Science.gov

Sample records for neutron beam modeling

  1. Initial Experimental Verification of the Neutron Beam Modeling for the LBNL BNCT Facility

    SciTech Connect

    Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Ludewigt, B.A.; McDonald, R.J.; Smith, A.R.; Stone, N.A.; Vuji, J.

    1999-01-19

    In preparation for future clinical BNCT trials, neutron production via the 7Li(p,n) reaction as well as subsequent moderation to produce epithermal neutrons have been studied. Proper design of a moderator and filter assembly is crucial in producing an optimal epithermal neutron spectrum for brain tumor treatments. Based on in-phantom figures-of-merit,desirable assemblies have been identified. Experiments were performed at the Lawrence Berkeley National Laboratory's 88-inch cyclotron to characterize epithermal neutron beams created using several microampere of 2.5 MeV protons on a lithium target. The neutron moderating assembly consisted of Al/AlF3 and Teflon, with a lead reflector to produce an epithermal spectrum strongly peaked at 10-20 keV. The thermal neutron fluence was measured as a function of depth in a cubic lucite head phantom by neutron activation in gold foils. Portions of the neutron spectrum were measured by in-air activation of six cadmium-covered materials (Au, Mn, In, Cu, Co, W) with high epithermal neutron absorption resonances. The results are reasonably reproduced in Monte Carlo computational models, confirming their validity.

  2. Neutron beam measurement dosimetry

    SciTech Connect

    Amaro, C.R.

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  3. Neutron beam design, development, and performance for neutron capture therapy

    SciTech Connect

    Harling, O.K.; Bernard, J.A. ); Zamenhof, R.G. )

    1990-01-01

    The report presents topics presented at a workshop on neutron beams and neutron capture therapy. Topics include: neutron beam design; reactor-based neutron beams; accelerator-based neutron beams; and dosimetry and treatment planning. Individual projects are processed separately for the databases. (CBS)

  4. Beam characterization at the Neutron Radiography Reactor

    SciTech Connect

    Sarah W. Morgan; Jeffrey C. King; Chad L. Pope

    2013-12-01

    The quality of a neutron-imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam's effective length-to-diameter ratio, neutron flux profile, energy spectrum, potential image quality, and beam divergence, is vital for producing quality radiographic images. This paper provides a characterization of the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam's effective length-to-diameter ratio and potential image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. The NRAD has an effective collimation ratio greater than 125, a beam divergence of 0.3 +_ 0.1 degrees, and a gold foil cadmium ratio of 2.7. The flux profile has been quantified and the facility is an ASTM Category 1 radiographic facility. Based on bare and cadmium covered foil activation results, the neutron energy spectrum used in the current MCNP model of the radiography beamline over-samples the thermal region of the neutron energy spectrum.

  5. Neutron filters for producing monoenergetic neutron beams

    SciTech Connect

    Harvey, J.A.; Hill, N.W.; Harvey, J.R.

    1982-01-01

    Neutron transmission measurements have been made on high-purity, highly-enriched samples of /sup 58/Ni (99.9%), /sup 60/Ni (99.7%), /sup 64/Zn (97.9%) and /sup 184/W (94.5%) to measure their neutron windows and to assess their potential usefulness for producing monoenergetic beams of intermediate energies from a reactor. Transmission measurements on the Los Alamos Sc filter (44.26 cm Sc and 1.0 cm Ti) have been made to determine the characteristics of the transmitted neutron beam and to measure the total cross section of Sc at the 2.0 keV minimum. When corrected for the Ti and impurities, a value of 0.35 +- 0.03 b was obtained for this minimum.

  6. Beam Characterization at the Neutron Radiography Facility

    SciTech Connect

    Sarah Morgan; Jeffrey King

    2013-01-01

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  7. A Monte Carlo model system for core analysis and epithermal neutron beam design at the Washington State University Radiation Center

    SciTech Connect

    Burns, T.D. Jr.

    1996-05-01

    The Monte Carlo Model System (MCMS) for the Washington State University (WSU) Radiation Center provides a means through which core criticality and power distributions can be calculated, as well as providing a method for neutron and photon transport necessary for BNCT epithermal neutron beam design. The computational code used in this Model System is MCNP4A. The geometric capability of this Monte Carlo code allows the WSU system to be modeled very accurately. A working knowledge of the MCNP4A neutron transport code increases the flexibility of the Model System and is recommended, however, the eigenvalue/power density problems can be run with little direct knowledge of MCNP4A. Neutron and photon particle transport require more experience with the MCNP4A code. The Model System consists of two coupled subsystems; the Core Analysis and Source Plane Generator Model (CASP), and the BeamPort Shell Particle Transport Model (BSPT). The CASP Model incorporates the S({alpha}, {beta}) thermal treatment, and is run as a criticality problem yielding, the system eigenvalue (k{sub eff}), the core power distribution, and an implicit surface source for subsequent particle transport in the BSPT Model. The BSPT Model uses the source plane generated by a CASP run to transport particles through the thermal column beamport. The user can create filter arrangements in the beamport and then calculate characteristics necessary for assessing the BNCT potential of the given filter want. Examples of the characteristics to be calculated are: neutron fluxes, neutron currents, fast neutron KERMAs and gamma KERMAs. The MCMS is a useful tool for the WSU system. Those unfamiliar with the MCNP4A code can use the MCMS transparently for core analysis, while more experienced users will find the particle transport capabilities very powerful for BNCT filter design.

  8. Progress toward a new beam measurement of the neutron lifetime

    NASA Astrophysics Data System (ADS)

    Hoogerheide, Shannon Fogwell; BL2 Collaboration

    2017-01-01

    Neutron beta decay is the simplest example of nuclear beta decay. A precise value of the neutron lifetime is important for consistency tests of the Standard Model and Big Bang Nucleosynthesis models. The beam neutron lifetime method requires the absolute counting of the decay protons in a neutron beam of precisely known flux. Recent work has resulted in improvements in both the neutron and proton detection systems that should permit a significant reduction in systematic uncertainties. A new measurement of the neutron lifetime using the beam method is underway at the National Institute of Standards and Technology Center for Neutron Research. The projected uncertainty of this new measurement is 1 s. An overview of the measurement, its current status, and the technical improvements will be discussed.

  9. Progress toward a new beam measurement of the neutron lifetime

    NASA Astrophysics Data System (ADS)

    Hoogerheide, Shannon Fogwell

    2016-09-01

    Neutron beta decay is the simplest example of nuclear beta decay. A precise value of the neutron lifetime is important for consistency tests of the Standard Model and Big Bang Nucleosysnthesis models. The beam neutron lifetime method requires the absolute counting of the decay protons in a neutron beam of precisely known flux. Recent work has resulted in improvements in both the neutron and proton detection systems that should permit a significant reduction in systematic uncertainties. A new measurement of the neutron lifetime using the beam method will be performed at the National Institute of Standards and Technology Center for Neutron Research. The projected uncertainty of this new measurement is 1 s. An overview of the measurement and the technical improvements will be discussed.

  10. Neutron beam testing of triblades

    SciTech Connect

    Michalak, Sarah E; Du Bois, Andrew J; Storlie, Curtis B; Rust, William N; Du Bois, David H; Modl, David G; Quinn, Heather M; Blanchard, Sean P; Manuzzato, Andrea

    2010-12-16

    Four IBM Triblades were tested in the Irradiation of Chips and Electronics facility at the Los Alamos Neutron Science Center. Triblades include two dual-core Opteron processors and four PowerXCell 8i (Cell) processors. The Triblades were tested in their field configuration while running different applications, with the beam aimed at the Cell processor or the Opteron running the application. Testing focused on the Cell processors, which were tested while running five different applications and an idle condition. While neither application nor Triblade was statistically important in predicting the hazard rate, the hazard rate when the beam was aimed at the Opterons was significantly higher than when it was aimed at the Cell processors. In addition, four Cell blades (one in each Triblade) suffered voltage shorts, leading to their inoperability. The hardware tested is the same as that in the Roadrunner supercomputer.

  11. Properties and uses of cold neutron beams

    SciTech Connect

    Clark, David D.

    1992-07-01

    Cold neutrons are conventionally defined as those with energy below 0.005 eV; the corresponding velocity and wavelength arc 980 m/s and 4 angstroms. The first extensive use of cold neutrons was in the 1960's by condensed matter physicists for investigations of spatial structure and internal dynamics of solids and liquids. Different experiments place different requirements on neutron beams, but it is usually advantageous to eliminate the faster neutrons and the gamma rays that are present in normal reactor beams. Several types of filters that pass only the low-energy portion of an incident Maxwellian spectrum have been developed and will be discussed. Examples include single crystal quartz or bismuth (room temperature or cooled), polycrystalline beryllium, and neutron guides. For any of these shifting the incident neutrons to a lower energy spectrum by use of a cold moderator leads to large increases in the intensity of cold neutrons. The properties of the beams resulting from the particular combination of a cold moderator and a neutron guide will be discussed. These include the changes in beam intensity and spectral shape as warm neutrons in a typical reactor spectrum first interact with a cold moderator and then pass through a straight or curved neutron guide. The spatial and angular distribution of the neutrons at the exit of the guide will be described. One further important effect for cold neutron beam experiments involving nuclear reactions is the increase in reaction rates because of the usual 1/v dependence of reaction cross sections and another is the considerable simplification with cold neutrons in the problems of collimating, shielding, and stopping the beam. The resulting benefits for studies of nuclear energy levels by neutron capture gamma-ray and conversion electron experiments and for the analysis of materials by PGNAA will be discussed. Neutron depth profiling is also improved with cold neutrons. (author)

  12. Intermediate energy neutron beams from the MURR.

    PubMed

    Brugger, R M; Herleth, W H

    1990-01-01

    Several reactors in the United States are potential candidates to deliver beams of intermediate energy neutrons for NCT. At this time, moderators, as compared to filters, appear to be the more effective means of tailoring the flux of these reactors. The objective is to sufficiently reduce the flux of fast neutrons while producing enough intermediate energy neutrons for treatments. At the University of Missouri Research Reactor (MURR), the code MCNP has recently been used to calculate doses in a phantom. First, "ideal" beams of 1, 35, and 1000 eV neutrons were analyzed to determine doses and advantage depths in the phantom. Second, a high quality beam that had been designed to fit in the thermal column of the MURR, was reanalyzed. MCNP calculations of the dose in phantom in this beam confirmed previous calculations and showed that this beam would be a nearly ideal one with neutrons of the desired energy and also a high neutron current. However, installation of this beam will require a significant modification of the thermal column of the MURR. Therefore, a second beam that is less difficult to build and install, but of lower neutron current, has been designed to fit in MURR port F. This beam is designed using inexpensive A1, S, and Pb. The doses calculated in the phantom placed in this beam show that it will be satisfactory for sample tests, animal tests, and possible initial patient trials. Producing this beam will require only modest modifications of the existing tube.

  13. Neutron lifetime measurement with pulsed beam at JPARC: Overview

    NASA Astrophysics Data System (ADS)

    Mishima, Kenji; Ino, Takashi; Taketani, Kaoru; Yamada, Takahito; Katayama, Ryo; Higashi, Nao; Yokoyama, Harumichi; Sumino, Hirochika; Yamashita, Satoru; Sakakibara, Risa; Sugino, Tomoaki; Kitaguchi, Masaaki; Hirota, Katsuya; Shimizu, Hirohiko M.; Tanaka, Genki; Sumi, Naoyuki; Otono, Hidetoshi; Yoshioka, Tamaki; Kitahara, Ryunosuke; Iwashita, Yoshihisa; Oide, Hideyuki; Shima, Tatsushi; Seki, Yoshichika; NOP Collaboration

    2014-09-01

    The neutron lifetime is an important parameter for a test of the Standard Model of elementary particles, as well for the production of light mass nuclei in big bang nucleosynthesis. There are two principally different approaches to measure the neutron lifetime: In-beam methods and storage of ultracold neutron. At present, there is a discrepancy of 8.4 sec (3.8 sigma) between the two methods. We are performing a new In-beam experiment with an intense pulsed neutron source at J-PARC, which has different systematic uncertainties from the previous experiments. We introduce the overview of the experiment and report present status.

  14. Improvements in neutron beam applications by using capillary neutron optics

    NASA Astrophysics Data System (ADS)

    Downing, Robert G.; Xiao, Qi-Fan; Sharov, V. A.; Ponomarev, Igor Y.; Ullrich, Johannes B.; Gibson, David M.; Chen-Mayer, Huaiyu H.; Mildner, David F. R.; Lamaze, G. P.

    1997-02-01

    Capillary neutron optics improve the capabilities of neutron beam techniques such as neutron depth profiling and prompt gamma activation analysis. Millions of glass capillaries are configured to capture and guide low-energy neutrons by grazing total reflection from the smooth inner surface of the hollow channels. By precise orientation of the capillaries, beams of neutrons are readily collimated with good angular control or can be finely focused - as required by the application. In addition, the optics can improve the signal-to-noise ratio by diverting a neutron beam to a convenient off-axis direction, thereby circumventing interferences from gamma rays and fast neutrons characteristic of simple aperture collimation. The focused intensity of neutrons obtained in an area of 0.03 mm2 may be increased up to a hundred times over that previously available for NDP or PGAA techniques. Furthermore, the spatial resolution can be improved by up to 100 times. Consequently, small samples, or small volumes within larger samples, may be better and more rapidly investigated with neutron probe techniques. We report on developments in the application of capillary neutron optics.

  15. Neutron beam imaging at neutron spectrometers at Dhruva

    SciTech Connect

    Desai, Shraddha S.; Rao, Mala N.

    2012-06-05

    A low efficiency, 2-Dimensional Position Sensitive Neutron Detector based on delay line position encoding is developed. It is designed to handle beam flux of 10{sup 6}-10{sup 7} n/cm{sup 2}/s and for monitoring intensity profiles of neutron beams. The present detector can be mounted in transmission mode, as the hardware allows maximum neutron transmission in sensitive region. Position resolution of 1.2 mm in X and Y directions, is obtained. Online monitoring of beam images and intensity profile of various neutron scattering spectrometers at Dhruva are presented. It shows better dynamic range of intensity over commercial neutron camera and is also time effective over the traditionally used photographic method.

  16. Modeling filters for formation of mono-energetic neutron beams in the research reactor IRT MEPhI and optimization of radiation shielding for liquid-xenon detector

    SciTech Connect

    Ivakhin, S. V.; Tikhomirov, G. V.; Bolozdynya, A. I.; Efremenko, Y. V.; Akimov, D. Y.; Stekhanov, V. N.

    2012-07-01

    The paper considers formation of mono-energetic neutron beams at the entrance of experimental channels in research reactors for various applications. The problem includes the following steps: 1. Full-scale mathematical model of the research IRT MEPhI was developed for numerical evaluations of neutron spectra and neutron spatial distribution in the area of experimental channels. 2. Modeling of filters in the channel to shift neutron spectrum towards the required mono-energetic line was performed. 3. Some characteristics of neutron beams at the entrance of detector were evaluated. The filter materials were selected. The calculations were carried out with application of the computer code based on the high-precision Monte-Carlo code MCNP. As a result, mathematical model was created for the filter which is able to form mono-energetic (24 keV) neutron beam. The study was carried out within the frames of the research project on development of Russian emission detector with liquid noble gas to observe rare processes of neutrino scattering and particles of hypothetical dark matter in atomic nuclei. (authors)

  17. Neutron beams from protons on beryllium.

    PubMed

    Bewley, D K; Meulders, J P; Octave-Prignot, M; Page, B C

    1980-09-01

    Measurements of dose rate and penetration in water have been made for neutron beams produced by 30--75 MeV protons on beryllium. The effects of Polythene filters added on the target side of the collimator have also been studied. A neutron beam comparable with a photon beam from a 4--8 MeV linear accelerator can be produced with p/Be neutrons plus 5 cm Polythene filtrations, with protons in the range 50--75 MeV. This is a more economical method than use of the d/Be reaction.

  18. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    SciTech Connect

    Xufei, X. Fan, T.; Nocente, M.; Gorini, G.; Bonomo, F.; Franzen, P.; Fröschle, M.; Grosso, G.; Tardocchi, M.; Grünauer, F.; Pasqualotto, R.

    2014-11-15

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understand neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes.

  19. Design of multidirectional neutron beams for boron neutron capture synovectomy

    SciTech Connect

    Gierga, D.P.; Yanch, J.C.; Shefer, R.E.

    1997-12-01

    Boron neutron capture synovectomy (BNCS) is a potential application of the {sup 10}B(n, a) {sup 7}Li reaction for the treatment of rheumatoid arthritis. The target of therapy is the synovial membrane. Rheumatoid synovium is greatly inflamed and is the source of the discomfort and disability associated with the disease. The BNCS proposes to destroy the synovium by first injecting a boron-labeled compound into the joint space and then irradiating the joint with a neutron beam. This study discusses the design of a multidirectional neutron beam for BNCS.

  20. Neutron beam imaging with GEM detectors

    NASA Astrophysics Data System (ADS)

    Albani, G.; Croci, G.; Cazzaniga, C.; Cavenago, M.; Claps, G.; Muraro, A.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Rebai, M.; Tardocchi, M.; Gorini, G.

    2015-04-01

    Neutron GEM-based detectors represent a new frontier of devices in neutron physics applications where a very high neutron flux must be measured such as future fusion experiments (e.g. ITER Neutral beam Injector) and spallation sources (e.g. the European Spallation source). This kind of detectors can be properly adapted to be used both as beam monitors but also as neutron diffraction detectors that could represent a valid alternative for the 3He detectors replacement. Fast neutron GEM detectors (nGEM) feature a cathode composed by one layer of polyethylene and one of aluminium (neutron scattering on hydrogen generates protons that are detected in the gas) while thermal neutron GEM detectors (bGEM) are equipped with a borated aluminium cathode (charged particles are generated through the 10B(n,α)7Li reaction). GEM detectors can be realized in large area (1 m2) and their readout can be pixelated. Three different prototypes of nGEM and one prototype of bGEM detectors of different areas and equipped with different types of readout have been built and tested. All the detectors have been used to measure the fast and thermal neutron 2D beam image at the ISIS-VESUVIO beamline. The different kinds of readout patterns (different areas of the pixels) have been compared in similar conditions. All the detectors measured a width of the beam profile consitent with the expected one. The imaging property of each detector was then tested by inserting samples of different material and shape in the beam. All the samples were correctly reconstructed and the definition of the reconstruction depends on the type of readout anode. The fast neutron beam profile reconstruction was then compared to the one obtained by diamond detectors positioned on the same beamline while the thermal neutron one was compared to the imaged obtained by cadmium-coupled x-rays films. Also efficiency and the gamma background rejection have been determined. These prototypes represent the first step towards the

  1. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  2. Study of the neutron beam line shield design for JSNS.

    PubMed

    Kawai, M; Saito, K; Sanami, T; Nakao, N; Maekawa, F

    2005-01-01

    The JSNS, a spallation neutron source of J-PARC (JAERI-KEK Joint Project of the High Intensity Proton Accelerator) has 23 neutron beam lines. In the present study, a database was formulated for an optimum shielding design using the MCNP-X code. The calculations involved two steps. In the first step, the neutron distributions were created in the typical neutron beam line with a model that included the spallation neutron source target. The neutron currents evaluated flowed from the duct into the duct wall which was the boundary source for the bulk shield surrounding the beam line. In the second step, bulk-shield calculations were performed for the various shielding materials (iron, concrete, heavy concrete and so on) used and their composites up to thicknesses of 3 m. The results were compared with each other. Composite material shields of iron and such hydrogeneous materials as polyethylene or concrete were more effective. A typical design was prepared for a beam line within 25 m distance from a moderator, as a sample.

  3. Accelerator Based Neutron Beams for Neutron Capture Therapy

    SciTech Connect

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  4. Modeling and design of a new core-moderator assembly and neutron beam ports for the Penn State Breazeale Nuclear Reactor (PSBR)

    NASA Astrophysics Data System (ADS)

    Ucar, Dundar

    This study is for modeling and designing a new reactor core-moderator assembly and new neutron beam ports that aimed to expand utilization of a new beam hall of the Penn State Breazeale Reactor (PSBR). The PSBR is a part of the Radiation Science and Engineering Facility (RSEC) and is a TRIGA MARK III type research reactor with a movable core placed in a large pool and is capable to produce 1MW output. This reactor is a pool-type reactor with pulsing capability up to 2000 MW for 10-20 msec. There are seven beam ports currently installed to the reactor. The PSBR's existing core design limits the experimental capability of the facility, as only two of the seven available neutron beam ports are usable. The finalized design features an optimized result in light of the data obtained from neutronic and thermal-hydraulics analyses as well as geometrical constraints. A new core-moderator assembly was introduced to overcome the limitations of the existing PSBR design, specifically maximizing number of available neutron beam ports and mitigating the hydrogen gamma contamination of the neutron beam channeled in the beam ports. A crescent-shaped moderator is favored in the new PSBR design since it enables simultaneous use of five new neutron beam ports in the facility. Furthermore, the crescent shape sanctions a coupling of the core and moderator, which reduces the hydrogen gamma contamination significantly in the new beam ports. A coupled MURE and MCNP5 code optimization analysis was performed to calculate the optimum design parameters for the new PSBR. Thermal-hydraulics analysis of the new design was achieved using ANSYS Fluent CFD code. In the current form, the PSBR is cooled by natural convection of the pool water. The driving force for the natural circulation of the fluid is the heat generation within the fuel rods. The convective heat data was generated at the reactor's different operating powers by using TRIGSIMS, the fuel management code of the PSBR core. In the CFD

  5. Boron neutron capture therapy (BNCT): implications of neutron beam and boron compound characteristics.

    PubMed

    Wheeler, F J; Nigg, D W; Capala, J; Watkins, P R; Vroegindeweij, C; Auterinen, I; Seppälä, T; Bleuel, D

    1999-07-01

    The potential efficacy of boron neutron capture therapy (BNCT) for malignant glioma is a significant function of epithermal-neutron beam biophysical characteristics as well as boron compound biodistribution characteristics. Monte Carlo analyses were performed to evaluate the relative significance of these factors on theoretical tumor control using a standard model. The existing, well-characterized epithermal-neutron sources at the Brookhaven Medical Research Reactor (BMRR), the Petten High Flux Reactor (HFR), and the Finnish Research Reactor (FiR-1) were compared. Results for a realistic accelerator design by the E. O. Lawrence Berkeley National Laboratory (LBL) are also compared. Also the characteristics of the compound p-Boronophenylaline Fructose (BPA-F) and a hypothetical next-generation compound were used in a comparison of the BMRR and a hypothetical improved reactor. All components of dose induced by an external epithermal-neutron beam fall off quite rapidly with depth in tissue. Delivery of dose to greater depths is limited by the healthy-tissue tolerance and a reduction in the hydrogen-recoil and incident gamma dose allow for longer irradiation and greater dose at a depth. Dose at depth can also be increased with a beam that has higher neutron energy (without too high a recoil dose) and a more forward peaked angular distribution. Of the existing facilities, the FiR-1 beam has the better quality (lower hydrogen-recoil and incident gamma dose) and a penetrating neutron spectrum and was found to deliver a higher value of Tumor Control Probability (TCP) than other existing beams at shallow depth. The greater forwardness and penetration of the HFR the FiR-1 at greater depths. The hypothetical reactor and accelerator beams outperform at both shallow and greater depths. In all cases, the hypothetical compound provides a significant improvement in efficacy but it is shown that the full benefit of improved compound is not realized until the neutron beam is fully

  6. Determining the wavelength spectrum of neutrons on the NG6 beam line at NCNR

    NASA Astrophysics Data System (ADS)

    Ivanov, Juliet

    2016-09-01

    Historically, in-beam experiments and bottle experiments have been performed to determine the lifetime of a free neutron. However, these two different experimental techniques have provided conflicting results. It is crucial to precisely and accurately elucidate the neutron lifetime for Big Bang Nucleosynthesis calculations and to investigate physics beyond the Standard Model. Therefore, we aimed to understand and minimize systematic errors present in the neutron beam experiment at the NIST Center for Neutron Research (NCNR). In order to reduce the uncertainty related to wavelength dependent corrections present in previous beam experiments, the wavelength spectrum of the NCNR reactor cold neutron beam must be known. We utilized a beam chopper and lithium detector to characterize the wavelength spectrum on the NG6 beam line at the NCNR. The experimental design and techniques employed will be discussed, and our results will be presented. Future plans to utilize our findings to improve the neutron lifetime measurement at NCNR will also be described.

  7. BL3: A Next Generation Beam Neutron Lifetime Experiment

    NASA Astrophysics Data System (ADS)

    Wietfeldt, F. E.; Fomin, N.; Greene, G. L.; Snow, W. M.; Liu, C.-Y.; Crawford, C. B.; Korsch, W.; Plaster, B.; Jones, G. L.; Collett, B.; Dewey, M. S.

    2016-09-01

    BL3 (Beam Lifetime 3) is a proposed next generation neutron lifetime experiment using the beam method. It continues a program, spanning more than three decades, of experiments at the ILL (France) and the NIST Center for Neutron Research that achieved the most precise beam method neutron lifetime measurements to date. A collimated cold neutron beam passes through a quasi-Penning trap where recoil protons from neutron decay are trapped. Periodically the trap is opened and these protons follow a bend in the magnetic field to a silicon detector. The same neutron beam passes through a thin-foil neutron counter that measures the neutron density. The ratio of neutron and proton count rates, along with efficiency factors, gives the neutron lifetime. The main goal of BL3 is to thoroughly investigate and test systematic effects in the beam method in an effort to address the current 4 σ discrepancy between the beam and bottle methods. It will employ a much larger, higher flux neutron beam, a large area position-sensitive proton detector, and an improved magnet design, with a proton trapping rate 100 times higher than past experiments. National Science Foundation, U.S. Dept. of Energy Office of Science.

  8. Computer dosimetry for flattened and wedged fast-neutron beams.

    PubMed

    Hogstrom, K R; Smith, A R; Almond, P R; Otte, V A; Smathers, J B

    1976-01-01

    Beam flattening by the use of polyethylene filters has been developed for the 50-MeV d in equilibrium Be fast-neutron therapy beam at the Texas A&M Variable-Energy Cyclotron (TAMVEC) as a result of the need for a more uniform dose distribution at depth within the patient. A computer algorithm has been developed that allows the use of a modified decrement line method to calculate dose distributions; standards decrement line methods do not apply because of off-axis peaking. The dose distributions for measured flattened beams are transformed into distributions that are physically equivalent to an unflattened distribution. In the transformed space, standard decrement line theory yields a distribution for any field size which, by applying the inverse transformation, generates the flattened dose distribution, including the off-axis peaking. A semiempirical model has been constructed that allows the calculation of dose distributions for wedged beams from open-beam data.

  9. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    SciTech Connect

    Burns, Jr., Thomas Dean

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 x 108 n/cm2 • s. The fast neutron and gamma radiation KERMA factors are 10 x 10-11cGy•cm2/nepi and 20 x 10-11 cGy•cm2/nepi , respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power.

  10. Neutronics Assessments for a RIA Fragmentation Line Beam Dump Concept

    SciTech Connect

    Boles, J L; Reyes, S; Ahle, L E; Stein, W

    2005-05-13

    Heavy ion and radiation transport calculations are in progress for conceptual beam dump designs for the fragmentation line of the proposed Rare Isotope Accelerator (RIA). Using the computer code PHITS, a preliminary design of a motor-driven rotating wheel beam dump and adjacent downstream multipole has been modeled. Selected results of these calculations are given, including neutron and proton flux in the wheel, absorbed dose and displacements per atom in the hub materials, and heating from prompt radiation and from decay heat in the multipole.

  11. Prediction of In-Phantom Dose Distribution Using In-Air Neutron Beam Characteristics for Boron Neutron Capture Synovectomy

    SciTech Connect

    Verbeke, Jerome M.; Chen, Allen S.; Vujic, Jasmina L.; Leung, Ka-Ngo

    2000-08-15

    A monoenergetic neutron beam simulation study was carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints such as knees and fingers. This study focuses on human knee joints. Two figures of merit are used to measure the neutron beam quality, the ratio of the synovium-absorbed dose to the skin-absorbed dose, and the ratio of the synovium-absorbed dose to the bone-absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment and that (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce the particle transport simulation time by a factor of 10 by modeling the moderator only.

  12. Beamed neutron emission driven by laser accelerated light ions

    NASA Astrophysics Data System (ADS)

    Kar, S.; Green, A.; Ahmed, H.; Alejo, A.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; Mirfayzi, S. R.; McKenna, P.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.

    2016-05-01

    Highly anisotropic, beam-like neutron emission with peak flux of the order of 109 n/sr was obtained from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by a sub-petawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of ˜ 70^\\circ , with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)1H and d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles is most likely related to the directionality and high energy of the projectile ions.

  13. Development and construction of a neutron beam line for accelerator-based boron neutron capture synovectomy.

    PubMed

    Gierga, D P; Yanch, J C; Shefer, R E

    2000-01-01

    A potential application of the 10B(n, alpha)7Li nuclear reaction for the treatment of rheumatoid arthritis, termed Boron Neutron Capture Synovectomy (BNCS), is under investigation. In an arthritic joint, the synovial lining becomes inflamed and is a source of great pain and discomfort for the afflicted patient. The goal of BNCS is to ablate the synovium, thereby eliminating the symptoms of the arthritis. A BNCS treatment would consist of an intra-articular injection of boron followed by neutron irradiation of the joint. Monte Carlo radiation transport calculations have been used to develop an accelerator-based epithermal neutron beam line for BNCS treatments. The model includes a moderator/reflector assembly, neutron producing target, target cooling system, and arthritic joint phantom. Single and parallel opposed beam irradiations have been modeled for the human knee, human finger, and rabbit knee joints. Additional reflectors, placed to the side and back of the joint, have been added to the model and have been shown to improve treatment times and skin doses by about a factor of 2. Several neutron-producing charged particle reactions have been examined for BNCS, including the 9Be(p,n) reaction at proton energies of 4 and 3.7 MeV, the 9Be(d,n) reaction at deuteron energies of 1.5 and 2.6 MeV, and the 7Li(p,n) reaction at a proton energy of 2.5 MeV. For an accelerator beam current of 1 mA and synovial boron uptake of 1000 ppm, the time to deliver a therapy dose of 10,000 RBEcGy ranges from 3 to 48 min, depending on the treated joint and the neutron producing charged particle reaction. The whole-body effective dose that a human would incur during a knee treatment has been estimated to be 3.6 rem or 0.75 rem, for 1000 ppm or 19,000 ppm synovial boron uptake, respectively, although the shielding configuration has not yet been optimized. The Monte Carlo design process culminated in the construction, installation, and testing of a dedicated BNCS beam line on the high

  14. Neutron micro-beam design simulation by Monte Carlo

    NASA Astrophysics Data System (ADS)

    Pazirandeh, Ali; Taheri, Ali

    2007-09-01

    Over the last two decades neutron micro-beam has increasingly been developing in view of various applications in molecular activation analysis, micro-radiography in space and aviation and in radiation induced bystander effects in bio-cells. In this paper the structure and simulation of a neutron micro-beam is presented. The collimator for micro-beam is made of a polyethylene cylinder with a small hole along the centerline of the cylinder. The hole is filled with very thin needles in triangular or rectangular arrangement. The neutron source was reactor neutrons or a spontaneous Cf-252 neutron source falling on the top side of the collimator. The outgoing thermal and epithermal neutron fluxes were calculated.

  15. A High Count Rate Neutron Beam Monitor for Neutron Scattering Facilities

    SciTech Connect

    Barnett, Amanda; Crow, Lowell; Diawara, Yacouba; Hayward, J P; Hayward, Jason P; Menhard, Kocsis; Sedov, Vladislav N; Funk, Loren L

    2013-01-01

    Abstract Beam monitors are an important diagnostic tool in neutron science facilities. Present beam monitors use either ionization chambers in integration mode, which are slow and have no timing information, or pulse counters which can easily be saturated by high beam intensities. At high flux neutron scattering facilities, neutron beam monitors with very low intrinsic efficiency (10-5) are presently selected to keep the counting rate within a feasible range, even when a higher efficiency would improve the counting statistics and yield a better measurement of the incident beam. In this work, we report on a high count rate neutron beam monitor. This beam monitor offers good timing with an intrinsic efficiency of 10-3 and a counting rate capability of over 1,000,000 cps without saturation.

  16. Physics with Ultracold and Thermal Neutron Beams

    SciTech Connect

    Steyerl, Albert

    2004-08-10

    This project has been focused on a measurement of the mean lifetime {tau}{sub n} of the free neutron with a precision better than 0.1%. The neutron {beta}-decay n {yields} p + e{sup -} + {bar {nu}}{sub e} + 783 keV into a proton, electron and electron antineutrino is the prototype semi-leptonic weak decay, involving both leptons and hadrons in the first generation of elementary particles. Within the standard V-A theory of weak interaction, it is governed by only two constants: the vector coupling constant g{sub V}, and axial vector constant g{sub A}. The neutron lifetime has been measured many times over decades, and the present (2004) world-average, {tau}{sub n} = 885.7 {+-} 0.8 s, has a weighted error of {approx}0.1% while individual uncertainties are typically 2-10 seconds for high precision data. The highest precision claimed by an individual measurement is {approx}0.15%. An improvement is required to resolve issues of the Standard Model of the electro-weak interaction as well as of astrophysics and of Big Bang theories. The focus in astrophysics is the solar neutrino deficit problem, which requires a precise value of g{sub A}. Big Bang theories require a precise {tau}{sub n}-value to understand the primordial He/H ratio. The strong interest of particle physicists in {tau}{sub n} is mainly based on a possible difficulty with the Cabibbo Kobayashi Maskawa (CKM) matrix, which describes the mixing of quark mass states by the weak interaction. Nuclear, neutron, and pion decay data, probing the mixing amplitude V{sub ud} within the first quark generation, in combination with K and B meson decay data, which probe the second and third generation (V{sub us} and V{sub ub}), indicate a departure from the unitarity demanded by all gauge-invariant theories. The deviation of the first-row sum |V{sub ud}|{sup 2} + |V{sub us}|{sup 2} + |V{sub ub}|{sup 2} from unity is on the 2.3 sigma level. Including a new value for V{sub us} would remove the discrepancy; but the authors of

  17. A neutron diagnostic for high current deuterium beams

    SciTech Connect

    Rebai, M.; Perelli Cippo, E.; Cavenago, M.; Dalla Palma, M.; Pasqualotto, R.; Tollin, M.; Croci, G.; Gervasini, G.; Ghezzi, F.; Grosso, G.; Tardocchi, M.; Murtas, F.; Gorini, G.

    2012-02-15

    A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thin polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45 deg. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.

  18. Beam extraction and delivery at compact neutron sources

    NASA Astrophysics Data System (ADS)

    Mezei, F.

    2016-11-01

    The beam performance of a source of radiation is primarily characterized by its brightness, which remains constant in a conservative force field along the propagation of the beam. The neutron flux at an area with direct view to a homogenous radiation emitting moderator surface will just depend on the solid angle of beam divergence as determined by the moderator size. Recently it was found that by reducing the size of neutron moderators their brightness can be enhanced by a factor in the range of up to 3-6. In direct view of such moderators from sizable distances often required in neutron scattering applications the beam divergence will become reduced. Supermirror based neutron optical guide systems allow us to deliver neutron beam divergences independently of distance from the source. Due to the low radiation fields at compact sources such systems can be placed close to the neutron emitting moderators, a specific advantage and a new design feature. Focusing type neutron guides with phase space acceptance properly matched to the phase space to be delivered over distance can provide for beam delivery with small losses of brightness within a convenient and flexible range of beam parameters.

  19. SU-E-T-168: Characterization of Neutrons From the TrueBeam Treatment Head

    SciTech Connect

    Sawkey, D; Svatos, M

    2015-06-15

    Purpose: Calculate neutron production and transport in the TrueBeam treatment head, as input for vault design and phantom dose calculations. Methods: A detailed model of the treatment head, including shielding components off the beam axis, was created from manufacturer’s engineering drawings. Simulations were done with Geant4 for the 18X, 15X, 10X and 10FFF beams, tuned to match measured dose distributions inside the treatment field. Particles were recorded on a 70 cm radius sphere surrounding the treatment head enabling input into simulations of vaults. Results: For the 18X beam, 11×10{sup 9} neutrons/MU were observed. The energy spectrum was a broad peak with average energy 0.37 MeV. With jaws closed, 48% of the neutrons were generated in the primary collimator, 18% in the jaws, 12% in the target, and 10% in the flattening filter. With wide open jaws, few neutrons were produced in the jaws and consequently total neutron production dropped to 8.5×10{sup 9} neutrons/MU. Angular distributions were greatest along the beam axis (12×10{sup 9} neutrons/MU/sr, within 2 deg of the beam axis) and antiparallel to the beam axis (7×10{sup 9} neutrons/MU/sr). Peaks were observed in the neutron energy spectrum, corresponding to elastic scattering resonances in the shielding materials. Neutron production was lower for the other beams studied: 4.1×10{sup 9} neutrons/MU for 15X, 0.38×10{sup 9} neutrons/MU for 10X, and 0.22×10{sup 9} neutrons/MU for 10FFF. Despite dissimilar treatment head geometries and materials, the neutron production and energy spectrum were similar to those reported for Clinac accelerators. Conclusion: Detailed neutron production and leakage calculations for the TrueBeam treatment head were done. Unlike other studies, results are independent of the surrounding vault, enabling vault design calculations.

  20. A multipurpose fast neutron beam capability at the MASURCA facility

    SciTech Connect

    Dioni, Luca; Stout, Brian

    2015-07-01

    In this paper we investigate the possible future use of the CEA Cadarache MASURCA experimental fast reactor to generate a fairly high-intensity continuous beam of fast neutrons, having energies distributed in the 1 KeV to 5 MeV range. Such an extracted beam of fast neutrons, tailorable in intensity, size and energy, would be rather unique; it would be of interest to neutron-based research and could open a range of new applications at MASURCA. We report the results of numerical simulations which have been performed to evaluate the feasibility of such a beam port and to characterize it spectrally. (authors)

  1. Enhancing Neutron Beam Production with a Convoluted Moderator

    SciTech Connect

    Iverson, Erik B; Baxter, David V; Muhrer, Guenter; Ansell, Stuart; Gallmeier, Franz X; Dalgliesh, Robert; Lu, Wei; Kaiser, Helmut

    2014-10-01

    We describe a new concept for a neutron moderating assembly resulting in the more efficient production of slow neutron beams. The Convoluted Moderator, a heterogeneous stack of interleaved moderating material and nearly transparent single-crystal spacers, is a directionally-enhanced neutron beam source, improving beam effectiveness over an angular range comparable to the range accepted by neutron beam lines and guides. We have demonstrated gains of 50% in slow neutron intensity for a given fast neutron production rate while simultaneously reducing the wavelength-dependent emission time dispersion by 25%, both coming from a geometric effect in which the neutron beam lines view a large surface area of moderating material in a relatively small volume. Additionally, we have confirmed a Bragg-enhancement effect arising from coherent scattering within the single-crystal spacers. We have not observed hypothesized refractive effects leading to additional gains at long wavelength. In addition to confirmation of the validity of the Convoluted Moderator concept, our measurements provide a series of benchmark experiments suitable for developing simulation and analysis techniques for practical optimization and eventual implementation at slow neutron source facilities.

  2. Measuring the free neutron lifetime to <= 0.3s via the beam method

    NASA Astrophysics Data System (ADS)

    Fomin, Nadia; Mulholland, Jonathan

    2015-04-01

    Neutron beta decay is an archetype for all semi-leptonic charged-current weak processes. A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is needed to predict the primordial 4 He abundance from the theory of Big Bang Nucleosynthesis. An effort has begun for an in-beam measurement of the neutron lifetime with an projected <=0.3s uncertainty. This effort is part of a phased campaign of neutron lifetime measurements based at the NIST Center for Neutron Research, using the Sussex-ILL-NIST technique. Recent advances in neutron fluence measurement techniques as well as new large area silicon detector technology address the two largest sources of uncertainty of in-beam measurements, paving the way for a new measurement. The experimental design and projected uncertainties for the 0.3s measurement will be discussed. This work is supported by the DOE office of Science, NIST and NSF.

  3. A toolkit for epithermal neutron beam characterisation in BNCT.

    PubMed

    Auterinen, Iiro; Serén, Tom; Uusi-Simola, Jouni; Kosunen, Antti; Savolainen, Sauli

    2004-01-01

    Methods for dosimetry of epithermal neutron beams used in boron neutron capture therapy (BNCT) have been developed and utilised within the Finnish BNCT project as well as within a European project for a code of practise for the dosimetry of BNCT. One outcome has been a travelling toolkit for BNCT dosimetry. It consists of activation detectors and ionisation chambers. The free-beam neutron spectrum is measured with a set of activation foils of different isotopes irradiated both in a Cd-capsule and without it. Neutron flux (thermal and epithermal) distribution in phantoms is measured using activation of Mn and Au foils, and Cu wire. Ionisation chamber (IC) measurements are performed both in-free-beam and in-phantom for determination of the neutron and gamma dose components. This toolkit has also been used at other BNCT facilities in Europe, the USA, Argentina and Japan.

  4. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    SciTech Connect

    Verbeke, Jerome M.

    1999-12-14

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only.

  5. New analytical approach for neutron beam-hardening correction.

    PubMed

    Hachouf, N; Kharfi, F; Hachouf, M; Boucenna, A

    2016-01-01

    In neutron imaging, the beam-hardening effect has a significant effect on quantitative and qualitative image interpretation. This study aims to propose a linearization method for beam-hardening correction. The proposed method is based on a new analytical approach establishing the attenuation coefficient as a function of neutron energy. Spectrum energy shift due to beam hardening is studied on the basis of Monte Carlo N-Particle (MCNP) simulated data and the analytical data. Good agreement between MCNP and analytical values has been found. Indeed, the beam-hardening effect is well supported in the proposed method. A correction procedure is developed to correct the errors of beam-hardening effect in neutron transmission, and therefore for projection data correction. The effectiveness of this procedure is determined by its application in correcting reconstructed images.

  6. Generation of high-energy neutron beam by fragmentation of relativistic heavy nuclei

    NASA Astrophysics Data System (ADS)

    Yurevich, Vladimir

    2016-09-01

    The phenomenon of multiple production of neutrons in reactions with heavy nuclei induced by high-energy protons and light nuclei is analyzed using a Moving Source Model. The Lorentz transformation of the obtained neutron distributions is used to study the neutron characteristics in the inverse kinematics where relativistic heavy nuclei bombard a light-mass target. The neutron beam generated at 0∘has a Gaussian shape with a maximum at the energy of the projectile nucleons and an energy resolution σE/E < 4% above 6 GeV.

  7. Neutron depth profiling of elemental concentration using a focused beam

    NASA Astrophysics Data System (ADS)

    Chen-Mayer, Huaiyu H.; Lamaze, G. P.; Mildner, David F. R.; Downing, Robert G.

    1997-02-01

    Neutron Depth Profiling (NDP) is a nondestructive analytical technique for measuring the concentration of certain light elements as a function of depth near the surface of a solid matrix. The concentration profile is determined by analyzing the energy spectrum of the charged particles emitted as a result of neutron capture by the elements. The measurement sensitivity is directly proportional to the neutron beam current density. A more intense neutron beam achieved by focusing improves sensitivity for specimens of small area. In addition, a narrowly focused beam adds lateral spatial resolution to the technique, which is advantageous compared with that obtained by collimating the beam size using apertures. Capillary neutron lenses have been shown to focus a neutron beam to sub-millimeter spot size. Preliminary tests have been performed in the NDP geometry using such a focusing device. A lateral resolution in the sub-millimeter range is demonstrated by a specimen of non-uniform lateral distribution composed of a row of borosilicate glass fibers.

  8. The Spallation Neutron Source Beam Commissioning and Initial Operations

    SciTech Connect

    Henderson, Stuart; Aleksandrov, Alexander V.; Allen, Christopher K.; Assadi, Saeed; Bartoski, Dirk; Blokland, Willem; Casagrande, F.; Campisi, I.; Chu, C.; Cousineau, Sarah M.; Crofford, Mark T.; Danilov, Viatcheslav; Deibele, Craig E.; Dodson, George W.; Feshenko, A.; Galambos, John D.; Han, Baoxi; Hardek, T.; Holmes, Jeffrey A.; Holtkamp, N.; Howell, Matthew P.; Jeon, D.; Kang, Yoon W.; Kasemir, Kay; Kim, Sang-Ho; Kravchuk, L.; Long, Cary D.; McManamy, T.; Pelaia, II, Tom; Piller, Chip; Plum, Michael A.; Pogge, James R.; Purcell, John David; Shea, T.; Shishlo, Andrei P; Sibley, C.; Stockli, Martin P.; Stout, D.; Tanke, E.; Welton, Robert F; Zhang, Y.; Zhukov, Alexander P

    2015-09-01

    The Spallation Neutron Source (SNS) accelerator delivers a one mega-Watt beam to a mercury target to produce neutrons used for neutron scattering materials research. It delivers ~ 1 GeV protons in short (< 1 us) pulses at 60 Hz. At an average power of ~ one mega-Watt, it is the highest-powered pulsed proton accelerator. The accelerator includes the first use of superconducting RF acceleration for a pulsed protons at this energy. The storage ring used to create the short time structure has record peak particle per pulse intensity. Beam commissioning took place in a staged manner during the construction phase of SNS. After the construction, neutron production operations began within a few months, and one mega-Watt operation was achieved within three years. The methods used to commission the beam and the experiences during initial operation are discussed.

  9. Ion Beam Analysis of Targets Used in Controlatron Neutron Generators

    SciTech Connect

    Banks, James C.; Doyle, Barney L.; Walla, Lisa A.; Walsh, David S.

    2009-03-10

    Controlatron neutron generators are used for testing neutron detection systems at Sandia National Laboratories. To provide for increased tube lifetimes for the moderate neutron flux output of these generators, metal hydride (ZrT{sub 2}) target fabrication processes have been developed. To provide for manufacturing quality control of these targets, ion beam analysis techniques are used to determine film composition. The load ratios (i.e. T/Zr concentration ratios) of ZrT{sub 2} Controlatron neutron generator targets have been successfully measured by simultaneously acquiring RBS and ERD data using a He{sup ++} beam energy of 10 MeV. Several targets were measured and the film thicknesses obtained from RBS measurements agreed within {+-}2% with Dektak profilometer measurements. The target fabrication process and ion beam analysis techniques will be presented.

  10. Fast neutron beams--prospects for the coming decade.

    PubMed

    Blomgren, J

    2007-01-01

    The present status of neutron beam production techniques above 20 MeV is discussed. Presently, two main methods are used; white beams and quasi-monoenergetic beams. The performances of these two techniques are discussed, as well as the use of such facilities for measurements of nuclear data for fundamental and applied research. Recently, two novel ideas on how to produce extremely intense neutron beams in the 100-500 MeV range have been proposed. Decay in flight of beta delayed neutron-emitting nuclei could provide beam intensities five orders of magnitudes larger than present facilities. A typical neutron energy spectrum would be essentially monoenergetic, i.e., the energy spread is about 1 MeV with essentially no low-energy tail. A second option would be to produce beams of (6)He and dissociate the (6)He nuclei into alpha particles and neutrons. The basic features of these concepts are outlined, and the potential for improved nuclear data research is discussed.

  11. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    NASA Astrophysics Data System (ADS)

    Čufar, Aljaž; Batistoni, Paola; Conroy, Sean; Ghani, Zamir; Lengar, Igor; Milocco, Alberto; Packer, Lee; Pillon, Mario; Popovichev, Sergey; Snoj, Luka

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium-tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle-energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  12. Epithermal neutron beams from the 7 Li(p,n) reaction near the threshold for neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Porras, I.; Praena, J.; Arias de Saavedra, F.; Pedrosa, M.; Esquinas, P.; L. Jiménez-Bonilla, P.

    2016-11-01

    Two applications for neutron capture therapy of epithermal neutron beams calculated from the 7Li ( p , n reaction are discussed. In particular, i) for a proton beam of 1920 keV of a 30 mA, a neutron beam of adequate features for BNCT is found at an angle of 80° from the forward direction; and ii) for a proton beam of 1910 keV, a neutron beam is obtained at the forward direction suitable for performing radiobiology experiments for the determination of the biological weighting factors of the fast dose component in neutron capture therapy.

  13. BEAM LOSS MITIGATION IN THE OAK RIDGE SPALLATION NEUTRON SOURCE

    SciTech Connect

    Plum, Michael A

    2012-01-01

    The Oak Ridge Spallation Neutron Source (SNS) accelerator complex routinely delivers 1 MW of beam power to the spallation target. Due to this high beam power, understanding and minimizing the beam loss is an ongoing focus area of the accelerator physics program. In some areas of the accelerator facility the equipment parameters corresponding to the minimum loss are very different from the design parameters. In this presentation we will summarize the SNS beam loss measurements, the methods used to minimize the beam loss, and compare the design vs. the loss-minimized equipment parameters.

  14. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE

    NASA Astrophysics Data System (ADS)

    Schneider, Uwe; Hälg, Roger A.; Baiocco, Giorgio; Lomax, Tony

    2016-08-01

    The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has

  15. Dose homogeneity in boron neutron capture therapy using an epithermal neutron beam.

    PubMed

    Konijnenberg, M W; Dewit, L G; Mijnheer, B J; Raaijmakers, C P; Watkins, P R

    1995-06-01

    Simulation models based on the neutron and photon Monte Carlo code MCNP were used to study the therapeutic possibilities of the HB11 epithermal neutron beam at the High Flux Reactor in Petten. Irradiations were simulated in two types of phantoms filled with water or tissue-equivalent material for benchmark treatment planning calculations. In a cuboid phantom the influence of different field sizes on the thermal-neutron-induced dose distribution was investigated. Various shapes of collimators were studied to test their efficacy in optimizing the thermal-neutron distribution over a planning target volume and healthy tissues. Using circular collimators of 8, 12 and 15 cm diameter it was shown that with the 15-cm field a relatively larger volume within 85% of the maximum neutron-induced dose was obtained than with the 8- or 12-cm-diameter field. However, even for this large field the maximum diameter of this volume was 7.5 cm. In an ellipsoid head phantom the neutron-induced dose was calculated assuming the skull to contain 10 ppm 10B, the brain 5 ppm 10B and the tumor 30 ppm 10B. It was found that with a single 15-cm-diameter circular beam a very inhomogenous dose distribution in a typical target volume was obtained. Applying two equally weighted opposing 15-cm-diameter fields, however, a dose homogeneity within +/- 10% in this planning target volume was obtained. The dose in the surrounding healthy brain tissue is 30% at maximum of the dose in the center of the target volume. Contrary to the situation for the 8-cm field, combining four fields of 15 cm diameter gave no large improvement of the dose homogeneity over the target volume or a lower maximum dose in the healthy brain. Dose-volume histograms were evaluated for the planning target volume as well as for the healthy brain to compare different irradiation techniques, yielding a graphical confirmation of the above conclusions. Therapy with BNCT on brain tumors must be performed either with an 8-cm four

  16. BEAM INSTRUMENTATION FOR THE SPALLATION NEUTRON SOURCE RING.

    SciTech Connect

    WITKOVER,R.L.; CAMERON,P.R.; SHEA,T.J.; CONNOLLY,R.C.; KESSELMAN,M.

    1999-03-29

    The Spallation Neutron Source (SNS) will be constructed by a multi-laboratory collaboration with BNL responsible for the transfer lines and ring. [1] The 1 MW beam power necessitates careful monitoring to minimize un-controlled loss. This high beam power will influence the design of the monitors in the high energy beam transport line (HEBT) from linac to ring, in the ring, and in the ring-to-target transfer line (RTBT). The ring instrumentation must cover a 3-decade range of beam intensity during accumulation. Beam loss monitoring will be especially critical since un-controlled beam loss must be kept below 10{sup -4}. A Beam-In-Gap (BIG) monitor is being designed to assure out-of-bucket beam will not be lost in the ring.

  17. Working group session report: Neutron beam line shielding.

    SciTech Connect

    Russell, G. J.; Ikedo, Y.

    2001-01-01

    We have examined the differences between a 2-D model and a 3-D model for designing the beam-line shield for the HIPPO instrument at the Lujan Center at the Los Alamos National Laboratory. We have calculated the total (neutron and gamma ray) dose equivalent rate coming out of the personal access ports from the HIPPO instrument experiment cave. In order to answer this question, we have investigated two possible worst-case scenarios: (a) failure of the T{sub 0}-chopper and no sample at the sample position; and (b) failure of the T{sub 0}-chopper with a thick sample (a piece of Inconel-718, 10 cm diam by 30 cm long) at the sample position.

  18. Evaluation of an iron-filtered epithermal neutron beam for neutron-capture therapy.

    PubMed

    Musolino, S V; McGinley, P H; Greenwood, R C; Kliauga, P; Fairchild, R G

    1991-01-01

    An epithermal neutron filter using iron, aluminum, and sulfur was evaluated to determine if the therapeutic performance could be improved with respect to aluminum-sulfur-based filters. An empirically optimized filter was developed that delivered a 93% pure beam of 24-keV epithermal neutrons. It was expected that a thick filter using iron with a density thickness greater than 200 g/cm2 would eliminate the excess gamma contamination found in Al-S filters. This research showed that prompt gamma production from neutron interactions in iron was the dominant dose component. Dosimetric parameters of the beam were determined from the measurement of absorbed dose in air, thermal neutron flux in a head phantom, neutron and gamma spectroscopy, and microdosimetry.

  19. Effects On Beam Alignment Due To Neutron-Irradiated CCD Images At The National Ignition Facility

    SciTech Connect

    Awwal, A; Manuel, A; Datte, P; Burkhart, S

    2011-02-28

    The 192 laser beams in the National Ignition Facility (NIF) are automatically aligned to the target-chamber center using images obtained through charged coupled device (CCD) cameras. Several of these cameras are in and around the target chamber during an experiment. Current experiments for the National Ignition Campaign are attempting to achieve nuclear fusion. Neutron yields from these high energy fusion shots expose the alignment cameras to neutron radiation. The present work explores modeling and predicting laser alignment performance degradation due to neutron radiation effects, and demonstrates techniques to mitigate performance degradation. Camera performance models have been created based on the measured camera noise from the cumulative single-shot fluence at the camera location. We have found that the effect of the neutron-generated noise for all shots to date have been well within the alignment tolerance of half a pixel, and image processing techniques can be utilized to reduce the effect even further on the beam alignment.

  20. Secondary Neutron Doses for Several Beam Configurations for Proton Therapy

    SciTech Connect

    Shin, Dongho; Yoon, Myonggeun; Kwak, Jungwon; Shin, Jungwook; Lee, Se Byeong Park, Sung Yong; Park, Soah; Kim, Dae Yong; Cho, Kwan Ho

    2009-05-01

    Purpose: To compare possible neutron doses produced in scanning and scattering modes, with the latter assessed using a newly built passive-scattering proton beam line. Methods and Materials: A 40 x 30.5 x 30-cm water phantom was irradiated with 230-MeV proton beams using a gantry angle of 270{sup o}, a 10-cm-diameter snout, and a brass aperture with a diameter of 7 cm and a thickness of 6.5 cm. The secondary neutron doses during irradiation were measured at various points using CR-39 detectors, and these measurements were cross-checked using a neutron survey meter with a 22-cm range and a 5-cm spread-out Bragg peak. Results: The maximum doses due to secondary neutrons produced by a scattering beam-delivery system were on the order of 0.152 mSv/Gy and 1.17 mSv/Gy at 50 cm from the beam isocenter in the longitudinal (0{sup o}) and perpendicular (90{sup o}) directions, respectively. The neutron dose equivalent to the proton absorbed dose, measured from 10 cm to 100 cm from the isocenter, ranged from 0.071 mSv/Gy to 1.96 mSv/Gy in the direction of the beam line (i.e., {phi} = 0 deg.). The largest neutron dose, of 3.88 mSv/Gy, was observed at 135{sup o} and 25 cm from the isocenter. Conclusions: Although the secondary neutron doses in proton therapy were higher when a scattering mode rather than a scanning mode was used, they did not exceed the scattered photon dose in typical photon treatments.

  1. Fluence and dose measurements for an accelerator neutron beam

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Byun, S. H.; McNeill, F. E.; Mothersill, C. E.; Seymour, C. B.; Prestwich, W. V.

    2007-10-01

    The 3 MV Van de Graaff accelerator at McMaster University accelerator laboratory is extended to a neutron irradiation facility for low-dose bystander effects research. A long counter and an Anderson-Braun type neutron monitor have been used as monitors for the determination of the total fluence. Activation foils were used to determine the thermal neutron fluence rate (around 106 neutrons s-1). Meanwhile, the interactions of neutrons with the monitors have been simulated using a Monte Carlo N Particle (MCNP) code. Bystander effects, i.e. damage occurring in cells that were not traversed by radiation but were in the same radiation environment, have been well observed following both alpha and gamma irradiation of many cell lines. Since neutron radiation involves mixed field (including gamma and neutron radiations), we need to differentiate the doses for the bystander effects from the two radiations. A tissue equivalent proportional counter (TEPC) filled with propane based tissue equivalent gas simulating a 2 μm diameter tissue sphere has been investigated to estimate the neutron and gamma absorbed doses. A photon dose contamination of the neutron beam is less than 3%. The axial dose distribution follows the inverse square law and lateral and vertical dose distributions are relatively uniform over the irradiation area required by the biological study.

  2. Neutron Generation from Laser-Accelerated Ion Beams: Use of Alternative Deuteron-Rich Targets for Improved Neutron Yield and Control of Neutron Spectra

    NASA Astrophysics Data System (ADS)

    Albright, B. J.; Yin, L.; Favalli, A.

    2016-10-01

    Laser-ion-beam generation in the break-out afterburner (BOA) acceleration regime has been modeled for several deuteron-rich solid-density targets using the VPIC particle-in-cell code. Monte Carlo modeling of the transport of these beams in a beryllium converter in a pitcher-catcher neutron source configuration shows significant increases in neutron yields may be achievable through judicious choices of laser target material. Additionally, species-separation dynamics in some target materials during the BOA ion acceleration phase can be exploited to control the shapes of the neutron spectra. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Los Alamos National Laboratory Directed Research and Development Program.

  3. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G.

    2012-06-19

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  4. Fluence-to-absorbed-dose conversion coefficients for neutron beams from 0.001 eV to 100 GeV calculated for a set of pregnant female and fetus models

    NASA Astrophysics Data System (ADS)

    Taranenko, Valery; Xu, X. George

    2008-03-01

    Protection of fetuses against external neutron exposure is an important task. This paper reports a set of absorbed dose conversion coefficients for fetal and maternal organs for external neutron beams using the RPI-P pregnant female models and the MCNPX code. The newly developed pregnant female models represent an adult female with a fetus including its brain and skeleton at the end of each trimester. The organ masses were adjusted to match the reference values within 1%. For the 3 mm cubic voxel size, the models consist of 10-15 million voxels for 35 organs. External monoenergetic neutron beams of six standard configurations (AP, PA, LLAT, RLAT, ROT and ISO) and source energies 0.001 eV-100 GeV were considered. The results are compared with previous data that are based on simplified anatomical models. The differences in dose depend on source geometry, energy and gestation periods: from 20% up to 140% for the whole fetus, and up to 100% for the fetal brain. Anatomical differences are primarily responsible for the discrepancies in the organ doses. For the first time, the dependence of mother organ doses upon anatomical changes during pregnancy was studied. A maximum of 220% increase in dose was observed for the placenta in the nine months model compared to three months, whereas dose to the pancreas, small and large intestines decreases by 60% for the AP source for the same models. Tabulated dose conversion coefficients for the fetus and 27 maternal organs are provided.

  5. Neutron Beams from Deuteron Breakup at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory

    SciTech Connect

    McMahan, M.A.; Ahle, L.; Bleuel, D.L.; Bernstein, L.; Braquest, B.R.; Cerny, J.; Heilbronn, L.H.; Jewett, C.C.; Thompson, I.; Wilson, B.

    2007-07-31

    Accelerator-based neutron sources offer many advantages, in particular tunability of the neutron beam in energy and width to match the needs of the application. Using a recently constructed neutron beam line at the 88-Inch Cyclotron at LBNL, tunable high-intensity sources of quasi-monoenergetic and broad spectrum neutrons from deuteron breakup are under development for a variety of applications.

  6. Exploiting neutron-rich radioactive ion beams to constrain the symmetry energy

    NASA Astrophysics Data System (ADS)

    Kohley, Z.; Christian, G.; Baumann, T.; DeYoung, P. A.; Finck, J. E.; Frank, N.; Jones, M.; Smith, J. K.; Snyder, J.; Spyrou, A.; Thoennessen, M.

    2013-10-01

    The Modular Neutron Array (MoNA) and 4 Tm Sweeper magnet were used to measure the free neutrons and heavy charged particles from the radioactive ion beam induced 32Mg+9Be reaction. The fragmentation reaction was simulated with the constrained molecular dynamics model (CoMD), which demonstrated that the of the heavy fragments and free neutron multiplicities were observables sensitive to the density dependence of the symmetry energy at subsaturation densities. Through comparison of these simulations with the experimental data, constraints on the density dependence of the symmetry energy were extracted. The advantage of radioactive ion beams as a probe of the symmetry energy is demonstrated through examination of CoMD calculations for stable and radioactive-beam-induced reactions.

  7. Neutron spectra from beam-target reactions in dense Z-pinches

    SciTech Connect

    Appelbe, B. Chittenden, J.

    2015-10-15

    The energy spectrum of neutrons emitted by a range of deuterium and deuterium-tritium Z-pinch devices is investigated computationally using a hybrid kinetic-MHD model. 3D MHD simulations are used to model the implosion, stagnation, and break-up of dense plasma focus devices at currents of 70 kA, 500 kA, and 2 MA and also a 15 MA gas puff. Instabilities in the MHD simulations generate large electric and magnetic fields, which accelerate ions during the stagnation and break-up phases. A kinetic model is used to calculate the trajectories of these ions and the neutron spectra produced due to the interaction of these ions with the background plasma. It is found that these beam-target neutron spectra are sensitive to the electric and magnetic fields at stagnation resulting in significant differences in the spectra emitted by each device. Most notably, magnetization of the accelerated ions causes the beam-target spectra to be isotropic for the gas puff simulations. It is also shown that beam-target spectra can have a peak intensity located at a lower energy than the peak intensity of a thermonuclear spectrum. A number of other differences in the shapes of beam-target and thermonuclear spectra are also observed for each device. Finally, significant differences between the shapes of beam-target DD and DT neutron spectra, due to differences in the reaction cross-sections, are illustrated.

  8. Monte Carlo simulation of neutron noise effects on beam position determination at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Awwal, Abdul A. S.; Leach, Richard R.; Datte, Philip; Manuel, Anastacia

    2013-09-01

    Images obtained through charged coupled device (CCD) cameras in the National Ignition Facility (NIF) are crucial to precise alignment of the 192 laser beams to the NIF target-chamber center (TCC). Cameras in and around the target chamber are increasingly exposed to the effects of neutron radiation as the laser power is increased for high energy fusion experiments. NIF was carefully designed to operate under these conditions. The present work examines the degradation of the measured TCC camera position accuracy resulting from the effects of neutron radiation on the sensor and verifies operation within design specifications. Both synthetic and real beam images are used for measuring position degradation. Monte Carlo simulations based on camera performance models are used to create images with added neutron noise. These models predict neutron induced camera noise based on exposure estimates of the cumulative single-shot fluence in the NIF environment. The neutron induced noise images are used to measure beam positions on a target calculated from the alignment images with the added noise. The effects of this noise are also determined using noise artifacts from real camera images viewing TCC to estimate beam position uncertainty.

  9. How to polarise all neutrons in one beam: a high performance polariser and neutron transport system

    NASA Astrophysics Data System (ADS)

    Rodriguez, D. Martin; Bentley, P. M.; Pappas, C.

    2016-09-01

    Polarised neutron beams are used in disciplines as diverse as magnetism,soft matter or biology. However, most of these applications often suffer from low flux also because the existing neutron polarising methods imply the filtering of one of the spin states, with a transmission of 50% at maximum. With the purpose of using all neutrons that are usually discarded, we propose a system that splits them according to their polarisation, flips them to match the spin direction, and then focuses them at the sample. Monte Carlo (MC) simulations show that this is achievable over a wide wavelength range and with an outstanding performance at the price of a more divergent neutron beam at the sample position.

  10. Optimal Neutron Source & Beam Shaping Assembly for Boron Neutron Capture Therapy

    SciTech Connect

    J. Vujic; E. Greenspan; W.E. Kastenber; Y. Karni; D. Regev; J.M. Verbeke, K.N. Leung; D. Chivers; S. Guess; L. Kim; W. Waldron; Y. Zhu

    2003-04-30

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  11. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    PubMed

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values.

  12. Preliminary treatment planning and dosimetry for a clinical trial of neutron capture therapy using a fission converter epithermal neutron beam.

    PubMed

    Kiger, W S; Lu, X Q; Harling, O K; Riley, K J; Binns, P J; Kaplan, J; Patel, H; Zamenhof, R G; Shibata, Y; Kaplan, I D; Busse, P M; Palmer, M R

    2004-11-01

    A Phase I/II clinical trial of neutron capture therapy (NCT) was conducted at Harvard-MIT using a fission converter epithermal neutron beam. This epithermal neutron beam has nearly ideal performance characteristics (high intensity and purity) and is well-suited for clinical use. Six glioblastoma multiforme (GBM) patients were treated with NCT by infusion of the tumor-selective amino acid boronophenylalanine-fructose (BPA-F) at a dose of 14.0 g/m(2) body surface area over 90 min followed by irradiation with epithermal neutrons. Treatments were planned using NCTPlan and an accelerated version of the Monte Carlo radiation transport code MCNP 4B. Treatments were delivered in two fractions with two or three fields. Field order was reversed between fractions to equalize the average blood boron concentration between fields. The initial dose in the dose escalation study was 7.0 RBEGy, prescribed as the mean dose to the whole brain volume. This prescription dose was increased by 10% to 7.7 RBEGy in the second cohort of patients. A pharmacokinetic model was used to predict the blood boron concentration for determination of the required beam monitor units with good accuracy; differences between prescribed and delivered doses were 1.5% or less. Estimates of average tumor doses ranged from 33.7 to 83.4 RBEGy (median 57.8 RBEGy), a substantial improvement over our previous trial where the median value of the average tumor dose was 25.8 RBEGy.

  13. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    NASA Astrophysics Data System (ADS)

    Arimoto, Y.; Higashi, N.; Igarashi, Y.; Iwashita, Y.; Ino, T.; Katayama, R.; Kitaguchi, M.; Kitahara, R.; Matsumura, H.; Mishima, K.; Nagakura, N.; Oide, H.; Otono, H.; Sakakibara, R.; Shima, T.; Shimizu, H. M.; Sugino, T.; Sumi, N.; Sumino, H.; Taketani, K.; Tanaka, G.; Tanaka, M.; Tauchi, K.; Toyoda, A.; Tomita, T.; Yamada, T.; Yamashita, S.; Yokoyama, H.; Yoshioka, T.

    2015-11-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with 6Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  14. Characteristics of proton beams and secondary neutrons arising from two different beam nozzles

    NASA Astrophysics Data System (ADS)

    Choi, Yeon-Gyeong; Kim, Yu-Seok

    2015-10-01

    A tandem or a Van de Graaff accelerator with an energy of 3 MeV is typically used for Proton Induced X-ray Emission (PIXE) analysis. In this study, the beam line design used in the PIXE analysis, instead of the typical low-energy accelerator, was used to increase the production of isotopes from a 13-MeV cyclotron. For the PIXE analysis, the proton beam should be focused at the target through a nozzle after degrading the proton beams energy from 13 MeV to 3 MeV by using an energy degrader. Previous studies have been conducted to determine the most appropriate material for and the thickness of the energy degrader. From the energy distribution of the degraded proton beam and the neutron occurrence rate at the degrader, an aluminum nozzle of X thickness was determined to be the most appropriate nozzle construction. Neutrons are created by the collision of 3-MeV protons in the nozzle after passage through the energy degrader. In addition, a proton beam of sufficient intensity is required for a non-destructive PIXE analysis. Therefore, if nozzle design is to be optimized, the number of neutrons that arise from the collision of protons inside the nozzle, as well as the track direction of the generated secondary neutrons, must be considered, with the primary aim of ensuring that a sufficient number of protons pass through the nozzle as a direct beam. A number of laboratories are currently conducting research related to the design of nozzles used in accelerator fields, mostly medical fields. This paper presents a comparative analysis of two typical nozzle shapes in order to minimize the loss of protons and the generation of secondary neutrons. The neutron occurrence rate and the number of protons that pass through the nozzle were analyzed by using a Particle and Heavy Ion Transport code System (PHITS) program in order to identify the nozzle that generated the strongest proton beam.

  15. Design and simulations of the neutron dump for the back-streaming white neutron beam at CSNS

    NASA Astrophysics Data System (ADS)

    Zhang, L. Y.; Jing, H. T.; Tang, J. Y.; Wang, X. Q.

    2016-10-01

    For nuclear data measurements with a white neutron source, to control the background at the detector is a key issue. The neutron dump which locates at the end of the white neutron beam line at CSNS has a very important impact to the neutron and gamma backgrounds in the endstation. A sophisticated neutron dump was designed to reduce the backgrounds to the level of about 10-8 relative to the neutron flux. In this paper, the method to suppress both neutron and gamma backgrounds near a white-spectrum neutron dump is introduced. The optimized geometry structure and materials of the dump are described, and the neutron and gamma space distributions have been calculated by using the FLUKA code for different operation settings which are defined by beam spots of Φ30 mm, Φ60 mm and 90 mm×90 mm, respectively.

  16. System and method for delivery of neutron beams for medical therapy

    DOEpatents

    Nigg, D.W.; Wemple, C.A.

    1999-07-06

    A neutron delivery system that provides improved capability for tumor control during medical therapy is disclosed. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention. 5 figs.

  17. System and method for delivery of neutron beams for medical therapy

    DOEpatents

    Nigg, David W.; Wemple, Charles A.

    1999-01-01

    A neutron delivery system that provides improved capability for tumor control during medical therapy. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention.

  18. From x-ray telescopes to neutron scattering: Using axisymmetric mirrors to focus a neutron beam

    NASA Astrophysics Data System (ADS)

    Khaykovich, B.; Gubarev, M. V.; Bagdasarova, Y.; Ramsey, B. D.; Moncton, D. E.

    2011-03-01

    We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in X-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We implemented a system containing four nested Ni mirror pairs, which was tested by the focusing of a polychromatic neutron beam at the MIT Reactor. In addition, we have carried out extensive ray-tracing simulations of the mirrors and their performance in different situations. The major advantages of the Wolter mirrors are nesting for large angular collection and aberration-free performance. We discuss how these advantages can be utilized to benefit various neutron scattering methods, such as imaging, SANS, and time-of-flight spectroscopy.

  19. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system

    PubMed Central

    Pérez-Andújar, Angélica; Newhauser, Wayne D; DeLuca, Paul M

    2014-01-01

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient. PMID:19147903

  20. A symplectic coherent beam-beam model

    SciTech Connect

    Furman, M.A.

    1989-05-01

    We consider a simple one-dimensional model to study the effects of the beam-beam force on the coherent dynamics of colliding beams. The key ingredient is a linearized beam-beam kick. We study only the quadrupole modes, with the dynamical variables being the 2nd-order moments of the canonical variables q, p. Our model is self-consistent in the sense that no higher order moments are generated by the linearized beam-beam kicks, and that the only source of violation of symplecticity is the radiation. We discuss the round beam case only, in which vertical and horizontal quantities are assumed to be equal (though they may be different in the two beams). Depending on the values of the tune and beam intensity, we observe steady states in which otherwise identical bunches have sizes that are equal, or unequal, or periodic, or behave chaotically from turn to turn. Possible implications of luminosity saturation with increasing beam intensity are discussed. Finally, we present some preliminary applications to an asymmetric collider. 8 refs., 8 figs.

  1. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    NASA Astrophysics Data System (ADS)

    Bhatia, C.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rundberg, R. S.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  2. Demonstration of the importance of a dedicated neutron beam monitoring system for BNCT facility.

    PubMed

    Chao, Der-Sheng; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2016-01-01

    The neutron beam monitoring system is indispensable to BNCT facility in order to achieve an accurate patient dose delivery. The neutron beam monitoring of a reactor-based BNCT (RB-BNCT) facility can be implemented through the instrumentation and control system of a reactor provided that the reactor power level remains constant during reactor operation. However, since the neutron flux in reactor core is highly correlative to complicated reactor kinetics resulting from such as fuel depletion, poison production, and control blade movement, some extent of variation may occur in the spatial distribution of neutron flux in reactor core. Therefore, a dedicated neutron beam monitoring system is needed to be installed in the vicinity of the beam path close to the beam exit of the RB-BNCT facility, where it can measure the BNCT beam intensity as closely as possible and be free from the influence of the objects present around the beam exit. In this study, in order to demonstrate the importance of a dedicated BNCT neutron beam monitoring system, the signals originating from the two in-core neutron detectors installed at THOR were extracted and compared with the three dedicated neutron beam monitors of the THOR BNCT facility. The correlation of the readings between the in-core neutron detectors and the BNCT neutron beam monitors was established to evaluate the improvable quality of the beam intensity measurement inferred by the in-core neutron detectors. In 29 sampled intervals within 16 days of measurement, the fluctuations in the mean value of the normalized ratios between readings of the three BNCT neutron beam monitors lay within 0.2%. However, the normalized ratios of readings of the two in-core neutron detectors to one of the BNCT neutron beam monitors show great fluctuations of 5.9% and 17.5%, respectively.

  3. Determination of the thermal neutron flux in a fast neutron beam by use of a boron-coated ionization chamber.

    PubMed

    Lüdemann, L; Matzen, T; Matzke, M; Schmidt, R; Scobel, W

    1995-11-01

    The thermal neutron distribution in slow and fast neutron beams is usually determined using the foil activation method. In this work a small magnesium walled ionization chamber, in which the inner surface of the wall has been coated with 10B to increase the sensitivity for thermal neutrons, is used to estimate the thermal neutron component of the beam. After calibration and determination of the directional response in a thermal neutron beam a comparison with foil activation at different depths in water was performed to investigate the reliability of the ionization measurements. The chamber was used in a computer controlled water phantom to measure the depth and lateral distribution of the thermal neutron dose. With this arrangement two-dimensional scans of the thermal neutrons could be performed quickly and with high accuracy.

  4. Recent accomplishments in neutron beam projects at the University of Texas Research Reactor

    SciTech Connect

    Uenlue, K.; Wehring, B.W.

    1994-12-31

    The design of a cold neutron source facility at the University of Texas TRIGA research reactor is described. The UT-TRIGA has 5 neutron beam ports. Because of the different characteristics of the ports, various research projects are being pursued. Among these projects, The Texas cold neutron source and neutron depth profiling are operational; neutron focusing, prompt gamma activation analysis, and neutron capture therapy research are progressing.

  5. Neutron contamination of Varian Clinac iX 10 MV photon beam using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Yani, S.; Tursinah, R.; Rhani, M. F.; Soh, R. C. X.; Haryanto, F.; Arif, I.

    2016-03-01

    High energy medical accelerators are commonly used in radiotherapy to increase the effectiveness of treatments. As we know neutrons can be emitted from a medical accelerator if there is an incident of X-ray that hits any of its materials. This issue becomes a point of view of many researchers. The neutron contamination has caused many problems such as image resolution and radiation protection for patients and radio oncologists. This study concerns the simulation of neutron contamination emitted from Varian Clinac iX 10 MV using Monte Carlo code system. As neutron production process is very complex, Monte Carlo simulation with MCNPX code system was carried out to study this contamination. The design of this medical accelerator was modelled based on the actual materials and geometry. The maximum energy of photons and neutron in the scoring plane was 10.5 and 2.239 MeV, respectively. The number and energy of the particles produced depend on the depth and distance from beam axis. From these results, it is pointed out that the neutron produced by linac 10 MV photon beam in a typical treatment is not negligible.

  6. Skin-sparing effects of neutron beam filtering materials.

    PubMed

    Otte, V A; Almond, P R; Smathers, J B; Attix, F H

    1987-01-01

    The skin-sparing effects of several filtering materials for fast neutron beams were studied under various conditions. A parallel-plate ionization chamber was used for the measurements. The parameters which were studied included field size, distance from filter to ion chamber, filter material, and filter thickness. On the basis of this work, Teflon (polytetrafluoroethylene) was chosen for fabrication of flattening filters and wedges.

  7. Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.

    PubMed

    Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S

    2016-01-01

    Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays.

  8. Neutron Zeeman beam-splitting for the investigation of magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, S. V.; Ott, F.; Semenova, E.

    2017-03-01

    Zeeman spatial splitting of a neutron beam takes place during a neutron spin-flip in magnetically non-collinear systems at grazing incidence geometry. We apply the neutron beam-splitting method for the investigation of magnetically non-collinear clusters of submicron size in a thin film. The experimental results are compared with ones obtained by other methods.

  9. An irradiation facility for Boron Neutron Capture Therapy application based on a radio frequency driven D-T neutron source and a new beam shaping assembly

    NASA Astrophysics Data System (ADS)

    Cerullo, Nicola; Esposito, Juan; Leung, Ka Ngo; Custodero, Salvatore

    2002-10-01

    A line of the Boron Neutron Capture Therapy (BNCT) research program aimed at the treatment of brain tumors, carried on at the Nuclear Departments of Pisa and Genova Universities (DIMNP and DITEC), is being focused on a new, 3H(d,n)4He (D-T), accelerator-based neutron source concept, developed at Lawrence Berkeley National Laboratory (LBNL). Simple and compact accelerator designs, using mixed D+ T+ ion beam with relatively low energy, ˜100 keV, have been developed which, in turn, can generate high neutron yields. New approaches have thus been started to design an epithermal neutron irradiation facility able to selectively slow the 14.1 MeV D-T neutrons down to the epithermal (1 eV-10 KeV) energy range. New neutron spectrum shifter and filtering materials, as well as different facility layout approaches have been tested. Possible beam shaping assembly models have also been designed. The research demonstrates that a D-T neutron source could be successfully implemented to provide a ˜1×109 n/cm2 s epithermal neutron flux, in spite of its hard spectrum, although a generator device, able to yield ˜1014 n/s is, at present, not yet available. The latest Monte Carlo simulation of an accelerator-based facility, which relies on a single or multiple rf driven DT fusion neutron generator, is presented.

  10. Tagged fast neutron beams En > 6 MeV

    SciTech Connect

    Favela, F.; Huerta, A.; Santa Rita, P.; Ramos, A. T.; Lucio, O. de; Andrade, E.; Ortiz, M. E.; Araujo, V.; Chávez, E.; Acosta, L.; Murillo, G.; Policroniades, R.

    2015-07-23

    Controlled flux of neutrons are produced through the {sup 14}N(d,n){sup 15}O nuclear reaction. Deuteron beams (2-4 MeV) are delivered by the CN-Van de Graaff accelerator and directed with full intensity to our Nitrogen target at SUGAR (SUpersonic GAs jet taRget). Each neutron is electronically tagged by the detection of the associated{sup 15}O. Its energy and direction are known and “beams” of fast monochromatic tagged neutrons (E{sub n}> 6 MeV) are available for basic research and applied work. MONDE is a large area (158 × 63 cm{sup 2}) plastic scintillating slab (5 cm thick), viewed by 16 PMTs from the sides. Fast neutrons (MeV) entering the detector will produce a recoiling proton that induces a light spark at the spot. Signals from the 16 detectors are processed to deduce the position of the spark. Time logic signals from both the {sup 15}O detector and MONDE are combined to deduce a time of flight (TOF) signal. Finally, the position information together with the TOF yields the full momentum vector of each detected neutron.

  11. Design, construction and characterization of a new neutron beam for neutron radiography at the Tehran Research Reactor

    NASA Astrophysics Data System (ADS)

    Choopan Dastjerdi, M. H.; Khalafi, H.; Kasesaz, Y.; Mirvakili, S. M.; Emami, J.; Ghods, H.; Ezzati, A.

    2016-05-01

    To obtain a thermal neutron beam for neutron radiography applications, a neutron collimator has been designed and implemented at the Tehran Research Reactor (TRR). TRR is a 5 MW open pool light water moderated reactor with seven beam tubes. The neutron collimator is implemented in the E beam tube of the TRR. The design of the neutron collimator was performed using MCNPX Monte Carlo code. In this work, polycrystalline bismuth and graphite have been used as a gamma filter and an illuminator, respectively. The L/D parameter of the facility was chosen in the range of 150-250. The thermal neutron flux at the image plane can be varied from 2.26×106 to 6.5×106 n cm-2 s-1. Characterization of the beam was performed by ASTM standard IQI and foil activation technique to determine the quality of neutron beam. The results show that the obtained neutron beam has a good quality for neutron radiography applications.

  12. BEAMS3D Neutral Beam Injection Model

    SciTech Connect

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  13. A Technique For Determining Neutron Beam Fluence to 0.01% Uncertainty

    NASA Astrophysics Data System (ADS)

    Yue, A. T.; Dewey, M. S.; Gilliam, D. M.; Nico, J. S.; Fomin, N.; Greene, G. L.; Snow, W. M.; Wietfeldt, F. E.

    2014-03-01

    The achievable uncertainty in neutron lifetime measurements using the beam technique has been limited by the uncertainty in the determination of the neutron density in the decay volume. In the Sussex-ILL-NIST series of beam lifetime experiments, the density was determined with a neutron fluence monitor that detected the charged particle products from neutron absorption in a thin layer of 6Li or 10B. In each of the experiments, the absolute detection efficiency of the neutron monitor was determined from the measured density of the neutron absorber, the thermal neutron cross section for the absorbing material, and the solid angle of the charged particle detectors. The efficiency of the neutron monitor used in the most recent beam lifetime experiment has since been measured directly by operating it on a monochromatic neutron beam in which the total neutron rate is determined with a totally absorbing neutron detector. The absolute nature of this technique does not rely on any knowledge of neutron absorption cross sections or a measurement of the density of the neutron absorbing deposit. This technique has been used to measure the neutron monitor efficiency to 0.06% uncertainty. We show that a new monitor and absolute neutron detector employing the same technique would be capable of achieving determining neutron fluence to an uncertainty of 0.01%.

  14. A Technique for Determining Neutron Beam Fluence to 0.01% Uncertainty

    SciTech Connect

    Yue, A. T.; Dewey, M. S.; Gilliam, D. M.; Nico, J. S.; Fomin, N.; Greene, G. L.; Snow, W. M.; Wietfeldt, F. E.

    2014-01-01

    The achievable uncertainty in neutron lifetime measurements using the beam technique has been limited by the uncertainty in the determination of the neutron density in the decay volume. In the Sussex-ILL-NIST series of beam lifetime experiments, the density was determined with a neutron fluence mon itor that detected the charged particle products from neutron absorption in a thin layer of 6Li or lOB. In each of the experiments, the absolute detection efficiency of the neutron monitor was determined from the measured density of the neutron absorber, the thermal neutron cross section for the absorbing ma terial, and the solid angle of the charged particle detectors. The efficiency of the neutron monitor used in the most recent beam lifetime experiment has since been measured directly by operating it on a monochromatic neutron beam in which the total neutron rate is determined with a totally absorbing neutron detector. The absolute nature of this technique does not rely on any knowl edge of neutron absorption cross sections or a measurement of the density of the neutron absorbing deposit. This technique has been used to measure the neutron monitor efficiency to 0.06% uncertainty. VVe show that a new monitor and absolute neutron detector employing the same technique would be capable of achieving determining neutron fluence to an uncertainty of 0.01%.

  15. A single-crystal diamond-based thermal neutron beam monitor for instruments at pulsed neutron sources

    NASA Astrophysics Data System (ADS)

    Pietropaolo, A.; Verona Rinati, G.; Verona, C.; Schooneveld, E. M.; Angelone, M.; Pillon, M.

    2009-11-01

    Single-crystal diamond detectors manufactured through a Chemical Vapour Deposition (CVD) technique are recent technology devices that have been employed in reactor and Tokamak environments in order to detect both thermal and almost monochromatic 14 MeV neutrons produced in deuterium-tritium ( d-t) nuclear fusion reactions. Their robustness and compactness are the key features that can be exploited for different applications as well. Aim of the present experimental investigation is the assessment of the performance of a diamond detector as a thermal neutron beam monitor at pulsed neutron sources. To this aim, a test measurement was carried out on the Italian Neutron Experimental Station (INES) beam line at the ISIS spallation neutron source (Great Britain). The experiment has shown the capability of these devices to work at a pulsed neutron source for beam monitoring purposes. Other interesting possible applications are also suggested.

  16. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    SciTech Connect

    Croci, G.; Tardocchi, M.; Rebai, M.; Cippo, E. Perelli; Gorini, G.; Cazzaniga, C.; Palma, M. Dalla; Pasqualotto, R.; Tollin, M.; Grosso, G.; Muraro, A.; Murtas, F.; Claps, G.; Cavenago, M.

    2014-08-21

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  17. Design of a californium-based epithermal neutron beam for neutron capture therapy.

    PubMed

    Yanch, J C; Kim, J K; Wilson, M J

    1993-08-01

    The potential of the spontaneously fissioning isotope, 252Cf, to provide epithermal neutrons for use in boron neutron capture therapy (BNCT) has been investigated using Monte Carlo simulation. The Monte Carlo code MCNP was used to design an assembly composed of a 26 cm long, 11 cm radius cylindrical D2O moderator followed by a 64 cm long Al filter. Lithium filters are placed between the moderator and the filter and between the Al and the patient. A reflector surrounding the moderator/filter assembly is required in order to maintain adequate therapy flux at the patient position. An ellipsoidal phantom composed of skull- and brain-equivalent material was used to determine the dosimetric effect of this beam. It was found that both advantage depths and advantage ratios compare very favourably with reactor and accelerator epithermal neutron sources. The dose rate obtainable, on the other hand, is 4.1 RBE cGy min-1, based on a very large (1.0 g) source of 252Cf. This dose rate is two to five times lower than those provided by existing reactor beams and can be viewed as a drawback of using 252Cf as a neutron source. Radioisotope sources, however, do offer the advantage of in-hospital installation.

  18. An optimized neutron-beam shaping assembly for accelerator-based BNCT.

    PubMed

    Burlon, A A; Kreiner, A J; Valda, A A; Minsky, D M

    2004-11-01

    Different materials and proton beam energies have been studied in order to search for an optimized neutron production target and beam shaping assembly for accelerator-based BNCT. The solution proposed in this work consists of successive stacks of Al, polytetrafluoroethylene, commercially known as Teflon, and LiF as moderator and neutron absorber, and Pb as reflector. This assembly is easy to build and its cost is relatively low. An exhaustive Monte Carlo simulation study has been performed evaluating the doses delivered to a Snyder model head phantom by a neutron production Li-metal target based on the (7)Li(p,n)(7)Be reaction for proton bombarding energies of 1.92, 2.0, 2.3 and 2.5 MeV. Three moderator thicknesses have been studied and the figures of merit show the advantage of irradiating with near-resonance-energy protons (2.3 MeV) because of the relatively high neutron yield at this energy, which at the same time keeps the fast neutron healthy tissue dose limited and leads to the lowest treatment times. A moderator of 34 cm length has shown the best performance among the studied cases.

  19. Initial Performance Characterization for a Thermalized Neutron Beam for Neutron Capture Therapy Research at Washington State University

    SciTech Connect

    David W. Nigg; P.E> Sloan; J.R. Venhuizen; C.A. Wemple

    2005-11-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) and Washington State University (WSU) have constructed a new epithermal-neutron beam for collaborative Boron Neutron Capture Therapy (BNCT) preclinical research at the WSU TRIGATM research reactor facility1. More recently, additional beamline components were developed to permit the optional thermalization of the beam for certain types of studies where it is advantageous to use a thermal neutron source rather than an epithermal source. This article summarizes the results of some initial neutronic performance measurements for the thermalized system, with a comparison to the expected performance from the design computations.

  20. Inverse-kinematics one-neutron pickup with fast rare-isotope beams

    SciTech Connect

    Gade, A.; Baugher, T.; Brown, B. A.; Glasmacher, T.; McDaniel, S.; Ratkiewicz, A.; Stroberg, S. R.; Tostevin, J. A.; Bazin, D.; Campbell, C. M.; Grinyer, G. F.; Weisshaar, D.; Winkler, R.; Meierbachtol, K.; Walsh, K. A.

    2011-05-15

    Measurements and reaction model calculations are reported for single-neutron pickup reactions onto a fast {sup 22}Mg secondary beam at 84 MeV per nucleon. Measurements made on both carbon and beryllium targets, having very different structures, were used to investigate the likely nature of the pickup reaction mechanism. The measurements involve thick reaction targets and {gamma}-ray spectroscopy of the projectile-like reaction residue for final-state resolution, which permit experiments with low incident beam rates compared to traditional low-energy transfer reactions. From measured longitudinal momentum distributions we show that the {sup 12}C({sup 22}Mg,{sup 23}Mg+{gamma})X reaction largely proceeds as a direct two-body reaction, with the neutron transfer producing bound {sup 11}C target residues. The corresponding reaction on the {sup 9}Be target seems to largely leave the {sup 8}Be residual nucleus unbound at excitation energies high in the continuum. We discuss the possible use of such fast-beam one-neutron pickup reactions to track single-particle strength in exotic nuclei and also their expected sensitivity to neutron high-l (intruder) states, which are often direct indicators of shell evolution and the disappearance of magic numbers in the exotic regime.

  1. Inverse-kinematics one-neutron pickup with fast rare-isotope beams

    NASA Astrophysics Data System (ADS)

    Gade, A.; Tostevin, J. A.; Baugher, T.; Bazin, D.; Brown, B. A.; Campbell, C. M.; Glasmacher, T.; Grinyer, G. F.; McDaniel, S.; Meierbachtol, K.; Ratkiewicz, A.; Stroberg, S. R.; Walsh, K. A.; Weisshaar, D.; Winkler, R.

    2011-05-01

    Measurements and reaction model calculations are reported for single-neutron pickup reactions onto a fast Mg22 secondary beam at 84 MeV per nucleon. Measurements made on both carbon and beryllium targets, having very different structures, were used to investigate the likely nature of the pickup reaction mechanism. The measurements involve thick reaction targets and γ-ray spectroscopy of the projectile-like reaction residue for final-state resolution, which permit experiments with low incident beam rates compared to traditional low-energy transfer reactions. From measured longitudinal momentum distributions we show that the 12C(22Mg,23Mg+γ)X reaction largely proceeds as a direct two-body reaction, with the neutron transfer producing bound C11 target residues. The corresponding reaction on the Be9 target seems to largely leave the Be8 residual nucleus unbound at excitation energies high in the continuum. We discuss the possible use of such fast-beam one-neutron pickup reactions to track single-particle strength in exotic nuclei and also their expected sensitivity to neutron high-ℓ (intruder) states, which are often direct indicators of shell evolution and the disappearance of magic numbers in the exotic regime.

  2. First platinum moderated positron beam based on neutron capture

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Kögel, G.; Repper, R.; Schreckenbach, K.; Sperr, P.; Triftshäuser, W.

    2002-12-01

    A positron beam based on absorption of high energy prompt γ-rays from thermal neutron capture in 113Cd was installed at a neutron guide of the high flux reactor at the ILL in Grenoble. Measurements were performed for various source geometries, dependent on converter mass, moderator surface and extraction voltages. The results lead to an optimised design of the in-pile positron source which will be implemented at the Munich research reactor FRM-II. The positron source consists of platinum foils acting as γ-e +e --converter and positron moderator. Due to the negative positron work function moderation in heated platinum leads to emission of monoenergetic positrons. The positron work function of polycrystalline platinum was determined to 1.95(5) eV. After acceleration to several keV by four electrical lenses the beam was magnetically guided in a solenoid field of 7.5 mT leading to a NaI-detector in order to detect the 511 keV γ-radiation of the annihilating positrons. The positron beam with a diameter of less than 20 mm yielded an intensity of 3.1×10 4 moderated positrons per second. The total moderation efficiency of the positron source was about ɛ=1.06(16)×10 -4. Within the first 20 h of operation a degradation of the moderation efficiency of 30% was observed. An annealing procedure at 873 K in air recovers the platinum moderator.

  3. Dehydration process of fish analyzed by neutron beam imaging

    NASA Astrophysics Data System (ADS)

    Tanoi, K.; Hamada, Y.; Seyama, S.; Saito, T.; Iikura, H.; Nakanishi, T. M.

    2009-06-01

    Since regulation of water content of the dried fish is an important factor for the quality of the fish, water-losing process during drying (squid and Japanese horse mackerel) was analyzed through neutron beam imaging. The neutron image showed that around the shoulder of mackerel, there was a part where water content was liable to maintain high during drying. To analyze water-losing process more in detail, spatial image was produced. From the images, it was clearly indicated that the decrease of water content was regulated around the shoulder part. It was suggested that to prevent deterioration around the shoulder part of the dried fish is an important factor to keep quality of the dried fish in the storage.

  4. Filtered epithermal quasi-monoenergetic neutron beams at research reactor facilities.

    PubMed

    Mansy, M S; Bashter, I I; El-Mesiry, M S; Habib, N; Adib, M

    2015-03-01

    Filtered neutron techniques were applied to produce quasi-monoenergetic neutron beams in the energy range of 1.5-133keV at research reactors. A simulation study was performed to characterize the filter components and transmitted beam lines. The filtered beams were characterized in terms of the optimal thickness of the main and additive components. The filtered neutron beams had high purity and intensity, with low contamination from the accompanying thermal emission, fast neutrons and γ-rays. A computer code named "QMNB" was developed in the "MATLAB" programming language to perform the required calculations.

  5. A conceptual design of a beam-shaping assembly for boron neutron capture therapy based on deuterium-tritium neutron generators.

    PubMed

    Martín, Guido; Abrahantes, Arian

    2004-05-01

    A conceptual design of a beam-shaping assembly for boron neutron capture therapy using deuterium-tritium accelerator based neutrons source is developed. Calculations based on a simple geometry model for the radiation transport are initially performed to estimate the assembly materials and their linear dimensions. Afterward, the assembly geometry is produced, optimized and verified. In order to perform these calculations the general-purpose MCNP code is used. Irradiation time and therapeutic gain are utilized as beam assessment parameters. Metallic uranium and manganese are successfully tested for fast-to-epithermal neutron moderation. In the present beam-shaping assembly proposal, the therapeutic gain is improved by 23% and the accelerator current required for a fixed irradiation period is reduced by six times compared to previous proposals based on the same D-T reaction.

  6. Silicon detectors for monitoring neutron beams in n-TOF beamlines

    SciTech Connect

    Cosentino, L.; Pappalardo, A.; Piscopo, M.; Finocchiaro, P.; Musumarra, A.; Barbagallo, M.; Colonna, N.; Damone, L.

    2015-07-15

    During 2014, the second experimental area (EAR2) was completed at the n-TOF neutron beam facility at CERN (n-TOF indicates neutron beam measurements by means of time of flight technique). The neutrons are produced via spallation, by means of a high-intensity 20 GeV pulsed proton beam impinging on a thick target. The resulting neutron beam covers the energy range from thermal to several GeV. In this paper, we describe two beam diagnostic devices, both exploiting silicon detectors coupled with neutron converter foils containing {sup 6}Li. The first one is based on four silicon pads and allows monitoring of the neutron beam flux as a function of the neutron energy. The second one, in beam and based on position sensitive silicon detectors, is intended for the reconstruction of the beam profile, again as a function of the neutron energy. Several electronic setups have been explored in order to overcome the issues related to the gamma flash, namely, a huge pulse present at the start of each neutron bunch which may blind the detectors for some time. The two devices were characterized with radioactive sources and also tested at the n-TOF facility at CERN. The wide energy and intensity range they proved capable of sustaining made them attractive and suitable to be used in both EAR1 and EAR2 n-TOF experimental areas, where they became immediately operational.

  7. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    NASA Astrophysics Data System (ADS)

    Makhloufi, M.; Salah, H.

    2017-02-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway.

  8. Nanodosimetric measurements and calculations in a neutron therapy beam.

    PubMed

    Grindborg, J-E; Lillhök, J E; Lindborg, L; Gudowska, I; Söderberg, J; Carlsson, G Alm; Nikjoo, H

    2007-01-01

    A comparison of calculated and measured values of the dose mean lineal energy (y(D)) for the former neutron therapy beam at Louvain-la-Neuve is reported. The measurements were made with wall-less tissue-equivalent proportional counters using the variance-covariance method and simulating spheres with diameters between 10 nm and 15 microm. The calculated y(D)-values were obtained from simulated energy distributions of neutrons and charged particles inside an A-150 phantom and from published y(D)-values for mono-energetic ions. The energy distributions of charged particles up to oxygen were determined with the SHIELD-HIT code using an MCNPX simulated neutron spectrum as an input. The mono-energetic ion y(D)-values in the range 3-100 nm were taken from track-structure simulations in water vapour done with PITS/KURBUC. The large influence on the dose mean lineal energy from the light ion (A > 4) absorbed dose fraction, may explain an observed difference between experiment and calculation. The latter being larger than earlier reported result. Below 50 nm, the experimental values increase while the calculated decrease.

  9. p(42)Be neutron therapy beams: dose rate and penetration as a function of target thickness and beam filtration.

    PubMed

    Rosenberg, I; Awschalom, M; Kuo, T Y; Tom, J L

    1981-01-01

    It is shown that, in the production of p(42)Be neutron beams for clinical use, the use of semithick targets leads to more desirable beam characteristics when appropriate backstop materials are used. Furthermore, an algebraic representation of beam penetration and of dose per unit charge on target, including hardening by polyethylene filters, provides a method for target optimization.

  10. Focused neutron beam dose deposition profiles in tissue equivalent materials: a pilot study for BNCT

    NASA Astrophysics Data System (ADS)

    Mayer, Rulon R.; Welsh, James; Chen-Mayer, Huaiyu H.

    1997-02-01

    Boron Neutron Capture Therapy (BNCT) has been limited by the inability to direct neutrons toward the therapeutic target and away from sensitive normal tissues. The recently developed Kumakhov lens has focused a broad incident low energy neutron beam in air to a sub-mm spot. This study examines the radiation does distribution of a converging beam passing through tissue equivalent materials. A neutron beam exiting a focusing lens is directed toward a stack of thin radiochromic media sandwiched between plastic sheets. The depth dose and beam profile within the tissue equivalent materials are determined by optical scanning and image processing of the individual radiochromic media sheets, a polymer based dosimetry medium which darkens upon exposure to ionizing radiation. The alpha particle emission from boron is examined by substituting a plastic sheet with a 6Li enriched lithium carbonate sheet positioned at the focal plane. The information will help determine the feasibility of applying the focused neutron beam to BNCT for therapy.

  11. Boron neutron capture therapy for the treatment of cerebral gliomas. I. Theoretical evaluation of the efficacy of various neutron beams.

    PubMed

    Zamenhof, R G; Murray, B W; Brownell, G L; Wellum, G R; Tolpin, E I

    1975-01-01

    The technique of boron neutron capture therapy in the treatment of cerebral gliomas depends upon the selective loading of the tumor with a 10B-enriched compound and subsequent irradiation of the brain with low-energy neutrons. The charged particles produced in the 10B (n,alpha) 7Li reaction have ranges in tissue of less than 10 mum so that the dose distribution closely follows the 10B distribution even to the cellular level. The effectiveness of this therapy procedure is dependent not only on the 10B compound but on the spectral characteristics of the neutron source as well. Hence, an optimization of these characteristics will increase the chances of therapeutic success. Transport calculations using a neutral particle transport code have been made to determine the dose-depth distributions within a simple head phantom for five different incident neutron beams. Comparison of these beams to determine their relative therapeutic efficacy was made by the use of a maximum useable depth criterion. In particular, with presently available compounds, the MIT reactor (MITR) therapy beam (a) is not inferior to a pure thermal neutron beam, (b) would be marginally improved if its gamma-ray contamination were eliminated, (c) is superior to a partially 10B-filtered MITR beam, and (d) produces a maximum useable depth which is strongly dependent upon the tumor-to-blood ratio of 10B concentrations and weakly dependent upon the absolute 10B concentration in tumor. A pure epithermal neutron beam with a mean energy of 37 eV is shown to have close to the optimal characteristics for boron neutron capture therapy. Futhermore, these optimal characteristics can be approximated by a judiciously D2O moderated and 10B-filtered 252Cf neutron source. This tailored 252Cf source would have at least a 1.5 cm greater maximum useable depth than the MITR therapy beam for realistic 10B concentrations. However, at least one gram of 252Cf would be needed to make this a practical therapy source. If the

  12. BEAMS3D Neutral Beam Injection Model

    NASA Astrophysics Data System (ADS)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  13. SU-E-T-542: Measurement of Internal Neutrons for Uniform Scanning Proton Beams

    SciTech Connect

    Islam, M; Ahmad, S; Zheng, Y; Rana, S; Collums, T; Monsoon, J; Benton, E

    2015-06-15

    Purpose: In proton radiotherapy, the production of neutrons is a wellknown problem since neutron exposure can lead to increased risk of secondary cancers later in the patient’s lifetime. The assessment of neutron exposure is, therefore, important for the overall quality of proton radiotherapy. This study investigates the secondary neutrons created inside the patient from uniform scanning proton beams. Methods: Dose equivalent due to secondary neutrons was measured outside the primary field as a function of distance from beam isocenter at three different angles, 45, 90 and 135 degree, relative to beam axis. Plastic track nuclear detector (CR-39 PNTD) was used for the measurement of neutron dose. Two experimental configurations, in-air and cylindrical-phantom, were designed. In a cylindrical-phantom configuration, a cylindrical phantom of 5.5 cm diameter and 35 cm long was placed along the beam direction and in an in-air configuration, no phantom was used. All the detectors were placed at nearly identical locations in both configurations. Three proton beams of range 5 cm, 18 cm, and 32 cm with 4 cm modulation width and a 5 cm diameter aperture were used. The contribution from internal neutrons was estimated from the differences in measured dose equivalent between in-air and cylindrical-phantom configurations at respective locations. Results: The measured ratio of neutron dose equivalent to the primary proton dose (H/D) dropped off with distance and ranged from 27 to 0.3 mSv/Gy. The contribution of internal neutrons near the treatment field edge was found to be up to 64 % of the total neutron exposure. As the distance from the field edge became larger, the external neutrons from the nozzle appear to dominate and the internal neutrons became less prominent. Conclusion: This study suggests that the contribution of internal neutrons could be significant to the total neutron dose equivalent.

  14. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.

    PubMed

    Ghassoun, J; Mostacci, D

    2011-08-01

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of (252)Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5).

  15. Analysis of Neutron Production in Passively Scattered Ion-Beam Therapy.

    PubMed

    Heo, Seunguk; Yoo, Seunghoon; Song, Yongkeun; Kim, Eunho; Shin, Jaeik; Han, Soorim; Jung, Wongyun; Nam, Sanghee; Lee, Rena; Lee, Kitae; Cho, Sungho

    2016-11-24

    A new treatment facility for heavy ion therapy since 2010 was constructed. In the broad beam, a range shifter, ridge filter and multi leaf collimator (MLC) for the generation of the spread-out Bragg peak is used. In this case, secondary neutrons produced by the interactions of the ion field with beam-modifying devices (e.g. double-scattering system, beam shaping collimators and range compensators) are very important for patient safety. Therefore, these components must be carefully examined in the context of secondary neutron yield and associated secondary cancer risk. In this article, Monte Carlo simulation has been carried out with the FLUktuierende KAskade particle transport code, the fluence and distribution of neutron generation and the neutron dose equivalent from the broad beam components are compared using carbon and proton beams. As a result, it is confirmed that the yield of neutron production using a carbon beam from all components of the broad beam was higher than using a proton beam. The ambient dose by neutrons per heavy ion and proton ion from the MLC surface was 0.12-0.18 and 0.0067-0.0087 pSv, respectively, which shows that heavy ions generate more neutrons than protons. However, ambient dose per treatment 2 Gy, which means physical dose during treatment by ion beam, is higher than carbon beam because proton therapy needs more beam flux to make 2-Gy prescription dose. Therefore, the neutron production from the MLC, which is closed to the patient, is a very important parameter for patient safety.

  16. Dysprosium detector for neutron dosimetry in external beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Ostinelli, A.; Berlusconi, C.; Conti, V.; Duchini, M.; Gelosa, S.; Guallini, F.; Vallazza, E.; Prest, M.

    2014-09-01

    Radiotherapy treatments with high-energy (>8 MeV) photon beams are a standard procedure in clinical practice, given the skin and near-target volumes sparing effect, the accurate penetration and the uniform spatial dose distribution. On the other hand, despite these advantages, neutrons may be produced via the photo-nuclear (γ,n) reactions of the high-energy photons with the high-Z materials in the accelerator head, in the treatment room and in the patient, resulting in an unwanted dose contribution which is of concern, given its potential to induce secondary cancers, and which has to be monitored. This work presents the design and the test of a portable Dysprosium dosimeter to be used during clinical treatments to estimate the "in vivo" dose to the patient. The dosimeter has been characterized and validated with tissue-equivalent phantom studies with a Varian Clinical iX 18 MV photon beam, before using it with a group of patients treated at the S. Anna Hospital in Como. The working principle of the dosimeter together with the readout chain and the results in terms of delivered dose are presented.

  17. Abrasion-ablation model for neutron production in heavy ion reactions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Townsend, Lawrence W.

    1995-01-01

    In heavy ion reactions, neutron production at forward angles is observed to occur with a Gaussian shape that is centered near the beam energy and extends to energies well above that of the beam. This paper presents an abrasion-ablation model for making quantitative predictions of the neutron spectrum. To describe neutrons produced from the abrasion step of the reaction where the projectile and target overlap, the authors use the Glauber model and include effects of final-state interactions. They then use the prefragment mass distribution from abrasion with a statistical evaporation model to estimate the neutron spectrum resulting from ablation. Measurements of neutron production from Ne and Nb beams are compared with calculations, and good agreement is found.

  18. Characterization of the high-energy neutron beam of the PRISMA beamline using a diamond detector

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Frost, C. D.; Minniti, T.; Schooneveld, E.; Perelli Cippo, E.; Tardocchi, M.; Rebai, M.; Gorini, G.

    2016-07-01

    The high-energy neutron component (En > 10 MeV) of the neutron spectrum of PRISMA, a beam-line at the ISIS spallation source, has been characterized for the first time. Neutron measurements using a Single-crystal Diamond Detector at a short-pulse source are obtained by a combination of pulse height and time of flight analysis. An XY scan provides a 2D map of the high-energy neutron beam which has a diameter of about 40 mm. The high neutron flux, that has been found to be (3.8 ± 0.7) · 105 cm-2s-1 for En > 10 MeV in the centre, opens up for a possible application of the beam-line as a high-energy neutron irradiation position. Results are of interest for the development of the ChipIR beam-line, which will feature an atmospheric-like neutron spectrum for chip irradiation experiment. Furthermore, these results demonstrate that diamond detectors can be used at spallation sources to investigate the transport of high-energy neutrons down instruments which is of interest in general to designers as high-energy neutrons are a source of background in thermal beamlines.

  19. Performance of a New Composite Single-Crystal Filtered Thermal Neutron Beam for Neutron Capture Therapy Research at the University of Missouri

    SciTech Connect

    John D. Brockman; David W. Nigg; M. Frederick Hawthorne; Charles McKibben

    2008-11-01

    The University of Missouri (MU) Institute for Nano and Molecular Medicine, the Idaho National Laboratory (INL) and the University of Missouri Research Reactor (MURR) have undertaken a new collaborative research initiative to further the development of improved boron delivery agents for BNCT. The first step of this effort has involved the design and construction of a new thermal neutron beam irradiation facility for cell and small-animal radiobological research at the MURR. In this paper we present the beamline design with the results of pertinent neutronic design calculations. Results of neutronic performance measurements, initiated in February 2008, will also be available for inclusion in the final paper. The new beam will be located in an existing 152.4 mm (6’) diameter MURR beam tube extending from the core to the right in Figure 1. The neutron beam that emanates from the berylium reflector around the reactor is filtered with single-crystal silicon and single-crystal bismuth segments to remove high energy, fission spectrum neutrons and reactor gamma ray contamination. The irradiation chamber is downstream of the bismuth filter section, and approximately 3.95 m from the central axis of the reactor. There is sufficient neutron flux available from the MURR at its rated power of 10 MW to avoid the need for cryogenic cooling of the crystals. The MURR operates on average 150 hours per week, 52 weeks a year. In order to take advantage of 7800 hours of operation time per year the small animal BNCT facility will incorparate a shutter constucuted of boral, lead, steel and polyethylene that will allow experimenters to access the irradiation chamber a few minutes after irradiation. Independent deterministic and stochastic models of the coupled reactor core and beamline were developed using the DORT two-dimensional radiation transport code and the MCNP-5 Monte Carlo code, respectively. The BUGLE-80 47-neutron, 20-gamma group cross section library was employed for the DORT

  20. Performance of Current-Mode Ion Chambers as Beam Monitors in a Pulsed Cold Neutron Beam for the NPDGamma experiment

    NASA Astrophysics Data System (ADS)

    Gillis, R. Chad

    2006-10-01

    The NPDGamma collaboration has built and commissioned an apparatus to measure the parity-violating gamma asymmetry A in the low energy np capture process n+p->d+ γ. The asymmetry in question is a 10-8 correlation between the spin of the incident (polarized) neutron and the outgoing 2.2 MeV gamma ray. A set of purpose-built, 3He-filled ionization chambers read out in current mode is used to monitor the incident neutron flux, the beam polarization, and the transmission of the liquid para-hydrogen target during the NPDGamma measurements. As will be described in the talk, these beam monitors are simple, reliable, low-noise detectors that have performed excellently for NPDGamma. We have verified that the beam monitor signals can be interpreted to reproduce the known time-of-flight dependence of beam flux from the LANSCE pulsed cold neutron source, and that the neutron beam polarization can be measured at the 2% level from direct measurements of the transmission of the beam through the beam polarizer.

  1. Improvement of a p(65)+Be neutron beam for therapy at Cyclone, Louvain-la-Neuve.

    PubMed

    Vynckier, S; Pihet, P; Flémal, J M; Meulders, J P; Wambersie, A

    1983-06-01

    The variable energy cyclotron of the Catholic University of Louvain is used to produce intense neutron beams for neutron therapy purposes. As a first step, neutrons were produced by bombarding a Be target with 50 MeV deuterons; at present they are produced by 65 MeV protons. This paper describes the improvements to the target system. A new (17 mm) Be target together with the old (10 mm) Be target are inserted in a movable support which allows the production of neutrons either by 65 MeV protons or by 50 MeV deuterons. Both targets can be removed for proton beam therapy. The dosimetric characteristics of the p(65)+Be and d(50)+Be neutron beams are compared: dose rate, gamma-contribution, depth dose and room activation.

  2. The ion beam sputtering facility at KURRI: Coatings for advanced neutron optical devices

    NASA Astrophysics Data System (ADS)

    Hino, Masahiro; Oda, Tatsuro; Kitaguchi, Masaaki; Yamada, Norifumi L.; Tasaki, Seiji; Kawabata, Yuji

    2015-10-01

    We describe a film coating facility for the development of multilayer mirrors for use in neutron optical devices that handle slow neutron beams. Recently, we succeeded in fabricating a large neutron supermirror with high reflectivity using an ion beam sputtering system (KUR-IBS), as well as all neutron supermirrors in two neutron guide tubes at BL06 at J-PARC/MLF. We also realized a large flexible self-standing m=5 NiC/Ti supermirror and very small d-spacing (d=1.65 nm) multilayer sheets. In this paper, we present an overview of the performance and utility of non-magnetic neutron multilayer mirrors fabricated with the KUR-IBS

  3. A novel design of beam shaping assembly to use D-T neutron generator for BNCT.

    PubMed

    Kasesaz, Yaser; Karimi, Marjan

    2016-12-01

    In order to use 14.1MeV neutrons produced by d-T neutron generators, two special and novel Beam Shaping Assemblies (BSA), including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. The results show that the proposed BSA can provide the qualified epithermal neutron beam for BNCT. The final epithermal neutron flux is about 6e9 n/cm2.s. The final proposed BSA has some different advantages: 1) it consists of usual and well-known materials (Pb, Al, Fluental and Cd); 2) it has a simple geometry; 3) it does not need any additional gamma filter; 4) it can provide high flux of epithermal neutrons. As this type of neutron source is under development in the world, it seems that they can be used clinically in a hospital considering the proposed BSA.

  4. Neutron beam test of barium fluoride crystal for dark matter direct detection

    NASA Astrophysics Data System (ADS)

    Guo, C.; Ma, X. H.; Wang, Z. M.; Bao, J.; Dai, C. J.; Guan, M. Y.; Liu, J. C.; Li, Z. H.; Ren, J.; Ruan, X. C.; Yang, C. G.; Yu, Z. Y.; Zhong, W. L.

    2016-10-01

    In order to test the capabilities of Barium Fluoride (BaF2) crystal for dark matter direct detection, nuclear recoils are studied with mono-energetic neutron beam. The energy spectra of nuclear recoils, quenching factors for elastic scattering neutrons and discrimination capability between neutron inelastic scattering events and γ events are obtained for various recoil energies of the F content in BaF2.

  5. Three-port beam splitter for slow neutrons using holographic nanoparticle-polymer composite diffraction gratings

    SciTech Connect

    Klepp, J.; Fally, M.; Tomita, Y.; Pruner, C.; Kohlbrecher, J.

    2012-10-08

    Diffraction of slow neutrons by nanoparticle-polymer composite gratings has been observed. By carefully choosing grating parameters such as grating thickness and spacing, a three-port beam splitter operation for slow neutrons - splitting the incident neutron intensity equally into the {+-}1st and the 0th diffraction orders - has been realized. As a possible application, a Zernike three-path interferometer is briefly discussed.

  6. Overview of the Conceptual Design of the Future VENUS Neutron Imaging Beam Line at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Bilheux, Hassina; Herwig, Ken; Keener, Scott; Davis, Larry

    VENUS (Versatile Neutron Imaging Beam line at the Spallation Neutron Source) will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to μm). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beam line 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS.

  7. Measurement of neutron flux and beam divergence at the cold neutron guide system of the new Munich research reactor FRM-II

    NASA Astrophysics Data System (ADS)

    Zeitelhack, K.; Schanzer, C.; Kastenmüller, A.; Röhrmoser, A.; Daniel, C.; Franke, J.; Gutsmiedl, E.; Kudryashov, V.; Maier, D.; Päthe, D.; Petry, W.; Schöffel, T.; Schreckenbach, K.; Urban, A.; Wildgruber, U.

    2006-05-01

    A sophisticated neutron guide system has been installed at the new Munich neutron source FRM-II to transport neutrons from the D 2 cold neutron source to several instruments, which are situated in a separate neutron guide hall. The guide system takes advantage of supermirror coatings and includes a worldwide unique "twisted" guide for a desired phase space transformation of the neutron beam. During the initial reactor commissioning in summer 2004, the integral and differential neutron flux as well as the distribution of beam divergence at the exit of two representative and the twisted neutron guide were measured using time-of-flight spectroscopy and gold-foil activation. The experimental results can be compared to extensive simulation calculations based on MCNP and McStas. The investigated guides fulfill the expectations of providing high neutron fluxes and reveal good quality with respect to the reflective coatings and the installation precision.

  8. Flux and Instrumentation Upgrade for the Epithermal Neutron Beam Facility at Washington State University

    SciTech Connect

    David W. Nigg; J.R. Venhuizen; C.E. Wemple; G. E. Tripard; S. Sharp; K. Fox

    2004-11-01

    An epithermal neutron beam facility for preclinical neutron capture therapy research has been constructed at the Washington State University TRIGA research reactor installation. Subsequent to a recent upgrade, this new facility offers a high-purity epithermal beam with intensity on the order of 1.2×109 n/cm2 s. Key features include a fluoride-based design for the neutron filtering and moderating components as well as a novel collimator design that allows ease of assembly and disassembly of the beamline components.

  9. Investigation of properties of the TIARA neutron beam facility of importance for calibration applications.

    PubMed

    Shikaze, Y; Tanimura, Y; Saegusa, J; Tsutsumi, M; Yamaguchi, Y; Uchita, Y

    2007-01-01

    Evaluation of the properties for quasi-monoenergetic neutron calibration fields of high energies more than 20 MeV at TIARA is proceeding for development of the field. Among the properties needed for the development as the standard calibration field, we report on measurement of the neutron beam profile using an imaging plate with a polyethylene converter and on estimation of the contribution of scattered neutrons into the irradiation field based on pulse height distribution at various off-beam positions measured using an organic liquid scintillation detector.

  10. Development of neutron beam projects at the University of Texas TRIGA Mark II Reactor

    SciTech Connect

    Unlu, Kenan; Bauer, Thomas L.; Wehring, Bernard W.

    1992-07-01

    Recently, the UT-TRIGA research reactor was licensed and has become fully operational. This reactor, the first new US university reactor in 17 years, is the focus of a new reactor laboratory facility which is located on the Balcones Research Center at The University of Texas at Austin. The TRIGA Mark II reactor is licensed for 1.1 MW steady power operation, 3 dollar pulsing, and includes five beam ports. Various neutron beam-line projects have been assigned to each beam port. Neutron Depth Profiling (NDP) and the Texas Cold Neutron Source (TCNS) are close to completion and will be operational in the near future. The design of the NDP instrument has been completed, a target chamber has been built, and the thermal neutron collimator, detectors, data acquisition electronics, and data processing computers have been acquired. The target chamber accommodates wafers up to 12'' in diameter and provides remote positioning of these wafers. The design and construction of the TCNS has been completed. The TCNS consists of a moderator (mesitylene), a neon heat pipe, a cryogenic refrigerator, and neutron guide tubes. In addition, fission-fragment research (HIAWATHA), Neutron Capture Therapy, and Neutron Radiography are being pursued as projects for the other three beam ports. (author)

  11. Ion beam and neutron output from a sub-kilojoule dense plasma focus

    SciTech Connect

    Ellsworth, J. L. Falabella, S. Schmidt, A. Tang, V.

    2014-12-15

    We are seeking to gain a better fundamental understanding of the ion beam acceleration and neutron production dense plasma focus (DPF) device. Experiments were performed on a kilojoule level, fast rise time DPF located at LLNL. Ion beam spectra and neutron yield were measured for deuterium pinches. Visible light images of the pinch are used to determine the pinch length. In addition, an RF probe was placed just outside the cathode to measure fluctuations in E{sub z} up to 6 GHz, which is within the range of the lower hybrid frequencies. We find these oscillations arise at a characteristic frequency near 4 GHz during the pinch. Comparisons of the neutron yield and ion beam characteristics are presented. The neutron yield is also compared to scaling laws.

  12. Characterization of deuterium beam operation on RHEPP-1 for future neutron generation applications.

    SciTech Connect

    Schall, Michael; Cooper, Gary Wayne; Renk, Timothy Jerome

    2009-12-01

    We investigate the potential for neutron generation using the 1 MeV RHEPP-1 intense pulsed ion beam facility at Sandia National Laboratories for a number of emerging applications. Among these are interrogation of cargo for detection of special nuclear materials (SNM). Ions from single-stage sources driven by pulsed power represent a potential source of significant neutron bursts. While a number of applications require higher ion energies (e.g. tens of MeV) than that provided by RHEPP-1, its ability to generate deuterium beams allow for neutron generation at and below 1 MeV. This report details the successful generation and characterization of deuterium ion beams, and their use in generating up to 3 x 10{sup 10} neutrons into 4{pi} per 5kA ion pulse.

  13. Induction of Micronuclei in Human Fibroblasts from the Los Alamos High Energy Neutron Beam

    NASA Technical Reports Server (NTRS)

    Cox, Bradley

    2009-01-01

    The space radiation field includes a broad spectrum of high energy neutrons. Interactions between these neutrons and a spacecraft, or other material, significantly contribute to the dose equivalent for astronauts. The 15 degree beam line in the Weapons Neutron Research beam at Los Alamos Nuclear Science Center generates a neutron spectrum relatively similar to that seen in space. Human foreskin fibroblast (AG1522) samples were irradiated behind 0 to 20 cm of water equivalent shielding. The cells were exposed to either a 0.05 or 0.2 Gy entrance dose. Following irradiation, micronuclei were counted to see how the water shield affects the beam and its damage to cell nuclei. Micronuclei induction was then compared with dose equivalent data provided from a tissue equivalent proportional counter.

  14. BEAM-LOSS DRIVEN DESIGN OPTIMIZATION FOR THE SPALLATION NEUTRON SOURCE (SNS) RING.

    SciTech Connect

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; CAMERON,P.; DANBY,G.; GARDNER,C.J.; JACKSON,J.; LEE,Y.Y.; LUDEWIG,H.; MALITSKY,N.; RAPARIA,D.; TSOUPAS,N.; WENG,W.T.; ZHANG,S.Y.

    1999-03-29

    This paper summarizes three-stage design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.).

  15. Coarse-scaling adjustment of fine-group neutron spectra for epithermal neutron beams in BNCT using multiple activation detectors

    NASA Astrophysics Data System (ADS)

    Liu, Yuan-Hao; Nievaart, Sander; Tsai, Pi-En; Liu, Hong-Ming; Moss, Ray; Jiang, Shiang-Huei

    2009-01-01

    In order to provide an improved and reliable neutron source description for treatment planning in boron neutron capture therapy (BNCT), a spectrum adjustment procedure named coarse-scaling adjustment has been developed and applied to the neutron spectrum measurements of both the Tsing Hua Open-pool Reactor (THOR) epithermal neutron beam in Taiwan and the High Flux Reactor (HFR) in The Netherlands, using multiple activation detectors. The coarse-scaling adjustment utilizes a similar idea as the well-known two-foil method, which adjusts the thermal and epithermal neutron fluxes according to the Maxwellian distribution for thermal neutrons and 1/ E distribution over the epithermal neutron energy region. The coarse-scaling adjustment can effectively suppress the number of oscillations appearing in the adjusted spectrum and provide better smoothness. This paper also presents a sophisticated 9-step process utilizing twice the coarse-scaling adjustment which can adjust a given coarse-group spectrum into a fine-group structure, i.e. 640 groups, with satisfactory continuity and excellently matched reaction rates between measurements and calculation. The spectrum adjustment algorithm applied in this study is the same as the well-known SAND-II.

  16. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Curzio, G.; d'Errico, F.; Nath, R.; Tinti, R.

    2002-01-01

    Neutron capture in 10B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.

  17. Experiments with neutron beams for the astrophysical s process

    NASA Astrophysics Data System (ADS)

    Lederer, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Hernández-Prieto, A.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Korschinek, G.; Krtička, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Leeb, H.; Leong, L. S.; Losito, R.; Mallick, A.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Pignatari, M.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Robles, M. S.; Roman, F.; Rubbia, C.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiβ, C.; Wright, T.; Žugec, P.

    2016-01-01

    Neutron capture cross sections are the key nuclear physics input to study the slow neutron capture process, which is responsible for forming about half of the elemental abundances above Fe. Stellar neutron capture cross section can be measured by the time-of-flight technique, or by activation. Both techniques will be discussed and recent experiments in the Fe/Ni mass region will be presented.

  18. Determining organ dose conversion coefficients for external neutron irradiation by using a voxel mouse model.

    PubMed

    Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan

    2016-03-01

    A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10(-9) MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV.

  19. Determining organ dose conversion coefficients for external neutron irradiation by using a voxel mouse model

    PubMed Central

    Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan

    2016-01-01

    A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10−9 MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal–ventral, ventral–dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. PMID:26661852

  20. Neutron lifetime measurement with pulsed beam at J- PARC: TPC and DAQ

    NASA Astrophysics Data System (ADS)

    Yamada, Takahito; Katayama, Ryo; Higashi, Nao; Yokoyama, Harumichi; Sumino, Hirochika; Yamashita, Satoru; Sakakibara, Risa; Sugino, Tomoaki; Kitaguchi, Masaaki; Hirota, Katsuya; Shimizu, Hirohiko M.; Tanaka, Genki; Sumi, Naoyukio; Otono, Hidetoshi; Yoshioka, Tamaki; Kitahara, Ryunosuke; Iwashita, Yoshihisa; Oide, Hideyuki; Shima, Tatsushi; Seki, Yoshichika; Mishima, Kenji; Taketani, Kaoru; Ino, Takashi; NOP Collaboration

    2014-09-01

    The neutron lifetime is an important parameter for Big Bang nucleosynthesis (BBN). The best neutron lifetime measurements have uncertainties at the 0.1% level; however, they differ by 3.8 sigma. In order to resolve this discrepancy, we plan to measure the neutron lifetime using a method originally developed by Kossakowski et al. which is different from the other 0.1% accuracy experiments. In our method, which uses a pulsed cold neutron beam at J-PARC, the electrons from the beta decay of the neutron are detected with a time projection chamber (TPC). A small amount of 3He is added to the gas mixture in order to simultaneously measure the neutron flux. We report on the recent upgrade of the TPC and the Data Acquisition System which were used to take data during the period of February-June 2014.

  1. Optimum design and criticality safety of a beam-shaping assembly with an accelerator-driven subcritical neutron multiplier for boron neutron capture therapies.

    PubMed

    Hiraga, F

    2015-12-01

    The beam-shaping assembly for boron neutron capture therapies with a compact accelerator-driven subcritical neutron multiplier was designed so that an epithermal neutron flux of 1.9×10(9) cm(-2) s(-1) at the treatment position was generated by 5 MeV protons in a beam current of 2 mA. Changes in the atomic density of (135)Xe in the nuclear fuel due to the operation of the beam-shaping assembly were estimated. The criticality safety of the beam-shaping assembly in terms of Xe poisoning is discussed.

  2. Measuring the Density of Different Materials by Using the Collimated Fast Neutron Beam

    SciTech Connect

    Sudac, D.; Nad, K.; Orlic, Z.; Obhodas, J.; Valkovic, V.

    2015-07-01

    It was demonstrated in the previous work that various threat materials could be detected inside the sea going cargo container by measuring the three variables, carbon and oxygen concentration and density of investigated material. Density was determined by measuring transmitted neutrons, which is not always practical in terms of setting up the instrument geometry. In order to enable more geometry flexibility, we have investigated the possibility of using the scattered neutrons in cargo material identification. For that purpose, the densities of different materials were measured depending on the position of neutron detectors and neutron generator with respect to the target position. One neutron detector was put above the target, one behind and one in front of the target, above the neutron generator. It was shown that all three positions of neutron detectors can be successfully used to measure the target density, but only if the detected neutrons are successfully discriminated from the gamma rays. Although the associated alpha particle technique/associate particle imaging (API) was used to discriminate the neutrons from the gamma rays, it is believed that the same results would be obtained by using the pulse shape discrimination method. In that way API technique can be avoided and the neutron generator which produces much higher beam intensity than 10{sup 8} n/s can be used. (authors)

  3. SU-E-T-304: Study of Secondary Neutrons From Uniform Scanning Proton Beams

    SciTech Connect

    Islam, M; Zheng, Y; Benton, E

    2014-06-01

    Purpose: Secondary neutrons are unwanted byproducts from proton therapy and exposure from secondary radiation during treatment could increase risk of developing a secondary cancer later in a patient's lifetime. The purpose of this study is to investigate secondary neutrons from uniform scanning proton beams under various beam conditions using both measurements and Monte Carlo simulations. Methods: CR-39 Plastic Track Nuclear Detectors (PNTD) were used for the measurement. CR-39 PNTD has tissue like sensitivity to the secondary neutrons but insensitive to the therapeutic protons. In this study, we devised two experimental conditions: a) hollow-phantom; phantom is bored with a hollow cylinder along the direction of the beam so that the primary proton passes through the phantom without interacting with the phantom material, b) cylindrical-phantom; a solid cylinder of diameter close to the beam diameter is placed along the beam path. CR-39 PNTDs were placed laterally inside a 60X20X35 cm3 phantom (hollow-phantom) and in air (cylindrical-phantom) at various angles with respect to the primary beam axis. We studied for three different proton energies (78 MeV, 162 MeV and 226 MeV), using a 4 cm modulation width and 5cm diameter brass aperture for the entire experiment and simulation. A comparison of the experiment was performed using the Monte Carlo code FLUKA. Results: The measured secondary neutron dose equivalent per therapeutic primary proton dose (H/D) ranges from 2.1 ± 0.2 to 25.42 ± 2.3 mSv/Gy for the hollow phantom study, and 2.7 ± 0.3 to 46.4 ± 3.4 mSv/Gy for the cylindrical phantom study. Monte Carlo simulations predicated neutron dose equivalent from measurements within a factor of 5. Conclusion: The study suggests that the production of external neutrons is significantly higher than the production of internal neutrons.

  4. Plant model of KIPT neutron source facility simulator

    SciTech Connect

    Cao, Yan; Wei, Thomas Y.; Grelle, Austin L.; Gohar, Yousry

    2016-02-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system is coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.

  5. Dose evaluation of boron neutron capture synovectomy using the THOR epithermal neutron beam: a feasibility study

    NASA Astrophysics Data System (ADS)

    Wu, Jay; Chang, Shu-Jun; Chuang, Keh-Shih; Hsueh, Yen-Wan; Yeh, Kuan-Chuan; Wang, Jeng-Ning; Tsai, Wen-Pin

    2007-03-01

    Rheumatoid arthritis is one of the most common epidemic diseases in the world. For some patients, the treatment with steroids or nonsteroidal anti-inflammatory drugs is not effective, thus necessitating physical removal of the inflamed synovium. Alternative approaches other than surgery will provide appropriate disease control and improve the patient's quality of life. In this research, we evaluated the feasibility of conducting boron neutron capture synovectomy (BNCS) with the Tsing Hua open-pool reactor (THOR) as a neutron source. Monte Carlo simulations were performed with arthritic joint models and uncertainties were within 5%. The collimator, reflector and boron concentration were optimized to reduce the treatment time and normal tissue doses. For the knee joint, polyethylene with 40%-enriched Li2CO3 was used as the collimator material, and a rear reflector of 15 cm thick graphite and side reflector of 10 cm thick graphite were chosen. The optimized treatment time was 5.4 min for the parallel-opposed irradiation. For the finger joint, polymethyl methacrylate was used as the reflector material. The treatment time can be reduced to 3.1 min, while skin and bone doses can be effectively reduced by approximately 9% compared with treatment using the graphite reflector. We conclude that using THOR as a treatment modality for BNCS could be a feasible alternative in clinical practice.

  6. Improvement of dose distribution by central beam shielding in boron neutron capture therapy.

    PubMed

    Sakurai, Yoshinori; Ono, Koji

    2007-12-21

    Since boron neutron capture therapy (BNCT) with epithermal neutron beams started at the Kyoto University Reactor (KUR) in June 2002, nearly 200 BNCT treatments have been carried out. The epithermal neutron irradiation significantly improves the dose distribution, compared with the previous irradiation mainly using thermal neutrons. However, the treatable depth limit still remains. One effective technique to improve the limit is the central shield method. Simulations were performed for the incident neutron energies and the annular components of the neutron source. It was clear that thermal neutron flux distribution could be improved by decreasing the lower energy neutron component and the inner annular component of the incident beam. It was found that a central shield of 4-6 cm diameter and 10 mm thickness is effective for the 12 cm diameter irradiation field. In BNCT at KUR, the depth dose distribution can be much improved by the central shield method, resulting in a relative increase of the dose at 8 cm depth by about 30%. In addition to the depth dose distribution, the depth dose profile is also improved. As the dose rate in the central area is reduced by the additional shielding, the necessary irradiation time, however, increases by about 30% compared to normal treatment.

  7. Advanced modeling of prompt fission neutrons

    SciTech Connect

    Talou, Patrick

    2009-01-01

    Theoretical and numerical studies of prompt fission neutrons are presented. The main results of the Los Alamos model often used in nuclear data evaluation work are reviewed briefly, and a preliminary assessment of uncertainties associated with the evaluated prompt fission neutron spectrum for n (0.5 MeV)+{sup 239}Pu is discussed. Advanced modeling of prompt fission neutrons is done by Monte Carlo simulations of the evaporation process of the excited primary fission fragments. The successive emissions of neutrons are followed in the statistical formalism framework, and detailed information, beyond average quantities, can be inferred. This approach is applied to the following reactions: {sup 252}Cf (sf), n{sub th} + {sup 239}Pu, n (0.5 MeV)+{sup 235}U, and {sup 236}Pu (sf). A discussion on the merits and present limitations of this approach concludes this presentation.

  8. Neutron spectra at two beam ports of a TRIGA Mark III reactor loaded with HEU fuel.

    PubMed

    Vega-Carrillo, H R; Hernández-Dávila, V M; Aguilar, F; Paredes, L; Rivera, T

    2014-01-01

    The neutron spectra have been measured in two beam ports, one radial and another tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research in Mexico. Measurements were carried out with the reactor core loaded with high enriched uranium fuel. Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a (6)LiI(Eu) scintillator and 2, 3, 5, 8, 10 and 12 in.-diameter high-density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code. For each spectrum total flux, mean energy and ambient dose equivalent were determined. Measured spectra show fission, epithermal and thermal neutrons, being harder in the radial beam port.

  9. A Drabkin-type spin resonator as tunable neutron beam monochromator

    NASA Astrophysics Data System (ADS)

    Piegsa, F. M.; Ries, D.; Filges, U.; Hautle, P.

    2015-09-01

    A Drabkin-type spin resonator was designed and successfully implemented at the multi-purpose beam line BOA at the spallation neutron source SINQ at the Paul Scherrer Institute. The device selectively acts on the magnetic moment of neutrons within an adjustable velocity band and hence can be utilized as a tunable neutron beam monochromator. Several neutron time-of-flight (TOF) spectra have been recorded employing various settings in order to characterize its performance. In a first test application the velocity dependent transmission of a beryllium filter was determined. In addition, we demonstrate that using an exponential current distribution in the spin resonator coil the side-maxima in the TOF spectra usually associated with a Drabkin setup can be strongly suppressed.

  10. Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications

    NASA Astrophysics Data System (ADS)

    Cortesi, M.; Zboray, R.; Adams, R.; Dangendorf, V.; Prasser, H.-M.

    2012-02-01

    The conceptual design and operational principle of a novel high-efficiency, fast neutron imaging detector based on THGEM, intended for future fan-beam transmission tomography applications, is described. We report on a feasibility study based on theoretical modeling and computer simulations of a possible detector configuration prototype. In particular we discuss results regarding the optimization of detector geometry, estimation of its general performance, and expected imaging quality: it has been estimated that detection efficiency of around 5-8% can be achieved for 2.5 MeV neutrons; spatial resolution is around one millimeter with no substantial degradation due to scattering effects. The foreseen applications of the imaging system are neutron tomography in non-destructive testing for the nuclear energy industry, including examination of spent nuclear fuel bundles, detection of explosives or drugs, as well as investigation of thermal hydraulics phenomena (e.g., two-phase flow, heat transfer, phase change, coolant dynamics, and liquid metal flow).

  11. The new vertical neutron beam line at the CERN n_TOF facility design and outlook on the performance

    NASA Astrophysics Data System (ADS)

    Weiß, C.; Chiaveri, E.; Girod, S.; Vlachoudis, V.; Aberle, O.; Barros, S.; Bergström, I.; Berthoumieux, E.; Calviani, M.; Guerrero, C.; Sabaté-Gilarte, M.; Tsinganis, A.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea-Correa, J.; Barbagallo, M.; Bécares, V.; Beinrucker, C.; Belloni, F.; Bečvář, F.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Cano-Ott, D.; Cerutti, F.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L.; Deo, K.; Diakaki, M.; Domingo-Pardo, C.; Dupont, E.; Durán, I.; Dressler, R.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Frost, R.; Furman, V.; Ganesan, S.; Gheorghe, A.; Glodariu, T.; Göbel, K.; Gonçalves, I. F.; González-Romero, E.; Goverdovski, A.; Griesmayer, E.; Gunsing, F.; Harada, H.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui, J.; Licata, M.; Lo Meo, S.; López, D.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mastromarco, M.; Matteucci, F.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Palomo Pinto, R.; Paradela, C.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M. S.; Rubbia, C.; Ryan, J.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, G.; Stamatopoulos, A.; Steinegger, P.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Wright, T.; Žugec, P.

    2015-11-01

    At the neutron time-of-flight facility n_TOF at CERN a new vertical beam line was constructed in 2014, in order to extend the experimental possibilities at this facility to an even wider range of challenging cross-section measurements of interest in astrophysics, nuclear technology and medical physics. The design of the beam line and the experimental hall was based on FLUKA Monte Carlo simulations, aiming at maximizing the neutron flux, reducing the beam halo and minimizing the background from neutrons interacting with the collimator or back-scattered in the beam dump. The present paper gives an overview on the design of the beam line and the relevant elements and provides an outlook on the expected performance regarding the neutron beam intensity, shape and energy resolution, as well as the neutron and photon backgrounds.

  12. Relative biological effects of neutron mixed-beam irradiation for boron neutron capture therapy on cell survival and DNA double-strand breaks in cultured mammalian cells

    PubMed Central

    Okumura, Kakuji; Kinashi, Yuko; Kubota, Yoshihisa; Kitajima, Erika; Okayasu, Ryuichi; Ono, Koji; Takahashi, Sentaro

    2013-01-01

    Understanding the biological effects of neutron mixed-beam irradiation used for boron neutron capture therapy (BNCT) is important in order to improve the efficacy of the therapy and to reduce side effects. In the present study, cell viability and DNA double-strand breaks (DNA-DSBs) were examined in Chinese hamster ovary cells (CHO-K1) and their radiosensitive mutant cells (xrs5, Ku80-deficient), following neutron mixed-beam irradiation for BNCT. Cell viability was significantly impaired in the neutron irradiation groups compared to the reference gamma-ray irradiation group. The relative biological effectiveness for 10% cell survival was 3.3 and 1.2 for CHO-K1 and xrs5 cells, respectively. There were a similar number of 53BP1 foci, indicators of DNA-DSBs, in the neutron mixed-beam and the gamma-ray groups. In addition, the size of the foci did not differ between groups. However, neutron mixed-beam irradiation resulted in foci with different spatial distributions. The foci were more proximal to each other in the neutron mixed-beam groups than the gamma-ray irradiation groups. These findings suggest that neutron beams may induce another type of DNA damage, such as clustered DNA-DSBs, as has been indicated for other high-LET irradiation. PMID:22966174

  13. Wedge factor dependence with depth and field size for fast neutron beams.

    PubMed

    Popescu, Alina; Risler, Ruedi

    2003-07-21

    The dependence of the wedge factors (WFs) on field size (FS) and depth for a fast neutron beam has been investigated. In a previous study (Popescu et al 1999 Med. Phys. 26 541), a method was presented that allows a simple and accurate way of calculating the wedge-factor dependence on FS and depth in the case of a photon beam. The validity of a similar approach is tested in the present study for neutron beam dosimetry. The clinical neutron therapy system at the University of Washington (UW) has a flattening filter assembly consisting of two filters: a small field filter and a large field filter. Despite this complication, the approach presented in Popescu et al (1999 Med. Phys. 26 541) can be used to describe the WF dependence on FS and depth (d).

  14. A telescope proton recoil spectrometer for fast neutron beam-lines

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Rebai, M.; Tardocchi, M.; Croci, G.; Nocente, M.; Ansell, S.; Frost, C. D.; Gorini, G.

    2015-07-01

    Fast neutron measurements were performed on the VESUVIO beam-line at the ISIS spallation source using a new telescope proton recoil spectrometer. Neutrons interact on a plastic target. Proton production is mainly due to elastic scattering on hydrogen nuclei and secondly due to interaction with carbon nuclei. Recoil protons are measured by a proton spectrometer, which uses in coincidence a 2.54 cm thick YAP scintillator and a 500μm thick silicon detector, measuring the full proton recoil energy and the partial deposited energy in transmission, respectively. Recoil proton spectroscopy measurements (up to Ep = 60MeV) have been interpreted by using Monte Carlo simulations of the beam-line. This instrument is of particular interest for the characterization of the ChipIr beam-line at ISIS, which was designed to feature an atmospheric-like neutron spectrum for the irradiation of micro-electronics.

  15. Geant4 simulation of the n_TOF-EAR2 neutron beam: Characteristics and prospects

    NASA Astrophysics Data System (ADS)

    Lerendegui-Marco, J.; Lo Meo, S.; Guerrero, C.; Cortés-Giraldo, M. A.; Massimi, C.; Quesada, J. M.; Barbagallo, M.; Colonna, N.; Mancusi, D.; Mingrone, F.; Sabaté-Gilarte, M.; Vannini, G.; Vlachoudis, V.

    2016-04-01

    The characteristics of the neutron beam at the new n_TOF-EAR2 facility have been simulated with the Geant4 code with the aim of providing useful data for both the analysis and planning of the upcoming measurements. The spatial and energy distributions of the neutrons, the resolution function and the in-beam γ-ray background have been studied in detail and their implications in the forthcoming experiments have been discussed. The results confirm that, with this new short (18.5m flight path) beam line, reaching an instantaneous neutron flux beyond 105n/μs/pulse in the keV region, n_TOF is one of the few facilities where challenging measurements can be performed, involving in particular short-lived radioisotopes.

  16. Study of muon-induced neutron production using accelerator muon beam at CERN

    SciTech Connect

    Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P.; Draeger, E.; White, C. G.; Luk, K. B.; Steiner, H.

    2015-08-17

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production.

  17. Modelling and control of neutron and synchrotron beamline positioning systems

    NASA Astrophysics Data System (ADS)

    Nneji, S. O.; Zhang, S. Y.; Kabra, S.; Moat, R. J.; James, J. A.

    2016-03-01

    Measurement of residual stress using neutron or synchrotron diffraction relies on the accurate alignment of the sample in relation to the gauge volume of the instrument. Automatic sample alignment can be achieved using kinematic models of the positioning system provided the relevant kinematic parameters are known, or can be determined, to a suitable accuracy. In this paper, the use of techniques from robotic calibration theory to generate kinematic models of both off-the-shelf and custom-built positioning systems is demonstrated. The approach is illustrated using a positioning system in use on the ENGIN-X instrument at the UK's ISIS pulsed neutron source comprising a traditional XYZΩ table augmented with a triple axis manipulator. Accuracies better than 100 microns were achieved for this compound system. Discussed here in terms of sample positioning systems these methods are entirely applicable to other moving instrument components such as beam shaping jaws and detectors.

  18. Nuclear analytical techniques with neutron beams at the Univ. of Texas at Austin

    SciTech Connect

    Uenlue, K.; Wehring, B.W.

    1996-12-31

    Neutron beams produced by nuclear research reactors can be used for analytical chemical analysis by measuring nuclear radiation produced by neutron capture. Prompt gamma activation analysis (PGAA) and neutron depth profiling (NDP) are two such analytical techniques. For the last three decades, these techniques have been applied at a number of research reactors around the world. Within the last 4 yr, we have developed NDP and PGAA facilities at The University of Texas at Austin research reactor, a 1-MW TRIGA Mark II reactor. Brief descriptions of the facilities and summaries of activities for these analytical techniques at the University of Texas at Austin are provided in this paper.

  19. A method for using neutron elastic scatter to create a variable energy neutron beam from a nearly monoenergetic neutron source

    NASA Astrophysics Data System (ADS)

    Whetstone, Z. D.; Kearfott, K. J.

    2015-07-01

    This work describes preliminary investigation into the design of a compact, portable, variable energy neutron source. The proposed method uses elastic neutron scatter at specific angles to reduce the energy of deuterium-deuterium or deuterium-tritium (D-T) neutrons. The research focuses on D-T Monte Carlo simulations, both in idealized and more realistic scenarios. Systematic uncertainty of the method is also analyzed. The research showed promise, but highlighted the need for discrimination of multiply-scattered neutrons, either through a pulsed generator or associated particle imaging.

  20. Reactor beam calculations to determine optimum delivery of epithermal neutrons for treatment of brain tumors

    SciTech Connect

    Wheeler, F.J.; Nigg, D.W.; Capala, J.

    1997-10-01

    Studies were performed to assess theoretical tumor control probability (TCP) for brain-tumor treatment with boron neutron capture therapy (BNCT) using epithermal neutron sources from reactors. The existing epithermal-neutron beams at the Brookhaven Medical Research Reactor Facility (BMRR), the Petten High Flux Reactor Facility (HWR) and the Finnish Research Reactor 1 (FIR1) have been analyzed and characterized using common analytical and measurement methods allowing for this inter-comparison. Each of these three facilities is unique and each offers an advantage in some aspect of BNCT, but none of these existing facilities excel in all neutron-beam attributes as related to BNCT. A comparison is therefore also shown for a near-optimum reactor beam which does not currently exist but which would be feasible with existing technology. This hypothetical beam is designated BNCT-1 and has a spectrum similar to the FIR-1, the mono-directionality of the HFR and the intensity of the BMRR. A beam very similar to the BNCT-1 could perhaps be achieved with modification of the BMRR, HFR, or FIR, and could certainly be realized in a new facility with today`s technology.

  1. Fission converter and metal-oxide-semiconductor field effect transistor study of thermal neutron flux distribution in an epithermal neutron therapy beam.

    PubMed

    Kaplan, G I; Rosenfeld, A B; Allen, B J; Coderre, J A; Liu, H B

    1999-09-01

    The depth distribution of the thermal neutron flux is a major factor in boron neutron capture therapy (BNCT) in determining the efficiency of cell sterilization. In this paper the fission detector method is developed and applied to measure the in-phantom thermal neutron flux depth distribution. Advantages of the fission detector include small size, direct measurement of thermal neutron flux in a mixed radiation field of BNCT beam, self-calibration, and the possibility of on-line measurement. The measurements were performed at epithermal a BNCT facility. The experimental results were compared with the thermal neutron flux calculated by the Monte Carlo method and found to be in good agreement.

  2. MCNP optimization of filtered neutron beams for calibration of the SIMPLE detector

    NASA Astrophysics Data System (ADS)

    Oliveira, C.; Giuliani, F.; Girard, T. A.; Marques, J. G.; Salgado, J.; Collar, J. I.; Morlat, T.; Limagne, D.; Waysand, G.

    2004-01-01

    We report an MCNP study of filtered monochromatic neutron beams of energies 25, 54 and 149 keV for response studies of a superheated droplet detector for the SIMPLE experiment. The results identify the importance of the detector temperature stabilizing water bath and the aqueous gel of the detector on the beam quality, in general agreement with recent measurements made on the thermal port of the Portuguese research reactor.

  3. RESULTS OF BACKGROUND SUBTRACTION TECHNIQUES ON THE SPALLATION NEUTRON SOURCE BEAM LOSS MONITORS

    SciTech Connect

    Pogge, James R; Zhukov, Alexander P

    2010-01-01

    Recent improvements to the Spallation Neutron Source (SNS) beam loss monitor (BLM) designs have been made with the goal of significantly reducing background noise. This paper outlines this effort and analyzes the results. The significance of this noise reduction is the ability to use the BLM sensors [1], [2], [3] distributed throughout the SNS accelerator as a method to monitor activation of components as well as monitor beam losses.

  4. Modeling of water radiolysis at spallation neutron sources

    SciTech Connect

    Daemen, L.L.; Kanner, G.S.; Lillard, R.S.; Butt, D.P.; Brun, T.O.; Sommer, W.F.

    1998-12-01

    In spallation neutron sources neutrons are produced when a beam of high-energy particles (e.g., 1 GeV protons) collides with a (water-cooled) heavy metal target such as tungsten. The resulting spallation reactions produce a complex radiation environment (which differs from typical conditions at fission and fusion reactors) leading to the radiolysis of water molecules. Most water radiolysis products are short-lived but extremely reactive. When formed in the vicinity of the target surface they can react with metal atoms, thereby contributing to target corrosion. The authors describe the results of calculations and experiments performed at los alamos to determine the impact on target corrosion of water radiolysis in the spallation radiation environment. The computational methodology relies on the use of the Los Alamos radiation transport code, LAHET, to determine the radiation environment, and the AEA code, FACSIMILE, to model reaction-diffusion processes.

  5. Novel neutralized-beam intense neutron source for fusion technology development

    SciTech Connect

    Osher, J.E.; Perkins, L.J.

    1983-07-08

    We describe a neutralized-beam intense neutron source (NBINS) as a relevant application of fusion technology for the type of high-current ion sources and neutral beamlines now being developed for heating and fueling of magnetic-fusion-energy confinement systems. This near-term application would support parallel development of highly reliable steady-state higher-voltage neutral D/sup 0/ and T/sup 0/ beams and provide a relatively inexpensive source of fusion neutrons for materials testing at up to reactor-like wall conditions. Beam-target examples described incude a 50-A mixed D-T total (ions plus neutrals) space-charge-neutralized beam at 120 keV incident on a liquid Li drive-in target, or a 50-A T/sup 0/ + T/sup +/ space-charge-neutralized beam incident on either a LiD or gas D/sub 2/ target with calculated 14-MeV neutron yields of 2 x 10/sup 15//s, 7 x 10/sup 15//s, or 1.6 x 10/sup 16//s, respectively. The severe local heat loading on the target surface is expected to limit the allowed beam focus and minimum target size to greater than or equal to 25 cm/sup 2/.

  6. Off-axis neutron study from a uniform scanning proton beam using Monte Carlo code FLUKA

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Rafiqul

    The production of secondary neutrons is an undesirable byproduct of proton therapy. It is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons using the Monte Carlo radiation transport code FLUKA. The study is done using a simplified version of the beam delivery system used at ProCure Proton Therapy Center, Oklahoma City, OK. In this study, a particular set of treatment parameters were set to study the dose equivalent outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with maximum energies of 78 MeV, 162 MeV and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the study. The FLUKA calculated secondary neutron dose equivalent to absorbed proton dose, Hn/Dp, decreased with distance from beam isocenter. The Hn/Dp ranged from 0.11 +/- 0.01 mSv/Gy for a 78 MeV proton beam to 111.01 +/- 1.99 mSv/Gy for a 226 MeV proton beam. Overall, Hn/D p was observed to be higher in air than in the phantom, indicating the predominance of external neutrons produced in the nozzle rather than inside the body.

  7. Model of beam head erosion

    SciTech Connect

    Lee, E.P.

    1980-08-08

    An analytical model of beam head dynamics is presented, leading to an estimate of the erosion rate due to the combined effects of Ohmic dissipation and scattering. Agreement with the results of a computer simulation and detailed one-dimensional computations is good in all respects except for the scaling of the erosion rate with net current.

  8. Feasibility of the utilization of BNCT in the fast neutron therapy beam at Fermilab

    SciTech Connect

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.

    2000-06-23

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.

  9. Feasibility of the Utilization of BNCT in the Fast Neutron Therapy Beam at Fermilab

    DOE R&D Accomplishments Database

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.

    2000-06-01

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.

  10. Modeling gated neutron images of THD capsules

    SciTech Connect

    Wilson, Douglas Carl; Grim, Gary P; Tregillis, Ian L; Wilke, Mark D; Morgan, George L; Loomis, Eric N; Wilde, Carl H; Oertel, John A; Fatherley, Valerie E; Clark, David D; Schmitt, Mark J; Merrill, Frank E; Wang, Tai - Sen F; Danly, Christopher R; Batha, Steven H; Patel, M; Sepke, S; Hatarik, R; Fittinghoff, D; Bower, D; Marinak, M; Munro, D; Moran, M; Hilko, R; Frank, M; Buckles, R

    2010-01-01

    Time gating a neutron detector 28m from a NIF implosion can produce images at different energies. The brighter image near 14 MeV reflects the size and symmetry of the capsule 'hot spot'. Scattered neutrons, {approx}9.5-13 MeV, reflect the size and symmetry of colder, denser fuel, but with only {approx}1-7% of the neutrons. The gated detector records both the scattered neutron image, and, to a good approximation, an attenuated copy of the primary image left by scintillator decay. By modeling the imaging system the energy band for the scattered neutron image (10-12 MeV) can be chosen, trading off the decayed primary image and the decrease of scattered image brightness with energy. Modeling light decay from EJ399, BC422, BCF99-55, Xylene, DPAC-30, and Liquid A leads to a preference from BCF99-55 for the first NIF detector, but DPAC 30 and Liquid A would be preferred if incorporated into a system. Measurement of the delayed light from the NIF scintillator using implosions at the Omega laser shows BCF99-55 to be a good choice for down-scattered imaging at 28m.

  11. A beam-modification assembly for experimental neutron capture therapy of brain tumors

    SciTech Connect

    Slatkin, D.N.; Kalef-Ezra, J.A.; Saraf, S.K.; Joel, D.D.

    1989-01-01

    Recent attempts to treat intracerebral rat gliomas by boron neutron capture therapy (BNCT) have been somewhat disappointing, perhaps in part because of excessive whole-body and nasopharyngeal irradiation. Intracerebral rat gliomas were treated by BNCT with more success using a new beam-modification assembly. 3 refs., 2 figs.

  12. Beam asymmetry {Sigma} measurements of {pi}{sup -} photoproduction on neutrons

    SciTech Connect

    Mandaglio, G.; Manganaro, M.; Giardina, G.; Mammoliti, F.; Bellini, V.; Giusa, A.; Randieri, C.; Russo, G.; Sperduto, M. L.; Bocquet, J. P.; Lleres, A.; Rebreyend, D.; D'Angelo, A.; Fantini, A.; Franco, D.; Schaerf, C.; Vegna, V.

    2010-10-15

    The -beam asymmetry {Sigma} in the photoproduction of negative pions on quasi-free neutrons in a deuterium target was measured at the Grenoble Anneau Accelerateur Laser in the energy interval 700-1500 MeV and over a wide angular range, using polarized and tagged photons. Results are compared with recent partial-wave analyses.

  13. Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC

    NASA Astrophysics Data System (ADS)

    Magee, R. M.; Clary, R.; Korepanov, S.; Jauregui, F.; Allfrey, I.; Garate, E.; Valentine, T.; Smirnov, A.

    2016-11-01

    In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 107 n/s AmBe source. The practical issues of each method are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.

  14. Silicon detectors for the neutron flux and beam profile measurements of the n_TOF facility at CERN

    NASA Astrophysics Data System (ADS)

    Musumarra, Agatino; Cosentino, Luigi; Barbagallo, Massimo; Colonna, Nicola; Damone, Lucia; Pappalardo, Alfio; Piscopo, Massimo; Finocchiaro, Paolo

    2016-09-01

    The demand of new and high precision cross section data for neutron-induced reactions is continuously growing, driven by the requirements from several fields of fundamental physics, as well as from nuclear technology, medicine, etc. Several neutron facilities are operational worldwide, and new ones are being built. In the coming years, neutron beam intensities never reached up to now will be available, thus opening new scientific and technological frontiers. Among existing facilities, n_TOF at CERN provides a high intensity pulsed neutron beam in a wide energy range (thermal to GeV) and with an extremely competitive energy resolution that also allows spectroscopy studies. In order to ensure high quality measurements, the neutron beams must be fully characterized as a function of the neutron energy, in particular by measuring the neutron flux and the beam transverse profile with high accuracy. In 2014 a new experimental area (EAR2), with a much higher neutron flux, has been completed and commissioned at n_TOF. In order to characterize the neutron beam in the newly built experimental area at n_TOF, two suitable diagnostics devices have been built by the INFN-LNS group. Both are based on silicon detectors coupled with 6Li converter foils, in particular Single Pad for the flux measurement and Position Sensitive (strips and others) for the beam profile. The devices have been completely characterized with radioactive sources and with the n_TOF neutron beam, fulfilling all the specifications and hence becoming immediately operational. The performances of these devices and their high versatility, in terms of neutron beam intensity, make them suitable to be used in both n_TOF experimental areas. A description of the devices and the main results obtained so far will be presented.

  15. Multipurpose epithermal neutron beam on new research station at MARIA research reactor in Swierk-Poland

    SciTech Connect

    Gryzinski, M.A.; Maciak, M.

    2015-07-01

    MARIA reactor is an open-pool research reactor what gives the chance to install uranium fission converter on the periphery of the core. It could be installed far enough not to induce reactivity of the core but close enough to produce high flux of fast neutrons. Special design of the converter is now under construction. It is planned to set the research stand based on such uranium converter in the near future: in 2015 MARIA reactor infrastructure should be ready (preparation started in 2013), in 2016 the neutron beam starts and in 2017 opening the stand for material and biological research or for medical training concerning BNCT. Unused for many years, horizontal channel number H2 at MARIA research rector in Poland, is going to be prepared as a part of unique stand. The characteristics of the neutron beam will be significant advantage of the facility. High flux of neutrons at the level of 2x10{sup 9} cm{sup -2}s{sup -1} will be obtainable by uranium neutron converter located 90 cm far from the reactor core fuel elements (still inside reactor core basket between so called core reflectors). Due to reaction of core neutrons with converter U{sub 3}Si{sub 2} material it will produce high flux of fast neutrons. After conversion neutrons will be collimated and moderated in the channel by special set of filters and moderators. At the end of H2 channel i.e. at the entrance to the research room neutron energy will be in the epithermal energy range with neutron intensity at least at the level required for BNCT (2x10{sup 9} cm{sup -2}s{sup -1}). For other purposes density of the neutron flux could be smaller. The possibility to change type and amount of installed filters/moderators which enables getting different properties of the beam (neutron energy spectrum, neutron-gamma ratio and beam profile and shape) is taken into account. H2 channel is located in separate room which is adjacent to two other empty rooms under the preparation for research laboratories (200 m2). It is

  16. OER and RBE of high energy neutron beams for growth inhibition in Vicia faba.

    PubMed

    Van Dam, J; Billiet, G; Zoetelief, J; Broerse, J J; Wambersie, A

    1983-01-01

    The radiobiologic characteristics of 15 MeV neutrons produced by the d + T reaction at the TNO of Rijswijk and of neutrons produced by the d(50) + Be and p(75) + Be reactions at the cyclotron Cyclone of Louvain-la- Neuve were compared. Growth inhibition in Vicia faba bean roots was used as biologic system. An OER value of 1.5 +/- 0.1 ws obtained for the neutron beams compared. The RBE of 15 MeV, d(50) + Be and p(75) + Be neutrons was found equal to 3.4 +/- 0.2, 3.2 +/- 0.2 and 2.9 +/- 0.3, respectively, relative to gamma rays, for a total (n + gamma) absorbed dose of 0.6 Gy.

  17. Neutron spectra produced by 30, 35 and 40 MeV proton beams at KIRAMS MC-50 cyclotron with a thick beryllium target

    NASA Astrophysics Data System (ADS)

    Shin, Jae Won; Bak, Sang-In; Ham, Cheolmin; In, Eun Jin; Kim, Do Yoon; Min, Kyung Joo; Zhou, Yujie; Park, Tae-Sun; Hong, Seung-Woo; Bhoraskar, V. N.

    2015-10-01

    Neutrons over a wide range of energies are produced by bombarding a 1.05 cm thick beryllium target with protons of different energies delivered by the MC-50 Cyclotron of the Korea Institute of Radiological Medical Sciences (KIRAMS). The neutron flux Φ(En) versus neutron energy En, produced by protons of 30, 35, and 40 MeV energies, was obtained by using the GEANT4 code with a data-based hadronic model. For the experimental validation of the simulated neutron spectra, a number of pure aluminum and iron oxide samples were irradiated with the neutrons produced by 30, 35, and 40 MeV protons at 20 μA beam current. The gamma-ray activities of 24Na and 56Mn produced, respectively, through 27Al(n,α)24Na and 56Fe(n,p)56Mn reactions were measured by a HPGe detector. The neutron flux Φ(En) at each neutron energy from the simulation was multiplied with the evaluated cross-sections σ(En) of the respective nuclear reaction, and the summation ∑ Φ(En) σ(En) was calculated over the neutron spectrum for each proton energy of 30, 35, and 40 MeV. The measured gamma-ray activities of 24Na and 56Mn were found in good agreement with the activities estimated by using the summed values of ∑ Φ(En) σ(En) along with other parameters in a neutron activation method.

  18. Theoretical study on production of heavy neutron-rich isotopes around the N = 126 shell closure in radioactive beam induced transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Su, Jun; Xie, Wen-Jie; Zhang, Feng-Shou

    2017-04-01

    In order to produce more unknown neutron-rich nuclei around N = 126, the transfer reactions 136Xe + 198Pt, 136-144Xe + 208Pb, and 132Sn + 208Pb are investigated within the framework of the dinuclear system (DNS) model. The influence of neutron excess of projectile on production cross sections of target-like products is studied through the reactions 136,144Xe + 208Pb. We find that the radioactive projectile 144Xe with much larger neutron excess is favorable to produce neutron-rich nuclei with charge number less than the target rather than produce transtarget nuclei. The incident energy dependence of yield distributions of fragments in the reaction 132Sn + 208Pb are also studied. The production cross sections of neutron-rich nuclei with Z = 72- 77 are predicted in the reactions 136-144Xe + 208Pb and 132Sn + 208Pb. It is noticed that the production cross sections of unknown neutron-rich nuclei in the reaction 144Xe + 208Pb are at least two orders of magnitude larger than those in the reaction 136Xe + 208Pb. The radioactive beam induced transfer reactions 139,144Xe + 208Pb, considering beam intensities proposed in SPIRAL2 (Production System of Radioactive Ion and Acceleration On-Line) project as well, for production of neutron-rich nuclei around the N = 126 shell closure are investigated for the first time. It is found that, in comparison to the stable beam 136Xe, the radioactive beam 144Xe shows great advantages for producing neutron-rich nuclei with N = 126 and the advantages get more obvious for producing nuclei with less charge number.

  19. Generation and detection of neutron beams with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Pushin, Dmitry A.; Barankov, Roman A.; Clark, Charles W.; Huber, Michael G.; Arif, Muhammad; Cory, David G.

    2015-05-01

    Orbital angular momentum (OAM) states of light, in which photons carry lℏ units of angular momentum along their direction of propagation, are of interest in a variety of applications. The Schrödinger equation for massive particles also supports OAM solutions, and OAM states have been demonstrated with ultracold atoms and electrons. Here we report the first generation and detection of OAM states of neutrons, with l up to 7. These are made using spiral phase plates (SPP), milled out of 6061 aluminum alloy dowels with a high-resolution computer-controlled milling machine. When a SPP is placed in one arm of a Mach-Zehnder neutron interferometer, the interferogram reveals the characteristic patterns of OAM states. Addition of angular momenta is effected by concatenation of SPPs with different values of l; we have found the experimental result 1 + 2 = 3 , in reasonable agreement with theory. The advent of OAM provides an additional, quantized, degree of freedom to neutron interferometry, enlarging the qubit structure available for tests of quantum information processing and foundations of quantum physics.

  20. Peripheral photon and neutron doses from prostate cancer external beam irradiation.

    PubMed

    Bezak, Eva; Takam, Rundgham; Marcu, Loredana G

    2015-12-01

    Peripheral photon and neutron doses from external beam radiotherapy (EBRT) are associated with increased risk of carcinogenesis in the out-of-field organs; thus, dose estimations of secondary radiation are imperative. Peripheral photon and neutron doses from EBRT of prostate carcinoma were measured in Rando phantom. (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescence dosemeters (TLDs) were inserted in slices of a Rando phantom followed by exposure to 80 Gy with 18-MV photon four-field 3D-CRT technique. The TLDs were calibrated using 6- and 18-MV X-ray beam. Neutron dose equivalents measured with CR-39 etch-track detectors were used to derive readout-to-neutron dose conversion factor for (6)LiF:Mg,Cu,P TLDs. Average neutron dose equivalents per 1 Gy of isocentre dose were 3.8±0.9 mSv Gy(-1) for thyroid and 7.0±5.4 mSv Gy(-1) for colon. For photons, the average dose equivalents per 1 Gy of isocentre dose were 0.2±0.1 mSv Gy(-1) for thyroid and 8.1±9.7 mSv Gy(-1) for colon. Paired (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P TLDs can be used to measure photon and neutron doses simultaneously. Organs in close proximity to target received larger doses from photons than those from neutrons whereas distally located organs received higher neutron versus photon dose.

  1. New neutron small-angle diffraction instrument at the Brookhaven High Flux Beam Reactor

    SciTech Connect

    Schneider, D.K.; Schoenborn, B.P.

    1982-01-01

    The new instrument utilizes cold neutrons emerging from a series of straight neutron guides. A multilayered monochromator is used in combination with a short collimator to obtain a monochromatized beam with a wavelength between 4 and 10 A and a wavelength spread of about 10%. The flux at 5 A exceeds 10/sup 6/ ns/sup -1/ cm/sup -2/ in a typical beam of 6-mm diameter at the sample. The spectrometer itself incorporates provisions for computer-controlled positioning of samples and a two-dimensional detector. At a sample-detector distance between 50 and 200 cm the detector can be centered at scattering angles of up to 45/sup 0/. The beam-defining components, the monochromator, the collimator, and various slits, are easily accessible and exchangeable for alternative devices. These features make the instrument modular and give it flexibility approaching that of standard x-ray equipment.

  2. Measurement of Neutrons Produced by Beam-Target Interactions via a Coaxial Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Cauble, Scott; Poehlmann, Flavio; Rieker, Gregory; Cappelli, Mark

    2011-10-01

    This poster presents a method to measure neutron yield from a coaxial plasma accelerator. Stored electrical energies between 1 and 19 kJ are discharged within a few microseconds across the electrodes of the coaxial gun, accelerating deuterium gas samples to plasma beam energies well beyond the keV energy range. The focus of this study is to examine the interaction of the plasma beam with a deuterated target by designing and fabricating a detector to measure neutron yield. Given the strong electromagnetic pulse associated with our accelerator, indirect measurement of neutrons via threshold-dependent nuclear activation serves as both a reliable and definitive indicator of high-energy particles for our application. Upon bombardment with neutrons, discs or stacks of metal foils placed near the deuterated target undergo nuclear activation reactions, yielding gamma-emitting isotopes whose decay is measured by a scintillation detector system. By collecting gamma ray spectra over time and considering nuclear cross sections, the magnitude of the original neutron pulse is inferred.

  3. Plasma focus neutron anisotropy measurements and influence of a deuteron beam obstacle

    NASA Astrophysics Data System (ADS)

    Talebitaher, A.; Springham, S. V.; Rawat, R. S.; Lee, P.

    2017-03-01

    The deuterium-deuterium (DD) fusion neutron yield and anisotropy were measured on a shot-to-shot basis for the NX2 plasma focus (PF) device using two beryllium fast-neutron activation detectors at 0° and 90° to the PF axis. Measurements were performed for deuterium gas pressures in the range 6-16 mbar, and positive correlations between neutron yield and anisotropy were observed at all pressures. Subsequently, at one deuterium gas pressure (13 mbar), the contribution to the fusion yield produced by the forwardly-directed D+ ion beam, emitted from the plasma pinch, was investigated by using a circular Pyrex plate to obstruct the beam and suppress its fusion contribution. Neutron measurements were performed with the obstacle positioned at two distances from the anode tip, and also without the obstacle. It was found that 80% of the neutron yield originates in the plasma pinch column and just above that. In addition, proton pinhole imaging was performed from the 0° and 90° directions to the pinch. The obtained proton images are consistent with the conclusion that DD fusion is concentrated ( 80%) in the pinch column region.

  4. A novel methodology to determine the divergence of a neutron beam

    NASA Astrophysics Data System (ADS)

    Souza, E. S.; Almeida, G. L.; Lopes, R. T.

    2016-12-01

    This work posits a novel approach to characterize the divergence of a neutron beam emerging from a reactor port. Unlike the usual inverse of the L/D ratio, the term divergence as employed here refers to the deviation from an ideal parallel beam emitted from a surface source. Within this concept, an ideal point source in spite of its conical beam would not exhibit any divergence. Hence, the beam divergence of a surface source is more adequately characterized adopting the notion of Rocking Curve - RC, a term borrowed from the X-ray diffraction field. After this idea, every point of the surface source emits neutrons in all directions but with different intensities following a bell-shaped profile. Once the RC semi-width is determined, it is possible to assess its effect upon the quality of an acquired neutron radiograph, since it incorporates degrading agents such as geometrical unsharpness, neutron scattering, noise and statistical dispersion. In this work an inverse procedure is applied, i.e., to use an actual neutron radiograph to find the RC semi-width. To accomplish this task, synthetic images - generated with defined RC semi-widths and object-detector gaps - are compared with experimental ones acquired with the same gaps in order to find the most resemblance between them. The angular semi-width of the best synthetic image is assigned to that of the experimental one, defining thus the aimed beam divergence, which has been compared with a different method with a fair agreement. An equivalent procedure embedded in the algorithm has been employed to evaluate the L/D using the same radiographic images. The outcome fairly agrees with the value inferred from the neutron flux ratio at different locations. Both approaches RC semi-width and L/D ratio yielded consistent results with other utterly different methods. Yet, the rocking curve approach forecasts more precisely the neutron pattern hitting the detector and does not need a precisely machined test-object as required

  5. Shielding for neutron scattered dose to the fetus in patients treated with 18 MV x-ray beams.

    PubMed

    Roy, S C; Sandison, G A

    2000-08-01

    Neutrons are associated with therapeutic high energy x-ray beams as a contaminant that contributes significant unwanted dose to the patient. Measurement of both photon and neutron scattered dose at the position of a fetus from chest irradiation by a large field 18 MV x-ray beam was performed using an ionization chamber and superheated drop detector, respectively. Shielding construction to reduce this scattered dose was investigated using both lead sheet and borated polyethylene slabs. A 7.35 cm lead shield reduced the scattered photon dose by 50% and the scattered neutron dose by 40%. Adding 10 cm of 5% borated polyethylene to this lead shield reduced the scattered neutron dose by a factor of 7.5 from the unshielded value. When the 5% borated polyethylene was replaced by the same thickness of 30% borated polyethylene there was no significant change in the reduction of neutron scatter dose. The most efficient shield studied reduced the neutron scatter dose by a factor of 10. The results indicate that most of the scattered neutrons present at the position of the fetus produced by an 18 MV x-ray beam are of low energy and in the thermal to 0.57 MeV range since lead is almost transparent to neutrons with energies lower than 0.57 MeV. This article constitutes the first report of an effective shield to reduce neutron dose at the fetus when treating a pregnant woman with a high energy x-ray beam.

  6. Comparing neutron and X-ray-based dual beam gauges for characterising industrial organic-based materials.

    PubMed

    Bartle, C Murray; Kroger, Chris; West, John G

    2005-01-01

    Comparisons are made of the neutron gamma transmission (NEUGAT) and dual energy X-ray absorption (DEXA) methods of measuring the composition of organic-based industrial products. A simple model is developed to allow comparisons to be made particularly of the measurement precision and the industrial performance. These gauges have similar applications but the latter gauge is shown to be more suitable for high and variable product throughputs. X-ray tube source and detector combinations provide higher beam fluxes, superior imaging and require less bulky shielding.

  7. Near and sub-barrier fusion of neutron-rich oxygen and carbon nuclei using low-intensity beams

    NASA Astrophysics Data System (ADS)

    Steinbach, Tracy K.

    Fusion between neutron-rich light nuclei in the crust of an accreting neutron star has been proposed as a heat source that triggers an X-ray superburst. To explore the probability with which such fusion events occur and examine their decay characteristics, an experimental program using beams of neutron-rich light nuclei has been established. Evaporation residues resulting from the fusion of oxygen and 12C nuclei, are directly measured and distinguished from unreacted beam particles on the basis of their energy and time-of-flight. Using an experimental setup developed for measurements utilizing low-intensity (< 105 ions/s) radioactive beams, the fusion excitation functions for 16O + 12C and 18O + 12C have been measured. The fusion excitation function for 18O + 12C has been measured in the sub-barrier domain down to the 820 mub level, a factor of 30 lower than previous direct measurements. This measured fusion excitation function is compared to the predictions of a density constrained time-dependent Hartree-Fock model. This comparison reveals a shape difference in the fusion excitation functions, indicating a larger tunneling probability for the experimental data as compared to the theoretical calculations. In addition to the measured cross-section, the measured angular distribution of the evaporation residues provides insight into the relative importance of the different de-excitation channels. These evaporation residue angular distributions are compared to the predictions of a statistical model code, evapOR, revealing an under-prediction of the de-excitation channels associated with alpha particle emission.

  8. A measurement of the fast-neutron sensitivity of a Geiger - Müller detector in the pulsed neutron beam from a superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Maughan, R. L.; Yudelev, M.; Kota, C.

    1996-08-01

    The value of a commercially available miniature energy compensated Geiger - Müller (GM) detector has been determined using the modified lead attenuation method of Hough. The measurements were made in a d(48.5) - Be neutron beam produced by the superconducting cyclotron based neutron therapy facility at Harper Hospital. The unique problems associated with making measurements in a 2 ms duration pulsed beam with a 20% duty cycle are discussed. The beam monitoring system, which allows the beam pulse shape at low beam intensities to be measured, is described. By gating the GM output with a discriminator pulse derived from the beam pulse shape, the gamma-ray count rates and dead-time corrections within the 2 ms pulse and between pulses can be measured separately. The value of determined for this GM detector is consistent with the values measured by other workers with identical and similar detectors in neutron beams with comparable, but not identical, neutron spectra.

  9. Physical characteristics of the M.D. Anderson Hospital clinical neutron beam.

    PubMed

    Horton, J L; Otte, V A; Schultheiss, T E; Stafford, P M; Sun, T; Zermeno, A

    1988-09-01

    The physical characteristics of the M.D. Anderson Hospital (MDAH) clinical neutron beam are presented. The central-axis percent depth-dose values are intermediate between a 4 and 6 MV X-ray beam. The build-up curves reach a depth of maximum dose at 1.2 cm and have surface dose values of approximately 30%. Teflon flattening filters are employed to flatten the beam at the depth of the 75% dose level. Two wedges are available for shaping the beam; they are made of Teflon and produce wedge angles of 31 degrees and 45 degrees as defined by the ICRU. Output factors ranged from 0.88 for a 4 x 4 cm field to 1.12 for a 20 x 20 cm field. Tungsten blocks reduced the dose received at Dmax to 25% of the unblocked value but only 52% of the unblocked value at a depth of 22.8 cm.

  10. A theoretical model for the production of Ac-225 for cancer therapy by neutron capture transmutation of Ra-226.

    PubMed

    Melville, G; Melville, P

    2013-02-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. We are investigating the reduction of radium by transmutation by bombarding Ra-226 with high-energy neutrons from a neutron source to produce Ra-225 and hence Ac-225, which can be used as a generator to produce Bi-213 for use in 'Targeted Alpha Therapy' for cancer. This paper examines the possibility of producing Ac-225 by neutron capture using a theoretical model in which neutron energy is convoluted with the corresponding neutron cross sections of Ra-226. The total integrated yield can then be obtained. This study shows that an intense beam of high-energy neutrons could initiate neutron capture on Ra-226 to produce Ra-225 and hence practical amounts of Ac-225 and a useful reduction of Ra-226.

  11. Neutron lifetime measurement with pulsed beam at J-PARC:Incident Beam Flux

    NASA Astrophysics Data System (ADS)

    Sakakibara, Risa; Shimizu, Hirohiko M.; Kitaguchi, Masaaki; Hirota, Katsuya; Sugino, Tomoaki; Yamashita, Satoru; Katayama, Ryo; Yamada, Takahito; Higashi, Nao; Yokoyama, Harumichi; Sumino, Hirochika; Yoshioka, Tamaki; Otono, Hidetoshi; Tanaka, Genki; Sumi, Naoyuki; Iwashita, Yoshihisa; Kitahara, Ryunosuke; Oide, Hideyuki; Shima, Tatsushi; Ino, Takashi; Mishima, Kenji; Taketani, Kaoru; Seki, Yoshichika; NOP Collaboration

    2014-09-01

    The neutron lifetime is one of the important parameters in the estimation of the abundance of the light elements in the early universe through the Big Bang Nucleosynthesis (BBN). The accuracy of 0.1% is desired in the neutron lifetime to quantitatively discuss the BBN in combination with the observation of the anisotropy of the cosmic microwave. We have started a lifetime measurement with pulsed neutrons at J-PARC/BL05. To measure the lifetime, we detect the decay electrons from the bunched neutrons and the incident neutron flux in the TPC at the same time. By diluting a small amount of 3He gas into the TPC, the incident flux is estimated by counting protons via 3He(n,p)3H reactions. The accuracy of the selection of 3He(n,p)3H events and the influence of the contamination of nitrogen gas are the major systematic errors. In this paper, the estimation of the systematic error in the incident flux is reported.

  12. A new measurement of Beam Asymmetry in Pion Photoproduction from the Neutron using CLAS

    SciTech Connect

    D. Sokhan, D. Watts, D. Branford, F. Klein

    2010-08-01

    We present a preliminary analysis of the photon beam asymmetry observable (Sigma) from the photoproduction reaction channel gamma+ n -> p + pi-. This new data was obtained using the near-4pi CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Laboratory, USA, employing a linearly polarised photon beam with an energy range 1.1 - 2.3 GeV. The measurement will provide new data to address the poorly established neutron excitation spectrum and will greatly expand the sparse world data-set both in energy and angle.

  13. Prompt gamma-ray analysis using cold and thermal guided neutron beams at JAERI.

    PubMed

    Yonezawa, C

    1999-01-01

    A highly sensitive neutron-induced prompt gamma-ray analysis (PGA) system, usable at both cold and thermal neutron beam guides of JRR-3M, has been constructed. The system was designed to achieve the lowest gamma-ray background by using lithium fluoride tiles as neutron shielding, by placing the samples in a He atmosphere and by using a Ge-bismuth germanate detector system for Compton suppression. The gamma-ray spectrometer can acquire three modes of spectra simultaneously: single, Compton suppression, and pair modes. Because of the low-energy guided neutron beams and the low-background system, analytical sensitivities and detection limits better than those in usual PGA systems have been achieved. Boron and multielemental determination by a comparative standardization have been investigated, and accuracy, precision, and detection limits for the elements in various materials were evaluated. The system has been applied to the determination of B and multielements in samples of various fields such as medical, environmental, and geological sciences.

  14. Moyer model approximations for point and extended beam losses

    NASA Astrophysics Data System (ADS)

    McCaslin, Joseph B.; Swanson, William P.; Thomas, Ralph H.

    1987-05-01

    The use of the empirical Moyer model for the determination of transverse neutron shielding for high-energy proton accelerators is described and discussed. It is shown that an important advantage of the Moyer Model is the physical insight it offers towards understanding the complex interactions that comprise the shielding processes. Calculations for pointlike and extended uniform beam loss distributions are discussed and their relationship to practical shielding conditions developed. The calculations required by the model are readily performed on small programmable calculators and thus are widely accessible. Program listings for practical calculations using a Hewlett-Packard HP-97 calculator are available on request.

  15. Radiobiological intercomparison of clinical neutron beams for growth inhibition in Vicia faba bean roots

    SciTech Connect

    Beauduin, M.; Gueulette, J.; Vynckier, S.; Wambersie, A.

    1989-02-01

    Relative biological effectiveness (RBE) and oxygen enhancement ratio (OER) values of different neutron beams produced at the variable energy cyclotron Cyclone of Louvain-la-Neuve (Belgium) were determined. The neutrons were obtained by bombarding a beryllium target with 34-, 45-, 65-, or 75-MeV protons or with 50-MeV deuterons. The biological system was growth inhibition in Vicia faba bean roots. Taking the p(65) + Be neutron beam as a reference, RBE values were found equal to 1.36 +/- 0.2, 1.20 +/- 0.1, 1.00 (ref), 0.98 +/- 0.1, and 1.18 +/- 0.1, respectively; the doses corresponding to 50% growth inhibition were 0.39, 0.44, 0.53, 0.54, and 0.45 Gy. For the same beams, OER values were found equal to 1.55 +/- 0.1, 1.38 +/- 0.1, 1.29 +/- 0.1, 1.41 +/- 0.1, and 1.60 +/- 0.2, respectively.

  16. Radiobiological intercomparison of clinical neutron beams for growth inhibition in Vicia faba bean roots.

    PubMed

    Beauduin, M; Gueulette, J; Vynckier, S; Wambersie, A

    1989-02-01

    Relative biological effectiveness (RBE) and oxygen enhancement ratio (OER) values of different neutron beams produced at the variable energy cyclotron "Cyclone" of Louvain-la-Neuve (Belgium) were determined. The neutrons were obtained by bombarding a beryllium target with 34-, 45-, 65-, or 75-MeV protons or with 50-MeV deuterons. The biological system was growth inhibition in Vicia faba bean roots. Taking the p(65) + Be neutron beam as a reference, RBE values were found equal to 1.36 +/- 0.2, 1.20 +/- 0.1, 1.00 (ref), 0.98 +/- 0.1, and 1.18 +/- 0.1, respectively; the doses corresponding to 50% growth inhibition were 0.39, 0.44, 0.53, 0.54, and 0.45 Gy. For the same beams, OER values were found equal to 1.55 +/- 0.1, 1.38 +/- 0.1, 1.29 +/- 0.1, 1.41 +/- 0.1, and 1.60 +/- 0.2, respectively.

  17. TRANSP modelling of total and local neutron emission on MAST

    NASA Astrophysics Data System (ADS)

    Klimek, I.; Cecconello, M.; Gorelenkova, M.; Keeling, D.; Meakins, A.; Jones, O.; Akers, R.; Lupelli, I.; Turnyanskiy, M.; Ericsson, G.; the MAST Team

    2015-02-01

    The results of TRANSP simulations of neutron count rate profiles measured by a collimated neutron flux monitor-neutron camera (NC)—for different plasma scenarios on MAST are reported. In addition, the effect of various plasma parameters on neutron emission is studied by means of TRANSP simulation. The fast ion redistribution and losses due to fishbone modes, which belong to a wider category of energetic particle modes, are observed by the NC and modelled in TRANSP.

  18. PERFORMING DIAGNOSTICS ON THE SPALLATION NEUTRON SOURCE VISION BEAM LINE TO ELIMINATE HIGH VIBRATION LEVELS AND PROVIDE A SUSTAINABLE OPERATION

    SciTech Connect

    Van Hoy, Blake W

    2014-01-01

    The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) provides variable energy neutrons for a variety of experiments. The neutrons proceed down beam lines to the experiment hall, which houses a variety of experiments and test articles. Each beam line has one or more neutron choppers which filter the neutron beam based on the neutron energy by using a rotating neutron absorbing material passing through the neutron beam. Excessive vibration of the Vision beam line, believed to be caused by the T0 chopper, prevented the Vision beam line from operating at full capacity. This problem had been addressed several times by rebalancing/reworking the T0 beam chopper but the problem stubbornly persisted. To determine the cause of the high vibration, dynamic testing was performed. Twenty-seven accelerometer and motor current channels of data were collected during drive up, drive down, coast down, and steady-state conditions; resonance testing and motor current signature analysis were also performed. The data was analyzed for traditional mechanical/machinery issues such as misalignment and imbalance using time series analysis, frequency domain analysis, and operating deflection shape analysis. The analysis showed that the chopper base plate was experiencing an amplified response to the excitation provided by the T0 beam chopper. The amplified response was diagnosed to be caused by higher than expected base plate flexibility, possibly due to improper grouting or loose floor anchors. Based on this diagnosis, a decision was made to dismantle the beam line chopper and remount the base plate. Neutron activation of the beam line components make modifications to the beam line especially expensive and time consuming due to the radiation handling requirements, so this decision had significant financial and schedule implications. It was found that the base plate was indeed loose because of improper grouting during its initial installation. The base plate was

  19. New method of a "point-like" neutron source creation based on sharp focusing of high-current deuteron beam onto deuterium-saturated target for neutron tomography

    NASA Astrophysics Data System (ADS)

    Golubev, S.; Skalyga, V.; Izotov, I.; Sidorov, A.

    2017-02-01

    A possibility of a compact powerful point-like neutron source creation is discussed. Neutron yield of the source based on deuterium-deuterium (D-D) reaction is estimated at the level of 1011 s‑1 (1013 s‑1 for deuterium-tritium reaction). The fusion takes place due to bombardment of deuterium- (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ion beam is formed by means of high-current quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance (ECR) discharge in an open magnetic trap sustained by powerful microwave radiation. The prospects of proposed generator for neutron tomography are discussed. Suggested method is compared to the point-like neutron sources based on a spark produced by powerful femtosecond laser pulses.

  20. SU-E-T-602: Beryllium Seeds Implant for Photo-Neutron Yield Using External Beam Therapy

    SciTech Connect

    Koren, S; Veltchev, I; Furhang, E

    2014-06-01

    Purpose: To evaluate the Neutron yield obtained during prostate external beam irradiation. Methods: Neutrons, that are commonly a radiation safety concern for photon beams with energy above 10 MV, are induced inside a PTV from Beryllium implemented seeds. A high megavoltage photon beam delivered to a prostate will yield neutrons via the reaction Be-9(γ,n)2?. Beryllium was chosen for its low gamma,n reaction cross-section threshold (1.67 MeV) to be combined with a high feasible 25 MV photon beam. This beam spectra has a most probable photon energy of 2.5 to 3.0 MeV and an average photon energy of about 5.8 MeV. For this feasibility study we simulated a Beryllium-made common seed dimension (0.1 cm diameter and 0.5 cm height) without taking into account encapsulation. We created a 0.5 cm grid loading pattern excluding the Urethra, using Variseed (Varian inc.) A total of 156 seeds were exported to a 4cm diameter prostate sphere, created in Fluka, a particle transport Monte Carlo Code. Two opposed 25 MV beams were simulated. The evaluation of the neutron dose was done by adjusting the simulated photon dose to a common prostate delivery (e.g. 7560 cGy in 42 fractions) and finding the corresponding neutron dose yield from the simulation. A variance reduction technique was conducted for the neutrons yield and transported. Results: An effective dose of 3.65 cGy due to neutrons was found in the prostate volume. The dose to central areas of the prostate was found to be about 10 cGy. Conclusion: The neutron dose yielded does not justify a clinical implant of Beryllium seeds. Nevertheless, one should investigate the Neutron dose obtained when a larger Beryllium loading is combined with commercially available 40 MeV Linacs.

  1. Microwave Ion Source and Beam Injection for an Accelerator-drivenNeutron Source

    SciTech Connect

    Vainionpaa, J.H.; Gough, R.; Hoff, M.; Kwan, J.W.; Ludewigt,B.A.; Regis, M.J.; Wallig, J.G.; Wells, R.

    2007-02-15

    An over-dense microwave driven ion source capable ofproducing deuterium (or hydrogen) beams at 100-200 mA/cm2 and with atomicfraction>90 percent was designed and tested with an electrostaticlow energy beam transport section (LEBT). This ion source wasincorporatedinto the design of an Accelerator Driven Neutron Source(ADNS). The other key components in the ADNS include a 6 MeV RFQaccelerator, a beam bending and scanning system, and a deuterium gastarget. In this design a 40 mA D+ beam is produced from a 6 mm diameteraperture using a 60 kV extraction voltage. The LEBT section consists of 5electrodes arranged to form 2 Einzel lenses that focus the beam into theRFQ entrance. To create the ECR condition, 2 induction coils are used tocreate ~; 875 Gauss on axis inside the source chamber. To prevent HVbreakdown in the LEBT a magnetic field clamp is necessary to minimize thefield in this region. Matching of the microwave power from the waveguideto the plasma is done by an autotuner. We observed significantimprovement of the beam quality after installing a boron nitride linerinside the ion source. The measured emittance data are compared withPBGUNS simulations.

  2. SU-E-T-195: Commissioning the Neutron Production of a Varian TrueBeam Linac

    SciTech Connect

    Irazola, L; Brualla, L; Rosello, J; Terron, JA; Sanchez-Nieto, B; Bedogni, R; Sanchez-Doblado, F

    2015-06-15

    Purpose: The purpose of this work is the characterization of a new Varian TrueBeam™ facility in terms of neutron production, in order to estimate neutron equivalent dose in organs during radiotherapy treatments. Methods: The existing methodology [1] was used with the reference SRAMnd detector, calibrated in terms of thermal neutron fluence at the reference field operated by PTB (Physikalisch-Technische-Bundesanstalt) at the GeNF (Geesthacht-Neutron-Facility) with the GKSS reactor FRG-1 [2]. Thermal neutron fluence for the 5 available possibilities was evaluated: 15 MV and 10&6 MV with and without Flattening Filter (FF and FFF, respectively). Irradiation conditions are as described in [3]. In addition, three different collimator-MLC configurations were studied for 15 MV: (a) collimator of 10×10 cm{sup 2} and MLC fully retracted (reference), (b) field sizes of 20×20 cm{sup 2} and 10×10 cm{sup 2} for collimator and MLC respectively, and (c) collimator and MLC aperture of 10×10 cm{sup 2}. Results: Thermal fluence rate at the “reference point” [3], as a consequence of the neutron production, obtained for (a) conformation in 15 MV is (1.45±0.11) x10{sup 4} n•cm{sup 2}/MU. Configurations (b) and (c) gave fluences of 96.6% and 97.8% of the reference (a). Neutron production decreases up to 8.6% and 5.7% for the 10 MV FF and FFF beams, respectively. Finally, it decreases up to 2.8% and 0.1% for the 6 MV FF and FFF modes, respectively. Conclusion: This work evaluates thermal neutron production of Varian TrueBeam™ system for organ equivalent dose estimation. The small difference in collimator-MLC configuration shows the universality of the methodology [3]. A decrease in this production is shown when decreasing energy from 15 to 10 MV and an almost negligible production was found for 6 MV. Moreover, a lower neutron contribution is observed for the FFF modes.[1]Phys Med Biol,2012;57:6167–6191.[2]Radiat Meas,2010;45:1513–1517.[3]Med Phys,2015;42:276–281.

  3. Microdosimetric study for secondary neutrons in phantom produced by a 290 MeV/nucleon carbon beam.

    PubMed

    Endo, Satoru; Tanaka, Kenichi; Takada, Masashi; Onizuka, Yoshihiko; Miyahara, Nobuyuki; Sato, Tatsuhiko; Ishikawa, Masayori; Maeda, Naoko; Hayabuchi, Naofumi; Shizuma, Kiyoshi; Hoshi, Masaharu

    2007-09-01

    Absorbed doses from main charged-particle beams and charged-particle fragments have been measured with high accuracy for particle therapy, but there are few reports for doses from neutron components produced as fragments. This study describes the measurements on neutron doses produced by carbon beams; microdosimetric distributions of secondary neutrons produced by 290 MeV/nucleon carbon beams have been measured by using a tissue equivalent proportional counter at the Heavy Ion Medical Accelerator in Chiba, Japan at the National Institute of Radiological Sciences. The microdosimetric distributions of the secondary neutron were measured on the distal and lateral faces of a body-simulated acrylic phantom (300 mm height x 300 mm width x 253 mm thickness). To confirm the dose measurements, the neutron energy spectra produced by incident carbon beams in the acrylic phantom were simulated by the particle and heavy ion transport code system. The absorbed doses obtained by multiplying the simulated neutron energy spectra with the kerma factor calculated by MCNPX agree with the corresponding experimental data fairly well. Downstream of the Bragg peak, the ratio of the neutron dose to the carbon dose at the Bragg peak was found to be a maximum of 1.4 x 10(-4) and the ratio of neutron dose was a maximum of 3.0 x 10(-7) at a lateral face of the acrylic phantom. The ratios of neutrons to charged particle fragments were 11% to 89% in the absorbed doses at the lateral and the distal faces of the acrylic phantom. We can conclude that the treatment dose will not induce serious secondary neutron effects at distances greater than 90 mm from the Bragg peak in carbon particle therapy.

  4. Modeling detector response for neutron depth profiling

    NASA Astrophysics Data System (ADS)

    Coakley, K. J.; Downing, R. G.; Lamaze, G. P.; Hofsäss, H. C.; Biegel, J.; Ronning, C.

    1995-02-01

    In Neutron Depth Profiling (NDP), inferences about the concentration profile of an element in a material are based on the energy spectrum of charged particles emitted due to specific nuclear reactions. The detector response function relates the depth of emission to the expected energy spectrum of the emitted particles. Here, the detector response function is modeled for arbitrary source and detector geometries based on a model for the stopping power of the material, energy straggling, multiple scattering and random detector measurement error. At the NIST Cold Neutron Research Facility, a NDP spectrum was collected for a diamond-like carbon (DLC) sample doped with boron. A vertical slit was placed in front of the detector for collimation. Based on the computed detector response function, a model for the depth profile of boron is fit to the observed NDP spectrum. The contribution of straggling to overall variability was increased by multiplying the Bohr Model prediction by a ramp factor. The adjustable parameter in the ramp was selected to give the best agreement between the fitted profile and the expected shape of the profile. The expected shape is determined from experimental process control measurements.

  5. It may be Possible to Use a Neutron Beam as Propulsion for Spacecraft

    NASA Astrophysics Data System (ADS)

    Kriske, Richard M.

    2016-01-01

    It may be possible to keep Xenon 135 in a Superpositioned state with Xe-136 and Cs 135, the two decay products of Xenon 135. This may be done using a Gamma Ray or an X-ray Laser. At first glance it has the look and feel of yet another Noble Gas Laser. The difference is that it uses Neutron states within the Nucleus. The Neutrons would be emitted with a modulated Gamma or X-ray photon. In essence it may be possible to have a totally new type of Laser---This author calls them "Matter Lasers", where a lower energy photon with fewer Quantum Numbers would be used with a Noble Gas to produce a particle beam with higher energy and more Quantum Numbers. It may be possible to replace cumbersome particle accelerators with this type of Laser, to make mass from energy, via a Neutron Gas. This would be a great technological advance in Rocket Propulsion as well; low mass photon to high mass particle, such as a Higgs particle or a Top Quark. The Xenon 135, could come from a Fission Reactor within the Space Craft, as it is a reactor poison. The workings of an X-ray laser is already known and table top versions of it have been developed. Gamma Ray lasers are already in use and have been tested. A Laser would have a columnated beam with a very precise direction, unlike just a Neutron source which would go in all directions. Of course this beam could be used as a spectroscopic tool as well, in order to determine the composition of the matter that the spacecraft encounters. The spectroscopic tool could look for "Dark Matter" and other exotic types of matter that may occur in outerspace. The spacecraft could potentially reach "near speed of light velocities" in a fairly short time, since the Laser would be firing off massive particles, with great momentum. Lastly the precise Neutron beam could be used as a very powerful weapon or as a way of clearing space debri, since it could "force Nuclear Reactions" onto the object being fired upon, making it the ultimate space weapon, and

  6. Photo neutron dose equivalent rate in 15 MV X-ray beam from a Siemens Primus Linac.

    PubMed

    Ghasemi, A; Pourfallah, T Allahverdi; Akbari, M R; Babapour, H; Shahidi, M

    2015-01-01

    Fast and thermal neutron fluence rates from a 15 MV X-ray beams of a Siemens Primus Linac were measured using bare and moderated BF3 proportional counter inside the treatment room at different locations. Fluence rate values were converted to dose equivalent rate (DER) utilizing conversion factors of American Association of Physicist in Medicine's (AAPM) report number 19. For thermal neutrons, maximum and minimum DERs were 3.46 × 10(-6) (3 m from isocenter in +Y direction, 0 × 0 field size) and 8.36 × 10(-8) Sv/min (in maze, 40 × 40 field size), respectively. For fast neutrons, maximum DERs using 9" and 3" moderators were 1.6 × 10(-5) and 1.74 × 10(-5) Sv/min (2 m from isocenter in +Y direction, 0 × 0 field size), respectively. By changing the field size, the variation in thermal neutron DER was more than the fast neutron DER and the changes in fast neutron DER were not significant in the bunker except inside the radiation field. This study showed that at all points and distances, by decreasing field size of the beam, thermal and fast neutron DER increases and the number of thermal neutrons is more than fast neutrons.

  7. High-fidelity MCNP modeling of a D-T neutron generator for active interrogation of special nuclear material

    NASA Astrophysics Data System (ADS)

    Katalenich, Jeff; Flaska, Marek; Pozzi, Sara A.; Hartman, Michael R.

    2011-10-01

    Fast and robust methods for interrogation of special nuclear material (SNM) are of interest to many agencies and institutions in the United States. It is well known that passive interrogation methods are typically sufficient for plutonium identification because of a relatively high neutron production rate from 240Pu [1]. On the other hand, identification of shielded uranium requires active methods using neutron or photon sources [2]. Deuterium-deuterium (2.45 MeV) and deuterium-tritium (14.1 MeV) neutron-generator sources have been previously tested and proven to be relatively reliable instruments for active interrogation of nuclear materials [3,4]. In addition, the newest generators of this type are small enough for applications requiring portable interrogation systems. Active interrogation techniques using high-energy neutrons are being investigated as a method to detect hidden SNM in shielded containers [4,5]. Due to the thickness of some containers, penetrating radiation such as high-energy neutrons can provide a potential means of probing shielded SNM. In an effort to develop the capability to assess the signal seen from various forms of shielded nuclear materials, the University of Michigan Neutron Science Laboratory's D-T neutron generator and its shielding were accurately modeled in MCNP. The generator, while operating at nominal power, produces approximately 1×10 10 neutrons/s, a source intensity which requires a large amount of shielding to minimize the dose rates around the generator. For this reason, the existing shielding completely encompasses the generator and does not include beam ports. Therefore, several MCNP simulations were performed to estimate the yield of uncollided 14.1-MeV neutrons from the generator for active interrogation experiments. Beam port diameters of 5, 10, 15, 20, and 25 cm were modeled to assess the resulting neutron fluxes. The neutron flux outside the beam ports was estimated to be approximately 2×10 4 n/cm 2 s.

  8. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    SciTech Connect

    Burlon, Alejandro A.; Valda, Alejandro A.; Girola, Santiago; Minsky, Daniel M.; Kreiner, Andres J.

    2010-08-04

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the {sup 7}Li(p, n){sup 7}Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  9. Monte-Carlo investigation of radiation beam quality of the CRNA neutron irradiator for calibration purposes.

    PubMed

    Mazrou, Hakim; Sidahmed, Tassadit; Allab, Malika

    2010-10-01

    An irradiation system has been acquired by the Nuclear Research Center of Algiers (CRNA) to provide neutron references for metrology and dosimetry purposes. It consists of an (241)Am-Be radionuclide source of 185 GBq (5Ci) activity inside a cylindrical steel-enveloped polyethylene container with radially positioned beam channel. Because of its composition, filled with hydrogenous material, which is not recommended by ISO standards, we expect large changes in the physical quantities of primary importance of the source compared to a free-field situation. Thus, the main goal of the present work is to fully characterize neutron field of such special delivered set-up. This was conducted by both extensive Monte-Carlo calculations and experimental measurements obtained by using BF(3) and (3)He based neutron area dosimeters. Effects of each component present in the bunker facility of the Algerian Secondary Standard Dosimetry Laboratory (SSDL) on the energy neutron spectrum have been investigated by simulating four irradiation configurations and comparison to the ISO spectrum has been performed. The ambient dose equivalent rate was determined based upon a correct estimate of the mean fluence to ambient dose equivalent conversion factors at different irradiations positions by means of a 3-D transport code MCNP5. Finally, according to practical requirements established for calibration purposes an optimal irradiation position has been suggested to the SSDL staff to perform, in appropriate manner, their routine calibrations.

  10. Twisted Gaussian Schell-model beams

    SciTech Connect

    Simon, R. ); Mukunda, N. Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore )

    1993-01-01

    The authors introduce a new class of partially coherent axially symmetric Gaussian Schell-model (GSM) beams incorporating a new twist phase quadratic in configuration variables. This phase twists the beam about its axis during propagation and is shown to be bounded in strength because of the positive semidefiniteness of the cross-spectral density. Propagation characteristics and invariants for such beams are derived and interpreted, and two different geometric representations are developed. Direct effects of the twist phase on free propagation as well as in parabolic index fibers are demonstrated. Production of such twisted GSM beams, starting with Li-Wolf anisotropic GSM beams, is described. 34 refs., 3 figs.

  11. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators.

    PubMed

    Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F

    2016-07-08

    Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases.

  12. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators.

    PubMed

    Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F

    2016-07-01

    Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases. PACS number(s): 87

  13. Beam shaping assembly of a D-T neutron source for BNCT and its dosimetry simulation in deeply-seated tumor

    NASA Astrophysics Data System (ADS)

    Faghihi, F.; Khalili, S.

    2013-08-01

    This article involves two aims for BNCT. First case includes a beam shaping assembly estimation for a D-T neutron source to find epi-thermal neutrons which are the goal in the BNCT. Second issue is the percent depth dose calculation in the adult Snyder head phantom. Monte-Carlo simulations and verification of a suggested beam shaping assembly (including internal neutron multiplier, moderator, filter, external neutron multiplier, collimator, and reflector dimensions) for thermalizing a D-T neutron source as well as increasing neutron flux are carried out and our results are given herein. Finally, we have simulated its corresponding doses for treatment planning of a deeply-seated tumor.

  14. One-dimensional neutron focusing with large beam divergence by 400mm-long elliptical supermirror

    NASA Astrophysics Data System (ADS)

    Nagano, M.; Yamaga, F.; Yamazaki, D.; Maruyama, R.; Hayashida, H.; Soyama, K.; Yamamura, K.

    2012-02-01

    Reflective optics is one of the most useful techniques for focusing a neutron beam with a wide wavelength range since there is no chromatic aberration. Neutrons can be focused within a small area of less than 1 mm2 by high-performance aspherical supermirrors with high figure accuracy and a low smooth substrate surface and a multilayer interface. Increasing the mirror size is essential for increasing the focusing gain. We have developed a fabrication process that combines conventional precision grinding, HF dip etching, numerically controlled local wet etching (NC-LWE) figuring, low-pressure polishing and ion beam sputtering deposition of the supermirror coating to fabricate a large aspherical supermirror. We designed and fabricated an piano-elliptical mirror with large clear aperture size using the developed fabrication process. We obtained a figure error of 0.43 μm p-v and an rms roughness of less than 0.2 nm within an effective reflective length of 370 mm. A NiC/Ti supermirror with m = 4 was deposited on the substrate using ion beam sputtering equipment. The results of focusing experiments show that a focusing gain of 52 at the peak intensity was achieved compared with the case without focusing. Furthermore, the result of imaging plate measurements indicated that the FWHM focusing width of the fabricated mirror is 0.128 mm.

  15. Neutron beam measurement of industrial polymer materials for composition and bulk integrity

    NASA Astrophysics Data System (ADS)

    Rogante, M.; Rosta, L.; Heaton, M. E.

    2013-10-01

    Neutron beam techniques, among other non-destructive diagnostics, are particularly irreplaceable in the complete analysis of industrial materials and components when supplying fundamental information. In this paper, nanoscale small-angle neutron scattering analysis and prompt gamma activation analysis for the characterization of industrial polymers are considered. The basic theoretical aspects are briefly introduced and some applications are presented. The investigations of the SU-8 polymer in axial airflow microturbines—i.e. microelectromechanical systems—are presented foremost. Also presented are full and feasibility studies on polyurethanes, composites based on cross-linked polymers reinforced by carbon fibres and polymer cement concrete. The obtained results have provided a substantial contribution to the improvement of the considered materials, and indeed confirmed the industrial applicability of the adopted techniques in the analysis of polymers.

  16. Radiobiological intercomparison of two clinical neutron beams using the regeneration of mouse intestinal crypts.

    PubMed

    Böhm, L; Gueulette, J; Jones, D T; Beauduin, M; Vynckier, S; de Roubaix, S; Yudelev, M; Slabbert, J P; Wambersie, A

    1990-03-01

    Determination of dose modification factor greatly facilitates the introduction of clinically proven neutron therapy schedules at new installations. We have compared the biological performance of the p(66)+Be neutron facility at Faure, South Africa, with the established p(65)+Be installation at Louvain-la-Neuve, Belgium. Filtration, D gamma/DT, dose rate and HVT 5/15 for the Louvain and Faure beam are: 2 cm, 2.5 cm polyethylene; 3%, 5%; 0.2 Gy/min, 0.4 Gy/min; and 20 cm and 19 cm respectively. Dosimetry was done in A-150 plastic. Irradiation of BALB/C mice was carried on according to the dose accumulation method in a perspex phantom at 5 cm depth and at an SSD of 150 cm at a field size of 28 X 28 cm2. Sections of the jejunum were prepared at each centre and analyzed by both. The RBE of the Faure beam determined at a survival level of 50 crypts ranged from 1.64 to 1.69. The dose modification factor RBE of the Louvain beam given by Beauduin et al. was 1.61 +/- 0.14. The dose modification factor of the Faure beam relative to the Louvain beam is thus 1.03 +/- 0.13 which could be expected from the similarity of the physical characteristics. Independent RBE measurements in a variety of systems also suggest similar biological properties. The depth variation of the RBE was found to be 4% (mouse gut) using 3 cm polyethylene filter over the depth range of 2.5 to 13.5 cm. This is in agreement with microdosimetry measurements using polyethylene filters of various thicknesses and with V79 measurements reported by Slabbert et al.

  17. INSTRUMENTS AND METHODS OF INVESTIGATION: Giant pulses of thermal neutrons in large accelerator beam dumps. Possibilities for experiments

    NASA Astrophysics Data System (ADS)

    Stavissky, Yurii Ya

    2006-12-01

    A short review is presented of the development in Russia of intense pulsed neutron sources for physical research — the pulsating fast reactors IBR-1, IBR-30, IBR-2 (Joint Institute for Nuclear Research, Dubna), and the neutron-radiation complex of the Moscow meson factory — the 'Troitsk Trinity' (RAS Institute for Nuclear Research, Troitsk, Moscow region). The possibility of generating giant neutron pulses in beam dumps of superhigh energy accelerators is discussed. In particular, the possibility of producing giant pulsed thermal neutron fluxes in modified beam dumps of the large hadron collider (LHD) under construction at CERN is considered. It is shown that in the case of one-turn extraction ov 7-TeV protons accumulated in the LHC main rings on heavy targets with water or zirconium-hydride moderators placed in the front part of the LHC graphite beam-dump blocks, every 10 hours relatively short (from ~100 µs) thermal neutron pulses with a peak flux density of up to ~1020 neutrons cm-2 s-1 may be produced. The possibility of applying such neutron pulses in physical research is discussed.

  18. Neutron diffraction of titanium aluminides formed by continuous electron-beam treatment

    NASA Astrophysics Data System (ADS)

    Valkov, S.; Neov, D.; Luytov, D.; Petrov, P.

    2016-03-01

    Ti-Al-based alloys were produced by hybrid electron-beam technologies. A composite Ti-Al film was deposited on a Ti substrate by electron-beam evaporation (EBE), followed by electron-beam treatment (EBT) by a continuously scanned electron beam. The speed of the specimens motion during the EBT were V 1 = 1 cm/sec and V 2 = 5 cm/sec, in order to realize two different alloying mechanisms -- by surface melting and by electron-beam irradiation without melting the surface. The samples prepared were characterized by XRD and neutron diffraction to study the crystal structure on the surface and in depth. SEM/EDX analysis was conducted to explore the surface structure and analyze the chemical composition. Nanoindentation measurements were also carried out. No intermetallic phases were registered in the sample treated at velocity V 1, while the sample treated at V 2 exhibited a Ti3Al/TiAl structure on the surface, transformed to Ti/TiAl in depth. The nanoindentation test demonstrated a significant negative hardness gradient from the surface to the depth of the sample.

  19. Extremity model for neutron dose calculations

    SciTech Connect

    Sattelberger, J. A.; Shores, E. F.

    2001-01-01

    In personnel dosimetry for external radiation exposures, health physicists tend to focus on measurement of whole body dose, where 'whole body' is generally regarded as the torso on which the dosimeter is placed.' Although a variety of scenarios exist in which workers must handle radioactive materials, whole body dose estimates may not be appropriate when assessing dose, particularly to the extremities. For example, consider sources used for instrument calibration. If such sources are in a contact geometry (e.g. held by fingers), an extremity dose estimate may be more relevant than a whole body dose. However, because questions arise regarding how that dose should be calculated, a detailed extremity model was constructed with the MCNP-4Ca Monte Carlo code. Although initially intended for use with gamma sources, recent work by Shores2 provided the impetus to test the model with neutrons.

  20. Measurement and simulation of the response function of time of flight enhanced diagnostics neutron spectrometer for beam ion studies at EAST tokamak

    NASA Astrophysics Data System (ADS)

    Peng, X. Y.; Chen, Z. J.; Zhang, X.; Du, T. F.; Hu, Z. M.; Ge, L. J.; Zhang, Y. M.; Sun, J. Q.; Gorini, G.; Nocente, M.; Tardocchi, M.; Hu, L. Q.; Zhong, G. Q.; Pu, N.; Lin, S. Y.; Wan, B. N.; Li, X. Q.; Zhang, G. H.; Chen, J. X.; Fan, T. S.

    2016-11-01

    The 2.5 MeV TOFED (Time-Of-Flight Enhanced Diagnostics) neutron spectrometer with a double-ring structure has been installed at Experimental Advanced Superconducting Tokamak (EAST) to perform advanced neutron emission spectroscopy diagnosis of deuterium plasmas. This work describes the response function of the TOFED spectrometer, which is evaluated for the fully assembled instrument in its final layout. Results from Monte Carlo simulations and dedicated experiments with pulsed light sources are presented and used to determine properties of light transport from the scintillator. A GEANT4 model of the TOFED spectrometer was developed to calculate the instrument response matrix. The simulated TOFED response function was successfully benchmarked against measurements of the time-of-flight spectra for quasi-monoenergetic neutrons in the energy range of 1-4 MeV. The results are discussed in relation to the capability of TOFED to perform beam ion studies on EAST.

  1. Measurement and simulation of the response function of time of flight enhanced diagnostics neutron spectrometer for beam ion studies at EAST tokamak.

    PubMed

    Peng, X Y; Chen, Z J; Zhang, X; Du, T F; Hu, Z M; Ge, L J; Zhang, Y M; Sun, J Q; Gorini, G; Nocente, M; Tardocchi, M; Hu, L Q; Zhong, G Q; Pu, N; Lin, S Y; Wan, B N; Li, X Q; Zhang, G H; Chen, J X; Fan, T S

    2016-11-01

    The 2.5 MeV TOFED (Time-Of-Flight Enhanced Diagnostics) neutron spectrometer with a double-ring structure has been installed at Experimental Advanced Superconducting Tokamak (EAST) to perform advanced neutron emission spectroscopy diagnosis of deuterium plasmas. This work describes the response function of the TOFED spectrometer, which is evaluated for the fully assembled instrument in its final layout. Results from Monte Carlo simulations and dedicated experiments with pulsed light sources are presented and used to determine properties of light transport from the scintillator. A GEANT4 model of the TOFED spectrometer was developed to calculate the instrument response matrix. The simulated TOFED response function was successfully benchmarked against measurements of the time-of-flight spectra for quasi-monoenergetic neutrons in the energy range of 1-4 MeV. The results are discussed in relation to the capability of TOFED to perform beam ion studies on EAST.

  2. Optimizations in angular dispersive neutron powder diffraction using divergent beam geometries

    NASA Astrophysics Data System (ADS)

    Buchsteiner, Alexandra; Stüßer, Norbert

    2009-01-01

    Angular dispersive neutron powder diffractometers are usually built using beam divergencies defined by Soller type collimators. To account for the needs of resolution for crystal structure refinement a good in-pile collimation α1, a high take-off angle above 90∘ at the monochromator and a good collimation α3 in front of the detector bank are chosen whereas the value of α2 for the collimation between monochromator and sample is less crucial. During the last years new strategies were developed at our institute using wide divergent beam geometries defined by fan collimators or slit-type diaphragms which correlate ray direction and wavelength within the beam. Here we present the performance of a newly developed fan collimator, which enables one to adjust the opening of the collimator channels on both sides independently. This fan collimator is positioned in front of the monochromator at the instrument E6 at the Helmholtz Centre Berlin (formerly Hahn-Meitner-Institut Berlin). It will be shown that control of the beam divergency allows optimization of the resolution in a large angular diffraction range. Hence the resolution and intensity can be adapted to the needs of powder diffraction. Monte Carlo simulations using McStas are used to check and prove the optimal setting of the instrument. We obtain a very good agreement between experimental and simulated data and demonstrate the superior outcome of the new instrument configuration with respect to Soller type instruments.

  3. Separation of beam and electrons in the spallation neutron source H{sup -} ion source

    SciTech Connect

    Whealton, J.H.; Raridon, R.J.; Leung, K.N.

    1997-12-01

    The Spallation Neutron Source (SNS) requires an ion source producing an H{sup {minus}} beam with a peak current of 35mA at a 6.2 percent duty factor. For the design of this ion source, extracted electrons must be transported and dumped without adversely affecting the H{sup {minus}} beam optics. Two issues are considered: (1) electron containment transport and controlled removal; and (2) first-order H{sup {minus}} beam steering. For electron containment, various magnetic, geometric and electrode biasing configurations are analyzed. A kinetic description for the negative ions and electrons is employed with self-consistent fields obtained from a steady-state solution to Poisson`s equation. Guiding center electron trajectories are used when the gyroradius is sufficiently small. The magnetic fields used to control the transport of the electrons and the asymmetric sheath produced by the gyrating electrons steer the ion beam. Scenarios for correcting this steering by split acceleration and focusing electrodes will be considered in some detail.

  4. Using parabolic supermirror lenses to focus and de-focus a neutron beam

    NASA Astrophysics Data System (ADS)

    Rantsiou, Emmanouela; Panzner, Tobias; Hautle, Patrick; Filges, Uwe

    2014-07-01

    We designed a focus/defocus neutron optics system, in order to investigate the performance, precision, efficiency, and operational and designing challenges of such coupled 2- lens systems, which could potentially find applications where small beam cross sections are beneficial, e.g., virtual neutron source concepts and high efficiency chopper systems. Our particular prototype (as described and discussed in this paper) has already been used in an on-going experiment, involving neutron spin filtering with dynamically polarized protons. After the designing and construction phases, we continued by performing a long series of simulations and measurements, in order to facilitate the alignment of the lenses, and investigate and understand the behaviour and output of the system. All measurements were performed at the BOA beamline at PSI. The simulations were particularly useful in aligning the lenses: tilts as small as 0.04° could easily be accounted for in our simulations and guide successfully the experimental aligning procedure of the first lens. Although harder to do in the case of two lenses, we were still able to reproduce fairly successfully with our simulations, tilts from both lenses. We have noticed (both in our experiments and simulations) that the sensitivity of such a set-up is ~ 0.01°.

  5. Production of very neutron-rich nuclei with a {sup 76}Ge beam

    SciTech Connect

    Tarasov, O. B.; Portillo, M.; Baumann, T.; Bazin, D.; Ginter, T. N.; Hausmann, M.; Pereira, J.; Stolz, A.; Amthor, A. M.; Gade, A.; Nettleton, A.; Sherrill, B. M.; Thoennessen, M.; Inabe, N.; Kubo, T.; Morrissey, D. J.

    2009-09-15

    Production cross sections for neutron-rich nuclei from the fragmentation of a {sup 76}Ge beam at 132 MeV/u were measured. The longitudinal momentum distributions of 34 neutron-rich isotopes of elements 13{<=}Z{<=}27 were scanned using a novel experimental approach of varying the target thickness. Production cross sections with beryllium and tungsten targets were determined for a large number of nuclei, including 15 isotopes first observed in this work. These are the most neutron-rich nuclides of the elements 17{<=}Z{<=}25 ({sup 50}Cl, {sup 53}Ar, {sup 55,56}K, {sup 57,58}Ca, {sup 59,60,61}Sc, {sup 62,63}Ti, {sup 65,66}V, {sup 68}Cr, and {sup 70}Mn). A one-body Q{sub g} systematics is used to describe the production cross sections based on thermal evaporation from excited prefragments. Some of the fragments near {sup 58}Ca show anomalously large production cross sections.

  6. Study for s-process using neutron beam provided from ANNRI of J-PARC

    NASA Astrophysics Data System (ADS)

    Hayakawa, Takehioto; Toh, Yosuke; Kimura, Akira; Nakamura, Shoji; Shizuma, Toshiyuki; Harada, Hideo

    2016-06-01

    Most isotopes heavier than iron are synthesized by the slow neutron capture reaction process (s-process) in stars. Isomers in stable isotopes have sometimes an important role as a branching point in nucleosynthesis flow in the s-process. An isomer with a half-life of 14.1 y in 113Cd is a branching point from which a nucleosynthesis flow reaches to a rare isotope 115Sn. The astrophysical origin of 115Sn has remained still an open question. The s-process abundance of 115Sn depends on the ratio of the 112Cd(n, γ) 113Cdm reaction cross section to the 112Cd(n, γ) 113Cdgs reaction cross section. However, the isomer production ratio following the neutron capture reaction has not been measured in the energy region higher than the thermal energy. An intense neutron beam experimental system, ANNRI, in J-PARC has a high purity germanium (HPGe) detector system consisting of two cluster detectors. We have measured γ-rays decaying to the ground state and the isomer using the HPGe detectors in conjunction with a time-offlight method at ANNRI.

  7. Neutronics analysis of three beam-filter assemblies for an accelerator-based BNCT facility

    SciTech Connect

    Bleuel, D.L.; Costes, S.V.; Donahue, R.J.; Ludewigt, B.A.

    1997-08-01

    Three moderator materials, AlF{sub 3}/Al, D{sub 2}O and LiF, have been analyzed for clinical usefulness using the reaction {sup 7}Li(p,n) as an accelerator driven neutron source. Proton energies between 2.1 MeV and 2.6 MeV have been investigated. Radiation transport in the reflector/moderator assembly is simulated using the MCNP program. Depth-dose distributions in a head phanton are calculated with the BNCT-RTPE patient treatment planning program from INEEL using the MCNP generated neutron and photon spectra as the subsequent source. Clinical efficacy is compared using the current BMRR protocol for all designs. Depth-dose distributions are compared for a fixed normal tissue tolerance dose of 12.5 Gy-Eq. Radiation analyses also include a complete anthropomorphic phantom. Results of organ and whole body dose components are presented for several designs. Results indicate that high quality accelerator beams may produce clinically favorable treatments to deep-seated tumors when compared to the BMRR beam. Also discussed are problems identified in comparing accelerator and reactor based designs using in-air figures of merit as well as some results of spectrum-averaged RBE`s.

  8. First in-beam γ -ray study of the level structure of neutron-rich 39S

    NASA Astrophysics Data System (ADS)

    Chapman, R.; Wang, Z. M.; Bouhelal, M.; Haas, F.; Liang, X.; Azaiez, F.; Behera, B. R.; Burns, M.; Caurier, E.; Corradi, L.; Curien, D.; Deacon, A. N.; Dombrádi, Zs.; Farnea, E.; Fioretto, E.; Gadea, A.; Hodsdon, A.; Ibrahim, F.; Jungclaus, A.; Keyes, K.; Kumar, V.; Lunardi, S.; Mǎrginean, N.; Montagnoli, G.; Napoli, D. R.; Nowacki, F.; Ollier, J.; O'Donnell, D.; Papenberg, A.; Pollarolo, G.; Salsac, M.-D.; Scarlassara, F.; Smith, J. F.; Spohr, K. M.; Stanoiu, M.; Stefanini, A. M.; Szilner, S.; Trotta, M.; Verney, D.

    2016-08-01

    The neutron-rich 39S nucleus has been studied using binary grazing reactions produced by the interaction of a 215-MeV beam of 36S ions with a thin 208Pb target. The magnetic spectrometer, PRISMA, and the γ -ray array, CLARA, were used in the measurements. Gamma-ray transitions of the following energies were observed: 339, 398, 466, 705, 1517, 1656, and 1724 keV. Five of the observed transitions have been tentatively assigned to the decay of excited states with spins up to (11 /2- ). The results of a state-of-the-art shell-model calculation of the level scheme of 39S using the SDPF-U effective interaction are also presented. The systematic behavior of the excitation energy of the first 11 /2- states in the odd-A isotopes of sulfur and argon is discussed in relation to the excitation energy of the first excited 2+ states of the adjacent even-A isotopes. The states of 39S that have the components in their wave functions corresponding to three neutrons in the 1 f7 /2 orbital outside the N =20 core have also been discussed within the context of the 0 ℏ ω shell-model calculations presented here.

  9. Heavy Ion Reactions with Neutron-Rich Beams - Proceedings of the Riken International Workshop

    NASA Astrophysics Data System (ADS)

    Yamaji, S.; Ishihara, M.; Takigawa, N.

    1993-11-01

    The Table of Contents for the book is as follows: * Preface * Opening Address * Fusion I * Heavy Ion Fusion at Subbarrier Energies: Progress and Questions * Angular Momentum in Heavy Ion Subbarrier Interaction * Fusion II * High Precision Fusion Excitation Function Measurements: What Can We Learn from Them? * Transfer Reactions for 16O + 144,152Sm near the Coulomb Barrier * Fusion III * Recent Theoretical Developments in the Study of Subbarrier Fusion * Direct Reaction Approach to Heavy Ion Scattering and Fusion at Energies near Coulomb Barrier * Fusion IV * Roles of Multi-Step Transfer in Fusion Process Induced by Heavy Ion Reactions * Special Session * RIKEN Accelerator Research Facility (RARF) * Fission I * Bimodal Nature of Nuclear Fission * Systematics of Isotope Production Rates: Mass Excess Dependence of Fission Products * Semiclassical Methods for the Multi-Dimensional Quantum Decay * Dynamics of Di-Nucleus Systems: Molecular Resonances * Fission II * The Competition Between Fusion-Fission and Deeply Inelastic Reactions in the Medium Mass Systems * Unstable Nuclei I * Coulomb Dissociation and Momentum Distributions for 11Li → 9Li+n+n Breakup Reactions * Unstable Nuclei II * Elastic Scattering and Fragmentation of Halo Nuclei * Secondary Reactions of Neutron-Rich Nuclei at Intermediate Energies * Life Time of Soft Dipole Excitation * Unstable Nuclei III * Shell Structure of Exotic Unstable Nuclei * Properties of Unstable Nuclei Within the Relativistic Many-Body Theory * Fusion with Unstable Nuclei * Barrier Distributions for Heavy Ion Fusion * Heavy Ion Reactions with Neutron-Rich Beams * Heavy Ion Fusion with Neutron-Rich Beams * Superheavy Elements * Study of α Decays Following 40Ar Bombardment on 238U * Production of Superheavy Elements via Fusion: What is Limiting Us? * Panel Session * Comments * List of Participants

  10. Production of ultracold neutrons from a cold neutron beam on a {sup 2}H{sub 2} target

    SciTech Connect

    Atchison, F.; Brandt, B. van den; Brys, T.; Daum, M.; Fierlinger, P.; Hautle, P.; Henneck, R.; Heule, S.; Kasprzak, M.; Kirch, K.; Konter, J.A.; Michels, A.; Pichlmaier, A.; Wohlmuther, M.; Wokaun, A.; Bodek, K.; Szerer, U.; Geltenbort, P.; Zmeskal, J.; Pokotilovskiy, Y.

    2005-05-01

    The production rates of ultracold neutrons (UCN) from cold neutrons on gaseous, liquid, and solid deuterium targets have been measured. The comparison of the measured and calculated UCN production on gaseous {sup 2}H{sub 2} is used to calibrate the simulated target extraction and transport efficiencies of the experimental apparatus. The production cross section in solid {sup 2}H{sub 2} at 8 K for UCN with energies between 0 and 250 neV is R{sub solid,8K}={sigma}{sub solid,8K}{sup CN{yields}}U{sup CN} {rho}=(1.11{+-}0.23)x10{sup -8} cm{sup -1}. This value is consistent with other experiments in which UCN had been extracted from {sup 2}H{sub 2}. The value also agrees with calculations using the incoherent approximation and a simple Debye model and corroborates predictions for UCN densities expected at the high-intensity UCN source at the Paul Scherrer Institut. The temperature dependence of the UCN production in solid {sup 2}H{sub 2} down to 8 K can be explained within the same model when multiple-phonon excitation is included.

  11. Active beam position stabilization of pulsed lasers for long-distance ion profile diagnostics at the Spallation Neutron Source (SNS).

    PubMed

    Hardin, Robert A; Liu, Yun; Long, Cary; Aleksandrov, Alexander; Blokland, Willem

    2011-02-14

    A high peak-power Q-switched laser has been used to monitor the ion beam profiles in the superconducting linac at the Spallation Neutron Source (SNS). The laser beam suffers from position drift due to movement, vibration, or thermal effects on the optical components in the 250-meter long laser beam transport line. We have designed, bench-tested, and implemented a beam position stabilization system by using an Ethernet CMOS camera, computer image processing and analysis, and a piezo-driven mirror platform. The system can respond at frequencies up to 30 Hz with a high position detection accuracy. With the beam stabilization system, we have achieved a laser beam pointing stability within a range of 2 μrad (horizontal) to 4 μrad (vertical), corresponding to beam drifts of only 0.5 mm × 1 mm at the furthest measurement station located 250 meters away from the light source.

  12. A New Physical Model for Pulsars as Gravitational Shielding and Oscillating Neutron Stars

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2014-06-01

    Pulsars are fast rotating neutron stars that synchronously emit periodic Dirac delta shape pulses of radio-frequency radiation and Lorentzian shape oscillations of X-rays. The acceleration of particles near the magnetic poles, which derivate from the rotating axis produces coherent beams of radio emissions that are viewed as pulses of radiation whenever the magnetic poles sweep the viewers. However, the conventional lighthouse model of pulsars is only conceptual. The physical mechanism through which particles are accelerated to produce coherent beams of radio emissions is still poorly understood. The process for periodically oscillating X-rays to emit from hot spots at the inner edge of accretion disks of pulsars is also remained as an unsolved mystery. Recently, a new physical model of pulsars is proposed by the author to quantitatively interpret the emission characteristics of pulsars, in accordance with his well-developed five-dimensional fully covariant Kaluza-Klein gravitational shielding theory and the physics of thermal and accelerating charged particle radiation. The results indicate that with the significant gravitational shielding by scalar field a neutron star nonlinearly oscillates and produces synchronous periodically Dirac delta shape pulse-like radio-frequency radiation (emitted by the oscillating or accelerating charged particles) as well as periodically Lorentzian shape oscillating X-rays (as the thermal radiation of neutron stars that temperature varies due to the oscillation). This physical model of pulsars as gravitational shielding and oscillating neutron stars broadens our understanding of neutron stars and develops an innovative mechanism to disclose the mystery of pulsars. In this presentation, I will show the results obtained from the quantitative studies of this new physical model of pulsars for the oscillations of neutron stars and the powers of radio pulse-like emissions and oscillating X-rays.

  13. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    NASA Technical Reports Server (NTRS)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  14. Monte Carlo and analytical model predictions of leakage neutron exposures from passively scattered proton therapy

    SciTech Connect

    Pérez-Andújar, Angélica; Zhang, Rui; Newhauser, Wayne

    2013-12-15

    Purpose: Stray neutron radiation is of concern after radiation therapy, especially in children, because of the high risk it might carry for secondary cancers. Several previous studies predicted the stray neutron exposure from proton therapy, mostly using Monte Carlo simulations. Promising attempts to develop analytical models have also been reported, but these were limited to only a few proton beam energies. The purpose of this study was to develop an analytical model to predict leakage neutron equivalent dose from passively scattered proton beams in the 100-250-MeV interval.Methods: To develop and validate the analytical model, the authors used values of equivalent dose per therapeutic absorbed dose (H/D) predicted with Monte Carlo simulations. The authors also characterized the behavior of the mean neutron radiation-weighting factor, w{sub R}, as a function of depth in a water phantom and distance from the beam central axis.Results: The simulated and analytical predictions agreed well. On average, the percentage difference between the analytical model and the Monte Carlo simulations was 10% for the energies and positions studied. The authors found that w{sub R} was highest at the shallowest depth and decreased with depth until around 10 cm, where it started to increase slowly with depth. This was consistent among all energies.Conclusion: Simple analytical methods are promising alternatives to complex and slow Monte Carlo simulations to predict H/D values. The authors' results also provide improved understanding of the behavior of w{sub R} which strongly depends on depth, but is nearly independent of lateral distance from the beam central axis.

  15. Optimization of Neutron Spectrum in Northwest Beam Tube of Tehran Research Reactor for BNCT, by MCNP Code

    SciTech Connect

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Shayesteh, M.

    2015-07-01

    In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)

  16. Biological effects of high-energy neutrons measured in vivo using a vertebrate model.

    PubMed

    Kuhne, Wendy W; Gersey, Brad B; Wilkins, Richard; Wu, Honglu; Wender, Stephen A; George, Varghese; Dynan, William S

    2009-10-01

    Interaction of solar protons and galactic cosmic radiation with the atmosphere and other materials produces high-energy secondary neutrons from below 1 to 1000 MeV and higher. Although secondary neutrons may provide an appreciable component of the radiation dose equivalent received by space and high-altitude air travelers, the biological effects remain poorly defined, particularly in vivo in intact organisms. Here we describe the acute response of Japanese medaka (Oryzias latipes) embryos to a beam of high-energy spallation neutrons that mimics the energy spectrum of secondary neutrons encountered aboard spacecraft and high-altitude aircraft. To determine RBE, embryos were exposed to 0-0.5 Gy of high-energy neutron radiation or 0-15 Gy of reference gamma radiation. The radiation response was measured by imaging apoptotic cells in situ in defined volumes of the embryo, an assay that provides a quantifiable, linear dose response. The slope of the dose response in the developing head, relative to reference gamma radiation, indicates an RBE of 24.9 (95% CI 13.6-40.7). A higher RBE of 48.1 (95% CI 30.0-66.4) was obtained based on overall survival. A separate analysis of apoptosis in muscle showed an overall nonlinear response, with the greatest effects at doses of less than 0.3 Gy. Results of this experiment indicate that medaka are a useful model for investigating biological damage associated with high-energy neutron exposure.

  17. SU-E-T-567: Neutron Dose Equivalent Evaluation for Pencil Beam Scanning Proton Therapy with Apertures

    SciTech Connect

    Geng, C; Schuemann, J; Moteabbed, M; Paganetti, H

    2015-06-15

    Purpose: To determine the neutron contamination from the aperture in pencil beam scanning during proton therapy. Methods: A Monte Carlo based proton therapy research platform TOPAS and the UF-series hybrid pediatric phantoms were used to perform this study. First, pencil beam scanning (PBS) treatment pediatric plans with average spot size of 10 mm at iso-center were created and optimized for three patients with and without apertures. Then, the plans were imported into TOPAS. A scripting method was developed to automatically replace the patient CT with a whole body phantom positioned according to the original plan iso-center. The neutron dose equivalent was calculated using organ specific quality factors for two phantoms resembling a 4- and 14-years old patient. Results: The neutron dose equivalent generated by the apertures in PBS is 4–10% of the total neutron dose equivalent for organs near the target, while roughly 40% for organs far from the target. Compared to the neutron dose equivalent caused by PBS without aperture, the results show that the neutron dose equivalent with aperture is reduced in the organs near the target, and moderately increased for those organs located further from the target. This is due to the reduction of the proton dose around the edge of the CTV, which causes fewer neutrons generated in the patient. Conclusion: Clinically, for pediatric patients, one might consider adding an aperture to get a more conformal treatment plan if the spot size is too large. This work shows the somewhat surprising fact that adding an aperture for beam scanning for facilities with large spot sizes reduces instead of increases a potential neutron background in regions near target. Changran Geng is supported by the Chinese Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No. 11475087)

  18. On the Rutherford-Santilli neutron model

    SciTech Connect

    Burande, Chandrakant S.

    2015-03-10

    In 1920 H. Rutherford conjectured that the first particle synthesized in stars is neutron from a proton and an electron after which all known matter is progressively synthesized. However, Pauli objected Rutherford’s version of neutron synthesis because inability to represent spin 1/2 of the neutron. Using this objection E. Fermi proposed emission of massless particle, called “neutrino”. However, Santilli has dismissed the neutrino hypothesis following certain ambiguities such as positive binding energy required in synthesis of neutron. He found that celebrated Schrödinger’s equation of quantum physics is not suitable for obtaining positive binding energy for bound state at the dimension of 10{sup −13}cm. In order to remove these shortcomings, Santilli has developed isomathematics and then hadronic mechanics, which allowed the time invariant representation of Hamiltonian and non-Hamiltonian interactions as needed for the neutron synthesis (see for example: References cited at [1]).Thus the anomalies pertaining to the binding energy, the spin and the magnetic moment got resolved. He successfully calculated missing positive binding energy via isonormalization of the mass for electron when totally immersed within the hyper-dense medium inside the proton. Considering Rutherford’s compression of the isoelectron within the proton in the singlet coupling, he also identified the spin 1/2 for neutron and calculated the magnetic moment of the neutron. In order to verify his logical concept, he repeated the Don Carlo Borghi experiment of synthesis of the neutron from proton and electrons and verified that the said setup indeed produces neutron-type particles called “neutroids” which latter is absorbed by the activated detector substances that produces known nuclear reactions. He dismissed the neutrino hypothesis and replaced it with a longitudinal impulse originating from the ether as a universal substratum, named, “etherino”. He pointed out that all the

  19. Neutron-proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon-nucleus scattering data within an isospin dependent optical model

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hua; Guo, Wen-Jun; Li, Bao-An; Chen, Lie-Wen; Fattoyev, Farrukh J.; Newton, William G.

    2015-04-01

    The neutron-proton effective mass splitting in asymmetric nucleonic matter of isospin asymmetry δ and normal density is found to be mn-p* ≡ (mn* - mp*) / m = (0.41 ± 0.15) δ from analyzing globally 1088 sets of reaction and angular differential cross sections of proton elastic scattering on 130 targets with beam energies from 0.783 MeV to 200 MeV, and 1161 sets of data of neutron elastic scattering on 104 targets with beam energies from 0.05 MeV to 200 MeV within an isospin dependent non-relativistic optical potential model. It sets a useful reference for testing model predictions on the momentum dependence of the nucleon isovector potential necessary for understanding novel structures and reactions of rare isotopes.

  20. Neutron spectrum measurements at a radial beam port of the NUR research reactor using a Bonner spheres spectrometer.

    PubMed

    Mazrou, H; Nedjar, A; Seguini, T

    2016-08-01

    This paper describes the measurement campaign held around the neutron radiography (NR) facility of the Algerian 1MW NUR research reactor. The main objective of this work is to characterize accurately the neutron beam provided at one of the radial channels of the NUR research reactor taking benefit of the acquired CRNA Bonner spheres spectrometer (BSS). The specific objective was to improve the image quality of the NR facility. The spectrometric system in use is based on a central spherical (3)He thermal neutron proportional counter combined with high density polyethylene spheres of different diameters ranging from 3 to 12in. This counting system has good gamma ray discrimination and is able to cover an energy range from thermal to 20MeV. The measurements were performed at the sample distance of 0.6m from the beam port and at a height of 1.2m from the facility floor. During the BSS measurements, the reactor was operating at low power (100W) to avoid large dead times, pulse pileup and high level radiation exposures, in particular, during spheres handling. Thereafter, the neutron spectrum at the sample position was unfolded by means of GRAVEL and MAXED computer codes. The thermal, epithermal and fast neutron fluxes, the total neutron flux, the mean energy and the Cadmium ratio (RCd) were provided. A sensitivity analysis was performed taking into account various defaults spectra and ultimately a different response functions in the unfolding procedure. Overall, from the obtained results it reveals, unexpectedly, that the measured neutron spectrum at the sample position of the neutron radiography of the NUR reactor is being harder with a predominance of fast neutrons (>100keV) by about 60%. Finally, those results were compared to previous and more recent measurements obtained by activation foils detectors. The agreement was fairly good highlighting thereby the consistency of our findings.

  1. Monte Carlo modeling of proton therapy installations: a global experimental method to validate secondary neutron dose calculations

    NASA Astrophysics Data System (ADS)

    Farah, J.; Martinetti, F.; Sayah, R.; Lacoste, V.; Donadille, L.; Trompier, F.; Nauraye, C.; De Marzi, L.; Vabre, I.; Delacroix, S.; Hérault, J.; Clairand, I.

    2014-06-01

    Monte Carlo calculations are increasingly used to assess stray radiation dose to healthy organs of proton therapy patients and estimate the risk of secondary cancer. Among the secondary particles, neutrons are of primary concern due to their high relative biological effectiveness. The validation of Monte Carlo simulations for out-of-field neutron doses remains however a major challenge to the community. Therefore this work focused on developing a global experimental approach to test the reliability of the MCNPX models of two proton therapy installations operating at 75 and 178 MeV for ocular and intracranial tumor treatments, respectively. The method consists of comparing Monte Carlo calculations against experimental measurements of: (a) neutron spectrometry inside the treatment room, (b) neutron ambient dose equivalent at several points within the treatment room, (c) secondary organ-specific neutron doses inside the Rando-Alderson anthropomorphic phantom. Results have proven that Monte Carlo models correctly reproduce secondary neutrons within the two proton therapy treatment rooms. Sensitive differences between experimental measurements and simulations were nonetheless observed especially with the highest beam energy. The study demonstrated the need for improved measurement tools, especially at the high neutron energy range, and more accurate physical models and cross sections within the Monte Carlo code to correctly assess secondary neutron doses in proton therapy applications.

  2. Monte Carlo modeling of proton therapy installations: a global experimental method to validate secondary neutron dose calculations.

    PubMed

    Farah, J; Martinetti, F; Sayah, R; Lacoste, V; Donadille, L; Trompier, F; Nauraye, C; De Marzi, L; Vabre, I; Delacroix, S; Hérault, J; Clairand, I

    2014-06-07

    Monte Carlo calculations are increasingly used to assess stray radiation dose to healthy organs of proton therapy patients and estimate the risk of secondary cancer. Among the secondary particles, neutrons are of primary concern due to their high relative biological effectiveness. The validation of Monte Carlo simulations for out-of-field neutron doses remains however a major challenge to the community. Therefore this work focused on developing a global experimental approach to test the reliability of the MCNPX models of two proton therapy installations operating at 75 and 178 MeV for ocular and intracranial tumor treatments, respectively. The method consists of comparing Monte Carlo calculations against experimental measurements of: (a) neutron spectrometry inside the treatment room, (b) neutron ambient dose equivalent at several points within the treatment room, (c) secondary organ-specific neutron doses inside the Rando-Alderson anthropomorphic phantom. Results have proven that Monte Carlo models correctly reproduce secondary neutrons within the two proton therapy treatment rooms. Sensitive differences between experimental measurements and simulations were nonetheless observed especially with the highest beam energy. The study demonstrated the need for improved measurement tools, especially at the high neutron energy range, and more accurate physical models and cross sections within the Monte Carlo code to correctly assess secondary neutron doses in proton therapy applications.

  3. Spectral Models of Neutron Star Magnetospheres

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.

    1997-01-01

    We revisit the association of unidentified Galactic plane EGRET sources with tracers of recent massive star formation and death. Up-to-date catalogs of OB associations, SNR's, young pulsars, H2 regions and young open clusters were used in finding counterparts for a recent list of EGRET sources. It has been argued for some time that EGRET source positions are correlated with SNR's and OB associations as a class; we extend such analyses by finding additional counterparts and assessing the probability of individual source identifications. Among the several scenarios relating EGRET sources to massive stars, we focus on young neutron stars as the origin of the gamma-ray emission. The characteristics of the candidate identifications are compared to the known gamma-ray pulsar sample and to detailed Galactic population syntheses using our outer gap pulsar model of gamma-ray emission. Both the spatial distribution and luminosity function of the candidates are in good agreement with the model predictions; we infer that young pulsars can account for the bulk of the excess low latitude EGRET sources. We show that with this identification, the gamma-ray point sources provide an important new window into the history of recent massive star death in the solar neighborhood.

  4. Measuring the basic parameters of neutron stars using model atmospheres

    NASA Astrophysics Data System (ADS)

    Suleimanov, V. F.; Poutanen, J.; Klochkov, D.; Werner, K.

    2016-02-01

    Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutron star radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: i) pure carbon atmospheres for relatively cool neutron stars (1-4MK) and ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed.

  5. Monte Carlo modeling and analyses of YALINA-booster subcritical assembly part 1: analytical models and main neutronics parameters.

    SciTech Connect

    Talamo, A.; Gohar, M. Y. A.; Nuclear Engineering Division

    2008-09-11

    This study was carried out to model and analyze the YALINA-Booster facility, of the Joint Institute for Power and Nuclear Research of Belarus, with the long term objective of advancing the utilization of accelerator driven systems for the incineration of nuclear waste. The YALINA-Booster facility is a subcritical assembly, driven by an external neutron source, which has been constructed to study the neutron physics and to develop and refine methodologies to control the operation of accelerator driven systems. The external neutron source consists of Californium-252 spontaneous fission neutrons, 2.45 MeV neutrons from Deuterium-Deuterium reactions, or 14.1 MeV neutrons from Deuterium-Tritium reactions. In the latter two cases a deuteron beam is used to generate the neutrons. This study is a part of the collaborative activity between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research of Belarus. In addition, the International Atomic Energy Agency (IAEA) has a coordinated research project benchmarking and comparing the results of different numerical codes with the experimental data available from the YALINA-Booster facility and ANL has a leading role coordinating the IAEA activity. The YALINA-Booster facility has been modeled according to the benchmark specifications defined for the IAEA activity without any geometrical homogenization using the Monte Carlo codes MONK and MCNP/MCNPX/MCB. The MONK model perfectly matches the MCNP one. The computational analyses have been extended through the MCB code, which is an extension of the MCNP code with burnup capability because of its additional feature for analyzing source driven multiplying assemblies. The main neutronics parameters of the YALINA-Booster facility were calculated using these computer codes with different nuclear data libraries based on ENDF/B-VI-0, -6, JEF-2.2, and JEF-3.1.

  6. A quality assessment of the effects of a hydrogenous filter on a p(66)Be(40) neutron beam.

    PubMed

    Slabbert, J P; Binns, P J; Jones, H L; Hough, J H

    1989-11-01

    Recent measurements in a p(62)Be(36) neutron therapy beam have shown that the quality of the in-phantom beam changes with depth. This variation can be ascribed to the presence of a relatively large low-energy neutron component emanating from the neutron source. As part of the pre-clinical calibration programme at a newly commissioned neutron therapy facility, radiobiological and microdosimetric observations were made to determine the magnitude of this effect on a p(66)Be(40) beam and to evaluate the hardening effect of a hydrogenous filter. The reported data identify a correlation between the two assays and quantify a linear relationship between y* and filter thicknesses less than or equal to 6 cm. Using the data obtained in the study, a filter thickness was selected to comply with clinical requirements. By employing lineal energy spectra, it is demonstrated that subtle changes in beam quality may be quantified in a reproducible manner without resorting to time-consuming radiobiological studies.

  7. Relative measurements of fast neutron contamination in 18-MV photon beams from two linear accelerators and a betatron.

    PubMed

    Gur, D; Bukovitz, G; Rosen, J C; Holmes, B G

    1979-01-01

    Fast neutron contamination in photon beams in the 20 MV range have been reported in recent years. In order to determine if the variations were due mainly to differences in measurement procedures, or inherent in the design of the accelerators, three different 18-MV (BJR) photon beams were compared using identical analytical techniques. The units studied were a Philips SL/75-20 and a Siemens Mevatron-20 linear accelerators and a Schimadzu betatron. Gamma spectroscopy of an activated aluminum foil was the method used. By comparing the relative amounts of neutron contamination, errors associated with absolute measurements such as detector efficiency and differences in activation foils were eliminated. Fast neutron contaminations per rad of x rays in a ratio of 6.7:3.7:1 were found for the Philips, Schimadzu and Siemens accelerators, respectively.

  8. Decay and In-Beam Studies of Neutron-Deficient Po and Ra Isotopes at JYFL

    NASA Astrophysics Data System (ADS)

    Leino, M.; Allatt, R. G.; Andreyev, A. N.; Cocks, J. F. C.; Dorvaux, O.; Enqvist, T.; Eskola, K.; Helariutta, K.; Huyse, M.; Jones, P. M.; Julin, R.; Juutinen, S.; Kankaanpaeae, H.; Keenan, A.; Kettunen, H.; Kuusiniemi, P.; Muikku, M.; Rahkila, P.; Savelius, A.; Trzaska, W. H.; Uusitalo, J.; van Duppen, P.

    1999-05-01

    An extensive program to study the production, decay properties, and nuclear structure of very neutron-deficient polonium and radium nuclei is underway at the Department of Physics, University of Jyvaeskylae, Finland (JYFL). The main tools used in these studies are the gas-filled recoil separator RITU and various germanium gamma-ray arrays. In the course of these studies, among others the following new isotopes have been produced: 204Ra, 203Ra, and 202Ra. Isomeric alpha decaying states have been discovered in 203Ra and 191Po. Fine structure in the decay of 192Po to the oblate and prolate band heads in 188Pb has been observed. In-beam gamma-ray spectra have been, for the first time, measured for 192Po, 206Ra, 208Ra, and 210Ra. Development of collectivity in nuclei in the Po-Ra region and the systematics of reduced alpha widths will be discussed.

  9. A comparison of analytic models for estimating dose equivalent rates in shielding with beam spill measurements

    SciTech Connect

    Frankle, S.C.; Fitzgerald, D.H.; Hutson, R.L.; Macek, R.J.; Wilkinson, C.A.

    1992-12-31

    A comparison of 800-MeV proton beam spill measurements at the Los Alamos Meson Physics Facility (LAMPF) with analytical model calculations of neutron dose equivalent rates (DER) show agreement within factors of 2-3 for simple shielding geometries. The DER estimates were based on a modified Moyer model for transverse angles and a Monte Carlo based forward angle model described in the proceeding paper.

  10. Fusion neutron generation computations in a stellarator-mirror hybrid with neutral beam injection

    SciTech Connect

    Moiseenko, V. E.; Agren, O.

    2012-06-19

    In the paper [Moiseenko V.E., Noack K., Agren O. 'Stellarator-mirror based fusion driven fission reactor' J Fusion Energy 29 (2010) 65.], a version of a fusion driven system (FDS), i.e. a sub-critical fast fission assembly with a fusion plasma neutron source, is proposed. The plasma part of the reactor is based on a stellarator with a small mirror part. Hot ions with high perpendicular energy are assumed to be trapped in the magnetic mirror part. The stellarator part which connects to the mirror part and provides confinement for the bulk (deuterium) plasma. In the magnetic well of the mirror part, fusion reactions occur from collisions between a of hot ion component (tritium) with cold background plasma ions. RF heating is one option to heat the tritium. A more conventional method to sustain the hot ions is neutral beam injection (NBI), which is here studied numerically for the above-mentioned hybrid scheme. For these studies, a new kinetic code, KNBIM, has been developed. The code takes into account Coulomb collisions between the hot ions and the background plasma. The geometry of the confining magnetic field is arbitrary for the code. It is accounted for via a numerical bounce averaging procedure. Along with the kinetic calculations the neutron generation intensity and its spatial distribution are computed.

  11. Neutronics Modeling of the High Flux Isotope Reactor using COMSOL

    SciTech Connect

    Chandler, David; Primm, Trent; Freels, James D; Maldonado, G Ivan

    2011-01-01

    The High Flux Isotope Reactor located at the Oak Ridge National Laboratory is a versatile 85 MWth research reactor with cold and thermal neutron scattering, materials irradiation, isotope production, and neutron activation analysis capabilities. HFIR staff members are currently in the process of updating the thermal hydraulic and reactor transient modeling methodologies. COMSOL Multiphysics has been adopted for the thermal hydraulic analyses and has proven to be a powerful finite-element-based simulation tool for solving multiple physics-based systems of partial and ordinary differential equations. Modeling reactor transients is a challenging task because of the coupling of neutronics, heat transfer, and hydrodynamics. This paper presents a preliminary COMSOL-based neutronics study performed by creating a two-dimensional, two-group, diffusion neutronics model of HFIR to study the spatially-dependent, beginning-of-cycle fast and thermal neutron fluxes. The 238-group ENDF/B-VII neutron cross section library and NEWT, a two-dimensional, discrete-ordinates neutron transport code within the SCALE 6 code package, were used to calculate the two-group neutron cross sections required to solve the diffusion equations. The two-group diffusion equations were implemented in the COMSOL coefficient form PDE application mode and were solved via eigenvalue analysis using a direct (PARDISO) linear system solver. A COMSOL-provided adaptive mesh refinement algorithm was used to increase the number of elements in areas of largest numerical error to increase the accuracy of the solution. The flux distributions calculated by means of COMSOL/SCALE compare well with those calculated with benchmarked three-dimensional MCNP and KENO models, a necessary first step along the path to implementing two- and three-dimensional models of HFIR in COMSOL for the purpose of studying the spatial dependence of transient-induced behavior in the reactor core.

  12. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy.

    PubMed

    Islam, M R; Collums, T L; Zheng, Y; Monson, J; Benton, E R

    2013-11-21

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy−1 for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy−1 for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body.

  13. Density dependent hadronic models and the relation between neutron stars and neutron skin thickness

    SciTech Connect

    Avancini, S. S.; Marinelli, J. R.; Menezes, D. P.; Moraes, M. M. W.; Providencia, C.

    2007-05-15

    In the present work, we investigate the main differences in the lead neutron skin thickness, binding energy, surface energy, and density profiles obtained with two different density dependent hadron models. Our results are calculated within the Thomas-Fermi approximation with two different numerical prescriptions and compared with results obtained with a common parametrization of the nonlinear Walecka model. The neutron skin thickness is a reflex of the equation of state properties. Hence, a direct correlation is found between the neutron skin thickness and the slope of the symmetry energy. We show that within the present approximations, the asymmetry parameter for low momentum transfer polarized electron scattering is not sensitive to the model differences.

  14. A system of materials composition and geometry arrangement for fast neutron beam thermalization: An MCNP study

    NASA Astrophysics Data System (ADS)

    Uhlář, Radim; Alexa, Petr; Pištora, Jaromír

    2013-03-01

    Compact deuterium-tritium neutron generators emit fast neutrons (14.2 MeV) that have to be thermalized for neutron activation analysis experiments. To maximize thermal neutron flux and minimize epithermal and fast neutron fluxes across the output surface of the neutron generator facility, Monte Carlo calculations (MCNP5; Los Alamos National Laboratory) for different moderator types and widths and collimator and reflector designs have been performed. A thin lead layer close to the neutron generator as neutron multiplier followed by polyethylene moderator and surrounded by a massive lead and nickel collimator and reflector was obtained as the optimum setup.

  15. 235U Determination using In-Beam Delayed Neutron Counting Technique at the NRU Reactor

    SciTech Connect

    Andrews, M. T.; Bentoumi, G.; Corcoran, E. C.; Dimayuga, I.; Kelly, D. G.; Li, L.; Sur, B.; Rogge, R. B.

    2015-11-17

    This paper describes a collaborative effort that saw the Royal Military College of Canada (RMC)’s delayed neutron and gamma counting apparatus transported to Canadian Nuclear Laboratories (CNL) for use in the neutron beamline at the National Research Universal (NRU) reactor. Samples containing mg quantities of fissile material were re-interrogated, and their delayed neutron emissions measured. This collaboration offers significant advantages to previous delayed neutron research at both CNL and RMC. This paper details the determination of 235U content in enriched uranium via the assay of in-beam delayed neutron magnitudes and temporal behavior. 235U mass was determined with an average absolute error of ± 2.7 %. This error is lower than that obtained at RMCC for the assay of 235U content in aqueous solutions (3.6 %) using delayed neutron counting. Delayed neutron counting has been demonstrated to be a rapid, accurate, and precise method for special nuclear material detection and identification.

  16. Combined reactor neutron beam and {sup 60}Co γ-ray radiation effects on CMOS APS image sensors

    SciTech Connect

    Wang, Zujun Chen, Wei; Sheng, Jiangkun; Liu, Yan; Xiao, Zhigang; Huang, Shaoyan; Liu, Minbo

    2015-02-15

    The combined reactor neutron beam and {sup 60}Co γ-ray radiation effects on complementary metal-oxide semiconductor (CMOS) active pixel sensors (APS) have been discussed and some new experimental phenomena are presented. The samples are manufactured in the standard 0.35-μm CMOS technology. Two samples were first exposed to {sup 60}Co γ-rays up to the total ionizing dose (TID) level of 200 krad(Si) at the dose rates of 50.0 and 0.2 rad(Si)/s, and then exposed to neutron fluence up to 1 × 10{sup 11} n/cm{sup 2} (1-MeV equivalent neutron fluence). One sample was first exposed to neutron fluence up to 1 × 10{sup 11} n/cm{sup 2} (1-MeV equivalent neutron fluence), and then exposed to {sup 60}Co γ-rays up to the TID level of 200 krad(Si) at the dose rate of 0.2 rad(Si)/s. The mean dark signal (K{sub D}), the dark signal non-uniformity (DSNU), and the noise (V{sub N}) versus the total dose and neutron fluence has been investigated. The degradation mechanisms of CMOS APS image sensors have been analyzed, especially for the interaction induced by neutron displacement damage and TID damage.

  17. A Transport Model for Nuclear Reactions Induced by Radioactive Beams

    SciTech Connect

    Li Baoan; Chen Liewen; Das, Champak B.; Das Gupta, Subal; Gale, Charles; Ko, C.M.; Yong, G.-C.; Zuo Wei

    2005-10-14

    Major ingredients of an isospin and momentum dependent transport model for nuclear reactions induced by radioactive beams are outlined. Within the IBUU04 version of this model we study several experimental probes of the equation of state of neutron-rich matter, especially the density dependence of the nuclear symmetry energy. Comparing with the recent experimental data from NSCL/MSU on isospin diffusion, we found a nuclear symmetry energy of Esym({rho}) {approx_equal} 31.6({rho}/{rho}0)1.05 at subnormal densities. Predictions on several observables sensitive to the density dependence of the symmetry energy at supranormal densities accessible at GSI and the planned Rare Isotope Accelerator (RIA) are also made.

  18. Boron neutron capture therapy (BNCT) for liver metastasis: therapeutic efficacy in an experimental model

    SciTech Connect

    David W. Nigg

    2012-08-01

    Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. The present study evaluates tumor control and potential radiotoxicity of BNCT in an experimental model of liver metastasis. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA–BNCT, boronophenylalanine (BPA) ? neutron irradiation; Beam only, neutron irradiation; Sham, matched manipulation. The total absorbed dose administered with BPA–BNCT was 13 ± 3 Gy in tumor and 9 ± 2 Gy in healthy liver. Three weeks posttreatment, the tumor surface area post-treatment/pre-treatment ratio was 0.46 ± 0.20 for BPA–BNCT, 2.7 ± 1.8 for Beam only and 4.5 ± 3.1 for Sham. The pre-treatment tumor nodule mass of 48 ± 19 mgfell significantly to 19 ± 16 mg for BPA–BNCT, but rose significantly to 140 ± 106 mg for Beam only and to 346 ± 302 mg for Sham. For both end points, the differences between the BPA–BNCT group and each of the other groups were statistically significant (ANOVA). No clinical, macroscopic or histological normal liver radiotoxicity was observed. It is concluded that BPA– BNCT induced a significant remission of experimental colorectal tumor nodules in liver with no contributory liver toxicity.

  19. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    SciTech Connect

    Medin, Zachary James; Steinkirch, Marina von; Calder, Alan C.; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.

    2016-11-21

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Also, observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Lastly, here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  20. Model Atmospheres for X-Ray Bursting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Medin, Zach; von Steinkirch, Marina; Calder, Alan C.; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.

    2016-12-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  1. 26Si excited states via one-neutron removal from a 27Si radioactive ion beam

    NASA Astrophysics Data System (ADS)

    Chen, J.; Chen, A. A.; Amthor, A. M.; Bazin, D.; Becerril, A. D.; Gade, A.; Galaviz, D.; Glasmacher, T.; Kahl, D.; Lorusso, G.; Matos, M.; Ouellet, C. V.; Pereira, J.; Schatz, H.; Smith, K.; Wales, B.; Weisshaar, D.; Zegers, R. G. T.

    2012-04-01

    A study of 26Si states by neutron removal from a fast radioactive beam of 27Si has been performed. A beam of 27Si of energy 84.3 MeV/nucleon impinged on a polypropylene foil (C3H6) of 180 mg/cm2 thickness. Deexcitation γ rays were detected with a highly segmented germanium detector array, in coincidence with the 26Si recoils, and the corresponding 26Si level energies were determined. In comparing our results to two previous γ-ray spectroscopic studies of 26Si level structures, we find good agreement with a recent measurement of the 12C(16O,2nγ)26Si reaction. Our results support the use of excitation energies from that study in helping determine the important resonance energies for the thermonuclear 25Al(p,γ)26Si reaction rate. We do not observe a bound state at 4093 keV reported in an earlier study of the 24Mg(3He,nγ)26Si reaction.

  2. Neutron dosimetry in solid water phantom

    SciTech Connect

    Benites-Rengifo, Jorge Luis; Vega-Carrillo, Hector Rene

    2014-11-07

    The neutron spectra, the Kerma and the absorbed dose due to neutrons were estimated along the incoming beam in a solid water phantom. Calculations were carried out with the MCNP5 code, where the bunker, the phantom and the model of the15 MV LINAC head were modeled. As the incoming beam goes into the phantom the neutron spectrum is modified and the dosimetric values are reduced.

  3. Laser beam modeling in optical storage systems

    NASA Technical Reports Server (NTRS)

    Treptau, J. P.; Milster, T. D.; Flagello, D. G.

    1991-01-01

    A computer model has been developed that simulates light propagating through an optical data storage system. A model of a laser beam that originates at a laser diode, propagates through an optical system, interacts with a optical disk, reflects back from the optical disk into the system, and propagates to data and servo detectors is discussed.

  4. Modelling of electron beam induced nanowire attraction

    NASA Astrophysics Data System (ADS)

    Bitzer, Lucas A.; Speich, Claudia; Schäfer, David; Erni, Daniel; Prost, Werner; Tegude, Franz J.; Benson, Niels; Schmechel, Roland

    2016-04-01

    Scanning electron microscope (SEM) induced nanowire (NW) attraction or bundling is a well known effect, which is mainly ascribed to structural or material dependent properties. However, there have also been recent reports of electron beam induced nanowire bending by SEM imaging, which is not fully explained by the current models, especially when considering the electro-dynamic interaction between NWs. In this article, we contribute to the understanding of this phenomenon, by introducing an electro-dynamic model based on capacitor and Lorentz force interaction, where the active NW bending is stimulated by an electromagnetic force between individual wires. The model includes geometrical, electrical, and mechanical NW parameters, as well as the influence of the electron beam source parameters and is validated using in-situ observations of electron beam induced GaAs nanowire (NW) bending by SEM imaging.

  5. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    SciTech Connect

    Favalli, Andrea; Roth, Markus

    2015-05-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  6. Production of neutron-rich Ca, Sn, and Xe isotopes in transfer-type reactions with radioactive beams

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Lacroix, D.

    2010-12-15

    The production cross sections of neutron-rich isotopes {sup 52,54,56,58,60}Ca, {sup 136,138,140,142}Sn, and {sup 146,148,150,152}Xe are predicted for future experiments in the diffusive multinucleon transfer reactions {sup 86,90,92,94}Kr, {sup 124,130,132,134}Sn, {sup 136,140,142,146}Xe, and {sup 138,144,146}Ba+{sup 48}Ca with stable and radioactive beams at incident energies close to the Coulomb barrier. Because of the small cross sections, the production of neutron-rich isotopes requires the optimal choice of projectile-target combinations and bombarding energies.

  7. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy.

    PubMed

    Irazola, L; Terrón, J A; Bedogni, R; Pola, A; Lorenzoli, M; Sánchez-Nieto, B; Gómez, F; Sánchez-Doblado, F

    2016-09-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios.

  8. Chromosomal aberrations in peripheral blood lymphocytes exposed to a mixed beam of low energy neutrons and gamma radiation.

    PubMed

    Wojcik, A; Obe, G; Lisowska, H; Czub, J; Nievaart, V; Moss, R; Huiskamp, R; Sauerwein, W

    2012-09-01

    Cells exposed to thermal neutrons are simultaneously damaged by radiations with high and low linear energy transfer (LET). A question relevant for the assessment of risk of exposure to a mixed beam is whether the biological effect of both radiation types is additive or synergistic. The aim of the present investigation was to calculate whether the high and low LET components of a thermal neutron field interact when damaging cells. Human peripheral blood lymphocytes were exposed to neutrons from the HB11 beam at the Institute for Energy and Transport, Petten, Netherlands, in a 37 °C water phantom at varying depths, where the mix of high and low LET beam components differs. Chromosomal aberrations were analysed and the relative biological effectiveness (RBE) values as well as the expected contributions of protons and photons to the aberration yield were calculated based on a dose response of aberrations in lymphocytes exposed to (60)Co gamma radiation. The RBE for 10 dicentrics per 100 cells was 3 for mixed beam and 7.2 for protons. For 20 dicentrics per 100 cells the respective values were 2.4 and 5.8. Within the limitations of the experimental setup the results indicate that for this endpoint there is no synergism between the high and low LET radiations.

  9. LANL Efforts on Neutron Coincidence Modeling of INL Pulsed Neutron Data

    SciTech Connect

    Stewart, Scott; Thron, Jonathan L.; Swinhoe, Martyn T.; Geist, William H.; Charlton, William S.

    2012-06-25

    Overview of this presentation is: (1) pulsed histogram analysis, (2) creation of SPNS, (3) use of SPNS for modeling pulsed neutron data, (4) creation of MUDI, (5) calculated accidentals correction using GUAM + MUDI, (6) background subtraction analysis, and (7) current/figure work with MCNP.

  10. In-beam gamma-ray spectroscopy of very neutron-rich nuclei: excited states in 46S and 48Ar.

    PubMed

    Gade, A; Adrich, P; Bazin, D; Brown, B A; Cook, J M; Diget, C Aa; Glasmacher, T; McDaniel, S; Ratkiewicz, A; Siwek, K; Weisshaar, D

    2009-05-08

    We report on the first in-beam gamma-ray spectroscopy study of the very neutron-rich nucleus 46S. The N=30 isotones 46S and 48Ar were produced in a novel way in two steps that both necessarily involve nucleon exchange and neutron pickup reactions 9Be(48Ca,48K)X followed by 9Be(48K,48Ar+gamma)X at 85.7 MeV/u midtarget energy and 9Be(48Ca,46Cl)X followed by 9Be(46Cl,46S+gamma)X at 87.0 MeV/u midtarget energy, respectively. The results are compared to large-scale shell-model calculations in the sd-pf shell using the SDPF-NR effective interaction and Z-dependent modifications.

  11. In-Beam {gamma}-Ray Spectroscopy of Very Neutron-Rich Nuclei: Excited States in {sup 46}S and {sup 48}Ar

    SciTech Connect

    Gade, A.; Brown, B. A.; Cook, J. M.; Glasmacher, T.; McDaniel, S.; Ratkiewicz, A.; Siwek, K.; Adrich, P.; Bazin, D.; Diget, C. A.; Weisshaar, D.

    2009-05-08

    We report on the first in-beam {gamma}-ray spectroscopy study of the very neutron-rich nucleus {sup 46}S. The N=30 isotones {sup 46}S and {sup 48}Ar were produced in a novel way in two steps that both necessarily involve nucleon exchange and neutron pickup reactions {sup 9}Be({sup 48}Ca,{sup 48}K)X followed by {sup 9}Be({sup 48}K,{sup 48}Ar+{gamma})X at 85.7 MeV/u midtarget energy and {sup 9}Be({sup 48}Ca,{sup 46}Cl)X followed by {sup 9}Be({sup 46}Cl,{sup 46}S+{gamma})X at 87.0 MeV/u midtarget energy, respectively. The results are compared to large-scale shell-model calculations in the sd-pf shell using the SDPF-NR effective interaction and Z-dependent modifications.

  12. Neutral Beam Ion Loss Modeling for NSTX

    SciTech Connect

    D. Mikkelsen; D.S. Darrow; L. Grisham; R. Akers; S. Kaye

    1999-06-01

    A numerical model, EIGOL, has been developed to calculate the loss rate of neutral beam ions from NSTX and the resultant power density on the plasma facing components. This model follows the full gyro-orbit of the beam ions, which can be a significant fraction of the minor radius. It also includes the three-dimensional structure of the plasma facing components inside NSTX. Beam ion losses from two plasma conditions have been compared: {beta} = 23%, q{sub 0} = 0.8, and {beta} = 40%, q{sub 0} = 2.6. Global losses are computed to be 4% and 19%, respectively, and the power density on the rf antenna is near the maximum tolerable levels in the latter case.

  13. Stripping of H- beams by residual gas in the linac at the Los Alamos neutron science center

    SciTech Connect

    Mccrady, Rodney C; Ito, Takeyasu; Cooper, Martin D; Alexander, Saunders

    2010-09-07

    The linear accelerator at the Los Alamos Neutron Science Center (LANSCE) accelerates both protons and H{sup -} ions using Cockroft-Walton-type injectors, a drift-tube linac and a coupled-cavity linac. The vacuum is maintained in the range of 10{sup -6} to 10{sup -7} Torr; the residual gas in the vacuum system results in some stripping of the electrons from the H{sup -} ions resulting in beam spill and the potential for unwanted proton beams delivered to experiments. We have measured the amount of fully-stripped H{sup -} beam (protons) that end up at approximately 800 MeV in the beam switchyard at LANSCE using image plates as very sensitive detectors. We present here the motivation for the measurement, the measurement technique and results.

  14. Model of a SNS Electrostatic LEBT with a Near-Ground Beam Chopper

    NASA Astrophysics Data System (ADS)

    Han, B. X.; Stockli, M. P.

    2009-03-01

    The low energy beam transport (LEBT) of the Spallation Neutron Source (SNS) accelerator consists of two electrostatic lenses, of which the second is split into four electrically-isolated segments. Adding fast pulsed voltages to the lens high voltage creates the transverse fields required for beam chopping. Electric sparks, however, create transients that enter the fast high-voltage switches, which are occasionally damaged and cause machine downtime. This work models a new configuration of the electrostatic LEBT, which chops the beam with four shielded, near-ground electrodes between the two lenses. The model shows that the new configuration can match the RFQ injection requirements and sufficiently deflect the beam in the phase-space using the same chopping voltages as in the baseline LEBT.

  15. Modeling of the vibrating beam accelerometer nonlinearities

    NASA Astrophysics Data System (ADS)

    Romanowski, P. A.; Knop, R. C.

    Successful modeling and processing of the output of a quartz Vibrating Beam Accelerometer (VBA), whose errors are inherently nonlinear with respect to input acceleration, are reported. The VBA output, with two signals that are frequencies of vibrating quartz beams, has inherent higher-order terms. In order to avoid vibration rectification errors, the signal output must be sampled at a rapid rate and the output must be reduced using a nonlinear model. The present model, with acceleration as a function of frequency, is derived by a least-squares process where the covariance matrix is obtained from simulated data. The system performance is found to be acceptable to strategic levels, and it is shown that a vibration rectification error of 400 micrograms/sq g can be reduced to 4 micrograms/sq g by using the processor electronics and a nonlinear model.

  16. Remark on: the neutron spherical optical-model absorption.

    SciTech Connect

    Smith, A. B.; Nuclear Engineering Division

    2007-06-30

    The energy-dependent behavior of the absorption term of the spherical neutron optical potential for doubly magic {sup 208}Pb and the neighboring {sup 209}Bi is examined. These considerations suggest a phenomenological model that results in an intuitively attractive energy dependence of the imaginary potential that provides a good description of the observed neutron cross sections and that is qualitatively consistent with theoretical concepts. At the same time it provides an alternative to some of the arbitrary assumptions involved in many conventional optical-model interpretations reported in the literature and reduces the number of the parameters of the model.

  17. SU-E-T-484: In Vivo Dosimetry Tolerances in External Beam Fast Neutron Therapy

    SciTech Connect

    Young, L; Gopan, O

    2015-06-15

    Purpose: Optical stimulated luminescence (OSL) dosimetry with Landauer Al2O3:C nanodots was developed at our institution as a passive in vivo dosimetry (IVD) system for patients treated with fast neutron therapy. The purpose of this study was to establish clinically relevant tolerance limits for detecting treatment errors requiring further investigation. Methods: Tolerance levels were estimated by conducting a series of IVD expected dose calculations for square field sizes ranging between 2.8 and 28.8 cm. For each field size evaluated, doses were calculated for open and internal wedged fields with angles of 30°, 45°, or 60°. Theoretical errors were computed for variations of incorrect beam configurations. Dose errors, defined as the percent difference from the expected dose calculation, were measured with groups of three nanodots placed in a 30 x 30 cm solid water phantom, at beam isocenter (150 cm SAD, 1.7 cm Dmax). The tolerances were applied to IVD patient measurements. Results: The overall accuracy of the nanodot measurements is 2–3% for open fields. Measurement errors agreed with calculated errors to within 3%. Theoretical estimates of dosimetric errors showed that IVD measurements with OSL nanodots will detect the absence of an internal wedge or a wrong wedge angle. Incorrect nanodot placement on a wedged field is more likely to be caught if the offset is in the direction of the “toe” of the wedge where the dose difference in percentage is about 12%. Errors caused by an incorrect flattening filter size produced a 2% measurement error that is not detectable by IVD measurement alone. Conclusion: IVD with nanodots will detect treatment errors associated with the incorrect implementation of the internal wedge. The results of this study will streamline the physicists’ investigations in determining the root cause of an IVD reading that is out of normally accepted tolerances.

  18. Equivalent beam modeling using numerical reduction techniques

    NASA Technical Reports Server (NTRS)

    Chapman, J. M.; Shaw, F. H.

    1987-01-01

    Numerical procedures that can accomplish model reductions for space trusses were developed. Three techniques are presented that can be implemented using current capabilities within NASTRAN. The proposed techniques accomplish their model reductions numerically through use of NASTRAN structural analyses and as such are termed numerical in contrast to the previously developed analytical techniques. Numerical procedures are developed that permit reductions of large truss models containing full modeling detail of the truss and its joints. Three techniques are presented that accomplish these model reductions with various levels of structural accuracy. These numerical techniques are designated as equivalent beam, truss element reduction, and post-assembly reduction methods. These techniques are discussed in detail.

  19. Advanced Penning-type ion source development and passive beam focusing techniques for an associated particle imaging neutron generator with enhanced spatial resolution

    NASA Astrophysics Data System (ADS)

    Sy, Amy Vong

    The use of accelerator-based neutron generators for non-destructive imaging and analysis in commercial and security applications is continuously under development, with improvements to available systems and combinations of available techniques revealing new capabilities for real-time elemental and isotopic analysis. The recent application of associated particle imaging (API) techniques for time- and directionally-tagged neutrons to induced fission and transmission imaging methods demonstrates such capabilities in the characterization of fissile material configurations and greatly benefits from improvements to existing neutron generator systems. Increased neutron yields and improved spatial resolution can enhance the capabilities of imaging methods utilizing the API technique. The work presented in this dissertation focused on the development of components for use within an API neutron generator with enhanced system spatial resolution. The major focus areas were the ion source development for plasma generation, and passive ion beam focusing techniques for the small ion beam widths necessary for the enhanced spatial resolution. The ion source development focused on exploring methods for improvement of Penning-type ion sources that are used in conventional API neutron generator systems, while the passive beam focusing techniques explored both ion beam collimation and ion guiding with tapered dielectric capillaries for reduced beam widths at the neutron production target.

  20. Characterization of an explosively bonded aluminum proton beam window for the Spallation Neutron Source

    SciTech Connect

    McClintock, David A; Janney, Jim G; Parish, Chad M

    2014-01-01

    An effort is underway at the Spallation Neutron Source (SNS) to change the design of the 1st Generation high-nickel alloy proton beam window (PBW) to one that utilizes aluminum for the window material. One of the key challenges to implementation of an aluminum PBW at the SNS was selection of an appropriate joining method to bond an aluminum window to the stainless steel bulk shielding of the PBW assembly. An explosively formed bond was selected as the most promising joining method for the aluminum PBW design. A testing campaign was conducted to evaluate the strength and efficacy of explosively formed bonds that were produced using two different interlayer materials: niobium and titanium. The characterization methods reported here include tensile testing, thermal-shock leak testing, optical microscopy, and advanced scanning electron microscopy. All tensile specimens examined failed in the aluminum interlayer and measured tensile strengths were all slightly greater than the native properties of the aluminum interlayer, while elongation values were all slightly lower. A leak developed in the test vessel with a niobium interlayer joint after repeated thermal-shock cycles, and was attributed to an extensive crack network that formed in a layer of niobium-rich intermetallics located on the bond interfaces of the niobium interlayer; the test vessel with a titanium interlayer did not develop a leak under the conditions tested. Due to the experience gained from these characterizations, the explosively formed bond with a titanium interlayer was selected for the aluminum PBW design at the SNS.

  1. Validation of the MCNP computational model for neutron flux distribution with the neutron activation analysis measurement

    NASA Astrophysics Data System (ADS)

    Tiyapun, K.; Chimtin, M.; Munsorn, S.; Somchit, S.

    2015-05-01

    The objective of this work is to demonstrate the method for validating the predication of the calculation methods for neutron flux distribution in the irradiation tubes of TRIGA research reactor (TRR-1/M1) using the MCNP computer code model. The reaction rate using in the experiment includes 27Al(n, α)24Na and 197Au(n, γ)198Au reactions. Aluminium (99.9 wt%) and gold (0.1 wt%) foils and the gold foils covered with cadmium were irradiated in 9 locations in the core referred to as CT, C8, C12, F3, F12, F22, F29, G5, and G33. The experimental results were compared to the calculations performed using MCNP which consisted of the detailed geometrical model of the reactor core. The results from the experimental and calculated normalized reaction rates in the reactor core are in good agreement for both reactions showing that the material and geometrical properties of the reactor core are modelled very well. The results indicated that the difference between the experimental measurements and the calculation of the reactor core using the MCNP geometrical model was below 10%. In conclusion the MCNP computational model which was used to calculate the neutron flux and reaction rate distribution in the reactor core can be used for others reactor core parameters including neutron spectra calculation, dose rate calculation, power peaking factors calculation and optimization of research reactor utilization in the future with the confidence in the accuracy and reliability of the calculation.

  2. Relativistic mean field models for finite nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Chia

    In this dissertation we have created theoretical models for finite nuclei, nuclear matter, and neutron stars within the framework of relativistic mean field (RMF) theory, and we have used these models to investigate the elusive isovector sector and related physics, in particular, the neutron-skin thickness of heavy nuclei, the nuclear symmetry energy, and the properties of neutron stars. To build RMF models that incorporate collective excitations in finite nuclei in addition to their ground-state properties, we have extended the non-relativistic sum rule approach to the relativistic domain. This allows an efficient estimate of giant monopole energies. Moreover, we have combined an exact shell-model-like approach with the mean-field calculation to describe pairing correlations in open-shell nuclei. All the ingredients were then put together to establish the calibration scheme. We have also extended the transformation between model parameters and pseudo data of nuclear matter within the RMF context. Performing calibration in this pseudo data space can not only facilitate the searching algorithm but also make the pseudo data genuine model predictions. This calibration scheme is also supplemented by a covariance analysis enabling us to extract the information content of a model, including theoretical uncertainties and correlation coefficients. A series of RMF models subject to the same isoscalar constraints but one differing isovector assumption were then created using this calibration scheme. By comparing their predictions of the nuclear matter equation of state to both experimental and theoretical constraints, we found that a small neutron skin of about 0.16 fm in Pb208 is favored, indicating that the symmetry energy should be soft. To obtain stronger evidence, we proceeded to examine the evolution of the isotopic chains in both oxygen and calcium. Again, it was found that the model with such small neutron skin and soft symmetry energy can best describe both isotopic

  3. Second malignancies following conventional or combined 252Cf neutron brachytherapy with external beam radiotherapy for breast cancer

    PubMed Central

    Valuckas, Konstantinas Povilas; Atkocius, Vydmantas; Kuzmickiene, Irena; Aleknavicius, Eduardas; Liukpetryte, Sarune; Ostapenko, Valerijus

    2013-01-01

    We retrospectively evaluated the risk of second malignancies among 832 patients with inner or central breast cancer treated with conventional external beam schedule (CRT group), or neutron brachytherapy using Californium-252 (252Cf) sources and hypofractionated external beam radiotherapy (HRTC group), between 1987 and 1996 at the Institute of Oncology, Vilnius University. Patients were observed until the occurrences of death or development of a second malignancy, or until 31 December 2009, whichever was earlier. Median follow-up time was 10.4 years (range, 1.2–24.1 years). Risk of second primary cancers was quantified using standardized incidence ratios (SIRs). Cox proportional hazards regression models were used to estimate hazard ratios (HRs). There was a significant increase in the risk of second primary cancers compared with the general population (SIR 1.3, 95% CI 1.1–1.5). The observed number of second primary cancers was also higher than expected for breast (SIR 1.8, 95% CI 1.3–2.4) and lung cancer (SIR 3.8, 95% CI 2.0–6.7). For second breast cancer, no raised relative risk was observed during the period ≥10 or more years after radiotherapy. Compared with the CRT group, HRTC patients had a not statistically significant higher risk of breast cancer. Increased relative risks were observed specifically for age at initial diagnosis of <50 years (HR 2.9, 95% CI 1.6–5.2) and for obesity (HR 2.8, 95% CI 1.1–7.2). PMID:23397075

  4. Nonthermal accretion disk models around neutron stars

    NASA Technical Reports Server (NTRS)

    Tavani, M.; Liang, Edison P.

    1994-01-01

    We consider the structure and emission spectra of nonthermal accretion disks around both strongly and weakly magnetized neutron stars. Such disks may be dissipating their gravitational binding energy and transferring their angular momentum via semicontinuous magnetic reconnections. We consider specifically the structure of the disk-stellar magnetospheric boundary where magnetic pressure balances the disk pressure. We consider energy dissipation via reconnection of the stellar field and small-scale disk turbulent fields of opposite polarity. Constraints on the disk emission spectrum are discussed.

  5. Monte Carlo and analytical model predictions of leakage neutron exposures from passively scattered proton therapy

    PubMed Central

    Pérez-Andújar, Angélica; Zhang, Rui; Newhauser, Wayne

    2013-01-01

    Purpose: Stray neutron radiation is of concern after radiation therapy, especially in children, because of the high risk it might carry for secondary cancers. Several previous studies predicted the stray neutron exposure from proton therapy, mostly using Monte Carlo simulations. Promising attempts to develop analytical models have also been reported, but these were limited to only a few proton beam energies. The purpose of this study was to develop an analytical model to predict leakage neutron equivalent dose from passively scattered proton beams in the 100-250-MeV interval. Methods: To develop and validate the analytical model, the authors used values of equivalent dose per therapeutic absorbed dose (H/D) predicted with Monte Carlo simulations. The authors also characterized the behavior of the mean neutron radiation-weighting factor, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\overline {w_R }\\end{document}wR¯, as a function of depth in a water phantom and distance from the beam central axis. Results: The simulated and analytical predictions agreed well. On average, the percentage difference between the analytical model and the Monte Carlo simulations was 10% for the energies and positions studied. The authors found that \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\overline {w_R }\\end{document}wR¯ was highest at the shallowest depth and decreased with depth until around 10 cm, where it started to increase slowly with depth. This was consistent among all energies. Conclusion: Simple analytical methods are promising alternatives to complex and slow Monte Carlo simulations

  6. Multi-Gaussian Schell-model vortex beam

    NASA Astrophysics Data System (ADS)

    Zhang, Yongtao; Liu, Lin; Zhao, Chengliang; Cai, Yangjian

    2014-02-01

    Multi-Gaussian Schell-model (MGSM) beam was introduced recently (Sahin and Korotkova, 2012 [34], and Korotkova et al., 2012 [35]). In this paper, multi-Gaussian Schell-model vortex (MGSMV) beam is introduced as a natural extension of MGSM beam. The explicit expression for the cross-spectral density of a MGSMV beam propagating through a stigmatic ABCD optical system is derived and the focusing properties of a MGSMV beam are studied in detail. It is found that we can shape the focused beam profile by varying the initial beam parameters, which will be useful in material thermal processing and particle trapping.

  7. Mathematical models for volume rendering and neutron transport

    SciTech Connect

    Max, N.

    1994-09-01

    This paper reviews several different models for light interaction with volume densities of absorbing, glowing, reflecting, or scattering material. They include absorption only, glow only, glow and absorption combined, single scattering of external illumination, and multiple scattering. The models are derived from differential equations, and illustrated on a data set representing a cloud. They are related to corresponding models in neutron transport. The multiple scattering model uses an efficient method to propagate the radiation which does not suffer from the ray effect.

  8. Experimental observations and theoretical models for beam-beam phenomena

    SciTech Connect

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10/sup 10/-10/sup 11/ and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented.

  9. Secondary neutron source modelling using MCNPX and ALEPH codes

    NASA Astrophysics Data System (ADS)

    Trakas, Christos; Kerkar, Nordine

    2014-06-01

    Monitoring the subcritical state and divergence of reactors requires the presence of neutron sources. But mainly secondary neutrons from these sources feed the ex-core detectors (SRD, Source Range Detector) whose counting rate is correlated with the level of the subcriticality of reactor. In cycle 1, primary neutrons are provided by sources activated outside of the reactor (e.g. Cf252); part of this source can be used for the divergence of cycle 2 (not systematic). A second family of neutron sources is used for the second cycle: the spontaneous neutrons of actinides produced after irradiation of fuel in the first cycle. Both families of sources are not sufficient to efficiently monitor the divergence of the second cycles and following ones, in most reactors. Secondary sources cluster (SSC) fulfil this role. In the present case, the SSC [Sb, Be], after activation in the first cycle (production of Sb124, unstable), produces in subsequent cycles a photo-neutron source by gamma (from Sb124)-neutron (on Be9) reaction. This paper presents the model of the process between irradiation in cycle 1 and cycle 2 results for SRD counting rate at the beginning of cycle 2, using the MCNPX code and the depletion chain ALEPH-V1 (coupling of MCNPX and ORIGEN codes). The results of this simulation are compared with two experimental results of the PWR 1450 MWe-N4 reactors. A good agreement is observed between these results and the simulations. The subcriticality of the reactors is about at -15,000 pcm. Discrepancies on the SRD counting rate between calculations and measurements are in the order of 10%, lower than the combined uncertainty of measurements and code simulation. This comparison validates the AREVA methodology, which allows having an SRD counting rate best-estimate for cycles 2 and next ones and optimizing the position of the SSC, depending on the geographic location of sources, main parameter for optimal monitoring of subcritical states.

  10. Design and optimization of a beam shaping assembly for BNCT based on D-T neutron generator and dose evaluation using a simulated head phantom.

    PubMed

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2012-12-01

    A feasibility study was conducted to design a beam shaping assembly for BNCT based on D-T neutron generator. The optimization of this configuration has been realized in different steps. This proposed system consists of metallic uranium as neutron multiplier, TiF(3) and Al(2)O(3) as moderators, Pb as reflector, Ni as shield and Li-Poly as collimator to guide neutrons toward the patient position. The in-air parameters recommended by IAEA were assessed for this proposed configuration without using any filters which enables us to have a high epithermal neutron flux at the beam port. Also a simulated Snyder head phantom was used to evaluate dose profiles due to the irradiation of designed beam. The dose evaluation results and depth-dose curves show that the neutron beam designed in this work is effective for deep-seated brain tumor treatments even with D-T neutron generator with a neutron yield of 2.4×10(12) n/s. The Monte Carlo Code MCNP-4C is used in order to perform these calculations.

  11. Thermal and resonance neutrons generated by various electron and X-ray therapeutic beams from medical linacs installed in polish oncological centers

    PubMed Central

    Konefał, Adam; Orlef, Andrzej; Łaciak, Marcin; Ciba, Aleksander; Szewczuk, Marek

    2012-01-01

    Background High-energy photon and electron therapeutic beams generated in medical linear accelerators can cause the electronuclear and photonuclear reactions in which neutrons with a broad energy spectrum are produced. A low-energy component of this neutron radiation induces simple capture reactions from which various radioisotopes originate and in which the radioactivity of a linac head and various objects in the treatment room appear. Aim The aim of this paper is to present the results of the thermal/resonance neutron fluence measurements during therapeutic beam emission and exemplary spectra of gamma radiation emitted by medical linac components activated in neutron reactions for four X-ray beams and for four electron beams generated by various manufacturers’ accelerators installed in typical concrete bunkers in Polish oncological centers. Materials and methods The measurements of neutron fluence were performed with the use of the induced activity method, whereas the spectra of gamma radiation from decays of the resulting radioisotopes were measured by means of a portable high-purity germanium detector set for field spectroscopy. Results The fluence of thermal neutrons as well as resonance neutrons connected with the emission of a 20 MV X-ray beam is ∼106 neutrons/cm2 per 1 Gy of a dose in water at a reference depth. It is about one order of magnitude greater than that for the 15 MV X-ray beams and about two orders of magnitude greater than for the 18–22 MeV electron beams regardless of the type of an accelerator. Conclusion The thermal as well as resonance neutron fluence depends strongly on the type and the nominal potential of a therapeutic beam. It is greater for X-ray beams than for electrons. The accelerator accessories and other large objects should not be stored in a treatment room during high-energy therapeutic beam emission to avoid their activation caused by thermal and resonance neutrons. Half-lives of the radioisotopes originating from

  12. Demonstration of a single-crystal reflector-filter for enhancing slow neutron beams

    NASA Astrophysics Data System (ADS)

    Muhrer, G.; Schönfeldt, T.; Iverson, E. B.; Mocko, M.; Baxter, D. V.; Hügle, Th.; Gallmeier, F. X.; Klinkby, E. B.

    2016-09-01

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystal reflector-filter at a reflected neutron source and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. This finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.

  13. Measuring Neutron Star Radii via Pulse Profile Modeling with NICER

    NASA Astrophysics Data System (ADS)

    Özel, Feryal; Psaltis, Dimitrios; Arzoumanian, Zaven; Morsink, Sharon; Bauböck, Michi

    2016-11-01

    The Neutron-star Interior Composition Explorer is an X-ray astrophysics payload that will be placed on the International Space Station. Its primary science goal is to measure with high accuracy the pulse profiles that arise from the non-uniform thermal surface emission of rotation-powered pulsars. Modeling general relativistic effects on the profiles will lead to measuring the radii of these neutron stars and to constraining their equation of state. Achieving this goal will depend, among other things, on accurate knowledge of the source, sky, and instrument backgrounds. We use here simple analytic estimates to quantify the level at which these backgrounds need to be known in order for the upcoming measurements to provide significant constraints on the properties of neutron stars. We show that, even in the minimal-information scenario, knowledge of the background at a few percent level for a background-to-source countrate ratio of 0.2 allows for a measurement of the neutron star compactness to better than 10% uncertainty for most of the parameter space. These constraints improve further when more realistic assumptions are made about the neutron star emission and spin, and when additional information about the source itself, such as its mass or distance, are incorporated.

  14. The influence of neutron contamination on dosimetry in external photon beam radiotherapy

    SciTech Connect

    Horst, Felix Czarnecki, Damian; Zink, Klemens

    2015-11-15

    Purpose: Photon fields with energies above ∼7 MeV are contaminated by neutrons due to photonuclear reactions. Their influence on dosimetry—although considered to be very low—is widely unexplored. Methods: In this work, Monte Carlo based investigations into this issue performed with FLUKA and EGSNRC are presented. A typical Linac head in 18 MV-X mode was modeled equivalently within both codes. EGSNRC was used for the photon and FLUKA for the neutron production and transport simulation. Water depth dose profiles and the response of different detectors (Farmer chamber, TLD-100, TLD-600H, and TLD-700H chip) in five representative depths were simulated and the neutrons’ impact (neutron absorbed dose relative to photon absorbed dose) was calculated. To take account of the neutrons’ influence, a theoretically required correction factor was defined and calculated for five representative water depths. Results: The neutrons’ impact on the absorbed dose to water was found to be below 0.1% for all depths and their impact on the response of the Farmer chamber and the TLD-700H chip was found to be even less. For the TLD-100 and the TLD-600H chip it was found to be up to 0.3% and 0.7%, respectively. The theoretical correction factors to be applied to absorbed dose to water values measured with these four detectors in a depth different from the reference/calibration depth were calculated and found to be below 0.05% for the Farmer chamber and the TLD-700H chip, but up to 0.15% and 0.35% for the TLD-100 and TLD-600H chips, respectively. In thermoluminescence dosimetry the neutrons’ influence (and therefore the additional inaccuracy in measurement) was found to be higher for TLD materials whose {sup 6}Li fraction is high, such as TLD-100 and TLD-600H, resulting from the thermal neutron capture reaction on {sup 6}Li. Conclusions: The impact of photoneutrons on the absorbed dose to water and on the response of a typical ionization chamber as well as three different types

  15. Thermal Modeling and Feedback Requirements for LIFE Neutronic Simulations

    SciTech Connect

    Seifried, J E

    2009-07-15

    An initial study is performed to determine how temperature considerations affect LIFE neutronic simulations. Among other figures of merit, the isotopic mass accumulation, thermal power, tritium breeding, and criticality are analyzed. Possible fidelities of thermal modeling and degrees of coupling are explored. Lessons learned from switching and modifying nuclear datasets is communicated.

  16. Are neutrons responsible for the dose discrepancies between Monte Carlo calculations and measurements in the build-up region for a high-energy photon beam?

    PubMed

    Ding, George X; Duzenli, Cheryl; Kalach, Nina I

    2002-09-07

    This study presents measured neutron dose using a neutron dosimeter in a water phantom and investigates a hypothesis that neutrons in a high-energy photon beam may be responsible for the reported significant dose discrepancies between Monte Carlo calculations and measurements at the build-up region in large fields. Borated polyethylene slabs were inserted between the accelerator head and the phantom in order to remove neutrons generated in the accelerator head. The thickness of the slab ranged from 2.5 cm to 10 cm. A lead slab of 3 mm thickness was also used in the study. The superheated drop neutron dosimeter was used to measure the depth-dose curve of neutrons in a high-energy photon beam and to verify the effectiveness of the slab to remove these neutrons. Total dose measurements were performed in water using a WELLHOFER WP700 beam scanner with an IC-10 ionization chamber. The Monte Carlo code BEAM was used to simulate an 18 MV photon beam from a Varian Clinac-2100EX accelerator. Both EGS4/DOSXYZ and EGSnrc/DOSRZnrc were used in the dose calculations. Measured neutron dose equivalents as a function of depth per unit total dose in water were presented for 10 x 10 and 40 x 40 cm2 fields. The measured results have shown that a 5-10 cm thick borated polyethylene slab can reduce the neutron dose by a factor of 2 when inserted between the accelerator head and the detector. In all cases the measured neutron dose equivalent was less than 0.5% of the photon dose. In order to study if the ion chamber was highly sensitive to the neutron dose, we have investigated the disagreement between the Monte Carlo calculated and measured central-axis depth-dose curves in the build-up region when different shielding materials were used. The result indicated that the IC-10 chamber was not highly sensitive to the neutron dose. Therefore, neutrons present in a high-energy photon beam were unlikely to be responsible for the reported discrepancies in the build-up region for large fields.

  17. Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source

    SciTech Connect

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-14

    An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E < 12.47% for 99% particles). The whole linac comprises mainly E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 10{sup 11} n/cm{sup 2}/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.

  18. Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-01

    An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E < 12.47% for 99% particles). The whole linac comprises mainly E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 1011 n/cm2/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.

  19. Demonstration of a Single-Crystal Reflector-Filter for Enhancing Slow Neutron Beams

    DOE PAGES

    Muhrer, Guenter; Schönfeldt, Troels; Iverson, Erik B.; ...

    2016-06-14

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystalmore » reflector-filter and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. Ultimately, this finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.« less

  20. Demonstration of a Single-Crystal Reflector-Filter for Enhancing Slow Neutron Beams

    SciTech Connect

    Muhrer, Guenter; Schönfeldt, Troels; Iverson, Erik B.; Mocko, Michal; Baxter, David V.; Hügle, Thomas; Gallmeier, Franz X.; Klinkby, Esben

    2016-06-14

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystal reflector-filter and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. Ultimately, this finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.

  1. Using a Tandem Pelletron accelerator to produce a thermal neutron beam for detector testing purposes.

    PubMed

    Irazola, L; Praena, J; Fernández, B; Macías, M; Bedogni, R; Terrón, J A; Sánchez-Nieto, B; Arias de Saavedra, F; Porras, I; Sánchez-Doblado, F

    2016-01-01

    Active thermal neutron detectors are used in a wide range of measuring devices in medicine, industry and research. For many applications, the long-term stability of these devices is crucial, so that very well controlled neutron fields are needed to perform calibrations and repeatability tests. A way to achieve such reference neutron fields, relying on a 3 MV Tandem Pelletron accelerator available at the CNA (Seville, Spain), is reported here. This paper shows thermal neutron field production and reproducibility characteristics over few days.

  2. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    DOE PAGES

    Medin, Zachary James; Steinkirch, Marina von; Calder, Alan C.; ...

    2016-11-21

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Also, observations from X-raymore » telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Lastly, here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.« less

  3. INVESTIGATING SUPERCONDUCTIVITY IN NEUTRON STAR INTERIORS WITH GLITCH MODELS

    SciTech Connect

    Haskell, B.; Pizzochero, P. M.; Seveso, S.

    2013-02-20

    The high-density interior of a neutron star is expected to contain superconducting protons and superfluid neutrons. Theoretical estimates suggest that the protons will form a type II superconductor in which the stellar magnetic field is carried by flux tubes. The strong interaction between the flux tubes and the neutron rotational vortices could lead to strong ''pinning'', i.e., vortex motion could be impeded. This has important implications especially for pulsar glitch models as it would lead to a large part of the vorticity of the star being decoupled from the ''normal'' component to which the electromagnetic emission is locked. In this Letter, we explore the consequences of strong pinning in the core on the ''snowplow'' model for pulsar glitches, making use of realistic equations of state and relativistic background models for the neutron star. We find that, in general, a large fraction of the pinned vorticity in the core is not compatible with observations of giant glitches in the Vela pulsar. Thus, the conclusion is that either most of the core is in a type I superconducting state or the interaction between vortices and flux tubes is weaker than previously assumed.

  4. Studies on the shielding properties of polyboron and ilmenite-magnetite concrete using a reactor neutron beam

    SciTech Connect

    Ahmed, F.U.; Bhuiyan, S.I.; Mollah, A.S.; Sarder, M.R.; Huda, M.Q.; Rahman, M.; Mondal, M.A.W.

    1999-05-01

    The shielding effectiveness of locally developed polyboron and ilmenite-magnetite (I-M) concrete is investigated using the reactor neutron beam of the 3-MW TRIGA Mark II research reactor at the Atomic Energy Research Establishment, Savar, Dhaka. The effective removal cross sections for the foregoing individual shielding materials as well as their combinations are obtained from transmission data using two-group neutron fluxes defined by a Cd-cutoff value. The experimental transmission factors for I-M concrete and polyboron are compared with those obtained from transport calculations performed with the ANISN deterministic code in the forward mode and the MCNP4B Monte Carlo code. The ANISN code is used for the fast neutron group flux (Cd-cutoff flux), and the MCNP4B code is used for the total neutron flux. The agreement between the experiment and calculation is fairly good at deep penetration, but at initial points, some disagreement is observed. This observation is valid for both polyboron and I-M concrete.

  5. Optimization of Beam-Shaping Assemblies for BNCS Using the High-Energy Neutron Sources D-D and D-T

    SciTech Connect

    Verbeke, Jerome M.; Chen, Allen S.; Vujic, Jasmina L.; Leung, Ka-Ngo

    2001-06-15

    Boron neutron capture synovectomy is a novel approach for the treatment of rheumatoid arthritis. The goal of the treatment is the ablation of diseased synovial membranes in articulating joints. The treatment of knee joints is the focus of this work. A method was developed, as discussed previously, to predict the dose distribution in a knee joint from any neutron and photon beam spectra incident on the knee. This method is validated and used to design moderators for the deuterium-deuterium (D-D) and deuterium-tritium (D-T) neutron sources. Treatment times >2 h were obtained with the D-D reaction. They could potentially be reduced if the {sup 10}B concentration in the synovium was increased. For D-T neutrons, high therapeutic ratios and treatment times <5 min were obtained for neutron yields of 10{sup 14} s{sup -1}. This treatment time makes the D-T reaction attractive for boron neutron capture synovectomy.

  6. Production of beams of neutron-rich nuclei between Ca and Ni using the ion-guide technique

    SciTech Connect

    Perajarvi, K.; Cerny, J.; Hager, U.; Hakala, J.; Huikari, J.; Jokinen, A.; Karvonen, P.; Kurpeta, J.; Lee, D.; Moore, I.; Penttila, H.; Popov, A.; Aysto, J.

    2004-09-28

    Since several elements between Z = 20-28 are refractory in their nature, their neutron-rich isotopes are rarely available as low energy Radioactive Ion Beams (RIB) in ordinary Isotope Separator On-Line facilities [1-4]. These low energy RIBs would be especially interesting to have available under conditions which allow high-resolution beta-decay spectroscopy, ion-trapping and laser-spectroscopy. As an example, availability of these beams would open a way for research which could produce interesting and important data on neutron-rich nuclei around the doubly magic {sup 78}Ni. One way to overcome the intrinsic difficulty of producing these beams is to rely on the chemically unselective Ion Guide Isotope Separator On-Line (IGISOL) technique [5]. Quasi- and deep-inelastic reactions, such as {sup 197}Au({sup 65}Cu,X)Y, could be used to produce these nuclei in existing IGISOL facilities, but before they can be successfully incorporated into the IGISOL concept their kinematics must be well understood. Therefore the reaction kinematics part of this study was first performed at the Lawrence Berkeley National Laboratory using its 88'' cyclotron and, based on those results, a specialized target chamber was built[6]. The target chamber shown in Fig. 1 was recently tested on-line at the Jyvaaskylaa IGISOL facility. Yields of mass-separated radioactive projectile-like species such as {sup 62,63}Co are about 0.8 ions/s/pnA, corresponding to about 0.06 % of the total IGISOL efficiency for the products that hit the Ni-degrader. (The current maximum 443 MeV {sup 65}Cu beam intensity at Jyvaaskylaa is about 20 pnA.) This total IGISOL efficiency is a product of two coupled loss factors, namely inadequate thermalization and the intrinsic IGISOL efficiency. In our now tested chamber, about 9 % of the Co recoils are thermalized in the owing He gas (p{sub He}=300 mbar) and about 0.7 % of them are converted into the mass-separated ion beams. In the future, both of these physical

  7. High energy neutron radiography

    SciTech Connect

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-06-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos.

  8. Neutron-rich rare-isotope production from projectile fission of heavy nuclei near 20 MeV/nucleon beam energy

    NASA Astrophysics Data System (ADS)

    Vonta, N.; Souliotis, G. A.; Loveland, W.; Kwon, Y. K.; Tshoo, K.; Jeong, S. C.; Veselsky, M.; Bonasera, A.; Botvina, A.

    2016-12-01

    We investigate the possibilities of producing neutron-rich nuclides in projectile fission of heavy beams in the energy range of 20 MeV/nucleon expected from low-energy facilities. We report our efforts to theoretically describe the reaction mechanism of projectile fission following a multinucleon transfer collision at this energy range. Our calculations are mainly based on a two-step approach: The dynamical stage of the collision is described with either the phenomenological deep-inelastic transfer model (DIT) or with the microscopic constrained molecular dynamics model (CoMD). The de-excitation or fission of the hot heavy projectile fragments is performed with the statistical multifragmentation model (SMM). We compared our model calculations with our previous experimental projectile-fission data of 238U (20 MeV/nucleon) + 208Pb and 197Au (20 MeV/nucleon) + 197Au and found an overall reasonable agreement. Our study suggests that projectile fission following peripheral heavy-ion collisions at this energy range offers an effective route to access very neutron-rich rare isotopes toward and beyond the astrophysical r-process path.

  9. Neutron beam tests of CsI(Na) and CaF2(Eu) crystals for dark matter direct search

    NASA Astrophysics Data System (ADS)

    Guo, C.; Ma, X. H.; Wang, Z. M.; Bao, J.; Dai, C. J.; Guan, M. Y.; Liu, J. C.; Li, Z. H.; Ren, J.; Ruan, X. C.; Yang, C. G.; Yu, Z. Y.; Zhong, W. L.; Huerta, C.

    2016-05-01

    In recent decades, inorganic crystals have been widely used in dark matter direct search experiments. To contribute to the understanding of the capabilities of CsI(Na) and CaF2(Eu) crystals, a mono-energetic neutron beam is utilized to study the properties of nuclear recoils, which are expected to be similar to signals of dark matter direct detection. The quenching factor of nuclear recoils in CsI(Na) and CaF2Eu, as well as an improved discrimination factor between nuclear recoils and γ backgrounds in CsI(Na), are reported.

  10. A piecewise continuous Timoshenko beam model for the dynamic analysis of tapered beam-like structures

    NASA Technical Reports Server (NTRS)

    Shen, Ji Yao; Abu-Saba, Elias G.; Mcginley, William M.; Sharpe, Lonnie, Jr.; Taylor, Lawrence W., Jr.

    1992-01-01

    Distributed parameter modeling offers a viable alternative to the finite element approach for modeling large flexible space structures. The introduction of the transfer matrix method into the continuum modeling process provides a very useful tool to facilitate the distributed parameter model applied to some more complex configurations. A uniform Timoshenko beam model for the estimation of the dynamic properties of beam-like structures has given comparable results. But many aeronautical and aerospace structures are comprised of non-uniform sections or sectional properties, such as aircraft wings and satellite antennas. This paper proposes a piecewise continuous Timoshenko beam model which is used for the dynamic analysis of tapered beam-like structures. A tapered beam is divided into several segments of uniform beam elements. Instead of arbitrarily assumed shape functions used in finite element analysis, the closed-form solution of the Timoshenko beam equation is used. Application of the transfer matrix method relates all the elements as a whole. By corresponding boundary conditions and compatible conditions a characteristic equation for the global tapered beam has been developed, from which natural frequencies can be derived. A computer simulation is shown in this paper, and compared with the results obtained from the finite element analysis. While piecewise continuous Timoshenko beam model decreases the number of elements significantly; comparable results to the finite element method are obtained.

  11. Design of a high-current low-energy beam transport line for an intense D-T/D-D neutron generator

    NASA Astrophysics Data System (ADS)

    Lu, Xiaolong; Wang, Junrun; Zhang, Yu; Li, Jianyi; Xia, Li; Zhang, Jie; Ding, Yanyan; Jiang, Bing; Huang, Zhiwu; Ma, Zhanwen; Wei, Zheng; Qian, Xiangping; Xu, Dapeng; Lan, Changlin; Yao, Zeen

    2016-03-01

    An intense D-T/D-D neutron generator is currently being developed at the Lanzhou University. The Cockcroft-Walton accelerator, as a part of the neutron generator, will be used to accelerate and transport the high-current low-energy beam from the duoplasmatron ion source to the rotating target. The design of a high-current low-energy beam transport (LEBT) line and the dynamics simulations of the mixed beam were carried out using the TRACK code. The results illustrate that the designed beam line facilitates smooth transportation of a deuteron beam of 40 mA, and the number of undesired ions can be reduced effectively using two apertures.

  12. Elliptical Laguerre-Gaussian correlated Schell-model beam.

    PubMed

    Chen, Yahong; Liu, Lin; Wang, Fei; Zhao, Chengliang; Cai, Yangjian

    2014-06-02

    A new kind of partially coherent beam with non-conventional correlation function named elliptical Laguerre-Gaussian correlated Schell-model (LGCSM) beam is introduced. Analytical propagation formula for an elliptical LGCSM beam passing through a stigmatic ABCD optical system is derived. The elliptical LGCSM beam exhibits unique features on propagation, e.g., its intensity in the far field (or in the focal plane) displays an elliptical ring-shaped beam profile, being qualitatively different from the circular ring-shaped beam profile of the circular LGCSM beam. Furthermore, we carry out experimental generation of an elliptical LGCSM beam with controllable ellipticity, and measure its focusing properties. Our experimental results are consistent with the theoretical predictions. The elliptical LGCSM beam will be useful in atomic optics.

  13. Thermal analysis and neutron production characteristics of a low power copper beam dump-cum-target for LEHIPA

    NASA Astrophysics Data System (ADS)

    Sawant, Y. S.; Thomas, R. G.; Verma, V.; Agarwal, A.; Prasad, N. K.; Bhagwat, P. V.; Saxena, A.; Singh, P.

    2016-01-01

    Monte Carlo simulations of heat deposition and neutron production have been carried out for the low power beam dump-cum-target for the 20 MeV Low Energy High Intensity Proton Accelerator (LEHIPA) facility at BARC using GEANT4 and FLUKA. Thermal analysis and heat transfer calculations have also been carried out using the computational fluid dynamics code CFD ACE+. In this work we present the details of the analysis of the low power beam dump-cum-target designed for conditioning of the accelerator upto a maximum power of 600 kW with a duty cycle of 2% which corresponds to an average power of 12 kW in the first phase.

  14. Construction of the WSU Epithermal Neutron Filter

    SciTech Connect

    Venhuizen, James Robert; Nigg, David Waler; Tripard, G.

    2002-09-01

    Moderating material has been installed in the original thermal-neutron filter region of the Washington State University (WSU) TRIGA™ type reactor to produce an epithermal-neutron beam. Attention has been focused upon the development of a convenient, local, epithermal-neutron beam facility at WSU for collaborative Idaho National Engineering and Environmental Laboratory (INEEL)/WSU boron neutron capture therapy (BNCT) preclinical research and boronated pharmaceutical screening in cell and animal models. The design of the new facility was performed in a collaborative effort1,2 of WSU and INEEL scientists. This paper summarizes the physical assembly of this filter.

  15. Neutron star matter in an effective model

    SciTech Connect

    Jha, T. K.; Raina, P. K.; Panda, P. K.; Patra, S. K.

    2006-11-15

    We study an equation of state (EOS) for dense matter in the core of a compact star with hyperons and calculate the star's structure in an effective model using a mean-field approach. With varying incompressibility and effective nucleon mass, we analyze the resulting EOS with hyperons in {beta} equilibrium and their underlying effect on the gross properties of the compact star sequences. The results obtained in our analysis are compared with predictions of other theoretical models and observations. The maximum mass of a compact star lies in the range 1.21-1.96M{sub {center_dot}} for the different EOS obtained in the model.

  16. Effect of high current electron beam in a 30 MeV radio frequency linac for neutron-time-of-flight applications

    SciTech Connect

    Nayak, B. Acharya, S.; Rajawat, R. K.; DasGupta, K.

    2016-01-15

    A high power pulsed radio frequency electron linac is designed by BARC, India to accelerate 30 MeV, 10 A, 10 ns beam for neutron-time-of-flight applications. It will be used as a neutron generator and will produce ∼10{sup 12}–10{sup 13} n/s. It is essential to reduce the beam instability caused by space charge effect and the beam cavity interaction. In this paper, the wakefield losses in the accelerating section due to bunch of RMS (Root mean square) length 2 mm (at the gun exit) is analysed. Loss and kick factors are numerically calculated using CST wakefield solver. Both the longitudinal and transverse wake potentials are incorporated in beam dynamics code ELEGANT to find the transverse emittance growth of the beam propagating through the linac. Beam loading effect is examined by means of numerical computation carried out in ASTRA code. Beam break up start current has been estimated at the end of the linac which arises due to deflecting modes excited by the high current beam. At the end, transverse beam dynamics of such high current beam has been analysed.

  17. Effect of high current electron beam in a 30 MeV radio frequency linac for neutron-time-of-flight applications

    NASA Astrophysics Data System (ADS)

    Nayak, B.; Acharya, S.; Rajawat, R. K.; DasGupta, K.

    2016-01-01

    A high power pulsed radio frequency electron linac is designed by BARC, India to accelerate 30 MeV, 10 A, 10 ns beam for neutron-time-of-flight applications. It will be used as a neutron generator and will produce ˜1012-1013 n/s. It is essential to reduce the beam instability caused by space charge effect and the beam cavity interaction. In this paper, the wakefield losses in the accelerating section due to bunch of RMS (Root mean square) length 2 mm (at the gun exit) is analysed. Loss and kick factors are numerically calculated using CST wakefield solver. Both the longitudinal and transverse wake potentials are incorporated in beam dynamics code ELEGANT to find the transverse emittance growth of the beam propagating through the linac. Beam loading effect is examined by means of numerical computation carried out in ASTRA code. Beam break up start current has been estimated at the end of the linac which arises due to deflecting modes excited by the high current beam. At the end, transverse beam dynamics of such high current beam has been analysed.

  18. Analyses of the reflector tank, cold source, and beam tube cooling for ANS reactor. [Advanced Neutron Source (ANS)

    SciTech Connect

    Marland, S. )

    1992-07-01

    This report describes my work as an intern with Martin Marietta Energy Systems, Inc., in the summer of 1991. I was assigned to the Reactor Technology Engineering Department, working on the Advanced Neutron Source (ANS). My first project was to select and analyze sealing systems for the top of the diverter/reflector tank. This involved investigating various metal seals and calculating the forces necessary to maintain an adequate seal. The force calculations led to an analysis of several bolt patterns and lockring concepts that could be used to maintain a seal on the vessel. Another project involved some pressure vessel stress calculations and the calculation of the center of gravity for the cold source assembly. I also completed some sketches of possible cooling channel patterns for the inner vessel of the cold source. In addition, I worked on some thermal design analyses for the reflector tank and beam tubes, including heat transfer calculations and assisting in Patran and Pthermal analyses. To supplement the ANS work, I worked on other projects. I completed some stress/deflection analyses on several different beams. These analyses were done with the aid of CAASE, a beam-analysis software package. An additional project involved bending analysis on a carbon removal system. This study was done to find the deflection of a complex-shaped beam when loaded with a full waste can.

  19. Thermoluminescence in CaF2:Dy and CaF2:Mn induced by monoenergetic, parallel beam, 81-0 meV diffracted neutrons.

    PubMed

    Horowitz, Y S; Shahar, B B; Dubi, A; Pinto, H

    1977-05-01

    The thermal neutron thermoluminescent response of CaF2 : Dy (TLD-200, 0-35% wt Dy) and CaF2 : mn (TLD-400, 2% wt Mn) has been measured by exposure to a monoenergetic, parallel beam of 81-0 meV neutrons from a Kandi-II diffractometer. The TL dosemeters were rectangular and of 0-165 X 0-165 X 0-83 cm dimensions. The measured integral TLD-200 response for a neutron fluence of 10(10) n cm-2 was 0-21 +/- 0-013 R of 60Co which translates to 0-33 +/- 0-021 R 60Co for a Maxwellian neutron energy distribution at T = 293-6 K. The measured integral TLD-400 response for a neutron fluence of 10(10) n cm-2 was 0-09 +/- 0-006 R 60Co which similarly translates to 0-14 +/- 0-010 R 60Co for a Maxwellian neutron energy distribution at T = 293-6 K. The thermoluminescent response of both materials is both theoretically and experimentally shown to be composed of a thermal neutron induced prompt gamma component (approximately 20%) as well as the major component due to the thermal neutron induced beta decay of 165Dy and 56Mn. It is pointed out that the thermal neutron thermoluminescent response of both materials is size and geometry dependent.

  20. Verification of an effective dose equivalent model for neutrons

    SciTech Connect

    Tanner, J.E.; Piper, R.K.; Leonowich, J.A.; Faust, L.G.

    1991-10-01

    Since the effective dose equivalent, based on the weighted sum of organ dose equivalents, is not a directly measurable quantity, it must be estimated with the assistance of computer modeling techniques and a knowledge of the radiation field. Although extreme accuracy is not necessary for radiation protection purposes, a few well-chosen measurements are required to confirm the theoretical models. Neutron measurements were performed in a RANDO phantom using thermoluminescent dosemeters, track etch dosemeters, and a 1/2-in. (1.27-cm) tissue equivalent proportional counter in order to estimate neutron doses and dose equivalents within the phantom at specific locations. The phantom was exposed to bare and D{sub 2}O-moderated {sup 252}Cf neutrons at the Pacific Northwest Laboratory's Low Scatter Facility. The Monte Carlo code MCNP with the MIRD-V mathematical phantom was used to model the human body and calculate organ doses and dose equivalents. The experimental methods are described and the results of the measurements are compared to the calculations. 8 refs., 3 figs., 3 tabs.

  1. a Theoretical Model of a Superheated Liquid Droplet Neutron Detector.

    NASA Astrophysics Data System (ADS)

    Harper, Mark Joseph

    Neutrons can interact with the atoms in superheated liquid droplets which are suspended in a viscous matrix material, resulting in the formation of charged recoil ions. These ions transfer energy to the liquid, sometimes resulting in the droplets vaporizing and producing observable bubbles. Devices employing this mechanism are known as superheated liquid droplet detectors, or bubble detectors. The basis of bubble detector operation is identical to that of bubble chambers, which have been well characterized by researchers such as Wilson, Glaser, Seitz, and others since the 1950's. Each of the microscopic superheated liquid droplets behaves like an independent bubble chamber. This dissertation presents a theoretical model which considers the three principal aspects of detector operation: nuclear reactions, charged particle energy deposition, and thermodynamic bubble formation. All possible nuclear reactions were examined and those which could reasonably result in recoil ions sufficiently energetic to vaporize a droplet were analyzed in detail. Feasible interactions having adequate cross sections include elastic and inelastic scattering, n-proton, and n-alpha reactions. Ziegler's TRansport of Ions in Matter (TRIM) code was used to calculate the ions' stopping powers in various compounds based on the ionic energies predicted by standard scattering distributions. If the ions deposit enough energy in a small enough volume then the entire droplet will vaporize without further energy input. Various theories as to the vaporization of droplets by ionizing radiation were studied and a novel method of predicting the critical (minimum) energy was developed. This method can be used to calculate the minimum required stopping power for the ion, from which the threshold neutron energy is obtainable. Experimental verification of the model was accomplished by measuring the response of two different types of bubble detectors to monoenergetic thermal neutrons, as well as to neutrons

  2. Deformation of the very neutron-deficient rare-earth nuclei produced with the SPIRAL 76Kr radioactive beam and studied with EXOGAM + DIAMANT

    SciTech Connect

    Redon, N.; Guinet, D.; Lautesse, Ph.; Meyer, M.; Rosse, B.; Stezowski, O.; France, G. de; Casandjian, J. M.

    2004-02-27

    The structure of the very neutron-deficient rare-earth nuclei has been investigated in the first experiment with the EXOGAM gamma array coupled to the DIAMANT light charged particle detector using radioactive beam of 76Kr delivered by the SPIRAL facility. Very neutron-deficient Pr, Nd and Pm isotopes have been populated at rather high spin by the reaction 76Kr + 58Ni at a beam energy of 328 MeV. We report here the first results of this experiment.

  3. Uranium Neutron Coincidence Collar Model Utilizing 3He

    SciTech Connect

    Siciliano, Edward R.; Rogers, Jeremy L.; Schweppe, John E.; Lintereur, Azaree T.; Kouzes, Richard T.

    2012-07-30

    The Department of Energy Office of Nuclear Safeguards (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a boron-lined proportional tube based alternative system in a configuration typically used for 3He-based coincidence counter applications. The specific application selected for boron-lined tube replacement in this project was one of the Uranium Neutron Coincidence Collar (UNCL) designs. This report, providing results for model development of a UNCL, is a deliverable under Task 2 of the project. The current UNCL instruments utilize 3He tubes. As the first step in developing and optimizing a boron-lined proportional counter based version of the UNCL, models of eight different 3He-based UNCL detectors currently in use were developed and evaluated. A comparison was made between the simulated results and measured efficiencies for those systems with values reported in the literature. The reported experimental measurements for efficiencies and die-away times agree to within 10%.

  4. Vibrational neutron spectroscopy of collagen and model polypeptides.

    PubMed Central

    Middendorf, H D; Hayward, R L; Parker, S F; Bradshaw, J; Miller, A

    1995-01-01

    A pulsed source neutron spectrometer has been used to measure vibrational spectra (20-4000 cm-1) of dry and hydrated type I collagen fibers, and of two model polypeptides, polyproline II and (prolyl-prolyl-glycine)10, at temperatures of 30 and 120 K. the collagen spectra provide the first high resolution neutron views of the proton-dominated modes of a protein over a wide energy range from the low frequency phonon region to the rich spectrum of localized high frequency modes. Several bands show a level of fine structure approaching that of optical data. The principal features of the spectra are assigned. A difference spectrum is obtained for protein associated water, which displays an acoustic peak similar to pure ice and a librational band shifted to lower frequency by the influence of the protein. Hydrogen-weighted densities of states are extracted for collagen and the model polypeptides, and compared with published calculations. Proton mean-square displacements are calculated from Debye-Waller factors measured in parallel quasi-elastic neutron-scattering experiments. Combined with the collagen density of states function, these yield an effective mass of 14.5 a.m.u. for the low frequency harmonic oscillators, indicating that the extended atom approximation, which simplifies analyses of low frequency protein dynamics, is appropriate. PMID:8527680

  5. Modeling the Complete Gravitational Wave Spectrum of Neutron Star Mergers.

    PubMed

    Bernuzzi, Sebastiano; Dietrich, Tim; Nagar, Alessandro

    2015-08-28

    In the context of neutron star mergers, we study the gravitational wave spectrum of the merger remnant using numerical relativity simulations. Postmerger spectra are characterized by a main peak frequency f2 related to the particular structure and dynamics of the remnant hot hypermassive neutron star. We show that f(2) is correlated with the tidal coupling constant κ(2)^T that characterizes the binary tidal interactions during the late-inspiral merger. The relation f(2)(κ(2)^T) depends very weakly on the binary total mass, mass ratio, equation of state, and thermal effects. This observation opens up the possibility of developing a model of the gravitational spectrum of every merger unifying the late-inspiral and postmerger descriptions.

  6. Biophysical models in ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Scholz, Michael; Elsässer, Thilo

    One major rationale for the application of heavy ion beams in tumor therapy is their increased relative biological effectiveness (RBE) in the Bragg peak region. For dose prescription, the increased effectiveness has to be taken into account in treatment planning. Hence, the complex dependencies of RBE on the dose level, biological endpoint, position in the field etc. require biophysical models, which have to fulfill two important criteria: simplicity and quantitative precision. Simplicity means that the number of free parameters should be kept at a minimum. Due to the lack of precise quantitative data, at least at present, this requirement is incompatible with approaches aiming at the molecular modeling of the whole chain of production, processing and repair of biological damages. Quantitative precision is required since steep gradients in the dose response curves are observed for most tumor and normal tissues; thus, even small uncertainties in the estimation of the biologically effective dose can transform into large uncertainties in the clinical outcome. The paper will give a general introduction into the field, followed by a description of a specific model, the so called 'Local Effect Model' (LEM). This model has been successfully applied within treatment planning in the GSI pilot project for carbon ion tumor therapy over almost 10 years now. The model is based on the knowledge of charged particle track structure in combination with the response of the cells or tissues under consideration to conventional photon radiation. The model is compared to other approaches developed for the calculation of the biological effects of high-LET radiation. Furthermore, recent improvements of the model are described. Due to the quantitative precision, besides applications in tumor therapy the LEM seems to be adequate for the calculation of stochastic radiation effects, i.e. in the framework of radiation protection. Examples for the calculation of cell transformation are

  7. Scattering correction algorithm for neutron radiography and tomography tested at facilities with different beam characteristics

    NASA Astrophysics Data System (ADS)

    Hassanein, René; de Beer, Frikkie; Kardjilov, Nikolay; Lehmann, Eberhard

    2006-11-01

    A precise quantitative analysis with the neutron radiography technique of materials with a high-neutron scattering cross section, imaged at small distances from the detector, is impossible if the scattering contribution from the investigated material onto the detector is not eliminated in the right way. Samples with a high-neutron scattering cross section, e.g. hydrogenous materials such as water, cause a significant scattering component in their radiographs. Background scattering, spectral effects and detector characteristics are identified as additional causes for disturbances. A scattering correction algorithm based on Monte Carlo simulations has been developed and implemented to take these effects into account. The corrected radiographs can be used for a subsequent tomographic reconstruction. From the results one can obtain quantitative information, in order to detect e.g. inhomogeneity patterns within materials, or to measure differences of the mass thickness in these materials. Within an IAEA-CRP collaboration the algorithms have been tested for applicability on results obtained at the South African SANRAD facility at Necsa, the Swiss NEUTRA facilities at PSI as well as the German CONRAD facility at HMI, all with different initial neutron spectra. Results of a set of dedicated neutron radiography experiments are being reported.

  8. Simulation of neutron displacement damage in bipolar junction transistors using high-energy heavy ion beams.

    SciTech Connect

    Doyle, Barney Lee; Buller, Daniel L.; Hjalmarson, Harold Paul; Fleming, Robert M; Bielejec, Edward Salvador; Vizkelethy, Gyorgy

    2006-12-01

    Electronic components such as bipolar junction transistors (BJTs) are damaged when they are exposed to radiation and, as a result, their performance can significantly degrade. In certain environments the radiation consists of short, high flux pulses of neutrons. Electronics components have traditionally been tested against short neutron pulses in pulsed nuclear reactors. These reactors are becoming less and less available; many of them were shut down permanently in the past few years. Therefore, new methods using radiation sources other than pulsed nuclear reactors needed to be developed. Neutrons affect semiconductors such as Si by causing atomic displacements of Si atoms. The recoiled Si atom creates a collision cascade which leads to displacements in Si. Since heavy ions create similar cascades in Si we can use them to create similar damage to what neutrons create. This LDRD successfully developed a new technique using easily available particle accelerators to provide an alternative to pulsed nuclear reactors to study the displacement damage and subsequent transient annealing that occurs in various transistor devices and potentially qualify them against radiation effects caused by pulsed neutrons.

  9. Fokker-Planck/Transport model for neutral beam driven tokamaks

    SciTech Connect

    Killeen, J.; Mirin, A.A.; McCoy, M.G.

    1980-01-01

    The application of nonlinear Fokker-Planck models to the study of beam-driven plasmas is briefly reviewed. This evolution of models has led to a Fokker-Planck/Transport (FPT) model for neutral-beam-driven Tokamaks, which is described in detail. The FPT code has been applied to the PLT, PDX, and TFTR Tokamaks, and some representative results are presented.

  10. Background Models for Muons and Neutrons Underground

    SciTech Connect

    Formaggio, Joseph A.

    2005-09-08

    Cosmogenic-induced activity is an issue of great concern for many sensitive experiments sited underground. A variety of different arch-type experiments - such as those geared toward the detection of dark matter, neutrinoless double beta decay and solar neutrinos - have reached levels of cleanliness and sensitivity that warrant careful consideration of secondary activity induced by cosmic rays. This paper reviews some of the main issues associated with the modeling of cosmogenic activity underground. Comparison with data, when such data is available, is also presented.

  11. Neutron imaging of radioactive sources

    NASA Astrophysics Data System (ADS)

    Hameed, F.; Karimzadeh, S.; Zawisky, M.

    2008-08-01

    Isotopic neutron sources have been available for more than six decades. At the Atomic Institute in Vienna, operating a 250 kW TRIGA reactor, different neutron sources are in use for instrument calibration and fast neutron applications but we have only little information about their construction and densities. The knowledge of source design is essential for a complete MCNP5 modeling of the experiments. Neutron radiography (NR) and neutron tomography (NT) are the best choices for the non-destructive inspection of the source geometry and homogeneity. From the transmission analysis we gain information about the shielding components and the densities of the radio-isotopes in the cores. Three neutron sources, based on (alpha, n) reaction, have been investigated, two 239PuBe sources and one 241AmBe source. In the NR images the internal structure was clearly revealed using high-resolving scintillation and imaging plate detectors. In one source tablet a crack was detected which causes asymmetric neutron emission. The tomography inspection of strong absorbing materials is more challenging due to the low beam intensity of 1.3x105 n/cm2s at our NT instrument, and due to the beam hardening effect which requires an extension of reconstruction software. The tomographic inspection of a PuBe neutron source and appropriate measures for background and beam hardening correction are presented.

  12. A fan beam model for radio pulsars. I. Observational evidence

    SciTech Connect

    Wang, H. G.; Pi, F. P.; Deng, C. L.; Wen, S. Q.; Ye, F.; Guan, K.Y.; Liu, Y.; Xu, L. Q.; Zheng, X. P.

    2014-07-01

    We propose a novel beam model for radio pulsars based on the scenario that the broadband and coherent emission from secondary relativistic particles, as they move along a flux tube in a dipolar magnetic field, form a radially extended sub-beam with unique properties. The whole radio beam may consist of several sub-beams, forming a fan-shaped pattern. When only one or a few flux tubes are active, the fan beam becomes very patchy. This model differs essentially from the conal beam models with respect to the beam structure and predictions on the relationship between pulse width and impact angle β (the angle between the line of sight and the magnetic pole) and the relationship between emission intensity and beam angular radius. The evidence for this model comes from the observed patchy beams of precessional binary pulsars and three statistical relationships found for a sample of 64 pulsars, of which β were mostly constrained by fitting polarization position angle data with the rotation vector model. With appropriate assumptions, the fan beam model can reproduce the relationship between 10% peak pulse width and |β|, the anticorrelation between the emission intensity and |β|, and the upper boundary line in the scatter plot of |β| versus pulsar distance. An extremely patchy beam model with the assumption of narrowband emission from one or a few flux tubes is studied and found unlikely to be a general model. The implications of the fan beam model for the studies on radio and gamma-ray pulsar populations and radio polarization are discussed.

  13. Neutron Polarization Measurements with a 3He Spin Filter for the NPDGamma Experiment

    NASA Astrophysics Data System (ADS)

    Musgrave, Matthew

    2012-10-01

    The Fundamental Neutron Physics Beamline (FNPB) at the Spallation Neutron Source (SNS) provides a pulsed beam of polarized cold neutrons for the NPDGamma experiment which intends to measure the parity violating asymmetry in the emitted gamma rays from the capture of polarized neutrons on protons in a para-hydrogen target. The neutrons are polarized by a multi-channel super mirror polarizer, and the polarization of each neutron pulse can be flipped with an RF spin rotator. The accuracy of the NPDGamma experiment and various commissioning experiments is dependent on the polarization of the neutron beam and the efficiency of the RF spin rotator. These parameters are measured with a polarized 3He spin filter at multiple points in the beam cross section and with multiple 3He polarizations. The measured neutron polarization is compared to a McStas model to validate our results and our beam averaging technique. The analysis methods, background effects, and results will be discussed.

  14. The beam delivery modeling and error sources analysis of beam stabilization system for lithography

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Huang, Lihua; Hou, Liying; He, Guojun; Ren, Bingqiang; Zeng, Aijun; Huang, Huijie

    2013-12-01

    Beam stabilization system is one of the most important units for lithography, which can accomplish displacement and pointing detection and control and includes beam measurement unit(BMU) and beam steering unit(BSU). Our group has set up a beam stabilization system and verified preliminarily beam stabilization algorithm of precise control beam position and angle. In the article, we establish beam delivery mathematic model and analyze the system inherent error. This shows that the reason why image rotation effect arises at the output plane of beam stabilization is the fast steering mirror (FSM) rotation of BSU in the process of beam stabilization. Two FSMs rotation around 45o axis of FSM make the most contribution to image rotation which rotates 1.414 mrad as two FSMs rotation angle difference changes 1 mrad. It is found that error sources include three key points: FSM accuracy; measurement noise and beam translation by passing through of beam splitters changing as the ambient temperature changing. FSM accuracy leads to the maximum 13.2μm displacement error and 24.49μrad angle error. Measurement inaccuracy as a result of 5μm measurement noise results in the maximum 0.126mm displacement error and 57.2μrad angle error. Beam translation errors can be negligible if temperature is unchanged. We have achieved beam stability of about 15.5μrad for angle and 28μm for displacement (both 1σ) after correcting 2mm initial displacement deviation and 5mrad initial angle deviation with regard to the system rebuilt due to practical requirements.

  15. Neutron-proton correlations in an exactly solvable model

    SciTech Connect

    Engel, J.; Pittel, S.; Stoitsov, M.; Vogel, P.; Dukelsky, J.

    1997-04-01

    We examine isovector and isoscalar neutron-proton correlations in an exactly solvable model based on the algebra SO(8). We look particularly closely at Gamow-Teller strength and double {beta} decay, both to isolate the effects of the two kinds of pairing and to test two approximation schemes: the renormalized neutron-proton quasiparticle random phase approximation (QRPA) and generalized BCS theory. When isoscalar pairing correlations become strong enough a phase transition occurs and the dependence of the Gamow-Teller {beta}{sup +} strength on isospin changes in a dramatic and unfamiliar way, actually increasing as neutrons are added to an N=Z core. Renormalization eliminates the well-known instabilities that plague the QRPA as the phase transition is approached, but only by unnaturally suppressing the isoscalar correlations. Generalized BCS theory, on the other hand, reproduces the Gamow-Teller strength more accurately in the isoscalar phase than in the usual isovector phase, even though its predictions for energies are equally good everywhere. It also mixes T=0 and T=1 pairing, but only on the isoscalar side of the phase transition. {copyright} {ital 1997} {ital The American Physical Society}

  16. Neutron scattering and models: Iron. Nuclear data and measurements series

    SciTech Connect

    Smith, A.B.

    1995-08-01

    Differential elastic and inelastic neutron-scattering cross sections of elemental iron are measured from 4.5 to 10 MeV in increments of {approx} 0.5 MeV. At each incident energy the measurements are made at forty or more scattering angles distributed between {approx} 17{degrees} and 160{degrees}, with emphasis on elastic scattering and inelastic scattering due to the excitation of the yrast 2{sup +} state. The measured data is combined with earlier lower-energy results from this laboratory, with recent high-precision {approx} 9.5 {yields} 15 MeV results from the Physilalisch Technische Bundesanstalt and with selected values from the literature to provide a detailed neutron-scattering data base extending from {approx} 1.5 to 26 MeV. This data is interpreted in the context of phenomenological spherical-optical and coupled-channels (vibrational and rotational) models, and physical implications discussed. Deformation, coupling, asymmetry and dispersive effects are explored. It is shown that, particularly in a collective context, a good description of the interaction of neutrons with iron is achieved over the energy range {approx} 0 {yields} 26 MeV, avoiding the dichotomy between high and low-energy interpretations found in previous work.

  17. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    PubMed

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors.

  18. Performance of a gas target neutron source for radiotherapy.

    PubMed

    Deluca, P M; Torti, R P; Chenevert, G M; Detorie, N A; Tesmer, J R; Kelsey, C A

    1978-09-01

    The performance of a compact and efficient neutron generator, using the 3H(d, n) reaction and a gas target, is reported. The target is formed in a windowless, differentially pumped vessel pressurised to 7.5 Torr. An extended source of 15 MeV neutrons is produced when the target is bombarded by a 10 mA beam of 210 keV deuterons. Measurements are reported of the neutron energy spectra, neutron and gamma-ray dose rates, target lifetime and tritium handling. The neutron flux distribution of the extended target was measured and compared with the predictions of a simple beam-gas interaction model. The measured neutron source strength is 1.7 +/- 0.4 X 10(12) neutrons per second. The source output is limited by target beam current, not target power considerations.

  19. Optimization of the beam shaping assembly in the D-D neutron generators-based BNCT using the response matrix method.

    PubMed

    Kasesaz, Y; Khalafi, H; Rahmani, F

    2013-12-01

    Optimization of the Beam Shaping Assembly (BSA) has been performed using the MCNP4C Monte Carlo code to shape the 2.45 MeV neutrons that are produced in the D-D neutron generator. Optimal design of the BSA has been chosen by considering in-air figures of merit (FOM) which consists of 70 cm Fluental as a moderator, 30 cm Pb as a reflector, 2mm (6)Li as a thermal neutron filter and 2mm Pb as a gamma filter. The neutron beam can be evaluated by in-phantom parameters, from which therapeutic gain can be derived. Direct evaluation of both set of FOMs (in-air and in-phantom) is very time consuming. In this paper a Response Matrix (RM) method has been suggested to reduce the computing time. This method is based on considering the neutron spectrum at the beam exit and calculating contribution of various dose components in phantom to calculate the Response Matrix. Results show good agreement between direct calculation and the RM method.

  20. Parametric Modeling of Electron Beam Loss in Synchrotron Light Sources

    SciTech Connect

    Sayyar-Rodsari, B.; Schweiger, C.; Hartman, E.; Corbett, J.; Lee, M.; Lui, P.; Paterson, E.; /SLAC

    2007-11-28

    Synchrotron light is used for a wide variety of scientific disciplines ranging from physical chemistry to molecular biology and industrial applications. As the electron beam circulates, random single-particle collisional processes lead to decay of the beam current in time. We report a simulation study in which a combined neural network (NN) and first-principles (FP) model is used to capture the decay in beam current due to Touschek, Bremsstrahlung, and Coulomb effects. The FP block in the combined model is a parametric description of the beam current decay where model parameters vary as a function of beam operating conditions (e.g. vertical scraper position, RF voltage, number of the bunches, and total beam current). The NN block provides the parameters of the FP model and is trained (through constrained nonlinear optimization) to capture the variation in model parameters as operating condition of the beam changes. Simulation results will be presented to demonstrate that the proposed combined framework accurately models beam decay as well as variation to model parameters without direct access to parameter values in the model.

  1. Gaussian Schell-model beams propagating through polarization gratings.

    PubMed

    Piquero, G; Borghi, R; Santarsiero, M

    2001-06-01

    The effects of polarization gratings on partially coherent beams are investigated by studying a Gaussian Schell-model beam impinging on a linear polarizer whose transmission axis varies periodically along one transverse direction. Analytical expressions for the beam polarization-coherence matrix after the grating are obtained. In particular, the evolution of the degree of polarization upon propagation is analyzed. Different behaviors of the output beam, depending on the beam parameters and on the period of the grating, are exhibited. In particular, it is shown that, by suitably choosing the latter quantities, it is possible to obtain not only any desirable value of the degree of polarization of the output beam but also particular distributions of such parameters across the transverse sections of the beam.

  2. Evolution of coherence singularities of Schell-model beams.

    PubMed

    Rodrigo, José A; Alieva, Tatiana

    2015-08-01

    We show that the propagation of the widely used Schell-model partially coherent light can be easily understood using the ambiguity function. This approach is especially beneficial for the analysis of the mutual intensity of Schell-model beams (SMBs), which are associated with stable coherent beams such as Laguerre-, Hermite-, and Ince-Gaussian. We study the evolution of the coherence singularities during the SMB propagation. It is demonstrated that the distance of singularity formation depends on the coherence degree of the input beam. Moreover, it is proved that the shape, position, and number of singularity curves in far field are defined by the associated coherent beam.

  3. Vector Hermite-Gaussian correlated Schell-model beam.

    PubMed

    Chen, Yahong; Wang, Fang; Yu, Jiayi; Liu, Lin; Cai, Yangjian

    2016-07-11

    A new kind of partially coherent vector beam named vector Hermite-Gaussian correlated Schell-model (HGCSM) beam is introduced as a natural extension of recently introduced scalar HGCSM beam. The realizability and beam conditions for a vector HGCSM beam with uniform state of polarization (SOP) or non-uniform SOP are derived, respectively. Furthermore, analytical formulae for a vector HGCSM beam propagating in free space are derived, and the propagation properties of a vector HGCSM beam with uniform SOP or non-uniform SOP in free space are studied and analyzed in detail. We find that the behaviors of a vector HGCSM beam on propagation are quite different from those of a conventional vector partially coherent beam with uniform SOP or non-uniform SOP, and modulating the structures of the correlation functions cannot only modulate the intensity distribution, but also the state of polarization, the degree of polarization and the polarization singularities of a partially coherent vector beam on propagation. Furthermore, we report experimental generation of a radially polarized HGCSM beam for the first time. Our results provide a novel way for polarization modulation.

  4. Modeling of ground albedo neutrons to investigate seasonal cosmic ray-induced neutron variations measured at high-altitude stations

    NASA Astrophysics Data System (ADS)

    Hubert, G.; Pazianotto, M. T.; Federico, C. A.

    2016-12-01

    This paper investigates seasonal cosmic ray-induced neutron variations measured over a long-term period (from 2011 to 2016) in both the high-altitude stations located in medium geomagnetic latitude and Antarctica (Pic-du-Midi and Concordia, respectively). To reinforce analysis, modeling based on ground albedo neutrons simulations of extensive air showers and the solar modulation potential was performed. Because the local environment is well known and stable over time in Antarctica, data were used to validate the modeling approach. A modeled scene representative to the Pic-du-Midi was simulated with GEANT4 for various hydrogen properties (composition, density, and wet level) and snow thickness. The orders of magnitudes of calculated thermal fluence rates are consistent with measurements obtained during summers and winters. These variations are dominant in the thermal domain (i.e., En < 0.5 eV) and lesser degree in epithermal and evaporation domains (i.e., 0.5 eV < En < 0.1 MeV and 0.1 MeV < En < 20 MeV, respectively). Cascade neutron (En > 20 MeV) is weakly impacted. The role of hydrogen content on ground albedo neutron generation was investigated with GEANT4 simulations. These investigations focused to mountain environment; nevertheless, they demonstrate the complexity of the local influences on neutron fluence rates.

  5. Neutron Capture Cross Section Calculations with the Statistical Model

    NASA Astrophysics Data System (ADS)

    Beard, Mary; Uberseder, Ethan; Wiescher, Michael

    2014-09-01

    Hauser-Feshbach (HF) cross sections are of enormous importance for a wide range of applications, from waste transmutation and nuclear technologies, to medical applications, and nuclear astrophysics. It is a well observed result that different nuclear input models sensitively affect HF cross section calculations. Less well-known however are the effects on calculations originating from model-specific implementation details (such as level density parameter, matching energy, backshift and giant dipole parameters), as well as effects from non-model aspects, such as experimental data truncation and transmission function energy binning. To investigate the effects or these various aspects, Maxwellian-averaged neutron capture cross sections have been calculated for approximately 340 nuclei. The relative effects of these model details will be discussed.

  6. Dense Plasma Focus as Collimated Source of D-D Fusion Neutron Beams for Irradiation Experiences and Study of Emitted Radiations

    NASA Astrophysics Data System (ADS)

    Milanese, M.; Niedbalski, J.; Moroso, R.; Guichón, S.; Supán, J.

    2008-04-01

    A "table-top" 2 kJ, 250 kA plasma focus, the PACO (Plasma AutoConfinado), designed by the Dense Plasma Group of IFAS is used in its optimum regime for neutron yield for obtaining collimated pulsed neutron beams (100 ns). A simple and low-cost shielding arrangement was developed in order to fully eliminate the 2.45 MeV neutrons generated in the PACO device (108 per shot at 31 kV, 1-2 mbar). Conventional neutron diagnostics: scintillator-photomultiplier (S-PMT), silver activation counters (SAC), etc., are used to determine the minimum width of the shielding walls. Emission of very hard electromagnetic pulses is also studied. Collimation using lead and copper plates is made to determine the localization of the very hard X-ray source. The maximum energy of the continuum photon distribution is estimated in 0,6 MeV using a system of filters.

  7. Identification of cracks in thick beams with a cracked beam element model

    NASA Astrophysics Data System (ADS)

    Hou, Chuanchuan; Lu, Yong

    2016-12-01

    The effect of a crack on the vibration of a beam is a classical problem, and various models have been proposed, ranging from the basic stiffness reduction method to the more sophisticated model involving formulation based on the additional flexibility due to a crack. However, in the damage identification or finite element model updating applications, it is still common practice to employ a simple stiffness reduction factor to represent a crack in the identification process, whereas the use of a more realistic crack model is rather limited. In this paper, the issues with the simple stiffness reduction method, particularly concerning thick beams, are highlighted along with a review of several other crack models. A robust finite element model updating procedure is then presented for the detection of cracks in beams. The description of the crack parameters is based on the cracked beam flexibility formulated by means of the fracture mechanics, and it takes into consideration of shear deformation and coupling between translational and longitudinal vibrations, and thus is particularly suitable for thick beams. The identification procedure employs a global searching technique using Genetic Algorithms, and there is no restriction on the location, severity and the number of cracks to be identified. The procedure is verified to yield satisfactory identification for practically any configurations of cracks in a beam.

  8. A preliminary model of ion beam neutralization. [in thruster plasmas

    NASA Technical Reports Server (NTRS)

    Parks, D. E.; Katz, I.

    1979-01-01

    A theoretical model of neutralized thruster ion beam plasmas has been developed. The basic premise is that the beam forms an electrostatic trap for the neutralizing electrons. A Maxwellian spectrum of electron energies is maintained by collisions between trapped electrons and by collective randomization of velocities of electrons injected from the neutralizer into the surrounding plasma. The theory contains the observed barometric law relationship between electron density and electron temperatures and ion beam spreading in good agreement with measured results.

  9. Ghost imaging with twisted Gaussian Schell-model beam.

    PubMed

    Cai, Yangjian; Lin, Qiang; Korotkova, Olga

    2009-02-16

    Based on the classical optical coherence theory, ghost imaging with twisted Gaussian Schell-model (GSM) beams is analyzed. It is found that the twist phase of the GSM beam has strong influence on ghost imaging. As the absolute value of the twist factor increases, the ghost image disappears gradually, but its visibility increases. This phenomenon is caused by the fact that the twist phase enhances the transverse spatial coherence of the twisted GSM beam on propagation.

  10. Estimation of relative biological effectiveness for boron neutron capture therapy using the PHITS code coupled with a microdosimetric kinetic model.

    PubMed

    Horiguchi, Hironori; Sato, Tatsuhiko; Kumada, Hiroaki; Yamamoto, Tetsuya; Sakae, Takeji

    2015-03-01

    The absorbed doses deposited by boron neutron capture therapy (BNCT) can be categorized into four components: α and (7)Li particles from the (10)B(n, α)(7)Li reaction, 0.54-MeV protons from the (14)N(n, p)(14)C reaction, the recoiled protons from the (1)H(n, n) (1)H reaction, and photons from the neutron beam and (1)H(n, γ)(2)H reaction. For evaluating the irradiation effect in tumors and the surrounding normal tissues in BNCT, it is of great importance to estimate the relative biological effectiveness (RBE) for each dose component in the same framework. We have, therefore, established a new method for estimating the RBE of all BNCT dose components on the basis of the microdosimetric kinetic model. This method employs the probability density of lineal energy, y, in a subcellular structure as the index for expressing RBE, which can be calculated using the microdosimetric function implemented in the particle transport simulation code (PHITS). The accuracy of this method was tested by comparing the calculated RBE values with corresponding measured data in a water phantom irradiated with an epithermal neutron beam. The calculation technique developed in this study will be useful for biological dose estimation in treatment planning for BNCT.

  11. Estimation of relative biological effectiveness for boron neutron capture therapy using the PHITS code coupled with a microdosimetric kinetic model

    PubMed Central

    Horiguchi, Hironori; Sato, Tatsuhiko; Kumada, Hiroaki; Yamamoto, Tetsuya; Sakae, Takeji

    2015-01-01

    The absorbed doses deposited by boron neutron capture therapy (BNCT) can be categorized into four components: α and 7Li particles from the 10B(n, α)7Li reaction, 0.54-MeV protons from the 14N(n, p)14C reaction, the recoiled protons from the 1H(n, n) 1H reaction, and photons from the neutron beam and 1H(n, γ)2H reaction. For evaluating the irradiation effect in tumors and the surrounding normal tissues in BNCT, it is of great importance to estimate the relative biological effectiveness (RBE) for each dose component in the same framework. We have, therefore, established a new method for estimating the RBE of all BNCT dose components on the basis of the microdosimetric kinetic model. This method employs the probability density of lineal energy, y, in a subcellular structure as the index for expressing RBE, which can be calculated using the microdosimetric function implemented in the particle transport simulation code (PHITS). The accuracy of this method was tested by comparing the calculated RBE values with corresponding measured data in a water phantom irradiated with an epithermal neutron beam. The calculation technique developed in this study will be useful for biological dose estimation in treatment planning for BNCT. PMID:25428243

  12. Instabilities in Beam-Plasma Waves in a Model of the Beam-Driven FRC

    NASA Astrophysics Data System (ADS)

    Nicks, Bradley Scott; Necas, Ales; Tajima, Toshi; Tri Alpha Energy Team

    2016-10-01

    Using a semi-analytic solver, the kinetic properties of plasma waves are analyzed in various regimes in the presence of a beam. This analysis is done to model the strong beam-driven Field-Reversed Configuration (FRC) plasma kinetic instabilities in the neighborhood of the ion cyclotron frequency. As the frequency is relatively high, and wavelength small, the plasma is taken to be local and thus homogeneous, comprised of bulk ions, electrons, and beam ions, with a uniform background magnetic field. The beam ions are given an azimuthal drift velocity with respect to the magnetic field, but otherwise have various Maxwellian velocity distributions. First, the magnetic field is varied to create regimes of low and high β, and the mode structures are compared. The low- β case (corresponding to the scrape-off layer and near the separatrix) features primarily the beam-driven ion Bernstein instability. The high- β case (the core of FRC) is primarily electromagnetic and features the AIC instability when temperature anisotropy is included. The most unstable modes are incited by near-perpendicular beam injection with respect to the magnetic field. Finally, the results of the semi-analytic solver are compared with those from the EPOCH PIC code to evaluate the influence of nonlinear effects. This theoretical modeling was used in conjunction with EPOCH to investigate the beam driven instabilities in Tri Alpha Energy's C-2U experiment.

  13. Analytical approach to quasiperiodic beam Coulomb field modeling

    NASA Astrophysics Data System (ADS)

    Rubtsova, I. D.

    2016-09-01

    The paper is devoted to modeling of space charge field of quasiperiodic axial- symmetric beam. Particle beam is simulated by charged disks. Two analytical Coulomb field expressions are presented, namely, Fourier-Bessel series and trigonometric polynomial. Both expressions permit the integral representation. It provides the possibility of integro-differential beam dynamics description. Consequently, when beam dynamics optimization problem is considered, it is possible to derive the analytical formula for quality functional gradient and to apply directed optimization methods. In addition, the paper presents the method of testing of space charge simulation code.

  14. Diffraction of cosine-Gaussian-correlated Schell-model beams.

    PubMed

    Pan, Liuzhan; Ding, Chaoliang; Wang, Haixia

    2014-05-19

    The expression of spectral density of cosine-Gaussian-correlated Schell-model (CGSM) beams diffracted by an aperture is derived, and used to study the changes in the spectral density distribution of CGSM beams upon propagation, where the effect of aperture diffraction is emphasized. It is shown that, comparing with that of GSM beams, the spectral density distribution of CGSM beams diffracted by an aperture has dip and shows dark hollow intensity distribution when the order-parameter n is big enough. The central intensity increases with increasing truncation parameter of aperture. The comparative study of spectral density distributions of CGSM beams with aperture and that of without aperture is performed. Furthermore, the effect of order-parameter n and spatial coherence of CGSM beams on the spectral density distribution is discussed in detail. The results obtained may be useful in optical particulate manipulation.

  15. NEUTRON SOURCE

    DOEpatents

    Bernander, N.K. et al.

    1960-10-18

    An apparatus is described for producing neutrons through target bombardment with deuterons. Deuterium gas is ionized by electron bombardment and the deuteron ions are accelerated through a magnetic field to collimate them into a continuous high intensity beam. The ion beam is directed against a deuteron pervious metal target of substantially the same nnaterial throughout to embed the deuterous therein and react them to produce neutrons. A large quantity of neutrons is produced in this manner due to the increased energy and quantity of ions bombarding the target.

  16. Experimental Method of Generating Electromagnetic Gaussian Schell-model Beams

    DTIC Science & Technology

    2015-03-26

    EXPERIMENTAL METHOD OF GENERATING ELECTROMAGNETIC GAUSSIAN SCHELL-MODEL BEAMS THESIS Matthew J. Gridley, Captain, USAF AFIT-ENG-MS-15-M-058...not subject to copyright protection in the United States. AFIT-ENG-MS-15-M-058 EXPERIMENTAL METHOD OF GENERATING ELECTROMAGNETIC GAUSSIAN SCHELL-MODEL...UNLIMITED AFIT-ENG-MS-15-M-058 EXPERIMENTAL METHOD OF GENERATING ELECTROMAGNETIC GAUSSIAN SCHELL-MODEL BEAMS Matthew J. Gridley, B.S.E.E. Captain, USAF

  17. Optimizing a neutron-beam focusing device for the direct geometry time-of-flight spectrometer TOFTOF at the FRM II reactor source

    NASA Astrophysics Data System (ADS)

    Rasmussen, N. G.; Simeoni, G. G.; Lefmann, K.

    2016-04-01

    A dedicated beam-focusing device has been designed for the direct geometry thermal-cold neutron time-of-flight spectrometer TOFTOF at the neutron facility FRM II (Garching, Germany). The prototype, based on the compressed Archimedes' mirror concept, benefits from the adaptive-optics technology (adjustable supermirror curvature) and the compact size (only 0.5 m long). We have simulated the neutron transport across the entire guide system. We present a detailed computer characterization of the existing device, along with the study of the factors mostly influencing the future improvement. We have optimized the simulated prototype as a function of the neutron wavelength, accounting also for all relevant features of a real instrument like the non-reflecting side edges. The results confirm the "chromatic" displacement of the focal point (flux density maximum) at fixed supermirror curvature, and the ability of a variable curvature to keep the focal point at the sample position. Our simulations are in excellent agreement with theoretical predictions and the experimentally measured beam profile. With respect to the possibility of a further upgrade, we find that supermirror coatings with m-values higher than 3.5 would have only marginal influence on the optimal behaviour, whereas comparable spectrometers could take advantage of longer focusing segments, with particular impact for the thermal region of the neutron spectrum.

  18. Los Alamos Neutron Science Center Area-A beam window heat transfer alalysis

    SciTech Connect

    Poston, D.

    1997-07-01

    Several analyses that investigate heat transfer in the Area-A beam window were conducted. It was found that the Area-A window should be able to withstand the 1-mA, 3-cm beam of the accelerator production of tritium materials test, but that the margins to failure are small. It was also determined that when the window is subjected to the 1-mA, 3-cm beam, the inner window thermocouples should read higher than the current temperature limit of 900{degrees}C, although it is possible that the thermocouples may fail before they reach these temperatures. Another finding of this study was that the actual beam width before April 1997 was 20 to 25% greater than the harp-wire printout indicated. Finally, the effect of a copper-oxide layer on the window coolant passage was studied. The results did not indicate the presence of a large copper-oxide layer; however, the results were not conclusive.

  19. Anisotropic Elastic Resonance Scattering model for the Neutron Transport equation

    SciTech Connect

    Mohamed Ouisloumen; Abderrafi M. Ougouag; Shadi Z. Ghrayeb

    2014-11-24

    The resonance scattering transfer cross-section has been reformulated to account for anisotropic scattering in the center-of-mass of the neutron-nucleus system. The main innovation over previous implementations is the relaxation of the ubiquitous assumption of isotropic scattering in the center-of-mass and the actual effective use of scattering angle distributions from evaluated nuclear data files in the computation of the angular moments of the resonant scattering kernels. The formulas for the high order anisotropic moments in the laboratory system are also derived. A multi-group numerical formulation is derived and implemented into a module incorporated within the NJOY nuclear data processing code. An ultra-fine energy mesh cross section library was generated using these new theoretical models and then was used for fuel assembly calculations with the PARAGON lattice physics code. The results obtained indicate a strong effect of this new model on reactivity, multi-group fluxes and isotopic inventory during depletion.

  20. 3He Neutron Detector Pressure Effect and Comparison to Models

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.; Stromswold, David C.; Woodring, Mitchell L.

    2010-01-14

    Reported here are the results of measurements performed to determine the efficiency of 3He filled proportional counters as a function of gas pressure in the SAIC system. Motivation for these measurements was largely to validate the current model of the SAIC system. Those predictions indicated that the neutron detection efficiency plotted as a function of pressure has a simple, logarithmic shape. As for absolute performance, the model results indicated the 3He pressure in the current SAIC system could not be reduced appreciably while meeting the current required level of detection sensitivity. Thus, saving 3He by reducing its pressure was predicted not to be a viable option in the current SAIC system.

  1. Modeling of Time-correlated Detection of Fast Neutrons Emitted in Induced SNM Fission

    NASA Astrophysics Data System (ADS)

    Guckes, Amber; Barzilov, Alexander; Richardson, Norman

    Neutron multiplicity methods are widely used in the assay of fissile materials. Fission reactions release multiple neutrons simultaneously. Time-correlated detection of neutrons provides a coincidence signature that is unique to fission,which enables distinguishing it from other events. In general, fission neutrons are fast. Thermal neutron sensors require the moderation of neutrons prior to a detection event; therefore, the neutron's energy and the event's timing information may be distorted, resulting in the wide time windows in the correlation analysis. Fastneutron sensing using scintillators allows shortening the time correlation window. In this study, four EJ-299-33A plastic scintillator detectors with neutron/photon pulse shape discrimination properties were modeled usingthe MCNP6 code. This sensor array was studied for time-correlated detection of fast neutrons emitted inthe induced fission of 239Pu and (α,n) neutron sources. This paper presents the results of computational modeling of arrays of these plastic scintillator sensors as well as3He detectors equipped with a moderator.

  2. Modeling mergers of known galactic systems of binary neutron stars

    NASA Astrophysics Data System (ADS)

    Feo, Alessandra; De Pietri, Roberto; Maione, Francesco; Löffler, Frank

    2017-02-01

    We present a study of the merger of six different known galactic systems of binary neutron stars (BNS) of unequal mass with a mass ratio between 0.75 and 0.99. Specifically, these systems are J1756-2251, J0737-3039A, J1906  +  0746, B1534  +  12, J0453  +  1559 and B1913  +  16. We follow the dynamics of the merger from the late stage of the inspiral process up to  ∼20ms after the system has merged, either to form a hyper-massive neutron star (NS) or a rotating black hole (BH), using a semi-realistic equation of state (EOS), namely the seven-segment piece-wise polytropic SLy with a thermal component. For the most extreme of these systems (q  =  0.75, J0453  +  1559), we also investigate the effects of different EOSs: APR4, H4, and MS1. Our numerical simulations are performed using only publicly available open source code such as, the Einstein toolkit code deployed for the dynamical evolution and the LORENE code for the generation of the initial models. We show results on the gravitational wave signals, spectrogram and frequencies of the BNS after the merger and the BH properties in the two cases in which the system collapses within the simulated time.

  3. Calculation of delayed-neutron energy spectra in a QRPA-Hauser-Feshbach model

    SciTech Connect

    Kawano, Toshihiko; Moller, Peter; Wilson, William B

    2008-01-01

    Theoretical {beta}-delayed-neutron spectra are calculated based on the Quasiparticle Random-Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after {beta} decay to the granddaughter residual are more accurately calculated than in previous evaluations, including all the microscopic nuclear structure information, such as a Gamow-Teller strength distribution and discrete states in the granddaughter. The calculated delayed-neutron spectra agree reasonably well with those evaluations in the ENDF decay library, which are based on experimental data. The model was adopted to generate the delayed-neutron spectra for all 271 precursors.

  4. Delta undulator model: Magnetic field and beam test results

    NASA Astrophysics Data System (ADS)

    Temnykh, A.; Babzien, M.; Davis, D.; Fedurin, M.; Kusche, K.; Park, J.; Yakimenko, V.

    2011-09-01

    A novel type of in-vacuum Elliptical Polarization Undulator (EPU) magnet optimized for linac beam (Delta undulator) was developed at the Laboratory for Elementary-Particle Physics (LEPP) at Cornell University as part of insertion device development for the future Cornell 5 GeV Energy Recovery Source of coherent hard X-rays [1,7]. To evaluate mechanical, vacuum and magnetic properties of the magnet, a short 30 cm model with a 5 mm diameter round gap and a 2.4 cm period was built and tested in LEPP. The beam test of the Delta undulator model was conducted at Accelerator Test Facility (ATF) in BNL with ˜60 MeV linac beam. The beam testing results confirmed basic properties of the undulator magnet obtained through the magnetic field measurement. In the paper we describe the magnet design, techniques and setups used for the magnetic field measurement and the beam testing results.

  5. Self-contact modeling on beams experiencing loop formation

    NASA Astrophysics Data System (ADS)

    Gay Neto, Alfredo; Pimenta, Paulo M.; Wriggers, Peter

    2015-01-01

    Many engineering scenarios involve contact between beam structures or, eventually, self-contact. Specifically when dealing with a beam submitted to large torsion loads and considering large displacements and rotations, it is possible to occur self-contact. Beams with low bending stiffness loaded with large torsion can present a loop, followed by self-contact and sometimes a snarl formation. This work presents a numerical model and numerical procedures to solve such a kind of self-contact in beams under loop formation. Numerical examples are presented in the context of initially straight nitinol beams. Numerical tests showed that friction may influence loop and snarling formation. Numerical models could predict self-contact occurrence events with good agreement with experimental results already published in literature. Snarling patterns (when occurred) were also predicted correctly, but with delay when compared to experiments. This delay showed to be friction-dependent.

  6. A Numerical Model for Coupling of Neutron Diffusion and Thermomechanics in Fast Burst Reactors

    SciTech Connect

    Samet Y. Kadioglu; Dana A. Knoll; Cassiano De Oliveira

    2008-11-01

    We develop a numerical model for coupling of neutron diffusion adn termomechanics in order to stimulate transient behavior of a fast burst reactor. The problem involves solving a set of non-linear different equations which approximate neutron diffusion, temperature change, and material behavior. With this equation set we will model the transition from a supercritical to subcritical state and possible mechanical vibration.

  7. MCNP6 model of the University of Washington clinical neutron therapy system (CNTS)

    NASA Astrophysics Data System (ADS)

    Moffitt, Gregory B.; Stewart, Robert D.; Sandison, George A.; Goorley, John T.; Argento, David C.; Jevremovic, Tatjana

    2016-01-01

    A MCNP6 dosimetry model is presented for the Clinical Neutron Therapy System (CNTS) at the University of Washington. In the CNTS, fast neutrons are generated by a 50.5 MeV proton beam incident on a 10.5 mm thick Be target. The production, scattering and absorption of neutrons, photons, and other particles are explicitly tracked throughout the key components of the CNTS, including the target, primary collimator, flattening filter, monitor unit ionization chamber, and multi-leaf collimator. Simulations of the open field tissue maximum ratio (TMR), percentage depth dose profiles, and lateral dose profiles in a 40 cm  ×  40 cm  ×  40 cm water phantom are in good agreement with ionization chamber measurements. For a nominal 10  ×  10 field, the measured and calculated TMR values for depths of 1.5 cm, 5 cm, 10 cm, and 20 cm (compared to the dose at 1.7 cm) are within 0.22%, 2.23%, 4.30%, and 6.27%, respectively. For the three field sizes studied, 2.8 cm  ×  2.8 cm, 10.4 cm  ×  10.3 cm, and 28.8 cm  ×  28.8 cm, a gamma test comparing the measured and simulated percent depth dose curves have pass rates of 96.4%, 100.0%, and 78.6% (depth from 1.5 to 15 cm), respectively, using a 3% or 3 mm agreement criterion. At a representative depth of 10 cm, simulated lateral dose profiles have in-field (⩾10% of central axis dose) pass rates of 89.7% (2.8 cm  ×  2.8 cm), 89.6% (10.4 cm  ×  10.3 cm), and 100.0% (28.8 cm  ×  28.8 cm) using a 3% and 3 mm criterion. The MCNP6 model of the CNTS meets the minimum requirements for use as a quality assurance tool for treatment planning and provides useful insights and information to aid in the advancement of fast neutron therapy.

  8. Evaluation of beam modeling for small fields using a flattening filter-free beam.

    PubMed

    Kawahara, Daisuke; Ozawa, Shuichi; Nakashima, Takeo; Aita, Masamichi; Tsuda, Shintaro; Ochi, Yusuke; Okumura, Takuro; Masuda, Hirokazu; Ohno, Yoshimi; Murakami, Yuji; Nagata, Yasushi

    2017-03-01

    The characteristics of a flattening filter-free (FFF) beam are different from those of a beam with a flattening filter. For small-field dosimetry, the beam data needed by the radiation treatment planning system (RTPS) includes the percent depth dose (PDD), off-center ratio (OCR), and output factor (OPF) for field sizes down to 3 × 3 cm(2) to calculate the beam model. The purpose of this study was to evaluate the accuracy of calculations for the FFF beam by the Eclipse(™) treatment planning system for field sizes smaller than 3 × 3 cm(2) (2 × 2 and 1 × 1 cm(2)). We used 6X and 10X FFF beams by the Varian TrueBeam(™) to produce. The AAA and AXB algorithms of the Eclipse were used to compare the Monte Carlo (MC) calculation and the measurements from three dosimeters, a diode detector, a PinPoint dosimeter, and EBT3 film. The PDD curves and the penumbra width in the OCR calculated by the Eclipse, measured data, and those from the MC calculations were in good agreement to within ±2.8 % and ±0.6 mm, respectively. However, the difference in the OPF values between AAA and AXB for a field size of 1 × 1 cm(2) was 5.3 % for the 6X FFF beam and 7.6 % for the 10X FFF beam. Therefore, we have to confirm the small field data that is included for the RTPS commission procedures.

  9. Sonic Beam Model of Newton's Cradle

    ERIC Educational Resources Information Center

    Menger, Fredric M.; Rizvi, Syed A. A.

    2016-01-01

    The motions of Newton's cradle, consisting of several steel balls hanging side-by-side, have been analysed in terms of a sound pulse that travels via points of contact among the balls. This presupposes a focused energy beam. When the pulse reaches the fifth and final ball, the energy disperses and dislocates the ball with a trajectory equivalent…

  10. Cellular track model for study of heavy ion beams

    NASA Technical Reports Server (NTRS)

    Shinn, Judy L.; Katz, Robert; Cucinotta, Francis A.; Wilson, John W.; Ngo, Duc M.

    1993-01-01

    Track theory is combined with a realistic model of a heavy ion beam to study the effects of nuclear fragmentation on cell survival and biological effectiveness. The effects of secondary reaction products are studied as a function of depth in a water column. Good agreement is found with experimental results for the survival of human T-l cells exposed to monoenergetic carbon, neon, and argon beams under aerobic and hypoxia conditions. The present calculation, which includes the effect of target fragmentation, is a significant improvement over an earlier calculation because of the use of a vastly improved beam model with no change in the track theory or cellular response parameters.

  11. A simple model of electron beam initiated dielectric breakdown

    NASA Technical Reports Server (NTRS)

    Beers, B. L.; Daniell, R. E.; Delmer, T. N.

    1985-01-01

    A steady state model that describes the internal charge distribution of a planar dielectric sample exposed to a uniform electron beam was developed. The model includes the effects of charge deposition and ionization of the beam, separate trap-modulated mobilities for electrons and holes, electron-hole recombination, and pair production by drifting thermal electrons. If the incident beam current is greater than a certain critical value (which depends on sample thickness as well as other sample properties), the steady state solution is non-physical.

  12. Structure of molten iron chloride: Neutron scattering and modeling

    SciTech Connect

    Price, D.L.; Saboungi, M.; Badyal, Y.S.; Wang, J.; Moss, S.C.; Leheny, R.L.

    1998-05-01

    Neutron-diffraction measurements of molten FeCl{sub 3}, combined with model calculations and computer simulations, show that on melting the local structure of Fe changes from an octahedral to a tetrahedral environment. A similar change is observed in AlCl{sub 3}, in contrast to YCl{sub 3}, for example, where the octahedral coordination of Y is preserved on melting. The local structure of the liquid can be described in terms of Fe{sub 2}Cl{sub 6} molecular units, similar to those observed in the vapor phase but with strong intermolecular interactions. Detailed information about the orientational correlations between molecules is derived from the simulations and compared with recent results on another molecular liquid, propylene glycol. {copyright} {ital 1998} {ital The American Physical Society}

  13. Modeling FAMA ion beam diagnostics based on the Ptolemy II model

    NASA Astrophysics Data System (ADS)

    Balvanović, R.; Beličev, P.; Radjenović, B.

    2012-10-01

    The previously developed model of ion beam transport control of the FAMA facility is further enhanced by equipping it with the model of ion beam diagnostics. The model of control, executing once, is adjusted so that it executes in iterative mode, where each iteration samples the input beam normally distributed over initial phase space and calculates a single trajectory through the facility beam lines. The model takes into account only the particles that manage to pass through all the beam line apertures, emulating in this way a Faraday cup and a beam profile meter. Generated are also beam phase space distributions and horizontal and vertical beam profiles at the end of the beam transport lines the FAMA facility consists of. By adding the model of ion beam diagnostics to the model of ion beam transport control, the process of determining optimal ion beam control parameters is eased and speeded up, and the understanding of influence of control parameters on the ion beam characteristics is improved.

  14. Kinetic Modeling of Ion Beams in Dense Plasma Focus Z-Pinches

    NASA Astrophysics Data System (ADS)

    Link, A.; Bennett, N.; Falabella, S.; Higginson, D. P.; Olsen, R.; Podpaly, Y. A.; Povilus, A.; Shaw, B.; Sipes, N.; Welch, D. R.; Schmidt, A.

    2016-10-01

    Dense plasma focus (DPF) Z-pinches are compact devices capable of producing MeV ion beams, x-rays, and (for D or DT gas fill) neutrons. We report on predictions of ion beam generation using the particle-in-cell code LSP. These simulations include full-scale electrodes, an external pulse power circuit and model through the run-down phase as a fluid, transitioning to a fully kinetic simulation during the run-in phase and through the pinch. Simulations of a deuterium filled DPF predict a substantial number of ions accelerated to energies greater than 50 keV escape the dense plasma in the pinch region and could be used to enhance total neutron yield by employing a solid target. Results of the simulations will be presented and compared to experimental observations. LLNL-ABS-697617 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and with support from the Computing Grand Challenge program at LLNL.

  15. Space charge templates for high-current beam modeling

    SciTech Connect

    Vorobiev, Leonid G.; /Fermilab

    2008-07-01

    A computational method to evaluate space charge potential and gradients of charged particle beam in the presence of conducting boundaries, has been introduced. The three-dimensional (3D) field of the beam can be derived as a convolution of macro Green's functions (template fields), satisfying the same boundary conditions, as the original beam. Numerical experiments gave a confidence that space charge effects can be modeled by templates with enough accuracy and generality within dramatically faster computational times than standard combination: a grid density + Poisson solvers, realized in the most of Particle in Cell codes. The achieved rapidity may significantly broaden the high-current beam design space, making the optimization in automatic mode possible, which so far was only feasible for simplest self-field formulations such as rms envelope equations. The template technique may be used as a standalone program, or as an optional field solver in existing beam dynamics codes both in one-passage structures and in rings.

  16. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy

    PubMed Central

    Sengbusch, E.; Pérez-Andújar, A.; DeLuca, P. M.; Mackie, T. R.

    2009-01-01

    energy from 250 to 200 MeV decreases the total neutron energy fluence produced by stopping a monoenergetic pencil beam in a water phantom by a factor of 2.3. It is possible to significantly lower the requirements on the maximum kinetic energy of a compact proton accelerator if the ability to treat a small percentage of patients with rotational therapy is sacrificed. This decrease in maximum kinetic energy, along with the corresponding decrease in neutron production, could lower the cost and ease the engineering constraints on a compact proton accelerator treatment facility. PMID:19291975

  17. Dose measurements around spallation neutron sources.

    PubMed

    Fragopoulou, M; Stoulos, S; Manolopoulou, M; Krivopustov, M; Zamani, M

    2008-01-01

    Neutron dose measurements and calculations around spallation sources appear to be of great importance in shielding research. Two spallation sources were irradiated by high-energy proton beams delivered by the Nuclotron accelerator (JINR), Dubna. Neutrons produced by the spallation sources were measured by using solid-state nuclear track detectors. In addition, neutron dose was calculated after polyethylene and concrete, using a phenomenological model based on empirical relations applied in high-energy physics. The study provides an analytical and experimental neutron benchmark analysis using the transmission factor and a comparison between the experimental results and calculations.

  18. Modeling and simulation of a beam emission spectroscopy diagnostic for the ITER prototype neutral beam injector

    SciTech Connect

    Barbisan, M. Zaniol, B.; Pasqualotto, R.

    2014-11-15

    A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H{sup −}/D{sup −} ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurement is based on the collection of the H{sub α}/D{sub α} emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled H{sub α} spectra in the case of MITICA experiment.

  19. Measurement of the LITHIUM-8(DEUTERON, NEUTRON)BERYLLIUM-9 and LITHIUM-8(ALPHA, NEUTRON)BORON-11 Reaction Cross Sections at Astrophysical Energies by Radioactive Beam Techniques

    NASA Astrophysics Data System (ADS)

    Corn, Philip Bennet

    A preliminary direct measurement of the ^8Li(d,n)^9Be cross section has been obtained by means of a radioactive beam facility used with the Lawrence Livermore National Laboratory FN van de Graaff accelerator. The cross section at a ^8Li energy of 13.3 MeV agrees plausibly with values estimated from data for the reverse reaction, ^9Be(n,d)^8Li, and for the related ^7Li(d,n) ^8Be reaction to within the large estimated experimental error. This result thus demonstrates the feasibility of the technique. In addition, a design for a similar radioactive beam measurement of the ^8Li(alpha,n) 11B reaction cross section is given. The two reactions figure prominently in network calculations for current inhomogeneous models of primordial nucleosynthesis in the early universe, and because of the short 838 millisecond half life of the radioactive ^8Li nuclide, their cross sections have not been measured directly before. The radioactive beam apparatus employs a 16.0 MeV ^7Li beam from the accelerator incident on a thin, deuterated polyethylene primary reaction target foil. A secondary beam containing ^8Li produced in the ^7 Li(d,p)^8Li reaction is concentrated by a spectrometer incorporating twin triplet magnetic quadrupole elements and an electrostatic dipole, and is focussed on a second deuterated polyethylene reaction target foil in which the reaction of interest takes place. Reaction products are identified and measured by means of a pair of surface barrier charged particle detector telescopes, and ^8Li flux is measured via a CaF_2 scintillator and photomultiplier tube at the rear of the detector chamber. Future efforts will use improved gas cell production and reaction targets and detector systems, and will focus in the near term on a definitive measurement of the ^8Li(d,n)^9 Be cross section at several energies. The experiments and apparatus described are part of a continuing program of studies of astrophysically interesting reactions on radioactive nuclides carried out with

  20. Measurement of neutron spectra generated by a 62 AMeV carbon-ion beam on a PMMA phantom using extended range Bonner sphere spectrometers

    NASA Astrophysics Data System (ADS)

    Bedogni, R.; Amgarou, K.; Domingo, C.; Russo, S.; Cirrone, G. A. P.; Pelliccioni, M.; Esposito, A.; Pola, A.; Introini, M. V.; Gentile, A.

    2012-07-01

    Neutrons constitute an important component of the radiation environment in hadron therapy accelerators. Their energy distribution may span from thermal up to hundred of MeV. The characterization of these fields in terms of dosimetric or spectrometric quantities is crucial for either the patient protection or the facility design aspects. To date, the Extended Range Bonner Sphere Spectrometer (ERBSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, a measurement campaign was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN-LNS (Laboratori Nazionali del Sud), where a 62 AMeV carbon ion is available. The beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. The ERBSSs of UAB (Universidad Autónoma de Barcelona-Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were used to measure the resulting neutron fields. The two ERBSSs use different detectors and sphere diameters, and have been independently calibrated. The FRUIT code was used to unfold the results.

  1. Clinical assessment of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for endometrial cancer

    PubMed Central

    Zhou, Qian; Cheng Tang; Zhao, Ke-Wei; Xiong, Yan-Li; Chen, Shu; Xu, Wen-Jing; Lei, Xin

    2016-01-01

    OBJECTIVE: The aim of this study was to determine the efficacy of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for the treatment of endometrial cancer. METHODS: Thirty-one patients with stage I–III endometrial cancer were recruited for this study. The stage I patients received only 252Californium neutron intracavitary brachytherapy with a two-channel applicator. The stage II and III patients received both 252Californium neutron intracavitary brachytherapy using a two-channel applicator and parallel-opposed whole pelvic radiotherapy. RESULTS: The five-year local control rate was 80.6% (25/31), the overall survival rate was 51.6% (16/31), and the disease-free survival rate was 54.8% (17/31). The incidence of serious late complications was 12.9% (4/31). CONCLUSIONS: 252Californium neutron intracavitary brachytherapy using a two-channel applicator combined with external beam radiotherapy was effective for treating endometrial cancer and the incidence of serious late complications related to this combination was within an acceptable range. PMID:26872078

  2. Two-dimensional electron beam charging model for polymer films

    NASA Technical Reports Server (NTRS)

    Reeves, R. D.; Balmain, K. G.

    1981-01-01

    A two-dimensional model is developed to describe the charging of strips of thin polymer films above a grounded substrate exposed to a uniform mono-energetic electron beam. The study is motivated by the observed anomalous behavior of geosynchronous satellites, which has been attributed to differential charging of the satellite surfaces exposed to magnetospheric electrons. Surface and bulk electric fields are calcuated at steady state in order to identify regions of high electrical stress, with emphasis on behavior near the material's edge. The model is used to study the effects of some of the experimental parameters, notably beam energy, beam angle of incidence, beam current density, material thickness and material width. Also examined are the consequences of a central gap in the material and a discontinuity in the material thickness.

  3. Neutron star models in frames of f (R) gravity

    SciTech Connect

    Astashenok, Artyom V.

    2009-01-01

    Neutron star models in perturbative f (R) gravity are considered with realistic equations of state. In particular, we consider the FPS and SLy equations of state. The mass-radius relations for f(R)=R+βR(e{sup -R/R₀}₋1) model and for R² models with cubic corrections are obtained. In the case of R2 gravity with cubic corrections, we obtain that at high central densities (ρ > 10 ρ{sub ns} = 2.7 × 10¹⁴ g/cm³ is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 9 km with maximal mass ~ 1.9M{sub ⊙}(SLy equation) or to 8.5 km with mass ~ 1.7M{sub ⊙} (FPS equation). This effect can give rise to more compact stars than in GR. If observationally identified, such objects could constitute a formidable signature for modified gravity at astrophysical level.

  4. 26Si Excited States via One-Neutron Removal from 27Si Using Radioactive Beam

    NASA Astrophysics Data System (ADS)

    Chen, J.; Chen, A. A.; Amthor, A. M.; Bazin, D.; Becerril, A. D.; Gade, A.; Galaviz, D.; Glasmacher, T.; Kahl, D.; Lorusso, G.; Matos, M.; Ouellet, C. V.; Pereira, J.; Schatz, H.; Smith, K. M.; Wales, B.; Weisshaar, D.; Zegers, R. G. T.

    2013-03-01

    A measurement of the p(27Si, d)26Si reaction has been performed to study levels of 26Si, with connections to the stellar 25Al(p, γ)26Si reaction rate. A beam of adioactive 27Si of energy 84.3 MeV/A was impinged on a polypropylene foil (CH2) of 180 mg/cm2 in thickness. De-excitation γ-rays were detected with a highly-segmented germanium detector array, in coincidence with the 26Si recoils. Our results are an independent measurement of states used in the energy calibration of other experiments on 26Si structure. They also suggest that the spin-parity of the Ex(26Si) = 6454 keV (Er = 940 keV) state should be 4+ instead of the previously adopted assignment of 0+.

  5. Modeling of beam-target interaction during pulsed electron beam ablation of graphite: Case of melting

    NASA Astrophysics Data System (ADS)

    Ali, Muddassir; Henda, Redhouane

    2017-02-01

    A one-dimensional thermal model based on a two-stage heat conduction equation is employed to investigate the ablation of graphite target during nanosecond pulsed electron beam ablation. This comprehensive model accounts for the complex physical phenomena comprised of target heating, melting and vaporization upon irradiation with a polyenergetic electron beam. Melting and vaporization effects induced during ablation are taken into account by introducing moving phase boundaries. Phase transition induced during ablation is considered through the temperature dependent thermodynamic properties of graphite. The effect of electron beam efficiency, power density, and accelerating voltage on ablation is analyzed. For an electron beam operating at an accelerating voltage of 15 kV and efficiency of 0.6, the model findings show that the target surface temperature can reach up to 7500 K at the end of the pulse. The surface begins to melt within 25 ns from the pulse start. For the same process conditions, the estimated ablation depth and ablated mass per unit area are about 0.60 μm and 1.05 μg/mm2, respectively. Model results indicate that ablation takes place primarily in the regime of normal vaporization from the surface. The results obtained at an accelerating voltage of 15 kV and efficiency factor of 0.6 are satisfactorily in good accordance with available experimental data in the literature.

  6. Extended model of restricted beam for FSO links

    NASA Astrophysics Data System (ADS)

    Poliak, Juraj; Wilfert, Otakar

    2012-10-01

    Modern wireless optical communication systems in many aspects overcome wire or radio communications. Their advantages are license-free operation and broad bandwidth that they offer. The medium in free-space optical (FSO) links is the atmosphere. Operation of outdoor FSO links struggles with many atmospheric phenomena that deteriorate phase and amplitude of the transmitted optical beam. This beam originates in the transmitter and is affected by its individual parts, especially by the lens socket and the transmitter aperture, where attenuation and diffraction effects take place. Both of these phenomena unfavourable influence the beam and cause degradation of link availability, or its total malfunction. Therefore, both of these phenomena should be modelled and simulated, so that one can judge the link function prior to the realization of the system. Not only the link availability and reliability are concerned, but also economic aspects. In addition, the transmitted beam is not, generally speaking, circularly symmetrical, what makes the link simulation more difficult. In a comprehensive model, it is necessary to take into account the ellipticity of the beam that is restricted by circularly symmetrical aperture where then the attenuation and diffraction occur. General model is too computationally extensive; therefore simplification of the calculations by means of analytical and numerical approaches will be discussed. Presented model is not only simulated using computer, but also experimentally proven. One can then deduce the ability of the model to describe the reality and to estimate how far can one go with approximations, i.e. limitations of the model are discussed.

  7. Second malignancies following conventional or combined ²⁵²Cf neutron brachytherapy with external beam radiotherapy for breast cancer.

    PubMed

    Valuckas, Konstantinas Povilas; Atkocius, Vydmantas; Kuzmickiene, Irena; Aleknavicius, Eduardas; Liukpetryte, Sarune; Ostapenko, Valerijus

    2013-09-01

    We retrospectively evaluated the risk of second malignancies among 832 patients with inner or central breast cancer treated with conventional external beam schedule (CRT group), or neutron brachytherapy using Californium-252 (²⁵²Cf) sources and hypofractionated external beam radiotherapy (HRTC group), between 1987 and 1996 at the Institute of Oncology, Vilnius University. Patients were observed until the occurrences of death or development of a second malignancy, or until 31 December 2009, whichever was earlier. Median follow-up time was 10.4 years (range, 1.2-24.1 years). Risk of second primary cancers was quantified using standardized incidence ratios (SIRs). Cox proportional hazards regression models were used to estimate hazard ratios (HRs). There was a significant increase in the risk of second primary cancers compared with the general population (SIR 1.3, 95% CI 1.1-1.5). The observed number of second primary cancers was also higher than expected for breast (SIR 1.8, 95% CI 1.3-2.4) and lung cancer (SIR 3.8, 95% CI 2.0-6.7). For second breast cancer, no raised relative risk was observed during the period ≥10 or more years after radiotherapy. Compared with the CRT group, HRTC patients had a not statistically significant higher risk of breast cancer. Increased relative risks were observed specifically for age at initial diagnosis of <50 years (HR 2.9, 95% CI 1.6-5.2) and for obesity (HR 2.8, 95% CI 1.1-7.2).

  8. Characterization of neutron and photon sources from a 10.5 MeV proton beam on [18O] enriched water

    NASA Astrophysics Data System (ADS)

    Miller, L. F.; Townsend, L. W.; Alvord, C. W.

    2001-07-01

    The production of F-18 from a 10.5 MeV proton beam on oxygen-18 results in significant yields of neutrons and photons. In order to optimize personnel shielding that satisfies regulatory requirements, it is essential that both the intensity of both neutrons and of photons be determined as a function of energy and angle, which was accomplished by combining results from measurements and from calculations. Energy dependence for neutrons was estimated as a function by unfolding Bonner ball measurements, a hyper-pure germanium detector was used to obtain measurements of the photon spectra, and a well established computer program was used to obtain the calculated values. The radiation intensity was determined from calibrated survey meters for neutrons and for photons. The energy and angular dependence obtained from measurements and calculations agree within the uncertainty of the measurements, but calculated results, scaled by measurements, were used for input to radiation shield design studies. The neutron yield is sufficiently high to be of interest for several applications.

  9. Putting in operation a full-scale ultracold-neutron source model with superfluid helium

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Lyamkin, V. A.; Prudnikov, D. V.; Keshishev, K. O.; Boldarev, S. T.; Vasil'ev, A. V.

    2017-02-01

    A project of the source of ultracold neutrons for the WWR-M reactor based on superfluid helium for ultracold-neutron production has been developed. The full-scale source model, including all required cryogenic and vacuum equipment, the cryostat, and the ultracold-neutron source model has been created. The superfluid helium temperature T = 1.08 K without a heat load and T = 1.371 K with a heat load on the simulator of P = 60 W has been achieved in experiments at a technological complex of the ultracold-neutron source. The result proves the feasibility of implementing the ultracold-neutron source at the WWR-M reactor and the possibility of applying superfluid helium in nuclear engineering.

  10. Proton beam characterisation of a prototype thin-tile plastic scintillator detector with SiPM readout for use in fast-neutron tracker

    NASA Astrophysics Data System (ADS)

    Preston, R.; Jakubek, J.; Prokopovich, D.; Uher, J.

    2012-02-01

    We present details of the construction and characterisation of a prototype thin-tile plastic scintillation detector for use in a multi-layer Fast Neutron Tracker. Scintillation light is read out using solid-state silicon photomultiplier detectors (SiPMs). The Tracker consists of alternating scintillator and Timepix detector layers. The scintillator tile provides a hydrogen-rich target, in which impinging fast neutrons produce recoil protons. The energies lost by protons in the plastic scintillator are measured and recoil protons exiting the scintillator are tracked in the Timepix detector. The combination of signals from the scintillator and Timepix provides information to reconstruct the energy or direction of the impinging neutron, using calculations based on the kinematics of the elastic neutron scattering. Three prototype scintillation detectors were constructed, using either a pair of 3 × 3 mm sensitive area SPMMicro3035 SiPMs from SensL or a pair of MAPD-3n SiPMs from Zecotek. The detector performances were characterised using a mono-energetic proton beam. An absolute energy calibration was measured at 3, 4 and 5 MeV proton energies with good linearity. The best measured energy resolution was 29.8% at 5 MeV. Spatial uniformity was assessed by measuring the response across the detector face. Finally, the tile detector's ability to provide a trigger for Timepix acquisition in the stack configuration was demonstrated for single and double neutron recoil events using a DT neutron source. The SiPM-based design was found to be well-suited for the application of the multi-layer fast neutron tracker.

  11. Computational Transport Modeling of High-Energy Neutrons Found in the Space Environment

    NASA Technical Reports Server (NTRS)

    Cox, Brad; Theriot, Corey A.; Rohde, Larry H.; Wu, Honglu

    2012-01-01

    The high charge and high energy (HZE) particle radiation environment in space interacts with spacecraft materials and the human body to create a population of neutrons encompassing a broad kinetic energy spectrum. As an HZE ion penetrates matter, there is an increasing chance of fragmentation as penetration depth increases. When an ion fragments, secondary neutrons are released with velocities up to that of the primary ion, giving some neutrons very long penetration ranges. These secondary neutrons have a high relative biological effectiveness, are difficult to effectively shield, and can cause more biological damage than the primary ions in some scenarios. Ground-based irradiation experiments that simulate the space radiation environment must account for this spectrum of neutrons. Using the Particle and Heavy Ion Transport Code System (PHITS), it is possible to simulate a neutron environment that is characteristic of that found in spaceflight. Considering neutron dosimetry, the focus lies on the broad spectrum of recoil protons that are produced in biological targets. In a biological target, dose at a certain penetration depth is primarily dependent upon recoil proton tracks. The PHITS code can be used to simulate a broad-energy neutron spectrum traversing biological targets, and it account for the recoil particle population. This project focuses on modeling a neutron beamline irradiation scenario for determining dose at increasing depth in water targets. Energy-deposition events and particle fluence can be simulated by establishing cross-sectional scoring routines at different depths in a target. This type of model is useful for correlating theoretical data with actual beamline radiobiology experiments. Other work exposed human fibroblast cells to a high-energy neutron source to study micronuclei induction in cells at increasing depth behind water shielding. Those findings provide supporting data describing dose vs. depth across a water-equivalent medium. This

  12. Modeling the radiation of ultrasonic phased-array transducers with Gaussian beams.

    PubMed

    Huang, Ruiju; Schmerr, Lester W; Sedov, Alexander

    2008-12-01

    A new transducer beam model, called a multi-Gaussian array beam model, is developed to simulate the wave fields radiated by ultrasonic phased-array transducers. This new model overcomes the restrictions on using ordinary multi-Gaussian beam models developed for large single-element transducers in phased-array applications. It is demonstrated that this new beam model can effectively model the steered and focused beams of a linear phased-array transducer.

  13. Numerical modeling of electron-beam welding of dissimilar metals

    NASA Astrophysics Data System (ADS)

    Krektuleva, R. A.; Cherepanov, O. I.; Cherepanov, R. O.

    2016-11-01

    This paper is devoted to numerical modeling of heat transfer processes and estimation of thermal stresses in weld seams created by electron beam welding of heterogeneous metals. The mathematical model is based on a system of equations that includes the Lagrange's variational equation of theory of plasticity and variational equation of M. Biot's principle to simulate the heat transfer processes. The two-dimensional problems (plane strain and plane stress) are considered for estimation of thermal stresses in welds considering differences of mechanical properties of welded materials. The model is developed for simulation of temperature fields and stresses during electron beam welding.

  14. Pulsar average wave forms and hollow-cone beam models

    NASA Technical Reports Server (NTRS)

    Backer, D. C.

    1976-01-01

    Pulsar wave forms have been analyzed from observations conducted over a wide radio-frequency range to assess the wave-form morphologies and to measure wave-form widths. The results of the analysis compare favorably with the predictions of a model with a hollow-cone beam of fixed dimensions and with random orientation of both the observer and the cone axis with respect to the pulsar spin axis. A class of three-component wave forms is included in the model by adding a central pencil beam to the hollow-cone hypothesis. The consequences of a number of discrepancies between observations and quantitative predictions of the model are discussed.

  15. MCNP-REN - A Monte Carlo Tool for Neutron Detector Design Without Using the Point Model

    SciTech Connect

    Abhold, M.E.; Baker, M.C.

    1999-07-25

    The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo N-Particle code (MCNP) was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP - Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program (TAP) predict neutron detector response without using the point reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of MOX fresh fuel made using the Underwater Coincidence Counter (UWCC) as well as measurements of HEU reactor fuel using the active neutron Research Reactor Fuel Counter (RRFC) are compared with calculations. The method used in MCNP-REN is demonstrated to be fundamentally sound and shown to eliminate the need to use the point model for detector performance predictions.

  16. Prospects for measuring neutron-star masses and radii with X-ray pulse profile modeling

    SciTech Connect

    Psaltis, Dimitrios; Özel, Feryal; Chakrabarty, Deepto E-mail: fozel@email.arizona.edu

    2014-06-01

    Modeling the amplitudes and shapes of the X-ray pulsations observed from hot, rotating neutron stars provides a direct method for measuring neutron-star properties. This technique constitutes an important part of the science case for the forthcoming NICER and proposed LOFT X-ray missions. In this paper, we determine the number of distinct observables that can be derived from pulse profile modeling and show that using only bolometric pulse profiles is insufficient for breaking the degeneracy between inferred neutron-star radius and mass. However, we also show that for moderately spinning (300-800 Hz) neutron stars, analysis of pulse profiles in two different energy bands provides additional constraints that allow a unique determination of the neutron-star properties. Using the fractional amplitudes of the fundamental and the second harmonic of the pulse profile in addition to the amplitude and phase difference of the spectral color oscillations, we quantify the signal-to-noise ratio necessary to achieve a specified measurement precision for neutron star radius. We find that accumulating 10{sup 6} counts in a pulse profile is sufficient to achieve a ≲ 5% uncertainty in the neutron star radius, which is the level of accuracy required to determine the equation of state of neutron-star matter. Finally, we formally derive the background limits that can be tolerated in the measurements of the various pulsation amplitudes as a function of the system parameters.

  17. Propagation model for vector beams generated by metasurfaces.

    PubMed

    Shu, Weixing; Liu, Yachao; Ke, Yougang; Ling, Xiaohui; Liu, Zhenxing; Huang, Bin; Luo, Hailu; Yin, Xiaobo

    2016-09-05

    A propagation model of vector beams generated by metasurfaces based on vector diffraction theory is established theoretically and verified experimentally. Considering the Pancharatnam-Berry phase introduced by the metasurface, analytical forms of vector beams for arbitrary incident polarization and topological charge of metasurfaces are found in the Fresnel and Fraunhofer diffraction regions, respectively. The complex amplitude of the resultant vector beam can be described in terms of a confluent hypergeometric function, with an intensity profile that manifests concentric rings in the Fresnel region and a single ring in the Fraunhofer one. Fraunhofer diffraction provides a method to create vector beams with simultaneously high purity and modal power. Further experiments verify the theoretical results.

  18. Characterization of uranium carbide target materials to produce neutron-rich radioactive beams

    NASA Astrophysics Data System (ADS)

    Tusseau-Nenez, Sandrine; Roussière, Brigitte; Barré-Boscher, Nicole; Gottberg, Alexander; Corradetti, Stefano; Andrighetto, Alberto; Cheikh Mhamed, Maher; Essabaa, Saïd; Franberg-Delahaye, Hanna; Grinyer, Joanna; Joanny, Loïc; Lau, Christophe; Le Lannic, Joseph; Raynaud, Marc; Saïd, Abdelhakim; Stora, Thierry; Tougait, Olivier

    2016-03-01

    In the framework of a R&D program aiming to develop uranium carbide (UCx) targets for radioactive nuclear beams, the Institut de Physique Nucléaire d'Orsay (IPNO) has developed an experimental setup to characterize the release of various fission fragments from UCx samples at high temperature. The results obtained in a previous study have demonstrated the feasibility of the method and started to correlate the structural properties of the samples and their behavior in terms of nuclear reaction product release. In the present study, seven UCx samples have been systematically characterized in order to better understand the correlation between their physicochemical characteristics and release properties. Two very different samples, the first one composed of dense UC and the second one of highly porous UCx made of multi-wall carbon nanotubes, were provided by the ActILab (ENSAR) collaboration. The others were synthesized at IPNO. The systems for irradiation and heating necessary for the release studies have been improved with respect to those used in previous studies. The results show that the open porosity is hardly the limiting factor for the fission product release. The homogeneity of the microstructure and the pore size distribution contributes significantly to the increase of the release. The use of carbon nanotubes in place of traditional micrometric graphite particles appears to be promising, even if the homogeneity of the microstructure can still be enhanced.

  19. Modeling and simulation performance of sucker rod beam pump

    SciTech Connect

    Aditsania, Annisa; Rahmawati, Silvy Dewi Sukarno, Pudjo; Soewono, Edy

    2015-09-30

    Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption proved non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research.

  20. Modeling and simulation performance of sucker rod beam pump

    NASA Astrophysics Data System (ADS)

    Aditsania, Annisa; Rahmawati, Silvy Dewi; Sukarno, Pudjo; Soewono, Edy

    2015-09-01

    Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption proved non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research.

  1. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  2. Modeling of an Adjustable Beam Solid State Light Project

    NASA Technical Reports Server (NTRS)

    Clark, Toni

    2015-01-01

    This proposal is for the development of a computational model of a prototype variable beam light source using optical modeling software, Zemax Optics Studio. The variable beam light source would be designed to generate flood, spot, and directional beam patterns, while maintaining the same average power usage. The optical model would demonstrate the possibility of such a light source and its ability to address several issues: commonality of design, human task variability, and light source design process improvements. An adaptive lighting solution that utilizes the same electronics footprint and power constraints while addressing variability of lighting needed for the range of exploration tasks can save costs and allow for the development of common avionics for lighting controls.

  3. Modelling neutron transport in planetary media via analytical multigroup diffusion theory

    NASA Astrophysics Data System (ADS)

    Panfili, P.; Luciani, A.; Furfaro, R.; Ganapol, B. D.; Mostacci, D.

    A novel analytical solution to the 1D, steady-state, multi-slab, multi-group diffusion equation is proposed as a mean to compute the energy-dependent galactic cosmic ray-induced neutron fluxes established in planetary media. More specifically, the proposed algorithm is implemented to allow fast and highly accurate determination of low-energy cosmic ray neutrons inside the Earth's surface and atmosphere. Two sets of experimental measurements have been considered to validate our model. In both cases, a good agreement between the calculated and observed neutron fluxes is achieved. Subsequently, neutron diffusion calculations have been performed for various Earth-based scenarios comprising (a) two-slab (air-soil) configuration and (b) three-slab (air-soil-ice) configuration to investigate the functional relationship between soil composition and neutron spatial distribution.

  4. Phenomenological Model for Predicting the Energy Resolution of Neutron-Damaged Coaxial HPGe Detectors

    SciTech Connect

    C. DeW. Van Siclen; E. H. Seabury; C. J. Wharton; A. J. Caffrey

    2012-10-01

    The peak energy resolution of germanium detectors deteriorates with increasing neutron fluence. This is due to hole capture at neutron-created defects in the crystal which prevents the full energy of the gamma-ray from being recorded by the detector. A phenomenological model of coaxial HPGe detectors is developed that relies on a single, dimensionless parameter that is related to the probability for immediate trapping of a mobile hole in the damaged crystal. As this trap parameter is independent of detector dimensions and type, the model is useful for predicting energy resolution as a function of neutron fluence.

  5. Shell-model representations of the proton-neutron symplectic model

    NASA Astrophysics Data System (ADS)

    Ganev, H. G.

    2015-07-01

    The representation theory of the recently introduced proton-neutron symplectic model in the many-particle Hilbert space is considered. The relation of the Sp(12, R) irreducible representations (irreps) with the shell-model classification of the basis states is considered by extending of the state space to the direct product space of SU p (3) ⊗ SU n (3) irreps, generalizing in this way the Elliott's SU(3) model for the case of two-component system. The Sp(12, R) model appears then as a natural multi-major-shell extension of the generalized proton-neutron SU(3) scheme, which takes into account the core collective excitations of monopole and quadrupole, as well as dipole type associated with the giant resonance vibrational degrees of freedom. Each Sp(12, R) irreducible representation is determined by a symplectic bandhead or an intrinsic U(6) space which can be fixed by the underlying proton-neutron shell-model structure, so the theory becomes completely compatible with the Pauli principle. It is shown that this intrinsic U(6) structure is of vital importance for the appearance of the low-lying collective bands without involving a mixing of different symplectic irreps. The full range of low-lying collective states can then be described by the microscopically based intrinsic U(6) structure, renormalized by coupling to the giant resonance vibrations.

  6. High Resolution Beam Modeling and Optimization with IMPACT

    NASA Astrophysics Data System (ADS)

    Qiang, Ji

    2017-01-01

    The LCLS-II, a new BES x-ray FEL facility at SLAC, is being designed using the IMPACT simulation code which includes a full model for the electron beam transport with 3-D space charge effects as well as IntraBeam Scattering and Coherent Synchrotron Radiation. A 22 parameter optimization is being used to find injector and linac configurations that achieve the design specifications. The detailed physics models in IMPACT are being benchmarked against experiments at LCLS. This work was done in collaboration with SLAC LCLS-II design team and supported by the DOE under contract No. DE-AC02-05CH11231.

  7. Modeling and simulation of the beam steering unit

    NASA Astrophysics Data System (ADS)

    Feng, Jiayun; Li, Xiaoping; He, Xin; Wang, Jinchun

    2015-03-01

    Production lithography is undergoing a technology shift, and the requirements of beam delivery system (BDS) are increasing which also raises the precision requirements of the beam steering units (BSU) in BDS. In essence, the BSU is a two rotational degree of freedom platform. In this paper, a BSU based on 3-RPS flexure parallel mechanism is proposed. By analyzing the relationship between the unit's dimensions and mechanics, a mathematical model is built. Then the BSU with a balance between lower stress of the flexure hinges and higher accuracy of the unit can be got by optimizing the dimensions with the mathematical model. Finally a simulation is conducted to verify the design.

  8. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  9. Modeling nitrogen plasmas produced by intense electron beams

    NASA Astrophysics Data System (ADS)

    Angus, Justin; Swanekamp, Steve; Richardson, Andrew; Schumer, Joseph; Mosher, David; Ottinger, Paul

    2016-10-01

    The Gamble II generator at the Naval Research Laboratory produces 100ns pulse duration, relativistic-electron beams with peak energies on the order of 1MV and peak currents of about 800kA with annular beam areas between 40-80cm2. This gives peak current densities 10 kA/cm2. For many different applications, a nitrogen gas in the 1Torr range is used as a charge- and current-neutralizing background to achieve beam transport. For these parameter regimes, the gas transitions from a weakly-ionized molecular state to a strongly-ionized atomic state on the time scale of the beam pulse. A detailed gas-chemistry model is presented for a dynamical description of the nitrogen plasmas produced in such experiments. The model is coupled to a 0D circuit model representative of annular beams, and results for 1Torr nitrogen are in good agreement with experimental measurements of the line-integrated electron density and the net current. It is found that the species are mostly in the ground and metastable states during the atomic phase, but that ionization proceeds predominantly through thermal ionization of the higher-lying optically-allowed states with excitation energies close to the ionization limit. Work is supported by AWE through NNSA.

  10. Ultra-low current beams in UMER to model space-charge effects in high-energy proton and ion machines

    NASA Astrophysics Data System (ADS)

    Bernal, S.; Beaudoin, B.; Baumgartner, H.; Ehrenstein, S.; Haber, I.; Koeth, T.; Montgomery, E.; Ruisard, K.; Sutter, D.; Yun, D.; Kishek, R. A.

    2017-03-01

    The University of Maryland Electron Ring (UMER) has operated traditionally in the regime of strong space-charge dominated beam transport, but small-current beams are desirable to significantly reduce the direct (incoherent) space-charge tune shift as well as the tune depression. This regime is of interest to model space-charge effects in large proton and ion rings similar to those used in nuclear physics and spallation neutron sources, and also for nonlinear dynamics studies of lattices inspired on the Integrable Optics Test Accelerator (IOTA). We review the definitions of beam vs. space-charge intensities and discuss three methods for producing very small beam currents in UMER. We aim at generating 60µA - 1.0mA, 100 ns, 10 keV beams with normalized rms emittances of the order of 0.1 - 1.0µm.

  11. Assessment of organ doses from exposure to neutrons using the Monte Carlo technique and an image-based anatomical model

    NASA Astrophysics Data System (ADS)

    Bozkurt, Ahmet

    The distribution of absorbed doses in the body can be computationally determined using mathematical or tomographic representations of human anatomy. A whole- body model was developed from the color images of the National Library of Medicine's Visible Human Project® for simulating the transport of radiation in the human body. The model, called Visible Photographic Man (VIP-Man), has sixty-one organs and tissues represented in the Monte Carlo code MCNPX at 4-mm voxel resolution. Organ dose calculations from external neutron sources were carried out using VIP-man and MCNPX to determine a new set of dose conversion coefficients to be used in radiation protection. Monoenergetic neutron beams between 10-9 MeV and 10 GeV were studied under six different irradiation geometries: anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic. The results for absorbed doses in twenty-four organs and the effective doses based on twelve critical organs are presented in tabular form. A comprehensive comparison of the results with those from the mathematical models show discrepancies that can be attributed to the variations in body modeling (size, location and shape of the individual organs) and the use of different nuclear datasets or models to derive the reaction cross sections, as well as the use of different transport packages for simulation radiation effects. The organ dose results based on the realistic VIP-Man body model allow the existing radiation protection dosimetry on neutrons to be re-evaluated and improved.

  12. Model equation for strongly focused finite-amplitude sound beams

    PubMed

    Kamakura; Ishiwata; Matsuda

    2000-06-01

    A model equation that describes the propagation of sound beams in a fluid is developed using the oblate spheroidal coordinate system. This spheroidal beam equation (SBE) is a parabolic equation and has a specific application to a theoretical prediction on focused, high-frequency beams from a circular aperture. The aperture angle does not have to be small. The theoretical background is basically along the same analytical lines as the composite method (CM) reported previously [B. Ystad and J. Berntsen, Acustica 82, 698-706 (1996)]. Numerical examples are displayed for the amplitudes of sound pressure along and across the beam axis when sinusoidal waves are radiated from the source with uniform amplitude distribution. The primitive approach to linear field analysis is readily extended to the case where harmonic generation in finite-amplitude sound beams becomes significant due to the inherent nonlinearity of the medium. The theory provides the propagation and beam pattern profiles that differ from the CM solution for each harmonic component.

  13. Measurement of the neutron fields produced by a 62 MeV proton beam on a PMMA phantom using extended range Bonner sphere spectrometers

    NASA Astrophysics Data System (ADS)

    Amgarou, K.; Bedogni, R.; Domingo, C.; Esposito, A.; Gentile, A.; Carinci, G.; Russo, S.

    2011-10-01

    The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments. In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to E<20 MeV if only polyethylene spheres are used, but can be extended to hundreds of MeV by including metal-loaded spheres (extended range BSS, indicated with ERBSS). With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, an ERBSS experiment was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN—LNS (Laboratori Nazionali del Sud), where a proton beam routinely used for ophthalmic cancer treatments is available. The 62 MeV beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. Here the ERBSS of UAB (Universidad Autónoma de Barcelona— Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Frascati) were exposed to characterize the "forward" and "sideward" proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and independently established and

  14. Dynamic imaging with a triggered and intensified CCD camera system in a high-intensity neutron beam

    NASA Astrophysics Data System (ADS)

    Vontobel, P.; Frei, G.; Brunner, J.; Gildemeister, A. E.; Engelhardt, M.

    2005-04-01

    When time-dependent processes within metallic structures should be inspected and visualized, neutrons are well suited due to their high penetration through Al, Ag, Ti or even steel. Then it becomes possible to inspect the propagation, distribution and evaporation of organic liquids as lubricants, fuel or water. The principle set-up of a suited real-time system was implemented and tested at the radiography facility NEUTRA of PSI. The highest beam intensity there is 2×107 cm s, which enables to observe sequences in a reasonable time and quality. The heart of the detection system is the MCP intensified CCD camera PI-Max with a Peltier cooled chip (1300×1340 pixels). The intensifier was used for both gating and image enhancement, where as the information was accumulated over many single frames on the chip before readout. Although, a 16-bit dynamic range is advertised by the camera manufacturers, it must be less due to the inherent noise level from the intensifier. The obtained result should be seen as the starting point to go ahead to fit the different requirements of car producers in respect to fuel injection, lubricant distribution, mechanical stability and operation control. Similar inspections will be possible for all devices with repetitive operation principle. Here, we report about two measurements dealing with the lubricant distribution in a running motorcycle motor turning at 1200 rpm. We were monitoring the periodic stationary movements of piston, valves and camshaft with a micro-channel plate intensified CCD camera system (PI-Max 1300RB, Princeton Instruments) triggered at exactly chosen time points.

  15. Nonparaxial multi-Gaussian beam models and measurement models for phased array transducers.

    PubMed

    Zhao, Xinyu; Gang, Tie

    2009-01-01

    A nonparaxial multi-Gaussian beam model is proposed in order to overcome the limitation that paraxial Gaussian beam models lose accuracy in simulating the beam steering behavior of phased array transducers. Using this nonparaxial multi-Gaussian beam model, the focusing and steering sound fields generated by an ultrasonic linear phased array transducer are calculated and compared with the corresponding results obtained by paraxial multi-Gaussian beam model and more exact Rayleigh-Sommerfeld integral model. In addition, with help of this novel nonparaxial method, an ultrasonic measurement model is provided to investigate the sensitivity of linear phased array transducers versus steering angles. Also the comparisons of model predictions with experimental results are presented to certify the accuracy of this provided measurement model.

  16. Modelling and simulation of beam formation in electron guns

    NASA Astrophysics Data System (ADS)

    Sabchevski, S.; Mladenov, G.; Titov, A.; Barbarich, I.

    1996-02-01

    This paper describes a new PC version of the software package GUN-EBT for computer simulation of beam formation in rotationally symmetric electron guns with thermionic cathodes. It is based on a self-consistent physical model which takes into account the beam space charge and the initial velocities effects. The theoretical framework used for both the formulation of the model and for the interpretation of the results of numerical experiments is the formalism of the charged particle dynamics in phase space. This enables not only a trajectory analysis (ray tracing) but also a phase-space analysis of beams to be performed. The package can be used as an effective tool for computer aided design and optimization of electron guns in various electron-optical systems. The operation of the package is illustrated with a typical example.

  17. Experimental verification of a method to create a variable energy neutron beam from a monoenergetic, isotropic source using neutron elastic scatter and time of flight

    NASA Astrophysics Data System (ADS)

    Whetstone, Zachary D.; Flaska, Marek; Kearfott, Kimberlee J.

    2016-08-01

    An experiment was performed to determine the neutron energy of near-monoergetic deuterium-deuterium (D-D) neutrons that elastically scatter in a hydrogenous target. The experiment used two liquid scintillators to perform time of flight (TOF) measurements to determine neutron energy, with the start detector also serving as the scatter target. The stop detector was placed 1.0 m away and at scatter angles of π/6, π/4, and π/3 rad, and 1.5 m at a scatter angle of π/4 rad. When discrete 1 ns increments were implemented, the TOF peaks had estimated errors between -21.2 and 3.6% relative to their expected locations. Full widths at half-maximum (FWHM) ranged between 9.6 and 20.9 ns, or approximately 0.56-0.66 MeV. Monte Carlo simulations were also conducted that approximated the experimental setup and had both D-D and deuterium-tritium (DT) neutrons. The simulated results had errors between -17.2 and 0.0% relative to their expected TOF peaks when 1 ns increments were applied. The largest D-D and D-T FWHMs were 26.7 and 13.7 ns, or approximately 0.85 and 4.98 MeV, respectively. These values, however, can be reduced through manipulation of the dimensions of the system components. The results encourage further study of the neutron elastic scatter TOF system with particular interest in application to active neutron interrogation to search for conventional explosives.

  18. Models of neutron star atmospheres enriched with nuclear burning ashes

    NASA Astrophysics Data System (ADS)

    Nättilä, J.; Suleimanov, V. F.; Kajava, J. J. E.; Poutanen, J.

    2015-09-01

    Context. Low-mass X-ray binaries hosting neutron stars (NS) exhibit thermonuclear (type-I) X-ray bursts, which are powered by unstable nuclear burning of helium and/or hydrogen into heavier elements deep in the NS "ocean". In some cases the burning ashes may rise from the burning depths up to the NS photosphere by convection, leading to the appearance of the metal absorption edges in the spectra, which then force the emergent X-ray burst spectra to shift toward lower energies. Aims: These effects may have a substantial impact on the color correction factor fc and the dilution factor w, the parameters of the diluted blackbody model FE ≈ wBE(fcTeff) that is commonly used to describe the emergent spectra from NSs. The aim of this paper is to quantify how much the metal enrichment can change these factors. Methods: We have developed a new NS atmosphere modeling code, which has a few important improvements compared to our previous code required by inclusion of the metals. The opacities and the internal partition functions (used in the ionization fraction calculations) are now taken into account for all atomic species. In addition, the code is now parallelized to counter the increased computational load. Results: We compute a detailed grid of atmosphere models with different exotic chemical compositions that mimic the presence of the burning ashes. From the emerging model spectra we compute the color correction factors fc and the dilution factors w that can then be compared to the observations. We find that the metals may change fc by up to about 40%, which is enough to explain the scatter seen in the blackbody radius measurements. Conclusions: The presented models open up the possibility of determining NS mass and radii more accurately, and may also act as a tool to probe the nuclear burning mechanisms of X-ray bursts. Appendices are available in electronic form at http://www.aanda.orgData of Appendix B is only available at the CDS via anonymous ftp to http

  19. Model for neutron total cross-section at low energies for nuclear grade graphite

    NASA Astrophysics Data System (ADS)

    Galván Josa, V. M.; Dawidowski, J.; Santisteban, J. R.; Malamud, F.; Oliveira, R. G.

    2015-04-01

    At subthermal neutron energies, polycrystalline graphite shows a large total cross-section due to small angle scattering processes. In this work, a new methodology to determine pore size distributions through the neutron transmission technique at subthermal energies is proposed and its sensitivity is compared with standard techniques. A simple model based on the form factor for spherical particles, normally used in the Small Angle Neutron Scattering technique, is employed to calculate the contribution of small angle effect to the total scattering cross-section, with the width and center of the radii distributions as free parameters in the model. Small Angle X-ray Scattering experiments were performed to compare results as a means to validate the method. The good agreement reached reveals that the neutron transmission technique is a useful tool to explore small angle scattering effects. This fact can be exploited in situations where large samples must be scanned and it is difficult to investigate them with conventional methods. It also opens the possibility to apply this method in energy-resolved neutron imaging. Also, since subthermal neutron transmission experiments are perfectly feasible in small neutron sources, the present findings open new possibilities to the work done in such kind of facilities.

  20. Modeling of Fission Neutrons as a Signature for Detection of Highly Enriched Uranium

    SciTech Connect

    Wolford, J K; Frank, M I; Descalle, M

    2004-03-09

    We present the results of modeling intended to evaluate the feasibility of using neutrons from induced fission in highly enriched uranium (HEU) as a means of detecting clandestine HEU, even when it is embedded in absorbing surroundings, such as commercial cargo. We characterized radiation from induced fission in HEU, which consisted of delayed neutrons at all energies and prompt neutrons at energies above a threshold. We found that for the candidate detector and for the conditions we considered, a distinctive HEU signature should be detectable, given sufficient detector size, and should be robust over a range of cargo content. In the modeled scenario, an intense neutron source was used to induce fissions in a spherical shell of HEU. To absorb, scatter, and moderate the neutrons, we place one layer of simulated cargo between the source and target and an identical layer between the target and detector. The resulting neutrons and gamma rays are resolved in both time and energy to reveal the portion arising from fission. We predicted the dominant reaction rates within calcium fluoride and liquid organic scintillators. Finally, we assessed the relative effectiveness of two common neutron source energies.

  1. Grazing incidence neutron optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2012-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20 .ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  2. Grazing Incidence Neutron Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2013-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  3. Modeling beam propagation and frequency conversion for the beamlet laser

    SciTech Connect

    Auerbach, J.M.

    1996-06-01

    The development of the Beamlet laser has involved extensive and detailed modeling of laser performance and beam propagation to: (1) predict the performance limits of the laser, (2) select system configurations with higher performance, (3) analyze experiments and provide guidance for subsequent laser shots, and (4) design optical components and establish component manufacturing specifications. In contrast to modeling efforts of previous laser systems such as Nova, those for Beamlet include as much measured optical characterization data as possible. This article concentrates on modeling of beam propagation in the Beamlet laser system, including the frequency converter, and compares modeling predictions with experimental results for several Beamlet shots. It briefly describes the workstation-based propagation and frequency conversion codes used to accomplish modeling of the Beamlet.

  4. Propagation modeling results for narrow-beam undersea laser communications

    NASA Astrophysics Data System (ADS)

    Fletcher, Andrew S.; Hardy, Nicholas D.; Hamilton, Scott A.

    2016-03-01

    Communication links through ocean waters are challenging due to undersea propagation physics. Undersea optical communications at blue or green wavelengths can achieve high data rates (megabit- to gigabit-per-second class links) despite the challenging undersea medium. Absorption and scattering in ocean waters attenuate optical signals and distort the waveform through dense multipath. The exponential propagation loss and the temporal spread due to multipath limit the achievable link distance and data rate. In this paper, we describe the Monte Carlo modeling of the undersea scattering and absorption channel. We model photon signal attenuation levels, spatial photon distributions, time of arrival statistics, and angle of arrival statistics for a variety of lasercom scenarios through both clear and turbid water environments. Modeling results inform the design options for an undersea optical communication system, particularly illustrating the advantages of narrow-beam lasers compared to wide beam methods (e.g. LED sources). The modeled pupil plane and focal plane photon arrival distributions enable beam tracking techniques for robust pointing solutions, even in highly scattering harbor waters. Laser communication with collimated beams maximizes the photon transfer through the scattering medium and enables spatial and temporal filters to minimize waveform distortion and background interference.

  5. BEAM ON TARGET MODEL Produces All Gamma Ray Burst Phenomena Including Afterglow

    NASA Astrophysics Data System (ADS)

    Greyber, H.

    2000-12-01

    While one must applaud the splendid research by L. Piro et al and L. Amati et al reported in SCIENCE recently, one must question, as M. Rees and S. Woolsey have done, their conclusion that a ``supranova model" is the only explanation for these new X-ray observations. In fact L. Piro was quoted as saying, ``Our data helps rule out the scenario where two neutron stars or black holes collide. We think GRBs result from something similar to a supernova explosion, but much more powerful." A relatively unknown physical model for GRBs, Greyber's Beam On Target model (BOT), dating back to the first CGRO observations, can plausibly explain the iron emission lines observed for GRB991216, and also the mass of the dense medium within a light-day of the GRB being roughly equivalent to at least one-tenth solar mass, as well as the initial shedding of material followed by the GRB event. When a galaxy forms under gravitational collapse in the presence of a primordial magnetic field, Mestel and Strittmatter demonstrated that, for finite Ohmic diffusion, a growing equatorial current loop is formed. Even if this stable ``Storage Ring" has only 10exp-9 of the total energy released during a typical galaxy's formation, the relativistic beam can possess 10exp58 ergs. The GRB ``fireball" occurs when a target star races across the powerful beam, blowing off target material as a hot, rapidly expanding plasma cloud, simulating an explosion. Since currents in space are known to be sometimes filamentary, sharp millisecond spikes can be expected in some GRBs. Proton and alpha particle nuclear reactions produce a gamma ray beam. Beam particles impinging on denser cloud material create an electromagnetic shower, producing X-ray, optical and radio radiation. Since the Storage Ring has an intense magnetic field around it, synchrotron radiation is expected. The beam, striking a highly evolved massive target star, produces the iron emission lines. H. D. Greyber, in ``After the Dark Ages:When Galaxies

  6. Triple Ion-Beam Studies of Radiation Damage in 9Cr2WVTa Ferritic/Martensitic Steel for a High Power Spallation Neutron Source

    SciTech Connect

    Lee, EH

    2001-08-01

    To simulate radiation damage under a future Spallation Neutron Source (SNS) environment, irradiation experiments were conducted on a candidate 9Cr-2WVTa ferritic/martensitic steel using the Triple Ion Facility (TIF) at ORNL. Irradiation was conducted in single, dual, and triple ion beam modes using 3.5 MeV Fe{sup 2}, 360 keV He{sup +}, and 180 keV H{sup +} at 80, 200, and 350 C. These irradiations produced various defects comprising black dots, dislocation loops, line dislocations, and gas bubbles, which led to hardening. The largest increase in hardness, over 63%, was observed after 50 dpa for triple beam irradiation conditions, revealing that both He and H are augmenting the hardening. Hardness increased less than 30% after 30 dpa at 200 C by triple beams, compatible with neutron irradiation data from previous work which showed about a 30% increase in yield strength after 27.2 dpa at 365 C. However, the very large concentrations of gas bubbles in the matrix and on lath and grain boundaries after these simulated SNS irradiations make predictions of fracture behavior from fission reactor irradiations to spallation target conditions inadvisable.

  7. Iterative Reconstruction of Coded Source Neutron Radiographs

    SciTech Connect

    Santos-Villalobos, Hector J; Bingham, Philip R; Gregor, Jens

    2012-01-01

    Use of a coded source facilitates high-resolution neutron imaging but requires that the radiographic data be deconvolved. In this paper, we compare direct deconvolution with two different iterative algorithms, namely, one based on direct deconvolution embedded in an MLE-like framework and one based on a geometric model of the neutron beam and a least squares formulation of the inverse imaging problem.

  8. ANEM: A rotating composite target to produce an atmospheric-like neutron beam at the LNL SPES facility

    NASA Astrophysics Data System (ADS)

    Acosta Urdaneta, Gabriela Carolina; Bisello, Dario; Esposito, Juan; Mastinu, Pierfrancesco; Prete, Gianfranco; Silvestrin, Luca; Wyss, Jeffery

    2016-09-01

    A fast neutron (E> MeV) irradiation facility is under development at the 70 MeV SPES proton cyclotron at LNL (Legnaro, Italy) to investigate neutron-induced Single Event Effects (SEE) in microelectronic devices and systems. After an overview on neutron-induced SEE in electronics, we report on the progress in the design of ANEM (Atmospheric Neutron EMulator), a water-cooled rotating target made of Be and W to produce neutrons with an energy spectrum similar to that of neutrons produced by cosmic rays at sea-level. In ANEM, the protons from the cyclotron alternatively impinge on two circular sectors of Be and W of different areas; the effective neutron spectrum is a weighted combination of the spectra from the two sectors. In this contribution, we present the results of thermal-mechanical Finite Element Analysis (ANSYS) calculations of the performance of the ANEM prototype. The calculations at this stage indicate that ANEM can deliver fast neutrons with an atmospheric-like energy spectrum and with an integral flux Φn(1-70 MeV) ˜107 n cm-2s-1 that is 3×109 more intense than the natural one at sea-level: a very competitive flux for SEE testing.

  9. Radiation shielding for neutron guides

    NASA Astrophysics Data System (ADS)

    Ersez, T.; Braoudakis, G.; Osborn, J. C.

    2006-11-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions.

  10. Relativistic model of neutron stars in X-ray binary

    NASA Astrophysics Data System (ADS)

    Kalam, Mehedi; Hossein, Sk Monowar; Islam, Rabiul; Molla, Sajahan

    2017-02-01

    In this paper, we study the inner structure of some neutron stars from theoretical as well as observational points of view. We calculate the probable radii, compactness (u) and surface redshift (Zs) of five neutron stars (X-ray binaries) namely 4U 1538-52, LMC X-4, 4U 1820-30, 4U 1608-52, EXO 1745-248. Here, we propose a stiff equation of state (EoS) of matter distribution which relates pressure with matter density. Finally, we check the stability of such kind of theoretical structure.

  11. Energetics of molecular-beam epitaxy models

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Srinivasan; Berding, M. A.; Sher, A.; Chen, A.-B.

    1990-01-01

    The removal energies of constituent atoms from various unreconstructed semiconductor surfaces are calculated using a Green function method. An efficient difference-equation approach within the second-neighbor tight-binding model is employed. For a compound AB, binding energies for the A and B atoms on the (111), (-1 -1 -1), (100), and (110) surfaces are calculated. Analyses are made of the energy to remove an atom from the nearly full surface and from the nearly empty surface. Results are presented for Si, GaAs, CdTe, and HgTe; and the surface sublimation energies are found to depend on surface coverage and do not display a simple linear relationship to the number of bonds broken, as is often assumed in modeling growth by MBE.

  12. Modeling nitrogen plasmas produced by intense electron beams

    NASA Astrophysics Data System (ADS)

    Angus, J. R.; Mosher, D.; Swanekamp, S. B.; Ottinger, P. F.; Schumer, J. W.; Hinshelwood, D. D.

    2016-05-01

    A new gas-chemistry model is presented to treat the breakdown of a nitrogen gas with pressures on the order of 1 Torr from intense electron beams with current densities on the order of 10 kA/cm2 and pulse durations on the order of 100 ns. For these parameter regimes, the gas transitions from a weakly ionized molecular state to a strongly ionized atomic state on the time scale of the beam pulse. The model is coupled to a 0D-circuit model using the rigid-beam approximation that can be driven by specifying the time and spatial profiles of the beam pulse. Simulation results are in good agreement with experimental measurements of the line-integrated electron density from experiments done using the Gamble II generator at the Naval Research Laboratory. It is found that the species are mostly in the ground and metastable states during the atomic phase, but that ionization proceeds predominantly through thermal ionization of optically allowed states with excitation energies close to the ionization limit.

  13. Implementation of an analytical model for leakage neutron equivalent dose in a proton radiotherapy planning system.

    PubMed

    Eley, John; Newhauser, Wayne; Homann, Kenneth; Howell, Rebecca; Schneider, Christopher; Durante, Marco; Bert, Christoph

    2015-03-11

    Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects.

  14. Implementation of an Analytical Model for Leakage Neutron Equivalent Dose in a Proton Radiotherapy Planning System

    PubMed Central

    Eley, John; Newhauser, Wayne; Homann, Kenneth; Howell, Rebecca; Schneider, Christopher; Durante, Marco; Bert, Christoph

    2015-01-01

    Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects. PMID:25768061

  15. Progress on realistic modeling of black hole-neutron star binary mergers

    NASA Astrophysics Data System (ADS)

    Duez, Matthew

    2011-04-01

    Black hole-neutron star (BHNS) binary mergers are important gravitational wave sources and (possibly) gamma ray burst progenitors. The current state of the art of BHNS simulations, while an impressive acheivement, is inadequate in a number of ways--most importantly in its treatment of neutron star matter and neutrino emission. We present a status report on the efforts of the Caltech-Cornell-CITA-WSU collaboration to accurately model BHNS binaries with realistic microphysics.

  16. Neutron Scattering Cross Section and Analyzing Power Measurements for LEAD-208 from 6 TO 10 Mev and Optical Model Analyses.

    NASA Astrophysics Data System (ADS)

    Roberts, Mark L.

    Differential cross sections and analyzing powers have been obtained for the scattering of neutrons from the ground and first excited states of ^ {208}Pb. These new measurements include differential cross sections for elastic and inelastic neutron scattering at 8.0 MeV, and analyzing powers for elastic and inelastic neutron scattering at 6.0, 7.0, 8.0, 9.0, and 10.0 MeV. These data complement earlier work performed at Triangle Universities Nuclear Laboratory (TUNL) for elastic scattering of neutrons from ^{208 }Pb at 10.0, 14.0, and 17.0 MeV. All data were obtained using the TUNL pulsed beam facility and time -of-flight spectrometer. The data have been corrected for the effects of finite geometry, flux attenuation, and multiple scattering. The present elastic scattering data have been combined with the previously measured TUNL data and data measured elsewhere in order to obtain a detailed and high accuracy data set for neutron elastic scattering from ^{208}Pb over the 4.0 to 40.0 MeV energy range. This comprehensive data set has been described using the spherical optical model in which constant geometry fits, energy-dependent geometry fits, and fits incorporating the dispersion relation were performed. Although the overall description of the elastic n+^ {208}Pb scattering data was reasonably good using the various optical potentials, small systematic discrepancies remained at the backward angles of both the cross section and analyzing power data, and no optical model solution based on conventional Woods-Saxon form factors was found which could describe all of the details seen in the scattering data. To relax the constraint of having a Woods-Saxon form factor, the real central part of the optical model potential was modified using a Fourier-Bessel expansion of the real central potential. Individual fits at 6.0, 7.0, 8.0, 9.0, and 10.0 MeV, and fits to the combined 6.0 to 10.0 MeV data set were obtained using a Fourier -Bessel expansion of the real central potential

  17. Sheath ionization model of beam emissions from large spacecraft

    NASA Technical Reports Server (NTRS)

    Lai, S. T.; Cohen, H. A.; Bhavnani, K. H.; Tautz, M. E.

    1985-01-01

    An analytical model of the charging of a spacecraft emitting electron and ion beams has been applied to the case of large spacecraft. In this model, ionization occurs in the sheath due to the return current. Charge neutralization of spherical space charge flow is examined by solving analytical equations numerically. Parametric studies of potential large spacecraft are performed. As in the case of small spacecraft, the ions created in the sheath by the returning current play a large role in determining spacecraft potential.

  18. Modelling boron-lined proportional counter response to neutrons.

    PubMed

    Shahri, A; Ghal-Eh, N; Etaati, G R

    2013-09-01

    The detailed Monte Carlo simulation of a boron-lined proportional counter response to a neutron source has been presented. The MCNP4C and experimental data on different source-moderator geometries have been given for comparison. The influence of different irradiation geometries and boron-lining thicknesses on the detector response has been studied.

  19. HAWC2 and BeamDyn: Comparison Between Beam Structural Models for Aero-Servo-Elastic Frameworks: Preprint

    SciTech Connect

    Pavese, Christian; Kim, Taeseong; Wang, Qi; Jonkman, Jason; Sprague, Michael A.

    2016-08-01

    This work presents a comparison of two beam codes for aero-servo-elastic frameworks: a new structural model for the aeroelastic code HAWC2 and a new nonlinear beam model, BeamDyn, for the aeroelastic modularization framework FAST v8. The main goal is to establish the suitability of the two approaches to model the structural behaviour of modern wind turbine blades in operation. Through a series of benchmarking structural cases of increasing complexity, the capability of the two codes to simulate highly nonlinear effects is investigated and analyzed. Results show that even though the geometrically exact beam theory can better model effects such as very large deflections, rotations, and structural couplings, an approach based on a multi-body formulation assembled through linear elements is capable of computing accurate solutions for typical nonlinear beam theory benchmarking cases.

  20. HAWC2 and BeamDyn: Comparison Between Beam Structural Models for Aero-Servo-Elastic Frameworks

    SciTech Connect

    Pavese, Christian; Wang, Qi; Kim, Taeseong; Jonkman, Jason; Sprague, Michael A.

    2016-07-01

    This work presents a comparison of two beam codes for aero-servo-elastic frameworks: a new structural model for the aeroelastic code HAWC2 and a new nonlinear beam model, BeamDyn, for the aeroelastic modularization framework FAST v8. The main goal is to establish the suitability of the two approaches to model the structural behaviour of modern wind turbine blades in operation. Through a series of benchmarking structural cases of increasing complexity, the capability of the two codes to simulate highly nonlinear effects is investigated and analyzed. Results show that even though the geometrically exact beam theory can better model effects such as very large deflections, rotations, and structural couplings, an approach based on a multi-body formulation assembled through linear elements is capable of computing accurate solutions for typical nonlinear beam theory benchmarking cases.

  1. Narcotics detection using fast-neutron interrogation

    SciTech Connect

    Micklich, B.J.; Fink, C.L.

    1995-12-31

    Fast-neutron interrogation techniques are being investigated for detection of narcotics in luggage and cargo containers. This paper discusses two different fast-neutron techniques. The first uses a pulsed accelerator or sealed-tube source to produce monoenergetic fast neutrons. Gamma rays characteristic of carbon and oxygen are detected and the elemental densities determined. Spatial localization is accomplished by either time of flight or collimators. This technique is suitable for examination of large containers because of the good penetration of the fast neutrons and the low attenuation of the high-energy gamma rays. The second technique uses an accelerator to produce nanosecond pulsed beams of deuterons that strike a target to produce a pulsed beam of neutrons with a continuum of energies. Elemental distributions are obtained by measuring the neutron spectrum after the source neutrons pass through the items being interrogated. Spatial variation of elemental densities is obtained by tomographic reconstruction of projection data obtained for three to five angles and relatively low (2 cm) resolution. This technique is best suited for examination of luggage or small containers with average neutron transmissions greater than about 0.01. Analytic and Monte-Carlo models are being used to investigate the operational characteristics and limitations of both techniques.

  2. Beam response analysis of moving vehicle with half car modeling

    NASA Astrophysics Data System (ADS)

    Badriyah, A. N.; Arifianto, D.; Susatio, Y.

    2016-11-01

    There were several tragedies concerning damages of bridge which seem to be sooner than the predicted period. One of hypothesis in this situation is an addition of vibration caused by long vehicle such as super long truck which has huge force transferred into the bridge and its long body causes more vibration due to phase difference of front and rear tire. The selected method which is used in this problem is using a simulation for modeling a bridge- vehicle system using half car vehicle model. The simulation is done using ANSYS Workbench 15.0 with some variation such us the thickness of beam and its supports. There are 3 kind of variation used in the thickness variety which are 2 m, 1 m, and 0.5 m. While in supports variation, we have fixed support, knife-edge support, and slider support. The results show that there is addition of vibration caused by long vehicle. It is proved by an oscillation which is showed in every response of beam's total deformation. Highest total deformation is achieved in slider support beam of 0.5 thicknesses, 1.08 mm in 1.12 second. First ripple seen in responses is at 0.84 second. Meanwhile, response of knife-edge and fixed support beam show a similarity. The ripple in this situation is caused by beat modulation from the front and rear tire.

  3. Probing Planetary Bodies for Subsurface Volatiles: GEANT4 Models of Gamma Ray, Fast, Epithermal, and Thermal Neutron Response to Active Neutron Illumination

    NASA Astrophysics Data System (ADS)

    Chin, G.; Sagdeev, R.; Su, J. J.; Murray, J.

    2014-12-01

    Using an active source of neutrons as an in situ probe of a planetary body has proven to be a powerful tool to extract information about the presence, abundance, and location of subsurface volatiles without the need for drilling. The Dynamic Albedo of Neutrons (DAN) instrument on Curiosity is an example of such an instrument and is designed to detect the location and abundance of hydrogen within the top 50 cm of the Martian surface. DAN works by sending a pulse of neutrons towards the ground beneath the rover and detecting the reflected neutrons. The intensity and time of arrival of the reflection depends on the proportion of water, while the time the pulse takes to reach the detector is a function of the depth at which the water is located. Similar instruments can also be effective probes at the polar-regions of the Moon or on asteroids as a way of detecting sequestered volatiles. We present the results of GEANT4 particle simulation models of gamma ray, fast, epithermal, and thermal neutron responses to active neutron illumination. The results are parameterized by hydrogen abundance, stratification and depth of volatile layers, versus the distribution of neutron and gamma ray energy reflections. Models will be presented to approximate Martian, lunar, and asteroid environments and would be useful tools to assess utility for future NASA exploration missions to these types of planetary bodies.

  4. An energy-based beam hardening model in tomography.

    PubMed

    Van de Casteele, E; Van Dyck, D; Sijbers, J; Raman, E

    2002-12-07

    As a consequence of the polychromatic x-ray source, used in micro-computer tomography (microCT) and in medical CT, the attenuation is no longer a linear function of absorber thickness. If this nonlinear beam hardening effect is not compensated, the reconstructed images will be corrupted by cupping artefacts. In this paper, a bimodal energy model for the detected energy spectrum is presented, which can be used for reduction of artefacts caused by beam hardening in well-specified conditions. Based on the combination of the spectrum of the source and the detector efficiency, the assumption is made that there are two dominant energies which can describe the system. The validity of the proposed model is examined by fitting the model to the experimental datapoints obtained on a microtomograph for different materials and source voltages.

  5. Inverse problems in the modeling of vibrations of flexible beams

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Powers, R. K.; Rosen, I. G.

    1987-01-01

    The formulation and solution of inverse problems for the estimation of parameters which describe damping and other dynamic properties in distributed models for the vibration of flexible structures is considered. Motivated by a slewing beam experiment, the identification of a nonlinear velocity dependent term which models air drag damping in the Euler-Bernoulli equation is investigated. Galerkin techniques are used to generate finite dimensional approximations. Convergence estimates and numerical results are given. The modeling of, and related inverse problems for the dynamics of a high pressure hose line feeding a gas thruster actuator at the tip of a cantilevered beam are then considered. Approximation and convergence are discussed and numerical results involving experimental data are presented.

  6. Optical and control modeling for adaptive beam-combining experiments

    SciTech Connect

    Gruetzner, J.K.; Tucker, S.D.; Neal, D.R.; Bentley, A.E.; Simmons-Potter, K.

    1995-08-01

    The development of modeling algorithms for adaptive optics systems is important for evaluating both performance and design parameters prior to system construction. Two of the most critical subsystems to be modeled are the binary optic design and the adaptive control system. Since these two are intimately related, it is beneficial to model them simultaneously. Optic modeling techniques have some significant limitations. Diffraction effects directly limit the utility of geometrical ray-tracing models, and transform techniques such as the fast fourier transform can be both cumbersome and memory intensive. The authors have developed a hybrid system incorporating elements of both ray-tracing and fourier transform techniques. In this paper they present an analytical model of wavefront propagation through a binary optic lens system developed and implemented at Sandia. This model is unique in that it solves the transfer function for each portion of a diffractive optic analytically. The overall performance is obtained by a linear superposition of each result. The model has been successfully used in the design of a wide range of binary optics, including an adaptive optic for a beam combining system consisting of an array of rectangular mirrors, each controllable in tip/tilt and piston. Wavefront sensing and the control models for a beam combining system have been integrated and used to predict overall systems performance. Applicability of the model for design purposes is demonstrated with several lens designs through a comparison of model predictions with actual adaptive optics results.

  7. Precision Neutron Scattering Length Measurements with Neutron Interferometry

    NASA Astrophysics Data System (ADS)

    Huber, M. G.; Arif, M.; Jacobson, D. L.; Pushin, D. A.; Abutaleb, M. O.; Shahi, C. B.; Wietfeldt, F. E.; Black, T. C.

    2011-10-01

    Since its inception, single-crystal neutron interferometry has often been utilized for precise neutron scattering length, b, measurements. Scattering length data of light nuclei is particularly important in the study of few nucleon interactions as b can be predicted by two + three nucleon interaction (NI) models. As such they provide a critical test of the accuracy 2+3 NI models. Nuclear effective field theories also make use of light nuclei b in parameterizing mean-field behavior. The NIST neutron interferometer and optics facility has measured b to less than 0.8% relative uncertainty in polarized 3He and to less than 0.1% relative uncertainty in H, D, and unpolarized 3He. A neutron interferometer consists of a perfect silicon crystal machined such that there are three separate blades on a common base. Neutrons are Bragg diffracted in the blades to produce two spatially separate (yet coherent) beam paths much like an optical Mach-Zehnder interferometer. A gas sample placed in one of the beam paths of the interferometer causes a phase difference between the two paths which is proportional to b. This talk will focus on the latest scattering length measurement for n-4He which ran at NIST in Fall/Winter 2010 and is currently being analyzed.

  8. Safety and outcome of external beam radiation and neutron brachytherapy in elderly patients with esophageal squamous cell cancer

    PubMed Central

    Li, Tao; Zhang, Wei; Lv, Jiahua; Liu, Huiming; Jia, Xitang; Liu, Bo

    2017-01-01

    Purpose The aim of this study was to retrospectively observe and analyze the long-term treatment outcomes of 191 elderly patients with esophageal squamous cell cancer (ESCC) who were treated with californium-252 (252Cf) neutron brachytherapy (NBT) in combination with external beam radiotherapy (EBRT). Material and methods From January 2002 to November 2012, 191 patients with ESCC underwent NBT in combination with EBRT. The total radiation dose to the reference point via NBT was 8-25 Gy-eq in two to five fractions with one fraction per week. The total dose via EBRT was 50-60 Gy, which was delivered over a period of 5 to 6 weeks with normal fractionation. Results The median survival time for the 191 patients was 23.6 months, and the 5-year rates for overall survival (OS) and local-regional control (LRC) were 28.7% and 54.2%, respectively. The patients’ age was a factor that was significantly associated with OS (p = 0.010), according to univariate analysis. The 5-year OS (LRC) was 37.3% (58.6%) for patients aged 70-74 years and 14.5% (47.9%) for patients aged > 74 years (p = 0.010 and p = 0.038). In multivariate analysis, age and clinical N stage were associated with OS and LRC (p = 0.011 [0.041] and p = 0.005 [0.005]). From the time of treatment completion to the development of local-regional recurrence or death, 5 (2.6%) patients experienced fistula and 15 (7.9%) experienced massive bleeding. The incidence of severe late complications was related to older age (p = 0.027), higher NBT dose/fraction (20-25 Gy/5 fractions), and higher total dose (> 66 Gy). Conclusions The clinical data indicated that NBT in combination with EBRT produced favorable local control and long-term survival rates for elderly patients with ESCC, and that the side effects were tolerable. Patient’s age, clinical stage N status, and radiation dose could be used to select the appropriate treatment for elderly patients. PMID:28344602

  9. Beam Heating of Samples: Modeling and Verification. Part 2

    NASA Technical Reports Server (NTRS)

    Kazmierczak, Michael; Gopalakrishnan, Pradeep; Kumar, Raghav; Banerjee Rupak; Snell, Edward; Bellamy, Henry; Rosenbaum, Gerd; vanderWoerd, Mark

    2006-01-01

    Energy absorbed from the X-ray beam by the sample requires cooling by forced convection (i.e. cryostream) to minimize temperature increase and the damage caused to the sample by the X-ray heating. In this presentation we will first review the current theoretical models and recent studies in the literature, which predict the sample temperature rise for a given set of beam parameters. It should be noted that a common weakness of these previous studies is that none of them provide actual experimental confirmation. This situation is now remedied in our investigation where the problem of x-ray sample heating is taken up once more. We have theoretically investigated, and at the same time, in addition to the numerical computations, performed experiments to validate the predictions. We have modeled, analyzed and experimentally tested the temperature rise of a 1 mm diameter glass sphere (sample surrogate) exposed to an intense synchrotron X-ray beam, while it is being cooled in a uniform flow of nitrogen gas. The heat transfer, including external convection and internal heat conduction was theoretically modeled using CFD to predict the temperature variation in the sphere during cooling and while it was subjected to an undulator (ID sector 19) X-ray beam at the APS. The surface temperature of the sphere during the X-ray beam heating was measured using the infrared camera measurement technique described in a previous talk. The temperatures from the numerical predictions and experimental measurements are compared and discussed. Additional results are reported for the two different sphere sizes and for two different supporting pin orientations.

  10. Identification of 45 New Neutron-Rich Isotopes Produced by In-Flight Fission of a 238U Beam at 345 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Tetsuya Ohnishi,; Toshiyuki Kubo,; Kensuke Kusaka,; Atsushi Yoshida,; Koichi Yoshida,; Masao Ohtake,; Naoki Fukuda,; Hiroyuki Takeda,; Daisuke Kameda,; Kanenobu Tanaka,; Naohito Inabe,; Yoshiyuki Yanagisawa,; Yasuyuki Gono,; Hiroshi Watanabe,; Hideaki Otsu,; Hidetada Baba,; Takashi Ichihara,; Yoshitaka Yamaguchi,; Maya Takechi,; Shunji Nishimura,; Hideki Ueno,; Akihiro Yoshimi,; Hiroyoshi Sakurai,; Tohru Motobayashi,; Taro Nakao,; Yutaka Mizoi,; Masafumi Matsushita,; Kazuo Ieki,; Nobuyuki Kobayashi,; Kana Tanaka,; Yosuke Kawada,; Naoki Tanaka,; Shigeki Deguchi,; Yoshiteru Satou,; Yosuke Kondo,; Takashi Nakamura,; Kenta Yoshinaga,; Chihiro Ishii,; Hideakira Yoshii,; Yuki Miyashita,; Nobuya Uematsu,; Yasutsugu Shiraki,; Toshiyuki Sumikama,; Junsei Chiba,; Eiji Ideguchi,; Akito Saito,; Takayuki Yamaguchi,; Isao Hachiuma,; Takeshi Suzuki,; Tetsuaki Moriguchi,; Akira Ozawa,; Takashi Ohtsubo,; Michael A. Famiano,; Hans Geissel,; Anthony S. Nettleton,; Oleg B. Tarasov,; Daniel P. Bazin,; Bradley M. Sherrill,; Shashikant L. Manikonda,; Jerry A. Nolen,

    2010-07-01

    A search for new isotopes using in-flight fission of a 345 MeV/nucleon 238U beam has been carried out at the RI Beam Factory at the RIKEN Nishina Center. Fission fragments were analyzed and identified by using the superconducting in-flight separator BigRIPS. We observed 45 new neutron-rich isotopes: 71Mn, 73,74Fe, 76Co, 79Ni, 81,82Cu, 84,85Zn, 87Ga, 90Ge, 95Se, 98Br, 101Kr, 103Rb, 106,107Sr, 108,109Y, 111,112Zr, 114,115Nb, 115,116,117Mo, 119,120Tc, 121,122,123,124Ru, 123,124,125,126Rh, 127,128Pd, 133Cd, 138Sn, 140Sb, 143Te, 145I, 148Xe, and 152Ba.

  11. In-beam gamma-ray spectroscopy of {sup 248,250,252}Cf by neutron-transfer reactions using a Cf target

    SciTech Connect

    Takahashi, R.; Ishii, T.; Asai, M.; Nagae, D.; Makii, H.; Tsukada, K.; Toyoshima, A.; Ishii, Y.; Matsuda, M.; Makishima, A.; Shizuma, T.; Kohno, T.; Ogawa, M.

    2010-05-15

    The ground-state bands of {sup 248,250,252}Cf have been established up to the 10{sup +}, 12{sup +}, and 10{sup +} states, respectively, by in-beam gamma-ray spectroscopy using neutron-transfer reactions with a 153-MeV {sup 18}O beam and a highly radioactive Cf target. The deexcitation gamma rays in {sup 248,250,252}Cf were identified by taking coincidences with outgoing particles of {sup 16-19}O measured with Si DELTAE-E detectors, and by selecting their kinetic energies. Moments of inertia of {sup 248,250,252}Cf were discussed in terms of the N=152 deformed shell gap.

  12. Localized buckling of a heavy beam on a contacting surface: A model for beam mode buckling of buried pipelines

    SciTech Connect

    Yun, H.D.; Kyriakides, S.

    1984-06-01

    The paper presents an attempt at modeling the so called 'Beam Mode Buckling' exhibited under compression in pipelines. The line is modeled as a long heavy beam on a contacting surface. The reacting surface is modeled first as an elastic and subsequently as a rigid foundation with the additional constraint that it only reacts to compressive loads. The problem is assumed to possess a localized imperfection. Under compressive axial load a section of the beam lifts off the foundation. The problem is studied through a large deflection extensional beam nonlinear formulation. The large deflection response of the beam is found to exhibit a limit load which is shown to be very imperfection sensitive. A parametric study of the problem as well as a number of examples with actual pipeline parameters are presented.

  13. Propagation properties of Laguerre-Gaussian correlated Schell-model beam in non-Kolmogorov turbulence.

    PubMed

    Zhou, Yuan; Yuan, Yangsheng; Qu, Jun; Huang, Wei

    2016-05-16

    Analytical formulas are derived for the average intensity, the root-mean-square (rms) angular width, and the M2-factor of Laguerre-Gaussian correlated Schell-model (LGCSM) beam propagating in non-Kolmogorov turbulence. The influence of the beam and turbulence parameters on the LGCSM beam is numerically calculated. It is shown that the quality of the LGCSM beam can be improved by choosing appropriate beam or turbulence parameter values. It is also found that the LGCSM beam has advantage over the Gaussian Schell-model (GSM) beam for reducing the turbulence-induced degradation. Our results will have some theoretical reference value for optical communications.

  14. Refinements in the Los Alamos model of the prompt fission neutron spectrum

    NASA Astrophysics Data System (ADS)

    Madland, D. G.; Kahler, A. C.

    2017-01-01

    This paper presents a number of refinements to the original Los Alamos model of the prompt fission neutron spectrum and average prompt neutron multiplicity as derived in 1982. The four refinements are due to new measurements of the spectrum and related fission observables many of which were not available in 1982. They are also due to a number of detailed studies and comparisons of the model with previous and present experimental results including not only the differential spectrum, but also integral cross sections measured in the field of the differential spectrum. The four refinements are (a) separate neutron contributions in binary fission, (b) departure from statistical equilibrium at scission, (c) fission-fragment nuclear level-density models, and (d) center-of-mass anisotropy. With these refinements, for the first time, good agreement has been obtained for both differential and integral measurements using the same Los Alamos model spectrum.

  15. A multi-component evaporation model for beam melting processes

    NASA Astrophysics Data System (ADS)

    Klassen, Alexander; Forster, Vera E.; Körner, Carolin

    2017-02-01

    In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.

  16. Modelling and Evaluation of Spectra in Beam Aided Spectroscopy

    SciTech Connect

    Hellermann, M. G. von; Delabie, E.; Jaspers, R.; Lotte, P.; Summers, H. P.

    2008-10-22

    The evaluation of active beam induced spectra requires advanced modelling of both active and passive features. Three types of line shapes are addressed in this paper: Thermal spectra representing Maxwellian distribution functions described by Gaussian-like line shapes, secondly broad-band fast ion spectra with energies well above local ion temperatures, and, finally, the narrow lines shapes of the equi-spaced Motion Stark multiplet (MSE) of excited neutral beam particles travelling through the magnetic field confining the plasma. In each case additional line shape broadening caused by Gaussian-like instrument functions is taken into account. Further broadening effects are induced by collision velocity dependent effective atomic rates where the observed spectral shape is the result of a convolution of emission rate function and velocity distribution function projected into the direction of observation. In the case of Beam Emission Spectroscopy which encompasses the Motional Stark features, line broadening is also caused by the finite angular spread of injected neutrals and secondly by a ripple in the acceleration voltage associated with high energy neutral beams.

  17. Assimilation of Spatio-Temporal Cosmic-Ray Neutron Data to Improve Hydrological Model Performance

    NASA Astrophysics Data System (ADS)

    Samaniego, L. E.; Schrön, M.; Kumar, R.; Zink, M.; Rosolem, R.; Rakovec, O.; Baroni, G.; Oswald, S. E.; Reinstorf, F.; Zacharias, S.

    2015-12-01

    Mesoscale hydrological models like mHM (Samaniego et al., 2010, WRR) are usually evaluated with observed discharge, which is a spatially integrated signal of the watershed. However, an accurate prediction of spatially distributed soil water content often is of higher interest for hydrologic prediction. For hydrologic models operating at intermediate to regional scales, Cosmic-Ray Neutron Sensors provide unrivaled soil moisture data which are much more representative than point data and of higher spatio-temporal resolution than most remote-sensing products. We are aiming to improve soil moisture calibration and evaluation in mHM with the support of the intermediate-scale data from cosmic-ray neutrons. The relationship between soil moisture profiles in the footprint and the corresponding cosmic-ray neutron counts is non-linear and not unique. Therefore we assimilate cosmic-ray neutron data directly by employing the nested forward model COSMIC (Shuttleworth et al. 2013, HESS), which calculates neutron counts from the modeled soil moisture. In optimization mode, mHM is able to calibrate parameters of both, the hydrological system and/or the neutron prediction model itself. Model performance is evaluated with independent measurements of soil moisture patterns from several catchment-wide TDR campaigns, time series of a Wireless Sensor Network and discharge in the small catchment "Schäfertal" (1.6 km2) in central Germany. One of the major challenges is to improve soil moisture and discharge performance simultaneously in the hydrologic model. This work is an important step towards the assimilation of continuous spatial data from mobile Cosmic Ray Sensing. The so-called TERENO:Rover delivers highly-resolved spatial patterns of water content in a whole catchment, which has a great potential to improve spatial performance of hydrological models.

  18. Modeling of dynamic effects of a low power laser beam

    NASA Technical Reports Server (NTRS)

    Lawrence, George N.; Scholl, Marija S.; Khatib, AL

    1988-01-01

    Methods of modeling some of the dynamic effects involved in laser beam propagation through the atmosphere are addressed with emphasis on the development of simple but accurate models which are readily implemented in a physical optics code. A space relay system with a ground based laser facility is considered as an example. The modeling of such characteristic phenomena as laser output distribution, flat and curved mirrors, diffraction propagation, atmospheric effects (aberration and wind shear), adaptive mirrors, jitter, and time integration of power on target, is discussed.

  19. Fast Pencil Beam Dose Calculation for Proton Therapy Using a Double-Gaussian Beam Model.

    PubMed

    da Silva, Joakim; Ansorge, Richard; Jena, Rajesh

    2015-01-01

    The highly conformal dose distributions produced by scanned proton pencil beams (PBs) are more sensitive to motion and anatomical changes than those produced by conventional radiotherapy. The ability to calculate the dose in real-time as it is being delivered would enable, for example, online dose monitoring, and is therefore highly desirable. We have previously described an implementation of a PB algorithm running on graphics processing units (GPUs) intended specifically for online dose calculation. Here, we present an extension to the dose calculation engine employing a double-Gaussian beam model to better account for the low-dose halo. To the best of our knowledge, it is the first such PB algorithm for proton therapy running on a GPU. We employ two different parameterizations for the halo dose, one describing the distribution of secondary particles from nuclear interactions found in the literature and one relying on directly fitting the model to Monte Carlo simulations of PBs in water. Despite the large width of the halo contribution, we show how in either case the second Gaussian can be included while prolonging the calculation of the investigated plans by no more than 16%, or the calculation of the most time-consuming energy layers by about 25%. Furthermore, the calculation time is relatively unaffected by the parameterization used, which suggests that these results should hold also for different systems. Finally, since the implementation is based on an algorithm employed by a commercial treatment planning system, it is expected that with adequate tuning, it should be able to reproduce the halo dose from a general beam line with sufficient accuracy.

  20. Neutron measurements

    SciTech Connect

    McCall, R.C.

    1981-01-01

    Methods of neutron detection and measurement are discussed. Topics include sources of neutrons, neutrons in medicine, interactions of neutrons with matter, neutron shielding, neutron measurement units, measurement methods, and neutron spectroscopy. (ACR)

  1. A Searchlight Beam Model of Jupiter's Decametric Radio Emissions

    NASA Astrophysics Data System (ADS)

    Imai, K.; Garcia, L.; Reyes, F.; Imai, M.; Thieman, J. R.; Ikuta, M.

    2008-12-01

    It has long been recognized that there is a marked long-term periodic variation in Jupiter's integrated radio occurrence probability. The period of the variation is on the order of a decade. Carr et al. [1970] showed that such variations are much more closely correlated with Jovicentric declination of the Earth (De). The range of the smoothed variation of De is from approximately +3.3 to -3.3 degrees. This De effect was extensively studied and confirmed by Garcia [1996]. It shows that the occurrence probability of the non-Io-A source is clearly controlled by De at 18, 20, and 22 MHz during the 1957-1994 apparitions. We propose a new model to explain the De effect. This new model shows that the beam structure of Jupiter radio emissions, which has been thought of like a hollow-cone, has a narrow beam like a searchlight, which can be explained by assuming that the three dimensional shape of the radio source expands along the line of the magnetic field. Various computer graphics illustrate the concept of this searchlight beam model.

  2. Validation of nuclear models in Geant4 using the dose distribution of a 177 MeV proton pencil beam.

    PubMed

    Hall, David C; Makarova, Anastasia; Paganetti, Harald; Gottschalk, Bernard

    2016-01-07

    A proton pencil beam is associated with a surrounding low-dose envelope, originating from nuclear interactions. It is important for treatment planning systems to accurately model this envelope when performing dose calculations for pencil beam scanning treatments, and Monte Carlo (MC) codes are commonly used for this purpose. This work aims to validate the nuclear models employed by the Geant4 MC code, by comparing the simulated absolute dose distribution to a recent experiment of a 177 MeV proton pencil beam stopping in water. Striking agreement is observed over five orders of magnitude, with both the shape and normalisation well modelled. The normalisations of two depth dose curves are lower than experiment, though this could be explained by an experimental positioning error. The Geant4 neutron production model is also verified in the distal region. The entrance dose is poorly modelled, suggesting an unaccounted upstream source of low-energy protons. Recommendations are given for a follow-up experiment which could resolve these issues.

  3. Incorporating tissue absorption and scattering in rapid ultrasound beam modeling

    NASA Astrophysics Data System (ADS)

    Christensen, Douglas; Almquist, Scott

    2013-02-01

    We have developed a new approach for modeling the propagation of an ultrasound beam in inhomogeneous tissues such as encountered with high-intensity focused ultrasound (HIFU) for treatment of various diseases. This method, called the hybrid angular spectrum (HAS) approach, alternates propagation steps between the space and the spatial frequency domains throughout the inhomogeneous regions of the body; the use of spatial Fourier transforms makes this technique considerably faster than other modeling approaches (about 10 sec for a 141 x 141 x 121 model). In HIFU thermal treatments, the acoustic absorption property of the tissues is of prime importance since it leads to temperature rise and the achievement of desired thermal dose at the treatment site. We have recently added to the HAS method the capability of independently modeling tissue absorption and scattering, the two components of acoustic attenuation. These additions improve the predictive value of the beam modeling and more accurately describes the thermal conditions expected during a therapeutic ultrasound exposure. Two approaches to explicitly model scattering were developed: one for scattering sizes smaller than a voxel, and one when the scattering scale is several voxels wide. Some anatomically realistic examples that demonstrate the importance of independently modeling absorption and scattering are given, including propagation through the human skull for noninvasive brain therapy and in the human breast for treatment of breast lesions.

  4. Modeling down-scattered neutron images from cryogenic fuel implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Raman, Kumar; Casey, Dan; Callahan, Debra; Clark, Dan; Fittinghoff, David; Grim, Gary; Hatchett, Steve; Hinkel, Denise; Jones, Ogden; Kritcher, Andrea; Seek, Scott; Suter, Larry; Merrill, Frank; Wilson, Doug

    2016-10-01

    In experiments with cryogenic deuterium-tritium (DT) fuel layers at the National Ignition Facility (NIF), an important technique for visualizing the stagnated fuel assembly is to image the 6-12 MeV neutrons created by scatters of the 14 MeV hotspot neutrons in the surrounding cold fuel. However, such down-scattered neutron images are difficult to interpret without a model of the fuel assembly, because of the nontrivial neutron kinematics involved in forming the images. For example, the dominant scattering modes are at angles other than forward scattering and the 14 MeV neutron fluence is not uniform. Therefore, the intensity patterns in these images usually do not correspond in a simple way to patterns in the fuel distribution, even for simple fuel distributions. We describe our efforts to model synthetic images from ICF design simulations with data from the National Ignition Campaign and after. We discuss the insight this gives, both to understand how well the models are predicting fuel asymmetries and to inform how to optimize the diagnostic for the types of fuel distributions being predicted. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Nonspinning black hole-neutron star mergers: A model for the amplitude of gravitational waveforms

    NASA Astrophysics Data System (ADS)

    Pannarale, Francesco; Berti, Emanuele; Kyutoku, Koutarou; Shibata, Masaru

    2013-10-01

    Black hole-neutron star binary mergers display a much richer phenomenology than black hole-black hole mergers, even in the relatively simple case—considered in this paper—in which both the black hole and the neutron star are nonspinning. When the neutron star is tidally disrupted, the gravitational wave emission is radically different from the black hole-black hole case and it can be broadly classified in two groups, depending on the spatial extent of the disrupted material. We present a phenomenological model for the gravitational waveform amplitude in the frequency domain that encompasses the three possible outcomes of the merger: no tidal disruption, “mild,” and “strong” tidal disruption. The model is calibrated to general relativistic numerical simulations using piecewise polytropic neutron star equations of state. It should prove useful to extract information on the nuclear equation of state from future gravitational-wave observations, and also to obtain more accurate estimates of black hole-neutron star merger event rates in second- and third-generation interferometric gravitational-wave detectors. We plan to extend and improve the model as longer and more accurate gravitational waveforms become available, and we will make it publicly available online as a Mathematica package. We also present in the Appendix analytical fits of the projected KAGRA noise spectral density, which should be useful in data analysis applications.

  6. Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering

    NASA Astrophysics Data System (ADS)

    He, Xiaoxian; Wang, Xiangru; Wu, Liang; Tan, Qinggui; Li, Man; Shang, Jiyang; Wu, Shuanghong; Huang, Ziqiang

    2017-01-01

    Non-mechanical laser beam steering has been reported previously in liquid crystal array devices. To be one of the most promising candidates to be practical non-mechanical laser deflector, its laser induced effect still has few theoretical model. In this paper, we propose a theoretical model to analyze this laser induced effect of LC-OPA to evaluate the deterioration on phased beam steering. The model has three parts: laser induced thermal distribution; temperature dependence of material parameters and beam steering deterioration. After these three steps, the far field of laser beam is obtained to demonstrate the steering performance with the respect to the incident laser beam power and beam waist.

  7. Boron neutron capture therapy using mixed epithermal and thermal neutron beams in patients with malignant glioma-correlation between radiation dose and radiation injury and clinical outcome

    SciTech Connect

    Kageji, Teruyoshi . E-mail: kageji@clin.med.tokushima-u.ac.jp; Nagahiro, Shinji; Matsuzaki, Kazuhito; Mizobuchi, Yoshifumi; Toi, Hiroyuki; Nakagawa, Yoshinobu; Kumada, Hiroaki

    2006-08-01

    Purpose: To clarify the correlation between the radiation dose and clinical outcome of sodium borocaptate-based intraoperative boron neutron capture therapy in patients with malignant glioma. Methods and Materials: The first protocol (P1998, n = 8) prescribed a maximal gross tumor volume (GTV) dose of 15 Gy. In 2001, a dose-escalated protocol was introduced (P2001, n 11), which prescribed a maximal vascular volume dose of 15 Gy or, alternatively, a clinical target volume (CTV) dose of 18 Gy. Results: The GTV and CTV doses in P2001 were 1.1-1.3 times greater than those in P1998. The maximal vascular volume dose of those with acute radiation injury was 15.8 Gy. The mean GTV and CTV dose in long-term survivors with glioblastoma was 26.4 and 16.5 Gy, respectively. A statistically significant correlation between the GTV dose and median survival time was found. In the 11 glioblastoma patients in P2001, the median survival time was 19.5 months and 1- and 2-year survival rate was 60.6% and 37.9%, respectively. Conclusion: Dose escalation contributed to the improvement in clinical outcome. To avoid radiation injury, the maximal vascular volume dose should be <12 Gy. For long-term survival in patients with glioblastoma after boron neutron capture therapy, the optimal mean dose of the GTV and CTV was 26 and 16 Gy, respectively.

  8. Iterative Reconstruction of Coded Source Neutron Radiographs

    SciTech Connect

    Santos-Villalobos, Hector J; Bingham, Philip R; Gregor, Jens

    2013-01-01

    Use of a coded source facilitates high-resolution neutron imaging through magnifications but requires that the radiographic data be deconvolved. A comparison of direct deconvolution with two different iterative algorithms has been performed. One iterative algorithm is based on a maximum likelihood estimation (MLE)-like framework and the second is based on a geometric model of the neutron beam within a least squares formulation of the inverse imaging problem. Simulated data for both uniform and Gaussian shaped source distributions was used for testing to understand the impact of non-uniformities present in neutron beam distributions on the reconstructed images. Results indicate that the model based reconstruction method will match resolution and improve on contrast over convolution methods in the presence of non-uniform sources. Additionally, the model based iterative algorithm provides direct calculation of quantitative transmission values while the convolution based methods must be normalized base on known values.

  9. Experimental determination of the radius of curvature of an isotropic Gaussian Schell-model beam.

    PubMed

    Zhu, Shijun; Chen, Yahong; Cai, Yangjian

    2013-02-01

    We propose a method to determine the radius of curvature of an isotropic Gaussian Schell-model (GSM) beam by measuring the transverse beam widths and the transverse coherence widths at two different planes. Furthermore, we carry out experimental determination of the radius of curvature of a GSM beam. Using the measured beam parameters, we carry out a comparative study of the propagation properties of a GSM beam both theoretically and experimentally. Our experimental results agree well with theoretical predictions.

  10. The potential of detecting intermediate-scale biomass and canopy interception in a coniferous forest using cosmic-ray neutron intensity measurements and neutron transport modeling

    NASA Astrophysics Data System (ADS)

    Andreasen, M.; Looms, M. C.; Bogena, H. R.; Desilets, D.; Zreda, M. G.; Sonnenborg, T. O.; Jensen, K. H.

    2014-12-01

    . Additionally, neutron transport modeling, using the extended version of the Monte Carlo N-Particle Transport Code, was conducted. The responses of the reference condition, different amounts of biomass, soil moisture and canopy interception on the cosmic-ray neutron intensity were simulated and compared to the measurements.

  11. Neutron-Rich {sup 62,64,64}Fe Show Enhanced Collectivity: The Washout of N = 40 in Terms of Experiment, Valence Proton Symmetry and Shell Model

    SciTech Connect

    Rother, W.; Dewald, A.; Fransen, C.; Hackstein, M.; Jolie, J.; Pissulla, Th.; Zel, K.-O.; Iwasaki, H.; Baugher, T.; Brown, B. A.; Gade, A.; Glasmacher, T.; McDaniel, S.; Ratkiewicz, A.; Voss, P.; Walsh, K. A.; Lenzi, S. M.; Ur, C. A.; Starosta, K.; Bazin, D.

    2011-10-28

    Probing shell structure at a large neutron excess has been of particular interest in recent times. Neutron-rich nuclei between the proton shell closures Z = 20 and Z = 28 offer an exotic testing ground for shell evolution. The development of the N = 40gap between neutron fp and lg{sub 9/2} shells gives rise to highly interesting variations of collectivity for nuclei in this region. While {sup 68}Ni shows doubly magic properties in level energies and transition strengths, this was not observed in neighbouring nuclei. Especially neutron-rich Fe isotopes proved particularly resistant to calculational approaches using the canonical valence space (fpg) resulting in important deviations of the predicted collectivity. Only an inclusion of the d{sub 5/2}-orbital could solve the problem [1]. Hitherto no transition strengths for {sup 66}Fe have been reported. We determined B(E2,2{sup +}{sub 1}{yields}0{sup +}{sub 1}) values from lifetimes measured with the recoil distance Doppler-shift method using the Cologne plunger for radioactive beams at National Superconducting Cyclotron Laboratory at Michigan State University. Excited states were populated by projectile Coulomb excitation for {sup 62,64,66}Fe. The data show a rise in collectivity for Fe isotopes towards N = 40. Results [2] are interpreted by means of a modified version of the Valence Proton Symmetry [3] and compared to shell model calculations using a new effective interaction recently developed for the fpgd valence space [4].

  12. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors

    NASA Astrophysics Data System (ADS)

    Recktenwald, Geoff; Deinert, Mark

    2010-03-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks.

  13. Pulsar average waveforms and hollow cone beam models

    NASA Technical Reports Server (NTRS)

    Backer, D. C.

    1975-01-01

    An analysis of pulsar average waveforms at radio frequencies from 40 MHz to 15 GHz is presented. The analysis is based on the hypothesis that the observer sees one cut of a hollow-cone beam pattern and that stationary properties of the emission vary over the cone. The distributions of apparent cone widths for different observed forms of the average pulse profiles (single, double/unresolved, double/resolved, triple and multiple) are in modest agreement with a model of a circular hollow-cone beam with random observer-spin axis orientation, a random cone axis-spin axis alignment, and a small range of physical hollow-cone parameters for all objects.

  14. Loss of accuracy using smeared properties in composite beam modeling

    NASA Astrophysics Data System (ADS)

    Liu, Ning

    Advanced composite materials have broad, proven applications in many engineering systems ranging from sports equipment sectors to components on the space shuttle because of their lightweight characteristics and significantly high stiffness. Together with this merit of composite materials is the challenge of improving computational simulation process for composites analysis. Composite structures, particularly composite laminates, usually consist of many layers with different lay-up angles. The anisotropic and heterogeneous features render 3D finite element analysis (FEA) computationally expensive in terms of the computational time and the computing power. At the constituent level, composite materials are heterogeneous. But quite often one homogenizes each layer of composites, i.e. lamina, and uses the homogenized material properties as averaged (smeared) values of those constituent materials for analysis. This is an approach extensively used in design and analysis of composite laminates. Furthermore, many industries tempted to use smeared properties at the laminate level to further reduce the model of composite structures. At this scale, smeared properties are averaged material properties that are weighted by the layer thickness. Although this approach has the advantage of saving computational time and cost of modeling significantly, the prediction of the structural responses may not be accurate, particularly the pointwise stress distribution. Therefore, it is important to quantify the loss of accuracy when one uses smeared properties. In this paper, several different benchmark problems are carefully investigated in order to exemplify the effect of the smeared properties on the global behavior and pointwise stress distribution of the composite beam. In the classical beam theory, both Newtonian method and variational method include several ad hoc assumptions to construct the model, however, these assumptions are avoided if one uses variational asymptotic method. VABS

  15. L-Boronophenylalanine-Mediated Boron Neutron Capture Therapy for Malignant Glioma Progressing After External Beam Radiation Therapy: A Phase I Study

    SciTech Connect

    Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna; Vaelimaeki, Petteri; Beule, Annette; Collan, Juhani; Kortesniemi, Mika; Uusi-Simola, Jouni; Kotiluoto, Petri; Auterinen, Iiro; Seren, Tom; Paetau, Anders; Saarilahti, Kauko; Savolainen, Sauli; Joensuu, Heikki

    2011-06-01

    Purpose: To investigate the safety of boronophenylalanine-mediated boron neutron capture therapy (BNCT) in the treatment of malignant gliomas that progress after surgery and conventional external beam radiation therapy. Methods and Materials: Adult patients who had histologically confirmed malignant glioma that had progressed after surgery and external beam radiotherapy were eligible for this Phase I study, provided that >6 months had elapsed from the last date of radiation therapy. The first 10 patients received a fixed dose, 290 mg/kg, of L-boronophenylalanine-fructose (L-BPA-F) as a 2-hour infusion before neutron irradiation, and the remaining patients were treated with escalating doses of L-BPA-F, either 350 mg/kg, 400 mg/kg, or 450 mg/kg, using 3 patients on each dose level. Adverse effects were assessed using National Cancer Institute Common Toxicity Criteria version 2.0. Results: Twenty-two patients entered the study. Twenty subjects had glioblastoma, and 2 patients had anaplastic astrocytoma, and the median cumulative dose of prior external beam radiotherapy was 59.4 Gy. The maximally tolerated L-BPA-F dose was reached at the 450 mg/kg level, where 4 of 6 patients treated had a grade 3 adverse event. Patients who were given >290 mg/kg of L-BPA-F received a higher estimated average planning target volume dose than those who received 290 mg/kg (median, 36 vs. 31 Gy [W, i.e., a weighted dose]; p = 0.018). The median survival time following BNCT was 7 months. Conclusions: BNCT administered with an L-BPA-F dose of up to 400 mg/kg as a 2-hour infusion is feasible in the treatment of malignant gliomas that recur after conventional radiation therapy.

  16. Neutron measurements in the stray field produced by 158 GeV c(-1) per nucleon lead ion beams.

    PubMed

    Agosteo, S; Birattari, C; Foglio Para, A; Nava, E; Silari, M; Ulrici, L

    1998-12-01

    This paper discusses measurements carried out at CERN in the stray radiation field produced by 158 GeV c(-1) per nucleon 208Pb82+ ions. The purpose was to test and intercompare the response of several detectors, mainly neutron measuring devices, and to determine the neutron spectral fluence as well as the microdosimetric (absorbed dose and dose equivalent) distributions in different locations around the shielding. Both active instruments and passive dosimeters were employed, including different types of Andersson-Braun rem counters, a tissue equivalent proportional counter, a set of superheated drop detectors, a Bonner sphere system, and different types of ion chambers. Activation measurements with 12C plastic scintillators and with 32S pellets were also performed to assess the neutron yield of high energy lead ions interacting with a thin gold target. The results are compared with previous measurements and with measurements made during proton runs.

  17. Radiobiological intercomparison of p(45)+Be and p(65)+Be neutron beams for lung tolerance in mice after single and fractionated irradiation.

    PubMed

    Grégoire, V; Beauduin, M; Gueulette, J; De Coster, B M; Octave-Prignot, M; Vynckier, S; Wambersie, A

    1993-01-01

    The lung tolerance in mice after single and fractionated irradiations with p(45)+Be and p(65)+Be neutrons produced at the isochronous cyclotron "CYCLONE" of Louvain-la-Neuve (Belgium) was studied. Cobalt-60 gamma rays were used for control irradiations. The end point was the dose which was lethal to 50% of the mice by 180 days (LD50/180). On a log-log plot, the slope (+/- SE) of the relationship between total isoeffect dose and fraction number decreases from 0.34 +/- 0.01 for gamma rays to 0.19 +/- 0.01 for p(65)+Be and 0.12 +/- 0.01 for p(45)+Be neutrons. The data have been analyzed using the linear-quadratic (LQ) model. The alpha/beta ratio (+95% confidence interval) increases from 5.3 (4.3-6.4) for gamma rays to 20.7 (16.7-24.9) for p(65)+Be and 37.9 (25.8-65.8) for p(45)+Be. The RBEs of neutrons relative to gamma rays were estimated from the LQ parameters, to 1.15 and 1.19 for a dose of 14 Gy gamma rays and 2.02 and 2.47 for a dose of 2 Gy gamma rays for p(65)+Be and p(45)+Be neutrons, respectively. The neutron RBE of the p(45)+Be relative to the p(65)+Be calculated from the ratio of their respective RBEs relative to gamma rays reaches 1.03 and 1.23 for doses of 14 and 2 Gy gamma-ray equivalent, respectively. These data are compared with other published data on lung tolerance after irradiation with lower-energy neutrons and with data obtained previously in our laboratory on mouse jejunum and Vicia faba.

  18. Rigorous joining of advanced reduced-dimensional beam models to three-dimensional finite element models

    NASA Astrophysics Data System (ADS)

    Song, Huimin

    In the aerospace and automotive industries, many finite element analyses use lower-dimensional finite elements such as beams, plates and shells, to simplify the modeling. These simplified models can greatly reduce the computation time and cost; however, reduced-dimensional models may introduce inaccuracies, particularly near boundaries and near portions of the structure where reduced-dimensional models may not apply. Another factor in creation of such models is that beam-like structures frequently have complex geometry, boundaries and loading conditions, which may make them unsuitable for modeling with single type of element. The goal of this dissertation is to develop a method that can accurately and efficiently capture the response of a structure by rigorous combination of a reduced-dimensional beam finite element model with a model based on full two-dimensional (2D) or three-dimensional (3D) finite elements. The first chapter of the thesis gives the background of the present work and some related previous work. The second chapter is focused on formulating a system of equations that govern the joining of a 2D model with a beam model for planar deformation. The essential aspect of this formulation is to find the transformation matrices to achieve deflection and load continuity on the interface. Three approaches are provided to obtain the transformation matrices. An example based on joining a beam to a 2D finite element model is examined, and the accuracy of the analysis is studied by comparing joint results with the full 2D analysis. The third chapter is focused on formulating the system of equations for joining a beam to a 3D finite element model for static and free-vibration problems. The transition between the 3D elements and beam elements is achieved by use of the stress recovery technique of the variational-asymptotic method as implemented in VABS (the Variational Asymptotic Beam Section analysis). The formulations for an interface transformation matrix and

  19. Average intensity and directionality of partially coherent model beams propagating in turbulent ocean.

    PubMed

    Wu, Yuqian; Zhang, Yixin; Zhu, Yun

    2016-08-01

    We studied Gaussian beams with three different partially coherent models, including the Gaussian-Schell model (GSM), Laguerre-Gaussian Schell model (LGSM), and Bessel-Gaussian Schell model (BGSM), propagating through oceanic turbulence. The expressions of average intensity, beam spreading, and beam wander for GSM, LGSM, and BGSM beams in the paraxial channel are derived. We make a contrast for the three models in numerical simulations and find that the GSM beam has smaller spreading than the others, and the LGSM beam needs longer propagation distance to transform into a well-like profile of average intensity than the BGSM beam in the same conditions. The salinity fluctuation has a greater contribution to the wander of LGSM and BGSM beams than that of the temperature fluctuation. Our results can be helpful in the design of an optical wireless communication link operating in oceanic environment.

  20. Analytic estimates of secondary neutron dose in proton therapy.

    PubMed

    Anferov, V

    2010-12-21

    Proton beam losses in various components of a treatment nozzle generate secondary neutrons, which bring unwanted out of field dose during treatments. The purpose of this study was to develop an analytic method for estimating neutron dose to a distant organ at risk during proton therapy. Based on radiation shielding calculation methods proposed by Sullivan, we developed an analytical model for converting the proton beam losses in the nozzle components and in the treatment volume into the secondary neutron dose at a point of interest. Using the MCNPx Monte Carlo code, we benchmarked the neutron dose rates generated by the proton beam stopped at various media. The Monte Carlo calculations confirmed the validity of the analytical model for simple beam stop geometry. The analytical model was then applied to neutron dose equivalent measurements performed on double scattering and uniform scanning nozzles at the Midwest Proton Radiotherapy Institute (MPRI). Good agreement was obtained between the model predictions and the data measured at MPRI. This work provides a method for estimating analytically the neutron dose equivalent to a distant organ at risk. This method can be used as a tool for optimizing dose delivery techniques in proton therapy.

  1. Fast-neutron total and scattering cross sections of sup 58 Ni and nuclear models

    SciTech Connect

    Smith, A.B.; Guenther, P.T.; Whalen, J.F. ); Chiba, S. . Tokai Research Establishment)

    1991-07-01

    The neutron total cross sections of {sup 58}Ni were measured from {approx} 1 to > 10 MeV using white-source techniques. Differential neutron elastic-scattering cross sections were measured from {approx} 4.5 to 10 MeV at {approx} 0.5 MeV intervals with {ge} 75 differential values per distribution. Differential neutron inelastic-scattering cross sections were measured, corresponding to fourteen levels with excitations up to 4.8 MeV. The measured results, combined with relevant values available in the literature, were interpreted in terms of optical-statistical and coupled-channels model using both vibrational and rotational coupling schemes. The physical implications of the experimental results nd their interpretation are discussed in the contexts of optical-statistical, dispersive-optical, and coupled-channels models. 61 refs.

  2. Model of defect reactions and the influence of clustering in pulse-neutron-irradiated Si

    SciTech Connect

    Myers, S. M.; Cooper, P. J.; Wampler, W. R.

    2008-08-15

    Transient reactions among irradiation defects, dopants, impurities, and carriers in pulse-neutron-irradiated Si were modeled taking into account the clustering of the primal defects in recoil cascades. Continuum equations describing the diffusion, field drift, and reactions of relevant species were numerically solved for a submicrometer spherical volume, within which the starting radial distributions of defects could be varied in accord with the degree of clustering. The radial profiles corresponding to neutron irradiation were chosen through pair-correlation-function analysis of vacancy and interstitial distributions obtained from the binary-collision code MARLOWE, using a spectrum of primary recoil energies computed for a fast-burst fission reactor. Model predictions of transient behavior were compared with a variety of experimental results from irradiated bulk Si, solar cells, and bipolar-junction transistors. The influence of defect clustering during neutron bombardment was further distinguished through contrast with electron irradiation, where the primal point defects are more uniformly dispersed.

  3. Building Relativistic Mean-Field Models for Atomic Nuclei and Neutron Stars

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Chia; Piekarewicz, Jorge

    2014-03-01

    Nuclear energy density functional (EDF) theory has been quite successful in describing nuclear systems such as atomic nuclei and nuclear matter. However, when building new models, attention is usually paid to the best-fit parameters only. In recent years, focus has been shifted to the neighborhood around the minimum of the chi-square function as well. This powerful covariance analysis is able to provide important information bridging experiments, observations, and theories. In this work, we attempt to build a specific type of nuclear EDFs, the relativistic mean-field models, which treat atomic nuclei, nuclear matter, and neutron stars on the same footing. The application of covariance analysis can reveal correlations between observables of interest. The purpose is to elucidate the alleged relations between the neutron skin of heavy nuclei and the size of neutron stars, and to develop insight into future investigations.

  4. Neutron field for boron neutron capture therapy

    SciTech Connect

    Kanda, K.; Kobayashi, T.

    1986-01-01

    Recently, the development of an epithermal neutron source has been required by medical doctors for deeper neutron penetrations, which is to be used for deep tumor treatment and diagnosis of metastasis. Several attempts have already been made to realize an epithermal neutron field, such as the undermoderated neutron beam, the filtered neutron beam, and the use of a fission plate. At present, these facilities can not be used for actual therapy. For the treatment of deep tumor, another method has been also proposed in normal water in the body is replaced by heavy water to attain a deeper neutron penetration. At Kyoto University's Research Reactor Institute, almost all physics problems have been settled relative to thermal neutron capture therapy that has been used for treating brain tumors and for biological experiments on malignant melanoma. Very recently feasibility studies to use heavy water have been started both theoretically and experimentally. The calculation shows the deeper penetration of neutrons as expected. Two kinds of experiments were done by using the KUR guide tube: 1. Thermal neutron penetration measurement. 2. Heavy water uptake in vitro sample. In addition to the above experiment using heavy water, the development of a new epithermal neutron source using a large fission plate is in progress, which is part of a mockup experiment of an atomic bomb field newly estimated.

  5. Neutron and gamma sensitivities of self-powered detectors: Monte Carlo modelling

    SciTech Connect

    Vermeeren, Ludo

    2015-07-01

    This paper deals with the development of a detailed Monte Carlo approach for the calculation of the absolute neutron sensitivity of SPNDs, which makes use of the MCNP code. We will explain the calculation approach, including the activation and beta emission steps, the gamma-electron interactions, the charge deposition in the various detector parts and the effect of the space charge field in the insulator. The model can also be applied for the calculation of the gamma sensitivity of self-powered detectors and for the radiation-induced currents in signal cables. The model yields detailed information on the various contributions to the sensor currents, with distinct response times. Results for the neutron sensitivity of various types of SPNDs are in excellent agreement with experimental data obtained at the BR2 research reactor. For typical neutron to gamma flux ratios, the calculated gamma induced SPND currents are significantly lower than the neutron induced currents. The gamma sensitivity depends very strongly upon the immediate detector surroundings and on the gamma spectrum. Our calculation method opens the way to a reliable on-line determination of the absolute in-pile thermal neutron flux. (authors)

  6. Modeling the tagged-neutron UXO identification technique using the Geant4 toolkit

    SciTech Connect

    Zhou Y.; Mitra S.; Zhu X.; Wang Y.

    2011-10-16

    It is proposed to use 14 MeV neutrons tagged by the associated particle neutron time-of-flight technique (APnTOF) to identify the fillers of unexploded ordnances (UXO) by characterizing their carbon, nitrogen and oxygen contents. To facilitate the design and construction of a prototype system, a preliminary simulation model was developed, using the Geant4 toolkit. This work established the toolkit environment for (a) generating tagged neutrons, (b) their transport and interactions within a sample to induce emission and detection of characteristic gamma-rays, and (c) 2D and 3D-image reconstruction of the interrogated object using the neutron and gamma-ray time-of-flight information. Using the modeling, this article demonstrates the novelty of the tagged-neutron approach for extracting useful signals with high signal-to-background discrimination of an object-of-interest from that of its environment. Simulations indicated that an UXO filled with the RDX explosive, hexogen (C{sub 3}H{sub 6}O{sub 6}N{sub 6}), can be identified to a depth of 20 cm when buried in soil.

  7. Fast-neutron total and scattering cross sections of {sup 58}Ni and nuclear models

    SciTech Connect

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.; Lawson, R.D.; Chiba, S.

    1991-12-31

    An extensive experimental and theoretical study of the fast-neutron interaction with {sup 58}Ni was undertaken. The neutron total cross sections of {sup 58}Ni were measured from {approx} 1 to > 10 MeV using white source techniques. Differential neutron elastic-scattering cross sections were measured from {approx} 4.5 to 10 MeV at {approx} 0.5 Mev intervals with {ge} 75 differential values per distribution. Differential neutron inelastic-scattering cross sections were measured, corresponding to fourteen levels with excitations up to {approx} 4.8 Mev. The measured results, combined with lower-energy values previously obtained at this laboratory and with relevant values available in the literature, were interpreted in terms of optical-statistical, dispersive-optical and coupled-channels models using both vibrational and rotational coupling schemes. The physical implications of the experimental results and their interpretation are discussed. The considerations are being extended to collective vibrational nuclei generally, exploring the potential for utilizing electro-magnetic matrix elements, deduced from experiment or predicted by the shell model, to determine the strengths of the neutron interaction. Detailed aspects of this work are given in the Laboratory Report, ANL/NDM-120 (in press). 9 refs., 10 figs.

  8. Fast-neutron total and scattering cross sections of sup 58 Ni and nuclear models

    SciTech Connect

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.; Lawson, R.D.; Chiba, S.

    1991-01-01

    An extensive experimental and theoretical study of the fast-neutron interaction with {sup 58}Ni was undertaken. The neutron total cross sections of {sup 58}Ni were measured from {approx} 1 to > 10 MeV using white source techniques. Differential neutron elastic-scattering cross sections were measured from {approx} 4.5 to 10 MeV at {approx} 0.5 Mev intervals with {ge} 75 differential values per distribution. Differential neutron inelastic-scattering cross sections were measured, corresponding to fourteen levels with excitations up to {approx} 4.8 Mev. The measured results, combined with lower-energy values previously obtained at this laboratory and with relevant values available in the literature, were interpreted in terms of optical-statistical, dispersive-optical and coupled-channels models using both vibrational and rotational coupling schemes. The physical implications of the experimental results and their interpretation are discussed. The considerations are being extended to collective vibrational nuclei generally, exploring the potential for utilizing electro-magnetic matrix elements, deduced from experiment or predicted by the shell model, to determine the strengths of the neutron interaction. Detailed aspects of this work are given in the Laboratory Report, ANL/NDM-120 (in press). 9 refs., 10 figs.

  9. Ion probe beam experiments and kinetic modeling in a dense plasma focus Z-pinch

    SciTech Connect

    Schmidt, A. Ellsworth, J. Falabella, S. Link, A. McLean, H. Rusnak, B. Sears, J. Tang, V.; Welch, D.

    2014-12-15

    The Z-pinch phase of a dense plasma focus (DPF) emits multiple-MeV ions in a ∼cm length. The mechanisms through which these physically simple devices generate such high energy beams in a relatively short distance are not fully understood. We are exploring the origins of these large gradients using measurements of an ion probe beam injected into a DPF during the pinch phase and the first kinetic simulations of a DPF Z-pinch. To probe the accelerating fields in our table top experiment, we inject a 4 MeV deuteron beam along the z-axis and then sample the beam energy distribution after it passes through the pinch region. Using this technique, we have directly measured for the first time the acceleration of an injected ion beam. Our particle-in-cell simulations have been benchmarked on both a kJ-scale DPF and a MJ-scale DPF. They have reproduced experimentally measured neutron yields as well as ion beams and EM oscillations which fluid simulations do not exhibit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for accelerator and neutron source applications.

  10. Axisymmetric toroidal modes of general relativistic magnetized neutron star models

    SciTech Connect

    Asai, Hidetaka; Lee, Umin E-mail: lee@astr.tohoku.ac.jp

    2014-07-20

    We calculate axisymmetric toroidal modes of magnetized neutron stars with a solid crust in the general relativistic Cowling approximation. We assume that the interior of the star is threaded by a poloidal magnetic field, which is continuous at the surface with an outside dipole field. We examine the cases of the field strength B{sub S} ∼ 10{sup 16} G at the surface. Since separation of variables is not possible for the oscillations of magnetized stars, we employ finite series expansions for the perturbations using spherical harmonic functions. We find discrete normal toroidal modes of odd parity, but no toroidal modes of even parity are found. The frequencies of the toroidal modes form distinct mode sequences and the frequency in a given mode sequence gradually decreases as the number of radial nodes of the eigenfunction increases. From the frequency spectra computed for neutron stars of different masses, we find that the frequency is almost exactly proportional to B{sub S} and is well represented by a linear function of R/M for a given B{sub S}, where M and R are the mass and radius of the star. The toroidal mode frequencies for B{sub S} ∼ 10{sup 15} G are in the frequency range of the quasi-periodic oscillations (QPOs) detected in the soft-gamma-ray repeaters, but we find that the toroidal normal modes cannot explain all the detected QPO frequencies.

  11. Helicon plasma generator-assisted surface conversion ion source for the production of H(-) ion beams at the Los Alamos Neutron Science Center.

    PubMed

    Tarvainen, O; Rouleau, G; Keller, R; Geros, E; Stelzer, J; Ferris, J

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H(-) beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H(-) converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H(-) ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H(-) ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H(-) production (main discharge) in order to further improve the brightness of extracted H(-) ion beams.

  12. Neutron Lifetime Measurement Using Magnetically Trapped Ultracold Neutrons

    NASA Astrophysics Data System (ADS)

    Huffer, Craig; Huffman, P. R.; Schelhammer, K. W.; Dewey, M. S.; Huber, M. G.; Hughes, P. P.; Mumm, H. P.; Thompson, A. K.; Coakley, K.; Yue, A. T.; O'Shaughnessy, C. M.

    2017-01-01

    The neutron beta-decay lifetime is important in both nuclear astrophysics and in understanding weak interactions in the framework of the Standard Model. An experiment based at the NIST Center for Neutron Research was designed to address statistical and systematic limitations of former measurements. In our approach, a beam of 0.89 nm neutrons is incident on a superfluid 4He target within the minimum field region of an Ioffe-type magnetic trap. Some of the neutrons are subsequently downscattered by single phonons in the helium to low energies (< 100 neV) and those in the appropriate spin state become trapped. The inverse process, upscattering of UCN, is suppressed by the low phonon density in the < 300 mK helium, allowing the neutron to travel undisturbed through the helium. When the neutron decays the energetic electron produces a scintillation signal in the helium that is detected in real time using photomultiplier tubes. The current measurement is limited by larger than expected systematic corrections. We will discuss the result of the latest dataset and comment on the potential of future measurements.

  13. Gaussian-Schell-model beams propagating through rough gratings.

    PubMed

    Torcal-Milla, Francisco Jose; Sanchez-Brea, Luis Miguel

    2011-03-01

    In this work we analyze the near-field intensity distribution produced by a rough grating illuminated with a Gaussian-Schell-model beam. This kind of grating is formed by rough and smooth slits. Statistical techniques are used to describe the grating, and the Fresnel approach is used to perform the propagation of light. Two kinds of coherence affect the light propagation. One of them comes from the light beam, since it is not totally coherent. The other one comes from the rough topography of the grating surface. We have found that the Talbot effect is not present just after the grating, but it gradually increases. In addition, the contrast of the self-images decreases from a certain distance due to the coherence properties of the illumination beam. Then, the self-imaging process is only present between two specific distances from the grating. To corroborate the analytical results, we have performed numerical simulations for the mean intensity distribution based on the Sommerfeld-Rayleigh approach, showing their validity.

  14. Radiation transport analyses in support of the SNS Target Station Neutron Beam Line Shutters Title I Design

    SciTech Connect

    Miller, T.M.; Pevey, R.E.; Lillie, R.A.; Johnson, J.O.

    2000-12-01

    A detailed radiation transport analysis of the Spallation Neutron Source (SNS) shutters is important for the construction of the SNS because of its impact on conventional facility design, normal operation of the facility, and maintenance operations. Thus far the analysis of the SNS shutter travel gaps has been completed. This analysis was performed using coupled Monte Carlo and multi-dimensional discrete ordinates calculations.

  15. Pulsed-neutron monochromator

    DOEpatents

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  16. Pulsed-neutron monochromator

    DOEpatents

    Mook, Jr., Herbert A.

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  17. Neutron Lifetime Measurements

    NASA Astrophysics Data System (ADS)

    Nico, J. S.

    2006-11-01

    Precision measurements of neutron beta decay address basic questions in nuclear and particle physics, astrophysics, and cosmology. As the simplest semileptonic decay system, the free neutron plays an important role in understanding the physics of the weak interaction, and improving the precision of the neutron lifetime is fundamental to testing the validity of the theory. The neutron lifetime also directly affects the relative abundance of primordial helium in big bang nucleosynthesis. There are two distinct strategies for measuring the lifetime. Experiments using cold neutrons measure the absolute specific activity of a beam of neutrons by counting decay protons; experiments using confined, ultracold neutrons determine the lifetime by counting neutrons that remain after some elapsed time. The status of the recent lifetime measurements using both of these techniques is discussed.

  18. Neutron Lifetime Measurements

    SciTech Connect

    Nico, J. S.

    2006-11-17

    Precision measurements of neutron beta decay address basic questions in nuclear and particle physics, astrophysics, and cosmology. As the simplest semileptonic decay system, the free neutron plays an important role in understanding the physics of the weak interaction, and improving the precision of the neutron lifetime is fundamental to testing the validity of the theory. The neutron lifetime also directly affects the relative abundance of primordial helium in big bang nucleosynthesis. There are two distinct strategies for measuring the lifetime. Experiments using cold neutrons measure the absolute specific activity of a beam of neutrons by counting decay protons; experiments using confined, ultracold neutrons determine the lifetime by counting neutrons that remain after some elapsed time. The status of the recent lifetime measurements using both of these techniques is discussed.

  19. Neutron removal cross section as a measure of neutron skin

    SciTech Connect

    Fang, D. Q.; Ma, Y. G.; Cai, X. Z.; Tian, W. D.; Wang, H. W.

    2010-04-15

    We study the relation between neutron removal cross section (sigma{sub -N}) and neutron skin thickness for finite neutron-rich nuclei using the statistical abrasion ablation model. Different sizes of neutron skin are obtained by adjusting the diffuseness parameter of neutrons in the Fermi distribution. It is demonstrated that there is a good linear correlation between sigma{sub -N} and the neutron skin thickness for neutron-rich nuclei. Further analysis suggests that the relative increase of neutron removal cross section could be used as a quantitative measure for neutron skin thickness in neutron-rich nuclei.

  20. Time reversal invariance in polarized neutron decay

    SciTech Connect

    Wasserman, E.G.

    1994-03-01

    An experiment to measure the time reversal invariance violating (T-violating) triple correlation (D) in the decay of free polarized neutrons has been developed. The detector design incorporates a detector geometry that provides a significant improvement in the sensitivity over that used in the most sensitive of previous experiments. A prototype detector was tested in measurements with a cold neutron beam. Data resulting from the tests are presented. A detailed calculation of systematic effects has been performed and new diagnostic techniques that allow these effects to be measured have been developed. As the result of this work, a new experiment is under way that will improve the sensitivity to D to 3 {times} 10{sup {minus}4} or better. With higher neutron flux a statistical sensitivity of the order 3 {times} 10{sup {minus}5} is ultimately expected. The decay of free polarized neutrons (n {yields} p + e + {bar v}{sub e}) is used to search for T-violation by measuring the triple correlation of the neutron spin polarization, and the electron and proton momenta ({sigma}{sub n} {center_dot} p{sub p} {times} p{sub e}). This correlation changes sign under reversal of the motion. Since final state effects in neutron decay are small, a nonzero coefficient, D, of this correlation indicates the violation of time reversal invariance. D is measured by comparing the numbers of coincidences in electron and proton detectors arranged symmetrically about a longitudinally polarized neutron beam. Particular care must be taken to eliminate residual asymmetries in the detectors or beam as these can lead to significant false effects. The Standard Model predicts negligible T-violating effects in neutron decay. Extensions to the Standard Model include new interactions some of which include CP-violating components. Some of these make first order contributions to D.