI (AcuA). Size and albedo measurements were based on the standard thermal model, using inputs of infrared fluxes and absolute magnitudes measured at optical wavelengths. MBAs, which account for 4722 of the 5120 AcuA asteroids, have semimajor axes of 2.06-3.27 AU, except for the near-Earth asteroids. AcuA provides a complete data set of all MBAsmore » brighter than the absolute magnitude of H < 10.3, which corresponds to the diameter of d > 20 km. We confirmed that the albedo distribution of the MBAs is strongly bimodal as was already known from the past observations, and that the bimodal distribution occurs not only in the total population, but also within inner, middle, and outer regions of the main belt. The bimodal distribution in each group consists of low-albedo components in C-type asteroids and high-albedo components in S-type asteroids. We found that the small asteroids have much more variety in albedo than the large asteroids. In spite of the albedo transition process like space weathering, the heliocentric distribution of the mean albedo of asteroids in each taxonomic type is nearly flat. The mean albedo of the total, on the other hand, gradually decreases with an increase in semimajor axis. This can be explained by the compositional ratio of taxonomic types; that is, the proportion of dark asteroids such as C- and D-types increases, while that of bright asteroids such as S-type decreases, with increasing heliocentric distance. The heliocentric distributions of X-subclasses: E-, M-, and P-types, which can be divided based on albedo values, are also examined. P-types, which are the major component in X-types, are distributed throughout the main belt regions, and the abundance of P-types increases beyond 3 AU. This distribution is similar to that of C- or D-types.« less

  18. Understanding the drivers of post-fire albedo and radiative forcing across Alaska and Canada: implications for management.

    NASA Astrophysics Data System (ADS)

    Potter, S.; Solvik, K.; Erb, A.; Goetz, S. J.; Johnstone, J. F.; Mack, M. C.; Randerson, J. T.; Roman, M. O.; Schaaf, C. L.; Turetsky, M. R.; Veraverbeke, S.; Wang, Z.; Rogers, B. M.

    2017-12-01

    Boreal forest dynamics including succession, composition, carbon cycling, and surface-atmosphere energy exchanges are largely driven by fire. In Alaska and Canada, burned area and fire frequency have increased since the 1970s, and are projected to continue increasing into the 21st century. In contrast to other biomes, alterations to surface albedo from fires in North American boreal forests are one of the primary feedbacks to climate. Understanding how altered fire regimes impact vegetation composition and energy budgets is therefore critical to forecasting regional and global climate change. High-severity fires cause winter and spring albedo to increase due to increased snow exposure and replacement of evergreen conifers by deciduous broadleaf trees. Although summer albedo decreases initially due to the deposition of black carbon and charred surfaces, it typically increases for several decades thereafter when younger and brighter deciduous trees dominate. The net effect of these albedo changes is expected to result in substantive radiative cooling, but there has been little research to examine how albedo trajectories differ spatially and temporally as a result of differences in burn severity, species composition, topography, climate and soil properties, and what the associated implications for future energy balances are. Here we investigate drivers of post-fire monthly albedo trajectories across Canada and Alaska using a new Collection V006 500 m MODIS daily blue-sky albedo product and historical fires from the Canadian and Alaskan National Fire Databases. The impacts of varying fuel type, landscape position, soils, climate, and burn severity on monthly albedo trajectories are explored using a Random Forest model. This information is then used to predict long-term monthly albedo and radiative forcing for fires that occurred during the MODIS era (2001-2012). We find that higher severity burns in denser forests and environmental conditions that promote either deciduous vegetation or slower tree growth result in the largest increases in post fire albedo and radiative cooling. This understanding and our geospatial products may be relevant for management focused on limiting the climate impacts from intensifying boreal fire regimes.

  19. Potential Long-Term Records of Surface Albedo at Fine Spatiotemporal Resolution from Landsat/Sentinle-2A Surface Reflectance and MODIS/VIIRS BRDF

    NASA Astrophysics Data System (ADS)

    Li, Z.; Schaaf, C.; Shuai, Y.; Liu, Y.; Sun, Q.; Erb, A.; Wang, Z.

    2016-12-01

    The land surface albedo products at fine spatial resolutions are generated by coupling surface reflectance (SR) from Landsat (30 m) or Sentinel-2A (20 m) with concurrent surface anisotropy information (the Bidirectional Reflectance Distribution Function - BRDF) at coarser spatial resolutions from sequential multi-angular observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) or its successor, the Visible Infrared Imaging Radiometer Suite (VIIRS). We assess the comparability of four types of fine-resolution albedo products (black-sky and white-sky albedos over the shortwave broad band) generated by coupling, (1) Landsat-8 Optical Land Imager (OLI) SR with MODIS BRDF; (2) OLI SR with VIIRS BRDF; (3) Sentinel-2A MultiSpectral Instrument (MSI) SR with MODIS BRDF; and (4) MSI SR with VIIRS BRDF. We evaluate the accuracy of these four types of fine-resolution albedo products using ground tower measurements of surface albedo over six SURFace RADiation Network (SURFRAD) sites in the United States. For comparison with the ground measurements, we estimate the actual (blue-sky) albedo values at the six sites by using the satellite-based retrievals of black-sky and white-sky albedos and taking into account the proportion of direct and diffuse solar radiation from the ground measurements at the sites. The coupling of the OLI and MSI SR with MODIS BRDF has already been shown to provide accurate fine-resolution albedo values. With demonstration of a high agreement in BRDF products from MODIS and VIIRS, we expect to see consistency between all four types of fine-resolution albedo products. This assurance of consistency between the couplings of both OLI and MSI with both MODIS and VIIRS guarantees the production of long-term records of surface albedo at fine spatial resolutions and an increased temporal resolution. Such products will be critical in studying land surface changes and associated surface energy balance over the dynamic and heterogeneous landscapes most susceptible to climate change (such as arctic, coastal, and high-elevation zones).

  20. The Costs of Climate Change: Impact of Future Snow Cover Projections on Valuation of Albedo in Forest Management

    NASA Astrophysics Data System (ADS)

    Burakowski, E. A.; Lutz, D. A.

    2014-12-01

    Surface albedo provides an important climate regulating ecosystem service, particularly in the mid-latitudes where seasonal snow cover influences surface radiation budgets. In the case of substantial seasonal snow cover, the influence of albedo can equal or surpass the climatic benefits of carbon sequestration from forest growth. Climate mitigation platforms should therefore consider albedo in their framework in order to integrate these two climatic services in an economic context for the effective design and implementation of forest management projects. Over the next century, the influence of surface albedo is projected to diminish under higher emissions scenarios due to an overall decrease in snow depth and duration of snow cover in the mid-latitudes. In this study, we focus on the change in economic value of winter albedo in the northeastern United States projected through 2100 using the Special Report on Emissions Scenarios (SRES) a1 and b1 scenarios. Statistically downscaled temperature and precipitation are used as input to the Variable Infiltration Capacity (VIC) model to provide future daily snow depth fields through 2100. Using VIC projections of future snow depth, projected winter albedo fields over deforested lands were generated using an empirical logarithmic relationship between snow depth and albedo derived from a volunteer network of snow observers in New Hampshire over the period Nov 2011 through 2014. Our results show that greater reductions in snow depth and the number of winter days with snow cover in the a1 compared to the b1 scenario reduce wintertime albedo when forested lands are harvested. This result has implications on future trade-offs among albedo, carbon storage, and timber value that should be investigated in greater detail. The impacts of forest harvest on radiative forcing associated with energy redistribution (e.g., latent heat and surface roughness length) should also be considered in future work.

  1. Remote sensing albedo product validation over heterogenicity surface based on WSN: preliminary results and its uncertainty

    NASA Astrophysics Data System (ADS)

    Wu, Xiaodan; Wen, Jianguang; Xiao, Qing; Peng, Jingjing; Liu, Qiang; Dou, Baocheng; Tang, Yong; Li, Xiuhong

    2014-11-01

    The evaluation of uncertainty in satellite-derived albedo products is critical to ensure their accuracy, stability and consistency for studying climate change. In this study, we assess the Moderate-resolution Imaging Spectroradiometer(MODIS) albedo 8 day standard product MOD43B3 using the ground-based albedometer measurement based on the wireless sensor network (WSN) technology. The experiment have been performed in Huailai, Hubei province. A 1.5 km*2 km area are selected as study region, which locates between 115.78° E-115.80° E and 40.35° N-40.37° N. This area is characterized by its distinct landscapes: bare ground between January and April, corn from May to Octorber. That is, this area is relatively homegeneous from January to Octorber, but in Novermber and December, the surface is very heterogeneous because of straw burning, as well as snow fall and snow melting. It is a big challenge to validate the MODIS albedo products because of the vast difference in spatial resolution between ground measurement and satellite measurement. Here, we use the HJ albedo products as the bridge that link the ground measurement with satellite data. Firstly, we analyses the spatial representativeness of the WSN site under green-up, dormant and snow covered situations to decide whether direct comparison between ground-based measurement and MODIS albedo can be made. The semivariogram is used here to describe the ground hetergeneity around the WSN site. In addition, the bias between the average albedo of the certain neighborhood centered at the WSN site and the center pixel albedo is also calculated.Then we compare the MOD43B3 value with the ground-based value. Result shows that MOD43B3 agree with in situ well during the growing season, however, there are relatively large difference between ground albedos and MCD43B3 albedos during dormant and snow-coverd periods.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aden, Bethany; Kite, Camille M.; Hopkins, Benjamin W.

    Designing thin films or surface scaffolds with an appropriate display of chemical functionality is useful for biomedical applications, sensing platforms, adhesives, and barrier coatings. Relationships between the structural characteristics of model thin films based on reactive poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA) brushes and the amount and distribution of primary amines used to chemically functionalize these layers in situ are quantitatively detailed via neutron reflectometry and compared with results from ellipsometry. After functionalization, the PVDMA brush thickness increases as a result of the primary amines reacting with the azlactone rings. Both techniques show that the extent of functionalization by small-molecule amines depends onmore » the size of the amine, the grafting density of brush chains, and their molecular weight. However, constrained analysis of neutron reflectivity data predicated on that technique’s sensitivity to isotopic substitution and its ability to resolve structure at the nanoscale shows that the extent of functionalization is not accurately represented by the average extent of functionalization determined from ellipsometric thickness: reactive modification is not uniform, even in modestly dense brushes, except when the penetrant is small. In addition, there appears to be a loss of PVDMA chains during functionalization, attributed to chain scission resulting from additional stretching brought about by functionalization. In conclusion, these findings provide unprecedented insight into the alteration of surface properties by reactive modification and broadly support efforts to produce tailored surfaces in which properties such as friction, colloidal stability, adhesion, wettability, and biocompatibility can be modulated in situ by chemical modification.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aden, Bethany; Kite, Camille M.; Hopkins, Benjamin W.

    Designing thin films or surface scaffolds with an appropriate display of chemical functionality is useful for biomedical applications, sensing platforms, adhesives, and barrier coatings. Relationships between the structural characteristics of model thin films based on reactive poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) brushes and the amount and distribution of primary amines used to chemically functionalize the layer in situ are quantitatively detailed via neutron reflectometry and compared with results from ellipsometry. After functionalization, the PVDMA brush thickness increases as a result of the primary amines reacting with the azlactone rings. Both techniques show that the extent of functionalization by small-molecule amines depends on themore » size of the amine, the grafting density of brush chains and their molecular weight. However, constrained analysis of neutron reflectivity data predicated on that technique’s sensitivity to isotopic substitution and its ability to resolve structure at the nanoscale, shows that the extent of functionalization is not accurately represented by the average extent of functionalization determined from ellipsometric thickness: reactive modification is not uniform, even in modestly dense brushes, except when the penetrant is small. Additionally, there appears to be a loss of PVDMA chains during functionalization, attributed to chain scission resulting from additional stretching brought about by functionalization. These findings provide unprecedented insight into the alteration of surface properties by reactive modification and broadly support efforts to produce tailored surfaces in which properties such as friction, colloidal stability, adhesion, wettability, and biocompatibility can be modulated in situ by chemical modification.« less

  4. Quantifying the ice-albedo feedback through decoupling

    NASA Astrophysics Data System (ADS)

    Kravitz, B.; Rasch, P. J.

    2017-12-01

    The ice-albedo feedback involves numerous individual components, whereby warming induces sea ice melt, inducing reduced surface albedo, inducing increased surface shortwave absorption, causing further warming. Here we attempt to quantify the sea ice albedo feedback using an analogue of the "partial radiative perturbation" method, but where the governing mechanisms are directly decoupled in a climate model. As an example, we can isolate the insulating effects of sea ice on surface energy and moisture fluxes by allowing sea ice thickness to change but fixing Arctic surface albedo, or vice versa. Here we present results from such idealized simulations using the Community Earth System Model in which individual components are successively fixed, effectively decoupling the ice-albedo feedback loop. We isolate the different components of this feedback, including temperature change, sea ice extent/thickness, and air-sea exchange of heat and moisture. We explore the interactions between these different components, as well as the strengths of the total feedback in the decoupled feedback loop, to quantify contributions from individual pieces. We also quantify the non-additivity of the effects of the components as a means of investigating the dominant sources of nonlinearity in the ice-albedo feedback.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mainzer, A.; Masiero, J.; Bauer, J.

    We have combined the NEOWISE and Sloan Digital Sky Survey data to study the albedos of 24,353 asteroids with candidate taxonomic classifications derived using Sloan photometry. We find a wide range of moderate to high albedos for candidate S-type asteroids that are analogous to the S complex defined by previous spectrophotometrically based taxonomic systems. The candidate C-type asteroids, while generally very dark, have a tail of higher albedos that overlaps the S types. The albedo distribution for asteroids with a photometrically derived Q classification is extremely similar to those of the S types. Asteroids with similar colors to (4) Vestamore » have higher albedos than the S types, and most have orbital elements similar to known Vesta family members. Finally, we show that the relative reflectance at 3.4 and 4.6 {mu}m is higher for D-type asteroids and suggest that their red visible and near-infrared spectral slope extends out to these wavelengths. Understanding the relationship between size, albedo, and taxonomic classification is complicated by the fact that the objects with classifications were selected from the visible/near-infrared Sloan Moving Object Catalog, which is biased against fainter asteroids, including those with lower albedos.« less

  6. XCO2 retrieval error over deserts near critical surface albedo

    NASA Astrophysics Data System (ADS)

    Zhang, Qiong; Shia, Run-Lie; Sander, Stanley P.; Yung, Yuk L.

    2016-02-01

    Large retrieval errors in column-weighted CO2 mixing ratio (XCO2) over deserts are evident in the Orbiting Carbon Observatory 2 version 7 L2 products. We argue that these errors are caused by the surface albedo being close to a critical surface albedo (αc). Over a surface with albedo close to αc, increasing the aerosol optical depth (AOD) does not change the continuum radiance. The spectral signature caused by changing the AOD is identical to that caused by changing the absorbing gas column. The degeneracy in the retrievals of AOD and XCO2 results in a loss of degrees of freedom and information content. We employ a two-stream-exact single scattering radiative transfer model to study the physical mechanism of XCO2 retrieval error over a surface with albedo close to αc. Based on retrieval tests over surfaces with different albedos, we conclude that over a surface with albedo close to αc, the XCO2 retrieval suffers from a significant loss of accuracy. We recommend a bias correction approach that has significantly improved the XCO2 retrieval from the California Laboratory for Atmospheric Remote Sensing data in the presence of aerosol loading.

  7. Landsat monitoring of albedo changes in northwestern Arizona, 1977-1980

    USGS Publications Warehouse

    Robinove, Charles Joseph

    1982-01-01

    As part of a cooperative project between the U.S. Geological Survey and the Bureau of Land Management, changes in albedo (percentage of light reflected from the ground) were calculated and mapped from Landsat images for an area in northwestern Arizona for three periods: August 26, 1977, to September 3, 1979; September 3, 1979, to August 28, 1980; and August 26, 1977, to August 28, 1980. The mapped albedo changes were field checked in April 1981. Decreases in albedo were associated with increases in vegetation, primarily the flush of annual vegetation and the regrowth of vegetation in chained areas and sites of past fires. Increases in albedo were due to recent fires. Continuous monitoring of changes in albedo using current, rather than historical, Landsat images can provide the Bureau of Land Management with a means of monitoring vegetation growth, determining areas of high fire potential, and more efficiently deploying of field personnel to sites where severe changes are occuring in the quality of the land and vegetation resources. For example, an albedo change could be an indication of encroachment by an invader species. Similarly, it could indicate where rangeland is being lost to desertification.

  8. Gas phase acid, ammonia and aerosol ionic and trace element concentrations at Cape Verde during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) 2007 intensive sampling period

    NASA Astrophysics Data System (ADS)

    Sander, R.; Pszenny, A. A. P.; Keene, W. C.; Crete, E.; Deegan, B.; Long, M. S.; Maben, J. R.; Young, A. H.

    2013-07-01

    We report mixing ratios of soluble reactive trace gases sampled with mist chambers and the chemical composition of bulk aerosol and volatile inorganic bromine (Brg) sampled with filter packs during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) field campaign at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente island in the tropical North Atlantic in May and June 2007. The gas-phase data include HCl, HNO3, HONO, HCOOH, CH3COOH, NH3, and volatile reactive chlorine other than HCl (Cl*). Aerosol samples were analyzed by neutron activation (Na, Al, Cl, V, Mn, and Br) and ion chromatography (SO42-, Cl-, Br-, NH4+, Na+, K+, Mg2+, and Ca2+). Content and quality of the data, which are available under doi:10.5281/zenodo.6956, are presented and discussed.

  9. Gas phase acid, ammonia and aerosol ionic and trace element concentrations at Cape Verde during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) 2007 intensive sampling period

    NASA Astrophysics Data System (ADS)

    Sander, R.; Pszenny, A. A. P.; Keene, W. C.; Crete, E.; Deegan, B.; Long, M. S.; Maben, J. R.; Young, A. H.

    2013-12-01

    We report mixing ratios of soluble reactive trace gases sampled with mist chambers and the chemical composition of bulk aerosol and volatile inorganic bromine (Brg) sampled with filter packs during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) field campaign at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente island in the tropical North Atlantic in May and June 2007. The gas-phase data include HCl, HNO3, HONO, HCOOH, CH3COOH, NH3, and volatile reactive chlorine other than HCl (Cl*). Aerosol samples were analyzed by neutron activation (Na, Al, Cl, V, Mn, and Br) and ion chromatography (SO42-, Cl-, Br-, NH4+, Na+, K+, Mg2+, and Ca2+). Content and quality of the data, which are available under doi:10.5281/zenodo.6956, are presented and discussed.

  10. Development of a three-dimensional transient code for reactivity-initiated events of BWRs (boiling water reactors) - Models and code verifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uematsu, Hitoshi; Yamamoto, Toru; Izutsu, Sadayuki

    1990-06-01

    A reactivity-initiated event is a design-basis accident for the safety analysis of boiling water reactors. It is defined as a rapid transient of reactor power caused by a reactivity insertion of over $1.0 due to a postulated drop or abnormal withdrawal of the control rod from the core. Strong space-dependent feedback effects are associated with the local power increase due to control rod movement. A realistic treatment of the core status in a transient by a code with a detailed core model is recommended in evaluating this event. A three-dimensional transient code, ARIES, has been developed to meet this need.more » The code simulates the event with three-dimensional neutronics, coupled with multichannel thermal hydraulics, based on a nonequilibrium separated flow model. The experimental data obtained in reactivity accident tests performed with the SPERT III-E core are used to verify the entire code, including thermal-hydraulic models.« less

  11. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005022 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.

  12. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005014 (20 Nov. 2013) --- At a window in the International Space Station’s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth’s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station’s power supply. The light reflection phenomenon is measured in units called albedo.

  13. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005023 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.

  14. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005031 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.

  15. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005016 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.

  16. Kotov during Albedo Experiment in the SM

    NASA Image and Video Library

    2013-11-18

    ISS038-E-005019 (20 Nov. 2013) --- At a window in the International Space Station?s Zvezda Service Module, Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses a digital camera photospectral system to perform a session for the Albedo Experiment. The experiment measures Earth?s albedo, or the amount of solar radiation reflected from the surface, in the hopes to develop methods to harness the reflected radiation to supplement the station?s power supply. The light reflection phenomenon is measured in units called albedo.

  17. Geenland Glacier Albedo Variability

    NASA Astrophysics Data System (ADS)

    2004-01-01

    The program for Arctic Regional Climate Assessment (PARCA) is a NASA-funded project with the prime goal of addressing the mass balance of the Greenland ice sheet. Since the formal initiation of the program in 1995, there has been a significant improvement in the estimates of the mass balance of the ice sheet. Results from this program reveal that the high-elevation regions of the ice sheet are approximately in balance, but the margins are thinning. Laser surveys reveal significant thinning along 70 percent of the ice sheet periphery below 2000 m elevations, and in at least one outlet glacier, Kangerdlugssuaq in southeast Greenland, thinning has been as much as 10 m/yr. This study examines the albedo variability in four outlet glaciers to help separate out the relative contributions of surface melting versus ice dynamics to the recent mass balance changes. Analysis of AVHRR Polar Pathfinder albedo shows that at the Petermann and Jakobshavn glaciers, there has been a negative trend in albedo at the glacier terminus from 1981 to 2000, whereas the Stor+strommen and Kangerdlugssuaq glaciers show slightly positive trends in albedo. These findings are consistent with recent observations of melt extent from passive microwave data which show more melt on the western side of Greenland and slightly less on the eastern side. Significance of albedo trends will depend on where and when the albedo changes occur. Since the majority of surface melt occurs in the shallow sloping western margin of the ice sheet where the shortwave radiation dominates the energy balance in summer (e.g. Jakobshavn region) this region will be more sensitive to changes in albedo than in regions where this is not the case. Near the Jakobshavn glacier, even larger changes in albedo have been observed, with decreases as much as 20 percent per decade.

  18. Greenland Glacier Albedo Variability

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The program for Arctic Regional Climate Assessment (PARCA) is a NASA-funded project with the prime goal of addressing the mass balance of the Greenland ice sheet. Since the formal initiation of the program in 1995, there has been a significant improvement in the estimates of the mass balance of the ice sheet. Results from this program reveal that the high-elevation regions of the ice sheet are approximately in balance, but the margins are thinning. Laser surveys reveal significant thinning along 70 percent of the ice sheet periphery below 2000 m elevations, and in at least one outlet glacier, Kangerdlugssuaq in southeast Greenland, thinning has been as much as 10 m/yr. This study examines the albedo variability in four outlet glaciers to help separate out the relative contributions of surface melting versus ice dynamics to the recent mass balance changes. Analysis of AVHRR Polar Pathfinder albedo shows that at the Petermann and Jakobshavn glaciers, there has been a negative trend in albedo at the glacier terminus from 1981 to 2000, whereas the Stor+strommen and Kangerdlugssuaq glaciers show slightly positive trends in albedo. These findings are consistent with recent observations of melt extent from passive microwave data which show more melt on the western side of Greenland and slightly less on the eastern side. Significance of albedo trends will depend on where and when the albedo changes occur. Since the majority of surface melt occurs in the shallow sloping western margin of the ice sheet where the shortwave radiation dominates the energy balance in summer (e.g. Jakobshavn region) this region will be more sensitive to changes in albedo than in regions where this is not the case. Near the Jakobshavn glacier, even larger changes in albedo have been observed, with decreases as much as 20 percent per decade.

  19. Bright is the new black—multi-year performance of high-albedo roofs in an urban climate

    NASA Astrophysics Data System (ADS)

    Gaffin, S. R.; Imhoff, M.; Rosenzweig, C.; Khanbilvardi, R.; Pasqualini, A.; Kong, A. Y. Y.; Grillo, D.; Freed, A.; Hillel, D.; Hartung, E.

    2012-03-01

    High-albedo white and cool roofing membranes are recognized as a fundamental strategy that dense urban areas can deploy on a large scale, at low cost, to mitigate the urban heat island effect. We are monitoring three generic white membranes within New York City that represent a cross section of the dominant white membrane options for US flat roofs: (1) an ethylene-propylene-diene monomer (EPDM) rubber membrane; (2) a thermoplastic polyolefin (TPO) membrane; and (3) an asphaltic multi-ply built-up membrane coated with white elastomeric acrylic paint. The paint product is being used by New York City’s government for the first major urban albedo enhancement program in its history. We report on the temperature and related albedo performance of these three membranes at three different sites over a multi-year period. The results indicate that the professionally installed white membranes are maintaining their temperature control effectively and are meeting the Energy Star Cool Roofing performance standards requiring a three-year aged albedo above 0.50. The EPDM membrane shows evidence of low emissivity; however this had the interesting effect of avoiding any ‘winter heat penalty’ for this building. The painted asphaltic surface shows high emissivity but lost about half of its initial albedo within two years of installation. Given that the acrylic approach is such an important ‘do-it-yourself’, low-cost, retrofit technique, and, as such, offers the most rapid technique for increasing urban albedo, further product performance research is recommended to identify conditions that optimize its long-term albedo control. Even so, its current multi-year performance still represents a significant albedo enhancement for urban heat island mitigation.

  20. Areal-averaged and Spectrally-resolved Surface Albedo from Ground-based Transmission Data Alone: Toward an Operational Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.

    We present here a simple retrieval of the areal-averaged and spectrally resolved surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties in the visible and near-infrared spectral range. The feasibility of our approach for the routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements:(1) spectrally resolved atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR) at wavelength 415, 500, 615, 673, and 870 nm, (2) tower-basedmore » measurements of local surface albedo at the same wavelengths, and (3) areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm) from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) observations. These integrated datasets cover both long (2008-2013) and short (April-May, 2010) periods at the ARM Southern Great Plains (SGP) site and the NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE), which is defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved area-averaged albedo, is quite small (RMSE≤0.01) and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between the tower-based daily averages of surface albedo for the completely overcast and non-overcast conditions is also demonstrated. This agreement suggests that our retrieval originally developed for the overcast conditions likely will work for non-overcast conditions as well.« less

  1. An Algorithm for the Retrieval of 30-m Snow-Free Albedo from Landsat Surface Reflectance and MODIS BRDF

    NASA Technical Reports Server (NTRS)

    Shuai, Yanmin; Masek, Jeffrey G.; Gao, Feng; Schaaf, Crystal B.

    2011-01-01

    We present a new methodology to generate 30-m resolution land surface albedo using Landsat surface reflectance and anisotropy information from concurrent MODIS 500-m observations. Albedo information at fine spatial resolution is particularly useful for quantifying climate impacts associated with land use change and ecosystem disturbance. The derived white-sky and black-sky spectral albedos maybe used to estimate actual spectral albedos by taking into account the proportion of direct and diffuse solar radiation arriving at the ground. A further spectral-to-broadband conversion based on extensive radiative transfer simulations is applied to produce the broadband albedos at visible, near infrared, and shortwave regimes. The accuracy of this approach has been evaluated using 270 Landsat scenes covering six field stations supported by the SURFace RADiation Budget Network (SURFRAD) and Atmospheric Radiation Measurement Southern Great Plains (ARM/SGP) network. Comparison with field measurements shows that Landsat 30-m snow-free shortwave albedos from all seasons generally achieve an absolute accuracy of +/-0.02 - 0.05 for these validation sites during available clear days in 2003-2005,with a root mean square error less than 0.03 and a bias less than 0.02. This level of accuracy has been regarded as sufficient for driving global and regional climate models. The Landsat-based retrievals have also been compared to the operational 16-day MODIS albedo produced every 8-days from MODIS on Terra and Aqua (MCD43A). The Landsat albedo provides more detailed landscape texture, and achieves better agreement (correlation and dynamic range) with in-situ data at the validation stations, particularly when the stations include a heterogeneous mix of surface covers.

  2. Monitoring glacier albedo as a proxy to derive summer and annual surface mass balances from optical remote-sensing data

    NASA Astrophysics Data System (ADS)

    Davaze, Lucas; Rabatel, Antoine; Arnaud, Yves; Sirguey, Pascal; Six, Delphine; Letreguilly, Anne; Dumont, Marie

    2018-01-01

    Less than 0.25 % of the 250 000 glaciers inventoried in the Randolph Glacier Inventory (RGI V.5) are currently monitored with in situ measurements of surface mass balance. Increasing this archive is very challenging, especially using time-consuming methods based on in situ measurements, and complementary methods are required to quantify the surface mass balance of unmonitored glaciers. The current study relies on the so-called albedo method, based on the analysis of albedo maps retrieved from optical satellite imagery acquired since 2000 by the MODIS sensor, on board the TERRA satellite. Recent studies revealed substantial relationships between summer minimum glacier-wide surface albedo and annual surface mass balance, because this minimum surface albedo is directly related to the accumulation-area ratio and the equilibrium-line altitude. On the basis of 30 glaciers located in the French Alps where annual surface mass balance data are available, our study conducted on the period 2000-2015 confirms the robustness and reliability of the relationship between the summer minimum surface albedo and the annual surface mass balance. For the ablation season, the integrated summer surface albedo is significantly correlated with the summer surface mass balance of the six glaciers seasonally monitored. These results are promising to monitor both annual and summer glacier-wide surface mass balances of individual glaciers at a regional scale using optical satellite images. A sensitivity study on the computed cloud masks revealed a high confidence in the retrieved albedo maps, restricting the number of omission errors. Albedo retrieval artifacts have been detected for topographically incised glaciers, highlighting limitations in the shadow correction algorithm, although inter-annual comparisons are not affected by systematic errors.

  3. Fire-induced albedo change and surface radiative forcing in sub-Saharan Africa savanna ecosystems: Implications for the energy balance

    NASA Astrophysics Data System (ADS)

    Dintwe, Kebonye; Okin, Gregory S.; Xue, Yongkang

    2017-06-01

    Surface albedo is a critical parameter that controls surface energy balance. In dryland ecosystems, fires play a significant role in decreasing surface albedo, resulting in positive radiative forcing. Here we investigate the long-term effect of fire on surface albedo. We devised a method to calculate short-, medium-, and long-term effect of fire-induced radiative forcing and their relative effects on energy balance. We used Moderate Resolution Imaging Spectroradiometer (MODIS) data in our analysis, covering different vegetation classes in sub-Saharan Africa (SSA). Our analysis indicated that mean short-term fire-induced albedo change in SSA was -0.022, -0.035, and -0.041 for savannas, shrubland, and grasslands, respectively. At regional scale, mean fire-induced albedo change in savannas was -0.018 and -0.024 for northern sub-Saharan of Africa and the southern hemisphere Africa, respectively. The short-term mean fire-induced radiative forcing in burned areas in sub-Saharan Africa (SSA) was 5.41 W m-2, which contributed continental and global radiative forcings of 0.25 and 0.058 W m-2, respectively. The impact of fire in surface albedo has long-lasting effects that varies with vegetation type. The long-term energetic effects of fire-induced albedo change and associated radiative forcing were, on average, more than 19 times greater across SSA than the short-term effects, suggesting that fires exerted far more radiative forcing than previously thought. Taking into account the actual duration of fire's effect on surface albedo, we conclude that the contribution of SSA fires, globally and throughout the year, is 0.12 W m-2. These findings provide crucial information on possible impact of fire on regional climate variability.

  4. Global Climate Forcing from Albedo Change Caused by Large-scale Deforestation and Reforestation: Quantification and Attribution of Geographic Variation

    NASA Technical Reports Server (NTRS)

    Gao, Feng; Ghimire, Bardan; Jiao, Tong; Williams, Christopher A.; Masek, Jeffrey; Schaaf, Crystal

    2017-01-01

    Large-scale deforestation and reforestation have contributed substantially to historical and contemporary global climate change in part through albedo-induced radiative forcing, with meaningful implications for forest management aiming to mitigate climate change. Associated warming or cooling varies widely across the globe due to a range of factors including forest type, snow cover, and insolation, but resulting geographic variation remain spoorly described and has been largely based on model assessments. This study provides an observation-based approach to quantify local and global radiative forcings from large-scale deforestation and reforestation and further examines mechanisms that result in the spatial heterogeneity of radiative forcing. We incorporate a new spatially and temporally explicit land cover-specific albedo product derived from Moderate Resolution Imaging Spectroradiometer with a historical land use data set (Land Use Harmonization product). Spatial variation in radiative forcing was attributed to four mechanisms, including the change in snow-covered albedo, change in snow-free albedo, snow cover fraction, and incoming solar radiation. We find an albedo-only radiative forcing (RF) of -0.819 W m(exp -2) if year 2000 forests were completely deforested and converted to croplands. Albedo RF from global reforestation of present-day croplands to recover year 1700 forests is estimated to be 0.161 W m)exp -2). Snow-cover fraction is identified as the primary factor in determining the spatial variation of radiative forcing in winter, while the magnitude of the change in snow-free albedo is the primary factor determining variations in summertime RF. Findings reinforce the notion that, for conifers at the snowier high latitudes, albedo RF diminishes the warming from forest loss and the cooling from forest gain more so than for other forest types, latitudes, and climate settings.

  5. Assimilating MODIS-based albedo and snow cover fraction into the Common Land Model to improve snow depth simulation with direct insertion and deterministic ensemble Kalman filter methods

    NASA Astrophysics Data System (ADS)

    Xu, Jianhui; Shu, Hong

    2014-09-01

    This study assesses the analysis performance of assimilating the Moderate Resolution Imaging Spectroradiometer (MODIS)-based albedo and snow cover fraction (SCF) separately or jointly into the physically based Common Land Model (CoLM). A direct insertion method (DI) is proposed to assimilate the black and white-sky albedos into the CoLM. The MODIS-based albedo is calculated with the MODIS bidirectional reflectance distribution function (BRDF) model parameters product (MCD43B1) and the solar zenith angle as estimated in the CoLM for each time step. Meanwhile, the MODIS SCF (MOD10A1) is assimilated into the CoLM using the deterministic ensemble Kalman filter (DEnKF) method. A new DEnKF-albedo assimilation scheme for integrating the DI and DEnKF assimilation schemes is proposed. Our assimilation results are validated against in situ snow depth observations from November 2008 to March 2009 at five sites in the Altay region of China. The experimental results show that all three data assimilation schemes can improve snow depth simulations. But overall, the DEnKF-albedo assimilation shows the best analysis performance as it significantly reduces the bias and root-mean-square error (RMSE) during the snow accumulation and ablation periods at all sites except for the Fuyun site. The SCF assimilation via DEnKF produces better results than the albedo assimilation via DI, implying that the albedo assimilation that indirectly updates the snow depth state variable is less efficient than the direct SCF assimilation. For the Fuyun site, the DEnKF-albedo scheme tends to overestimate the snow depth accumulation with the maximum bias and RMSE values because of the large positive innovation (observation minus forecast).

  6. Are the circular, dark features on Comet Borrelly's surface albedo variations or pits?

    USGS Publications Warehouse

    Nelson, R.M.; Soderblom, L.A.; Hapke, B.W.

    2004-01-01

    The highest resolution images of Comet 19P/Borrelly show many dark features which, upon casual inspection, appear to be low albedo markings, but which may also be shadows or other photometric variations caused by a depression in the local topography. In order to distinguish between these two possible interpretations we conducted a photometric analysis of three of the most prominent of these features using six of the highest quality images from the September 22, 2001 Deep Space 1 (DS1) flyby. We find that: 1. The radiance in the darkest parts of each feature increases as phase angle decreases, similarly to the radiance behavior of the higher albedo surrounding terrain. The dark features could be either fully illuminated low albedo spots or, alternatively, they could be depressions. No part of any of the three regions was in full shadow. 2. One of the regions has a radiance profile consistent with a rimmed depression, the second, with a simple depression with no rim, and the third with a low albedo spot. 3. The regolith particles are backscattering and carbon black is one of the few candidate regolith materials that might explain this low albedo. We conclude that Borrelly's surface is geologically complex to the limit of resolution of the images with a combination complex topography, pits, troughs, peaks and ridges, and some very dark albedo markings, perhaps a factor of two to three darker than the average 3-4% albedo of the surrounding terrains. Our technique utilizing measured radiance profiles through the dark regions is able to discriminate between rimmed depressions, rimless depressions and simple albedo changes not associated with topography. ?? 2003 Elsevier Inc. All rights reserved.

  7. The influence of burn severity on post-fire vegetation recovery and albedo change during early succession in North American boreal forests

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Randerson, J. T.; Goetz, S. J.; Beck, P. S.; Loranty, M. M.; Goulden, M.

    2011-12-01

    Severity of burning can influence multiple aspects of forest composition, carbon cycling, and climate forcing. We quantified how burn severity affected vegetation recovery and albedo change during early succession in Canadian boreal regions by combining satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Canadian Large Fire Data Base (LFDB). We used the difference Normalized Burn Ratio (dNBR) and changes in spring albedo derived from MODIS 500m albedo product as measures of burn severity. We found that the most severe burns had the greatest reduction in summer EVI in first year after fire, indicating greater loss of vegetation cover immediately following fire. By 5-7 years after fire, summer EVI for all severity classes had recovered to within 90-110% of pre-fire levels. Burn severity had a positive effect on the increase of post-fire spring albedo during the first 7 years after fire, and a shift from low to moderate or moderate to severe fires led to amplification of the post-fire albedo increase by approximately 30%. Fire-induced increases in both spring and summer albedo became progressively larger with stand age from years 1-7, with the trend in spring albedo likely driven by continued losses of needles and branches from trees killed by the fire (and concurrent losses of black carbon coatings on remaining debris), and the summer trend associated with increases in leaf area of short-stature herbs and shrubs. Our results suggest that increases in burn severity and carbon losses observed in some areas of boreal forests (e.g., Turetsky et al., 2011) may be at least partly offset by increases in negative forcing associated with changes in surface albedo.

  8. Effects of bubbles, cracks, and volcanic tephra on the spectral albedo of bare ice near the Transantarctic Mountains: Implications for sea glaciers on Snowball Earth

    NASA Astrophysics Data System (ADS)

    Dadic, Ruzica; Mullen, Peter C.; Schneebeli, Martin; Brandt, Richard E.; Warren, Stephen G.

    2013-09-01

    Spectral albedo was measured along a 6 km transect near the Allan Hills in East Antarctica. The transect traversed the sequence from new snow through old snow, firn, and white ice, to blue ice, showing a systematic progression of decreasing albedo at all wavelengths, as well as decreasing specific surface area (SSA) and increasing density. Broadband albedos under clear-sky range from 0.80 for snow to 0.57 for blue ice, and from 0.87 to 0.65 under cloud. Both air bubbles and cracks scatter sunlight; their contributions to SSA were determined by microcomputed tomography on core samples of the ice. Although albedo is governed primarily by the SSA (and secondarily by the shape) of bubbles or snow grains, albedo also correlates highly with porosity, which, as a proxy variable, would be easier for ice sheet models to predict than bubble sizes. Albedo parameterizations are therefore developed as a function of density for three broad wavelength bands commonly used in general circulation models: visible, near-infrared, and total solar. Relevance to Snowball Earth events derives from the likelihood that sublimation of equatorward-flowing sea glaciers during those events progressively exposed the same sequence of surface materials that we measured at Allan Hills, with our short 6 km transect representing a transect across many degrees of latitude on the Snowball ocean. At the equator of Snowball Earth, climate models predict thick ice, or thin ice, or open water, depending largely on their albedo parameterizations; our measured albedos appear to be within the range that favors ice hundreds of meters thick.

  9. Quantifying the influence of deep soil moisture on ecosystem albedo: the role of vegetation Zulia M. Sánchez-Mejía 1 and Shirley A. Papuga1 1School of Natural Resources and the Environment, University of Arizona, Tucson, AZ

    NASA Astrophysics Data System (ADS)

    Sanchez-Mejia, Z. M.; Papuga, S. A.

    2012-12-01

    Water limited ecosystems in arid and semiarid regions are characterized by sparse vegetation and a relatively large fraction of bare soil. Importantly, the land surface in these dryland regions is highly sensitive to pulses of moisture that affect the vegetation canopy in density and color, as well as the soil color. Changes in surface conditions due to these pulses have been shown to affect the surface energy fluxes and atmospheric processes in these regions. For instance, previous studies have shown that shallow soil moisture ( < 20 cm below the surface) significantly changes surface albedo (a= SWup/ SWin). Recent studies have highlighted the importance of deep soil moisture ( > 20 cm below the surface) for vegetation dynamics in these regions. We hypothesize that deep soil moisture will change vegetation canopy density and color enough that changes in albedo will be observable at the surface, therefore linking deep soil moisture and albedo. We adopt a conceptual framework to address this hypothesis, where at any point in time the soil profile falls into one of four cases: (1) dry shallow soil and dry deep soil; (2) wet shallow soil and dry deep soil; (3) wet shallow soil and wet deep soil; and (4) dry shallow soil and wet deep soil. At a creosotebush dominated ecosystem of the Santa Rita Experimental Range, southern Arizona during summers of 2011 and 2012, we took albedo measurements during these cases at multiple bare and vegetated patches within the footprint of an eddy covariance tower. We found that when the soil is completely dry (Case 1) albedo is highest in both bare and vegetated patches. Likewise, when the soil is wet in both the shallow and deep regions (Case 3), albedo is lowest in both bare and vegetated patches. Interestingly, we also found that albedo is significantly lower for vegetated patches when the deep soil is wet and shallow soil is dry (Case 4). These results imply that deep soil moisture can be important in altering ecosystem level albedo. We note that ecosystems with higher percent vegetative cover are likely to be more sensitive to deep soil moisture driven changes in albedo. To quantify the influence of percent cover on ecosystem albedo, we populate a 100 x 100 cell grid randomly with bare and vegetated cells. For each case, we assign an albedo value to each cell based on probability distribution functions (PDFs) of soil moisture and albedo created from our field campaign data. Using this technique we can identify for each soil moisture case at which point the percent vegetative cover will significantly influence ecosystem albedo. Quantitative analyses of these ecosystem interactions help identify the unique role of deep soil moisture in land surface - atmosphere interactions.

  10. The extreme ultraviolet albedos of the planet Mercury and of the moon

    NASA Technical Reports Server (NTRS)

    Wu, H. H.; Broadfoot, A. L.

    1977-01-01

    The albedo of the moon in the far UV was measured by Mariner 10 at a solar phase angle of 74 deg, and the geometric albedo of Mercury was measured in same wavelength range (584-1657 A) at solar phase angles ranging from 50 to 120 deg. For both the moon and Mercury there is a general increase in albedo for wavelengths decreasing from 1657 to 584 A. The ratio of the albedos of Mercury and the moon increases from about 0.6 to 0.8 in the range 600-1600 A. This merely points to a difference in the surfaces of the moon and Mercury, there being insufficient data to make any conclusions regarding the nature of the difference.

  11. Arctic sea ice albedo - A comparison of two satellite-derived data sets

    NASA Technical Reports Server (NTRS)

    Schweiger, Axel J.; Serreze, Mark C.; Key, Jeffrey R.

    1993-01-01

    Spatial patterns of mean monthly surface albedo for May, June, and July, derived from DMSP Operational Line Scan (OLS) satellite imagery are compared with surface albedos derived from the International Satellite Cloud Climatology Program (ISCCP) monthly data set. Spatial patterns obtained by the two techniques are in general agreement, especially for June and July. Nevertheless, systematic differences in albedo of 0.05 - 0.10 are noted which are most likely related to uncertainties in the simple parameterizations used in the DMSP analyses, problems in the ISCCP cloud-clearing algorithm and other modeling simplifications. However, with respect to the eventual goal of developing a reliable automated retrieval algorithm for compiling a long-term albedo data base, these initial comparisons are very encouraging.

  12. Development of a Multilayer MODIS IST-Albedo Product of Greenland

    NASA Technical Reports Server (NTRS)

    Hall, D. K.; Comiso, J. C.; Cullather, R. I.; Digirolamo, N. E.; Nowicki, S. M.; Medley, B. C.

    2017-01-01

    A new multilayer IST-albedo Moderate Resolution Imaging Spectroradiometer (MODIS) product of Greenland was developed to meet the needs of the ice sheet modeling community. The multiple layers of the product enable the relationship between IST and albedo to be evaluated easily. Surface temperature is a fundamental input for dynamical ice sheet models because it is a component of the ice sheet radiation budget and mass balance. Albedo influences absorption of incoming solar radiation. The daily product will combine the existing standard MODIS Collection-6 ice-surface temperature, derived melt maps, snow albedo and water vapor products. The new product is available in a polar stereographic projection in NetCDF format. The product will ultimately extend from March 2000 through the end of 2017.

  13. PING Gamma Ray and Neutron Measurements of a Meter-Sized Carbonaceous Asteroid Analog

    NASA Technical Reports Server (NTRS)

    Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Parsons, A.; Schweitzer, J.; hide

    2011-01-01

    Determining the elemental composition of carbonaceous (spectral type C) asteroids is still one of the basic problems when studying these objects. The only main source of elemental composition information for asteroids is from their optical, NIR and IR properties, which include their spectral reflectance characteristics, albedo, polarization, and the comparison of optical spectroscopy with meteorite groups corresponding to asteroids of every spectral type. Unfortunately, these sources reflect observations from widely contrasting spatial scales that presently yield a void in the continuum of microscopic and macroscopic evidence, a lack of in situ measurement confirmation, and require deeper sensing techniques to discern the nature of these asteroids. The Probing In situ with Neutrons and Gamma rays (PING) instrument is ideally suited to address this problem because it can be used to determine the bulk elemental composition, H and C content, the average atomic weight and density of the surface and subsurface layers of C-type asteroids, and can provide measurements used to determine the difference between and distinguish between different types of asteroids. We are currently developing the PING instrument that combines gamma ray and neutron detectors with a 14 Me V pulsed neutron generator to determine the in-situ bulk elemental abundances and geochemistry of C-type asteroids with a spatial resolution of 1 m down to depths of tens of cm to 1 m. One aspect of the current work includes experimentally testing and optimizing PING on a known meter-sized Columbia River basalt C-type asteroid analog sample that has a similar composition and the same neutron response as that of a C-type asteroid. An important part of this effort focuses on utilizing timing measurements to isolate gamma rays produced by neutron inelastic scattering, neutron capture and delayed activation processes. Separating the gamma ray spectra by nuclear processes results in higher precision and sensitivity elemental composition measurements. Using gated data acquisition techniques allows for the unambiguous identification of gamma ray lines from different isotopes and nuclear processes, especially in situations when limited detector resolution results in overlapping gamma ray lines that cannot be individually resolved. In this paper, we will present the PING basalt layering experimental data, taken at the test facility at NASA Goddard Space Flight Center using the time tagged event-by-event data analysis technique, compared to our MCNPX computer simulation results for the C-type asteroid and basalt layering simulant models. Comparison of these data will show the advantages, validity, and measurement sensitivity of PING's nuclear interrogation methods to obtain more precise and sensitive in situ bulk elemental composition and density measurements of the subsurface of asteroids.

  14. Curiosity Finds Hydrogen-Rich Area of Mars Subsurface

    NASA Image and Video Library

    2015-08-19

    Curiosity's Russian-made instrument for checking hydration levels in the ground beneath the rover detected an unusually high amount at a site near "Marias Pass," prompting repeated passes over the area to map the hydrogen amounts. The instrument is named Dynamic Albedo of Neutrons, or DAN. It detects hydrogen by the effect of hydrogen atoms on neutrons entering the ground either from cosmic rays and Curiosity's power source (DAN's passive mode) or from the instrument's neutron pulse generator (DAN's active mode). DAN recognizes which neutrons have bounced off hydrogen from their rerduced energy level. This map, covering an area about 130 feet (40 meters) across, shows results from DAN's multiple traverses over the area, with color coding for levels of hydrogen detected. The red coding indicates amounts of hydrogen three to four times as high as the amounts detected anywhere previously along Curiosity's traverse of about 6.9 miles (11.1 kilometers) since landing in August 2012. The inset map at lower right shows the full traverse through Sol 1051 (July 21, 2015), with names assigned to rectangles within Gale Crater for geological mapping purposes. The vertical bar at left indicates the color coding according to counts per second in DAN's passive mode. The hydrogen detected by DAN is interpreted as water molecules or hydroxyl ions bound within minerals or water absorbed onto minerals in the rocks and soil, to a depth of about 3 feet (1 meter) beneath the rover. The amount of hydrogen is often expressed as "water equivalent hydrogen" based on two hydrogen atoms per molecule of water. In the same area where DAN detected an unusually high amount of hydration, Curiosity's Chemistry and Camera (ChemCam) instrument detected an unusually high amount of silica in several rock targets. The DAN and ChemCam findings led to the rover's science team choosing a rock target called "Buckskin" for collection of a drilled sample to be analyzed by the rover's internal laboratory instruments. Russia's Space Research Institute developed DAN in close cooperation with the N.L. Dukhov All-Russia Research Institute of Automatics, Moscow, and the Joint Institute for Nuclear Research, Dubna. The neutron generator development was supervised by the late technical designer German A. Smirnov of the All-Russia Institute of Automatics. Moscow. http://photojournal.jpl.nasa.gov/catalog/PIA19809

  15. Resolving Size Distribution of Black Carbon Internally Mixed With Snow: Impact on Snow Optical Properties and Albedo

    NASA Astrophysics Data System (ADS)

    He, Cenlin; Liou, Kuo-Nan; Takano, Yoshi

    2018-03-01

    We develop a stochastic aerosol-snow albedo model that explicitly resolves size distribution of aerosols internally mixed with various snow grains. We use the model to quantify black carbon (BC) size effects on snow albedo and optical properties for BC-snow internal mixing. Results show that BC-induced snow single-scattering coalbedo enhancement and albedo reduction decrease by a factor of 2-3 with increasing BC effective radii from 0.05 to 0.25 μm, while polydisperse BC results in up to 40% smaller visible single-scattering coalbedo enhancement and albedo reduction compared to monodisperse BC with equivalent effective radii. We further develop parameterizations for BC size effects for application to climate models. Compared with a realistic polydisperse assumption and observed shifts to larger BC sizes in snow, respectively, assuming monodisperse BC and typical atmospheric BC effective radii could lead to overestimates of 24% and 40% in BC-snow albedo forcing averaged over different BC and snow conditions.

  16. On Spectral Invariance of Single Scattering Albedo for Water Droplets and Ice Crystals at Weakly Absorbing Wavelengths

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Chiu, J. Christine; Wiscombe, Warren J.

    2012-01-01

    The single scattering albedo omega(sub O lambda) in atmospheric radiative transfer is the ratio of the scattering coefficient to the extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength lambda and droplet size r. This note shows that for water droplets at weakly absorbing wavelengths, the ratio omega(sub O lambda)(r)/omega(sub O lambda)(r (sub O)) of two single scattering albedo spectra is a linear function of omega(sub O lambda)(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo spectrum omega(sub O lambda)(r) via one known spectrum omega(sub O lambda)(r (sub O)). We provide a simple physical explanation of the discovered relationship. Similar linear relationships were found for the single scattering albedo spectra of non-spherical ice crystals.

  17. Super-catastrophic disruption of asteroids at small perihelion distances.

    PubMed

    Granvik, Mikael; Morbidelli, Alessandro; Jedicke, Robert; Bolin, Bryce; Bottke, William F; Beshore, Edward; Vokrouhlický, David; Delbò, Marco; Michel, Patrick

    2016-02-18

    Most near-Earth objects came from the asteroid belt and drifted via non-gravitational thermal forces into resonant escape routes that, in turn, pushed them onto planet-crossing orbits. Models predict that numerous asteroids should be found on orbits that closely approach the Sun, but few have been seen. In addition, even though the near-Earth-object population in general is an even mix of low-albedo (less than ten per cent of incident radiation is reflected) and high-albedo (more than ten per cent of incident radiation is reflected) asteroids, the characterized asteroids near the Sun typically have high albedos. Here we report a quantitative comparison of actual asteroid detections and a near-Earth-object model (which accounts for observational selection effects). We conclude that the deficit of low-albedo objects near the Sun arises from the super-catastrophic breakup (that is, almost complete disintegration) of a substantial fraction of asteroids when they achieve perihelion distances of a few tens of solar radii. The distance at which destruction occurs is greater for smaller asteroids, and their temperatures during perihelion passages are too low for evaporation to explain their disappearance. Although both bright and dark (high- and low-albedo) asteroids eventually break up, we find that low-albedo asteroids are more likely to be destroyed farther from the Sun, which explains the apparent excess of high-albedo near-Earth objects and suggests that low-albedo asteroids break up more easily as a result of thermal effects.

  18. Preferential cooling of hot extremes from cropland albedo management

    PubMed Central

    Davin, Edouard L.; Seneviratne, Sonia I.; Ciais, Philippe; Olioso, Albert; Wang, Tao

    2014-01-01

    Changes in agricultural practices are considered a possible option to mitigate climate change. In particular, reducing or suppressing tillage (no-till) may have the potential to sequester carbon in soils, which could help slow global warming. On the other hand, such practices also have a direct effect on regional climate by altering the physical properties of the land surface. These biogeophysical effects, however, are still poorly known. Here we show that no-till management increases the surface albedo of croplands in summer and that the resulting cooling effect is amplified during hot extremes, thus attenuating peak temperatures reached during heat waves. Using a regional climate model accounting for the observed effects of no-till farming on surface albedo, as well as possible reductions in soil evaporation, we investigate the potential consequences of a full conversion to no-till agriculture in Europe. We find that the summer cooling from cropland albedo increase is strongly amplified during hot summer days, when surface albedo has more impact on the Earth’s radiative balance due to clear-sky conditions. The reduced evaporation associated with the crop residue cover tends to counteract the albedo-induced cooling, but during hot days the albedo effect is the dominating factor. For heatwave summer days the local cooling effect gained from no-till practice is of the order of 2 °C. The identified asymmetric impact of surface albedo change on summer temperature opens new avenues for climate-engineering measures targeting high-impact events rather than mean climate properties. PMID:24958872

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masiero, Joseph R.; Mainzer, A. K.; Bauer, J. M.

    We present initial results from the Wide-field Infrared Survey Explorer (WISE), a four-band all-sky thermal infrared survey that produces data well suited for measuring the physical properties of asteroids, and the NEOWISE enhancement to the WISE mission allowing for detailed study of solar system objects. Using a NEATM thermal model fitting routine, we compute diameters for over 100,000 Main Belt asteroids from their IR thermal flux, with errors better than 10%. We then incorporate literature values of visible measurements (in the form of the H absolute magnitude) to determine albedos. Using these data we investigate the albedo and diameter distributionsmore » of the Main Belt. As observed previously, we find a change in the average albedo when comparing the inner, middle, and outer portions of the Main Belt. We also confirm that the albedo distribution of each region is strongly bimodal. We observe groupings of objects with similar albedos in regions of the Main Belt associated with dynamical breakup families. Asteroid families typically show a characteristic albedo for all members, but there are notable exceptions to this. This paper is the first look at the Main Belt asteroids in the WISE data, and only represents the preliminary, observed raw size, and albedo distributions for the populations considered. These distributions are subject to survey biases inherent to the NEOWISE data set and cannot yet be interpreted as describing the true populations; the debiased size and albedo distributions will be the subject of the next paper in this series.« less

  20. Sea ice roughness: the key for predicting Arctic summer ice albedo

    NASA Astrophysics Data System (ADS)

    Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.

    2017-12-01

    Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.

  1. How Well Can We Estimate Areal-Averaged Spectral Surface Albedo from Ground-Based Transmission in an Atlantic Coastal Area?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.

    Areal-averaged albedos are particularly difficult to measure in coastal regions, because the surface is not homogenous, consisting of a sharp demarcation between land and water. With this difficulty in mind, we evaluate a simple retrieval of areal-averaged surface albedo using ground-based measurements of atmospheric transmission alone under fully overcast conditions. To illustrate the performance of our retrieval, we find the areal-averaged albedo using measurements from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) at five wavelengths (415, 500, 615, 673, and 870 nm). These MFRSR data are collected at a coastal site in Graciosa Island, Azores supported by the U.S. Department ofmore » Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program. The areal-averaged albedos obtained from the MFRSR are compared with collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky albedo at four nominal wavelengths (470, 560, 670 and 860 nm). These comparisons are made during a 19-month period (June 2009 - December 2010). We also calculate composite-based spectral values of surface albedo by a weighted-average approach using estimated fractions of major surface types observed in an area surrounding this coastal site. Taken as a whole, these three methods of finding albedo show spectral and temporal similarities, and suggest that our simple, transmission-based technique holds promise, but with estimated errors of about ±0.03. Additional work is needed to reduce this uncertainty in areas with inhomogeneous surfaces.« less

  2. Modelling Mean Albedo of Individual Roofs in Complex Urban Areas Using Satellite Images and Airborne Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Kalantar, B.; Mansor, S.; Khuzaimah, Z.; Sameen, M. Ibrahim; Pradhan, B.

    2017-09-01

    Knowledge of surface albedo at individual roof scale is important for mitigating urban heat islands and understanding urban climate change. This study presents a method for quantifying surface albedo of individual roofs in a complex urban area using the integration of Landsat 8 and airborne LiDAR data. First, individual roofs were extracted from airborne LiDAR data and orthophotos using optimized segmentation and supervised object based image analysis (OBIA). Support vector machine (SVM) was used as a classifier in OBIA process for extracting individual roofs. The user-defined parameters required in SVM classifier were selected using v-fold cross validation method. After that, surface albedo was calculated for each individual roof from Landsat images. Finally, thematic maps of mean surface albedo of individual roofs were generated in GIS and the results were discussed. Results showed that the study area is covered by 35% of buildings varying in roofing material types and conditions. The calculated surface albedo of buildings ranged from 0.16 to 0.65 in the study area. More importantly, the results indicated that the types and conditions of roofing materials significantly effect on the mean value of surface albedo. Mean albedo of new concrete, old concrete, new steel, and old steel were found to be equal to 0.38, 0.26, 0.51, and 0.44 respectively. Replacing old roofing materials with new ones should highly prioritized.

  3. The Gamma-Ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, I.V.; /Stanford U., HEPL /KIPAC, Menlo Park; Porter, T.A.

    2008-03-25

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makesmore » it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.« less

  4. The Gamma-ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, Igor V.; /Stanford U., HEPL; Porter, Troy A.

    2007-09-28

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makesmore » it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.« less

  5. Preliminary assessment of the GOES-R ABI hourly land surface albedo and reflectance products prototyped with Himawari AHI data

    NASA Astrophysics Data System (ADS)

    He, T.; Liang, S.; Zhang, Y.; Yu, Y.

    2016-12-01

    Land surface albedo and reflectance are critical geophysical variables used in climate and environmental applications. The multispectral Advanced Baseline Imager (ABI) onboard the next generation geostationary satellites (GOES-R series, set to launch in late 2016) offers high temporal and medium spatial resolution observations, which can be used for monitoring diurnal variation of surface albedo and reflectance. In the GOES-R data processing chain there is no atmospheric correction to generate surface reflectance product, which is usually required for surface albedo estimation. We propose an optimization method to simultaneously retrieve surface bidirectional reflectance distribution function (BRDF) parameters and aerosol optical depth with GOES-R ABI data on a daily-basis, which are used for estimating surface albedo and reflectance. Before the launch of the GOES-R satellite, our algorithm was prototyped with data from the Advanced Himawari Imager (AHI) onboard the Japanese Himawari-8 satellite, which has spectral bands and spatial resolutions similar to GOES-R ABI. Cal/val activities were carried out against ground measurements at the OzFlux sites in Australia and satellite data including albedo/BRDF products from MODIS and Landsat. The preliminary accuracy assessment showed promising results for both the surface albedo and reflectance estimates. The GOES-R surface albedo and reflectance products will serve as critical inputs for downstream GOES-R satellite products and also help improve climate modeling and weather forecasting with a high temporal resolution.

  6. Arid land monitoring using Landsat albedo difference images

    USGS Publications Warehouse

    Robinove, Charles J.; Chavez, Pat S.; Gehring, Dale G.; Holmgren, Ralph

    1981-01-01

    The Landsat albedo, or percentage of incoming radiation reflected from the ground in the wavelength range of 0.5 [mu]m to 1.1 [mu]m, is calculated from an equation using the Landsat digital brightness values and solar irradiance values, and correcting for atmospheric scattering, multispectral scanner calibration, and sun angle. The albedo calculated for each pixel is used to create an albedo image, whose grey scale is proportional to the albedo. Differencing sequential registered images and mapping selected values of the difference is used to create quantitative maps of increased or decreased albedo values of the terrain. All maps and other output products are in black and white rather than color, thus making the method quite economical. Decreases of albedo in arid regions may indicate improvement of land quality; increases may indicate degradation. Tests of the albedo difference mapping method in the Desert Experimental Range in southwestern Utah (a cold desert with little long-term terrain change) for a four-year period show that mapped changes can be correlated with erosion from flash floods, increased or decreased soil moisture, and increases or decreases in the density of desert vegetation, both perennial shrubs and annual plants. All terrain changes identified in this test were related to variations in precipitation. Although further tests of this method in hot deserts showing severe "desertification" are needed, the method is nevertheless recommended for experimental use in monitoring terrain change in other arid and semiarid regions of the world.

  7. DMM: A MULTIGROUP, MULTIREGION ONE-SPACE-DIMENSIONAL COMPUTER PROGRAM USING NEUTRON DIFFUSION THEORY. PART II. DMM PROGRAM DESCRIPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavanagh, D.L.; Antchagno, M.J.; Egawa, E.K.

    1960-12-31

    Operating instructions are presented for DMM, a Remington Rand 1103A program using one-space-dimensional multigroup diffusion theory to calculate the reactivity or critical conditions and flux distribution of a multiregion reactor. Complete descriptions of the routines and problem input and output specifications are also included. (D.L.C.)

  8. Proposal of a neutron transmutation doping facility for n-type spherical silicon solar cell at high-temperature engineering test reactor.

    PubMed

    Ho, Hai Quan; Honda, Yuki; Motoyama, Mizuki; Hamamoto, Shimpei; Ishii, Toshiaki; Ishitsuka, Etsuo

    2018-05-01

    The p-type spherical silicon solar cell is a candidate for future solar energy with low fabrication cost, however, its conversion efficiency is only about 10%. The conversion efficiency of a silicon solar cell can be increased by using n-type silicon semiconductor as a substrate. This study proposed a new method of neutron transmutation doping silicon (NTD-Si) for producing the n-type spherical solar cell, in which the Si-particles are irradiated directly instead of the cylinder Si-ingot as in the conventional NTD-Si. By using a 'screw', an identical resistivity could be achieved for the Si-particles without a complicated procedure as in the NTD with Si-ingot. Also, the reactivity and neutron flux swing could be kept to a minimum because of the continuous irradiation of the Si-particles. A high temperature engineering test reactor (HTTR), which is located in Japan, was used as a reference reactor in this study. Neutronic calculations showed that the HTTR has a capability to produce about 40t/EFPY of 10Ωcm resistivity Si-particles for fabrication of the n-type spherical solar cell. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Earth's Reflection: Albedo

    ERIC Educational Resources Information Center

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    When viewing objects of different colors, you might notice that some appear brighter than others. This is because light is reflected differently from various surfaces, depending on their physical properties. The word "albedo" is used to describe how reflective a surface is. The Earth-atmosphere has a combined albedo of about 30%, a number that is…

  10. Climatic influence of background and volcanic stratosphere aerosol models

    NASA Technical Reports Server (NTRS)

    Deschamps, P. Y.; Herman, M.; Lenoble, J.; Tanre, D.

    1982-01-01

    A simple modelization of the earth atmosphere system including tropospheric and stratospheric aerosols has been derived and tested. Analytical expressions are obtained for the albedo variation due to a thin stratospheric aerosol layer. Also outlined are the physical procedures and the respective influence of the main parameters: aerosol optical thickness, single scattering albedo and asymmetry factor, and sublayer albedo. The method is applied to compute the variation of the zonal and planetary albedos due to a stratospheric layer of background H2SO4 particles and of volcanic ash.

  11. Seasonal albedo of an urban/rural landscape from satellite observations

    NASA Technical Reports Server (NTRS)

    Brest, Christopher L.

    1987-01-01

    Using data from 27 calibrated Landsat observations of the Hartford, Connecticut area, the spatial distribution and seasonal variation of surface reflectance and albedo were examined. Mean values of visible reflectance, near-IR reflectance, and albedo are presented (for both snow-free and snow-cover observations) according to 14 land use/land cover categories. A diversity of albedo values was found to exist in this type of environment, associated with land cover. Many land-cover categories display a seasonal dependence, with intracategory seasonal differences being of comparable magnitude to intercategory differences. Key factors in determining albedo (and its seasonal dynamics) are the presence or absence of vegetation and the canopy structure. Snow-cover/snow-free differences range from a few percent (for urban land covers) to over 40 percent (for low-canopy vegetation).

  12. Radiative forcing impacts of boreal forest biofuels: a scenario study for Norway in light of albedo.

    PubMed

    Bright, Ryan M; Strømman, Anders Hammer; Peters, Glen P

    2011-09-01

    Radiative forcing impacts due to increased harvesting of boreal forests for use as transportation biofuel in Norway are quantified using simple climate models together with life cycle emission data, MODIS surface albedo data, and a dynamic land use model tracking carbon flux and clear-cut area changes within productive forests over a 100-year management period. We approximate the magnitude of radiative forcing due to albedo changes and compare it to the forcing due to changes in the carbon cycle for purposes of attributing the net result, along with changes in fossil fuel emissions, to the combined anthropogenic land use plus transport fuel system. Depending on albedo uncertainty and uncertainty about the geographic distribution of future logging activity, we report a range of results, thus only general conclusions about the magnitude of the carbon offset potential due to changes in surface albedo can be drawn. Nevertheless, our results have important implications for how forests might be managed for mitigating climate change in light of this additional biophysical criterion, and in particular, on future biofuel policies throughout the region. Future research efforts should be directed at understanding the relationships between the physical properties of managed forests and albedo, and how albedo changes in time as a result of specific management interventions.

  13. Albedo impact on the suitability of biochar systems to mitigate global warming.

    PubMed

    Meyer, Sebastian; Bright, Ryan M; Fischer, Daniel; Schulz, Hardy; Glaser, Bruno

    2012-11-20

    Biochar application to agricultural soils can change the surface albedo which could counteract the climate mitigation benefit of biochar systems. However, the size of this impact has not yet been quantified. Based on empirical albedo measurements and literature data of arable soils mixed with biochar, a model for annual vegetation cover development based on satellite data and an assessment of the annual development of surface humidity, an average mean annual albedo reduction of 0.05 has been calculated for applying 30-32 Mg ha(-1) biochar on a test field near Bayreuth, Germany. The impact of biochar production and application on the carbon cycle and on the soil albedo was integrated into the greenhouse gas (GHG) balance of a modeled pyrolysis based biochar system via the computation of global warming potential (GWP) characterization factors. The analysis resulted in a reduction of the overall climate mitigation benefit of biochar systems by 13-22% due to the albedo change as compared to an analysis which disregards the albedo effect. Comparing the use of the same quantity of biomass in a biochar system to a bioenergy district heating system which replaces natural gas combustion, bioenergy heating systems achieve 99-119% of the climate benefit of biochar systems according to the model calculation.

  14. NOAA AVHRR Land Surface Albedo Algorithm Development

    NASA Technical Reports Server (NTRS)

    Toll, D. L.; Shirey, D.; Kimes, D. S.

    1997-01-01

    The primary objective of this research is to develop a surface albedo model for the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR). The primary test site is the Konza prairie, Kansas (U.S.A.), used by the International Satellite Land Surface Climatology Project (ISLSCP) in the First ISLSCP Field Experiment (FIFE). In this research, high spectral resolution field spectrometer data was analyzed to simulate AVHRR wavebands and to derive surface albedos. Development of a surface albedo algorithm was completed by analysing a combination of satellite, field spectrometer, and ancillary data. Estimated albedos from the field spectrometer data were compared to reference albedos derived using pyranometer data. Variations from surface anisotropy of reflected solar radiation were found to be the most significant albedo-related error. Additional error or sensitivity came from estimation of a shortwave mid-IR reflectance (1.3-4.0 micro-m) using the AVHRR red and near-IR bands. Errors caused by the use of AVHRR spectral reflectance to estimate both a total visible (0.4-0.7 micro-m) and near-IR (0.7-1.3 micro-m) reflectance were small. The solar spectral integration, using the derived ultraviolet, visible, near-IR and SW mid-IR reflectivities, was not sensitive to many clear-sky changes in atmospheric properties and illumination conditions.

  15. Evaluation of the SMAP model calculated snow albedo at the SIGMA-A site, northwest Greenland, during the 2012 record surface melt event

    NASA Astrophysics Data System (ADS)

    Niwano, M.; Aoki, T.; Matoba, S.; Yamaguchi, S.; Tanikawa, T.; Kuchiki, K.; Motoyama, H.

    2015-12-01

    The snow and ice on the Greenland ice sheet (GrIS) experienced the extreme surface melt around 12 July, 2012. In order to understand the snow-atmosphere interaction during the period, we applied a physical snowpack model SMAP to the GrIS snowpack. In the SMAP model, the snow albedo is calculated by the PBSAM component explicitly considering effects of snow grain size and light-absorbing snow impurities such as black carbon and dust. Temporal evolution of snow grain size is calculated internally in the SMAP model, whereas mass concentrations of snow impurities are externally given from observations. In the PBSAM, the (shortwave) snow albedo is calculated from a weighted summation of visible albedo (primarily affected by snow impurities) and near-infrared albedo (mainly controlled by snow grain size). The weights for these albedos are the visible and near-infrared fractions of the downward shortwave radiant flux. The SMAP model forced by meteorological data obtained from an automated weather station at SIGMA-A site, northwest GrIS during 30 June to 14 July, 2012 (IOP) was evaluated in terms of surface (optically equivalent) snow grain size and snow albedo. Snow grain size simulated by the model was compared against that retrieved from in-situ spectral albedo measurements. Although the RMSE and ME were reasonable (0.21 mm and 0.17 mm, respectively), the small snow grain size associated with the surface hoar could not be simulated by the SMAP model. As for snow albedo, simulation results agreed well with observations throughout the IOP (RMSE was 0.022 and ME was 0.008). Under cloudy-sky conditions, the SMAP model reproduced observed rapid increase in the snow albedo. When cloud cover is present the near-infrared fraction of the downward shortwave radiant flux is decreased, while it is increased under clear-sky conditions. Therefore, the above mentioned performance of the SMAP model can be attributed to the PBSAM component driven by the observed near-infrared and visible fractions of the downward shortwave radiant flux. This result suggests that it is necessary for snowpack models to consider changes in the visible and near-infrared fractions of the downward shortwave radiant flux caused by the presence of cloud cover to reproduce realistic temporal changes in the snow albedo and consequently the surface energy balance.

  16. Analysis of Surface Albedo to Improve Upper-Ocean Heat Budget Calculations

    NASA Astrophysics Data System (ADS)

    Hogikyan, A.; Zhang, D.; Cronin, M. F.

    2016-12-01

    Over 90% of the Earth's energy imbalance is stored in the oceans, so it is important to understand the ocean-atmosphere heat transfer. The Ocean Climate Stations group (OCS) at the Pacific Marine Environmental Laboratory maintains two moored surface buoys in the North Pacific (PAPA and KEO) as air-sea flux reference sites. The goal of the reference sites is to validate global air-sea flux products from atmospheric reanalyses and satellite products, that are critical to understand and model the variability and trend of the earth climate. As other air-sea flux reference buoys in the world ocean, PAPA and KEO only measure downward shortwave radiation (SWdown), but utilize the albedo and the directly measured SWdown to calculate the SWup. Since the open ocean albedo is small, the errors associated with this practice are thought to be comparable or smaller than the instrumentation errors in the air-sea flux measurements. In addition, it is generally accepted that ocean surface albedos can be derived with reasonable confidence from surface radiative fluxes in satellite products such as the Clouds and the Earth's Radiant Energy System (CERES) and the International Satellite Cloud Climatology Project (ISCCP). This project developed a CERES-based albedo product for derivation of SWnet at PAPA and KEO, and assessed the impact of CERES-based albedo on the net surface heat fluxes relative to the currently used ISCCP-based albedo in the OCS air-sea flux data (http://www.pmel.noaa.gov/ocs/data/fluxdisdel/). The high-resolution surface fluxes from CERES are more frequently updated, and consider more physical factors in the approximation, than those from ISCCP. There was a greater change between ISCCP and CERES albedo during wintertime than during summer. There was a greater change at Station PAPA in the northeastern sub-Arctic Pacific, than at Station KEO in the northwestern subtropical Pacific. The rate of temperature change of the mixed-layer is shown to increase based on the new source of albedo data, .08 and .5 °C/year at KEO and PAPA, respectively. The differences in the net surface heat flux due to different albedos used in this study suggest that more comprehensive investigations of the albedo in different products and radiative models, and their impacts on oceanic and atmospheric processes are needed.

  17. Change in Urban Albedo in London: A Multi-scale Perspective

    NASA Astrophysics Data System (ADS)

    Susca, T.; Kotthaus, S.; Grimmond, S.

    2013-12-01

    Urbanization-induced change in land use has considerable implications for climate, air quality, resources and ecosystems. Urban-induced warming is one of the most well-known impacts. This directly and indirectly can extend beyond the city. One way to reduce the size of this is to modify the surface atmosphere exchanges through changing the urban albedo. As increased rugosity caused by the morphology of a city results in lower albedo with constant material characteristics, the impacts of changing the albedo has impacts across a range of scales. Here a multi-scale assessment of the potential effects of the increase in albedo in London is presented. This includes modeling at the global and meso-scale informed by local and micro-scale measurements. In this study the first order calculations are conducted for the impact of changing the albedo (e.g. a 0.01 increase) on the radiative exchange. For example, when incoming solar radiation and cloud cover are considered, based on data retrieved from NASA (http://power.larc.nasa.gov/) for ~1600 km2 area of London, would produce a mean decrease in the instantaneous solar radiative forcing on the same surface of 0.40 W m-2. The nature of the surface is critical in terms of considering the impact of changes in albedo. For example, in the Central Activity Zone in London pavement and building can vary from 10 to 100% of the plan area. From observations the albedo is seen to change dramatically with changes in building materials. For example, glass surfaces which are being used increasingly in the central business district results in dramatic changes in albedo. Using the documented albedo variations determined across different scales the impacts are considered. For example, the effect of the increase in urban albedo is translated into the corresponding amount of avoided emission of carbon dioxide that produces the same effect on climate. At local scale, the effect that the increase in urban albedo can potentially have on local climate is calculated using numerical modelling to mitigate the urban heat island in London. The co-benefits from decreasing the urban temperature are then considered. These include a reduction in the peak of tropospheric ozone formation, a decrease heat stress to the city dwellers as well as in energy demand. The extreme summer temperatures have most of the impact on people socially and physically vulnerable people. The decrease in summer temperatures has positive effects on human health decreasing the mortality for natural causes as well as for respiratory and cardio-vascular diseases promoting socially equality. The increase in urban albedo - with a particular reference to changes in pavements and rooftops - can be easily integrated in urban and building maintenance plans. Since the increase in urban albedo can affect both the global and local scale, the results of this extensive and multi-level study are useful to address-policy-relevant strategies for coping with the effects of climate. In particular, they can provide insights for multi-level governance strategies and for shaping mitigation and adaptation strategies.

  18. Multidisciplinary Simulation of Graphite-Composite and Cermet Fuel Elements for NTP Point of Departure Designs

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2015-01-01

    This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.

  19. Analysis of low levels of rare earths by radiochemical neutron activation analysis

    USGS Publications Warehouse

    Wandless, G.A.; Morgan, J.W.

    1985-01-01

    A procedure for the radiochemical neutron-activation analysis for the rare earth elements (REE) involves the separation of the REE as a group by rapid ion-exchange methods and determination of yields by reactivation or by energy dispersive X-ray fluorescence (EDXRF) spectrometry. The U. S. Geological Survey (USGS) standard rocks, BCR-1 and AGV-1, were analyzed to determine the precision and accuracy of the method. We found that the precision was ??5-10% on the basis of replicate analysis and that, in general the accuracy was within ??5% of accepted values for most REE. Data for USGS standard rocks BIR-1 (Icelandic basalt) and DNC-1 (North Carolina diabase) are also presented. ?? 1985 Akade??miai Kiado??.

  20. Experimental physics characteristics of a heavy-metal-reflected fast-spectrum critical assembly

    NASA Technical Reports Server (NTRS)

    Heneveld, W. H.; Paschall, R. K.; Springer, T. H.; Swanson, V. A.; Thiele, A. W.; Tuttle, R. J.

    1971-01-01

    A zero-power critical assembly was designed, constructed, and operated for the purpose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7 cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power electric conversion system. The experimental program consisted basically of measuring the differential neutron spectra and the changes in critical mass that accompanied the stepwise addition of (Li-7)3N, Hf, Ta, and W to a basic core fueled with U metal in a pin-type Ta honeycomb structure. In addition, experimental results were obtained on power distributions, control characteristics, neutron lifetime, and reactivity worths of numerous absorber, structural, and scattering materials.

  1. Investigation of the MTC noise estimation with a coupled neutronic/thermal-hydraulic dedicated model - 'Closing the loop'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demaziere, C.; Larsson, V.

    2012-07-01

    This paper investigates the reliability of different noise estimators aimed at determining the Moderator Temperature Coefficient (MTC) of reactivity in Pressurized Water Reactors. By monitoring the inherent fluctuations in the neutron flux and moderator temperature, an on-line monitoring of the MTC without perturbing reactor operation is possible. In order to get an accurate estimation of the MTC by noise analysis, the point-kinetic component of the neutron noise and the core-averaged moderator temperature noise have to be used. Because of the scarcity of the in-core instrumentation, the determination of these quantities is difficult, and several possibilities thus exist for estimating themore » MTC by noise analysis. Furthermore, the effect of feedback has to be negligible at the frequency chosen for estimating the MTC in order to get a proper determination of the MTC. By using an integrated neutronic/thermal- hydraulic model specifically developed for estimating the three-dimensional distributions of the fluctuations in neutron flux, moderator properties, and fuel temperature, different approaches for estimating the MTC by noise analysis can be tested individually. It is demonstrated that a reliable MTC estimation can only be provided if the core is equipped with a sufficient number of both neutron detectors and temperature sensors, i.e. if the core contain in-core detectors monitoring both the axial and radial distributions of the fluctuations in neutron flux and moderator temperature. It is further proven that the effect of feedback is negligible for frequencies higher than 0.1 Hz, and thus the MTC noise estimations have to be performed at higher frequencies. (authors)« less

  2. Spring snow albedo feedback in daily data over Russia: Comparing in-situ measurements with reanalysis products.

    NASA Astrophysics Data System (ADS)

    Wegmann, M.; Zolina, O.; Jacobi, H. W.

    2016-12-01

    Global warming is enhanced at high northern latitudes where the Arctic surface air temperature has risen at twice the rate of the global average in recent decades - a feature called Arctic amplification. This recent Arctic warming signal likely results from several factors such as the albedo feedback due to a diminishing cryosphere, enhanced poleward atmospheric and oceanic heat transport, and changes in humidity. Surface albedo feedback is stating that the additional amount of shortwave radiation at the top of the atmosphere decreases with decreasing surface albedo whereas surface air temperature increases with decreasing surface albedo. It is considered a positive feedback in that an initial warming perturbation than kicks off a strengthening warming. Looking at the Northern Hemisphere with its large landmasses, snow albedo feedback is especially strong since most of these landmasses experience snow cover during boreal wintertime. Unfortunately, so far there remains a lack of reliable observational data over large parts of the cryosphere. Satellite products cover large parts of the NH, however lack high temporal resolution and have problems with large solar zenith angles as well as over complex terrain (eg. Wang et al. 2014). Our analysis focuses at the Russian territory where we utilize in-situ radiation and snow depth measurements. We found 50 stations which measure both variables on a daily basis for the period 2000-2013. Since Hall (2004) found that 50% of the notal NH snow albedo feedback caused by global warming occurs during NH spring, we focus on the transition period of March to June (MAMJ). Thackeray & Fletcher 2006 compared albedo feedback processes CMIP3 and CMIP5 model families and found while the models represent the feedback process accurately, there are still inherent biases and outdated parameterizations. Therefore we use the daily observations and state of the art reanalysis products to 1) evaluate reanalysis and model products in respect to radiation properties, 2) investigate snow albedo feedbacks on a daily scale during spring and 3) to suggest climate change signals over Russia in albedo feedback between 2000 - 2013 based on in-situ measurements.

  3. Changes in blast zone albedo patterns around new martian impact craters

    NASA Astrophysics Data System (ADS)

    Daubar, I. J.; Dundas, C. M.; Byrne, S.; Geissler, P.; Bart, G. D.; McEwen, A. S.; Russell, P. S.; Chojnacki, M.; Golombek, M. P.

    2016-03-01

    "Blast zones" (BZs) around new martian craters comprise various albedo features caused by the initial impact, including diffuse halos, extended linear and arcuate rays, secondary craters, ejecta patterns, and dust avalanches. We examined these features for changes in repeat images separated by up to four Mars years. Here we present the first comprehensive survey of the qualitative and quantitative changes observed in impact blast zones over time. Such changes are most likely due to airfall of high-albedo dust restoring darkened areas to their original albedo, the albedo of adjacent non-impacted surfaces. Although some sites show drastic changes over short timescales, nearly half of the sites show no obvious changes over several Mars years. Albedo changes are more likely to occur at higher-latitude sites, lower-elevation sites, and at sites with smaller central craters. No correlation was seen between amount of change and Dust Cover Index, relative halo size, or historical regional albedo changes. Quantitative albedo measurements of the diffuse dark halos relative to their surroundings yielded estimates of fading lifetimes for these features. The average lifetime among sites with measurable fading is ∼15 Mars years; the median is ∼8 Mars years for a linear brightening. However, at approximately half of sites with three or more repeat images, a nonlinear function with rapid initial fading followed by a slow increase in albedo provides a better fit to the fading behavior; this would predict even longer lifetimes. The predicted lifetimes of BZs are comparable to those of slope streaks, and considered representative of fading by global atmospheric dust deposition; they last significantly longer than dust devil or rover tracks, albedo features that are erased by different processes. These relatively long lifetimes indicate that the measurement of the current impact rate by Daubar et al. (Daubar, I.J. et al. [2013]. Icarus 225, 506-516. http://dx.doi.org/10.1016/j.icarus.2013.04.009) does not suffer significantly from overall under-sampling due to blast zones fading before new impact sites can be initially discovered. However, the prevalence of changes seen around smaller craters may explain in part their shallower size frequency distribution.

  4. Changes in blast zone albedo patterns around new martian impact craters

    USGS Publications Warehouse

    Daubar, Ingrid J.; Dundas, Colin; Byrne, Shane; Geissler, Paul; Bart, Gwen; McEwen, Alfred S.; Russell, Patrick; Chojnacki, Matthew; Golombek, M.P.

    2016-01-01

    “Blast zones” (BZs) around new martian craters comprise various albedo features caused by the initial impact, including diffuse halos, extended linear and arcuate rays, secondary craters, ejecta patterns, and dust avalanches. We examined these features for changes in repeat images separated by up to four Mars years. Here we present the first comprehensive survey of the qualitative and quantitative changes observed in impact blast zones over time. Such changes are most likely due to airfall of high-albedo dust restoring darkened areas to their original albedo, the albedo of adjacent non-impacted surfaces. Although some sites show drastic changes over short timescales, nearly half of the sites show no obvious changes over several Mars years. Albedo changes are more likely to occur at higher-latitude sites, lower-elevation sites, and at sites with smaller central craters. No correlation was seen between amount of change and Dust Cover Index, relative halo size, or historical regional albedo changes. Quantitative albedo measurements of the diffuse dark halos relative to their surroundings yielded estimates of fading lifetimes for these features. The average lifetime among sites with measurable fading is ∼15 Mars years; the median is ∼8 Mars years for a linear brightening. However, at approximately half of sites with three or more repeat images, a nonlinear function with rapid initial fading followed by a slow increase in albedo provides a better fit to the fading behavior; this would predict even longer lifetimes. The predicted lifetimes of BZs are comparable to those of slope streaks, and considered representative of fading by global atmospheric dust deposition; they last significantly longer than dust devil or rover tracks, albedo features that are erased by different processes. These relatively long lifetimes indicate that the measurement of the current impact rate by Daubar et al. (Daubar, I.J. et al. [2013]. Icarus 225, 506–516. http://dx.doi.org/10.1016/j.icarus.2013.04.009) does not suffer significantly from overall under-sampling due to blast zones fading before new impact sites can be initially discovered. However, the prevalence of changes seen around smaller craters may explain in part their shallower size frequency distribution.

  5. Aerosol cloud interactions in southeast Pacific stratocumulus: satellite observations, in situ data and regional modeling

    NASA Astrophysics Data System (ADS)

    George, Rhea

    The influence of anthropogenic aerosols on cloud radiative properties in the persistent southeast Pacific stratocumulus deck is investigated using MODIS satellite observations, in situ data from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), and WRF-Chem, a regional model with interactive chemistry and aerosols. An albedo proxy is derived based on the fractional coverage of low cloud (a macrophysical field) and the cloud albedo, with the latter broken down into contributions from microphysics (cloud droplet concentration, Nd and macrophysics (liquid water path). Albedo variability is dominated by low cloud fraction variability, except within 10-15° of the South American coast, where cloud albedo variability contributes significantly. Covariance between cloud fraction and cloud albedo also contributes significantly to the variance in albedo, which highlights how complex and inseparable the factors controlling albedo are. N d variability contributes only weakly, which emphasizes that attributing albedo variability to the indirect effects of aerosols against the backdrop of natural meteorological variability is extremely challenging. Specific cases of aerosol changes can have strong impacts on albedo. We identify a pathway for periodic anthropogenic aerosol transport to the unpolluted marine stratocumulus >1000 km offshore, which strongly enhances Nd and albedo in zonally-elongated 'hook'-shaped arc. Hook development occurs with Nd increasing to polluted levels over the remote ocean primarily due to entrainment of a large number of small aerosols from the free troposphere that contribute a relatively small amount of aerosol mass to the marine boundary layer. Strong, deep offshore flow needed to transport continental aerosols to the remote ocean is favored by a trough approaching the South American coast and a southeastward shift of the climatological subtropical high pressure system. DMS significantly influences the aerosol number and size distributions, but does not cause hooks. The Twomey effect contributes 50-80% of the total aerosol indirect effect (AIE) both near sources and offshore during hook events. Meteorological variability between simulations can swamp the signal of AIEs, particularly due to the binary model cloud fraction field and distinguishing AIE requires determination of appropriate spatial and temporal averaging scales over which AIE is significant above this noise.

  6. Current and future darkening of the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Tedesco, Marco; Stroeve, Julienne; Fettweis, Xavier; Warren, Stephen; Doherty, Sarah; Noble, Erik; Alexander, Patrick

    2015-04-01

    Surface melting over the Greenland ice sheet (GIS) promotes snow grains growth, reducing albedo and further enhancing melting through the increased amount of absorbed solar radiation. Using a combination of remote sensing data and outputs of a regional climate model, we show that albedo over the GIS decreased significantly from 1996 to 2012. Further, we show that most of this darkening can be accounted for by enhanced snow grain growth and the expansion of areas where bare ice is exposed, both of which are driven by increases in snow warming. An analysis of the impact of light-absorbing impurities on albedo trends detected from spaceborne measurements was inconclusive because the estimated impact for concentrations of impurities of order of magnitude found in Greenland is within the albedo uncertainty retrievable from space-based instruments. However, neither models nor observations show an increase in pollutants (black carbon and associated organics) in the atmosphere over the GIS in this time period. Additionally, we could not identify trends in the number of fires over North America and Russia, assumed to be among the sources of soot for Greenland. We did find that a 'dark band' of tilted ice plays a crucial role in decreasing albedo along the west margin, and there is some indication that dust deposition to the GIS may be decreasing albedo in this region but this is not conclusive. In addition to looking at the direct impact of impurities on albedo, we estimated the impact of impurities on albedo via their influence on grain growth and found it is relatively small (~ 1- 2 %), though more sophisticated analysis needs to be carried out. Projections obtained under different warming scenarios consistently point to a continued darkening, with anomalies in albedo driven solely by the effects of climate warming of as much as -0.12 along the west margin of the GIS by the end of this century (with respect to year 2000). Projected darkening is likely underestimated because of an underestimation in melting and because the model used to project albedo does not account for the influence of light-absorbing impurities.

  7. Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cvijanovic, Ivana; Caldeira, Ken; MacMartin, Douglas G.

    The Arctic Ocean is expected to transition into a seasonally ice-free state by mid-century, enhancing Arctic warming and leading to substantial ecological and socio-economic challenges across the Arctic region. It has been proposed that artificially increasing high latitude ocean albedo could restore sea ice, but the climate impacts of such a strategy have not been previously explored. Motivated by this, we investigate the impacts of idealized high latitude ocean albedo changes on Arctic sea ice restoration and climate. In our simulated 4xCO₂ climate, imposing surface albedo alterations over the Arctic Ocean leads to partial sea ice recovery and a modestmore » reduction in Arctic warming. With the most extreme ocean albedo changes, imposed over the area 70°–90°N, September sea ice cover stabilizes at ~40% of its preindustrial value (compared to ~3% without imposed albedo modifications). This is accompanied by an annual mean Arctic surface temperature decrease of ~2 °C but no substantial global mean temperature decrease. Imposed albedo changes and sea ice recovery alter climate outside the Arctic region too, affecting precipitation distribution over parts of the continental United States and Northeastern Pacific. For example, following sea ice recovery, wetter and milder winter conditions are present in the Southwest United States while the East Coast experiences cooling. We conclude that although ocean albedo alteration could lead to some sea ice recovery, it does not appear to be an effective way of offsetting the overall effects of CO₂ induced global warming.« less

  8. Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate

    DOE PAGES

    Cvijanovic, Ivana; Caldeira, Ken; MacMartin, Douglas G.

    2015-04-01

    The Arctic Ocean is expected to transition into a seasonally ice-free state by mid-century, enhancing Arctic warming and leading to substantial ecological and socio-economic challenges across the Arctic region. It has been proposed that artificially increasing high latitude ocean albedo could restore sea ice, but the climate impacts of such a strategy have not been previously explored. Motivated by this, we investigate the impacts of idealized high latitude ocean albedo changes on Arctic sea ice restoration and climate. In our simulated 4xCO₂ climate, imposing surface albedo alterations over the Arctic Ocean leads to partial sea ice recovery and a modestmore » reduction in Arctic warming. With the most extreme ocean albedo changes, imposed over the area 70°–90°N, September sea ice cover stabilizes at ~40% of its preindustrial value (compared to ~3% without imposed albedo modifications). This is accompanied by an annual mean Arctic surface temperature decrease of ~2 °C but no substantial global mean temperature decrease. Imposed albedo changes and sea ice recovery alter climate outside the Arctic region too, affecting precipitation distribution over parts of the continental United States and Northeastern Pacific. For example, following sea ice recovery, wetter and milder winter conditions are present in the Southwest United States while the East Coast experiences cooling. We conclude that although ocean albedo alteration could lead to some sea ice recovery, it does not appear to be an effective way of offsetting the overall effects of CO₂ induced global warming.« less

  9. Improvement of Mars Surface Snow Albedo Modeling in LMD Mars GCM With SNICAR

    NASA Astrophysics Data System (ADS)

    Singh, D.; Flanner, M. G.; Millour, E.

    2018-03-01

    The current version of Laboratoire de Météorologie Dynamique (LMD) Mars GCM (original-MGCM) uses annually repeating (prescribed) CO2 snow albedo values based on the Thermal Emission Spectrometer observations. We integrate the Snow, Ice, and Aerosol Radiation (SNICAR) model with MGCM (SNICAR-MGCM) to prognostically determine H2O and CO2 snow albedos interactively in the model. Using the new diagnostic capabilities of this model, we find that cryospheric surfaces (with dust) increase the global surface albedo of Mars by 0.022. Over snow-covered regions, SNICAR-MGCM simulates mean albedo that is higher by about 0.034 than prescribed values in the original-MGCM. Globally, shortwave flux into the surface decreases by 1.26 W/m2, and net CO2 snow deposition increases by about 4% with SNICAR-MGCM over one Martian annual cycle as compared to the original-MGCM simulations. SNICAR integration reduces the mean global surface temperature and the surface pressure of Mars by about 0.87% and 2.5%, respectively. Changes in albedo also show a similar distribution to dust deposition over the globe. The SNICAR-MGCM model generates albedos with higher sensitivity to surface dust content as compared to original-MGCM. For snow-covered regions, we improve the correlation between albedo and optical depth of dust from -0.91 to -0.97 with SNICAR-MGCM as compared to the original-MGCM. Dust substantially darkens Mars's cryosphere, thereby reducing its impact on the global shortwave energy budget by more than half, relative to the impact of pure snow.

  10. Radiative Forcing and Temperature Response to Changes in Urban Albedos and Associated CO2 Offsets

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; Akbari, Hashem; Mahanama, Sarith; Sednev, Igor; Levinson, Ronnen

    2009-01-01

    The two main forcings that can counteract to some extent the positive forcings from greenhouse gases from pre-industrial times to present-day are the aerosol and related aerosol-cloud forcings, and the radiative response to changes in surface albedo. Here, we quantify the change in radiative forcing and surface temperature that may be obtained by increasing the albedos of roofs and pavements in urban areas in temperate and tropical regions of the globe. Using the catchment land surface model (the land model coupled to the GEOS-5 Atmospheric General Circulation Model), we quantify the response of the total outgoing (outgoing shortwave+longwave) radiation to urban albedo changes. Globally, the total outgoing radiation increased by 0.5 W/square m and temperature decreased by -0.008 K for an average 0.003 increase in albedo. For the U.S. the total outgoing total radiation increased by 2.3 W/square meter, and temperature decreased by approximately 0.03 K for an average 0.01 increase in albedo. These values are for the boreal summer (Tune-July-August). Based on these forcings, the expected emitted CO2 offset for a plausible 0.25 and 0.15 increase in albedos of roofs and pavements, respectively, for all global urban areas, was found to be approximately 57 Gt CO2 . A more meaningful evaluation of the impacts of urban albedo increases on climate and the expected CO2 offsets would require simulations which better characterizes urban surfaces and represents the full annual cycle.

  11. Fast-spectrum space-power-reactor concepts using boron control devices

    NASA Technical Reports Server (NTRS)

    Mayo, W.

    1973-01-01

    Several fast-spectrum space power reactor concepts that use boron carbide control devices were examined to determine the neutronic feasibility of the designs. The designs considered were (1) a 199-fuel-pin, 12-poison-reflector-control-drum reactor; (2) a 232-fuel-pin reactor with 12 reflector drums and three in-core control rods; (3) a 337-fuel-pin design with 12 incore control rods; and a 181-fuel-pin design with six drums closely coupled to the core to increase reactivity per drum. Adequate reactivity control and excess reactivity could be obtained for each concept, and the goals of 50,000 hours at 2.17 thermal megawatts with a lithium-7 coolant outlet temperature of 1222 K could be met without exceeding the 1-percent-clad-creep criterion. Heating rates in the boron carbide were calculated, but a heat transfer analysis was not done.

  12. Radiative forcing over the conterminous United States due to contemporary land cover land use albedo change

    USGS Publications Warehouse

    Barnes, Christopher; Roy, David P.

    2008-01-01

    Recently available satellite land cover land use (LCLU) and albedo data are used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 36 ecoregions covering 43% of the conterminous United States (CONUS). Moderate Resolution Imaging Spectroradiometer (MODIS) snow-free broadband albedo values are derived from Landsat LCLU classification maps located using a stratified random sampling methodology to estimate ecoregion estimates of LCLU induced albedo change and surface radiative forcing. The results illustrate that radiative forcing due to LCLU change may be disguised when spatially and temporally explicit data sets are not used. The radiative forcing due to contemporary LCLU albedo change varies geographically in sign and magnitude, with the most positive forcings (up to 0.284 Wm−2) due to conversion of agriculture to other LCLU types, and the most negative forcings (as low as −0.247 Wm−2) due to forest loss. For the 36 ecoregions considered a small net positive forcing (i.e., warming) of 0.012 Wm−2 is estimated.

  13. Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Moody, Eric G.; Platnick, Steven; Schaaf, Crystal B.

    2005-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent production of land surface anisotropy, diffuse bihemispherical (white-sky) albedo and direct beam directional hemispherical (black-sky) albedo from observations acquired by the MODIS instruments aboard NASA's Terra and &la satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface's radiative characteristics. Cloud cover, which curtails retrievals, and the presence of ephemeral and seasonal snow limit the snow-free data to approximately half the global land surfaces on an annual equal-angle basis. This precludes the MOD43B3 albedo products from being used in some remote sensing and ground-based applications, &mate models, and global change research projects.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasuga, Toshihiro; Usui, Fumihiko; Hasegawa, Sunao

    Primitive, outer-belt asteroids are generally of low albedo, reflecting carbonaceous compositions like those of CI and CM meteorites. However, a few outer-belt asteroids having high albedos are known, suggesting the presence of unusually reflective surface minerals or, conceivably, even exposed water ice. Here, we present near-infrared (1.1-2.5 {mu}m) spectra of four outer-belt C-complex asteroids with albedos {>=}0.1. We find no absorption features characteristic of water ice (near 1.5 and 2.0 {mu}m) in the objects. Intimate mixture models set limits to the water ice by weight {<=}2%. Asteroids (723) Hammonia and (936) Kunigunde are featureless and have (60%-95%) amorphous Mg pyroxenesmore » that might explain the high albedos. Asteroid (1276) Ucclia also shows a featureless reflection spectrum with (50%-60%) amorphous Mg pyroxenes. Asteroid (1576) Fabiola shows a possible weak, broad absorption band (1.5-2.1 {mu}m). The feature can be reproduced by (80%) amorphous Mg pyroxenes or orthopyroxene (crystalline silicate), either of which is likely to cause its high albedo. We discuss the origin of high-albedo components in primitive asteroids.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasuga, Toshihiro; Shirahata, Mai; Usui, Fumihiko

    Most outer main-belt asteroids have low albedos because of their carbonaceouslike bodies. However, infrared satellite surveys have revealed that some asteroids have high albedos, which may suggest the presence of unusual surface minerals for those primitive objects. We present new near-infrared (1.1–2.5 μm) spectra of four outer main-belt asteroids with albedos ≥ 0.1. The C-complex asteroids (555) Norma and (2542) Calpurnia are featureless and have (50%–60%) amorphous Mg pyroxenes that might explain the high albedos. Asteroids (701) Oriola (which is a C-complex asteroid) and (2670) Chuvashia (a D/T-type or M-type asteroid) show possible broad absorption bands (1.5–2.1 μm). The featuremore » can be reproduced by either Mg-rich amorphous pyroxene (with 50%–60% and 80%–95% Mg, respectively) or orthopyroxene (crystalline silicate), which might be responsible for the high albedos. No absorption features of water ice (near 1.5 and 2.0 μm) are detected in the objects. We discuss the origin of high albedo components in the outer main-belt asteroids and their physical relations to comets.« less

  16. Mapping Global Ocean Surface Albedo from Satellite Observations: Models, Algorithms, and Datasets

    NASA Astrophysics Data System (ADS)

    Li, X.; Fan, X.; Yan, H.; Li, A.; Wang, M.; Qu, Y.

    2018-04-01

    Ocean surface albedo (OSA) is one of the important parameters in surface radiation budget (SRB). It is usually considered as a controlling factor of the heat exchange among the atmosphere and ocean. The temporal and spatial dynamics of OSA determine the energy absorption of upper level ocean water, and have influences on the oceanic currents, atmospheric circulations, and transportation of material and energy of hydrosphere. Therefore, various parameterizations and models have been developed for describing the dynamics of OSA. However, it has been demonstrated that the currently available OSA datasets cannot full fill the requirement of global climate change studies. In this study, we present a literature review on mapping global OSA from satellite observations. The models (parameterizations, the coupled ocean-atmosphere radiative transfer (COART), and the three component ocean water albedo (TCOWA)), algorithms (the estimation method based on reanalysis data, and the direct-estimation algorithm), and datasets (the cloud, albedo and radiation (CLARA) surface albedo product, dataset derived by the TCOWA model, and the global land surface satellite (GLASS) phase-2 surface broadband albedo product) of OSA have been discussed, separately.

  17. Enhancement of life cycle assessment (LCA) methodology to include the effect of surface albedo on climate change: Comparing black and white roofs.

    PubMed

    Susca, Tiziana

    2012-04-01

    Traditionally, life cycle assessment (LCA) does not estimate a key property: surface albedo. Here an enhancement of the LCA methodology has been proposed through the development and employment of a time-dependent climatological model for including the effect of surface albedo on climate. The theoretical findings derived by the time-dependent model have been applied to the case study of a black and a white roof evaluated in the time-frames of 50 and 100 years focusing on the impact on global warming potential. The comparative life cycle impact assessment of the two roofs shows that the high surface albedo plays a crucial role in offsetting radiative forcings. In the 50-year time horizon, surface albedo is responsible for a decrease in CO(2)eq of 110-184 kg and 131-217 kg in 100 years. Furthermore, the white roof compared to the black roof, due to the high albedo, decreases the annual energy use of about 3.6-4.5 kWh/m(2). Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Optimization of small long-life PWR based on thorium fuel

    NASA Astrophysics Data System (ADS)

    Subkhi, Moh Nurul; Suud, Zaki; Waris, Abdul; Permana, Sidik

    2015-09-01

    A conceptual design of small long-life Pressurized Water Reactor (PWR) using thorium fuel has been investigated in neutronic aspect. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.2, while the multi-energy-group diffusion calculations were optimized in three-dimension X-Y-Z geometry of core by COREBN. The excess reactivity of thorium nitride with ZIRLO cladding is considered during 5 years of burnup without refueling. Optimization of 350 MWe long life PWR based on 5% 233U & 2.8% 231Pa, 6% 233U & 2.8% 231Pa and 7% 233U & 6% 231Pa give low excess reactivity.

  19. Interpretation of surface and planetary directional albedos for vegetated regions

    NASA Technical Reports Server (NTRS)

    Cess, Robert D.; Vulis, Inna L.

    1989-01-01

    An atmospheric solar radiation model has been coupled with surface reflectance measurements for two vegetation types, pasture land and savannah, in order to address several issues associated with understanding the directional planetary albedo; i.e., the dependence of planetary albedo upon solar zenith angle. These include an elucidation of processes that influence the variation of planetary albedo with solar zenith angle, as well as emphasizing potential problems associated with converting narrowband planetary albedo measurements to broadband quantities. It is suggested that, for vegetated surfaces, this latter task could be somewhat formidable, since the model simulations indicate that narrowband to broadband conversions strongly depend upon vegetation type. A further aspect of this paper is to illustrate a procedure by which reciprocity inconsistencies within a bidirectional reflectance dataset, if they are not too severe, can be circumvented.

  20. A Global Geologic Map of Europa

    NASA Astrophysics Data System (ADS)

    Janelle Leonard, Erin; Patthoff, Donald Alex; Senske, David A.; Collins, Geoffrey

    2017-10-01

    Understanding the global scale geology of Europa is paramount to gaining insight into the potential habitability of this icy world. To this end, work is ongoing to complete a global geological map at the scale of 1:15 million that incorporates data at all resolutions collected by the Voyager and Galileo missions. The results of this work will aid the Europa Clipper mission, now in formulation, by providing a framework for collaborative and synergistic science investigations.To understand global geologic and tectonic relations, a total of 10 geologic units have been defined. These include: Low Albedo Ridge Material (lam)—low albedo material that irregularly surrounds large (>20 km) ridge structures; Ridged plains (pr)—distributed over all latitudes and characterized by subparallel to cross-cutting ridges and troughs visible at high resolution (<100 m/px); Band material (b)—linear to curvilinear zones with a distinct, abrupt albedo change from the surrounding region; Crater material (c), Continuous Crater Ejecta (ce) and Discontinuous Crater Ejecta (dce)—features associated with impact craters including the site of the impact, crater material, and the fall-out debris respectively; Low Albedo Chaos (chl), Mottled Albedo Chaos (chm) and High Albedo Chaos (chh)—disrupted terrain with a relatively uniform low albedo, patchy/variegated albedo, and uniform high albedo appearance respectively; Knobby Chaos (chk) - disrupted terrain with rough and blocky texture occurring in the high latitudes.In addition to the geologic units, our mapping also includes structural features—Ridges, Cycloids, Undifferentiated Linea, Crater Rims, Depression Margins, Dome Margins and Troughs. We also introduce a point feature (at the global scale), Microchaos, to denote small (<10 km) patches of discontinuous chaos material. The completed map will constrain the distribution of different Europa terrains and provide a general stratigraphic framework to assess the geologic history of Europa from the regional to the global scale.

  1. The Extraordinary Albedo Variations on Pluto Detected by New Horizons and Implications for Dwarf Planet Eris

    NASA Astrophysics Data System (ADS)

    Buratti, Bonnie J.; Hofgartner, Jason D.; Stern, S. Alan; Weaver, Harold A.; Verbiscer, Anne J.; Ennico, Kimberly; Olkin, Catherine B.; Young, Leslie; New Horizons Geology and Geophysics Team

    2016-10-01

    The New Horizons mission returned stunning observations of active geology on the surface of Pluto (Stern et al., 2015, Science 350, 292). One of the markers for activity on planets or moons is normal albedos approaching 1.0, as is the case for Enceladus (Buratti et al., 1984, Icarus 58, 254; Verbiscer et al., 2005, Icarus 173, 66). When all corrections for viewing geometry are made for Pluto, it has normal albedos that approach unity in the regions that show evidence for activity by a lack of craters, notably the region informally named Sputnik Planum. On the other hand, Pluto also has a very dark (normal albedo ~0.10) equatorial belt.The geometric albedo of Eris, another large dwarf planet in the Kuiper Belt, is 0.96 (Sicardy et al., 2011, Nature 478, 493), close to that of Enceladus. Coupled with a high density of 2.5 gm/cc (Sicardy et al., ibid.), implying an even larger amount of radiogenic heating than that for Pluto (with a density near 1.9 gm/cc), we find it highly likely that Eris is also active with some type of solid state convection or cryovolcanism on its surface. Alternate explanations such as complete condensation of methane frost onto its surface in the colder environment at nearly 100 AUs would not lead to the high albedo observed.Another implication of the extreme albedo variations on Pluto is that the temperature varies by at least 20K on its surface, spawning possible aeolian processes and associated features such as wind streaks and dunes, which are currently being sought on New Horizons images. Finally, low albedo regions on Pluto, with normal reflectances less than 0.10, provide possible evidence for dust in the Kuiper Belt that is accreting onto the surface of Pluto. Another - or additional - explanation for this low-albedo dust is native material created in Pluto's hazy atmosphere.New Horizons funding by NASA is gratefully acknowledged.

  2. The First USGS Global Geologic Map of Europa

    NASA Astrophysics Data System (ADS)

    Leonard, E. J.; Patthoff, D. A.; Senske, D.; Collins, G. C.

    2017-12-01

    Understanding the global scale geology of Europa is paramount to gaining insight into the potential habitability of this icy world. To this end, work is ongoing to complete a global geological map at the scale of 1:15 million that incorporates data at all resolutions collected by the Voyager and Galileo missions. The results of this work will aid the Europa Clipper mission, now in formulation, by providing a framework for collaborative and synergistic science investigations. To understand global geologic and tectonic relations, a total of 10 geologic units have been defined. These include: Low Albedo Ridge Material (lam)—low albedo material that irregularly surrounds large (>20 km) ridge structures; Ridged plains (pr)—distributed over all latitudes and characterized by subparallel to cross-cutting ridges and troughs visible at high resolution (<100 m/px); Band material (b)—linear to curvilinear zones with a distinct, abrupt albedo change from the surrounding region; Crater material (c), Continuous Crater Ejecta (ce) and Discontinuous Crater Ejecta (dce)—features associated with impact craters including the site of the impact, crater material, and the fall-out debris respectively; Low Albedo Chaos (chl), Mottled Albedo Chaos (chm) and High Albedo Chaos (chh)—disrupted terrain with a relatively uniform low albedo, patchy/variegated albedo, and uniform high albedo appearance respectively; Knobby Chaos (chk) - disrupted terrain with rough and blocky texture occurring in the high latitudes. In addition to the geologic units, our mapping also includes structural features—Ridges, Cycloids, Undifferentiated Linea, Crater Rims, Depression Margins, Dome Margins and Troughs. We also introduce a point feature (at the global scale), Microchaos, to denote small (<10 km) patches of discontinuous chaos material. The completed map will constrain the distribution of different Europa terrains and provide a general stratigraphic framework to assess the geologic history of Europa from the regional to the global scale. Here, we present the map submitted to the USGS for review.

  3. Aerial albedos of natural vegetation in South-eastern Australia

    NASA Technical Reports Server (NTRS)

    Howard, J. A.

    1977-01-01

    Black-and-white low-level 70mm photography was used to record the track of the aircraft, which was then plotted on conventional 1:80,000 23 cm photogrammetric photographs and referenced against simultaneous measurements of the beam albedos of vegetation. Using stereoscopic pairs of the 70mm photographs, the vegetation was classified into sub-formations. Marked differences in the 'sub-formation' albedos were observed. A two-way table using stand height and crown cover of the sub-formations clearly showed a very distinctive trend of albedos. This finding may be important in other vegetal studies.

  4. NLCD - MODIS albedo data

    EPA Pesticide Factsheets

    The NLCD-MODIS land cover-albedo database integrates high-quality MODIS albedo observations with areas of homogeneous land cover from NLCD. The spatial resolution (pixel size) of the database is 480m-x-480m aligned to the standardized UGSG Albers Equal-Area projection. The spatial extent of the database is the continental United States. This dataset is associated with the following publication:Wickham , J., C.A. Barnes, and T. Wade. Combining NLCD and MODIS to Create a Land Cover-Albedo Dataset for the Continental United States. REMOTE SENSING OF ENVIRONMENT. Elsevier Science Ltd, New York, NY, USA, 170(0): 143-153, (2015).

  5. The effect of aerosols on the earth-atmosphere albedo

    NASA Technical Reports Server (NTRS)

    Herman, B. M.; Browning, S. R.

    1975-01-01

    The paper presents calculations of the change in reflected flux by the earth-atmosphere system in response to increases in the atmospheric aerosol loading for a range of complex indices of refraction, solar elevation angle and ground albedo. Results show that, for small values of ground albedo, the reflected solar flux may either increase or decrease with increasing aerosol loadings, depending upon the complex part of the index of refraction of the aerosols. For high ground albedos, an increase in aerosol levels always results in a decrease of reflected flux (i.e., a warming of the earth-atmosphere system).

  6. The nature of albedo features on Mercury, with maps for the telescopic observer. Part I: Mercury, the enigmatic planet

    NASA Astrophysics Data System (ADS)

    Graham, D. L.

    1995-02-01

    Bright and dark markings have been regularly recorded by visual observers of Mercury since the nineteenth century. Following the Mariner 10 mission, topographic maps of the hemisphere imaged by the spacecraft were produced. Part One of this paper reviews the classical telescopic observations of albedo markings on Mercury and the definitive albedo map is reproduced to assist visual observers of the planet. In Part Two, an investigation into the relationship between albedo and physiography is conducted and the significance of the historical observations is discussed.

  7. Operational Characteristics of an Accelerator Driven Fissile Solution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimpland, Robert Herbert

    Operational characteristics represent the set of responses that a nuclear system exhibits during normal operation. Operators rely on this behavior to assess the status of the system and to predict the consequences of off-normal events. These characteristics largely refer to the relationship between power and system operating conditions. The static and dynamic behavior of a chain-reacting system, operating at sufficient power, is primarily governed by reactivity effects. The science of reactor physics has identified and evaluated a number of such effects, including Doppler broadening and shifts in the thermal neutron spectrum. Often these reactivity effects are quantified in the formmore » of feedback coefficients that serve as coupling coefficients relating the neutron population and the physical mechanisms that drive reactivity effects, such as fissile material temperature and density changes. The operational characteristics of such nuclear systems usually manifest themselves when perturbations between system power (neutron population) and system operating conditions arise. Successful operation of such systems requires the establishment of steady equilibrium conditions. However, prior to obtaining the desired equilibrium (steady-state) conditions, an approach from zero-power (startup) must occur. This operational regime may possess certain limiting system conditions that must be maintained to achieve effective startup. Once steady-state is achieved, a key characteristic of this operational regime is the level of stability that the system possesses. Finally, a third operational regime, shutdown, may also possess limiting conditions of operation that must be maintained. This report documents the operational characteristics of a “generic” Accelerator Driven Fissile Solution (ADFS) system during the various operational regimes of startup, steady-state operation, and shutdown. Typical time-dependent behavior for each operational regime will be illustrated, and key system parameters, such as response times, will be quantified. A generalized linear systems analysis of steady-state operations will be performed to evaluate the level of stability of ADFS systems. This information should provide a basic understanding of typical ADFS system operational behavior, and facilitate the development of monitoring procedures and operator aids.« less

  8. Dynamic Response Testing in an Electrically Heated Reactor Test Facility

    NASA Astrophysics Data System (ADS)

    Bragg-Sitton, Shannon M.; Morton, T. J.

    2006-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe (HP) cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system. Reactivity feedback calculations were then based on a bulk reactivity feedback coefficient and measured average core temperature. This paper presents preliminary results from similar dynamic testing of a direct drive gas cooled reactor system (DDG), demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. Although the HP and DDG designs both utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility. Planned system upgrades to allow implementation of higher fidelity dynamic testing are also discussed. Proposed DDG testing will utilize a higher fidelity point kinetics model to control core power transients, and reactivity feedback will be based on localized feedback coefficients and several independent temperature measurements taken within the core block. This paper presents preliminary test results and discusses the methodology that will be implemented in follow-on DDG testing and the additional instrumentation required to implement high fidelity dynamic testing.

  9. How Does the Shape of the Stellar Spectrum Affect the Raman Scattering Features in the Albedo of Exoplanets?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oklopčić, Antonija; Hirata, Christopher M.; Heng, Kevin, E-mail: oklopcic@astro.caltech.edu

    The diagnostic potential of the spectral signatures of Raman scattering, imprinted in planetary albedo spectra at short optical wavelengths, has been demonstrated in research on planets in the solar system, and has recently been proposed as a probe of exoplanet atmospheres, complementary to albedo studies at longer wavelengths. Spectral features caused by Raman scattering offer insight into the properties of planetary atmospheres, such as the atmospheric depth, composition, and temperature, as well as the possibility of detecting and spectroscopically identifying spectrally inactive species, such as H{sub 2} and N{sub 2}, in the visible wavelength range. Raman albedo features, however, dependmore » on both the properties of the atmosphere and the shape of the incident stellar spectrum. Identical planetary atmospheres can produce very different albedo spectra depending on the spectral properties of the host star. Here we present a set of geometric albedo spectra calculated for atmospheres with H{sub 2}/He, N{sub 2}, and CO{sub 2} composition, irradiated by different stellar types ranging from late A to late K stars. Prominent albedo features caused by Raman scattering appear at different wavelengths for different types of host stars. We investigate how absorption due to the alkali elements sodium and potassium may affect the intensity of Raman features, and we discuss the preferred strategies for detecting Raman features in future observations.« less

  10. Widespread albedo decreasing and induced melting of Himalayan snow and ice in the early 21st century.

    PubMed

    Ming, Jing; Wang, Yaqiang; Du, Zhencai; Zhang, Tong; Guo, Wanqin; Xiao, Cunde; Xu, Xiaobin; Ding, Minghu; Zhang, Dongqi; Yang, Wen

    2015-01-01

    The widely distributed glaciers in the greater Himalayan region have generally experienced rapid shrinkage since the 1850s. As invaluable sources of water and because of their scarcity, these glaciers are extremely important. Beginning in the twenty-first century, new methods have been applied to measure the mass budget of these glaciers. Investigations have shown that the albedo is an important parameter that affects the melting of Himalayan glaciers. The surface albedo based on the Moderate Resolution Imaging Spectroradiometer (MODIS) data over the Hindu Kush, Karakoram and Himalaya (HKH) glaciers is surveyed in this study for the period 2000-2011. The general albedo trend shows that the glaciers have been darkening since 2000. The most rapid decrease in the surface albedo has occurred in the glacial area above 6000 m, which implies that melting will likely extend to snow accumulation areas. The mass-loss equivalent (MLE) of the HKH glacial area caused by surface shortwave radiation absorption is estimated to be 10.4 Gt yr-1, which may contribute to 1.2% of the global sea level rise on annual average (2003-2009). This work probably presents a first scene depicting the albedo variations over the whole HKH glacial area during the period 2000-2011. Most rapidly decreasing in albedo has been detected in the highest area, which deserves to be especially concerned.

  11. Antarctic surface temperature and sea ice biases in coupled climate models linked with cloud and land surface properties

    NASA Astrophysics Data System (ADS)

    Skiles, M.; Painter, T. H.; Marks, D. G.; Hedrick, A. R.

    2014-12-01

    Since 2013 the Airborne Snow Observatory (ASO) has been measuring spatial and temporal distribution of both snow water equivalent and snow albedo, the two most critical properties for understanding snowmelt runoff and timing, across key basins in the Western US. It is generally understood that net solar radiation (as controlled by variations in snow albedo and irradiance) provides the energy available for melt in almost all snow-covered environments. Until now, sparse measurements have restricted the ability to utilize measured net solar radiation in energy balance models, and current process simulations and model prediction of albedo evolution rely on oversimplifications of the processes. Data from ASO offers the unprecedented opportunity to utilize weekly measurements of spatially extensive spectral snow albedo to constrain and update snow albedo in a distributed snowmelt model for the first time. Here, we first investigate the sensitivity of the snow energy balance model SNOBAL to prescribed changes in snow albedo at two instrumented alpine catchments: at the point scale across 10 years at Senator Beck Basin Study Area in the San Juan Mountains, southwestern Colorado, and at the distributed scale across 25 years at Reynolds Creek Experimental Watershed, Idaho. We then compare distributed energy balance and snowmelt results across the ASO measurement record in the Tuolumne Basin in the Sierra Nevada Mountains, California, for model runs with and without integrated snow albedo from ASO.

  12. Effects of Surface Albedo on Smoke Detection Through Geostationary Satellite Imagery in the Hazard Mapping System (HMS)

    NASA Astrophysics Data System (ADS)

    Salemi, A.; Ruminski, M. G.

    2012-12-01

    The Satellite Analysis Branch (SAB) of NOAA/NESDIS uses geostationary and polar orbiting satellite imagery to identify fires and smoke throughout the continental United States. The fires and smoke are analyzed daily on the Hazard Mapping System (HMS) and made available via the internet in various formats. Analysis of smoke plumes generated from wildfires, agricultural and prescribe burns is performed with single channel visible imagery primarily from NOAA's Geostationary Operational Environmental Satellite (GOES) animations. Identification of smoke in visible imagery is complicated by the presence of clouds, the viewing angle produced by the sun, smoke, satellite geometry, and the surface albedo of the ground below the smoke among other factors. This study investigates the role of surface albedo in smoke detection. LIght Detection And Ranging (LIDAR) instruments are capable of detecting smoke and other aerosols. Through the use of ground and space based LIDAR systems in areas of varying albedo a relationship between the subjective analyst drawn smoke plumes versus those detected by LIDAR is established. The ability to detect smoke over regions of higher albedo (brighter surface, such as grassland, scrub and desert) is diminished compared to regions of lower albedo (darker surface, such as forest and water). Users of the HMS smoke product need to be aware of this limitation in smoke detection in areas of higher albedo.

  13. Submersion criticality safety of tungsten-rhenium urania cermet fuel for space propulsion and power applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.E. Craft; R. C. O'Brien; S. D. Howe

    Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten–uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact,more » fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores.« less

  14. Deriving a global land surface albedo product from Landsat MSS, TM, ETM+, and OLI data based on the unified direct estimation approach

    USDA-ARS?s Scientific Manuscript database

    Surface albedo is widely used in climate and environment applications as an important parameter for controlling the surface energy budget. There is an increasing need for fine resolution (< 100 m) albedo data for use in small scale applications and for validating coarse-resolution datasets; however,...

  15. Anthropogenic desertification by high-albedo pollution Observations and modeling

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Rosenberg, N. W.; Rosenberg, E.

    1974-01-01

    ERTS-1 MSS albedo data of Western Negev, Sinai and the Gaza strip are presented. A sharp contrast in albedo exists across the Negev-Sinai and Negev-Gaza strip borders. Anthropogenic desertification has occurred on the Arab side due to overgrazing and Bedouin agriculture, whereas natural vegetation grows much more abundantly on the Israeli side.

  16. Accident analysis of heavy water cooled thorium breeder reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yulianti, Yanti; Su’ud, Zaki; Takaki, Naoyuki

    2015-04-16

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k,more » and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The power reactor has a peak value before reactor has new balance condition. The analysis showed that temperatures of fuel and claddings during accident are still below limitations which are in secure condition.« less

  17. Accident analysis of heavy water cooled thorium breeder reactor

    NASA Astrophysics Data System (ADS)

    Yulianti, Yanti; Su'ud, Zaki; Takaki, Naoyuki

    2015-04-01

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The power reactor has a peak value before reactor has new balance condition. The analysis showed that temperatures of fuel and claddings during accident are still below limitations which are in secure condition.

  18. Extended Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J; Bowman, Stephen M; Gauld, Ian C

    2015-01-01

    [Full Text] Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (k eff) calculations and depleted fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date, investigating some aspects of extended BUC, andmore » it also describes the plan to complete the evaluations. The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper. Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC, including investigation of the axial void profile effect and the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of an operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. While a single cycle does not provide complete data, the data obtained are sufficient to use to determine the primary effects and identify conservative modeling approaches. Using data resulting from a single cycle, the axial void profile is studied by first determining the temporal fidelity necessary in depletion modeling, and then using multiple void profiles to examine the effect of the void profile on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied is control blade exposure. Control blades are inserted in various locations and at varying degrees during BWR operation based on the reload design. The presence of control blades during depletion hardens the neutron spectrum locally due to both moderator displacement and introduction of a thermal neutron absorber. The reactivity impact of control blade presence is investigated herein, as well as the effect of multiple (continuous and intermittent) exposure periods. The coupled effects of control blade presence on power density, void profile, or burnup profile have not been considered to date but will be addressed in future work.« less

  19. Coolant Density and Control Blade History Effects in Extended BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J; Marshall, William BJ J; Bowman, Stephen M

    2015-01-01

    Oak Ridge National Laboratory and the US Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (k eff) calculations and predicted spent fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date investigating some aspects of extended BUC. (The technicalmore » basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper.) Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC: (1) the effect of axial void profile and (2) the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of a modern operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. Although a single cycle does not provide complete data, the data obtained are sufficient to determine the primary effects and to identify conservative modeling approaches. These data were used in a study of the effect of axial void profile. The first stage of the study was determination of the necessary moderator density temporal fidelity in depletion modeling. After the required temporal fidelity was established, multiple void profiles were used to examine the effect on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied was control blade history. Control blades are inserted in various locations and at varying degrees during BWR operation based on the core loading pattern. When present during depletion, control blades harden the neutron spectrum locally because they displace the moderator and absorb thermal neutrons. The investigation of the effect of control blades on post operational cask reactivity is documented herein, as is the effect of multiple (continuous and intermittent) exposure periods with control blades inserted. The coupled effects of control blade presence on power density, void profile, or burnup profile will be addressed in future work.« less

  20. Relating black carbon content to reduction of snow albedo

    NASA Astrophysics Data System (ADS)

    Brandt, R. E.; Warren, S. G.; Clarke, A. D.

    2011-12-01

    In remote snow of the Northern Hemisphere, the levels of soot pollution are in the parts-per-billion (ppb) range, where the effect on albedo is at the level of a few percent. A reduction of albedo by 1-2% is significant for climate but is difficult to detect experimentally, because snow albedo depends on several other variables. In our work to quantify the climatic effect of black carbon (BC) in snow, we therefore do not directly measure the albedo reduction. Instead, we use a two-step procedure: (1) We collect snow samples, melt and filter them, and analyze the filters spectrophotometrically for BC concentration. (2) We use the BC amount from the filter measurement, together with snow grain size, in a radiative transfer model to compute the albedo reduction. Our radiative transfer model uses the discrete ordinates algorithm DISORT 2.0. We have chosen a representative BC size distribution and optical constants, and have incorporated those of mineral dust as well. While a given mass of BC causes over an order of magnitude more snow albedo reduction compared to dust, a snowpack containing dust mutes the albedo-reducing effect of BC. Because the computed reduction of snow albedo is model-based, it requires experimental verification. We doubt that direct measurement of albedo-reduction will be feasible in nature, because of the vertical variation of both snow grain size and soot content, and because the natural soot content is small. We conclude that what is needed is an artificial snowpack, with uniform grain size and large uniform soot content (ppm not ppb), to produce a large signal on albedo. We have chosen to pursue this experiment outdoors rather than in the laboratory, for the following reasons: (1) The snowpack in the field of view is uniformly illuminated if the source of radiation is the Sun. (2) Visible radiation penetrates into the snow, so photons emerge horizontally distant from where they entered. In the limited width of a laboratory snowpack, radiation may be absorbed by the walls of the container. (3) In a laboratory experiment only a narrow field of view can be measured, rather than a hemispheric field of view, so a laboratory experiment measures the bidirectional reflectance for particular angles rather than albedo. The disadvantage of an outdoor experiment is that one must wait for appropriate weather: low temperature (-20 to -40 C), calm winds, diffuse incident radiation, and no precipitation during the experiment. Using a small snowmaking machine, a snowpack of area 75 square meters and depth 15 cm is made in a period of 4 hours, deposited over a natural snowpack. A soot suspension is maintained in a sonicated bath, which can be entrained into the water stream. Two snowpacks are made side-by-side, with and without added soot. For a soot content of 1 ppm, 3 g soot were dispersed into 3 tons of snow. The spectral albedos of the two snowpacks are in agreement for near-infrared wavelengths beyond 1 micrometer, but diverge at shorter wavelengths, as expected. The soot particles in the artificial snowpack are probably located mostly inside ice grains, but the measured albedo reduction implies a mass-absorption cross-section of about 6 square meters per gram, close to that expected for an external mixture.

  1. The Relationship Between Arctic Sea Ice Albedo and the Geophysical Parameters of the Ice Cover

    NASA Astrophysics Data System (ADS)

    Riihelä, A.

    2015-12-01

    The Arctic sea ice cover is thinning and retreating. Remote sensing observations have also shown that the mean albedo of the remaining ice cover is decreasing on decadal time scales, albeit with significant annual variability (Riihelä et al., 2013, Pistone et al., 2014). Attribution of the albedo decrease between its different drivers, such as decreasing ice concentration and enhanced surface melt of the ice, remains an important research question for the forecasting of future conditions of the ice cover. A necessary step towards this goal is understanding the relationships between Arctic sea ice albedo and the geophysical parameters of the ice cover. Particularly the question of the relationship between sea ice albedo and ice age is both interesting and not widely studied. The recent changes in the Arctic sea ice zone have led to a substantial decrease of its multi-year sea ice, as old ice melts and is replaced by first-year ice during the next freezing season. It is generally known that younger sea ice tends to have a lower albedo than older ice because of several reasons, such as wetter snow cover and enhanced melt ponding. However, the quantitative correlation between sea ice age and sea ice albedo has not been extensively studied to date, excepting in-situ measurement based studies which are, by necessity, focused on a limited area of the Arctic Ocean (Perovich and Polashenski, 2012).In this study, I analyze the dependencies of Arctic sea ice albedo relative to the geophysical parameters of the ice field. I use remote sensing datasets such as the CM SAF CLARA-A1 (Karlsson et al., 2013) and the NASA MeaSUREs (Anderson et al., 2014) as data sources for the analysis. The studied period is 1982-2009. The datasets are spatiotemporally collocated and analysed. The changes in sea ice albedo as a function of sea ice age are presented for the whole Arctic Ocean and for potentially interesting marginal sea cases. This allows us to see if the the albedo of the older sea ice in the central parts of the Arctic Ocean is resistant to the decreasing overall trend.A similar analysis is also extended to ice concentration, melt season length and other appropriate parameters describing the surface conditions. The results of the analyses are summed up to provide an assessment of the relative impact strengths of the ice field parameters on the albedo.

  2. The Low Albedo of Comets

    NASA Astrophysics Data System (ADS)

    Buratti, B. J.; Choukroun, M.; Bauer, J. M.

    2016-12-01

    Comets are among the handful of objects with very low albedos, in the 0.02-0.06 range. Dark material is common in the outer Solar System, but analysis of the spectra and albedo of this material by spacecraft including Cassini and New Horizons shows that it is diverse, covering a range of compositions. Some is neutral-colored in the visible, such as that found on Phoebe, while some is very red, such as that on the surfaces of D-type asteroids or the low-albedo side of Iapetus. The different types of low-albedo material may reflect both compositional diversity, including contamination by volatiles or darkening agents, and divergent alteration histories. The key question is whether a particular sub-type of low albedo material is pristine - an unprocessed accumulation of interstellar dust - or an end product of polymerization and photolysis into ever more complex materials. Comets have albedos similar to the leading hemisphere of Iapetus, the surface of Titan, and the lowest-albedo C-type and D-type asteroids. Observations by the WISE and NEOWISE cameras show that comets have consistently low albedos (1). The first quantitative measurement of low-albedo material in the Kuiper Belt, from which comets such as Jupiter Family Comets including 67P/Churyumov-Gerasimenko come, shows that even this material is not as dark as that found on comets (2). Results from both Stardust (3) and more recently Rosetta (4, 5) show that cometary surfaces contain prebiotic molecules, including the amino acid glycine. Other very low albedo objects have also been connected to complex organic molecules: on Iapetus, PAHs have been detected (6), and Titan's surface is believed to be covered with hydrocarbons produced in its haze layer (7). The presence of organic molecules, including complex ones, could be the unique characteristic of the very darkest material. The delivery of pre-biotic material from comets to the young Earth could represent a key link in the origins of terrestrial life. (1) Bauer, J. et al. 2015. Ap. J. 814. (2) Buratti, B. J. et al. 2016. Icarus, in press. (3) Sandford, S. A. et al. 2006. Science 14, 1720. (4) Altwegg, K. et al. 2016. Science Advances 2, e1600285. (5) Wright, I. P et al. 2015. Science 349, 6247. (6) Cruikshank, D. et al. 2014. Icarus 233, 306. (7) Clark, R. N. et al. 2010. J. G. R. 115, CiteID E10005. NASA Funding Acknowledged.

  3. Standards for the validation of remotely sensed albedo products

    NASA Astrophysics Data System (ADS)

    Adams, Jennifer

    2015-04-01

    Land surface albedo is important component of the Earth's energy balance, defined as the fraction of shortwave radiation absorbed by a surface, and is one many Essential Climate Variables (ECVS) that can be retrieved from space through remote sensing. To quantify the accuracy of these products, they must be validated with respect to in-situ measurements of albedo using an albedometer. Whilst accepted standards exist for the calibration of albedometers, standards for the use of in-situ measurement schemes, and their use in validation procedures have yet to be developed. It is essential that we can assess the quality of remotely sensed albedo data, and to identify traceable sources of uncertainty during process of providing these data. As a result of the current lack of accepted standards for in-situ albedo retrieval and validation procedures, we are not yet able to identify and quantify traceable sources of uncertainty. Establishing standard protocols for in-situ retrievals for the validation of global albedo products would allow inter-product use and comparison, in addition to product standardization. Accordingly, this study aims to assess the quality of in-situ albedo retrieval schemes and identify sources of uncertainty, specifically in vegetation environments. A 3D Monte Carlo Ray Tracing Model will be used to simulate albedometer instruments in complex 3D vegetation canopies. To determine sources of uncertainty, factors that influence albedo measurement uncertainty were identified and will subsequently be examined: 1. Time of day (Solar Zenith Angle) 2. Ecosytem type 3. Placement of albedometer within the ecosystem 4. Height of albedometer above the canopy 5. Clustering within the ecosystem A variety of 3D vegetation canopies have been generated to cover the main ecosystems found globally, different seasons, and different plant distributions. Canopies generated include birchstand and pinestand forests for summer and winter, savanna, shrubland, cropland and citrus orchard. All canopies were simulated for a 100x100m area to best represent in-situ measurement conditions. Preliminary tests have been conducted, firstly, identifying the spectral range required to estimate broadband albedo (BBA) and secondly, determining the hyper-spectral intervals required to calculate BBA from spectral albedo. Final results are expected to be able to identify for the factors aforementioned, given a specified confidence level and within 3% accuracy, when does uncertainty of in-situ measurement fall within these critera, and outside these criteria. As the uncertainty of in-situ measurements should be made on an individual basis accounting for relevant factors, this study aims to document for a specific scenario traceable uncertainty sources in in-situ albedo retrieval.

  4. Advancing Glaciological Applications of Remote Sensing with EO-1: (1) Mapping Snow Grain Size and Albedo on the Greenland Ice Sheet Using an Imaging Spectrometer, and (2) ALI Evaluation for Subtle Surface Topographic Mapping via Shape-from Shading

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Hyperion sensor, onboard NASA's Earth Observing-1 (EO-1) satellite,is an imaging spectroradiometer with 220 spectral bands over the spectral range from 0.4 - 2.5 microns. Over the course of summer 2001, the instrument acquired numerous images over the Greenland ice sheet. Our main motivation is to develop an accurate and robust approach for measuring the broadband albedo of snow from satellites. Satellite-derived estimates of broadband have typically been plagued with three problems: errors resulting from inaccurate atmospheric correction, particularly in the visible wavelengths from the conversion of reflectance to albedo (accounting for snow BRDE); and errors resulting from regression-based approaches used to convert narrowband albedo to broadband albedo. A typerspectral method has been developed that substantially reduces these three main sources of error and produces highly accurate estimates of snow albedo. This technique uses hyperspectral data from 0.98 - 1.06 microns, spanning a spectral absorption feature centered at 1.03 microns. A key aspect of this work is that this spectral range is within an atmospheric transmission window and reflectances are largely unaffected by atmospheric aerosols, water vapor, or ozone. In this investigation, we make broadband albedo measurements at four sites on the Greenland ice sheet: Summit, a high altitude station in central Greenland; the ETH/CU camp, a camp on the equilibrium line in western Greenland; Crawford Point, a site located between Summit and the ETH/CU camp; and Tunu, a site located in northeastern Greenland at 2000 m. altitude. Each of these sites has an automated weather station (AWS) that continually measures broadband albedo thereby providing validation data.

  5. Regional albedo of Arctic first-year drift ice in advanced stages of melt from the combination of in situ measurements and aerial imagery

    NASA Astrophysics Data System (ADS)

    Divine, D. V.; Granskog, M. A.; Hudson, S. R.; Pedersen, C. A.; Karlsen, T. I.; Divina, S. A.; Gerland, S.

    2014-07-01

    The paper presents a case study of the regional (≈ 150 km) broadband albedo of first year Arctic sea ice in advanced stages of melt, estimated from a combination of in situ albedo measurements and aerial imagery. The data were collected during the eight day ICE12 drift experiment carried out by the Norwegian Polar Institute in the Arctic north of Svalbard at 82.3° N from 26 July to 3 August 2012. The study uses in situ albedo measurements representative of the four main surface types: bare ice, dark melt ponds, bright melt ponds and open water. Images acquired by a helicopter borne camera system during ice survey flights covered about 28 km2. A subset of > 8000 images from the area of homogeneous melt with open water fraction of ≈ 0.11 and melt pond coverage of ≈ 0.25 used in the upscaling yielded a regional albedo estimate of 0.40 (0.38; 0.42). The 95% confidence interval on the estimate was derived using the moving block bootstrap approach applied to sequences of classified sea ice images and albedo of the four surface types treated as random variables. Uncertainty in the mean estimates of surface type albedo from in situ measurements contributed some 95% of the variance of the estimated regional albedo, with the remaining variance resulting from the spatial inhomogeneity of sea ice cover. The results of the study are of relevance for the modeling of sea ice processes in climate simulations. It particularly concerns the period of summer melt, when the optical properties of sea ice undergo substantial changes, which existing sea ice models have significant diffuculty accurately reproducing.

  6. Estimating ice albedo from fine debris cover quantified by a semi-automatic method: the case study of Forni Glacier, Italian Alps

    NASA Astrophysics Data System (ADS)

    Azzoni, Roberto Sergio; Senese, Antonella; Zerboni, Andrea; Maugeri, Maurizio; Smiraglia, Claudio; Diolaiuti, Guglielmina Adele

    2016-03-01

    In spite of the quite abundant literature focusing on fine debris deposition over glacier accumulation areas, less attention has been paid to the glacier melting surface. Accordingly, we proposed a novel method based on semi-automatic image analysis to estimate ice albedo from fine debris coverage (d). Our procedure was tested on the surface of a wide Alpine valley glacier (the Forni Glacier, Italy), in summer 2011, 2012 and 2013, acquiring parallel data sets of in situ measurements of ice albedo and high-resolution surface images. Analysis of 51 images yielded d values ranging from 0.01 to 0.63 and albedo was found to vary from 0.06 to 0.32. The estimated d values are in a linear relation with the natural logarithm of measured ice albedo (R = -0.84). The robustness of our approach in evaluating d was analyzed through five sensitivity tests, and we found that it is largely replicable. On the Forni Glacier, we also quantified a mean debris coverage rate (Cr) equal to 6 g m-2 per day during the ablation season of 2013, thus supporting previous studies that describe ongoing darkening phenomena at Alpine debris-free glaciers surface. In addition to debris coverage, we also considered the impact of water (both from melt and rainfall) as a factor that tunes albedo: meltwater occurs during the central hours of the day, decreasing the albedo due to its lower reflectivity; instead, rainfall causes a subsequent mean daily albedo increase slightly higher than 20 %, although it is short-lasting (from 1 to 4 days).

  7. Global warming and climate forcing by recent albedo changes on Mars

    USGS Publications Warehouse

    Fenton, L.K.; Geissler, P.E.; Haberle, R.M.

    2007-01-01

    For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by ???0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies. ??2007 Nature Publishing Group.

  8. Global warming and climate forcing by recent albedo changes on Mars.

    PubMed

    Fenton, Lori K; Geissler, Paul E; Haberle, Robert M

    2007-04-05

    For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by approximately 0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies.

  9. Spatiotemporal variation of surface shortwave forcing from fire-induced albedo change in interior Alaska

    USGS Publications Warehouse

    Huang, Shengli; Dahal, Devendra; Liu, Heping; Jin, Suming; Young, Claudia J.; Liu, Shuang; Liu, Shu-Guang

    2015-01-01

    The albedo change caused by both fires and subsequent succession is spatially heterogeneous, leading to the need to assess the spatiotemporal variation of surface shortwave forcing (SSF) as a component to quantify the climate impacts of high-latitude fires. We used an image reconstruction approach to compare postfire albedo with the albedo assuming fires had not occurred. Combining the fire-caused albedo change from the 2001-2010 fires in interior Alaska and the monthly surface incoming solar radiation, we examined the spatiotemporal variation of SSF in the early successional stage of around 10 years. Our results showed that while postfire albedo generally increased in fall, winter, and spring, some burned areas could show an albedo decrease during these seasons. In summer, the albedo increased for several years and then declined again. The spring SSF distribution did not show a latitudinal decrease from south to north as previously reported. The results also indicated that although the SSF is usually largely negative in the early successional years, it may not be significant during the first postfire year. The annual 2005-2010 SSF for the 2004 fire scars was -1.30, -4.40, -3.31, -4.00, -3.42, and -2.47 Wm-2. The integrated annual SSF map showed significant spatial variation with a mean of -3.15 Wm-2 and a standard deviation of 3.26 Wm-2, 16% of burned areas having positive SSF. Our results suggest that boreal deciduous fires would be less positive for climate change than boreal evergreen fires. Future research is needed to comprehensively investigate the spatiotemporal radiative and non-radiative forcings to determine the effect of boreal fires on climate.

  10. The Distribution of Geometric Albedos of Jupiter-Family Comets From SEPPCoN and Visible-Wavelength Photometry

    NASA Astrophysics Data System (ADS)

    Fernandez, Yanga R.; Weaver, Harold A.; Lisse, Casey M.; Meech, Karen Jean; Lowry, Stephen C.; Bauer, James M.; Fitzsimmons, Alan; Snodgrass, Colin

    2016-01-01

    Cometary nuclei are some of the least reflective natural objects in the Solar System, although the number of comets for which the reflectivity has heretofore actually been measured is small due to the difficulty of the requisite measurements. When no other information is present, it is common to assume a geometric albedo of 4%, and this is consistent with the limited number of known albedos. However the true average albedo, median albedo, and spread of the distribution are not well constrained. Knowing the ensemble properties of cometary albedos would aid in understanding the surface scattering properties as well as the interior thermal evolution and surface evolution of the population. We present here a preliminary estimate of the distribution of geometric albedos among the Jupiter-family comet (JFC) population. We make use of and build on the results of the Survey of Ensemble Physical Properties of Cometary Nuclei (SEPPCoN), in which we obtained new and independent estimates of the radii of 89 JFCs [1,2]. We will present our preliminary albedo estimates for ~50 JFC nuclei (by far the most ever obtained), and we will discuss the implications of the ensemble of the results. These JFCs were all observed in R-band, and were all observed at relatively large heliocentric distances (usually >4 AU from the Sun) where the comets appeared inactive, thus minimizing coma contamination. We acknowledge the support of NASA grant NNX09AB44G, of NSF grant AST-0808004, and of the Astrophysical Research Consortium/Apache Point Observatory for this work. References: [1] Y. R. Fernandez et al., 2013, Icarus 226, 1138. [2] M. S. Kelley et al., 2013, Icarus 225, 475.

  11. Combined Neutron and X-Ray Radiographic/Tomographic Analysis of Dissolution Limestones under Acidic Conditions

    NASA Astrophysics Data System (ADS)

    Anovitz, L. M.; Cole, D. R.; Hussey, D. S.; LaManna, J.; Swift, A.; Jacobson, D. L.

    2016-12-01

    Carbon dioxide capture and sequestration in deep geological formations is an important option for reducing greenhouse gas emissions. While the importance of porosity and pore-evolution has long been recognized, the evolution of porosity and permeability in reactive carbonates exposed to CO2-loaded brines is not well constrained. A typical pH range for CO2-acidified brine is 3 to 4.5 depending on alkalinity. This represents a substantial perturbation of typical brines that range from pH 6 to 8. The key questions include how accessible are the pores to fluid transport and how does the pore network evolve as the matrix reacts with the acidic solution? Limestones and dolostones contain nano- to macroscale porosity comprised of cracks, grain boundaries, fluid inclusions, single pores, vugs and networks of pores of random shapes and orientations. Accessible, interconnected pores may act as pore throats, constraining overall flow and are the most likely locations for extensive rock alteration. Neutron imaging is well suited to interrogation of fluid flow in porous media. Because of the large scattering cross section of hydrogen it can be used to directly image water or hydrocarbons without an added contrast medium that might modify interfacial tension and fluid/fluid interactions. In order to understand the reaction of acidified fluids we used simultaneous neutron and X-ray tomography to study the uptake and reaction of water and an acidic fluid (pH 1 HCl) with two types of Indiana limestone, one with a permeability of 2-4 mD, and the other 70 mD. One set of experiments explored capillary uptake in a dry core. These documented rapid uptake and CO2 bubble formation at the inlet. A second set introduced at a constant forced flow rate of 10 ml/min. Both core types exhibited wormhole formation, but the low perm limestone wormhole consisted of one well-delineated channel with a few side "tributaries," whereas the high perm core exhibited a more diffuse array of channels. Post-flow neutron and X-ray tomography showed that grain boundaries and other initial parts of the porous network play an important role in controlling the dissolution process. Neutron radiography and tomography have the potential to significantly advance our understanding of fluid flow and reactive behavior relevant to a wide variety of subsurface applications.

  12. Development and applications of methodologies for the neutronic design of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR)

    NASA Astrophysics Data System (ADS)

    Fratoni, Massimiliano

    This study investigated the neutronic characteristics of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a novel nuclear reactor concept that combines liquid salt (7LiF-BeF2---flibe) cooling and TRISO coated-particle fuel technology. The use of flibe enables operation at high power density and atmospheric pressure and improves passive decay-heat removal capabilities, but flibe, unlike conventional helium coolant, is not transparent to neutrons. The flibe occupies 40% of the PB-AHTR core volume and absorbs ˜8% of the neutrons, but also acts as an effective neutron moderator. Two novel methodologies were developed for calculating the time dependent and equilibrium core composition: (1) a simplified single pebble model that is relatively fast; (2) a full 3D core model that is accurate and flexible but computationally intensive. A parametric analysis was performed spanning a wide range of fuel kernel diameters and graphite-to-heavy metal atom ratios to determine the attainable burnup and reactivity coefficients. Using 10% enriched uranium ˜130 GWd/tHM burnup was found to be attainable, when the graphite-to-heavy metal atom ratio (C/HM) is in the range of 300 to 400. At this or smaller C/HM ratio all reactivity coefficients examined---coolant temperature, coolant small and full void, fuel temperature, and moderator temperature, were found to be negative. The PB-AHTR performance was compared to that of alternative options for HTRs, including the helium-cooled pebble-bed reactor and prismatic fuel reactors, both gas-cooled and flibe-cooled. The attainable burnup of all designs was found to be similar. The PB-AHTR generates at least 30% more energy per pebble than the He-cooled pebble-bed reactor. Compared to LWRs the PB-AHTR requires 30% less natural uranium and 20% less separative work per unit of electricity generated. For deep burn TRU fuel made from recycled LWR spent fuel, it was found that in a single pass through the core ˜66% of the TRU can be transmuted; this burnup is slightly superior to that attainable in helium-cooled reactors. A preliminary analysis of the modular variant for the PB-AHTR investigated the triple heterogeneity of this design and determined its performance characteristics.

  13. Greenland ice sheet albedo variability and feedback: 2000-2015

    NASA Astrophysics Data System (ADS)

    Box, J. E.; van As, D.; Fausto, R. S.; Mottram, R.; Langen, P. P.; Steffen, K.

    2015-12-01

    Absorbed solar irradiance represents the dominant source of surface melt energy for Greenland ice. Surface melting has increased as part of a positive feedback amplifier due to surface darkening. The 16 most recent summers of observations from the NASA MODIS sensor indicate a darkening exceeding 6% in July when most melting occurs. Without the darkening, the increase in surface melting would be roughly half as large. A minority of the albedo decline signal may be from sensor degradation. So, in this study, MOD10A1 and MCD43 albedo products from MODIS are evaluated for sensor degradation and anisotropic reflectance errors. Errors are minimized through calibration to GC-Net and PROMICE Greenland snow and ice ground control data. The seasonal and spatial variability in Greenland snow and ice albedo over a 16 year period is presented, including quantifying changing absorbed solar irradiance and melt enhancement due to albedo feedback using the DMI HIRHAM5 5 km model.

  14. Temporal and spatial mapping of atmospheric dust opacity and surface albedo on Mars

    NASA Technical Reports Server (NTRS)

    Lee, S. W.; Clancy, R. T.; Gladstone, G. R.; Martin, T. Z.

    1993-01-01

    The Mariner 9 and Viking missions provided abundant evidence that eolian processes are active over much of the surface of Mars. Past studies have demonstrated that variations in regional albedo and wind streak patterns are indicative of sediment transport through a region, while thermal inertia data (derived from the Viking Infrared Thermal Mapper (IRTM) datasets) are indicative of the degree of surface mantling by dust deposits. We are making use of the method developed by T. Z. Martin to determine dust opacity from IRTM thermal observations. We have developed a radiative transfer model that allows corrections for the effects of atmospheric dust loading on observations of surface albedo to be made. This approach to determining 'dust-corrected surface albedo' incorporates the atmospheric dust opacity, the single-scattering albedo and particle phase function of atmospheric dust, the bidirectional reflectance of the surface, and accounts for variable lighting and viewing geometry.

  15. Atmospheric effects on the mapping of Martian thermal inertia and thermally derived albedo

    NASA Technical Reports Server (NTRS)

    Hayashi, Joan N.; Jakosky, Bruce M.; Haberle, Robert M.

    1995-01-01

    We examine the effects of a dusty C02 atmosphere on the thermal inertia and thermally derived albedo of Mars and we present a new map of thermal inertias. This new map was produced using a coupled surface atmosphere (CSA) model, dust opacities from Viking infrared thermal mapper (IRTM) data, and C02 columns based on topography. The CSA model thermal inertias are smaller than the 2% model thermal inertias, with the difference largest at large thermal inertia. Although the difference between the thermal inertias obtained with the two models is moderate for much of the region studied, it is largest in regions of either high dust opacity or of topographic lows, including the Viking Lander 1 site and some geologically interesting regions. The CSA model thermally derived albedos do not accurately predict the IRTM measured albedos and are very similar to the thermally derived albedos obtained with models making the 2% assumption.

  16. Atmospheric effects on the mapping of Martian thermal inertia and thermally derived albedo

    NASA Technical Reports Server (NTRS)

    Hayashi, Joan N.; Jakosky, Bruce M.; Haberle, Robert M.

    1995-01-01

    We examine the effects of a dusty CO2 atmosphere on the thermal inertia and thermally derived albedo of Mars and we present a new map of thermal inertias. This new map was produced using a coupled surface atmosphere (CSA) model, dust opacities from Viking infrared thermal mapper (IRTM) data, and CO2 columns based on topography. The CSA model thermal inertias are smaller than the 2% model thermal inertias, with the difference largest at large thermal inertia. Although the difference between the thermal inertias obtained with the two models is moderate for much of the region studied, it is largest in regions of either high dust opacity or of topographic lows, including the Viking Lander 1 site and some geologically interesting regions. The CSA model thermally derived albedos do not acurately predict the IRTM measured albedos and are very similar to the thermally derived albedos obtained with models making the 2% assumption.

  17. The surface abundance and stratigraphy of lunar rocks from data about their albedo

    NASA Technical Reports Server (NTRS)

    Shevchenko, V. V.

    1977-01-01

    The data pf ground-based studies and surveys of the lunar surface by the Zond and Apollo spacecraft have been used to construct an albedo map covering 80 percent of the lunar sphere. Statistical analysis of the distribution of areas with various albedos shows several types of lunar surface. Comparison of albedo data for maria and continental areas with the results of geochemical orbital surveys allows the identification of the types of surface with known types of lunar rock. The aluminum/silcon and magnesium/silicon ratios as measured by the geochemical experiments on the Apollo 15 and Apollo 16 spacecraft were used as an indication of the chemical composition of the rock. The relationship of the relative aluminum content to the age of crystalline rocks allows a direct dependence to be constructed between the mean albedo of areas and the age of the rocks of which they are composed.

  18. Conceptual design of quadriso particles with europium burnable absorber in HTRS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamo, A.; Nuclear Engineering Division

    2010-05-18

    In High Temperature Reactors, burnable absorbers are utilized to manage the excess reactivity at the early stage of the fuel cycle. In this study QUADRISO particles are proposed to manage the initial xcess reactivity of High Temperature Reactors. The QUADRISO concept synergistically couples the decrease of the burnable poison with the decrease of the fissile materials at the fuel particle level. This echanism is set up by introducing a burnable poison layer around the fuel kernel in ordinary TRISO particles or by mixing the burnable poison with any of the TRISO coated layers. At the beginning of life, the nitialmore » excess reactivity is small because some neutrons are absorbed in the burnable poison and they are prevented from entering the fuel kernel. At the end of life, when the absorber is almost depleted, ore eutrons stream into the fuel kernel of QUADRISO particles causing fission reactions. The mechanism has been applied to a prismatic High Temperature Reactor with europium or erbium burnable absorbers, showing a significant reduction in the initial excess reactivity of the core.« less

  19. ALBEDO MODELS FOR SNOW AND ICE ON A FRESHWATER LAKE. (R824801)

    EPA Science Inventory

    Abstract

    Snow and ice albedo measurements were taken over a freshwater lake in Minnesota for three months during the winter of 1996¯1997 for use in a winter lake water quality model. The mean albedo of new snow was measured as 0.83±0.028, while the...

  20. Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO2

    Treesearch

    Haley F. Wicklein; Scott V. Ollinger; Mary E. Martin; David Y. Hollinger; Lucie C. Lepine; Michelle C. Day; Megan K. Bartlett; Andrew D. Richardson; Richard J. Norby

    2012-01-01

    Foliar nitrogen has been shown to be positively correlated with midsummer canopy albedo and canopy near infrared (NIR) reflectance over a broad range of plant functional types (e.g., forests, grasslands, and agricultural lands). To date, the mechanism(s) driving the nitrogen-albedo relationship have not been established, and it is unknown whether factors affecting...

  1. An approach for the long-term 30-m land surface snow-free albedo retrieval from historic Landsat surface reflectance and MODIS-based a priori anisotropy knowledge

    USDA-ARS?s Scientific Manuscript database

    Land surface albedo has been recognized by the Global Terrestrial Observing System (GTOS) as an essential climate variable crucial for accurate modeling and monitoring of the Earth’s radiative budget. While global climate studies can leverage albedo datasets from MODIS, VIIRS, and other coarse-reso...

  2. Lunar Terrain and Albedo Reconstruction from Apollo Imagery

    NASA Technical Reports Server (NTRS)

    Nefian, Ara V.; Kim, Taemin; Broxton, Michael; Moratto, Zach

    2010-01-01

    Generating accurate three dimensional planetary models and albedo maps is becoming increasingly more important as NASA plans more robotics missions to the Moon in the coming years. This paper describes a novel approach for separation of topography and albedo maps from orbital Lunar images. Our method uses an optimal Bayesian correlator to refine the stereo disparity map and generate a set of accurate digital elevation models (DEM). The albedo maps are obtained using a multi-image formation model that relies on the derived DEMs and the Lunar- Lambert reflectance model. The method is demonstrated on a set of high resolution scanned images from the Apollo era missions.

  3. Analytic expressions for the black-sky and white-sky albedos of the cosine lobe model.

    PubMed

    Goodin, Christopher

    2013-05-01

    The cosine lobe model is a bidirectional reflectance distribution function (BRDF) that is commonly used in computer graphics to model specular reflections. The model is both simple and physically plausible, but physical quantities such as albedo have not been related to the parameterization of the model. In this paper, analytic expressions for calculating the black-sky and white-sky albedos from the cosine lobe BRDF model with integer exponents will be derived, to the author's knowledge for the first time. These expressions for albedo can be used to place constraints on physics-based simulations of radiative transfer such as high-fidelity ray-tracing simulations.

  4. Occurrence of lower cloud albedo in ship tracks

    NASA Astrophysics Data System (ADS)

    Chen, Y.-C.; Christensen, M. W.; Xue, L.; Sorooshian, A.; Stephens, G. L.; Rasmussen, R. M.; Seinfeld, J. H.

    2012-09-01

    The concept of geoengineering by marine cloud brightening is based on seeding marine stratocumulus clouds with sub-micrometer sea-salt particles to enhance the cloud droplet number concentration and cloud albedo, thereby producing a climate cooling effect. The efficacy of this as a strategy for global cooling rests on the extent to which aerosol-perturbed marine clouds will respond with increased albedo. Ship tracks, quasi-linear cloud features prevalent in oceanic regions impacted by ship exhaust, are a well-known manifestation of the effect of aerosol injection on marine clouds. We present here an analysis of the albedo responses in ship tracks, based on in situ aircraft measurements and three years of satellite observations of 589 individual ship tracks. It is found that the sign (increase or decrease) and magnitude of the albedo response in ship tracks depends on the mesoscale cloud structure, the free tropospheric humidity, and cloud top height. In a closed cell structure (cloud cells ringed by a perimeter of clear air), nearly 30% of ship tracks exhibited a decreased albedo. Detailed cloud responses must be accounted for in global studies of the potential efficacy of sea-spray geoengineering as a means to counteract global warming.

  5. A simple method to compute the change in earth-atmosphere radiative balance due to a stratospheric aerosol layer

    NASA Technical Reports Server (NTRS)

    Lenoble, J.; Tanre, D.; Deschamps, P. Y.; Herman, M.

    1982-01-01

    A computer code was developed in terms of a three-layer model for the earth-atmosphere system, using a two-stream approximation for the troposphere and stratosphere. The analysis was limited to variable atmosphere loading by solar radiation over an unperturbed section of the atmosphere. The scattering atmosphere above a Lambertian ground layer was considered in order to derive the planar albedo and the spherical albedo. Attention was given to the influence of the aerosol optical thickness in the stratosphere, the single scattering albedo and asymmetry factor, and the sublayer albedo. Calculations were performed of the zonal albedo and the planetary radiation balance, taking into account a stratospheric aerosol layer containing H2SO4 droplets and volcanic ash. The resulting ground temperature disturbance was computed using a Budyko (1969) climate model. Local decreases in the albedo in the summer were observed in high latitudes, implying a heating effect of the aerosol. An accompanying energy loss of 23-27 W/sq m was projected, which translates to surface temperature decreases of either 1.1 and 0.45 C, respectively, for background and volcanic aerosols.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yoonyoung; Ishiguro, Masateru; Usui, Fumihiko

    We investigated the population of asteroids in comet-like orbits using available asteroid size and albedo catalogs of data taken with the Infrared Astronomical Satellite, AKARI, and the Wide-field Infrared Survey Explorer on the basis of their orbital properties (i.e., the Tisserand parameter with respect to Jupiter, T{sub J}, and the aphelion distance, Q). We found that (1) there are 123 asteroids in comet-like orbits by our criteria (i.e., Q > 4.5 AU and T{sub J} < 3), (2) 80% of them have low albedo, p{sub v} < 0.1, consistent with comet nuclei, (3) the low-albedo objects among them have amore » size distribution shallower than that of active comet nuclei, that is, the power index of the cumulative size distribution is around 1.1, and (4) unexpectedly, a considerable number (i.e., 25 by our criteria) of asteroids in comet-like orbits have high albedo, p{sub v} > 0.1. We noticed that such high-albedo objects mostly consist of small (D < 3 km) bodies distributed in near-Earth space (with perihelion distance of q < 1.3 AU). We suggest that such high-albedo, small objects were susceptible to the Yarkovsky effect and drifted into comet-like orbits via chaotic resonances with planets.« less

  7. Clear-sky narrowband albedos derived from VIRS and MODIS

    NASA Astrophysics Data System (ADS)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Arduini, Robert F.

    2004-02-01

    The Clouds and Earth"s Radiant Energy System (CERES) project is using multispectral imagers, the Visible Infrared Scanner (VIRS) on the tropical Rainfall Measuring Mission (TRMM) satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra, operating since spring 2000, and Aqua, operating since summer 2002, to provide cloud and clear-sky properties at various wavelengths. This paper presents the preliminary results of an analysis of the CERES clear-sky reflectances to derive a set top-of-atmosphere clear sky albedo for 0.65, 0.86, 1.6, 2.13 μm, for all major surface types using the combined MODIS and VIRS datasets. The variability of snow albedo with surface type is examined using MODIS data. Snow albedo was found to depend on the vertical structure of the vegetation. At visible wavelengths, it is least for forested areas and greatest for smooth desert and tundra surfaces. At 1.6 and 2.1-μm, the snow albedos are relatively insensitive to the underlying surface because snow decreases the reflectance. Additional analyses using all of the MODIS results will provide albedo models that should be valuable for many remote sensing, simulation and radiation budget studies.

  8. Gamma-ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, Igor V.; Porter, Troy A.

    2007-06-14

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST).more » The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.« less

  9. Observational determination of albedo decrease caused by vanishing Arctic sea ice.

    PubMed

    Pistone, Kristina; Eisenman, Ian; Ramanathan, V

    2014-03-04

    The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations. The resulting darkening of the Arctic and its amplification of global warming was hypothesized almost 50 y ago but has yet to be verified with direct observations. This study uses satellite radiation budget measurements along with satellite microwave sea ice data to document the Arctic-wide decrease in planetary albedo and its amplifying effect on the warming. The analysis reveals a striking relationship between planetary albedo and sea ice cover, quantities inferred from two independent satellite instruments. We find that the Arctic planetary albedo has decreased from 0.52 to 0.48 between 1979 and 2011, corresponding to an additional 6.4 ± 0.9 W/m(2) of solar energy input into the Arctic Ocean region since 1979. Averaged over the globe, this albedo decrease corresponds to a forcing that is 25% as large as that due to the change in CO2 during this period, considerably larger than expectations from models and other less direct recent estimates. Changes in cloudiness appear to play a negligible role in observed Arctic darkening, thus reducing the possibility of Arctic cloud albedo feedbacks mitigating future Arctic warming.

  10. Landsat and Sentinel-2A Surface Albedo Estimation and Evaluation Against In Situ Measurements Across the US SURFRAD Network

    NASA Astrophysics Data System (ADS)

    Franch, B.; Skakun, S.; Vermote, E.; Roger, J. C.

    2017-12-01

    Surface albedo is an essential parameter not only for developing climate models, but also for most energy balance studies. While climate models are usually applied at coarse resolution, the energy balance studies, which are mainly focused on agricultural applications, require a high spatial resolution. The albedo, estimated through the angular integration of the BRDF, requires an appropriate angular sampling of the surface. However, Sentinel-2A sampling characteristics, with nearly constant observation geometry and low illumination variation, prevent from deriving a surface albedo product. In this work, we apply an algorithm developed to derive a Landsat surface albedo to Sentinel-2A. It is based on the BRDF parameters estimated from the MODerate Resolution Imaging Spectroradiometer (MODIS) CMG surface reflectance product (M{O,Y}D09) using the VJB method (Vermote et al., 2009). Sentinel-2A unsupervised classification images are used to disaggregate the BRDF parameters to the Sentinel-2 spatial resolution. We test the results over five different sites of the US SURFRAD network and plot the results versus albedo field measurements. Additionally, we also test this methodology using Landsat-8 images.

  11. Development of a point-kinetic verification scheme for nuclear reactor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demazière, C., E-mail: demaz@chalmers.se; Dykin, V.; Jareteg, K.

    In this paper, a new method that can be used for checking the proper implementation of time- or frequency-dependent neutron transport models and for verifying their ability to recover some basic reactor physics properties is proposed. This method makes use of the application of a stationary perturbation to the system at a given frequency and extraction of the point-kinetic component of the system response. Even for strongly heterogeneous systems for which an analytical solution does not exist, the point-kinetic component follows, as a function of frequency, a simple analytical form. The comparison between the extracted point-kinetic component and its expectedmore » analytical form provides an opportunity to verify and validate neutron transport solvers. The proposed method is tested on two diffusion-based codes, one working in the time domain and the other working in the frequency domain. As long as the applied perturbation has a non-zero reactivity effect, it is demonstrated that the method can be successfully applied to verify and validate time- or frequency-dependent neutron transport solvers. Although the method is demonstrated in the present paper in a diffusion theory framework, higher order neutron transport methods could be verified based on the same principles.« less

  12. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Nathan; Sweet, Ryan; Maldonado, G. Ivan

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behaviormore » of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.« less

  13. Feasibility of creating a specialized reactimeter based on the inverse solution to kinetics equation with a current-mode neutron detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshelev, A. S., E-mail: alexsander.coshelev@yandex.ru; Arapov, A. V.; Ovchinnikov, M. A.

    2016-12-15

    The file-evaluation results of a reactimeter based on the inverse solution to the kinetics equation (ISKE) are presented, which were obtained using an operating hardware-measuring complex with a KNK-4 neutron detector working in the current mode. The processing of power-recording files of the BR-1M, BR-K1, and VIR-2M reactors of the Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, which was performed with the use of Excel simulation of the ISKE formalism, demonstrated the feasibility of implementation of the reactivity monitoring (during the operation of these reactors at stationary power) beginning from the level of ~5 × 10{sup –4}β{sub eff}.

  14. Widespread Albedo Decreasing and Induced Melting of Himalayan Snow and Ice in the Early 21st Century

    PubMed Central

    Ming, Jing; Wang, Yaqiang; Du, Zhencai; Zhang, Tong; Guo, Wanqin; Xiao, Cunde; Xu, Xiaobin; Ding, Minghu; Zhang, Dongqi; Yang, Wen

    2015-01-01

    Background The widely distributed glaciers in the greater Himalayan region have generally experienced rapid shrinkage since the 1850s. As invaluable sources of water and because of their scarcity, these glaciers are extremely important. Beginning in the twenty-first century, new methods have been applied to measure the mass budget of these glaciers. Investigations have shown that the albedo is an important parameter that affects the melting of Himalayan glaciers. Methodology/Principal Findings The surface albedo based on the Moderate Resolution Imaging Spectroradiometer (MODIS) data over the Hindu Kush, Karakoram and Himalaya (HKH) glaciers is surveyed in this study for the period 2000–2011. The general albedo trend shows that the glaciers have been darkening since 2000. The most rapid decrease in the surface albedo has occurred in the glacial area above 6000 m, which implies that melting will likely extend to snow accumulation areas. The mass-loss equivalent (MLE) of the HKH glacial area caused by surface shortwave radiation absorption is estimated to be 10.4 Gt yr-1, which may contribute to 1.2% of the global sea level rise on annual average (2003–2009). Conclusions/Significance This work probably presents a first scene depicting the albedo variations over the whole HKH glacial area during the period 2000–2011. Most rapidly decreasing in albedo has been detected in the highest area, which deserves to be especially concerned. PMID:26039088

  15. Asymmetry of reflective properties of the hemispheres of Jupiter satellite Europa

    NASA Astrophysics Data System (ADS)

    Vidmachenko, Anatoliy; Morozhenko, A.; Klyanchin, A.; Shavlovskiy, V.; Ivanov, Yu.; Kostogryz, N.

    2011-12-01

    Rotation around the central planet of Europa is synchronous. Leading hemisphere - is much brighter and less polluted by "no ice" material than the trailing one. The high albedo of the satellite may indicates that the ice on the surface is clean enough and is formed recently: 1,5-30 million years ago. Comparison of surface images of spacecrafts "Voyager" and "Galileo" with a low spatial resolution did not detect any significant changes during 20 years. But a detailed analysis of observational data with high resolution points to a number of features on the surface, which may indicate a change in the geological structures during this time. Spectral geometric albedo in the wavelength range 346-750 nm of leading and trailing hemispheres of Galilean satellites were defined using of our spectral observations in 2009 and 2010 and the observations of the other authors at different values of orbital and solar phase angles. The high geometric albedo in the red region of Io and Europa spectrum are confirmed; albedo of Io decreases sharply with decreasing of wavelength for ? < 500 nm; albedo of Ganymede and Callisto - reduced smoothly; albedo of Europa - have an intermediate gradient of reduction. Such behavior of the spectral variation of Europa surface albedo can be explained by deposition of sulfur from Io. Moreover, the sulfur absorption is more strongly on the trailing hemisphere. This indicates that the sulfur on the leading hemisphere is "processed" by meteoritic bombardment much faster and is gone to the the sub-surface regolith layer.

  16. Impact of Dust on Mars Surface Albedo and Energy Flux with LMD General Circulation Model

    NASA Astrophysics Data System (ADS)

    Singh, D.; Flanner, M.; Millour, E.; Martinez, G.

    2015-12-01

    Mars, just like Earth experience different seasons because of its axial tilt (about 25°). This causes growth and retreat of snow cover (primarily CO2) in Martian Polar regions. The perennial caps are the only place on the planet where condensed H2O is available at surface. On Mars, as much as 30% atmospheric CO2 deposits in each hemisphere depending upon the season. This leads to a significant variation on planet's surface albedo and hence effecting the amount of solar flux absorbed or reflected at the surface. General Circulation Model (GCM) of Laboratoire de Météorologie Dynamique (LMD) currently uses observationally derived surface albedo from Thermal Emission Spectrometer (TES) instrument for the polar caps. These TES albedo values do not have any inter-annual variability, and are independent of presence of any dust/impurity on surface. Presence of dust or other surface impurities can significantly reduce the surface albedo especially during and right after a dust storm. This change will also be evident in the surface energy flux interactions. Our work focuses on combining earth based Snow, Ice, and Aerosol Radiation (SNICAR) model with current state of GCM to incorporate the impact of dust on Martian surface albedo, and hence the energy flux. Inter-annual variability of surface albedo and planet's top of atmosphere (TOA) energy budget along with their correlation with currently available mission data will be presented.

  17. Effect of Small-Scale Gravity Waves on Polar Mesospheric Clouds Observed From CIPS/AIM

    NASA Astrophysics Data System (ADS)

    Gao, Haiyang; Li, Licheng; Bu, Lingbing; Zhang, Qilin; Tang, Yuanhe; Wang, Zhen

    2018-05-01

    Data from the Cloud Imaging and Particle Size experiment on the Aeronomy of Ice in the Mesosphere (AIM) satellite are employed to study the impact of small-scale gravity wave (GW) on albedo, ice water content (IWC), and particle radius (PR) of polar mesospheric clouds. Overall, 23,987 eligible GW events, with a horizontal wavelength of 20-150 km are eventually extracted from Cloud Imaging and Particle Size level 2 orbit albedo maps during 2007-2011. The overall statistical results show that when small-scale GWs travel horizontally in polar mesospheric clouds, they can amplify the albedo and IWC by a rate of 10.0-22.6%, while reducing the PR by as much as -7.01%. Owing to the strong temporal and spatial dependences, the albedo and IWC variations are larger on an average during the core of the season, while they decrease during the initial and final periods of the season. The obvious zonal asymmetries are also found. The albedo variations show a positive linear relation with the GW amplitudes in albedo, as opposed to a negative linear relation with GW horizontal wavelengths. In most of the GW events, the periodic variation in the trend of albedo exhibits an anticorrelation with that of PR. Combining previous research studies with our results, we deduce that the rapid change in particle concentration and the upward movement of water vapor by GWs may be very important aspects for explaining the influence mechanism.

  18. Joint DEnKF-albedo assimilation scheme that considers the common land model subgrid heterogeneity and a snow density-based observation operator for improving snow depth simulations

    NASA Astrophysics Data System (ADS)

    Xu, Jianhui; Zhang, Feifei; Zhao, Yi; Shu, Hong; Zhong, Kaiwen

    2016-07-01

    For the large-area snow depth (SD) data sets with high spatial resolution in the Altay region of Northern Xinjiang, China, we present a deterministic ensemble Kalman filter (DEnKF)-albedo assimilation scheme that considers the common land model (CoLM) subgrid heterogeneity. In the albedo assimilation of DEnKF-albedo, the assimilated albedos over each subgrid tile are estimated with the MCD43C1 bidirectional reflectance distribution function (BRDF) parameters product and CoLM calculated solar zenith angle. The BRDF parameters are hypothesized to be consistent over all subgrid tiles within a specified grid. In the SCF assimilation of DEnKF-albedo, a DEnKF combining a snow density-based observation operator considers the effects of the CoLM subgrid heterogeneity and is employed to assimilate MODIS SCF to update SD states over all subgrid tiles. The MODIS SCF over a grid is compared with the area-weighted sum of model predicted SCF over all the subgrid tiles within the grid. The results are validated with in situ SD measurements and AMSR-E product. Compared with the simulations, the DEnKF-albedo scheme can reduce errors of SD simulations and accurately simulate the seasonal variability of SD. Furthermore, it can improve simulations of SD spatiotemporal distribution in the Altay region, which is more accurate and shows more detail than the AMSR-E product.

  19. Opposition effect of the Moon from LROC WAC data

    NASA Astrophysics Data System (ADS)

    Velikodsky, Yu. I.; Korokhin, V. V.; Shkuratov, Yu. G.; Kaydash, V. G.; Videen, Gorden

    2016-09-01

    LROC WAC images acquired in 5 bands of the visible spectral range were used to study the opposition effect for two mare and two highland regions near the lunar equator. Opposition phase curves were extracted from the images containing the opposition by separating the phase-curve effect from the albedo pattern by comparing WAC images at different phase angles (from 0° to 30°). Akimov's photometric function and the NASA Digital Terrain Model GLD100 were used in the processing. It was found that phase-curve slopes at small phase angles directly correlate with albedo, while at larger phase angles, they are anti-correlated. We suggest a parameter to characterize the coherent-backscattering component of the lunar opposition surge, which is defined as the maximum phase angle for which the opposition-surge slope increases with growing albedo. The width of the coherent-backscattering opposition effect varies from approximately 1.2° for highlands in red light to 3.9° for maria in blue light. The parameter depends on albedo, which is in agreement with the coherent-backscattering theory. The maximum amplitude of the coherent opposition effect is estimated to be near 8%. Maps of albedo and phase-curve slope at phase angles larger than those, at which the coherent-backscattering occurs, were built for the areas under study. Absolute calibration of WAC images was compared with Earth-based observations: the WAC-determined albedo is very close to the mean lunar albedo calculated using available Earth-based observations.

  20. Albedo as a modulator of climate response to tropical deforestation

    NASA Technical Reports Server (NTRS)

    Dirmeyer, Paul A.; Shukla, J.

    1994-01-01

    An atmospheric general circulation model with land surface properties represented by the simplified Simple Biosphere model is used to investigate the effects on local climate due to tropical deforestation for the Amazon basin. One control and three anomaly integrations of 4 years' duration are performed. In the anomaly integrations, rain forest in South America is replaced by degraded grassland. The anomaly integrations differ only in the optical properties of the grassland vegetation, with net surface albedos ranging from the same as to 0.09 lighter than that of rain forest. It is found that the change in climate, particularly rainfall, is strongly dependent on the change in surface albedo that accompanies deforestation. Replacement of forest by grass causes a reduction in transpiration and reduces frictional convergence by decreasing surface roughness. However, precipitation averaged over the deforested area is not necessarily reduced. Average precipitation decreases when the increase in albedo is greater than 0.03. If surface albedo is not increased appreciably as a result of deforestation, moisture flux convergence driven by the increase in surface temperature can offset the other effects, and average precipitation increases. As albedo is increased, surface temperature does not change, but surface latent and sensible heat flux decreases due to reduced radiational energy absorbed at the surface, resulting in a reduction in convection and precipitation. A change in the distribution of precipitation due to deforestation that appears to be independent of the albedo is observed.

Top