Science.gov

Sample records for neutron cd sn

  1. Thermal neutron capture cross-section to 113Cd isomer for the study of s-process origin of 115Sn

    NASA Astrophysics Data System (ADS)

    Hayakawa, Takehito; Shizuma, Toshiyuki; Chiba, Satoshi; Kajino, Toshitaka; Hatsukawa, Yuichi; Iwamoto, Nobuyuki; Shinohara, Nobuo; Harada, Hideo

    2010-06-01

    The astrophysical origin of a p-nucleus 115Sn has remained still an open question. The nucleus 115Sn may be produced by a weak branch of the s-process through a β-unstable isomer in 113Cd. However, a neutron capture cross-section to this isomer has not been measured with high accuracy at any energy. A neutron capture cross-section for the 112Cd(n,γ)113Cdm reaction has been measured with neutrons provided from a nuclear reactor. The nucleus 115Sn may be produced by a nucleosynthesis flow through 113Cdm in the s-process. We have obtained the thermal neutron capture cross-section of 0.028+/-0.009 [b] and the resonance integral of 1.1+/-0.3 [b] using a cadmium difference method. The cross-section ratio of the isomer to the ground state has been calculated as a function of the incident neutron energy, E, by using a statistical model. The calculated ratios are almost constant over a wide range of E<100 keV. We have evaluated the s-process contribution to the solar abundance of 115Sn using the classical steady-flow model. This calculated result has shown that the production through 113Cdm may be minor contribution to 115Sn.

  2. Quadrupole Collectivity in Neutron Deficient Sn Isotopes

    NASA Astrophysics Data System (ADS)

    Gade, Alexandra

    2014-03-01

    One of the overarching goals of nuclear physics is the development of a comprehensive model of the atomic nucleus with predictive power across the nuclear chart. Of particular importance for the development of nuclear models is experimental data that consistently track the effect of isospin and changed binding, for example. The chain of Sn isotopes has been a formidable testing ground for nuclear models as some spectroscopic data is available from N = Z = 50 100Sn in the proximity of the proton dripline to 134Sn, beyond the very neutron-rich doubly magic nucleus 132Sn. In even-even nuclei, the electromagnetic quadrupole excitation strength is a measure of quadrupole collectivity, sensitive to the presence of shell gaps, nuclear deformation, and nucleon-nucleon correlations, for example. In the Sn isotopes, this transition strength has been reported from 104Sn to 130Sn, spanning a chain of 14 even-even Sn isotopes. The trend is asymmetric with respect to midshell and not even the largest-scale shell-model calculations have been able to describe the evolution of transition strength across the isotopic chain without varying effective charges. Implications will be discussed. This work was supported by the National Science Foundation under Grant No. PHY-1102511.

  3. Neutron single particle structure in 131Sn and direct neutron capture cross sections.

    PubMed

    Kozub, R L; Arbanas, G; Adekola, A S; Bardayan, D W; Blackmon, J C; Chae, K Y; Chipps, K A; Cizewski, J A; Erikson, L; Hatarik, R; Hix, W R; Jones, K L; Krolas, W; Liang, J F; Ma, Z; Matei, C; Moazen, B H; Nesaraja, C D; Pain, S D; Shapira, D; Shriner, J F; Smith, M S; Swan, T P

    2012-10-26

    Recent calculations suggest that the rate of neutron capture by (130)Sn has a significant impact on late-time nucleosynthesis in the r process. Direct capture into low-lying bound states is expected to be significant in neutron capture near the N=82 closed shell, so r-process reaction rates may be strongly impacted by the properties of neutron single particle states in this region. In order to investigate these properties, the (d,p) reaction has been studied in inverse kinematics using a 630 MeV beam of (130)Sn (4.8 MeV/u) and a (CD(2))(n) target. An array of Si strip detectors, including the Silicon Detector Array and an early implementation of the Oak Ridge Rutgers University Barrel Array, was used to detect reaction products. Results for the (130)Sn(d, p)(131)Sn reaction are found to be very similar to those from the previously reported (132)Sn(d, p)(133)Sn reaction. Direct-semidirect (n,γ) cross section calculations, based for the first time on experimental data, are presented. The uncertainties in these cross sections are thus reduced by orders of magnitude from previous estimates. PMID:23215181

  4. Neutron single particle structure in 131Sn and direct neutron capture cross sections

    SciTech Connect

    Kozub, R. L.; Arbanas, Goran; Adekola, A. S.; Bardayan, Daniel W; Blackmon, Jeffery C; Chae, Kyung Yuk; Chipps, K.; Cizewski, J. A.; Erikson, Luke; Hatarik, Robert; Hix, William Raphael; Jones, K. L.; Krolas, W.; Liang, J Felix; Ma, Z.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; Pain, Steven D; Shapira, Dan; ShrinerJr., J. F.; Smith, Michael Scott; Swan, T. P.

    2012-01-01

    Recent calculations suggest that the rate of neutron capture by 130Sn has a significant impact on late-time nucleosynthesis in the r-process. Direct capture into low-lying bound states is expected to be significant in neutron capture near the N=82 closed shell, so r- process reaction rates may be strongly impacted by the properties of neutron single particle states in this region. In order to investigate these properties, the (d, p) reaction has been studied in inverse kinematics using a 630 MeV beam of 130Sn (4.8 MeV/u) and a (CD2)n target. An array of Si strip detectors, including SIDAR and an early implementation of the ORRUBA, was used to detect reaction products. Results for the 130Sn(d, p)131Sn reaction are found to be very similar to those from the previously reported 132Sn(d, p)133Sn reaction. Direct-semidirect (n, ) cross section calculations, based for the first time on experimental data, are presented. The uncertainties in these cross sections are thus reduced by orders of magnitude from previous estimates.

  5. Quadrupole collectivity of neutron-rich nuclei around 132Sn

    NASA Astrophysics Data System (ADS)

    Kröll, Th.; Behrens, T.; Krücken, R.; Bildstein, V.; Faestermann, T.; Gernhäuser, R.; Mahgoub, M.; Maierbeck, P.; Münch, M.; Weinzierl, W.; Ames, F.; Habs, D.; Kester, O.; Lutter, R.; Morgan, T.; Pasini, M.; Rudolph, K.; Thirolf, P.; Diriken, J.; Huyse, M.; Ivanov, O.; Mayet, P.; Patronis, N.; Stefanescu, I.; van de Walle, J.; van Duppen, P.; Niedermaier, O.; Scheit, H.; Schwalm, D.; Eberth, J.; Finke, F.; Martin, D.; Reiter, P.; Scherillo, A.; Seidlitz, M.; Warr, N.; Weisshaar, D.; Iwanicki, J.; Butler, P.; Cederkäll, J.; Clément, E.; Delahaye, P.; Fraile, L. M.; Georgiev, G.; Köster, U.; Sieber, T.; Voulot, D.; Wenander, F.; Franchoo, S.; Hurst, A.; Ekström, A.; Kent, P. E.; Speidel, K.-H.; Leske, J.; Schielke, S.; Jungclaus, A.; Modamio, V.; Walker, J.; Coquard, L.; Pantea, M.; Pietralla, N.; Davinson, T.; Nardelli, S.

    2008-05-01

    We report on the ``safe'' Coulomb excitation of neutron-rich Cd, Xe, and Ba isotopes in the vicinity of the doubly-magic nucleus 132Sn. The radioactive nuclei have been produced by ISOLDE at CERN and postaccelerated by the REX-ISOLDE facility. The γ-decay of excited states has been detected by the MINIBALL array. The presented preliminary results for the B(E2) values are consistent with expectations from phenomenological systematics and will be compared with theoretical calculations.

  6. In-beam studies of {sup 98}Cd and {sup 102}Sn

    SciTech Connect

    Lipoglavsek, M. |; Gorska, M.; Schubart, R.

    1996-12-31

    For the first time excited states of the neutron deficient nuclei {sup 98}Cd and {sup 102}Sn were identified using in-beam spectroscopy following fusion evaporation reactions. Half lives of long lived isomeric states in both nuclei were also measured. Due to very low cross sections for producing {sup 98}Cd and {sup 102}Sn with stable beams and targets, a special detector setup utilizing NORDBALL ancillary detectors and a recoil catcher device was used. High {gamma}-ray detection efficiency was achieved with two EUROBALL Ge cluster detectors.

  7. Neutron single particle structure in 131Sn and the r-process

    SciTech Connect

    Kozub, R. L.; Bardayan, Daniel W; Adekola, Aderemi S; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Cizewski, J. A.; Erikson, Luke; Hatarik, Robert; Jones, K. L.; Krolas, W.; Liang, J Felix; Ma, Zhanwen; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; Pain, Steven D; Shapira, Dan; ShrinerJr., J. F.; Smith, Michael Scott; Swan, T. P.

    2009-01-01

    Recent calculations suggest that, at late times in the r-process, the rate of neutron capture by {sup 130}Sn has a significant impact on nucleosynthesis. Direct capture into low-lying bound states is likely the dominant reaction in the r-process near the N=82 closed shell, so reaction rates are strongly impacted by the properties of neutron single particle states in this region. In order to investigate these properties, we have acquired (d,p) reaction data in the A{approx}132 region in inverse kinematics using {approx}630 MeV beams (4.85 MeV/u for {sup 130}Sn) and CD{sub 2} targets. An array of Si strip detectors, including SIDAR and an early implementation of the new Oak Ridge Rutgers University Barrel Array (ORRUBA), was used to detect reaction products. Preliminary results for the {sup 130}Sn(d,p){sup 131}Sn experiment are reported.

  8. Proton-neutron versus α -like correlations above 100Sn

    NASA Astrophysics Data System (ADS)

    Baran, V. V.; Delion, D. S.

    2016-09-01

    It is known that the α particle reduced width has the largest values in the region above 100Sn, and this behavior is usually attributed to the proton-neutron correlations. To reproduce the reduced α -decay width we use an additional pocket-like surface potential in the single-particle mean field that simulates four-body correlations. We show that the strength of this interaction has a universal linear dependence on the experimental reduced width above the double magic nuclei 100Sn and 208Pb. Moreover, we demonstrate that proton-neutron pairing correlations have a small influence on this dependence and therefore cannot explain the larger reduced decay widths above 100Sn. We give an indication of the possibility of detecting Sn +n α structures as dipole Pigmy-like resonances.

  9. BaCdSnS4 and Ba3CdSn2S8: syntheses, structures, and non-linear optical and photoluminescence properties.

    PubMed

    Zhen, Ni; Wu, Kui; Wang, Ying; Li, Qiang; Gao, Wenhui; Hou, Dianwei; Yang, Zhihua; Jiang, Huaidong; Dong, Yongjun; Pan, Shilie

    2016-06-28

    Two non-centrosymmetric metal chalcogenides, BaCdSnS4 and Ba3CdSn2S8, were synthesized using a high temperature solid-state reaction in an evacuated silica tube. Although the two compounds have the same building units in their structures, namely CdS4, SnS4 and BaS8 units, both of them have different structures. BaCdSnS4 crystallizes in the orthorhombic space group Fdd2 and its structure can be characterized by the two-dimensional ∞[Cd-Sn-S] layers composed of corner- and edge-sharing CdS4 and SnS4 tetrahedra with Ba atoms located between the two adjacent ∞[Cd-Sn-S] layers. Ba3CdSn2S8 crystallizes in the space group I4[combining macron]3d of the orthorhombic system and the CdS4 and SnS4 groups are connected with each other via corner-sharing to form a three-dimensional framework, which is different from the 2D ∞[Cd-Sn-S] layer structure in BaCdSnS4. The UV-vis-NIR diffuse-reflectance spectra show that the experimental band gaps are about 2.30 eV for BaCdSnS4 and 2.75 eV for Ba3CdSn2S8, respectively. IR and Raman measurement results indicate that their transparent ranges are up to 25 μm. Second-order NLO measurements show that BaCdSnS4 exhibits strong powder second-harmonic generation (SHG) intensities at 2.09 μm laser pumping that are ∼5 and 0.7 times that of AgGaS2 in the particle size 38-55 and 150-200 μm, respectively, whereas Ba3CdSn2S8 only exhibits SHG intensities of about 0.8 and 0.1 times that of AgGaS2 at the same particle sizes. The origin of the NLO response in BaCdSnS4 may originate from the macroscopic arrangement of the SnS4 and CdS4 tetrahedra. Furthermore, the photoluminescence properties of the two compounds have also been investigated and show obvious blue and green light emission. PMID:27272926

  10. Coulomb Excitation of Neutron-Rich Cd Isotopes at REX-ISOLDE

    SciTech Connect

    Kroell, Th.; Behrens, T.; Kruecken, R.; Faestermann, T.; Gernhaeuser, R.; Mahgoub, M.; Maierbeck, P.; Habs, D.; Kester, O.; Lutter, R.; Morgan, T.; Pasini, M.; Rudolph, K.; Thirolf, P.; Bildstein, V.; Niedermaier, O.; Scheit, H.; Schwalm, D.; Martin, D.; Warr, N.

    2005-11-21

    We report on the 'safe' Coulomb excitation of neutron-rich Cd isotopes in the vicinity of the doubly magic nucleus 132Sn. The radioactive nuclei have been produced by ISOLDE at CERN and postaccelerated by the REX-ISOLDE facility. The {gamma}-decay of excited states has been detected by the MINIBALL array. Preliminary results for the B(E2) values of 122,124Cd are consistent with expectations from phenomenological systematics.

  11. Neutron densities in 120Sn observed by polarized proton scattering

    NASA Astrophysics Data System (ADS)

    Sakaguchi, H.; Takeda, H.; Taki, T.; Yosoi, M.; Itoh, M.; Kawabata, T.; Ishikawa, T.; Uchida, M.; Tsukahara, N.; Noro, T.; Yoshimura, M.; Fujimura, H.; Yoshida, H.; Obayashi, E.; Tamii, A.; Akimune, H.

    2001-06-01

    Cross sections, analyzing powers and spin rotation parameters of proton elastic scattering from 58Ni and 120Sn have been measured at intermediate energies. By elastic scattering off N~=Z nuclei like 58Ni at intermediate energies we can study medium modification of the nucleon-nucleon (NN) interaction inside the nucleus, because proton distributions in target nuclei are constrained by charge distributions measured by electron scattering and neutron distributions can be assumed to be the same as proton's. In order to explain our experimental data of 58Ni at large scattering angles, it was found to be necessary to use experimental densities deduced from charge densities measured by electron scattering and to modify the coupling constants and the masses of exchanged σ and ω mesons in the RIA, assuming linear dependencies of meson properties to nuclear densities. Parameters of the medium effect have been searched to reproduce the data. For N≠Z nuclei, neutron density distribution can be extracted from the elastic scattering, assuming the same medium modifications fixed by the 58Ni data and using proton distributions obtained from charge distributions. We have searched neutron density distributions obtained from charge distributions. We have searched neutron density distribution so as to reproduce 120Sn data at the proton incident energy of 300 MeV. Deduced neutron distribution has an increase at the nuclear center, which is consistent with the 3s1/2 orbit wave function as expected in 120Sn. At energies other than 300 MeV, experimental data of 120Sn have been also well reproduced by the neutron distribution obtained at 300 MeV. .

  12. Band structure and Optical properties CdTe and CdSn3Te4 thin films

    NASA Astrophysics Data System (ADS)

    Venkatachalam, T.; Velumani, S.; Ganesan, S.; Sakthivel, K.

    2008-04-01

    CdTe and CdSn3Te4 compounds were prepared by direct reaction of their high purity elemental constituents using rotating furnace. Optimal deposition conditions for the deposition of CdTe and CdSn3Te4 thin films in hot wall evaporation setup were simulated using Monte Carlo technique. Thin films of CdTe and CdSn3Te4 were deposited on glass substrates by hot wall evaporation method. From the XRD measurements it was found that the films of CdTe and CdSn3Te4 were of cubic zinc-blende and rock salt structures respectively. The lattice parameters were determined as a = 6.476 Å (CdTe) and a = 6.238 Å (CdSn3Te4) from the XRD data. The UV-Vis-NIR optical transmittance spectra of thin films of different films were obtained and it was found that the direct optical band gaps were 1.4 eV (CdTe) and 0.8 eV (CdSn3Te4). Electronic structure, band parameters and optical spectra of CdTe and CdSn3Te4 were calculated from ab initio studies within the GGA approximation. The experimental results were in good agreement with the theoretical values.

  13. The Effect of High-Resistance SnO2 on CdS/CdTe Device Performance

    SciTech Connect

    Li, W.; Ribelin, R.; Mahathongdy, Y.; Albin, D.; Dhere, R.; Rose, D.; Asher, S.; Moutinho, H.; Sheldon, P.

    1998-10-06

    In this paper, we have studied the effect of high-resistance SnO2 buffer layers, deposited by low-pressure chemical-vapor deposition, on CdS/CdTe device performance. Our results indicate that when CdS/CdTe devices have a very thin layer of CdS or no CdS at all, the i-SnO2 buffer layer helps to increase device efficiency. When the CdS layer is thicker than 600{angstrom}, the device performance is dominated by CdS thickness, not the i-SnO2 layer. If a very thin CdS layer is to be used to enhance device performance, we conclude that a better SnO2 buffer layer is needed.

  14. Excitation strengths in 109Sn: Single-neutron and collective excitations near 100Sn

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Cederkall, J.; Fahlander, C.; Ekström, A.; Hjorth-Jensen, M.; Albers, M.; Bildstein, V.; Blazhev, A.; Darby, I.; Davinson, T.; De Witte, H.; Diriken, J.; Fransen, Ch.; Geibel, K.; Gernhäuser, R.; Görgen, A.; Hess, H.; Iwanicki, J.; Lutter, R.; Reiter, P.; Scheck, M.; Seidlitz, M.; Siem, S.; Taprogge, J.; Tveten, G. M.; Van de Walle, J.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.

    2012-09-01

    A set of B(E2) values for the low-lying excited states in the radioactive isotope 109Sn were deduced from a Coulomb excitation experiment. The 2.87-MeV/u radioactive beam was produced at the REX-ISOLDE facility at CERN and was incident on a secondary 58Ni target. The B(E2) values were determined using the known 2+→0+ reduced transition probability in 58Ni as normalization with the semiclassical Coulomb excitation code gosia2. The transition probabilities are compared to shell-model calculations based on a realistic nucleon-nucleon interaction and the predictions of a simple core-excitation model. This measurement represents the first determination of multiple B(E2) values in a light Sn nucleus using the Coulomb excitation technique with low-energy radioactive beams. The results provide constraints for the single-neutron states relative to 100Sn and also indicate the importance of both single-neutron and collective excitations in the light Sn isotopes.

  15. 6+ isomers in neutron-rich Sn isotopes beyond N =82 and effective interactions

    NASA Astrophysics Data System (ADS)

    Maheshwari, Bhoomika; Jain, Ashok Kumar; Srivastava, P. C.

    2015-02-01

    Recent observation of the 6+ seniority isomers and measurements of the B (E 2 ) values in the Sn-138134 isotopes lying close to the neutron drip line have raised some questions about the validity of the currently used effective interactions in the neutron-rich region. Simpson et al. [Phys. Rev. Lett. 113, 132502 (2014), 10.1103/PhysRevLett.113.132502] had to modify the diagonal and nondiagonal ν f7/2 2 two-body matrix elements of the V l k interaction by ˜150 keV in their shell model calculations in order to explain the data of 136Sn. In contrast, we are able to explain the observed energy levels and the B (E 2 ) values after marginal reduction of the same set of matrix elements by 25 keV in the RCDB (renormalized CD-Bonn) interaction. The observed mismatch in reproducing the data of 136Sn is due to the seniority mixing. Further, we do not find it necessary to consider the core excitations, and the RCDB interaction seems better suited to explain the data beyond N =82 magic number.

  16. Charge transfer and mobility enhancement at CdO/SnTe heterointerfaces

    SciTech Connect

    Nishitani, Junichi; Yu, Kin Man; Walukiewicz, Wladek

    2014-09-29

    We report a study of the effects of charge transfer on electrical properties of CdO/SnTe heterostructures. A series of structures with variable SnTe thicknesses were deposited by RF magnetron sputtering. Because of an extreme type III band offset with the valence band edge of SnTe located at 1.5 eV above the conduction band edge of CdO, a large charge transfer is expected at the interface of the CdO/SnTe heterostructure. The electrical properties of the heterostructures are analyzed using a multilayer charge transport model. The analysis indicates a large 4-fold enhancement of the CdO electron mobility at the interface with SnTe. The mobility enhancement is attributed to reduction of the charge center scattering through neutralization of the donor-like defects responsible for the Fermi level pinning at the CdO/SnTe interface.

  17. High-performance ultraviolet photodetectors based on CdS/CdS:SnS2 superlattice nanowires

    NASA Astrophysics Data System (ADS)

    Gou, Guangyang; Dai, Guozhang; Qian, Chuan; Liu, Yufeng; Fu, Yan; Tian, Zhenyang; He, Yinke; Kong, Lingan; Yang, Junliang; Sun, Jia; Gao, Yongli

    2016-07-01

    CdS heterostructure nanomaterials are attractive for their potential applications in integrated optoelectronic devices. Herein, the high-quality CdS/CdS:SnS2 superlattice nanowires were synthesized through a micro-environmental controlled co-evaporation technique, which shows periodic emission properties and that their structures are periodic and alternating. For the first time, we demonstrate the fabrication of high-performance ultraviolet photodetectors using unique CdS/CdS:SnS2 superlattice nanowires. The optoelectronic properties of the photodetectors were studied and compared to those devices based on pure CdS nanowires. The as-fabricated photodetectors (under 365 nm) based on CdS/CdS:SnS2 superlattice nanowires showed a high photocurrent to dark current ratio of 105, a large photoresponsivity of 2.5 × 103 A W-1, a fast response time of 10 ms and an excellent external quantum efficiency of 8.6 × 105 at room temperature, which shows better performance than pure CdS nanowires photodetectors. The results indicate that CdS/CdS:SnS2 superlattice nanowires are very promising potential candidates in nanoscale electronic and optoelectronic devices.CdS heterostructure nanomaterials are attractive for their potential applications in integrated optoelectronic devices. Herein, the high-quality CdS/CdS:SnS2 superlattice nanowires were synthesized through a micro-environmental controlled co-evaporation technique, which shows periodic emission properties and that their structures are periodic and alternating. For the first time, we demonstrate the fabrication of high-performance ultraviolet photodetectors using unique CdS/CdS:SnS2 superlattice nanowires. The optoelectronic properties of the photodetectors were studied and compared to those devices based on pure CdS nanowires. The as-fabricated photodetectors (under 365 nm) based on CdS/CdS:SnS2 superlattice nanowires showed a high photocurrent to dark current ratio of 105, a large photoresponsivity of 2.5 × 103 A W-1, a

  18. Viscoelastic behavior over a wide range of time and frequency in tin alloys: SnCd and SnSb

    SciTech Connect

    Quackenbush, J.; Brodt, M.; Lakes, R.S.

    1996-08-01

    All materials exhibit some viscoelastic response, which can manifest itself as creep, relaxation, or, if the load is sinusoidal in time, a phase angle {delta} between stress and strain. Recently, a study of pure elements with low melting points, Cd, In, Pb, and Sn disclosed that cadmium exhibited a substantial loss tangent of 0.03 to 0.04 over much of the audio range of frequencies, combined with a moderate stiffness G = 20.7 GPa. Lead, by contrast, exhibited tan {delta} of 0.005 to 0.016 in the audio range. Indium exhibited a high loss tangent exceeding 0.1 at very low frequency. A eutectic alloy of indium and tin was found to exhibit substantial damping exceeding 0.1 below 0.1 Hz, and this alloy was used to make a composite exhibiting high stiffness and high damping. It is the purpose of this communication to present viscoelastic properties of two additional low melting point alloys, SnCd and SnSb. Both InSn and SnSb are used as solders. Although the melting point of Sb is 630.74 C, T{sub H} > 0.55 at ambient temperature for the alloy of SnSb (95 wt% Sn/5 wt% Sb) which melts near 240 C. Eutectic SnCd melts at 177 C so T{sub H} {approx} 0.65 at room temperature.

  19. Studies of Nuclei Close to 132Sn Using Single-Neutron Transfer Reactions

    SciTech Connect

    Jones, K. L.; Pain, S. D.; Kozub, R. L.; Adekola, Aderemi S; Bardayan, Daniel W; Blackmon, Jeff C; Catford, Wilton N; Chae, K. Y.; Chipps, K.; Cizewski, J. A.; Erikson, Luke; Gaddis, A. L.; Greife, U.; Grzywacz, R. K.; Harlin, Christopher W; Hatarik, Robert; Howard, Joshua A; James, J.; Kapler, R.; Krolas, W.; Liang, J Felix; Ma, Zhanwen; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Patterson, N. P.; Paulauskas, Stanley; Shapira, Dan; ShrinerJr., J. F.; Sikora, M.; Sissom, D. J.; Smith, Michael Scott; Swan, T. P.; Thomas, J. S.; Wilson, Gemma L

    2009-01-01

    Neutron transfer reactions were performed in inverse kinematics using radioactive ion beams of 132Sn, 130Sn, and 134Te and deuterated polyethylene targets. Preliminary results are presented. The Q-value spectra for 133Sn, 131Sn and 135Te reveal a number of previously unobserved peaks. The angular distributions are compatible with the expected lf7/2 nature of the ground state of 133Sn, and 2p3/2 for the 3.4 MeV state in 131Sn.

  20. Studies of nuclei close to {sup 132}Sn using single-neutron transfer reactions

    SciTech Connect

    Jones, K. J.; Pain, S. D.; Kozub, R. L.; Howard, J. A.; O'Malley, P. D.; Paulauskas, S. V.; Shriner, J. F.; Sissom, D. J.; Adekola, A. S.; Bardayan, D. W.; Blackmon, J. C.; Liang, J. F.; Nesaraja, C. D.; Shapira, D.; Smith, M. S.; Catford, W. N.; Harlin, C.; Patterson, N. P.; Swan, T. P.; Wilson, G. L.

    2009-03-04

    Neutron transfer reactions were performed in inverse kinematics using radioactive ion beams of {sup 132}Sn, {sup 130}Sn, and {sup 134}Te and deuterated polyethylene targets. Preliminary results are presented. The Q-value spectra for {sup 133}Sn, {sup 131}Sn and {sup 135}Te reveal a number of previously unobserved peaks. The angular distributions are compatible with the expected lf{sub 7/2} nature of the ground state of {sup 133}Sn, and 2p{sub 3/2} for the 3.4 MeV state in {sup 131}Sn.

  1. Cation Exchange Combined with Kirkendall Effect in the Preparation of SnTe/CdTe and CdTe/SnTe Core/Shell Nanocrystals.

    PubMed

    Jang, Youngjin; Yanover, Diana; Čapek, Richard Karel; Shapiro, Arthur; Grumbach, Nathan; Kauffmann, Yaron; Sashchiuk, Aldona; Lifshitz, Efrat

    2016-07-01

    Controlling the synthesis of narrow band gap semiconductor nanocrystals (NCs) with a high-quality surface is of prime importance for scientific and technological interests. This Letter presents facile solution-phase syntheses of SnTe NCs and their corresponding core/shell heterostructures. Here, we synthesized monodisperse and highly crystalline SnTe NCs by employing an inexpensive, nontoxic precursor, SnCl2, the reactivity of which was enhanced by adding a reducing agent, 1,2-hexadecanediol. Moreover, we developed a synthesis procedure for the formation of SnTe-based core/shell NCs by combining the cation exchange and the Kirkendall effect. The cation exchange of Sn(2+) by Cd(2+) at the surface allowed primarily the formation of SnTe/CdTe core/shell NCs. Further continuation of the reaction promoted an intensive diffusion of the Cd(2+) ions, which via the Kirkendall effect led to the formation of the inverted CdTe/SnTe core/shell NCs. PMID:27331900

  2. Microstructure and thermo-electrical transport properties of Cd-Sn alloys

    SciTech Connect

    Ari, M. Saatci, B.; Guenduez, M.; Meydaneri, F.; Bozoklu, M.

    2008-05-15

    The thermophysical transport properties of Cd-Sn alloys have been investigated for six samples. The electrical resistivity measurements were obtained by using a standard dc four-point probe technique in the temperature range of 300 K-550 K. The resistivity of samples increases linearly with temperature and the electrical current mainly flows through the Sn phase channel. The electrical conductivity of samples is inversely proportional to temperature. Also, thermal conductivity of the Cd-Sn alloys was determined. The phonon component contribution of thermal conductivity dominates the thermal conduction processes at T < 500 K. The electronic component contribution of thermal conductivity affects the thermal transport process at T > 500 K. The thermal conductivity of the Cd-Sn alloys also depends on the grain size and grain boundary of the pure Cd and the pure Sn phases in the matrix. The temperature coefficient of resistivity was also determined, which is independent with the alloying elements.

  3. Neutron Capture on 130Sn during r-Process Freeze-Out

    SciTech Connect

    Beun, Joshua; Blackmon, Jeffery C; Hix, William Raphael; Mclaughlin, Gail C; Smith, Michael Scott; Surman, Rebecca

    2009-01-01

    We examine the role of neutron capture on {sup 130}Sn during r-process freeze-out in the neutrino-driven wind environment of the core-collapse supernova. We find that the global r-process abundance pattern is sensitive to the magnitude of the neutron capture cross section of {sup 130}Sn. The changes to the abundance pattern include not only a relative decrease in the abundance of {sup 130}Sn and an increase in the abundance of {sup 131}Sn, but also a shift in the distribution of material in the rare earth and third peak regions.

  4. Structural changes at large angular momentum in neutron-rich Cd,123121

    NASA Astrophysics Data System (ADS)

    Rejmund, M.; Navin, A.; Bhattacharyya, S.; Caamaño, M.; Clément, E.; Delaune, O.; Farget, F.; de France, G.; Jacquot, B.; Lemasson, A.

    2016-02-01

    Prompt γ rays of isotopically identified neutron-rich isotopes of Cd, produced in transfer- and fusion-fission induced by the 238U beam at 6.2 MeV/u on a 9Be target, were measured using the EXOGAM γ -ray detector array and the magnetic spectrometer VAMOS++. New results for the level scheme of Cd,123121, extending to relatively large angular momentum are reported. The energy levels above 2-MeV excitation energy, are found to differ from those observed in lighter isotopes of Cd indicating a change in structure in these more neutron-rich nuclei. These states are not explained by large-scale shell model calculations, that explain well the structure of the underlying Sn isotopes and the neighboring even-A Cd isotopes. The present data, especially for the odd-A nuclei, point to a deficiency in the matrix elements related to the p-n residual interaction and provide a new domain for testing widely used shell model interactions employed for understanding the evolution of structure in neutron-rich nuclei.

  5. Quadrupole collectivity in neutron-rich Cd isotopes

    NASA Astrophysics Data System (ADS)

    Bönig, S.; Kröll, Th; Ilieva, S.; Scheck, M.; Is411; Is477; Is524; Miniball Collaborations

    2015-02-01

    The proximity to the closed shells at Z = 50 and N = 82 makes the neutron-rich Cd isotopes a perfect test case for nuclear theories. The energy of the first excited 2+-state in the even 122-128 shows an irregular behaviour as the Cd isotopes exhibit only a slight increase for 122Cd to 126Cd and even a decrease from 126Cd to 128Cd. This anomaly can so far not be reproduced by shell model calculations. Only beyond mean field calculations with a resultant prolate deformation are capable to describe this anomalous behaviour. In order to gain more information about the neutron-rich Cd isotopes a Coulomb excitation experiment was performed with MINIBALL at REX-ISOLDE, CERN. The extracted transition strengths B (E2,0+gs → 2+1) for 122,124,126,128Cd agree with beyond mean field calculations. The spectroscopic quadrupole moments Qs (2+1) are compared with measurements on odd neutron-rich Cd isotopes.

  6. Synthesis and Study of Gel Calcined Cd-Sn Oxide Nanocomposites

    NASA Astrophysics Data System (ADS)

    De, Arijit; Kundu, Susmita

    2016-07-01

    Cd-Sn oxide nanocomposites were synthesized by sol-gel method from precursor sol containing Cd:Sn = 2:1 and 1:1 mol ratio. Instead of coprecipitation, a simple novel gel calcination route was followed. Cd (NO3)2. 4H2O and SnCl4. 5H2O were used as starting materials. Gel was calcined at 1050 °C for 2 h to obtain nanocomposites. XRD analysis reveals the presence of orthorhombic, cubic Cd2SnO4 along with orthorhombic, hexagonal CdSnO3 phases in both the composites. SEM and TEM studies indicate the development of nanocomposites of different shapes suggesting different degrees of polymerization in precursor sol of different composition. UV-Vis absorption spectra show a blue shift for both the composites compared to bulk values. Decrease of polarization with frequency, dipole contribution to the polarization, and more sensitivity to ethanol vapor were observed for the nanocomposite derived from precursor sol containing Cd:Sn = 2:1 mol ratio.

  7. Neutrinos from SN 1987A and cooling of the nascent neutron star

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.; Loredo, Thomas J.; Melia, Fulvio

    1988-01-01

    The implications of the detection of neutrinos from SN 1987A for the cooling of the nascent neutron star are considered. The nu-bar(e) number N, the apparent temperature, the cooling time scale measured by the Kamioka and IMB detectors, and the inferred neutron star apparent radius and binding energy are all found to provide striking verification of current supernova theory.

  8. Targeting Colorectal Cancer Stem-Like Cells with Anti-CD133 Antibody-Conjugated SN-38 Nanoparticles.

    PubMed

    Ning, Sin-Tzu; Lee, Shin-Yu; Wei, Ming-Feng; Peng, Cheng-Liang; Lin, Susan Yun-Fan; Tsai, Ming-Hsien; Lee, Pei-Chi; Shih, Ying-Hsia; Lin, Chun-Yen; Luo, Tsai-Yueh; Shieh, Ming-Jium

    2016-07-20

    Cancer stem-like cells play a key role in tumor development, and these cells are relevant to the failure of conventional chemotherapy. To achieve favorable therapy for colorectal cancer, PEG-PCL-based nanoparticles, which possess good biological compatibility, were fabricated as nanocarriers for the topoisomerase inhibitor, SN-38. For cancer stem cell therapy, CD133 (prominin-1) is a theoretical cancer stem-like cell (CSLC) marker for colorectal cancer and is a proposed therapeutic target. Cells with CD133 overexpression have demonstrated enhanced tumor-initiating ability and tumor relapse probability. To resolve the problem of chemotherapy failure, SN-38-loaded nanoparticles were conjugated with anti-CD133 antibody to target CD133-positive (CD133(+)) cells. In this study, anti-CD133 antibody-conjugated SN-38-loaded nanoparticles (CD133Ab-NPs-SN-38) efficiently bound to HCT116 cells, which overexpress CD133 glycoprotein. The cytotoxic effect of CD133Ab-NPs-SN-38 was greater than that of nontargeted nanoparticles (NPs-SN-38) in HCT116 cells. Furthermore, CD133Ab-NPs-SN-38 could target CD133(+) cells and inhibit colony formation compared with NPs-SN-38. In vivo studies in an HCT116 xenograft model revealed that CD133Ab-NPs-SN-38 suppressed tumor growth and retarded recurrence. A reduction in CD133 expression in HCT116 cells treated with CD133Ab-NPs-SN-38 was also observed in immunohistochemistry results. Therefore, this CD133-targeting nanoparticle delivery system could eliminate CD133-positive cells and is a potential cancer stem cell targeted therapy. PMID:27348241

  9. Gamma-ray cascade transitions from resonant neutron capture in Cd-111 and Cd-113

    SciTech Connect

    Rusev, Gencho Y.

    2012-08-27

    A neutron-capture experiment on {sup nat}Cd has been carried out at DANCE. Multiple-fold coincidence {gamma}-ray spectra have been collected from J=0, 1 resonances in {sup 111}Cd and {sup 113}Cd. The cascades ending at the ground state can be described by the SLO model while the cascades ending at the 2+ states are better reproduced by the mixed SLO+KMF model.

  10. Similarity of nuclear structure in the {sup 132}Sn and {sup 208}Pb regions: Proton-neutron multiplets

    SciTech Connect

    Coraggio, L.; Gargano, A.; Covello, A.; Itaco, N.

    2009-08-15

    Starting from the striking similarity of proton-neutron multiplets in {sup 134}Sb and {sup 210}Bi, we perform a shell-model study of nuclei with two additional protons or neutrons to find out to what extent this analogy persists. We employ effective interactions derived from the CD-Bonn nucleon-nucleon potential renormalized by use of the V{sub low-k} approach. The calculated results for {sup 136}Sb, {sup 212}Bi, {sup 136}I, and {sup 212}At are in very good agreement with the available experimental data. The similarity between {sup 132}Sn and {sup 208}Pb regions is discussed in connection with the effective interaction, emphasizing the role of core polarization effects.

  11. Magic nucleus 132Sn and its one-neutron-hole neighbor 131Sn.

    PubMed

    Bhattacharyya, P; Daly, P J; Zhang, C T; Grabowski, Z W; Saha, S K; Broda, R; Fornal, B; Ahmad, I; Seweryniak, D; Wiedenhöver, I; Carpenter, M P; Janssens, R V; Khoo, T L; Lauritsen, T; Lister, C J; Reiter, P; Blomqvist, J

    2001-08-01

    Prompt and delayed gamma-ray cascades in doubly magic 132Sn and its neighbor 131Sn have been studied at Gammasphere using a 248Cm fission source. Isotopic assignments of unknown gamma rays were based on coincidences with known transitions in A = 112-116 Pd fission partners. The yrast level spectra of both tin nuclei are interpreted using empirical nucleon-nucleon interactions from the 132Sn and 208Pb regions. Results include identification of the (nuf(7/2)h(-1)(11/2))9(+) aligned state in 132Sn and of extensive (nuf(7/2)h(-2)(11/2)), (nuf(7/2)d(-1)(3/2)h(-1)(11/2)) and (nuh(-1)(11/2)x3(-)) multiplets in 131Sn. The previously reported beta(-) decay of an unusual 131In high-spin isomer to levels in 131Sn is also elucidated. PMID:11497825

  12. Neutron scattering investigations of the partially ordered pyrochlore Tb2Sn2O7

    SciTech Connect

    Gardner, Jason; Ehlers, Georg; Rule, K; Qiu, Y.; Moskvin, E; Kiefer, K; Gerischer, S

    2009-01-01

    Neutron scattering measurements have been performed on polycrystalline Tb{sub 2}Sn{sub 2}O{sub 7} at temperatures above and below that of the phase transition, T{sub N} = 0.87 K, to investigate further the spin dynamics in the magnetically ordered state. In particular, new neutron spin echo results are presented showing a dependence on Q in the dynamics. We show evidence of the coexistence of static ferromagnetism and dynamically fluctuating spins down to 30 mK and we make a comparison of this partially ordered system to the spin liquid Tb{sub 2}Sn{sub 2}O{sub 7}.

  13. Adsorption of Cd2+ ions on plant mediated SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Haq, Sirajul; Rehman, Wajid; Waseem, Muhammad; Shahid, Muhammad; Mahfooz-ur-Rehman; Hussain Shah, Khizar; Nawaz, Mohsan

    2016-10-01

    Plant mediated SnO2 nanoparticles were synthesized by using SnCl4.5H2O as a precursor material. The nanoparticles were then characterized for BET surface area measurements, energy dispersive x-rays (EDX), scanning electron microscopy (SEM), UV–vis diffuse reflectance (DRS) spectra and x-rays diffraction (XRD) analysis. The successful synthesis of SnO2 nanoparticles was confirmed by EDX analysis. The particle sizes were in the range 19–27 nm whereas the crystallite size computed from XRD measurement was found to be 19.9 nm. Batch adsorption technique was employed for the removal of Cd2+ ions from aqueous solution. The sorption studies of Cd2+ ions were performed at pHs 4 and 6. The equilibrium concentration of Cd2+ ions was determined by atomic absorption spectrometer (flame mode). The uptake of Cd2+ ions was affected by initial concentration, pH and temperature of the electrolytic solution. It was observed that the adsorption of Cd2+ ions enhanced with increase in the initial concentration of Cd2+ ions whereas a decrease in the percent adsorption was detected. From the thermodynamic parameters, the adsorption process was found spontaneous and endothermic in nature. The n values confirmed 2:1 exchange mechanism between surface protons and Cd2+ ions.

  14. First-Principles Study on Cd Doping in Cu2ZnSnS4 and Cu2ZnSnSe4

    NASA Astrophysics Data System (ADS)

    Maeda, Tsuyoshi; Nakamura, Satoshi; Wada, Takahiro

    2012-10-01

    To quantitatively evaluate the substitution energies of Cd atom for Cu, Zn, or Sn atom in indium-free photovoltaic semiconductors Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe), first-principles pseudopotential calculations using plane-wave basis functions were performed. The substitution energies of Cd atom in kesterite-type CZTS and CZTSe were calculated in consideration of the atomic chemical potentials of the constituent elements of Cu, Zn, Sn, and the doping atom of Cd. During the chemical bath deposition (CBD) of the CdS layer on the CZTS or CZTSe layer, Cu, Zn, and Cd atoms dissolved in the ammonia aqueous solution and formed [Cu(NH3)2]+, [Zn(NH3)4]2+, and [Cd(NH3)4]2+ complex ions. Therefore, the chemical potentials of Cu, Zn, and Cd atoms in [Cu(NH3)2]+, [Zn(NH3)4]2+, and [Cd(NH3)4]2+ complex ions were calculated. We found that the substitution energies of n-type CdCu and charge-neutral CdZn in CZTS and CZTSe are smaller than that of p-type CdSn. The substitution energies of CdCu in CZTS and CZTSe are smaller than that in chalcopyrite-type CuInSe2 (CIS). However, the substitution energies of CdCu, CdZn, and CdSn are positive values. The formation energy of charge-neutral Cd doping with the Cu vacancy (CdCu + VCu) pair is a negative value and greatly smaller than those of donor-type CdCu and neutral CdZn in CZTS and CZTSe. These results indicate that the charge-neutral (CdCu + VCu) vacancy pair is easily formed during the CBD of the CdS layer on the CZTS or CZTSe layer. A small amount of n-type CdCu and neutral CdZn would also be formed.

  15. Surface structure of CdS layer at the interface of CdS-SnO2 junction and the diagram of surface states

    NASA Astrophysics Data System (ADS)

    Caraman, I.; Lazar, I.; Caraman, M.; Rusu, D.

    2009-01-01

    The SnO2-CdS type structures with SnO2 film deposited by thermal pirolize in SnCl4-etanol solution were obtained. The CdS film with submicron thickness was obtained in cvasiclosed volume. The transversal section of the SnO2-CdS junction as well as the outer surface of the CdS film was analyzed using the electronic microscope. The density of the crystallization germs in the CdS film was about 1013cm-2. The luminescence spectrum of CdS has been examined. The existence of exciton line (n=1) in reflection and emission spectrum serves as a criteria of crystalline perfection of surface film.

  16. Atomistic description of thiostannate-capped CdSe nanocrystals: retention of four-coordinate SnS4 motif and preservation of Cd-rich stoichiometry.

    PubMed

    Protesescu, Loredana; Nachtegaal, Maarten; Voznyy, Oleksandr; Borovinskaya, Olga; Rossini, Aaron J; Emsley, Lyndon; Copéret, Christophe; Günther, Detlef; Sargent, Edward H; Kovalenko, Maksym V

    2015-02-11

    Colloidal semiconductor nanocrystals (NCs) are widely studied as building blocks for novel solid-state materials. Inorganic surface functionalization, used to displace native organic capping ligands from NC surfaces, has been a major enabler of electronic solid-state devices based on colloidal NCs. At the same time, very little is known about the atomistic details of the organic-to-inorganic ligand exchange and binding motifs at the NC surface, severely limiting further progress in designing all-inorganic NCs and NC solids. Taking thiostannates (K4SnS4, K4Sn2S6, K6Sn2S7) as typical examples of chalcogenidometallate ligands and oleate-capped CdSe NCs as a model NC system, in this study we address these questions through the combined application of solution (1)H NMR spectroscopy, solution and solid-state (119)Sn NMR spectroscopy, far-infrared and X-ray absorption spectroscopies, elemental analysis, and by DFT modeling. We show that through the X-type oleate-to-thiostannate ligand exchange, CdSe NCs retain their Cd-rich stoichiometry, with a stoichiometric CdSe core and surface Cd adatoms serving as binding sites for terminal S atoms of the thiostannates ligands, leading to all-inorganic (CdSe)core[Cdm(Sn2S7)yK(6y-2m)]shell (taking Sn2S7(6-) ligand as an example). Thiostannates SnS4(4-) and Sn2S7(6-) retain (distorted) tetrahedral SnS4 geometry upon binding to NC surface. At the same time, experiments and simulations point to lower stability of Sn2S6(4-) (and SnS3(2-)) in most solvents and its lower adaptability to the NC surface caused by rigid Sn2S2 rings.

  17. Atomistic Description of Thiostannate-Capped CdSe Nanocrystals: Retention of Four-Coordinate SnS4 Motif and Preservation of Cd-Rich Stoichiometry

    PubMed Central

    2016-01-01

    Colloidal semiconductor nanocrystals (NCs) are widely studied as building blocks for novel solid-state materials. Inorganic surface functionalization, used to displace native organic capping ligands from NC surfaces, has been a major enabler of electronic solid-state devices based on colloidal NCs. At the same time, very little is known about the atomistic details of the organic-to-inorganic ligand exchange and binding motifs at the NC surface, severely limiting further progress in designing all-inorganic NCs and NC solids. Taking thiostannates (K4SnS4, K4Sn2S6, K6Sn2S7) as typical examples of chalcogenidometallate ligands and oleate-capped CdSe NCs as a model NC system, in this study we address these questions through the combined application of solution 1H NMR spectroscopy, solution and solid-state 119Sn NMR spectroscopy, far-infrared and X-ray absorption spectroscopies, elemental analysis, and by DFT modeling. We show that through the X-type oleate-to-thiostannate ligand exchange, CdSe NCs retain their Cd-rich stoichiometry, with a stoichiometric CdSe core and surface Cd adatoms serving as binding sites for terminal S atoms of the thiostannates ligands, leading to all-inorganic (CdSe)core[Cdm(Sn2S7)yK(6y-2m)]shell (taking Sn2S76– ligand as an example). Thiostannates SnS44– and Sn2S76– retain (distorted) tetrahedral SnS4 geometry upon binding to NC surface. At the same time, experiments and simulations point to lower stability of Sn2S64– (and SnS32–) in most solvents and its lower adaptability to the NC surface caused by rigid Sn2S2 rings. PMID:25597625

  18. SEMICONDUCTOR PHYSICS: Effects of Sn-doping on morphology and optical properties of CdTe polycrystalline films

    NASA Astrophysics Data System (ADS)

    Jin, Li; Linyu, Yang; Jikang, Jian; Hua, Zou; Yanfei, Sun

    2009-11-01

    Sn-doped CdTe polycrystalline films were successfully deposited on ITO glass substrates by close space sublimation. The effects of Sn-doping on the microstructure, surface morphology, and optical properties of polycrystalline films were studied using X-ray diffraction, scanning electron microscopy, and ultraviolet-visible spectrophotometry, respectively. The results show that the lower molar ratio of Sn and CdTe conduces to a strongly preferential orientation of (111) in films and a larger grain size, which indicates that the crystallinity of films can be improved by appropriate Sn-doping. As the molar ratio of Sn and CdTe increases, the preferential orientation of (111) in films becomes weaker, the grain size becomes smaller, and the crystal boundary becomes indistinct, which indicates that the crystallization growth of films is incomplete. However, as the Sn content increases, optical absorption becomes stronger in the visible region. In summary, a strongly preferential orientation of (111) in films and a larger grain size can be obtained by appropriate Sn-doping (molar ratio of Sn : CdTe = 0.06 : 1), while the film retains a relatively high optical absorption in the visible region. However, Sn-doping has no obvious influence on the energy gap of CdTe films.

  19. Quadrupole Collectivity in Neutron-Rich Cd Isotopes

    NASA Astrophysics Data System (ADS)

    Kröll, T.; Ilieva, S.; Bönig, S.; Thürauf, M.; Hartig, A.-L.

    In this contribution, nuclear structure studies with post-accelerated radioactive beams of the neutron-rich isotopes 122,123,124,126,128Cd from the REX-ISOLDE facility at CERN are presented. The method employed is γ -ray spectroscopy with the MINIBALL array following "safe" Coulomb excitation. For the even isotopes, the B(E2;0 + to 2 + ) values, as a common trend, are larger than predictions from state-of-the-art shell model calculations, but agree well with beyond-mean-field calculations. No striking evidence for a considerable deformation has been found. For 123Cd, studied as first odd radioactive Cd isotope in the same way, the level scheme had to be revised.

  20. Kinetics of photo-activated charge carriers in Sn:CdS

    NASA Astrophysics Data System (ADS)

    Patidar, Manju Mishra; Panda, Richa; Gorli, V. R.; Gangrade, Mohan; Nath, R.; Ganesan, V.

    2016-05-01

    Kinetics of the photo-activated charge carriers has been investigated in Tin substituted Cadmium Sulphide, Cd1-xSnxS (x=0, 0.05, 0.10 and 0.15), thin films prepared by spray pyrolysis. X-Ray Diffraction shows an increase in strain that resulted in the decreased crystallite size upon Sn substitution. At the first sight, the photo current characteristics show a quenching effect on Sn substitution. However, survival of persistent photocurrents is seen even up to 15% of Sn substitution. Transient photo current decay could be explained with a 2τ relaxation model. CdS normally has an n-type character and the Sn doping expected to inject hole carriers. The two fold increase in τ1, increase in activation energy and the decrease in photocurrents upon Sn substitution point towards a band gap cleaning scenario that include compensation and associated carrier injection dynamics. In addition Atomic Force Microscopy shows a drastic change in microstructure that modulates the carrier dynamics as a whole.

  1. Optical analysis of lens-like Cu2CdSnS4 quaternary alloy nanostructures

    NASA Astrophysics Data System (ADS)

    Odeh, Ali Abu; Al-Douri, Y.; Ayub, R. M.; Ameri, M.; Bouhemadou, A.; Prakash, Deo; Verma, K. D.

    2016-10-01

    Cu2CdSnS4 quaternary alloy nanostructures with different copper concentrations (0.2, 0.4, 0.6, 0.8 and 1.0 M) were successfully synthesized on n-type silicon substrates using spin coating technique with annealing temperature at 300 °C. Optical properties were analyzed through UV-Vis and Photoluminescence spectroscopies, and thus, there is a change in energy band gap with increasing Cu concentration from 0.2 to 1.0 M. The structural properties of Cu2CdSnS4 quaternary alloy nanostructures were investigated by X-ray diffraction. The particles size and shape have a direct relationship with copper concentration. Morphological and topographical studies were carried out by using scanning electron microscopy and atomic force microscopy. The obtained results are investigated to be available in the literature for future studies.

  2. Neutron emission following muon capture in Ce-142, Ce-140, Ba-138, and Sn-120.

    NASA Technical Reports Server (NTRS)

    Lucas, G. R., Jr.; Martin, P.; Welsh, R. E.; Jenkins, D. A.; Powers, R. J.; Kunselman, A. R.; Miller, G. H.

    1973-01-01

    Branching ratios to excited nuclear states formed after muon capture have been measured with Ge(Li) detectors. The delayed gamma rays were observed in studies of muonic Ce-142, Ce-140, Ba-138, and Sn-120, using separated isotopes. The resulting isotopes formed indicate at least a 60% probability of neutron emission upon muon capture, with the most likely product resulting from single-neutron emission. No evidence for delayed proton emission with a probability higher than 2% was found. Using our more precise energies for the observed nuclear transitions, we present revised energy levels schemes for La-141, La-139, Cs-137, and In-119.

  3. Does SN 1987A contain a rapidly vibrating neutron star

    NASA Technical Reports Server (NTRS)

    Wang, Q.; Chen, K.; Hamilton, T. T.; Ruderman, M.; Shaham, Jacob

    1989-01-01

    If the recently reported 0.5 ms-period pulsed optical signal from the direction of Supernova 1987A originated in a young neutron star, its interpretation as a rotational period has difficulties. The surface magnetic field would have to be much lower than expected, and the high rotation rate may rule out preferred nuclear equations of state. It is pointed out here that a remnant radial vibration of a neutron star, excited in the supernova event, may survive for several years with about the observed (gravitationally redshifted) period. Heavy ions at the low-density stellar surface, periodically shocked by the vibration, may efficiently produce narrow pulses of optical cyclotron radiation in a surface field of about a trillion gauss.

  4. Raman spectrum of Cu2CdSnSe4 stannite structure semiconductor compound

    NASA Astrophysics Data System (ADS)

    Rincón, C.; Quintero, M.; Moreno, E.; Power, Ch.; Quintero, E.; Henao, J. A.; Macías, M. A.

    2015-12-01

    Raman spectrum of Cu2CdSnSe4 quaternary semiconductor compounds with tetragonal stannite-type structure (space group I 4 bar 2m), a material which has been recognized recently as a potential candidate for thermoelectric applications, has been studied. Most of the fourteen Raman lines expected for this compound according to group theory analysis were observed in the spectrum. Besides to the two strongest A1-symmetry stannite modes at 172 and 192 cm-1 originated from the motion of Se anion around the Cu and Sn cations which remain at rest, the leftover observed Raman lines were tentatively assigned to specific eigenmodes of the stannite crystal structure by comparing these line frequencies with those obtained for this compound from IR measurements as well as with those calculated Raman modes for the Cu2ZnSnSe4 stannite-compound reported in the literature. Two spurious Raman lines related to the presence in this compound of SnSe and SnSe2 minority secondary phases have also been found in the Raman spectrum.

  5. Single-Neutron Structure of Neutron-Rich Nuclei near N=50 and N=82

    SciTech Connect

    Cizewski, J. A.; Jones, K. L.; Kozub, R. L.; Pain, S. D.; Bardayan, Daniel W; Blackmon, Jeff C; Adekola, Aderemi S; Chae, K. Y.; Chipps, K.; Erikson, Luke; Gaddis, A. L.; Harlin, Christopher W; Hatarik, Robert; Howard, Joshua A; Kaplan, Ron; Krolas, W.; Liang, J Felix; Livesay, Jake; Ma, Zhanwen; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Patterson, N. P.; Paulauskas, Stanley; Shapira, Dan; Shriner, Jr., John F; Sissom, D. J.; Smith, Michael Scott; Swan, T. P.; Thomas, J. S.; Wilson, Gemma L

    2009-01-01

    The 82Ge, 84Se, 132Sn, 130Sn, and 134Te (d,p) reactions have been measured with {approx}4-5-MeV-A rare isotope beams and CD2 targets at the HRIBF at ORNL. Energies and spectroscopic strengths have been measured for excitations in 83Ge and 85Se. Direct neutron capture calculations on 82Ge are presented. Preliminary results for single-neutron excitations in 131Sn, 133Sn, and 135Te are reported.

  6. Pair neutron transfer in 60Ni+116Sn probed via γ -particle coincidences

    NASA Astrophysics Data System (ADS)

    Montanari, D.; Corradi, L.; Szilner, S.; Pollarolo, G.; Goasduff, A.; Mijatović, T.; Bazzacco, D.; Birkenbach, B.; Bracco, A.; Charles, L.; Courtin, S.; Désesquelles, P.; Fioretto, E.; Gadea, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Haas, F.; Hess, H.; Jelavić Malenica, D.; Jungclaus, A.; Karolak, M.; Leoni, S.; Maj, A.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Montagnoli, G.; Napoli, D. R.; Pullia, A.; Recchia, F.; Reiter, P.; Rosso, D.; Salsac, M. D.; Scarlassara, F.; Söderström, P.-A.; Soić, N.; Stefanini, A. M.; Stezowski, O.; Theisen, Ch.; Ur, C. A.; Valiente-Dobón, J. J.; Varga Pajtler, M.

    2016-05-01

    We performed a γ -particle coincidence experiment for the 60Ni + 116Sn system to investigate whether the population of the two-neutron pickup channel leading to 62Ni is mainly concentrated in the ground-state transition, as has been found in a previous work [D. Montanari et al., Phys. Rev. Lett. 113, 052501 (2014), 10.1103/PhysRevLett.113.052501]. The experiment has been performed by employing the PRISMA magnetic spectrometer coupled to the Advanced Gamma Tracking Array (AGATA) demonstrator. The strength distribution of excited states corresponding to the inelastic, one- and two-neutron transfer channels has been extracted. We found that in the two-neutron transfer channel the strength to excited states corresponds to a fraction (less than 24%) of the total, consistent with the previously obtained results that the 2 n channel is dominated by the ground-state to ground-state transition.

  7. Quantum spin Hall effect in α -Sn /CdTe(001 ) quantum-well structures

    NASA Astrophysics Data System (ADS)

    Küfner, Sebastian; Matthes, Lars; Bechstedt, Friedhelm

    2016-01-01

    The electronic and topological properties of heterovalent and heterocrystalline α -Sn/CdTe(001) quantum wells (QWs) are studied in dependence on the thickness of α -Sn by means of ab initio calculations. We calculate the topological Z2 invariants of the respective bulk crystals, which identify α -Sn as strong three-dimensional (3D) topological insulators (TIs), whereas CdTe is a trivial insulator. We predict the existence of two-dimensional (2D) topological interface states between both materials and show that a topological phase transition from a trivial insulating phase into the quantum spin Hall (QSH) phase in the QW structures occurs at much higher thicknesses than in the HgTe case. The QSH effect is characterized by the localization, dispersion, and spin polarization of the topological interface states. We address the distinction of the 3D and 2D TI characters of the studied QW structures, which is inevitable for an understanding of the underlying quantum state of matter. The 3D TI nature is characterized by two-dimensional topological interface states, while the 2D phase exhibits one-dimensional edge states. The two different state characteristics are often intermixed in the discussion of the topology of 2D QW structures, especially, the comparison of ab initio calculations and experimental transport studies.

  8. Synthesis of CdSnO(3).3H(2)O nanocubes via ion exchange and their thermal decompositions to cadmium stannate.

    PubMed

    Tang, Yiwen; Jiang, Yun; Jia, Zhiyong; Li, Bihui; Luo, Lijuan; Xu, Liang

    2006-12-25

    Uniform crystalline CdSnO3.3H2O nanocubes with a 28-35 nm edge length have been obtained via the ion-exchange reaction of Na2Sn(OH)6 in a CdSO4 aqueous solution, assisted by ultrasonic treatment. Precursor Na2Sn(OH)6 crystals were prepared via hydrothermal treatment in an ethanol/water solution. The formation of CdSnO3.3H2O nanocubes resulted from the strain during the ion-exchange process. The influences of reaction conditions, such as ion-exchange (ultrasonic treatment) duration, solvent constitutes, surfactant, and pH on the formation of CdSnO3.3H2O crystals were described. Crystalline CdSnO3 and Cd2SnO4 have been obtained by thermal treatment at 300 and 500 degrees C, respectively, for 5 h under an inert-gas protecting condition using CdSnO3.3H2O nanocubes as the precursor. The cube shape of CdSnO3.3H2O was sustained after thermal decomposition to CdSnO3.

  9. Photoconductivity of structures based on the SnO{sub 2} porous matrix coupled with core-shell CdSe/CdS quantum dots

    SciTech Connect

    Drozdov, K. A.; Kochnev, V. I.; Dobrovolsky, A. A.; Khokhlov, D. R.; Popelo, A. V.; Rumyantseva, M. N.; Gaskov, A. M.; Ryabova, L. I.; Vasiliev, R. B.

    2013-09-23

    Embedding of quantum dots into porous oxide matrixes is a perspective technique for photosensitization of a structure. We show that the sensitization efficiency may be increased by the use of core-shell quantum dots. It is demonstrated that the photoresponse amplitude in a SnO{sub 2} porous matrix with CdSe/CdS quantum dots depends non-monotonously on the number of atomic layers in a shell. The best results are obtained for SnO{sub 2} matrixes coupled with the quantum dots with three atomic layers of a shell. Mechanisms responsible for the structure sensitization are discussed.

  10. Enhanced Thermoelectric Performance of Cu2CdSnSe4 by Mn Doping: Experimental and First Principles Studies

    PubMed Central

    Liu, F. S.; Zheng, J. X.; Huang, M. J.; He, L. P.; Ao, W. Q.; Pan, F.; Li, J. Q.

    2014-01-01

    Serials of Mn doping by substituting Cd sites on Cu2CdSnSe4 are prepared by the melting method and the spark plasma sintering (SPS) technique to form Cu2Cd1−xMnxSnSe4. Our experimental and theoretical studies show that the moderate Mn doping by substituting Cd sites is an effective method to improve the thermoelectric performance of Cu2CdSnSe4. The electrical resistivity is decreased by about a factor of 4 at 723 K after replacing Cd with Mn, but the seebeck coefficient decreases only slightly from 356 to 289 μV/K, resulting in the significant increase of the power factor. Although the thermal conductivity increases with the doping content of Mn, the figure of merit (ZT) is still increased from 0.06 (x = 0) to 0.16 (x = 0.10) at 723 K, by a factor of 2.6. To explore the mechanisms behind the experimental results, we have performed an ab initio study on the Mn doping effect and find that the Fermi level of Cu2CdSnSe4 is shifted downward to the valence band, thus improving the hole concentration and enhancing the electrical conductivity at the low level doping content. Optimizing the synthesis process and scaling Cu2Cd1−xMnxSnSe4 to nanoparticles may further improve the ZT value significantly by improving the electrical conductivity and enhancing the phonon scattering to decrease the thermal conductivity. PMID:25047225

  11. Production of neutron-rich Ca, Sn, and Xe isotopes in transfer-type reactions with radioactive beams

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Lacroix, D.

    2010-12-15

    The production cross sections of neutron-rich isotopes {sup 52,54,56,58,60}Ca, {sup 136,138,140,142}Sn, and {sup 146,148,150,152}Xe are predicted for future experiments in the diffusive multinucleon transfer reactions {sup 86,90,92,94}Kr, {sup 124,130,132,134}Sn, {sup 136,140,142,146}Xe, and {sup 138,144,146}Ba+{sup 48}Ca with stable and radioactive beams at incident energies close to the Coulomb barrier. Because of the small cross sections, the production of neutron-rich isotopes requires the optimal choice of projectile-target combinations and bombarding energies.

  12. Magnetic neutron diffraction and pressure studies on CeRuSn

    NASA Astrophysics Data System (ADS)

    Hartwig, Steffen; Prokeš, Karel; Huang, Yingkai; Pöttgen, Rainer

    2015-03-01

    We have determined the influence of magnetic fields on the crystal and magnetic structures of CeRuSn using single crystal neutron diffraction and susceptibility measurements at various pressures up to 7.4 kbar and temperatures down to 1.6 K. CeRuSn adopts below 160 K an incommensurately modulated crystal structure. It orders antiferromagnetically below TN=2.8 K in an incommensurate manner as well. This Néel-temperature is pressure independent up to 7.4 kbar. The neutron diffraction experiments detected a magnetic modulation vector qmag = (0, 0, 0.175), however, it is commensurate with the incommensurate crystal structure with qnuc = (0, 0, 0.35). At 0.6 T as well as at 0.9 T metamagnetic transitions have been observed via magnetic property measurements. The magnetic field of 0.9 T applied along the c-axis suppresses the magnetic reflections. The moments align ferromagnetically along the modulated crystal structure. Up to 3 T no change of the wavelength of the crystal structure modulations could be detected.

  13. A neutron-star-driven X-ray flash associated with supernova SN 2006aj.

    PubMed

    Mazzali, Paolo A; Deng, Jinsong; Nomoto, Ken'ichi; Sauer, Daniel N; Pian, Elena; Tominaga, Nozomu; Tanaka, Masaomi; Maeda, Keiichi; Filippenko, Alexei V

    2006-08-31

    Supernovae connected with long-duration gamma-ray bursts (GRBs) are hyper-energetic explosions resulting from the collapse of very massive stars ( approximately 40 M\\circ, where M\\circ is the mass of the Sun) stripped of their outer hydrogen and helium envelopes. A very massive progenitor, collapsing to a black hole, was thought to be a requirement for the launch of a GRB. Here we report the results of modelling the spectra and light curve of SN 2006aj (ref. 9), which demonstrate that the supernova had a much smaller explosion energy and ejected much less mass than the other GRB-supernovae, suggesting that it was produced by a star whose initial mass was only approximately 20 M\\circ. A star of this mass is expected to form a neutron star rather than a black hole when its core collapses. The smaller explosion energy of SN 2006aj is matched by the weakness and softness of GRB 060218 (an X-ray flash), and the weakness of the radio flux of the supernova. Our results indicate that the supernova-GRB connection extends to a much broader range of stellar masses than previously thought, possibly involving different physical mechanisms: a 'collapsar' (ref. 8) for the more massive stars collapsing to a black hole, and magnetic activity of the nascent neutron star for the less massive stars.

  14. E2 transition probabilities for decays of isomers observed in neutron-rich odd Sn isotopes

    DOE PAGESBeta

    Iskra, Ł. W.; Broda, R.; Janssens, R. V.F.; Wrzesiński, J.; Chiara, C. J.; Carpenter, M. P.; Fornal, B.; Hoteling, N.; Kondev, F. G.; Królas, W.; et al

    2015-01-01

    High-spin states were investigated with gamma coincidence techniques in neutron-rich Sn isotopes produced in fission processes following ⁴⁸Ca + ²⁰⁸Pb, ⁴⁸Ca + ²³⁸U, and ⁶⁴Ni + ²³⁸U reactions. By exploiting delayed and cross-coincidence techniques, level schemes have been delineated in odd ¹¹⁹⁻¹²⁵Sn isotopes. Particular attention was paid to the occurrence of 19/2⁺ and 23/2⁺ isomeric states for which the available information has now been significantly extended. Reduced transition probabilities, B(E2), extracted from the measured half-lives and the established details of the isomeric decays exhibit a striking regularity. This behavior was compared with the previously observed regularity of the B(E2) amplitudesmore » for the seniority ν = 2 and 3, 10⁺ and 27/2⁻ isomers in even- and odd-Sn isotopes, respectively.« less

  15. E2 transition probabilities for decays of isomers observed in neutron-rich odd Sn isotopes

    SciTech Connect

    Iskra, Ł. W.; Broda, R.; Janssens, R. V.F.; Wrzesiński, J.; Chiara, C. J.; Carpenter, M. P.; Fornal, B.; Hoteling, N.; Kondev, F. G.; Królas, W.; Lauritsen, T.; Pawłat, T.; Seweryniak, D.; Stefanescu, I.; Walters, W. B.; Zhu, S.

    2015-01-01

    High-spin states were investigated with gamma coincidence techniques in neutron-rich Sn isotopes produced in fission processes following ⁴⁸Ca + ²⁰⁸Pb, ⁴⁸Ca + ²³⁸U, and ⁶⁴Ni + ²³⁸U reactions. By exploiting delayed and cross-coincidence techniques, level schemes have been delineated in odd ¹¹⁹⁻¹²⁵Sn isotopes. Particular attention was paid to the occurrence of 19/2⁺ and 23/2⁺ isomeric states for which the available information has now been significantly extended. Reduced transition probabilities, B(E2), extracted from the measured half-lives and the established details of the isomeric decays exhibit a striking regularity. This behavior was compared with the previously observed regularity of the B(E2) amplitudes for the seniority ν = 2 and 3, 10⁺ and 27/2⁻ isomers in even- and odd-Sn isotopes, respectively.

  16. The pygmy quadrupole resonance and neutron-skin modes in 124Sn

    NASA Astrophysics Data System (ADS)

    Spieker, M.; Tsoneva, N.; Derya, V.; Endres, J.; Savran, D.; Harakeh, M. N.; Harissopulos, S.; Herzberg, R.-D.; Lagoyannis, A.; Lenske, H.; Pietralla, N.; Popescu, L.; Scheck, M.; Schlüter, F.; Sonnabend, K.; Stoica, V. I.; Wörtche, H. J.; Zilges, A.

    2016-01-01

    We present an extensive experimental study of the recently predicted pygmy quadrupole resonance (PQR) in Sn isotopes, where complementary probes were used. In this study, (α ,α‧ γ) and (γ ,γ‧) experiments were performed on 124Sn. In both reactions, Jπ =2+ states below an excitation energy of 5 MeV were populated. The E2 strength integrated over the full transition densities could be extracted from the (γ ,γ‧) experiment, while the (α ,α‧ γ) experiment at the chosen kinematics strongly favors the excitation of surface modes because of the strong α-particle absorption in the nuclear interior. The excitation of such modes is in accordance with the quadrupole-type oscillation of the neutron skin predicted by a microscopic approach based on self-consistent density functional theory and the quasiparticle-phonon model (QPM). The newly determined γ-decay branching ratios hint at a non-statistical character of the E2 strength, as it has also been recently pointed out for the case of the pygmy dipole resonance (PDR). This allows us to distinguish between PQR-type and multiphonon excitations and, consequently, supports the recent first experimental indications of a PQR in 124Sn.

  17. CdS/CdSe Co-sensitized Solar Cells Based on Hierarchically Structured SnO2/TiO2 Hybrid Films

    NASA Astrophysics Data System (ADS)

    Chen, Zeng; Wei, Chaochao; Li, Shengjun; Diao, Chunli; Li, Wei; Kong, Wenping; Zhang, Zhenlong; Zhang, Weifeng

    2016-06-01

    SnO2 nanosheet-structured films were prepared on a fluorine-doped tin oxide (FTO) substrate using ZnO nanosheet as template. The as-prepared SnO2 nanosheets contained plenty of nano-voids and were generally vertical to the substrate. TiO2 nanoparticles were homogeneously deposited into the intervals between the SnO2 nanosheets to prepare a hierarchically structured SnO2/TiO2 hybrid film. The hybrid films were co-sensitized with CdS and CdSe quantum dots. The sensitized solar cells assembled with the SnO2/TiO2 hybrid film showed much higher photoelectricity conversion efficiency than the cells assembled with pure TiO2 films. The lifetime of photoinduced electron was also investigated through electrochemical impedance spectroscopy, which showed that the SnO2/TiO2 hybrid film electrode is as long as the TiO2 film electrode.

  18. Cascade γ rays following capture of thermal neutrons on 113Cd

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Jandel, M.; Krtička, M.; Arnold, C. W.; Bredeweg, T. A.; Couture, A.; Moody, W. A.; Mosby, S. M.; Ullmann, J. L.

    2013-11-01

    Intensity distributions of cascade γ-ray transitions following the capture of thermal neutrons by 113Cd have been measured at the Los Alamos Neutron Science Center for various γ-ray multiplicities. The experiment was carried out at the highly segmented 4π γ-ray calorimeter—Detector for Advanced Neutron Capture Experiments (DANCE). A measured two-dimensional spectrum of counts versus γ-ray energy versus γ-ray multiplicity, from the strongest resonance in the 113Cd(n,γ) reaction at 0.178 eV has been compared to predictions from the statistical model. The best representation of the γ-ray cascades following the capture of thermal neutrons on 113Cd is presented. The intensity distribution of these cascades is of great importance for estimates of response to thermal neutrons of devices that use natural or enriched cadmium.

  19. Ultrahigh sensitivity and gain white light photodetector based on GaTe/Sn:CdS nanoflake/nanowire heterostructures.

    PubMed

    Zhou, Weichang; Zhou, Yong; Peng, Yuehua; Zhang, Yong; Yin, Yanling; Tang, Dongsheng

    2014-11-01

    Optoelectronic diode based on PN heterostructure is one of the most fundamental device building blocks with extensive applications. Here we reported the fabrication and optoelectronic properties of GaTe/Sn : CdS nanoflake/nanowire PN heterojunction photodetectors. With high quality contacts between metal electrodes and Sn : CdS or GaTe, the electrical measurement of GaTe/Sn : CdS hybrid heterojunction under dark condition demonstrates an excellent diode characteristic with well-defined current rectification behavior. The photocurrent increases drastically under LED white light as well as red, green, UV illumination. The on-off ratio of current is about 100 for forward bias and 3000 for reverse bias, which clearly indicates the ultrahigh sensitivity of the heterostructure photodetector to white light. The responsivity and optical gain are determined to be 607 A W(-1) and (1.06-2.16) × 10(5)%, which is higher than previous reports of single GaTe or CdS nanostructures. Combination the Ids-Vds curves under different illumination power with energy band diagrams, we assign that both the light modulation effect under forward and reverse bias and the surface molecular oxygen adsorption/desorption mechanism are dominant to the electrical transport behavior of GaTe/Sn : CdS heterojunction. This heterostructure photodetector also shows good stability and fast response speed. Both the high photosensibility and fast response time described in the present study suggest strongly that the GaTe/Sn : CdS hybrid heterostructure is a promising candidate for photodetection, optical sensing and switching devices.

  20. Explosive nucleosynthesis in SN 1987A. II - Composition, radioactivities, and the neutron star mass

    NASA Technical Reports Server (NTRS)

    Thielemann, Friedrich-Karl; Hashimoto, Masa-Aki; Nomoto, Ken'ichi

    1990-01-01

    The 20 solar mass model of Nomoto and Hashimoto (1988) is utilized with a 6 solar mass. He core is used to perform explosive nucleosynthesis calculations. The employed explosion energy of 10 to the 51st ergs lies within the uncertainty range inferred from the bolometric light curve. The nucleosynthesis processes and their burning products are discussed in detail. The results are compared with abundances from IR observations of SN 1987A and the average nucleosynthesis expected for Type II supernovae in Galactic chemical evolution. The abundances of long-lived radioactive nuclei and their importance for the late light curve and gamma-ray observations are predicted. The position of the mass cut between the neutron star and the ejecta is deduced from the total amount of ejected Ni-56. This requires a neutron star with a baryonic mass of 1.6 + or - 0.045 solar mass, which corresponds to a gravitational mass of 1.43 + or - 0.05 solar mass after subtracting the binding energy of a nonrotating neutron star.

  1. Hyperfine magnetic field on Cd-111 in Heusler alloys Co2MnZ (Z = Si, Ga, Ge, Sn)

    NASA Technical Reports Server (NTRS)

    Jha, S.; Mitros, C.; Lahamer, Amer; Yehia, Sherif; Julian, Glenn M.

    1989-01-01

    The time differential perturbed angular correlation method has been used to measure, as a function of temperature, the hyperfine magnetic field at Cd sites in the Heusler alloys Co2MnZ (Z = Si, Ga, Ge, Sn). The hyperfine fields, normalized to the total magnetic moment per formula unit, show an approximately linear trend toward more positive values with increasing lattice parameter.

  2. Sol-gel processing of highly transparent conducting Cd2SnO4 thin films

    NASA Astrophysics Data System (ADS)

    Bel-Hadj-Tahar, Radhouane; Bel-Hadj-Tahar, Noureddine; Belhadj Mohamed, Abdellatif

    2015-03-01

    Polycrystalline thin films of cadmium stannate (Cd2SnO4) (CTO) were coated on corning glass substrates by sol-gel method. The films were fired at different temperatures and annealed in inert ambient (N2) at 680°C. The structural, optical, and electrical properties of dip-coated cadmium-tin-oxide (CTO) thin films are discussed. CTO layers with a Hall mobility of 30 cm2/Vs and a carrier density of 1.4 × 1021 cm-3 resulting in a resistivity of 5 × 10-4 Ω cm have been deposited. Dip-coating conditions must be carefully monitored to produce consistent films. The high electronic conductivity is due to two effective mechanisms of n-type doping: (i) stoichiometric deviation and (ii) self-doping.

  3. Damping at high homologous temperature in pure Cd, In, Pb, and Sn

    SciTech Connect

    Cook, L.S.; Lakes, R.S. )

    1995-03-01

    Typically, if a material possesses the stiffness necessary to be considered a structural material, its damping is low. Conversely, materials with high damping usually do not possess the stiffness necessary to be considered a structural material. Candidate materials for the high stiffness-low damping phase exist in abundance, whereas candidate materials for the moderate stiffness-high damping phase remain to be identified. One possible class of candidate materials for the moderate stiffness-high damping phase is metals at high homologous temperatures. Shear moduli of the specimens at 100 Hz are as follows: 4.1 GPa for indium, 5.7 GPa for lead, 15.7 GPa for tin, and 20.7 GPa for cadmium. Considering the behavior typical of metals, one may think of In and Pb as relatively compliant, while Sn and Cd could be called moderately stiff. The results are of some technological interest in view of the utility of materials with moderately high stiffness and damping. The combination of moderate stiffness and reasonably high loss tangent makes Cd the most promising metal tested with respect to technological applications. The shear modulus of Cd was highest of the metals tested (and very near that of aluminum (G = 27 GPa), which exhibits a loss tangent of about 0.001 at room temperature). The loss tangent of Cd at audio-frequencies was as high or higher than that of the other metals. In addition, frequency dependence of loss tangent was not as large as that observed in the other metals. No clear pattern relating damping to melting point emerged. An understanding in terms of viscoelastic mechanisms is not forthcoming at this time. Among the metal studied, cadmium exhibited a substantial loss tangent of 0.03 to 0.04 over much of the audio range, combined with a moderate stiffness, G = 20.7 GPa.

  4. Neutron powder diffraction study of phase transitions in Sr{sub 2}SnO{sub 4}

    SciTech Connect

    Fu, W.T. . E-mail: w.fu@chem.leidenuniv.nl; Visser, D.; Knight, K.S.; IJdo, D.J.W.

    2004-11-01

    The phase transitions in Sr{sub 2}SnO{sub 4} at high temperature have been studied using high resolution time-of-flight powder neutron diffraction. The room temperature structure of Sr{sub 2}SnO{sub 4} is orthorhombic (Pccn), which can be derived from the tetragonal K{sub 2}NiF{sub 4} structure by tilting the SnO{sub 6} octahedra along the tetragonal [100]{sub T}- and [010]{sub T}-axes with non-equal tilts. At the temperature of about 423K, it transforms to another orthorhombic structure (Bmab) characterized by the SnO{sub 6} octahedral tilt around the [110]{sub T}-axis. At still higher temperatures ({approx}573K) the structure was found to be tetragonal K{sub 2}NiF{sub 4}-type (I4/mmm)

  5. Strong enhancement of dynamical emission of heavy fragments in the neutron-rich {sup 124}Sn+{sup 64}Ni reaction at 35A MeV

    SciTech Connect

    Russotto, P.; Amorini, F.; Cavallaro, S.; Di Toro, M.; Giustolisi, F.; Porto, F.; Rizzo, F.; De Filippo, E.; Pagano, A.; Cardella, G.; Lanzano, G.; Papa, M.; Pirrone, S.; Piasecki, E.; Auditore, L.; Trifiro, A.; Trimarchi, M.

    2010-06-15

    A quantitative comparison is made between the absolute cross sections associated with statistical and dynamical emission of heavy fragments in the {sup 124}Sn+{sup 64}Ni and {sup 112}Sn+{sup 58}Ni collisions experimentally investigated at 35A MeV beam energy using the multidetector CHIMERA. The result shows that the dynamical process is about twice as probable in the neutron-rich {sup 124}Sn+{sup 64}Ni system as in the {sup 112}Sn+{sup 58}Ni neutron-poor one. This unexpected and significant difference indicates that the reaction mechanism is strongly dependent on the entrance-channel isospin (N/Z) content.

  6. In vivo Prompt Gamma Neutron Activation Analysis Facility for Total Body Nitrogen and Cd

    SciTech Connect

    Munive, Marco; Revilla, Angel; Solis, Jose L.

    2007-10-26

    A Prompt Gamma Neutron Activation Analysis (PGNAA) system has been designed and constructed to measure the total body nitrogen and Cd for in vivo studies. An aqueous solution of KNO{sub 3} was used as phantom for system calibration. The facility has been used to monitor total body nitrogen (TBN) of mice and found that is related to their diet. Some mice swallowed diluted water with Cl{sub 2}Cd, and the presence of Cd was detected in the animals. The minimum Cd concentration that the system can detect was 20 ppm.

  7. Half-lives of neutron-rich Cd-130128

    NASA Astrophysics Data System (ADS)

    Dunlop, R.; Bildstein, V.; Dillmann, I.; Jungclaus, A.; Svensson, C. E.; Andreoiu, C.; Ball, G. C.; Bernier, N.; Bidaman, H.; Boubel, P.; Burbadge, C.; Caballero-Folch, R.; Dunlop, M. R.; Evitts, L. J.; Garcia, F.; Garnsworthy, A. B.; Garrett, P. E.; Hackman, G.; Hallam, S.; Henderson, J.; Ilyushkin, S.; Kisliuk, D.; Krücken, R.; Lassen, J.; Li, R.; MacConnachie, E.; MacLean, A. D.; McGee, E.; Moukaddam, M.; Olaizola, B.; Padilla-Rodal, E.; Park, J.; Paetkau, O.; Petrache, C. M.; Pore, J. L.; Radich, A. J.; Ruotsalainen, P.; Smallcombe, J.; Smith, J. K.; Tabor, S. L.; Teigelhöfer, A.; Turko, J.; Zidar, T.

    2016-06-01

    The β -decay half-lives of Cd-130128 have been measured with the newly commissioned GRIFFIN γ -ray spectrometer at the TRIUMF-ISAC facility. The time structures of the most intense γ rays emitted following the β decay were used to determine the half-lives of 128Cd and 130Cd to be T1 /2=246.2 (21 ) ms and T1 /2=126 (4 ) ms, respectively. The half-lives of the 3 /2+ and 11 /2- states of 129Cd were measured to be T1 /2(3 /2+) =157 (8 ) ms and T1 /2(11 /2-) =147 (3 ) ms. The half-lives of the Cd isotopes around the N =82 shell closure are an important ingredient in astrophysical simulations to derive the magnitude of the second r -process abundance peak in the A ˜130 region. Our new results are compared with recent literature values and theoretical calculations.

  8. Magnetic Moments of States in 110Sn.

    NASA Astrophysics Data System (ADS)

    Kumbartzki, G. J.

    2016-06-01

    The semi-magic Sn isotopes with Z = 50 are the subject of extensive experimental and theoretical studies. The measured B(E2) values to the 21 + states for the neutron-deficient side of the isotope chain suggest enhanced collectivity when fewer particles are available if the proton shell is not broken. Magnetic moments which are sensitive to proton and neutron contributions to the wave functions of the states could provide critical and relevant information. Magnetic moments were previously measured only for the even stable and a few neutron-rich unstable Sn isotopes. A measurement of the g factors of excited states in 110Sn using the transient field technique was performed at the 88-Inch Cyclotron at the LBNL in Berkeley. The 110Sn nuclei were produced via an α-particle transfer to 106Cd.

  9. Liquid phase epitaxial growth of ZnxCd1-xSnP2 on InP

    NASA Astrophysics Data System (ADS)

    Davis, G. A.; Wolfe, C. M.

    1982-05-01

    The chalcopyrite alloy ZnxCd1-xSnP2 is a potentially use-ful electronic material. In addition to having effective masses lower than and energy gaps similar to its III-V compound analogs, this alloy can also be lattice matched to InP. We have used an open-tube, sliding-boat, liquid-phase system to grow ZnxCd1-xSnP2 epitaxially on InP sub-strates. Unintentionally-doped layers have electron con-centrations as high as 3 × 1019cm-3 with mobility values of about 2,000 cm2/V-sec. These mobility values are sub-stantially larger than have been obtained in the equivalent III-V materials at similar concentrations.

  10. Effect of Heat Treatment on Electrical and Optical Properties of Cd2SnO4 Films

    NASA Astrophysics Data System (ADS)

    Peng, Dongliang; Jiang, Shengrui; Wang, Wanlu

    1993-03-01

    Cd2SnO4 (CTO) films prepared by radio-frequency reactive sputtering from a Cd-Sn alloy target in Ar-O2 mixtures have been found to be a n-type degenerate semiconductor in which oxygen vacancies provide the donor states and free carrier concentration is up to 4.46× 1026 / m3. The films were annealed at temperature up to 500° C in stable Ar flow. Large Burstein shift has been observed in the visible transmission spectra. Photoluminescence spectrum measurement indicates the intrinsic optical gap of crystalline CTO is about 2.156eV. Analysis of electrical and optical data on CTO films before and after heat treatment leads to a calculated optical band gap in the range of 2.37-2.64eV and an effective mass 0.22-0.48 of the free electron mass.

  11. Correlated γ rays following capture of thermal neutrons on 113Cd

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Jandel, M.; Arnold, C. W.; Bredeweg, T. A.; Couture, A.; Mosby, S. M.; Ullmann, J. L.; Krtička, M.

    2013-10-01

    Natural cadmium is often used as the shielding against thermal neutrons and component in detectors sensitive to neutrons, because of the large cross section of 113Cd for capture of neutrons with energies below 1 eV. Investigation of the neutron-capture γ rays from the 113Cd (n , γ) reaction is of importance for these applications. We report the intensity distributions of these cascade γ-ray transitions. The neutron-capture experiment on 113Cd has been carried out at LANL's LANSCE using the 4 π BaF2 DANCE array. The measured two-dimensional spectrum of counts vs. γ-ray energy vs. γ-ray multiplicity from the strongest resonance in the 113Cd (n , γ) reaction at 0.178 eV has been compared with predictions from the statistical model using the code DICEBOX. Work supported by the NNSA Office of Nonproliferation and Verification Research and Development performed under the Department of Energy contract DE-AC52-06NA25396.

  12. Neutrinos from SN 1987A - Implications for cooling of the nascent neutron star and the mass of the electron antineutrino

    NASA Technical Reports Server (NTRS)

    Loredo, Thomas J.; Lamb, Don Q.

    1989-01-01

    Data on neutrinos from SN 1987A are compared here with parameterized models of the neutrino emission using a consistent and straightforward statistical methodology. The empirically measured detector background spectra are included in the analysis, and the data are compared with a much wider variety of neutrino emission models than was explored previously. It is shown that the inferred neutrino emission model parameters are strongly correlated. The analysis confirms that simple models of the neutrino cooling of the nascent neutron star formed by the SN adequately explain the data. The inferred radius and binding energy of the neutron star are in excellent agreement with model calculations based on a wide range of equations of state. The results also raise the upper limit of the electron antineutrino rest mass to roughly 25 eV at the 95 percent confidence level, roughly 1.5-5 times higher than found previously.

  13. The order-disorder transition in Cu2ZnSnS4 - A neutron scattering investigation

    NASA Astrophysics Data System (ADS)

    Ritscher, A.; Hoelzel, M.; Lerch, M.

    2016-06-01

    In this work a series of stoichiometric Cu2ZnSnS4 (CZTS) samples annealed at different temperatures in the range of 473-623 K were investigated. The temperature dependence of the Cu/Zn-order-disorder behavior was analyzed by neutron powder diffraction measurements. Cu fully occupies the 2a and Sn the 2b position within the whole temperature range. For Zn and the remaining Cu on sites 2d and 2c, a clear change from ordered to disordered kesterite structure is found. The critical temperature Tc for this Landau-type second order transition was determined as 552±2 K. It was found that in Cu2ZnSnS4 very long annealing times are necessary to reach equilibrium at low temperatures.

  14. Neutron-Rich Nuclei Beyond {sup 132}Sn: Spherical Shapes and Octupole Correlations

    SciTech Connect

    Liu Shaohua; Hamilton, Joseph H.; Ramayya, Akunuri V.; Goodin, Christopher T.; Hwang, Jae-Kwang; Luo Yixiao; Rasmussen, John O.; Covello, Aldo; Gargano, Angel; Stone, Nick J.; Daniel, Andrey V.; Ter-Akopian, Gurgen M.; Oganessian, Yuri Ts.; Zhu Shengjiang

    2010-04-30

    Nuclear properties of nuclei with a few valence nucleons outside the doubly-magic {sup 132}Sn core and located in the octupole correlation region have been investigated via gamma-gamma-gamma coincidence measurements of prompt gamma-ray emitted in the spontaneous fission of {sup 252}Cf with Gammasphere. The high spin level scheme of {sup 134}I has been identified for the first time. Shell model calculations reproduce the level scheme quite well. The level schemes of {sup 137}I and {sup 139}Cs have been reinvestigated and extended. Their nuclear structure is well described by realistic shell model calculations. The g-factors of the 4{sup +} state in {sup 134}Te, 15/2{sup +} state in {sup 135}I, and 15/2{sup -} state in {sup 137}Xe were determined using a newly developed program for angular correlation analysis. The measured g-factors compared favorably with shell model calculations. Octupole correlations are proposed in {sup 141}Cs and {sup 142}Cs. The variations of D{sub 0} in the Cs isotopes exhibit a pronounced drop of dipole moment with increasing neutron number.

  15. PbTe and SnTe quantum dot precipitates in a CdTe matrix fabricated by ion implantation

    SciTech Connect

    Kaufmann, E.; Schwarzl, T.; Groiss, H.; Hesser, G.; Schaeffler, F.; Palmetshofer, L.; Springholz, G.; Heiss, W.

    2009-08-15

    We present rock-salt IV-VI semiconductor quantum dots fabricated by implantation of Pb{sup +}, Te{sup +}, or Sn{sup +} ions into epitaxial zinc-blende CdTe layers. PbTe and SnTe nanoprecipitates of high structural quality are formed after implantation by thermal annealing due to the immiscibility of dot and matrix materials. For samples implanted only with Pb{sup +}, intense continuous-wave photoluminescence peaked at 1.6 mum at 300 K is found. In contrast, for PbTe quantum dots fabricated by coimplantation of Pb{sup +} and Te{sup +}, the 300 K emission peak is observed at 2.9 mum, indicating luminescence from much larger dots.

  16. Optically enhanced SnO{sub 2}/CdSe core/shell nanostructures grown by sol-gel spin coating method

    SciTech Connect

    Kumar, Vijay Goswami, Y. C.; Rajaram, P.

    2015-08-28

    Synthesis of SnO{sub 2}/CdSe metal oxide/ chalcogenide nanostructures on glass micro slides using ultrasonic sol-gel process followed by spin coating has been reported. Stannous chloride, cadmium chloride and selenium dioxide compounds were used for Sn, Cd and Se precursors respectively. Ethylene glycol was used as complexing agent. The samples were characterized by XRD, SEM, AFM and UV-spectrophotometer. All the peaks shown in diffractograms are identified for SnO{sub 2}. Peak broadening observed in core shell due to stress behavior of CdSe lattice. Scanning electron microscope and AFM exhibits the conversion of cluster in to nanorods structures forms. Atomic force microscope shows the structures in nanorods form and a roughness reduced 1.5194 nm by the deposition of CdSe. Uv Visible spectra shows a new absorption edge in the visible region make them useful for optoelectronic applications.

  17. Production and {beta} Decay of rp-Process Nuclei {sup 96}Cd, {sup 98}In, and {sup 100}Sn

    SciTech Connect

    Bazin, D.; Baumann, T.; Ginter, T.; Hausmann, M.; Minamisono, K.; Pereira, J.; Portillo, M.; Stolz, A.; Montes, F.; Matos, M.; Perdikakis, G.; Schatz, H.; Smith, K.; Becerril, A.; Lorusso, G.; Amthor, A.; Estrade, A.; Gade, A.; Crawford, H.; Mantica, P.

    2008-12-19

    The {beta}-decay properties of the N=Z nuclei {sup 96}Cd, {sup 98}In, and {sup 100}Sn have been studied. These nuclei were produced at the National Superconducting Cyclotron Laboratory by fragmenting a 120 MeV/nucleon {sup 112}Sn primary beam on a Be target. The resulting radioactive beam was filtered in the A1900 and the newly commissioned Radio Frequency Fragment Separator to achieve a purity level suitable for decay studies. The observed production cross sections of these nuclei are lower than predicted by factors of 10-30. The half-life of {sup 96}Cd, which was the last experimentally unknown waiting point half-life of the astrophysical rp process, is 1.03{sub -0.21}{sup +0.24} s. The implications of the experimental T{sub 1/2} value of {sup 96}Cd on the abundances predicted by rp process calculations and the origin of A=96 isobars such as {sup 96}Ru are explored.

  18. Structural, elastic, electronic and phonon properties of SnX{sub 2}O{sub 4} (X=Mg, Zn, Cd) spinel from density functional theory

    SciTech Connect

    Uğur, Gökay; Candan, Abdullah

    2014-10-06

    First-principle calculations of structural, electronic, elastic and phonon properties of SnMg{sub 2}O{sub 4}, SnZn{sub 2}O{sub 4} and SnCd{sub 2}O{sub 4} compounds are presented, using the pseudo-potential plane waves approach based on density functional theory (DFT) within the generalized gradient approximation (GGA). The computed ground state structural parameters, i.e. lattice constants, internal free parameter and bulk modulus are in good agreement with the available theoretical results. Our calculated elastic constants are indicative of stability of SnX{sub 2}O{sub 4} (X=Mg, Zn, Cd) compounds in the spinel structure. The partial density of states (PDOS) of these compounds is in good agreement with the earlier ab-initio calculations. The phonon dispersion relations were calculated using the direct method. Phonon dispersion results indicate that SnZn{sub 2}O{sub 4} is dynamically stable, while SnMg{sub 2}O{sub 4} and SnCd{sub 2}O{sub 4} are unstable.

  19. Heterovalent Substitution to Enrich Electrical Conductivity in Cu2CdSn1-xGaxSe4 Series for High Thermoelectric Performances

    PubMed Central

    Wang, Bo; Li, Yu; Zheng, Jiaxin; Xu, Ming; Liu, Fusheng; Ao, Weiqing; Li, Junqing; Pan, Feng

    2015-01-01

    Serials of Ga doping on Sn sites as heterovalent substitution in Cu2CdSnSe4 are prepared by the melting method and the spark plasma sintering (SPS) technique to form Cu2CdSn1-xGaxSe4 (x = 0, 0.025, 0.05, 0.075, 0.01, and 0.125). Massive atomic vacancies are found at x = 0.10 by the heterovalent substitution, which contributes significantly to the increase of electrical conductivity and the decrease of lattice thermal conductivity. The electrical conductivity is increased by about ten times at 300 K after Ga doping. Moreover, the seebeck coefficient only decreases slightly from 310 to 226 μV/K at 723 K, and a significant increase of the power factor is obtained. As a result, a maxium value of 0.27 for the figure of merit (ZT) is obtained at x = 0.10 and at 723 K. Through an ab initio study of the Ga doping effect, we find that the Fermi level of Cu2CdSnSe4 is shifted downward to the valence band, thus improving the hole concentration and enhancing the electrical conductivity at low doping levels. Our experimental and theoretical studies show that a moderate Ga doping on Sn sites is an effective method to improve the thermoelectric performance of Cu2CdSnSe4. PMID:25791823

  20. Coulomb excitation of neutron-rich Cd isotopes

    NASA Astrophysics Data System (ADS)

    Ilieva, S.; Thürauf, M.; Kröll, Th.; Krücken, R.; Behrens, T.; Bildstein, V.; Blazhev, A.; Bönig, S.; Butler, P. A.; Cederkäll, J.; Davinson, T.; Delahaye, P.; Diriken, J.; Ekström, A.; Finke, F.; Fraile, L. M.; Franchoo, S.; Fransen, Ch.; Georgiev, G.; Gernhäuser, R.; Habs, D.; Hess, H.; Hurst, A. M.; Huyse, M.; Ivanov, O.; Iwanicki, J.; Kent, P.; Kester, O.; Köster, U.; Lutter, R.; Mahgoub, M.; Martin, D.; Mayet, P.; Maierbeck, P.; Morgan, T.; Niedermeier, O.; Pantea, M.; Reiter, P.; Rodríguez, T. R.; Rolke, Th.; Scheit, H.; Scherillo, A.; Schwalm, D.; Seidlitz, M.; Sieber, T.; Simpson, G. S.; Stefanescu, I.; Thiel, S.; Thirolf, P. G.; Van de Walle, J.; Van Duppen, P.; Voulot, D.; Warr, N.; Weinzierl, W.; Weisshaar, D.; Wenander, F.; Wiens, A.; Winkler, S.

    2014-01-01

    The isotopes Cd122,124,126 were studied in a "safe" Coulomb-excitation experiment at the radioactive ion-beam facility REX-ISOLDE at CERN. The reduced transition probabilities B (E2;0g .s.+→21+) and limits for the quadrupole moments of the first 2+ excited states in the three isotopes were determined. The onset of collectivity in the vicinity of the Z =50 and N =82 shell closures is discussed by comparison with shell model and beyond mean-field calculations.

  1. Core-Shell Structural CdS@SnO₂ Nanorods with Excellent Visible-Light Photocatalytic Activity for the Selective Oxidation of Benzyl Alcohol to Benzaldehyde.

    PubMed

    Liu, Ya; Zhang, Ping; Tian, Baozhu; Zhang, Jinlong

    2015-07-01

    Core-shell structural CdS@SnO2 nanorods (NRs) were fabricated by synthesizing SnO2 nanoparticles with a solvent-assisted interfacial reaction and further anchoring them on the surface of CdS NRs under ultrasonic stirring. The morphology, composition, and microstructures of the obtained samples were characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption. It was found that SnO2 nanoparticles can be tightly anchored on the surface of CdS NRs, and the thickness of SnO2 shells can be conveniently adjusted by simply changing the addition amount of SnO2 quantum dots. UV-vis diffuse reflectance spectrum indicated that SnO2 shell layer also can enhance the visible light absorption of CdS NRs to a certain extent. The results of transient photocurrents and photoluminescence spectra revealed that the core-shell structure can effectively promote the separation rate of electron-hole pairs and prolong the lifetime of electrons. Compared with the single CdS NRs, the core-shell structural CdS@SnO2 exhibited a remarkably enhanced photocatalytic activity for selective oxidation of benzyl alcohol (BA) to benzaldehyde (BAD) under visible light irradiation, attributed to the more efficient separation of electrons and holes, improved surface area, and enhanced visible light absorption of core-shell structure. The radical scavenging experiments proved that in acetonitrile solution, ·O2- and holes are the main reactive species responsible for BA to BAD transformation, and the lack of ·OH radicals is favorable to obtaining high reaction selectivity.

  2. Laser operation by dissociation of metal complexes. II - New transitions in Cd, Fe, Ni, Se, Sn, Te, V, and Zn

    NASA Technical Reports Server (NTRS)

    Chou, M. S.; Cool, T. A.

    1977-01-01

    The reported investigation is a continuation of a study conducted by Chou and Cool (1976). The experimental results discussed are partly related to laser transitions in Cd(I), Cd(II), and Zn(II). Laser transitions in Fe(I), Ni(I), Sn(I), Te(I), and V(I) are also considered along with the observation of a laser pulse with two peaks in connection with the study of laser transitions in Se(I). Experiments related to prospective visible laser operation in thallium at 6550 and 6714 are also discussed, giving attention to spontaneous emission measurements at 6550 and 5350 A, the effects of additive molecules, and laser cavity experiments at 6550 and 6714 A.

  3. An investigation of new infrared nonlinear optical material: BaCdSnSe4, and three new related centrosymmetric compounds: Ba2SnSe4, Mg2GeSe4, and Ba2Ge2S6.

    PubMed

    Wu, Kui; Su, Xin; Yang, Zhihua; Pan, Shilie

    2015-12-14

    A series of new metal chalcongenides, BaCdSnSe4 (1), Ba2SnSe4 (2), Mg2GeSe4 (3), and Ba2Ge2S6 (4), were successfully synthesized for the first time. Among them, compounds 2 and 4 were prepared by a molten flux method with Zn as the flux. In their structures, all of them have MQ4 (M = Sn, Ge; Q = S, Se) units. For compound 1, the CdSe4 and SnSe4 groups are connected to form CdSnSe6 layers and these layers are linked together by the Ba atoms. Compounds 2 and 3 are composed of isolated MSe4 (M = Sn, Ge) units and charge-balanced by the Ba or Mg atoms, respectively, while compound 4 has infinite ∞(GeS3)n chains, which is different from the structures of the other three compounds that only have isolated MSe4 (M = Sn, Ge) units. The measured IR and Raman data of the title compounds show wide infrared transmission ranges. The experimental band gaps of compounds 1, 2, 3 and were determined to be 1.79, 1.90, and 2.02 eV, respectively. Band structures were also calculated and indicate that their tetrahedral units, such as [SnSe4], [GeS4] and [GeSe4], determine the energy band gaps of the title compounds, respectively. As for compound 1, based on fundamental light at 2.09 μm, the experimental second harmonic generation (SHG) response is about 1.6 times that of the benchmark AgGaS2, which is also consistent with the calculated value. Based on the above results, compound 1 has promising applications in the IR field as a NLO material. PMID:26509847

  4. Neutron Photoproduction from Sn with Linearly Polarized γ-rays between 13 and 15 MeV

    NASA Astrophysics Data System (ADS)

    Hauver, J.; Henderson, W.; Whisnant, C. S.; Ahmed, M.; Mueller, J.; Myers, L.; Stave, S.; Weller, H. R.

    2011-04-01

    Data have been collected at the High Intensity γ-ray Source (HIγS) to investigate neutron emission from a natural Sn target with linearly polarized gamma rays at Eγ= 13, 15, and 15.5 MeV. Liquid scintillator detectors were placed at scattering angles of 55°, 90° and 125° above, below and to the left and right of the target. Four additional detectors were placed at angles of 72° and 107° along the top and right. The Eγ dependence of the ratios of neutron yields, Ipara/Iperp are examined. The ratio at 90° should depend only on the P2 cos θ coefficient in the angular distribution. A comparison of these results will be discussed. Partially supported by the Department of Homeland Security through its Academic Research Initiative (ARI) program and by the NSF.

  5. High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter.

    PubMed

    Kim, Jeehwan; Hiroi, Homare; Todorov, Teodor K; Gunawan, Oki; Kuwahara, Masaru; Gokmen, Tayfun; Nair, Dhruv; Hopstaken, Marinus; Shin, Byungha; Lee, Yun Seog; Wang, Wei; Sugimoto, Hiroki; Mitzi, David B

    2014-11-26

    High-efficiency Cu2ZnSn(S,Se)4 solar cells are reported by applying In2S3/CdS double emitters. This new structure offers a high doping concentration within the Cu2ZnSn(S,Se)4 solar cells, resulting in a substantial enhancement in open-circuit voltage. The 12.4% device is obtained with a record open-circuit voltage deficit of 593 mV. PMID:25155874

  6. Spectroscopic Factors from the Single Neutron Transfer Reaction 111Cd(d,p)112Cd

    NASA Astrophysics Data System (ADS)

    Jamieson, D. S.; Garrett, P. E.; Demand, G. A.; Finlay, P.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Svensson, C. E.; Sumithrarachchi, C. S.; Triambak, S.; Wong, J.; Ball, G.; Faestermann, T.; Krücken, R.; Hertenberger, R.; Wirth, H.-F.

    2013-03-01

    The cadmium isotopes have been cited as excellent examples of vibrational nuclei for decades, with multi-phonon quadrupole, quadrupole-octupole, and mixed-symmetry states proposed. From a variety of experimental studies, a large amount of spectroscopic data has been obtained, recently focused on γ-ray studies. In the present work, the single-particle structure of 112Cd has been investigated using the 111Cd(ěcd, p)112Cd reaction. The investigation was carried out using a 22 MeV beam of polarized deuterons obtained from the Maier-Leibnitz Laboratory at Garching, Germany. The reaction ejectiles were momentum analyzed using a Q3D spectrograph, and 115 levels have been identified up to 4.2 MeV of excitation energy. Spin-parity has been assigned to each analyzed level, and angular distributions for the reaction cross sections and analyzing powers were obtained. Many additional levels have been observed compared with the previous (d,p) study performed with 8 MeV deuterons,1 including strongly populated 5- and 6- states. The former was previously assigned as a member of the quadrupole-octupole quintuplet, based on a strongly enhanced B(E2) value to the 3- state, but is now re-assigned as being predominately s1/2 ⊗ h11/2 configuration.

  7. Effects of neutron irradiation on pinning force scaling in state-of-the-art Nb3Sn wires

    NASA Astrophysics Data System (ADS)

    Baumgartner, T.; Eisterer, M.; Weber, H. W.; Flükiger, R.; Scheuerlein, C.; Bottura, L.

    2014-01-01

    We present an extensive irradiation study involving five state-of-the-art Nb3Sn wires which were subjected to sequential neutron irradiation up to a fast neutron fluence of 1.6 × 1022 m-2 (E > 0.1 MeV). The volume pinning force of short wire samples was assessed in the temperature range from 4.2 to 15 K in applied fields of up to 7 T by means of SQUID magnetometry in the unirradiated state and after each irradiation step. Pinning force scaling computations revealed that the exponents in the pinning force function differ significantly from those expected for pure grain boundary pinning, and that fast neutron irradiation causes a substantial change in the functional dependence of the volume pinning force. A model is presented, which describes the pinning force function of irradiated wires using a two-component ansatz involving a point-pinning contribution stemming from radiation induced pinning centers. The dependence of this point-pinning contribution on fast neutron fluence appears to be a universal function for all examined wire types.

  8. Spin-orbit and orbit-orbit strengths for the radioactive neutron-rich doubly magic nucleus {sup 132}Sn in relativistic mean-field theory

    SciTech Connect

    Liang Haozhao; Zhao Pengwei; Li Lulu; Meng Jie

    2011-01-15

    Relativistic mean-field (RMF) theory is applied to investigate the properties of the radioactive neutron-rich doubly magic nucleus {sup 132}Sn and the corresponding isotopes and isotones. The two-neutron and two-proton separation energies are well reproduced by the RMF theory. In particular, the RMF results agree with the experimental single-particle spectrum in {sup 132}Sn as well as the Nilsson spin-orbit parameter C and orbit-orbit parameter D thus extracted, but remarkably differ from the traditional Nilsson parameters. Furthermore, the present results provide a guideline for the isospin dependence of the Nilsson parameters.

  9. Loss mechanisms influence on Cu2ZnSnS4/CdS-based thin film solar cell performance

    NASA Astrophysics Data System (ADS)

    Courel, Maykel; Andrade-Arvizu, J. A.; Vigil-Galán, O.

    2015-09-01

    One of the most important issues in kesterite Cu2ZnSnS4 (CZTS)-based thin film solar cells is low open circuit voltage, which is mainly related to loss mechanisms that take place in both CZTS bulk material and CdS/CZTS interface. A device model for CZTS/CdS solar cell which takes into account loss mechanisms influence on solar cell performance is presented. The simulation results showed that our model is able to reproduce experimental observations reported for CZTS/CdS-based solar cells with the highest conversion efficiencies, measured under room temperature and AM1.5 intensity. The comparison of simulation results to experimental observations demonstrated that among the different loss mechanisms, trap-assisted tunneling losses are the major hurdle to boost open circuit voltage. Under this loss mechanism, a solar cell efficiency enhancement up to 10.2% with CdS donor concentration decrease was reached. Finally, the possible path toward a further solar cell efficiency improvement is discussed.

  10. Shell model calculation for Te and Sn isotopes in the vicinity of {sup 100}Sn

    SciTech Connect

    Yakhelef, A.; Bouldjedri, A.

    2012-06-27

    New Shell Model calculations for even-even isotopes {sup 104-108}Sn and {sup 106,108}Te, in the vicinity of {sup 100}Sn have been performed. The calculations have been carried out using the windows version of NuShell-MSU. The two body matrix elements TBMEs of the effective interaction between valence nucleons are obtained from the renormalized two body effective interaction based on G-matrix derived from the CD-bonn nucleon-nucleon potential. The single particle energies of the proton and neutron valence spaces orbitals are defined from the available spectra of lightest odd isotopes of Sb and Sn respectively.

  11. Optical properties of vacuum evaporated Cd xSn 1-xSe polycrystalline thin films: influence of composition and thickness

    NASA Astrophysics Data System (ADS)

    Padiyan, D. Pathinettam; Marikani, A.; Murali, K. R.

    2005-03-01

    Polycrystalline Cd xSn 1-xSe material is synthesized by melt growth technique for various x values and thin films are prepared by vacuum evaporation technique. Optical transmittance measurements have been made on thin films of Cd xSn 1-xSe, with x=0,0.3,0.75 and 1 for various thicknesses. The studies reveal that these thin films have a direct allowed band gap energy and the indirect band gap energy is improbable. The band gap energy increases with decrease in thickness in all the compositions and it is attributed to the quantum size effect.

  12. Shell-model states with seniority ν =3 , 5, and 7 in odd-A neutron-rich Sn isotopes

    NASA Astrophysics Data System (ADS)

    Iskra, Ł. W.; Broda, R.; Janssens, R. V. F.; Chiara, C. J.; Carpenter, M. P.; Fornal, B.; Hoteling, N.; Kondev, F. G.; Królas, W.; Lauritsen, T.; Pawłat, T.; Seweryniak, D.; Stefanescu, I.; Walters, W. B.; Wrzesiński, J.; Zhu, S.

    2016-01-01

    Excited states with seniority ν =3 , 5, and 7 have been investigated in odd neutron-rich 119,121,123,125Sn isotopes produced by fusion-fission of 6.9-MeV/A 48Ca beams with 208Pb and 238U targets and by fission of a 238U target bombarded with 6.7-MeV/A 64Ni beams. Level schemes have been established up to high spin and excitation energies in excess of 6 MeV, based on multifold gamma-ray coincidence relationships measured with the Gammasphere array. In the analysis, the presence of isomers was exploited to identify gamma rays and propose transition placements using prompt and delayed coincidence techniques. Gamma decays of the known 27 /2- isomers were expanded by identifying new deexcitation paths feeding 23 /2+ long-lived states and 21 /2+ levels. Competing branches in the decay of 23 /2- states toward two 19 /2- levels were delineated as well. In 119Sn, a new 23 /2+ isomer was identified, while a similar 23 /2+ long-lived state, proposed earlier in 121Sn, has now been confirmed. In both cases, isomeric half-lives were determined with good precision. In the range of ν =3 excitations, the observed transitions linking the various states enabled one to propose with confidence spin-parity assignments for all the observed states. Above the 27 /2- isomers, an elaborate structure of negative-parity levels was established reaching the (39 /2- ), ν =7 states, with tentative spin-parity assignments based on the observed deexcitation paths as well as on general yrast population arguments. In all the isotopes under investigation, strongly populated sequences of positive-parity (35 /2+ ), (31 /2+ ), and (27 /2+ ) states were established, feeding the 23 /2+ isomers via cascades of three transitions. In the ,123Sn121 isotopes, these sequences also enabled the delineation of higher-lying levels, up to (43 /2+ ) states. In 123Sn, a short half-life was determined for the (35 /2+ ) state. Shell-model calculations were carried out for all the odd Sn isotopes, from 129Sn down to 119

  13. Phosphatidylinositol 4,5-Bisphosphate Clusters the Cell Adhesion Molecule CD44 and Assembles a Specific CD44-Ezrin Heterocomplex, as Revealed by Small Angle Neutron Scattering

    SciTech Connect

    Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K.; Stanley, Christopher B.; Do, Changwoo; Heller, William T.; Aggarwal, Aneel K.; Callaway, David J.E.; Bu, Zimei

    2015-01-08

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin, which links the CD44 assembled receptor signaling complexes to the cytoskeletal actin and organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered and adopts an autoinhibited conformation, which prevents CD44ct from binding directly to activated Ezrin in solution. Binding to the signaling lipid phosphatidylinositol 4,5-biphosphlate (PIP2) disrupts autoinhibition in CD44ct, and activates CD44ct to associate with Ezrin. Further, using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific hetero-tetramer complex of CD44ct with Ezrin. This study reveals a novel autoregulation mechanism in the cytoplasmic tail of CD44 and the role of PIP2 in mediating the assembly of multimeric CD44ct-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of multimeric PIP2-CD44-Ezrin complexes.

  14. Phosphatidylinositol 4,5-Bisphosphate Clusters the Cell Adhesion Molecule CD44 and Assembles a Specific CD44-Ezrin Heterocomplex, as Revealed by Small Angle Neutron Scattering

    DOE PAGESBeta

    Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K.; Stanley, Christopher B.; Do, Changwoo; Heller, William T.; Aggarwal, Aneel K.; Callaway, David J.E.; Bu, Zimei

    2015-01-08

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin, which links the CD44 assembled receptor signaling complexes to the cytoskeletal actin and organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered and adopts an autoinhibited conformation, which prevents CD44ct from binding directly to activated Ezrin in solution. Binding to the signaling lipid phosphatidylinositol 4,5-biphosphlate (PIP2) disrupts autoinhibition in CD44ct, and activates CD44ct to associate with Ezrin.more » Further, using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific hetero-tetramer complex of CD44ct with Ezrin. This study reveals a novel autoregulation mechanism in the cytoplasmic tail of CD44 and the role of PIP2 in mediating the assembly of multimeric CD44ct-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of multimeric PIP2-CD44-Ezrin complexes.« less

  15. Crystal electric field excitations in quasicrystal approximant TbCd6 studied by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Das, Pinaki; Flint, R.; Kong, T.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.; de Boissieu, M.; Lory, P.-F.; Beutier, G.; Hiroto, T.

    All of the known quasicrystals with local moments exhibit frustration and spin glass-like behavior at low temperature. The onset of the spin freezing temperature is believed to be affected by the crystal electric field (CEF) splitting of the local moments. The quasicrystal approximant TbCd6 and its related icosahedral quasicrystal phase, i-Tb-Cd, form a set of model systems to explore how magnetism evolves from a conventional lattice (approximant phase) to an aperiodic quasicrystal. Though TbCd6 shows long-range antiferromagnetic ordering (TN = 24 K), only spin glass like behavior is observed in i-Tb-Cd with a spin freezing temperature of TF = 6 K. To investigate further, we have performed inelastic neutron scattering measurements on powder samples of TbCd6 and observed two distinct CEF excitations at low energies which points to a high degeneracy of the CEF levels related to the Tb surrounding with almost icosahedral symmetry. Work at Ames Laboratory was supported by the DOE, BES, Division of Materials Sciences & Engineering, under Contract No. DE-AC02-07CH11358. This research used resources at Institut Laue-Langevin, France.

  16. Thin film growth of a topological crystal insulator SnTe on the CdTe (111) surface by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ishikawa, Ryo; Yamaguchi, Tomonari; Ohtaki, Yusuke; Akiyama, Ryota; Kuroda, Shinji

    2016-11-01

    We report molecular beam epitaxial growth of a SnTe (111) layer on a CdTe template, fabricated by depositing it on a GaAs (111)A substrate, instead of BaF2 which has been conventionally used as a substrate. By optimizing temperatures for the growth of both SnTe and CdTe layers and the SnTe growth rate, we could obtain SnTe layers of the single phase grown only in the (111) orientation and of much improved surface morphology from the viewpoint of the extension and the flatness of flat regions, compared to the layers grown on BaF2. In this optimal growth condition, we have also achieved a low hole density of the order of 1017 cm-3 at 4 K, the lowest value ever reported for SnTe thin films without additional doping. In the magnetoresistance measurement on this optimized SnTe layer, we observe characteristic negative magneto-conductance which is attributed to the weak antilocalization effect of the two-dimensional transport in the topological surface state.

  17. Preparation of SnS/CdS Co-sensitized TiO2 Photoelectrodes for Quantum Dots Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Xie, Yu-Long; Song, Ping; Zhao, Su-Qing

    2016-10-01

    TiO2 porous films have been prepared by electrophoresis deposition method, while tin sulfide (SnS) and cadmium sulfide quantum dots (QDs) have been deposited by a simple and inexpensive successive ionic layer adsorption and reaction method. The CdS and SnS QDs modifications expanded the photoresponse range of TiO2 nanoparticles from the ultraviolet region to visible range. Such prepared SnS/CdS/TiO2 films were used as photo-anodes to assemble QDs sensitized solar cells with I-/I3 - liquid electrolyte and Pt-coated fluorine-doped tin oxide glass counter electrode. The best resulting cells had an open circuit voltage of 520 mV, a short circuit current density of 2.972 mA cm-2, a fill factor of 0.61, and with a conversion efficiency of 0.936%.

  18. Spherical proton-neutron structure of isomeric states in {sup 128}Cd

    SciTech Connect

    Caceres, L.; Gorska, M.; Grawe, H.; Sieja, K.; Geissel, H.; Gerl, J.; Kojouharov, I.; Kurz, N.; Montes, F.; Martinez-Pinedo, G.; Prokopowicz, W.; Schaffner, H.; Tashenov, S.; Wollersheim, H. J.; Jungclaus, A.; Pfuetzner, M.; Werner-Malento, E.; Nowacki, F.

    2009-01-15

    The {gamma}-ray decay of isomeric states in the even-even nucleus {sup 128}Cd has been observed. The nucleus of interest was produced both by the fragmentation of {sup 136}Xe and the fission of {sup 238}U primary beams. The level scheme was unambiguously constructed based on {gamma}{gamma} coincidence relations in conjunction with detailed lifetime analysis employed for the first time on this nucleus. Large-scale shell-model calculations, without consideration of excitations across the N=82 shell closure, were performed and provide a consistent description of the experimental level scheme. The structure of the isomeric states and their decays exhibit coexistence of proton, neutron, and strongly mixed configurations due to {pi}{nu} interaction in overlapping orbitals for both proton and neutron holes.

  19. Collective excitations in liquid CD4: Neutron scattering and molecular-dynamics simulations

    NASA Astrophysics Data System (ADS)

    Guarini, E.; Bafile, U.; Barocchi, F.; Demmel, F.; Formisano, F.; Sampoli, M.; Venturi, G.

    2005-12-01

    We have investigated the dynamic structure factor S(Q,ω) of liquid CD4 at T = 97.7 K in the wave vector range 2 <= Q/nm-1 <= 15 by means of neutron scattering and molecular-dynamics simulation, in order to study the centre-of-mass collective dynamics. The agreement between the experimental spectra and those simulated using a recent ab initio based intermolecular potential is good, particularly at low Q. Underdamped collective excitations, detected in the whole experimental Q-range, characterize the dynamics of liquid CD4 as markedly different from that of other molecular liquids. Also, the energy and damping of collective excitations in methane are shown to differ considerably, even at the lowest measured Q-values, from those of linearized hydrodynamic modes. An empirical relation, able to reconcile the different wave vector ranges of mode propagation observed in disparate liquids, is investigated.

  20. Annealing-induced optical and sub-band-gap absorption parameters of Sn-doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Tripathi, S. K.

    2016-01-01

    Thin films of Sn-doped CdSe were prepared by thermal evaporation onto glass substrates in an argon gas atmosphere and annealed at different temperatures. Structural evaluation of the films was carried out using X-ray diffraction and their stoichiometry studied by energy-dispersive X-ray analysis. The films exhibit a preferred orientation along the hexagonal direction of CdSe. The optical transmittance of the films shows a red shift of the absorption edge with annealing. The fundamental absorption edge corresponds to a direct energy gap with a temperature coefficient of 3.34 × 10-3 eV K-1. The refractive index, optical conductivity and real and imaginary parts of the dielectric constants were found to increase after annealing. The sub-band gap absorption coefficient was evaluated using the constant photocurrent method. It varies exponentially with photon energy. The Urbach energy, the density of defect states, and the steepness of the density of localized states were evaluated from the sub-band-gap absorption.

  1. Quantitative study of coherent pairing modes with two-neutron transfer: Sn isotopes

    NASA Astrophysics Data System (ADS)

    Potel, G.; Idini, A.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2013-05-01

    Pairing rotations and pairing vibrations are collective modes associated with a field, the pair field, which changes the number of particles by two. Consequently, they can be studied at profit with the help of two-particle transfer reactions in superfluid and in normal nuclei, respectively. The advent of exotic beams has opened, for the first time, the possibility to carry out such studies in medium heavy nuclei, within the same isotopic chain. The case studied in the present paper is that of the Sn isotopes [essentially from closed (Z=N=50) to closed (Z=50, N=82) shells]. The static and dynamic off-diagonal, long-range order phase coherence in gauge space displayed by pairing rotations and vibrations, respectively, leads to coherent states which behave almost classically. Consequently, these modes are amenable to an accurate nuclear structure description in terms of simple models containing the right physics, in particular, BCS plus quasiparticle random-phase approximation and Hartree-Fock mean field plus random-phase approximation, respectively. The associated two-nucleon transfer spectroscopic amplitudes predicted by such model calculations can thus be viewed as essentially “exact.” This fact, together with the availability of optical potentials for the different real and virtual channels involved in the reactions considered, namely A+2Sn+p, A+1Sn+d, and ASn+t, allows for the calculation of the associated absolute cross sections without, arguably, free parameters. The numerical predictions of the absolute differential cross sections, obtained making use of the above-mentioned nuclear structure and optical potential inputs, within the framework of second-order distorted-wave Born approximation, taking into account simultaneous, successive, and nonorthogonality contributions, provide, within experimental errors in general, and below 10% uncertainty in particular, an overall account of the experimental findings for all of the measured A+2Sn

  2. Gamma rays, X-rays, and optical light from the cobalt and the neutron star in SN 1987A

    NASA Technical Reports Server (NTRS)

    Kumagai, Shiomi; Shigeyama, Toshikazu; Nomoto, Ken'ichi; Itoh, Masayuki; Nishimura, Jun

    1989-01-01

    Recent developments in modeling the X-ray and gamma-ray emission from SN 1987A are discussed by taking into account both the decaying cobalt and the buried neutron star. The light curve and the spectra evolution of X-rays and gamma-rays are well modeled up to day of about 300 if mixing of Co-56 into hydrogen-rich envelope is assumed. However, the 16-28 keV flux observed by Ginga declines very slowly, whereas the spherical mixing model predicts that the flux should have decreased by a large factor at t greater than 300d. It is shown that this problem can be solved if the photoelectric absorption of X-rays is effectively reduced as a result of the formation of chemically inhomogeneous clumps. Based on the adopted hydrodynamical model and the abundance distribution, predictions are offered for future optical, X-ray, and gamma-ray light curves by taking into account other radioactive sources and various types of the central source, e.g., a buried neutron star accreting the reinfalling material or an isolated pulsar.

  3. Effect of sputtering power on Cd/Zn atomic ratio and optical properties of Cu2ZnxCd1-xSnS4 thin films deposited by magnetron sputtering: An experimental and first-principle study

    NASA Astrophysics Data System (ADS)

    Xu, Na; Li, Pingting; Hao, Yunxing; Wang, Xin; Meng, Lei

    2016-09-01

    Cu2ZnxCd1-xSnS4 (CZCTS) thin films were deposited on soda-lime glass (SLG) substrates by rf magnetron sputtering. It is found that the Cd/Zn atomic ratio of kesterite CZCTS increases with the enhancement of sputtering power. The structural, surface morphology and optical properties of the CZCTS thin films deposited at different sputtering power were systemically investigated. The X-ray diffraction (XRD) measurements indicate that all CZCTS thin films are polycrystalline with kesterite structure and no impurity phase is observed. The variation of Cd/Zn atomic ratio in CZCTS results in the shift of the optical bandgap.

  4. Comparison Between Research-Grade SnO2 and Commercial Available SnO2 for Thin-Film CdTe Solar Cell (Poster)

    SciTech Connect

    Li, X.; Pankow, J.; To, B.; Gessert, T.

    2008-05-01

    A comparison between research-grade, tin-oxide (SnO{sub 2}) thin films and those available from commercial sources is performed. The research-grade SnO{sub 2} film is fabricated at NREL by low-pressure metal-organic chemical vapor deposition. The commercial SnO{sub 2} films are Pilkington Tec 8 and Tec 15 fabricated by atmospheric-pressure chemical vapor deposition. Optical, structural, and compositional analyses are performed. From the optical analysis, an estimation of the current losses due to the SnO{sub 2} layer and glass is provided. Our analysis indicates that the optical properties of commercial SnO{sub 2} could be improved for PV usage.

  5. A sputtered CdS buffer layer for co-electrodeposited Cu2ZnSnS4 solar cells with 6.6% efficiency.

    PubMed

    Tao, Jiahua; Zhang, Kezhi; Zhang, Chuanjun; Chen, Leilei; Cao, Huiyi; Liu, Junfeng; Jiang, Jinchun; Sun, Lin; Yang, Pingxiong; Chu, Junhao

    2015-06-28

    Cu2ZnSnS4 thin films with thicknesses ranging from 0.35 to 1.85 μm and micron-sized grains (0.5-1.5 μm) were synthesized using co-electrodeposited Cu-Zn-Sn-S precursors with different deposition times. Here we have introduced a sputtered CdS buffer layer for the development of CZTS solar cells for the first time, which enables breakthrough efficiencies up to 6.6%. PMID:26027699

  6. High-resolution measurements of the DT neutron spectrum using new CD foils in the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Gatu Johnson, M.; Frenje, J. A.; Bionta, R. M.; Casey, D. T.; Eckart, M. J.; Farrell, M. P.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Hoppe, M.; Kilkenny, J. D.; Li, C. K.; Petrasso, R. D.; Reynolds, H. G.; Sayre, D. B.; Schoff, M. E.; Séguin, F. H.; Skulina, K.; Yeamans, C. B.

    2016-11-01

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. This paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ˜200 keV FWHM.

  7. High-resolution measurements of the DT neutron spectrum using new CD foils in the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    DOE PAGESBeta

    Gatu Johnson, M.; Frenje, J. A.; Bionta, R. M.; Casey, D. T.; Eckart, M. J.; Farrell, M. P.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Hoppe, M.; et al

    2016-08-09

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. Here, this paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ~200 keV FWHM.

  8. In situ capping for size control of monochalcogenides (ZnS, CdS, and SnS) nanocrystals produced by anaerobic metal-reducing bacteria

    DOE PAGESBeta

    Jang, Gyoung Gug; Jacobs, Christopher B.; Ivanov, Ilia N.; Joshi, Pooran C.; Meyer, III, Harry M.; Kidder, Michelle; Armstrong, Beth L.; Datskos, Panos G.; Graham, David E.; Moon, Ji -Won

    2015-07-24

    Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. Furthermore, the capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm.

  9. The effect of the flow driven by a travelling magnetic field on solidification structure of Sn-Cd peritectic alloys

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Shen, Jun; Qin, Ling; Feng, Zhourong; Wang, Lingshui; Fu, Hengzhi

    2012-10-01

    The effect of the flow driven by a travelling magnetic field (TMF) on solidification structure of Sn-1.8 wt% Cd peritectic alloy was investigated numerically and experimentally. A new TMF generator consisting of three co-coils and a cooling system has been designed and applied successfully. The corresponding radial and axial magnetic field intensity in the inner space of the TMF generator are measured by teslameter. Numerical results indicate that the flow velocity under a downward TMF is smaller than that under an upward TMF. The experimental results demonstrate that α island structures in β matrix are mainly observed under the 6.3 mT and 10.3 mT upward TMF, and the number of α island phase increases with increasing magnetic field intensity. Banded structure is observed under the 6.3 mT and 10.3 mT downward TMF, and the number of bands increases with increasing magnetic field intensity. This should be attributed to the different flow intensity at the interface front under an upward/downward TMF.

  10. Design of Three-shell Icosahedral Matryoshka Clusters A@B12@A20 (A = Sn, Pb; B = Mg, Zn, Cd, Mn)

    PubMed Central

    Huang, Xiaoming; Zhao, Jijun; Su, Yan; Chen, Zhongfang; King, R. Bruce

    2014-01-01

    We propose a series of icosahedral matryoshka clusters of A@B12@A20 (A = Sn, Pb; B = Mg, Zn, Cd), which possess large HOMO-LUMO gaps (1.29 to 1.54 eV) and low formation energies (0.06 to 0.21 eV/atom). A global minimum search using a genetic algorithm and density functional theory calculations confirms that such onion-like three-shell structures are the ground states for these A21B12 binary clusters. All of these icosahedral matryoshka clusters, including two previously found ones, i.e., [As@Ni12@As20]3− and [Sn@Cu12@Sn20]12−, follow the 108-electron rule, which originates from the high Ih symmetry and consequently the splitting of superatom orbitals of high angular momentum. More interestingly, two magnetic matryoshka clusters, i.e., Sn@Mn12@Sn20 and Pb@Mn12@Pb20, are designed, which combine a large magnetic moment of 28 µB, a moderate HOMO-LUMO gap, and weak inter-cluster interaction energy, making them ideal building blocks in novel magnetic materials and devices. PMID:25376938

  11. Code System for Two-Dinensional Sn-Neutronics and Fluid Dynamics.

    2003-07-28

    Version 00 SIMMERII is designed to predict the neutronic and fluid-dynamic behavior of an LMFBR during a hypothetical core-disruptive accident. Cross sections depend on temperature and background cross sections. The structure, liquid, and vapor fields are modeled to predict the fluid-dynamic behavior of the reactor. Each field consists of density components to follow the material motion and energy components to predict the material temperatures. For typical accident calculations, the materials are fertile fuel, fissile fuel,more » stainless steel, sodium, control material, and fission gas. Heat, mass, and momentum transfer among the three fields and their components are calculated.« less

  12. Dual-targeting hybrid nanoparticles for the delivery of SN38 to Her2 and CD44 overexpressed human gastric cancer

    NASA Astrophysics Data System (ADS)

    Yang, Zhe; Luo, Huiyan; Cao, Zhong; Chen, Ya; Gao, Jinbiao; Li, Yingqin; Jiang, Qing; Xu, Ruihua; Liu, Jie

    2016-06-01

    Gastric cancer (GC), particularly of the type with high expression of both human epidermal growth factor receptor 2 (Her2) and cluster determinant 44 (CD44), is one of the most malignant human tumors which causes a high mortality rate due to rapid tumor growth and metastasis. To develop effective therapeutic treatments, a dual-targeting hybrid nanoparticle (NP) system was designed and constructed to deliver the SN38 agent specifically to human solid gastric tumors bearing excessive Her2 and CD44. The hybrid NPs consist of a particle core made of the biodegradable polymer PLGA and a lipoid shell prepared by conjugating the AHNP peptides and n-hexadecylamine (HDA) to the carboxyl groups of hyaluronic acid (HA). Upon encapsulation of the SN38 agent in the NPs, the AHNP peptides and HA on the NP surface allow preferential delivery of the drug to gastric cancer cells (e.g., HGC27 cells) by targeting Her2 and CD44. Cellular uptake and in vivo biodistribution experiments verified the active targeting and prolonged in vivo circulation properties of the dual-targeting hybrid NPs, leading to enhanced accumulation of the drug in tumors. Furthermore, the anti-proliferation mechanism studies revealed that the inhibition of the growth and invasive activity of HGC27 cells was not only attributed to the enhanced cellular uptake of dual-targeting NPs, but also benefited from the suppression of CD44 and Her2 expression by HA and AHNP moieties. Finally, intravenous administration of the SN38-loaded dual-targeting hybrid NPs induced significant growth inhibition of HGC27 tumor xenografted in nude mice compared with a clinical antitumor agent, Irinotecan (CPT-11), and the other NP formulations. These results demonstrate that the designed dual-targeting hybrid NPs are promising for targeted anti-cancer drug delivery to treat human gastric tumors over-expressing Her2 and CD44.Gastric cancer (GC), particularly of the type with high expression of both human epidermal growth factor receptor

  13. Dual-targeting hybrid nanoparticles for the delivery of SN38 to Her2 and CD44 overexpressed human gastric cancer.

    PubMed

    Yang, Zhe; Luo, Huiyan; Cao, Zhong; Chen, Ya; Gao, Jinbiao; Li, Yingqin; Jiang, Qing; Xu, Ruihua; Liu, Jie

    2016-06-01

    Gastric cancer (GC), particularly of the type with high expression of both human epidermal growth factor receptor 2 (Her2) and cluster determinant 44 (CD44), is one of the most malignant human tumors which causes a high mortality rate due to rapid tumor growth and metastasis. To develop effective therapeutic treatments, a dual-targeting hybrid nanoparticle (NP) system was designed and constructed to deliver the SN38 agent specifically to human solid gastric tumors bearing excessive Her2 and CD44. The hybrid NPs consist of a particle core made of the biodegradable polymer PLGA and a lipoid shell prepared by conjugating the AHNP peptides and n-hexadecylamine (HDA) to the carboxyl groups of hyaluronic acid (HA). Upon encapsulation of the SN38 agent in the NPs, the AHNP peptides and HA on the NP surface allow preferential delivery of the drug to gastric cancer cells (e.g., HGC27 cells) by targeting Her2 and CD44. Cellular uptake and in vivo biodistribution experiments verified the active targeting and prolonged in vivo circulation properties of the dual-targeting hybrid NPs, leading to enhanced accumulation of the drug in tumors. Furthermore, the anti-proliferation mechanism studies revealed that the inhibition of the growth and invasive activity of HGC27 cells was not only attributed to the enhanced cellular uptake of dual-targeting NPs, but also benefited from the suppression of CD44 and Her2 expression by HA and AHNP moieties. Finally, intravenous administration of the SN38-loaded dual-targeting hybrid NPs induced significant growth inhibition of HGC27 tumor xenografted in nude mice compared with a clinical antitumor agent, Irinotecan (CPT-11), and the other NP formulations. These results demonstrate that the designed dual-targeting hybrid NPs are promising for targeted anti-cancer drug delivery to treat human gastric tumors over-expressing Her2 and CD44. PMID:27203688

  14. Particle decay of very neutron deficient nuclei near {sup 100}Sn

    SciTech Connect

    Tighe, R.J.; Moltz, D.M.; Batchelder, J.C.; Ognibene, T.J.; Rowe, M.W.; Cerny, J.

    1993-10-01

    Proton emission from the nuclear ground state (gs) not only determines the limit of nuclear stability, but yields information on nuclear masses and structure very far from stability. There has been much recent experimental work in the region of the expected doubly-magic nucleus {sup 100}Sn (N=Z=50). This includes the discovery of the lightest known gs proton emitters, {sup 109}I and {sup 113}CS. We have used the compound nuclear reaction {sup 58}Ni + {sup 50}Cr to search for the gs particle decay of {sup 104}Sb and {sup 105}Sb. The evaporation residues were transported via our He-jet system and collected on a thin tape at the center of our new detector ball. This detector ball consists of six gas-{Delta}E gas-{Delta}E Si-E triple telescopes each capable of detecting protons with energies down to {approx}200 keV. Previous attempts to identify the gs proton decay of {sup 105}Sb had a lower energy threshold of {approx}500 keV. We have observed several low-energy ({approx}350-800 keV) proton groups at {sup 58}Ni bombarding energies of 223 MeV, 244 MeV, and 259 MeV.

  15. Excitation function of the alpha particle induced nuclear reactions on enriched 116Cd, production of the theranostic isotope 117mSn

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Takács, S.; Haba, H.; Komori, Y.; Aikawa, M.; Szűcs, Z.; Saito, M.

    2016-10-01

    117mSn is one of the radioisotopes can be beneficially produced through alpha particle irradiation. The targets were prepared by deposition of 116Cd metal onto high purity 12 μm thick Cu backing. The average deposited thickness was 21.9 μm. The beam energy was thoroughly measured by Time of Flight (TOF) methods and proved to be 51.2 MeV. For the experiment the well-established stacked foil technique was used. In addition to the Cd targets, Ti foils were also inserted into the stacks for energy and intensity monitoring. The Cu backings were also used for monitoring and as recoil catcher of the reaction products from the cadmium layer. The activities of the irradiated foils were measured with HPGe detector for gamma-ray spectrometry and cross section values were determined. As a result excitation functions for the formation of 117mSn, 117m,gIn, 116mIn, 115mIn and 115m,gCd from enriched 116Cd were deduced and compared with the available literature data and with the results of the nuclear reaction model code calculations EMPIRE 3.2 and TALYS 1.8. Yield curves were also deduced for the measured nuclear reactions and compared with the literature.

  16. The human U5 snRNP 52K protein (CD2BP2) interacts with U5-102K (hPrp6), a U4/U6.U5 tri-snRNP bridging protein, but dissociates upon tri-snRNP formation

    PubMed Central

    LAGGERBAUER, BERNHARD; LIU, SUNBIN; MAKAROV, EVGENY; VORNLOCHER, HANS-PETER; MAKAROVA, OLGA; INGELFINGER, DIERK; ACHSEL, TILMANN; LÜHRMANN, REINHARD

    2005-01-01

    The U5 snRNP plays an essential role in both U2- and U12-dependent splicing. Here, we have characterized a 52-kDa protein associated with the human U5 snRNP, designated U5-52K. Protein sequencing revealed that U5-52K is identical to the CD2BP2, which interacts with the cytoplasmic portion of the human T-cell surface protein CD2. Consistent with it associating with an snRNP, immunofluorescence studies demonstrated that the 52K protein is predominantly located in the nucleoplasm of HeLa cells, where it overlaps, at least in part, with splicing-factor compartments (or “speckles”). We further demonstrate that the 52K protein is a constituent of the 20S U5 snRNP, but is not found in U4/U6.U5 tri-snRNPs. Thus, it is the only 20S U5-specific protein that is not integrated into the tri-snRNP and resembles, in this respect, the U4/U6 di-snRNP assembly factor Prp24p/p110. Yeast two-hybrid screening and pulldown assays revealed that the 52K protein interacts with the U5-specific 102K and 15K proteins, suggesting that these interactions are responsible for its integration into the U5 particle. The N-terminal two-thirds of 52K interact with the 102K protein, whereas its C-terminal GYF-domain binds the 15K protein. As the latter lacks a proline-rich tract, our data indicate that a GYF-domain can also engage in specific protein–protein interactions in a polyproline-independent manner. Interestingly, the U5-102K protein has been shown previously to play an essential role in tri-snRNP formation, binding the U4/U6-61K protein. The interaction of 52K with a tri-snRNP bridging protein, coupled with its absence from the tri-snRNP, suggests it might function in tri-snRNP assembly. PMID:15840814

  17. Evolution of Na-S(-O) Compounds on the Cu2ZnSnS4 Absorber Surface and Their Effects on CdS Thin Film Growth.

    PubMed

    Ren, Yi; Scragg, Jonathan J S; Edoff, Marika; Larsen, Jes K; Platzer-Björkman, Charlotte

    2016-07-20

    Formation of Na-containing surface compounds is an important phenomenon in the Cu2ZnSnS4 (CZTS) quaternary material synthesis for solar cell applications. Still, identification of these compounds and the understanding of their potential influence on buffer layer growth and device performance are scarce. In this work, we discovered that the evolution of Na-S(-O) compounds on the CZTS surface substantially affect the solution/CZTS interface during the chemical bath deposition of CdS buffer film. We showed that Na2S negatively affects the growth of CdS, and that this compound is likely to form on the CZTS surface after annealing. It was also demonstrated that the Na2S compound can be oxidized to Na2SO4 by air exposure of the annealed CZTS surface or be removed using water dipping instead of the commonly used KCN etching process, resulting in significantly better quality of the CdS layer. Lastly, 6.5% CZTS solar cells were fabricated with air exposure treatment without incorporation of the KCN etching process. This work provides new insight into the growth of the CdS/CZTS interface for solar cell applications and opens new possibilities for improving likewise Cd-free buffer materials that are grown with a similar chemical bath deposition process. PMID:27356214

  18. Direct measurement of band offset at the interface between CdS and Cu2ZnSnS4 using hard X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Tajima, Shin; Kataoka, Keita; Takahashi, Naoko; Kimoto, Yasuji; Fukano, Tatsuo; Hasegawa, Masaki; Hazama, Hirofumi

    2013-12-01

    We directly and non-destructively measured the valence band offset at the interface between CdS and Cu2ZnSnS4 (CZTS) using hard X-ray photoelectron spectroscopy (HAXPES), which can measure the electron state of the buried interface because of its large analysis depth. These measurements were made using the following real devices; CZTS(t = 700 nm), CdS(t = 100 nm)/CZTS(t = 700 nm), and CdS(t = 5 nm)/CZTS(t = 700 nm) films formed on Mo coated glass. The valence band spectra were measured by HAXPES using an X-ray photon energy of 8 keV. The value of the valence band offset at the interface between CdS and CZTS was estimated as 1.0 eV by fitting the spectra. The conduction band offset could be deduced as 0.0 eV from the obtained valence band offset and the band gap energies of CdS and CZTS.

  19. Experimental study of neutron-rich nuclei near the N = 82 closed shell using the 4096Zr +50124Sn reaction with GASP and PRISMA-CLARA arrays

    NASA Astrophysics Data System (ADS)

    Rodríguez, W.; Torres, D. A.; Cristancho, F.; Medina, N. H.; Chapman, R.; Smith, J. F.; Mengoni, D.; Truesdale, V.; Grocutt, L.; Mulholland, K.; Kumar, V.; Hadinia, B.; Labiche, M.; Liang, X.; O'Donell, D.; Ollier, J.; Orlandi, R.; Smith, J. F.; Spohr, K. M.; Wady, P.; Wang, Z. M.; Gadea, A.; Ur, C. A.; Lenzi, S. M.; Capponi, L.; Michelangnoli, C.; Bazzacco, D.; Beghini, S.; Mǎrginean, R.; Mengoni, D.; Montagnoli, G.; Recchia, F.; Scarlassara, F.; Lunardi, S.; Kröll, T.; Napoli, D. R.; Corradi, L.; Fioretto, E.; de Angelis, G.; Mǎrginean, N.; Sahin, E.; Stefanini, A. M.; Valiente-Dobon, J. J.; Vedova, F. D.; Axiotis, M.; Martinez, T.; Szilner, S.; Freeman, S. J.; Smith, A. G.; Jones, G.; Thompson, N.; Pollarolo, G.

    2014-11-01

    In this contribution an experimental study of the deep-inelastic reaction 4096Zr +50124Sn at 530 MeV, using the GASP and PRISMA-CLARA arrays, is presented. The experiments populate a wealth of projectile-like and target-like binary fragments, in a large neutron-rich region around N ≥ 50 and Z ≈ 40. Preliminary results on the study of the yrast and near-yrast states for 95Nb will be shown, along with a comparison of the experimental yields obtained in the experiments.

  20. Neutron diffraction study of magnetic field induced behavior in the heavy Fermion Ce3Co4Sn13

    SciTech Connect

    Christianson, Andrew D; Goremychkin, E. A.; Gardner, J. S.; Kang, H. J.; Chung, J.-H.; Manuel, P.; Thompson, J. D.; Sarrao, J. L.; Lawrence, J. M.

    2008-01-01

    The specific heat of Ce3Co4Sn13 exhibits a crossover from heavy Fermion behavior with antiferromagnetic correlations at low field to single impurity Kondo behavior above 2 T. We have performed neutron diffraction measurements in magnetic fields up to 6 Tesla on single crystal samples. The (001) position shows a dramatic increase in intensity in field which appears to arise from static polarization of the 4f level and which at 0.14 K also exhibits an anomaly near 2T reflecting the crossover to single impurity behavior.

  1. Structural and photoelectron spectroscopic studies of band alignment at the Cu2ZnSnS4/CdS heterojunction with slight Ni doping in Cu2ZnSnS4

    NASA Astrophysics Data System (ADS)

    Chen, Hui-Ju; Fu, Sheng-Wen; Wu, Shih-Hsiung; Tsai, Tsung-Chieh; Wu, Hsuan-Ta; Shih, Chuan-Feng

    2016-08-01

    Knowledge of band-gap engineering and band-alignment matching at the Cu2ZnSnS4 (CZTS)/CdS interface are important for high-efficiency CZTS thin film solar cells. A negative conduction band offset (CBO) is usually obtained at the CZTS/CdS interface, forming a cliff interface and recombination center that reduces the photocurrent. We report a new attempt in which Ni was slightly doped into CZTS to change the band offset at the Cu2(Zn,Ni)SnS4 (CZNTS)/CdS interface (\\text{Ni}/≤ft(\\text{Zn}+\\text{Ni}\\right)=x , x=0,0.1,0.3 ). Experimental results showed that the band gap of the CZNTS absorber was strongly associated with the Ni composition, changing from 1.43 eV in pure CZTS to a narrow band gap of 1.26 eV in CZNTS (x=0.3 ). The valence band offset (VBO) values were  ‑1.25 eV, ‑ 1.20 eV, and  ‑1.12 eV when x was 0, 0.1, and 0.3, respectively. The CBO at the interface varied from negative (‑0.28 eV) to positive (0.02 eV) when x was changed from 0 to 0.3. This finding demonstrated that Ni doping is an efficient way to change the CBO from a cliff to a spike, thus is helpful in reducing the interfacial recombination and enhancing the photovoltaic properties.

  2. Structural and photoelectron spectroscopic studies of band alignment at the Cu2ZnSnS4/CdS heterojunction with slight Ni doping in Cu2ZnSnS4

    NASA Astrophysics Data System (ADS)

    Chen, Hui-Ju; Fu, Sheng-Wen; Wu, Shih-Hsiung; Tsai, Tsung-Chieh; Wu, Hsuan-Ta; Shih, Chuan-Feng

    2016-08-01

    Knowledge of band-gap engineering and band-alignment matching at the Cu2ZnSnS4 (CZTS)/CdS interface are important for high-efficiency CZTS thin film solar cells. A negative conduction band offset (CBO) is usually obtained at the CZTS/CdS interface, forming a cliff interface and recombination center that reduces the photocurrent. We report a new attempt in which Ni was slightly doped into CZTS to change the band offset at the Cu2(Zn,Ni)SnS4 (CZNTS)/CdS interface (\\text{Ni}/≤ft(\\text{Zn}+\\text{Ni}\\right)=x , x=0,0.1,0.3 ). Experimental results showed that the band gap of the CZNTS absorber was strongly associated with the Ni composition, changing from 1.43 eV in pure CZTS to a narrow band gap of 1.26 eV in CZNTS (x=0.3 ). The valence band offset (VBO) values were  -1.25 eV, - 1.20 eV, and  -1.12 eV when x was 0, 0.1, and 0.3, respectively. The CBO at the interface varied from negative (-0.28 eV) to positive (0.02 eV) when x was changed from 0 to 0.3. This finding demonstrated that Ni doping is an efficient way to change the CBO from a cliff to a spike, thus is helpful in reducing the interfacial recombination and enhancing the photovoltaic properties.

  3. New dielectric ceramics Pb(Cd)BiM/sup IV/SbO/sub 7/ (M/sup IV/ = Ti, Zr, Sn) with the pyrochlore structure

    SciTech Connect

    Lambachri, A.; Monier, M.; Mercurio, J.P.; Frit, B.

    1988-04-01

    Dielectric ceramics have been obtained by natural sintering of pyrochlore phases with general formula Pb(Cd)BiM/sup IV/SbO/sub 7/ (M/sup IV/ = Ti, Zr, Sn). Low frequency dielectric characteristics have been studied with respect to the processing conditions: sintering without additive and in the presence of some low melting compounds (PbO, Pb/sub 5/Ge/sub 3/O/sub 11/, Bi/sub 12/PbO/sub 19/ and Bi/sub 12/CdO/sub 19/). The dielectric constants of these ceramics lie between 30 and 60, the dielectric losses range from 10 to 30.10/sup -4/ and the temperature coefficient of the dielectric constants (20 - 100/sup 0/C) can be tailored by means of additives in the +- 30 ppm K/sup -1/ range.

  4. Neutron Scattering Studies of the Interplay of Amyloid β Peptide(1-40) and An Anionic Lipid 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol.

    PubMed

    Rai, Durgesh K; Sharma, Veerendra K; Anunciado, Divina; O'Neill, Hugh; Mamontov, Eugene; Urban, Volker; Heller, William T; Qian, Shuo

    2016-01-01

    The interaction between lipid bilayers and Amyloid β peptide (Aβ) plays a critical role in proliferation of Alzheimer's disease (AD). AD is expected to affect one in every 85 humans by 2050, and therefore, deciphering the interplay of Aβ and lipid bilayers at the molecular level is of profound importance. In this work, we applied an array of neutron scattering methods to study the structure and dynamics of Aβ(1-40) interacting 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) bilayers. In the structural investigations of lipid bilayer's response to Aβ binding, Small Angle Neutron Scattering and Neutron Membrane Diffraction revealed that the Aβ anchors firmly to the highly charged DMPG bilayers in the interfacial region between water and hydrocarbon chain, and it doesn't penetrate deeply into the bilayer. This association mode is substantiated by the dynamics studies with high resolution Quasi-Elastic Neutron Scattering experiments, showing that the addition of Aβ mainly affects the slower lateral motion of lipid molecules, especially in the fluid phase, but not the faster internal motion. The results revealed that Aβ associates with the highly charged membrane in surface with limited impact on the structure, but the altered membrane dynamics could have more influence on other membrane processes. PMID:27503057

  5. Neutron Scattering Studies of the Interplay of Amyloid β Peptide(1–40) and An Anionic Lipid 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol

    DOE PAGESBeta

    Rai, Durgesh K.; Sharma, Veerendra K.; Anunciado, Divina; O’Neill, Hugh; Mamontov, Eugene; Urban, Volker; Heller, William T.; Qian, Shuo

    2016-08-09

    The interaction between lipid bilayers and Amyloid β peptide (Aβ) plays a critical role in proliferation of Alzheimer’s disease (AD). AD is expected to affect one in every 85 humans by 2050, and therefore, deciphering the interplay of Aβ and lipid bilayers at the molecular level is of profound importance. In this work, we applied an array of neutron scattering methods to study the structure and dynamics of Aβ(1–40) interacting 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) bilayers. In the structural investigations of lipid bilayer’s response to Aβ binding, Small Angle Neutron Scattering and Neutron Membrane Diffraction revealed that the Aβ anchors firmly to themore » highly charged DMPG bilayers in the interfacial region between water and hydrocarbon chain, and it doesn’t penetrate deeply into the bilayer. This association mode is substantiated by the dynamics studies with high resolution Quasi-Elastic Neutron Scattering experiments, showing that the addition of Aβ mainly affects the slower lateral motion of lipid molecules, especially in the fluid phase, but not the faster internal motion. The results revealed that Aβ associates with the highly charged membrane in surface with limited impact on the structure, but the altered membrane dynamics could have more influence on other membrane processes.« less

  6. Neutron Scattering Studies of the Interplay of Amyloid β Peptide(1–40) and An Anionic Lipid 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol

    PubMed Central

    Rai, Durgesh K.; Sharma, Veerendra K.; Anunciado, Divina; O’Neill, Hugh; Mamontov, Eugene; Urban, Volker; Heller, William T.; Qian, Shuo

    2016-01-01

    The interaction between lipid bilayers and Amyloid β peptide (Aβ) plays a critical role in proliferation of Alzheimer’s disease (AD). AD is expected to affect one in every 85 humans by 2050, and therefore, deciphering the interplay of Aβ and lipid bilayers at the molecular level is of profound importance. In this work, we applied an array of neutron scattering methods to study the structure and dynamics of Aβ(1–40) interacting 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) bilayers. In the structural investigations of lipid bilayer’s response to Aβ binding, Small Angle Neutron Scattering and Neutron Membrane Diffraction revealed that the Aβ anchors firmly to the highly charged DMPG bilayers in the interfacial region between water and hydrocarbon chain, and it doesn’t penetrate deeply into the bilayer. This association mode is substantiated by the dynamics studies with high resolution Quasi-Elastic Neutron Scattering experiments, showing that the addition of Aβ mainly affects the slower lateral motion of lipid molecules, especially in the fluid phase, but not the faster internal motion. The results revealed that Aβ associates with the highly charged membrane in surface with limited impact on the structure, but the altered membrane dynamics could have more influence on other membrane processes. PMID:27503057

  7. Decays of {sup 131}In, {sup 131}Sn, and the position of the h{sub 11/2} neutron hole state

    SciTech Connect

    Fogelberg, B.; Mach, H.; Sanchez-Vega, M.; Lindroth, A.; Ramstroem, E.; Gausemel, H.; Hoff, P.; Mezilev, K.A.; Genevey, J.; Pinston, J.A.

    2004-09-01

    The decays of the three isomers of {sup 131}In and the total decay energies of the two isomers of {sup 131}Sn have been studied in high sensitivity experiments at the OSIRIS mass separator. The main purpose of the investigation was to determine the position of the neutron hole h{sub 11/2} state, since a previous determination appeared to be in error. The present results support a small separation of the d{sub 3/2} and h{sub 11/2} neutron hole states. The new value obtained from measurements of decay energies is 69{+-}14 keV. A more precise value of 65.1 keV may be deduced from the level scheme of {sup 131}Sn obtained currently, however without firm support from coincidence data. This relatively low excitation energy of the h{sub 11/2} state is in agreement with systematics and in disagreement with the previous determination. A re-evaluation of the Q{sub {beta}} values and isomer spacings of {sup 131}In has been made.

  8. Syntheses and structural characterization of non-centrosymmetric Na2M2M'S6 (M, M‧=Ga, In, Si, Ge, Sn, Zn, Cd) sulfides

    NASA Astrophysics Data System (ADS)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru

    2016-06-01

    Seven new non-centrosymmetric Na2M2M'S6 sulfides, namely, Na2Sn2ZnS6(1), Na2Ga2GeS6(2), Na2Ga2SnS6(3-α), Na2Ga2SnS6(3-β), Na2Ge2ZnS6(4), Na2Ge2CdS6(5), Na2In2SiS6(6) and Na2In2GeS6(7), were synthesized by high temperature solid state reactions and structurally characterized by single crystal X-ray diffraction. They crystallize in non-centrosymmetric Fdd2 and Cc space groups and their three-dimensional [M2M‧S6]2-framework structures consist of MS4 and M‧S4 tetrahedra corner-connected to one another in either orderly or disordered fashion. Sodium ions reside in the tunnels of the anionic framework. Compounds 1, 2 and 3-α have the structure of known Li2Ga2GeS6, whereas compounds 6 and 7 are isostructural with known Li2In2GeS6 compound. Isostructural compounds 4 and 5 represent a new structural variant. Compounds 3-α and its new monoclinic structural variant 3-β have disordered structural framework. All of them are wide band gap semiconductors. Na2Ga2GeS6(2), Na2Ga2SnS6(3), Na2Ge2ZnS6(4) and Na2In2GeS6(7) compounds are found to be second-harmonic generation (SHG) active. Compounds 1, 2 and 3-α melt congruently.

  9. Beta Decay of the Proton-Rich Nuclei 102Sn and 104Sn

    SciTech Connect

    Karny, M.; Batist, L.; Banu, A.; Becker, F.; Blazhev, A.; Brown, B. A.; Bruchle, W.; Doring, J.; Faestermann, T.; Gorska, M.; Grawe, H.; Janas, Z.; Jungclaus, A.; Kavatsyuk, M.; Kavatsyuk, O.; Kirchner, R.; La Commara, M.; Mandal, S.; Mazzocchi, C.; Miernik, K.; Mukha, I.; Muralithar, S.; Plettner, C.; Plochocki, A.; Roeckl, E.; Romoli, M.; Rykaczewski, Krzysztof Piotr; Schadel, M.; Schmidt, K.; Schwengner, R.; Zylicz, J.

    2006-01-01

    The {beta} decays of {sup 102}Sn and {sup 104}Sn were studied by using high-resolution germanium detectors as well as a Total Absorption Spectrometer (TAS). For {sup 104}Sn, with three new {beta}-delayed {gamma}-rays identified, the total Gamow-Teller strength (BGT) value of 2.7(3) was obtained. For {sup 102}Sn, the {gamma}-{gamma} coincidence data were collected for the first time, allowing us to considerably extend the decay scheme. This scheme was used to unfold the TAS data and to deduce a BGT value of 4.2(8) for this decay. This result is compared to shell model predictions, yielding a hindrance factor of 3.6(7) in agreement with those obtained previously for {sup 98}Cd and {sup 100}In. Together with the latter two, {sup 102}Sn completes the triplet of Z {le} 50, N {ge} 50 nuclei with two proton holes, one proton hole and one neutron particle, and two neutron particles with respect to the doubly magic {sup 100}Sn core.

  10. Enhanced Carrier Collection from CdS Passivated Grains in Solution-Processed Cu2ZnSn(S,Se)4 Solar Cells.

    PubMed

    Werner, Melanie; Keller, Debora; Haass, Stefan G; Gretener, Christina; Bissig, Benjamin; Fuchs, Peter; La Mattina, Fabio; Erni, Rolf; Romanyuk, Yaroslav E; Tiwari, Ayodhya N

    2015-06-10

    Solution processing of Cu2ZnSn(S,Se)4 (CZTSSe)-kesterite solar cells is attractive because of easy manufacturing using readily available metal salts. The solution-processed CZTSSe absorbers, however, often suffer from poor morphology with a bilayer structure, exhibiting a dense top crust and a porous bottom layer, albeit yielding efficiencies of over 10%. To understand whether the cell performance is limited by this porous layer, a systematic compositional study using (scanning) transmission electron microscopy ((S)TEM) and energy-dispersive X-ray spectroscopy of the dimethyl sulfoxide processed CZTSSe absorbers is presented. TEM investigation revealed a thin layer of CdS that is formed around the small CZTSSe grains in the porous bottom layer during the chemical bath deposition step. This CdS passivation is found to be beneficial for the cell performance as it increases the carrier collection and facilitates the electron transport. Electron-beam-induced current measurements reveal an enhanced carrier collection for this buried region as compared to reference cells with evaporated CdS. PMID:25985349

  11. Precision Mass Measurements of Cd-131129 and Their Impact on Stellar Nucleosynthesis via the Rapid Neutron Capture Process

    NASA Astrophysics Data System (ADS)

    Atanasov, D.; Ascher, P.; Blaum, K.; Cakirli, R. B.; Cocolios, T. E.; George, S.; Goriely, S.; Herfurth, F.; Janka, H.-T.; Just, O.; Kowalska, M.; Kreim, S.; Kisler, D.; Litvinov, Yu. A.; Lunney, D.; Manea, V.; Neidherr, D.; Rosenbusch, M.; Schweikhard, L.; Welker, A.; Wienholtz, F.; Wolf, R. N.; Zuber, K.

    2015-12-01

    Masses adjacent to the classical waiting-point nuclide 130Cd have been measured by using the Penning-trap spectrometer ISOLTRAP at ISOLDE/CERN. We find a significant deviation of over 400 keV from earlier values evaluated by using nuclear beta-decay data. The new measurements show the reduction of the N =82 shell gap below the doubly magic 132Sn. The nucleosynthesis associated with the ejected wind from type-II supernovae as well as from compact object binary mergers is studied, by using state-of-the-art hydrodynamic simulations. We find a consistent and direct impact of the newly measured masses on the calculated abundances in the A =128 - 132 region and a reduction of the uncertainties from the precision mass input data.

  12. Precision Mass Measurements of ^{129-131}Cd and Their Impact on Stellar Nucleosynthesis via the Rapid Neutron Capture Process.

    PubMed

    Atanasov, D; Ascher, P; Blaum, K; Cakirli, R B; Cocolios, T E; George, S; Goriely, S; Herfurth, F; Janka, H-T; Just, O; Kowalska, M; Kreim, S; Kisler, D; Litvinov, Yu A; Lunney, D; Manea, V; Neidherr, D; Rosenbusch, M; Schweikhard, L; Welker, A; Wienholtz, F; Wolf, R N; Zuber, K

    2015-12-01

    Masses adjacent to the classical waiting-point nuclide ^{130}Cd have been measured by using the Penning-trap spectrometer ISOLTRAP at ISOLDE/CERN. We find a significant deviation of over 400 keV from earlier values evaluated by using nuclear beta-decay data. The new measurements show the reduction of the N=82 shell gap below the doubly magic ^{132}Sn. The nucleosynthesis associated with the ejected wind from type-II supernovae as well as from compact object binary mergers is studied, by using state-of-the-art hydrodynamic simulations. We find a consistent and direct impact of the newly measured masses on the calculated abundances in the A=128-132 region and a reduction of the uncertainties from the precision mass input data. PMID:26684113

  13. Towards a CdS/Cu{sub 2}ZnSnS{sub 4} solar cell efficiency improvement: A theoretical approach

    SciTech Connect

    Courel, Maykel Andrade-Arvizu, J. A.; Vigil-Galán, O.

    2014-12-08

    In this work, a device model for Cu{sub 2}ZnSnS{sub 4} (CZTS) solar cell with certified world record efficiency is presented. A study of the most important loss mechanisms and its effect on solar cell performance was carried out. The trap-assisted tunneling and CdS/CZTS interface recombination are introduced as the most important loss mechanisms. Detailed comparison of the simulation results to the measured device parameters shows that our model is able to reproduce the experimental observations (quantum efficiency, efficiency, J{sub sc}, FF, and V{sub oc}) reported under normal operating conditions. Finally, a discussion about a further solar cell efficiency improvement is addressed.

  14. High-Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg

    NASA Astrophysics Data System (ADS)

    Lamoreaux, R. H.; Hildenbrand, D. L.; Brewer, L.

    1987-07-01

    In order to assess the high-temperature vaporization behavior and equilibrium gas phase compositions over the condensed oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg, the relevant thermodynamic and molecular constant data have been compiled and critically evaluated. Selected values of the Gibbs energy functions of condensed and vapor phases are given in the form of equations valid over wide temperature ranges, along with the standard entropies and enthalpies of formation. These data were used to generate plots of equilibrium partial pressures of vapor species as functions of temperature for representative environmental conditions ranging from reducing to oxidizing. The calculated partial pressures and compositions agree, for the most part, with experimental results obtained under comparable conditions. Maximum vaporization rates have been calculated using the Hertz-Knudsen equation. Literature references are given.

  15. Impact of Na Dynamics at the Cu2ZnSn(S,Se)4/CdS Interface During Post Low Temperature Treatment of Absorbers.

    PubMed

    Xie, Haibing; López-Marino, Simon; Olar, Tetiana; Sánchez, Yudania; Neuschitzer, Markus; Oliva, Florian; Giraldo, Sergio; Izquierdo-Roca, Victor; Lauermann, Iver; Pérez-Rodríguez, Alejandro; Saucedo, Edgardo

    2016-02-01

    Cu2SnZn(S,Se)4 (CZTSSe) solar cells based on earth abundant and nontoxic elements currently achieve efficiencies exceeding 12%. It has been reported that, to obtain high efficiency devices, a post thermal treatment of absorbers or devices at temperatures ranging between 150 and 400 °C (post low temperature treatment, PLTT) is advisable. Recent findings point toward a beneficial passivation of grain boundaries with SnOx or Cu-depleted surface and grain boundaries during the PLTT process, but no investigation regarding alkali doping is available, even though alkali dynamics, especially Na, are systematically reported to be crucial within the field. In this work, CZTSSe absorbers were subjected to the PLTT process under different temperatures, and solar cells were completed. We found surprisingly behavior in which efficiency decreased to nearly 0% at 200 °C during the PLTT process, being recovered or even improved at temperatures above 300 °C. This unusual behavior correlates well with the Na dynamics in the devices, especially with the in-depth distribution of Na in the active CZTSSe/CdS interface region, indicating the key importance of Na spatial distribution on device properties. We present an innovative model for Na dynamics supported by theoretical calculations and additional specially designed experiments to explain this behavior. After optimization of the PLTT process, a Se-rich CZTSSe solar cell with 8.3% efficiency was achieved. PMID:26836750

  16. Selective epitaxial growth of zinc blende-derivative on wurtzite-derivative: the case of polytypic Cu2CdSn(S1-xSex)4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Fan, Feng-Jia; Gong, Ming; Ge, Jin; Yu, Shu-Hong

    2014-02-01

    Polytypic nanocrystals with zinc blende (ZB) cores and wurtzite (WZ) arms, such as tetrapod and octopod nanocrystals, have been widely reported. However, polytypic nanocrystals with WZ cores and ZB arms or ends have been rarely reported. Here, we report a facile, solution-based approach to the synthesis of polytypic Cu2CdSn(S1-xSex)4 (CCTSSe) nanocrystals with ZB-derivative selectively engineered on (000+/-2)WZ facets of WZ-derived cores. Accordingly, two typical morphologies, i.e., bullet-like nanocrystals with a WZ-derivative core and one ZB-derivative end, and rugby ball-like nanocrystals with a WZ-derivative core and two ZB-derivative ends, can be selectively prepared. The epitaxial growth mechanism is confirmed by the time-dependent experiments. The ratio of rugby ball-like and bullet-like polytypic CCTSSe nanocrystals can be tuned through changing the amount of Cd precursor to adjust the reactivity difference between (0002)WZ and (000-2)WZ facets. These unique polytypic CCTSSe nanocrystals may find applications in energetic semiconducting materials for energy conversion in the future.Polytypic nanocrystals with zinc blende (ZB) cores and wurtzite (WZ) arms, such as tetrapod and octopod nanocrystals, have been widely reported. However, polytypic nanocrystals with WZ cores and ZB arms or ends have been rarely reported. Here, we report a facile, solution-based approach to the synthesis of polytypic Cu2CdSn(S1-xSex)4 (CCTSSe) nanocrystals with ZB-derivative selectively engineered on (000+/-2)WZ facets of WZ-derived cores. Accordingly, two typical morphologies, i.e., bullet-like nanocrystals with a WZ-derivative core and one ZB-derivative end, and rugby ball-like nanocrystals with a WZ-derivative core and two ZB-derivative ends, can be selectively prepared. The epitaxial growth mechanism is confirmed by the time-dependent experiments. The ratio of rugby ball-like and bullet-like polytypic CCTSSe nanocrystals can be tuned through changing the amount of Cd precursor

  17. Discontinuous isogeometric analysis methods for the first-order form of the neutron transport equation with discrete ordinate (SN) angular discretisation

    NASA Astrophysics Data System (ADS)

    Owens, A. R.; Welch, J. A.; Kópházi, J.; Eaton, M. D.

    2016-06-01

    In this paper two discontinuous Galerkin isogeometric analysis methods are developed and applied to the first-order form of the neutron transport equation with a discrete ordinate (SN) angular discretisation. The discontinuous Galerkin projection approach was taken on both an element level and the patch level for a given Non-Uniform Rational B-Spline (NURBS) patch. This paper describes the detailed dispersion analysis that has been used to analyse the numerical stability of both of these schemes. The convergence of the schemes for both smooth and non-smooth solutions was also investigated using the method of manufactured solutions (MMS) for multidimensional problems and a 1D semi-analytical benchmark whose solution contains a strongly discontinuous first derivative. This paper also investigates the challenges posed by strongly curved boundaries at both the NURBS element and patch level with several algorithms developed to deal with such cases. Finally numerical results are presented both for a simple pincell test problem as well as the C5G7 quarter core MOX/UOX small Light Water Reactor (LWR) benchmark problem. These numerical results produced by the isogeometric analysis (IGA) methods are compared and contrasted against linear and quadratic discontinuous Galerkin finite element (DGFEM) SN based methods.

  18. Comparison Between Research-Grade and Commercially Available SnO2 for Thin-Film CdTe Solar Cells: Preprint

    SciTech Connect

    Li, X.; Pankow, J.; To, B.; Gessert, T.

    2008-05-01

    Compared to commercial SnO2 (with similar film thickness and sheet resistance), research-grade SnO2 has higher optical transmittance and higher electron mobility. Based on our study, changing the glass substrate and improving the SnO2 quality could improve the optical properties of commercial SnO2.

  19. CdS and Cd-Free Buffer Layers on Solution Phase Grown Cu2ZnSn(SxSe1- x)4 :Band Alignments and Electronic Structure Determined with Femtosecond Ultraviolet Photoemission Spectroscopy

    SciTech Connect

    Haight, Richard; Barkhouse, Aaron; Wang, Wei; Yu, Luo; Shao, Xiaoyan; Mitzi, David; Hiroi, Homare; Sugimoto, Hiroki

    2013-12-02

    The heterojunctions formed between solution phase grown Cu2ZnSn(SxSe1- x)4(CZTS,Se) and a number of important buffer materials including CdS, ZnS, ZnO, and In2S3, were studied using femtosecond ultraviolet photoemission spectroscopy (fs-UPS) and photovoltage spectroscopy. With this approach we extract the magnitude and direction of the CZTS,Se band bending, locate the Fermi level within the band gaps of absorber and buffer and measure the absorber/buffer band offsets under flatband conditions. We will also discuss two-color pump/probe experiments in which the band bending in the buffer layer can be independently determined. Finally, studies of the bare CZTS,Se surface will be discussed including our observation of mid-gap Fermi level pinning and its relation to Voc limitations and bulk defects.

  20. New insights into organic-inorganic hybrid perovskite CH3NH3PbI3 nanoparticles. An experimental and theoretical study of doping in Pb2+ sites with Sn2+, Sr2+, Cd2+ and Ca2+

    NASA Astrophysics Data System (ADS)

    Navas, Javier; Sánchez-Coronilla, Antonio; Gallardo, Juan Jesús; Cruz Hernández, Norge; Piñero, Jose Carlos; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; de Los Santos, Desireé M.; Aguilar, Teresa; Martín-Calleja, Joaquín

    2015-03-01

    This paper presents the synthesis of the organic-inorganic hybrid perovskite, CH3NH3PbI3, doped in the Pb2+ position with Sn2+, Sr2+, Cd2+ and Ca2+. The incorporation of the dopants into the crystalline structure was analysed, observing how the characteristics of the dopant affected properties such as the crystalline phase, emission and optical properties. XRD showed how doping with Sn2+, Sr2+ and Cd2+ did not modify the normal tetragonal phase. When doping with Ca2+, the cubic phase was obtained. Moreover, DR-UV-Vis spectroscopy showed how the band gap decreased with the dopants, the values following the trend Sr2+ < Cd2+ < Ca2+ < CH3NH3PbI3 ~ Sn2+. The biggest decrease was generated by Sr2+, which reduced the CH3NH3PbI3 value by 4.5%. In turn, cathodoluminescence (CL) measurements confirmed the band gap obtained. Periodic-DFT calculations were performed to understand the experimental structures. The DOS analysis confirmed the experimental results obtained using UV-Vis spectroscopy, with the values calculated following the trend Sn2+ ~ Pb2+ > Cd2+ > Sr2+ for the tetragonal structure and Pb2+ > Ca2+ for the cubic phase. The electron localization function (ELF) analysis showed similar electron localizations for undoped and Sn2+-doped tetragonal structures, which were different from those doped with Sr2+ and Cd2+. Furthermore, when Cd2+ was incorporated, the Cd-I interaction was strengthened. For Ca2+ doping, the Ca-I interaction had a greater ionic nature than Cd-I. Finally, an analysis based on the non-covalent interaction (NCI) index is presented to determine the weak-type interactions of the CH3NH3 groups with the dopant and I atoms. To our knowledge, this kind of analysis with these hybrid systems has not been performed previously.This paper presents the synthesis of the organic-inorganic hybrid perovskite, CH3NH3PbI3, doped in the Pb2+ position with Sn2+, Sr2+, Cd2+ and Ca2+. The incorporation of the dopants into the crystalline structure was analysed

  1. Solution-Processed One-Dimensional ZnO@CdS Heterojunction toward Efficient Cu2ZnSnS4 Solar Cell with Inverted Structure

    NASA Astrophysics Data System (ADS)

    Chen, Rongrong; Fan, Jiandong; Liu, Chong; Zhang, Xing; Shen, Yanjiao; Mai, Yaohua

    2016-10-01

    Kesterite Cu2ZnSnS4 (CZTS) semiconductor has been demonstrated to be a promising alternative absorber in thin film solar cell in virtue of its earth-abundant, non-toxic element, suitable optical and electrical properties. Herein, a low-cost and non-toxic method that based on the thermal decomposition and reaction of metal-thiourea-oxygen sol-gel complexes to synthesize CZTS thin film was developed. The low-dimensional ZnO@CdS heterojunction nano-arrays coupling with the as-prepared CZTS thin film were employed to fabricate a novel solar cell with inverted structure. The vertically aligned nanowires (NWs) allow facilitating the charge carrier collection/separation/transfer with large interface areas. By optimizing the parameters including the annealing temperature of CZTS absorber, the thickness of CdS buffer layer and the morphology of ZnO NWs, an open-circuit voltage (VOC) as high as 589 mV was obtained by such solar cell with inverted structure. The all-solution-processed technic allows the realization of CZTS solar cell with extremely low cost.

  2. Solution-Processed One-Dimensional ZnO@CdS Heterojunction toward Efficient Cu2ZnSnS4 Solar Cell with Inverted Structure

    PubMed Central

    Chen, Rongrong; Fan, Jiandong; Liu, Chong; Zhang, Xing; Shen, Yanjiao; Mai, Yaohua

    2016-01-01

    Kesterite Cu2ZnSnS4 (CZTS) semiconductor has been demonstrated to be a promising alternative absorber in thin film solar cell in virtue of its earth-abundant, non-toxic element, suitable optical and electrical properties. Herein, a low-cost and non-toxic method that based on the thermal decomposition and reaction of metal-thiourea-oxygen sol-gel complexes to synthesize CZTS thin film was developed. The low-dimensional ZnO@CdS heterojunction nano-arrays coupling with the as-prepared CZTS thin film were employed to fabricate a novel solar cell with inverted structure. The vertically aligned nanowires (NWs) allow facilitating the charge carrier collection/separation/transfer with large interface areas. By optimizing the parameters including the annealing temperature of CZTS absorber, the thickness of CdS buffer layer and the morphology of ZnO NWs, an open-circuit voltage (VOC) as high as 589 mV was obtained by such solar cell with inverted structure. The all-solution-processed technic allows the realization of CZTS solar cell with extremely low cost. PMID:27734971

  3. Inelastic Neutron Scattering and Molecular Dynamics Determination of the Interaction Potential in Liquid CD{sub 4}

    SciTech Connect

    Guarini, E.; Barocchi, F.

    2007-10-19

    Anisotropic interactions of liquid CD{sub 4} are studied in detail by comparison of inelastic neutron Brillouin scattering data with molecular dynamics simulations using up to four different models of the methane site-site potential. We demonstrate that the experimental dynamic structure factor S(Q,{omega}) acts as a highly discriminating quantity for possible interaction schemes. In particular, the Q evolution of the spectra enables a selective probing of the short- and medium-range features of the anisotropic potentials. We show that the preferential configuration of methane dimers at liquid densities can thus be discerned by analyzing the orientation-dependent model potential curves, in light of the experimental and simulation results.

  4. Synthesis, characterization and in vitro anticancer activity of 18-membered octaazamacrocyclic complexes of Co(II), Ni(II), Cd(II) and Sn(II)

    NASA Astrophysics Data System (ADS)

    Kareem, Abdul; Zafar, Hina; Sherwani, Asif; Mohammad, Owais; Khan, Tahir Ali

    2014-10-01

    An effective series of 18 membered octaazamacrocyclic complexes of the type [MLX2], where X = Cl or NO3 have been synthesized by template condensation reaction of oxalyl dihydrazide with dibenzoylmethane and metal salt in 2:2:1 molar ratio. The formation of macrocyclic framework, stereochemistry and their overall geometry have been characterized by various physico-chemical studies viz., elemental analysis, electron spray ionization-mass spectrometry (ESI-MS), I.R, UV-Vis, 1H NMR, 13C NMR spectroscopy, X-ray diffraction (XRD) and TGA/DTA studies. These studies suggest formation of octahedral macrocyclic complexes of Co(II), Ni(II), Cd(II) and Sn(II). The molar conductance values suggest nonelectrolytic nature for all the complexes. Thermogravimatric analysis shows that all the complexes are stable up to 600 °C. All these complexes have been tested against different human cancer cell lines i.e. human hepatocellular carcinoma (Hep3B), human cervical carcinoma (HeLa), human breast adenocarcinoma (MCF7) and normal cells (PBMC). The newly synthesized 18-membered octaazamacrocyclic complexes during in vitro anticancer evaluation, displayed moderate to good cytotoxicity on liver (Hep3B), cervical (HeLa) and breast (MCF7) cancer cell lines, respectively. The most effective anticancer cadmium complex (C34H28N10CdO10) was found to be active with IC50 values, 2.44 ± 1.500, 3.55 ± 1.600 and 4.82 ± 1.400 in micro-molar on liver, cervical and breast cancer cell lines, respectively.

  5. Ferroelectric nanoscale domains and the 905 K phase transition in SrSnO{sub 3}: A neutron total-scattering study

    SciTech Connect

    Goodwin, Andrew L.; Redfern, Simon A. T.; Dove, Martin T.; Keen, David A.; Tucker, Matthew G.

    2007-11-01

    The 905 K Pnma-Imma phase transition in SrSnO{sub 3} is studied here using a combination of variable-temperature neutron total scattering together with the reverse Monte Carlo (RMC) refinement method. The real-space RMC configurations obtained are analyzed in terms of bond distance and bond-angle distributions, and a geometric algebra approach is used to quantify the associated octahedral-tilting distributions. What emerges from this analysis is that the transition is displacive in nature, in contrast to the results of a recent average-structure investigation in which an order-disorder model was proposed [E. H. Mountstevens et al., Phys. Rev. B 71, 220102(R) (2005)]. Three-dimensional diffuse scattering patterns calculated from the same RMC configurations reveal the existence of an additional disorder mechanism which persists across the Pnma-Imma transition. The ''reflection conditions'' of this diffuse scattering, together with displacement correlation calculations, point to the existence of ferroelectric nanoscale domains within the configurations, which are found to extend across planar regions of approximately 10-15 A ring in diameter.

  6. Coulomb excitation of 107Sn

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Cederkall, J.; Fahlander, C.; Ekström, A.; Hjorth-Jensen, M.; Albers, M.; Bildstein, V.; Blazhev, A.; Darby, I.; Davinson, T.; De Witte, H.; Diriken, J.; Fransen, Ch.; Geibel, K.; Gernhäuser, R.; Görgen, A.; Hess, H.; Iwanicki, J.; Lutter, R.; Reiter, P.; Scheck, M.; Seidlitz, M.; Siem, S.; Taprogge, J.; Tveten, G. M.; Van de Walle, J.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.

    2012-07-01

    The radioactive isotope 107Sn was studied using Coulomb excitation at the REX-ISOLDE facility at CERN. This is the lightest odd-Sn nucleus examined using this technique. The reduced transition probability of the lowest-lying 3/2+ state was measured and is compared to shell-model predictions based on several sets of single-neutron energies relative to 100Sn . Similar to the transition probabilities for the 2+ states in the neutron-deficient even-even Sn nuclei, the measured value is underestimated by shell-model calculations. Part of the strength may be recovered by considering the ordering of the d_{5/2} and g_{7/2} single-neutron states.

  7. Pt/In2S3/CdS/Cu2ZnSnS4 Thin Film as an Efficient and Stable Photocathode for Water Reduction under Sunlight Radiation.

    PubMed

    Jiang, Feng; Gunawan; Harada, Takashi; Kuang, Yongbo; Minegishi, Tsutomu; Domen, Kazunari; Ikeda, Shigeru

    2015-10-28

    An electrodeposited Cu2ZnSnS4 (CZTS) compact thin film modified with an In2S3/CdS double layer and Pt deposits (Pt/In2S3/CdS/CZTS) was used as a photocathode for water splitting of hydrogen production under simulated sunlight (AM 1.5G) radiation. Compared to platinized electrodes based on a bare CZTS film (Pt/CZTS) and a CZTS film modified with a CdS single layer (Pt/CdS/CZTS), the Pt/In2S3/CdS/CZTS electrode exhibited a significantly high cathodic photocurrent. Moreover, the coverage of the In2S3 layer was found to be effective for stabilization against degradation induced by photocorrosion of the CdS layer. Bias-free water splitting with a power conversion efficiency of 0.28% was achieved by using a simple two-electrode cell consisting of the Pt/In2S3/CdS/CZTS photocathode and a BiVO4 photoanode. PMID:26479423

  8. First principles calculations of point defect diffusion in CdS buffer layers: Implications for Cu(In,Ga)(Se,S)2 and Cu2ZnSn(Se,S)4-based thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Varley, J. B.; Lordi, V.; He, X.; Rockett, A.

    2016-01-01

    We investigate point defects in CdS buffer layers that may arise from intermixing with Cu(In,Ga)Se2 (CIGSe) or Cu2ZnSn(S,Se)4 (CZTSSe) absorber layers in thin-film photovoltaics (PV). Using hybrid functional calculations, we characterize the migration barriers of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities and assess the activation energies necessary for their diffusion into the bulk of the buffer. We find that Cu, In, and Ga are the most mobile defects in CIGS-derived impurities, with diffusion expected to proceed into the buffer via interstitial-hopping and cadmium vacancy-assisted mechanisms at temperatures ˜400 °C. Cu is predicted to strongly favor migration paths within the basal plane of the wurtzite CdS lattice, which may facilitate defect clustering and ultimately the formation of Cu-rich interfacial phases as observed by energy dispersive x-ray spectroscopic elemental maps in real PV devices. Se, Zn, and Sn defects are found to exhibit much larger activation energies and are not expected to diffuse within the CdS bulk at temperatures compatible with typical PV processing temperatures. Lastly, we find that Na interstitials are expected to exhibit slightly lower activation energies than K interstitials despite having a larger migration barrier. Still, we find both alkali species are expected to diffuse via an interstitially mediated mechanism at slightly higher temperatures than enable In, Ga, and Cu diffusion in the bulk. Our results indicate that processing temperatures in excess of ˜400 °C will lead to more interfacial intermixing with CdS buffer layers in CIGSe devices, and less so for CZTSSe absorbers where only Cu is expected to significantly diffuse into the buffer.

  9. Isomer spectroscopy of {sup 127}Cd

    SciTech Connect

    Naqvi, F.; Gorska, M.; Grawe, H.; Beck, T.; Doornenbal, P.; Geissel, H.; Gerl, J.; Kojouharov, I.; Kurz, N.; Montes, F.; Prokopowicz, W.; Schaffner, H.; Tashenov, S.; Wollersheim, H. J.; Caceres, L.; Jungclaus, A.; Pfuetzner, M.; Werner-Malento, E.; Nowacki, F.; Sieja, K.

    2010-09-15

    The spin and configurational structure of excited states of {sup 127}Cd, the two-proton and three-neutron hole neighbor of {sup 132}Sn, has been studied. An isomeric state with a half-life of 17.5(3) {mu}s was populated in the fragmentation of a {sup 136}Xe beam on a {sup 9}Be target at a beam energy of 750 MeV/u. Time distributions of the delayed {gamma} transitions and {gamma}{gamma} coincidence relations were exploited to construct a decay scheme. The observed yrast (19/2){sup +} isomer is proposed to have dominant configurations of {nu}(h{sub 11/2}{sup -3}){pi}(g{sub 9/2}{sup -1},p{sub 1/2}{sup -1}), {nu}(h{sub 11/2}{sup -2}d{sub 3/2}{sup -1}){pi}(g{sub 9/2}{sup -2}), and {nu}(h{sub 11/2}{sup -2},s{sub 1/2}{sup -1}){pi}(g{sub 9/2}{sup -2}) and to decay by two competing stretched M2 and E3 transitions. Experimental results are compared with the isotone {sup 129}Sn. The new information provides input for the proton-neutron interaction and the evolution of neutron hole energies in nuclei around the doubly magic {sup 132}Sn core.

  10. Experimental study of neutron-rich nuclei near the N = 82 closed shell using the {sub 40}{sup 96}Zr+{sub 50}{sup 124}Sn reaction with GASP and PRISMA-CLARA arrays

    SciTech Connect

    Rodríguez, W.; Torres, D. A.; Cristancho, F.; Medina, N. H.; Chapman, R.; Smith, J. F.; Mengoni, D.; Truesdale, V.; Grocutt, L.; Mulholland, K.; Kumar, V.; Hadinia, B.; Labiche, M.; Liang, X.; O'Donell, D.; Ollier, J.; Orlandi, R.; Smith, J. F.; Spohr, K. M.; Wady, P.; and others

    2014-11-11

    In this contribution an experimental study of the deep-inelastic reaction {sub 40}{sup 96}Zr+{sub 50}{sup 124}Sn at 530 MeV, using the GASP and PRISMA-CLARA arrays, is presented. The experiments populate a wealth of projectile-like and target-like binary fragments, in a large neutron-rich region around N ≥ 50 and Z ≈ 40. Preliminary results on the study of the yrast and near-yrast states for {sup 95}Nb will be shown, along with a comparison of the experimental yields obtained in the experiments.

  11. A two-storey structured photoanode of a 3D Cu2ZnSnS4/CdS/ZnO@steel composite nanostructure for efficient photoelectrochemical hydrogen generation.

    PubMed

    Choi, Youngwoo; Baek, Minki; Zhang, Zhuo; Dao, Van-Duong; Choi, Ho-Suk; Yong, Kijung

    2015-10-01

    A two-storey structured photoanode of a 3D Cu2ZnSnS4(CZTS)/CdS/ZnO@steel composite nanostructure has been fabricated by using the solution method and demonstrated highly efficient photoelectrochemical hydrogen generation due to its contraption in the structure for sufficient light absorption as well as the three step-down band alignments for efficient charge separation and transport. This composite structure is composed of two storeys: the upper storey is the CZTS/CdS/ZnO hetero-nanorods (NRs) covered on the stainless steel mesh; the bottom storey is the CZTS/CdS/ZnO hetero-NRs grown on the FTO glass. The CZTS/CdS/ZnO hetero-NRs have cascade band gaps decreasing from 3.15 to 1.82 eV, which gives them efficient charge transfer and broad photoresponse in the UV to near-IR region, resulting in 47% IPCE in a wide light region from 400 to 500 nm; and the stainless steel mesh serves not only as a conductor for charge transport, but also as a skeleton of the grid structure for absorbing more light. The related mechanism has been investigated, which demonstrates that the two-storey CZTS/CdS/ZnO@steel composite nanostructure would have great potential as a promising photoelectrode with high efficiency and low cost for PEC hydrogen generation. PMID:26327311

  12. Direct measurement of band offset at the interface between CdS and Cu{sub 2}ZnSnS{sub 4} using hard X-ray photoelectron spectroscopy

    SciTech Connect

    Tajima, Shin; Kataoka, Keita; Takahashi, Naoko; Kimoto, Yasuji; Fukano, Tatsuo; Hasegawa, Masaki; Hazama, Hirofumi

    2013-12-09

    We directly and non-destructively measured the valence band offset at the interface between CdS and Cu{sub 2}ZnSnS{sub 4} (CZTS) using hard X-ray photoelectron spectroscopy (HAXPES), which can measure the electron state of the buried interface because of its large analysis depth. These measurements were made using the following real devices; CZTS(t = 700 nm), CdS(t = 100 nm)/CZTS(t = 700 nm), and CdS(t = 5 nm)/CZTS(t = 700 nm) films formed on Mo coated glass. The valence band spectra were measured by HAXPES using an X-ray photon energy of 8 keV. The value of the valence band offset at the interface between CdS and CZTS was estimated as 1.0 eV by fitting the spectra. The conduction band offset could be deduced as 0.0 eV from the obtained valence band offset and the band gap energies of CdS and CZTS.

  13. Specific features of the effect of irradiation with electrons and neutrons on photoelectric properties of CdS single crystals nominally undoped and doped with Cu

    SciTech Connect

    Davidyuk, H. Ye.; Bozhko, V. V.; Bulatetska, L. V.

    2008-10-15

    Electrical, photoelectric, and magnetic properties of CdS single crystals undoped and doped with copper (N{sub Cu} {approx} 10{sup 18} cm{sup -3}) and irradiated with electrons (E = 1.2 MeV, {phi} = 2 x 10{sup 17} cm{sup -2}) and neutrons (E = 2 MeV, {phi} = 10{sup 18} cm{sup -2}) are studied. It is shown that the donor-acceptor pairs are responsible for extrinsic photoconductivity and paramagnetic properties; in particular, these pairs are represented by Cu{sub Cd}{sup -}-D{sup +} complexes that are destroyed during irradiation and are formed again with time (as secondary radiation defects) in irradiated samples. It is established that the majority of paramagnetic centers and donor-acceptor pairs are located in the near-surface region of the crystal. It is confirmed that large structural defects (defect clusters) formed by irradiation with neutrons are efficient sinks for copper atoms. Specific features of isochronous annealing of paramagnetic centers and donor-acceptor pairs responsible for the variation in magnetic parameters and in the photoconductivity spectra of irradiated undoped and Cu-doped CdS samples are studied.

  14. Sub-Barrier Coulomb Excitation of 106,108,110Sn

    NASA Astrophysics Data System (ADS)

    Ekström, A.; Cederkäll, J.; Fahlander, C.; Hjorth-Jensen, M.; Ames, F.; Butler, P. A.; Davinson, T.; Eberth, J.; Georgiev, G.; Gorgen, A.; Górska, M.; Habs, D.; Huyse, M.; Ivanov, O.; Iwanicki, J.; Kester, O.; Köster, U.; Marsh, B. A.; Reiter, P.; Scheit, H.; Schwalm, D.; Siem, S.; Stefanescu, I.; Tveten, G. M.; van de Walle, J.; van Duppen, P.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Zielinska, M.

    2008-05-01

    The reduced transition probabilities between the first excited 2+ state and the 0+ ground state, B(E20+-->2+), have been measured in 106,108,110Sn using sub-barrier Coulomb excitation in inverse kinematics at REX-ISOLDE. The results are, B(E20+-->2+) = 0.220(22), 0.226(17), and 0.228(32)e2b2, for 110Sn, 108Sn, and 106Sn, respectively. The results for 106,108Sn are preliminary. De-excitation γ-rays were detected by the MINIBALL Ge-array. The B(E2) reveals detailed information about the nuclear wave function. A shell model prediction based on an effective CD-Bonn interaction in the ν(0g7/2,2s,1d,0h11/2) model space using eeffν = 1.0 e follows the experimental values for the neutron rich Sn isotopes, but fails to reproduce the results presented here.

  15. Electric field gradient in nanostructured SnO2 studied by means of PAC spectroscopy using 111Cd or 181Ta as probe nuclei

    NASA Astrophysics Data System (ADS)

    Ramos, Juliana Marques; Martucci, Thiago; Carbonari, Artur Wilson; de Souza Costa, Messias; Saxena, Rajendra Narain; Vianden, Reiner

    2013-05-01

    Electric quadrupole interactions were studied in pure and Mn-doped powder samples and thin films of SnO2 using perturbed γγ angular correlation spectroscopy (PAC). The powder samples were prepared by Sol gel method and the thin film were prepared on the Si (100) substrate by sputtering technique using Sn in the oxygen atmosphere. The samples were characterized by x-ray diffraction, energy dispersive spectroscopy and scanning electron microscopy. The thickness of the film was 100 nm. The average particle size of the SnO2 powder samples was determined to be smaller than 60 nm. The radioactive 111In and 181Hf tracers were introduced in the powder samples during the sol gel chemical process. Radioactive 111In was implanted on the SnO2 thin films using the University of Bonn ion implanter (BONIS). PAC measurements were carried out in a four BaF2 detector spectrometer in the temperature range of 77-973 K for samples annealed at different temperatures. The PAC results for both nuclear probes show the presence of two electric quadrupole interactions. The major fractions in both cases correspond to the substitutional sites in the rutile phase of SnO2. The results are compared with previous PAC measurements.

  16. A first-principles study on the negative thermal expansion material: Mn3(A0.5B0.5)N (A=Cu, Zn, Ag, or Cd; B=Si, Ge, or Sn)

    NASA Astrophysics Data System (ADS)

    Qu, Bingyan; He, Haiyan; Pan, Bicai

    2016-07-01

    In this paper, using the first-principles calculations, we systemically study the magnetic and the negative thermal expansion (NTE) properties of Mn3(A0.5B0.5)N (A = Cu, Zn, Ag, or Cd; B = Si, Ge, or Sn). From the calculated results, except Mn3(Cu0.5Si0.5)N, all the doped compounds considered would exhibit the NTE. For the dopants at B sites, the working temperature of the NTE shifts to higher temperature range from Si to Sn, and among the compounds with these dopants, Mn3(A0.5Ge0.5)N has the largest amplitude of the NTE coefficient. As to the dopants at A sites, compared to Mn3(Cu0.5B0.5)N, Mn3(A0.5B0.5)N (A = Ag or Cd) exhibit the NTE with higher temperature ranges and lower coefficient of the thermal expansion. In a word, these compounds would have different working temperatures and coefficients of the NTE, which is important for the applications in different conditions.

  17. Shell-model states with seniority ν=3 , 5, and 7 in odd- A neutron-rich Sn isotopes

    SciTech Connect

    Iskra, Ł. W.; Broda, R.; Janssens, R. V. F.; Chiara, C. J.; Carpenter, M. P.; Fornal, B.; Hoteling, N.; Kondev, F. G.; Królas, W.; Lauritsen, T.; Pawłat, T.; Seweryniak, D.; Stefanescu, I.; Walters, W. B.; Wrzesiński, J.; Zhu, S.

    2016-01-01

    Excited states with seniority ν=3, 5, and 7 have been investigated in odd neutron-rich Sn119,121,123,125 isotopes produced by fusion-fission of 6.9-MeV/ACa48 beams with Pb208 and U238 targets and by fission of a U238 target bombarded with 6.7-MeV/ANi64 beams. Level schemes have been established up to high spin and excitation energies in excess of 6 MeV, based on multifold gamma-ray coincidence relationships measured with the Gammasphere array. In the analysis, the presence of isomers was exploited to identify gamma rays and propose transition placements using prompt and delayed coincidence techniques. Gamma decays of the known 27/2- isomers were expanded by identifying new deexcitation paths feeding 23/2+ long-lived states and 21/2+ levels. Competing branches in the decay of 23/2- states toward two 19/2- levels were delineated as well. In Sn119, a new 23/2+ isomer was identified, while a similar 23/2+ long-lived state, proposed earlier in Sn121, has now been confirmed. In both cases, isomeric half-lives were determined with good precision. In the range of ν=3 excitations, the observed transitions linking the various states enabled one to propose with confidence spin-parity assignments for all the observed states. Above the 27/2- isomers, an elaborate structure of negative-parity levels was established reaching the (39/2-), ν=7 states, with tentative spin-parity assignments based on the observed deexcitation paths as well as on general yrast population arguments. In all the isotopes under investigation, strongly populated sequences of positive-parity (35/2+), (31/2+), and (27/2+) states were established, feeding the 23/2+ isomers via cascades of three transitions. In the Sn121,123 isotopes, these sequences also enabled the delineation of higher-lying levels, up to (43/2+) states. In Sn123, a short half-life was determined for the (35/2+) state. Shell-model calculations were carried out for all the odd Sn isotopes, from Sn129 down to Sn119, and the results were

  18. Z =50 core stability in 110Sn from magnetic-moment and lifetime measurements

    NASA Astrophysics Data System (ADS)

    Kumbartzki, G. J.; Benczer-Koller, N.; Speidel, K.-H.; Torres, D. A.; Allmond, J. M.; Fallon, P.; Abramovic, I.; Bernstein, L. A.; Bevins, J. E.; Crawford, H. L.; Guevara, Z. E.; Gürdal, G.; Hurst, A. M.; Kirsch, L.; Laplace, T. A.; Lo, A.; Matthews, E. F.; Mayers, I.; Phair, L. W.; Ramirez, F.; Robinson, S. J. Q.; Sharon, Y. Y.; Wiens, A.

    2016-04-01

    Background: The structure of the semimagic 50Sn isotopes were previously studied via measurements of B (E 2 ;21+→01+ ) and g factors of 21+ states. The values of the B (E 2 ;21+ ) in the isotopes below midshell at N = 66 show an enhancement in collectivity, contrary to predictions from shell-model calculations. Purpose: This work presents the first measurement of the 2 1+ and 4 1+ states' magnetic moments in the unstable neutron-deficient 110Sn. The g factors provide complementary structure information to the interpretation of the observed B (E 2 ) values. Methods: The 110Sn nuclei have been produced in inverse kinematics in an α -particle transfer reaction from 12C to 106Cd projectiles at 390, 400, and 410 MeV. The g factors have been measured with the transient field technique. Lifetimes have been determined from line shapes using the Doppler-shift attenuation method. Results: The g factors of the 21+ and 41+ states in 110Sn are g (21+) = +0.29(11) and g (41+) = +0.05(14), respectively. In addition, the g (41+) = +0.27(6) in 106Cd has been measured for the first time. A line-shape analysis yielded τ (110Sn ; 21+) = 0.81(10) ps and a lifetime of τ (110Sn ; 31-) = 0.25(5) ps was calculated from the fully Doppler-shifted γ line. Conclusions: No evidence has been found in 110Sn that would require excitation of protons from the closed Z =50 core.

  19. Development of optimal SnO{sub 2} contacts for CdTe photovoltaic applications. [Final technical report of Phase II

    SciTech Connect

    Xi, Jianping

    1999-09-16

    During this SBIR Phase II project, we have successfully established high quality SnO{sub 2}(F) based transparent conductive oxide coatings by atmospheric pressure chemical vapor deposition technique and built a large area prototype APCVD deposition system which incorporates innovative design features. This work enhances US photovoltaic research capability and other thin film oxide related research capability.

  20. Measurements of the {sup 116}Cd(p,n) and {sup 116}Sn(n,p) reactions at 300 MeV for studying Gamow-Teller transition strengths in the intermediate nucleus of the {sup 116}Cd double-{beta} decay

    SciTech Connect

    Sasano, M.; Kuboki, H.; Sekiguchi, K.; Sakai, H.; Yako, K.; Miki, K.; Noji, S.; Wakasa, T.; Dozono, M.; Fujita, K.; Greenfield, M. B.; Hatanaka, K.; Okamura, H.; Tamii, A.; Kawabata, T.; Maeda, Y.; Sakemi, Y.; Shimizu, Y.; Uesaka, T.; Sasamoto, Y.

    2009-11-09

    The double differential cross sections for the {sup 116}Cd(p,n) and {sup 116}Sn(n,p) reactions at 300 MeV have been measured over a wide excitation-energy region including Gamow-Teller (GT) giant resonance (GTGR) for studying GT transition strengths in the intermediate nucleus of the {sup 116}Cd double-{beta} decay, namely {sup 116}In. A large amount of the strengths in the {beta}{sup +} direction has been newly found in the energy region up to 30 MeV, which may imply that the GT strengths in the GTGR region contribute to the nuclear matrix element of the two-neutrino double-{beta} decay.

  1. Hexagonal-diamond-like gold lattices, Ba and (Au,T)3 interstitials, and delocalized bonding in a family of intermetallic phases Ba2Au6(Au,T)3 (T = Zn, Cd, Ga, In, or Sn).

    PubMed

    Lin, Qisheng; Mishra, Trinath; Corbett, John D

    2013-07-31

    Au-rich polar intermetallics exhibit a wide variety of structural motifs, and this hexagonal-diamond-like gold host is unprecedented. The series Ba2Au6(Au,T)3 (T = Zn, Cd, Ga, In, or Sn), synthesized through fusion of the elements at 700-800 °C followed by annealing at 400-500 °C, occur in space group R3[overline]c (a ≈ 8.6-8.9 Å, c ≈ 21.9-22.6 Å, and Z = 6). Their remarkable structure, generated by just three independent atoms, features a hexagonal-diamond-like gold superstructure in which tunnels along the 3-fold axes are systematically filled by interstitial Ba atoms (blue) and triangles of disordered (Au,T)3 atoms (green) in 2:1 proportions. The Au/Zn mixing in the latter spans ~34 to 87% Zn, whereas the Au/Sn result is virtually invariant compositionally. Complementary bonding between the gold lattice and the disordered (Au,T)3 units is substantial and very regular. Bonding and charge density analyses indicate delocalized bonding within the gold host and the (Au,T)3 triangular units, and moderately polarized bonding between Ba and the electronegative framework. The new structure can also be viewed empirically as the result of an atom-by-triad [i.e., Ba by (Au,T)3 triangle] topological substitution in a BaAu2 (AlB2-type) superstructure.

  2. Neutron spectroscopic study of crystal field excitations in Tb2Ti2O7 and Tb2Sn2O7

    SciTech Connect

    Zhang, J.; Fritsch, Katharina; Hao, Z.; Bagheri, B. V.; Gingras, M. P.J.; Granroth, Garrett E; Jiramongkolchai, P.; Cava, R. J.; Schiffer, P; Gaulin, Bruce D.

    2014-04-01

    We present time-of-flight inelastic neutron scattering measurements at low temperature on powder samples of the magnetic pyrochlore oxides Tb2Ti2O7 and Tb2Sn2O7. These two materials possess related, but different ground states, with Tb2Sn2O7 displaying "soft" spin ice order below TN approx 0.87 K, while Tb2Ti2O7 enters a hybrid, glassy-spin ice state below Tg approx 0.2 K. Our neutron measurements, performed at T = 1.5 K and 30 K, probe the crystal field states associated with the J = 6 states of Tb3+ within the appropriate Fd3-barm pyrochlore environment. These crystal field states determine the size and anisotropy of the Tb3+ magnetic moment in each material's ground state, information that is an essential starting point for any description of the low temperature phase behavior and spin dynamics in Tb2Ti2O7 and Tb2Sn2O7. While these two materials have much in common, the cubic stanate lattice is expanded compared to the cubic titanate lattice. As our measurements show, this translates into a factor of approx 2 increase in the crystal field bandwidth of the 2J +1 = 13 states in Tb2Ti2O7 compared with Tb2Sn2O7. Our results are consistent with previous measurements on crystal field states in Tb2Sn2O7, wherein the ground state doublet corresponds primarily to mJ = {vert_bar}+-5> and the first excited state doublet to mJ = {vert_bar}+-4>. In contrast, our results on Tb2Ti2O7 differ markedly from earlier studies, showing that the ground state doublet corresponds to a significant mixture of mJ = {vert_bar}+-5>, mJ = {vert_bar}+-4> and mJ = {vert_bar}+-2>, while the first excited state doublet

  3. Global properties of nuclei from {sup 100}Sn to {sup 132}Sn

    SciTech Connect

    Isakov, V. I.

    2013-07-15

    The paper presents the results of both microscopical and semi-empirical calculations of single-particle characteristics, nuclear binding, and one-nucleon separation energies of nuclei, as well as their root-mean-square radii, energy levels and transition rates in the long chain of Sn isotopes. We consider nuclei from the extremely neutron-deficient {sup 100}Sn up to neutron excess {sup 136}Sn, where the experimental information is available by now. The comprehensive comparison with the experimental data is carried out.

  4. Incoherent inelastic neutron scattering studies of proton-conducting materials: Sn(HPO 4) 2·H 2O and HM(SO 4) 2·H 2O, M = Fe, In . Part II. The vibrational spectrum of H 3O +

    NASA Astrophysics Data System (ADS)

    Jones, Deborah J.; Penfold, Jeffrey; Tomkinson, John; Rozière, Jacques

    1989-06-01

    The vibrational spectra of the proton conductors Sn(HPO 4) 2·H 2O, HFe(SO 4) 2·H 2O, and HIn(SO 4) 2·H 2O have been investigated by incoherent inelastic neutron-scattering spectroscopy at 20 K. Torsional and other rotational motion and internal deformation modes of H 3O + have been identified in the trivalent metal acid sulphate monohydrates. The spectroscopic data on Sn(HPO 4) 2·H 2O are consistent with the presence of covalent POH hydrogen bonded to the water molecule.

  5. Gastrointestinal absorption of metals (51Cr, 65Zn, 95mTc, 109Cd, 113Sn, 147Pm, and 238Pu) by rats and swine.

    PubMed

    Sullivan, M F; Miller, B M; Goebel, J C

    1984-12-01

    Adult and neonatal rats and neonatal pigs were gavaged with solutions of metal radionuclides to determine gastrointestinal absorption. Zinc-65 and technetium-95m were well-absorbed by both age groups; chromium-51, cadmium-109, tin-113, promethium-147, and plutonium-238 were not. The quantities of the poorly absorbed metals that were absorbed by neonates were between 4 and 100 times higher than those absorbed by adult rats. Autoradiograms prepared from the entire small intestine of the neonatal rat showed that 109Cd was retained in the duodenum. In contrast, measurements in the piglets showed much higher 109Cd retention in the ileum than in the duodenum. Autoradiograms and radiochemical measurements of 147Pm and 238Pu in both neonatal rats and swine showed the highest level of retention in the ileum. The results indicate that, for most of the metals studied, absorption from the gastrointestinal tract is substantially higher for neonatal than for adult rats.

  6. SN 1054: A pulsar-powered supernova?

    NASA Astrophysics Data System (ADS)

    Li, Shao-Ze; Yu, Yun-Wei; Huang, Yan

    2015-11-01

    The famous ancient supernova SN 1054 could have been too bright to be explained in the “standard” radioactive-powered supernova scenario. As an alternative attempt, we demonstrate that the spin-down of the newly born Crab pulsar could provide a sufficient energy supply to make SN 1054 visible at daytime for 23 days and at night for 653 days, where a one-zone semi-analytical model is employed. Our results indicate that SN 1054 could be a “normal” cousin of magnetar-powered superluminous supernovae. Therefore, SN 1054-like supernovae could be a probe to uncover the properties of newly born neutron stars, which provide initial conditions for studies on neutron star evolutions.

  7. Effect of external shielding for neutrons during radiotherapy for prostate cancer, considering the 2300 CD linear accelerator and voxel phantom

    NASA Astrophysics Data System (ADS)

    Thalhofer, J. L.; Roque, H. S.; Rebello, W. F.; Correa, S. A.; Silva, A. X.; Souza, E. M.; Batita, D. V. S.; Sandrini, E. S.

    2014-02-01

    Photoneutron production occurs when high energy photons, greater than 6.7 MeV, interact with linear accelerator head structures. In Brazil, the National Cancer Institute, one of the centers of reference in cancer treatment, uses radiation at 4 angles (0°, 90°, 180° and 270°) as treatment protocol for prostate cancer. With the objective of minimizing the dose deposited in the patient due to photoneutrons, this study simulated radiotherapy treatment using MCNPX, considering the most realistic environment; simulating the radiotherapy room, the Linac 2300 head, the MAX phantom and the treatment protocol with the accelerator operating at 18 MV. In an attempt to reduce the dose deposited by photoneutrons, an external shielding was added to the Linac 2300. Results show that the equivalent dose due to photoneutrons deposited in the patient diminished. The biggest reduction was seen in bone structures, such as the tibia and fibula, and mandible, at approximately 75%. Besides that, organs such as the brain, pancreas, small intestine, lungs and thyroid revealed a reduction of approximately 60%. It can be concluded that the shielding developed by our research group is efficient in neutron shielding, reducing the dose for the patient, and thus, the risk of secondary cancer, and increasing patient survival rates.

  8. First direct mass measurements of stored neutron-rich 129,130,131Cd isotopes with FRS-ESR

    NASA Astrophysics Data System (ADS)

    Knöbel, R.; Diwisch, M.; Bosch, F.; Boutin, D.; Chen, L.; Dimopoulou, C.; Dolinskii, A.; Franczak, B.; Franzke, B.; Geissel, H.; Hausmann, M.; Kozhuharov, C.; Kurcewicz, J.; Litvinov, S. A.; Martinez-Pinedo, G.; Matoš, M.; Mazzocco, M.; Münzenberg, G.; Nakajima, S.; Nociforo, C.; Nolden, F.; Ohtsubo, T.; Ozawa, A.; Patyk, Z.; Plaß, W. R.; Scheidenberger, C.; Stadlmann, J.; Steck, M.; Sun, B.; Suzuki, T.; Walker, P. M.; Weick, H.; Wu, M.-R.; Winkler, M.; Yamaguchi, T.

    2016-03-01

    A 410 MeV/u 238U projectile beam was used to create cadmium isotopes via abrasion-fission in a beryllium target placed at the entrance of the in-flight separator FRS at GSI. The fission fragments were separated by the FRS and injected into the isochronous storage ring ESR for mass measurements. Isochronous Mass Spectrometry (IMS) was performed under two different experimental conditions, with and without Bρ-tagging at the high-resolution central focal plane of the FRS. In the experiment with Bρ-tagging the magnetic rigidity of the injected fragments was determined with an accuracy of 2 ṡ10-4. A new method of data analysis, which uses a correlation matrix for the combined data set from both experiments, has provided experimental mass values of 25 rare isotopes for the first time. The high sensitivity and selectivity of the method have given access to nuclides detected with a rate of a few atoms per week. In this letter we present for the 129,130,131Cd isotopes mass values directly measured for the first time. The experimental mass values of cadmium as well as for tellurium and tin isotopes show a pronounced shell effect towards and at N = 82. Shell quenching cannot be deduced from a single new mass value, nor by a better agreement with a theoretical model which explicitly takes into account a quenching feature. This is in agreement with the conclusion from γ-ray spectroscopy and confirms modern shell-model calculations.

  9. Band alignments of different buffer layers (CdS, Zn(O,S), and In{sub 2}S{sub 3}) on Cu{sub 2}ZnSnS{sub 4}

    SciTech Connect

    Yan, Chang; Liu, Fangyang; Song, Ning; Hao, Xiaojing; Ng, Boon K.; Stride, John A.; Tadich, Anton

    2014-04-28

    The heterojunctions of different n-type buffers, i.e., CdS, Zn(O,S), and In{sub 2}S{sub 3} on p-type Cu{sub 2}ZnSnS{sub 4} (CZTS) were investigated using X-ray Photoelectron Spectroscopy (XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) Measurements. The band alignment of the heterojunctions formed between CZTS and the buffer materials was carefully measured. The XPS data were used to determine the Valence Band Offsets (VBO) of different buffer/CZTS heterojunctions. The Conduction Band Offset (CBO) was calculated indirectly by XPS data and directly measured by NEXAFS characterization. The CBO of the CdS/CZTS heterojunction was found to be cliff-like with CBO{sub XPS} = −0.24 ± 0.10 eV and CBO{sub NEXAFS} = −0.18 ± 0.10 eV, whereas those of Zn(O,S) and In{sub 2}S{sub 3} were found to be spike-like with CBO{sub XPS} = 0.92 ± 0.10 eV and CBO{sub NEXAFS} = 0.87 ± 0.10 eV for Zn(O,S)/CZTS and CBO{sub XPS} = 0.41 ± 0.10 eV for In{sub 2}S{sub 3}/CZTS, respectively. The CZTS photovoltaic device using the spike-like In{sub 2}S{sub 3} buffer was found to yield a higher open circuit voltage (Voc) than that using the cliff-like CdS buffer. However, the CBO of In{sub 2}S{sub 3}/CZTS is slightly higher than the optimum level and thus acts to block the flow of light-generated electrons, significantly reducing the short circuit current (Jsc) and Fill Factor (FF) and thereby limiting the efficiency. Instead, the use of a hybrid buffer for optimization of band alignment is proposed.

  10. Magnetic properties of the intermetallic compounds PrNiSn and NdNiSn

    NASA Astrophysics Data System (ADS)

    Beirne, Eamonn Daniel

    Inelastic neutron scattering has been used to determine the crystalline electric field (CEF) excitations in the intermetallic compound PrNiSn. Polycrystalline samples of PiNiSn are found to have 7 excitations up to 30 meV, with strong low-lying modes at 2.0, 3.5, and 5.1 meV. The site symmetry of Pr3+ in this system is such that the degeneracy of the 9 levels in the J = 4 ground state multiplet is removed completely by the crystal field. From fitting this data, it is clear that the ground state is a singlet that couples to each of the other 8 excited states. The wavefunctions of the levels are determined and a level scheme proposed for this material. Inelastic scattering results are also presented for a single crystal of PrNiSn. The dispersion of the low-lying E = 3.5 meV CEF excitation is documented, showing 4 distinct modes corresponding to the 4 Pr ions in the unit cell. Susceptibility and magnetisation results for PrNiSn and NdNiSn are presented. From these measurements it is clear that the PrNiSn does not order magnetically down to 2K, whereas NdNiSn has an antifenomagnetic transition at TN = 3.1K. Resistivity measurements on PrNiSn also show no evidence of a magnetic transition, but there are gradient changes at around 4.5K and 12K. This corresponds to a local maximum at 12K and local minimum at 4.5K along the b-axis in this compound. Measurements on single crystals of these compounds show strong anisotropy in both cases, attributed to CEF effects. From the proposed CEF level scheme, the bulk properties such as the susceptibility can be modelled. Neutron powder diffraction measurements on both PrNiSn and NdNiSn confirm that there is no magnetic transition down to 1.6K in PrNiSn, and TN is confirmed for NdNiSn. Structural Rietveld fitting confirms the room temperature orthorhombic structure in both systems down to low temperature, but the magnetic structure of NdNiSn can not be determined. This is due to the magnetic peaks below TN doubling up, indicating a

  11. Gamma/neutron competition above the neutron separation energy in delayed neutron emitters

    NASA Astrophysics Data System (ADS)

    Valencia, E.; Algora, A.; Tain, J. L.; Rice, S.; Agramunt, J.; Zakari-Issoufou, A.-A.; Äystö, J.; Bowry, M.; Bui, V. M.; Caballero-Folch, R.; Cano-Ott, D.; Eloma, V.; Eronen, T.; Estevez, E.; Farrelly, G. F.; Fallot, M.; Garcia, A.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez, A.; Podolyak, Zs.; Penttilä, H.; Porta, A.; Regan, P. H.; Rissanen, J.; Rubio, B.; Weber, C.

    2014-03-01

    To study the β-decay properties of some well known delayed neutron emitters an experiment was performed in 2009 at the IGISOL facility (University of Jyväskylä in Finland) using Total Absorption γ-ray Spectroscopy (TAGS) technique. The aim of these measurements is to obtain the full β-strength distribution below the neutron separation energy (Sn) and the γ/neutron competition above. This information is a key parameter in nuclear technology applications as well as in nuclear astrophysics and nuclear structure. Preliminary results of the analysis show a significant γ-branching ratio above Sn.

  12. Beta Decay of 101Sn

    SciTech Connect

    Kavatsyuk, O.; Mazzocchi, C.; Janas, Z.; Banu, A.; Batist, L.; Becker, F.; Blazhev, A.; Bruchle, W.; Doring, J.; Faestermann, T.; Gorska, M.; Grawe, H.; Jungclaus, A.; Karny, M.; Kavatsyuk, M.; Klepper, O.; Kirchner, R.; La Commara, M.; Miernik, K.; Mukha, I.; Plettner, C.; Plochocki, A.; Roeckl, E.; Romoli, M.; Rykaczewski, Krzysztof Piotr; Schadel, M.; Schmidt, K.; Schwengner, R.; Zylicz, J.

    2007-01-01

    The {beta} decay of the very neutron-deficient isotope 101Sn was studied at the GSI on-line mass separator using silicon detectors for recording charged particles and germanium detectors for {gamma}-ray spectroscopy. Based on the {beta}-delayed proton data the production cross-section of 101Sn in the 50Cr + 58Ni fusion-evaporation reaction was determined to be about 60nb. The half-life of 101Sn was measured to be 1.9(3)s. For the first time {beta}-delayed {gamma}-rays of 101Sn were tentatively identified, yielding weak evidence for a cascade of 352 and 1065keV transitions in 101In. The results for the 101Sn decay as well as those from previous work on the 103Sn decay are discussed by comparing them to predictions obtained from shell model calculations employing a new interaction in the 88Sr to 132Sn model space.

  13. Crystal-field states of Kondo lattice heavy fermions CeRuSn3 and CeRhSn3

    NASA Astrophysics Data System (ADS)

    Anand, V. K.; Adroja, D. T.; Britz, D.; Strydom, A. M.; Taylor, J. W.; Kockelmann, W.

    2016-07-01

    Inelastic neutron scattering experiments have been carried out to determine the crystal-field states of the Kondo lattice heavy fermions CeRuSn3 and CeRhSn3. Both the compounds crystallize in LaRuSn3-type cubic structure (space group P m 3 ¯n ) in which the Ce atoms occupy two distinct crystallographic sites with cubic (m 3 ¯ ) and tetragonal (4 ¯m .2 ) point symmetries. The INS data of CeRuSn3 reveal the presence of a broad excitation centered around 6-8 meV, which is accounted by a model based on crystal electric field (CEF) excitations. On the other hand, the INS data of isostructural CeRhSn3 reveal three CEF excitations around 7.0, 12.2, and 37.2 meV. The neutron intensity sum rule indicates that the Ce ions at both cubic and tetragonal Ce sites are in Ce3 + state in both CeRuSn3 and CeRhSn3. The CEF level schemes for both the compounds are deduced. We estimate the Kondo temperature TK=3.1 (2 ) K for CeRuSn3 from neutron quasielastic linewidth in excellent agreement with that determined from the scaling of magnetoresistance which gives TK=3.2 (1 ) K. For CeRhSn3, the neutron quasielastic linewidth gives TK≈4.6 K. For both CeRuSn3 and CeRhSn3, the ground state of Ce3 + turns out to be a quartet for the cubic site and a doublet for the tetragonal site.

  14. Effets de l'interaction avec l'oxygène sur le comportement de couches semi-conductrices de ZnO, SnO{2} et CdSe

    NASA Astrophysics Data System (ADS)

    Ain-Souya, A.; Ghers, M.; Haddad, A.; Tebib, W.; Rehamnia, R.; Messsalhi, A.; Bounouala, M.; Djouama, M. C.

    2005-05-01

    Les propriétés superficielles des matériaux solides diffèrent de celles du volume. A la surface, des défauts de différentes natures peuvent être présents. Ils permettent à la surface d'être interactive avec le milieu ambiant. Les multiples interactions entre les états de surface et des éléments du milieu extérieur peuvent modifier les propriétés superficielles. Ce travail étudie la régénération de couches semi-conductrices après adsorption isotherme d'oxygène à différentes températures effectuées entre 20 ° C et 300 ° C. Les matériaux qui ont servi à l'étude sont des couches de ZnO, SnO{2} et CdSe. Celles de CdSe ont été obtenues par co-évaporation, sous vide, de cadmium et de sélénium. Les échantillons de ZnO et SnO{2} ont été élaborés par oxydation, à des températures respectives de 450 ° C et 200 ° , de Zn et Sn déposés par électrolyse et par évaporation sous vide. Les matériaux évaporés ont été déposés sur des plaquettes en verre, les autres ont été électrodéposés sur des substrats métalliques. Les variations des propriétés électriques des couches ont été suivies par mesure de leur résistance électrique superficielle R. Les courbes LogR = f (103 /T (K)), relevées sous vide à différentes températures, sont caractéristiques d'un comportement de semi-conducteur. Des essais d'adsorption d'O{2} à différentes températures montrent des variations considérables de R. En effet, la chimisorption forte d'un gaz par une surface semi-conductrice est telle que l'échange électronique entre adsorbant et adsorbat provoque la formation d'une zone de charge d'espace modifiant la conduction superficielle. Les résultats mettent en évidence des domaines de température de plus haute sensibilité à l'oxygène. Pour le CdSe, certaines désorptions isothermes ont été suffisantes pour une régénération totale des échantillons. Les couches de ZnO ont souvent nécessité des désorptions programm

  15. Massive Dirac neutrinos and SN 1987A

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Gandhi, Raj; Turner, Michael S.

    1992-01-01

    The wrong-helicity states of a Dirac neutrino can provide an important cooling mechanism for young neutron stars. Based on numerical models of the early cooling of the neutron star associated with SN 1987A which self-consistently incorporate wrong-helicity neutrino emission, it is argued that a Dirac neutrino of mass greater than 30 keV (25 keV if it is degenerate) leads to shortening of the neutrino burst that is inconsistent with the Irvine-Michigan-Brookhaven and Kamiokande II data. If pions are as abundant as nucleons in the cores of neutron stars, the present limit improves to 15 keV.

  16. Crystal structure and proton conductivity of BaSn0.6Sc0.4O3–δ: insights from neutron powder diffraction and solid-state NMR spectroscopy† †Electronic supplementary information (ESI) available: Rietveld fit of dry BaSn0.6Sc0.4O3–δ sample (Fig. S1). 119Sn (Fig. S2), 45Sc (Fig. S3–S6) and 17O (Fig. S7) spectra of all materials as a function of Sc doping concentration, 45Sc MQMAS of deuterated BaSn0.9Sc0.1O3–δ (Fig. S4), 45Sc MQMAS of dry and deuterated BaSn0.8Sc0.2O3–δ (Fig. S5), 45Sc MQMAS of dry and deuterated BaSn0.7Sc0.3O3–δ (Fig. S6), 17O MQMAS of 17O enriched BaSn0.8Sc0.2O3–δ and BaSn0.6Sc0.4O3–δ (Fig. S8). See DOI: 10.1039/c5ta09744d Click here for additional data file.

    PubMed Central

    Norberg, Stefan T.; Knee, Christopher S.; Ahmed, Istaq; Hull, Stephen; Buannic, Lucienne; Hung, Ivan; Gan, Zhehong; Blanc, Frédéric; Grey, Clare P.; Eriksson, Sten G.

    2016-01-01

    The solid-state synthesis and structural characterisation of perovskite BaSn1–xScxO3–δ (x = 0.0, 0.1, 0.2, 0.3, 0.4) and its corresponding hydrated ceramics are reported. Powder and neutron X-ray diffractions reveal the presence of cubic perovskites (space group Pm3m) with an increasing cell parameter as a function of scandium concentration along with some indication of phase segregation. 119Sn and 45Sc solid-state NMR spectroscopy data highlight the existence of oxygen vacancies in the dry materials, and their filling upon hydrothermal treatment with D2O. It also indicates that the Sn4+ and Sc3+ local distribution at the B-site of the perovskite is inhomogeneous and suggests that the oxygen vacancies are located in the scandium dopant coordination shell at low concentrations (x ≤ 0.2) and in the tin coordination shell at high concentrations (x ≥ 0.3). 17O NMR spectra on 17O enriched BaSn1–xScxO3–δ materials show the existence of Sn–O–Sn, Sn–O–Sc and Sc–O–Sc bridging oxygen environments. A further room temperature neutron powder diffraction study on deuterated BaSn0.6Sc0.4O3–δ refines the deuteron position at the 24k crystallographic site (x, y, 0) with x = 0.579(3) and y = 0.217(3) which leads to an O–D bond distance of 0.96(1) Å and suggests tilting of the proton towards the next nearest oxygen. Proton conduction was found to dominate in wet argon below 700 °C with total conductivity values in the range 1.8 × 10–4 to 1.1 × 10–3 S cm–1 between 300 and 600 °C. Electron holes govern the conduction process in dry oxidizing conditions, whilst in wet oxygen they compete with protonic defects leading to a wide mixed conduction region in the 200 to 600 °C temperature region, and a suppression of the conductivity at higher temperature. PMID:27358734

  17. 1p3/2 proton-hole state in 132Sn and the shell structure along N = 82.

    PubMed

    Taprogge, J; Jungclaus, A; Grawe, H; Nishimura, S; Doornenbal, P; Lorusso, G; Simpson, G S; Söderström, P-A; Sumikama, T; Xu, Z Y; Baba, H; Browne, F; Fukuda, N; Gernhäuser, R; Gey, G; Inabe, N; Isobe, T; Jung, H S; Kameda, D; Kim, G D; Kim, Y-K; Kojouharov, I; Kubo, T; Kurz, N; Kwon, Y K; Li, Z; Sakurai, H; Schaffner, H; Steiger, K; Suzuki, H; Takeda, H; Vajta, Zs; Watanabe, H; Wu, J; Yagi, A; Yoshinaga, K; Benzoni, G; Bönig, S; Chae, K Y; Coraggio, L; Covello, A; Daugas, J-M; Drouet, F; Gadea, A; Gargano, A; Ilieva, S; Kondev, F G; Kröll, T; Lane, G J; Montaner-Pizá, A; Moschner, K; Mücher, D; Naqvi, F; Niikura, M; Nishibata, H; Odahara, A; Orlandi, R; Patel, Z; Podolyák, Zs; Wendt, A

    2014-04-01

    A low-lying state in 131In82, the one-proton hole nucleus with respect to double magic 132Sn, was observed by its γ decay to the Iπ=1/2- β-emitting isomer. We identify the new state at an excitation energy of Ex=1353  keV, which was populated both in the β decay of 131Cd83 and after β-delayed neutron emission from 132Cd84, as the previously unknown πp3/2 single-hole state with respect to the 132Sn core. Exploiting this crucial new experimental information, shell-model calculations were performed to study the structure of experimentally inaccessible N=82 isotones below 132Sn. The results evidence a surprising absence of proton subshell closures along the chain of N=82 isotones. The consequences of this finding for the evolution of the N=82 shell gap along the r-process path are discussed. PMID:24745408

  18. CdS/CdTe thin-film solar cell with a zinc stannate buffer layer

    NASA Astrophysics Data System (ADS)

    Wu, X.; Sheldon, P.; Mahathongdy, Y.; Ribelin, R.; Mason, A.; Moutinho, H. R.; Coutts, T. J.

    1999-03-01

    This paper describes an improved CdS/CdTe polycrystalline thin-film solar-cell device structure that integrates a zinc stannate (Zn2SnO4 or ZTO) buffer layer between the transparent conductive oxide (TCO) layer and the CdS window layer. Zinc stannate films have a high bandgap, high transmittance, low absorptance, and low surface roughness. In addition, these films are chemically stable and exhibit higher resistivities that are roughly matched to that of the CdS window layer in the device structure. Preliminary device results have demonstrated that by integrating a ZTO buffer layer in both SnO2-based and Cd2SnO4 (CTO)-based CdS/CdTe devices, performance and reproducibility can be significantly enhanced.

  19. Tin oxide stability effects—their identification, dependence on processing and impacts on CdTe/CdS solar cell performance

    NASA Astrophysics Data System (ADS)

    Albin, Dave; Rose, Doug; Dhere, Ramesh; Niles, Dave; Swartzlander, Amy; Mason, Alice; Levi, Dean; Moutinho, Helio; Sheldon, Peter

    1997-02-01

    High efficiency polycrystalline thin film CdTe solar cells involve the growth of CdTe films on CdS/SnO2/glass substrates. The CdS layer in such a structure is commonly reported to benefit from a brief hydrogen anneal prior to the deposition of the CdTe film. In this paper, we show that the SnO2 layer can be susceptible to reduction in H2 and that the degree of susceptibility is dependent on the type of SnO2 used. Chemical vapor deposited (CVD) SnO2/glass substrates (Solarex Corp.) show the most resistance to reduction while room-temperature sputtered SnO2 films show the least resistance. When annealed under reducing conditions, Sn from the SnO2 reacts with S-containing impurities and oxygen in as-grown chemical bath deposited (CBD) CdS films to form SnS. Cd-containing impurities are more volatile resulting in a loss of Cd relative to S in films annealed in H2. These films appear dark due to the presence of SnS, a grayish-black impurity, in the CdS and possibly SnO in the SnO2. In normal CSS CdTe deposition processes where H2 annealing is followed by further heating to deposition temperatures in either He or He:O2 ambient, S loss occurs at temperatures exceeding the H2 anneal. If oxygen is absent, CdS films undergo loss of both Sn and S due to evaporation of the SnS. When O2 is present, SnS converts to SnO2 allowing for only the evaporation of sulfur. In this fashion, Sn levels on the CdS surface immediately prior to the deposition of CdTe, can be affected not only by the temperature of the H2 anneal, but also by the oxygen present during the CdTe deposition step. Modifications to the CdS/CdTe device fabrication process including the use of more stable tin oxide layers (CVD-grown) and lower temperature H2 anneals yield devices with higher open circuit voltage, fill-factors, and total-area efficiencies. Room-temperature sputtered tin oxide can be strengthened against reduction by annealing at 550 °C in 400 torr O2 prior to the CdS deposition step.

  20. CD −24°17504 REVISITED: A NEW COMPREHENSIVE ELEMENT ABUNDANCE ANALYSIS

    SciTech Connect

    Jacobson, Heather R.; Frebel, Anna

    2015-07-20

    With [Fe/H] ∼ −3.3, CD −24°17504 is a canonical metal-poor main-sequence turn-off star. Though it has appeared in numerous literature studies, the most comprehensive abundance analysis for the star based on high-resolution, high signal-to-noise ratio (S/N) spectra is nearly 15 years old. We present a new detailed abundance analysis for 21 elements based on combined archival Keck-HIRES and Very Large Telescope-UVES spectra of the star that is higher in both spectral resolution and S/N than previous data. Our results are very similar to those of an earlier comprehensive study of the star, but we present for the first time a carbon abundance from the CH G-band feature as well as improved upper limits for neutron-capture species such as Y, Ba, and Eu. In particular, we find that CD −24°17504 has [Fe/H] = −3.41, [C/Fe] = +1.10, [Sr/H] = −4.68, and [Ba/H] ≤ −4.46, making it a carbon-enhanced metal-poor star with neutron-capture element abundances among the lowest measured in Milky Way halo stars.

  1. Realistic shell-model calculations and exotic nuclei around {sup 132}Sn

    SciTech Connect

    Covello, A.; Itaco, N.; Coraggio, L.; Gargano, A.

    2008-11-11

    We report on a study of exotic nuclei around doubly magic {sup 132}Sn in terms of the shell model employing a realistic effective interaction derived from the CD-Bonn nucleon-nucleon potential. The short-range repulsion of the latter is renormalized by constructing a smooth low-momentum potential, V{sub low-k}, that is used directly as input for the calculation of the effective interaction. In this paper, we focus attention on proton-neutron multiplets in the odd-odd nuclei {sup 134}Sb, {sup 136}Sb. We show that the behavior of these multiplets is quite similar to that of the analogous multiplets in the counterpart nuclei in the {sup 208}Pb region, {sup 210}Bi and {sup 212}Bi.

  2. Investigation of Junction Properties of CdS/CdTe Solar Cells and their Correlation to Device Properties (Presentation)

    SciTech Connect

    Dhere, R. G.; Zhang, Y.; Romero, M. J.; Asher, S. E.; Young, M.; To, B.; Noufi, R.; Gessert, T. A.

    2008-05-01

    The objective of the Junction Studies are: (1) understand the nature of the junction in the CdTe/CdS device; (2) correlate the device fabrication parameters to the junction formation; and (3) develop a self consistent device model to explain the device properties. Detailed analysis of CdS/CdTe and SnO{sub 2}/CdTe devices prepared using CSS CdTe is discussed.

  3. 3D Multigroup Sn Neutron Transport Code

    2001-02-14

    ATTILA is a 3D multigroup transport code with arbitrary order ansotropic scatter. The transport equation is solved in first order form using a tri-linear discontinuous spatial differencing on an arbitrary tetrahedral mesh. The overall solution technique is source iteration with DSA acceleration of the scattering source. Anisotropic boundary and internal sources may be entered in the form of spherical harmonics moments. Alpha and k eigenvalue problems are allowed, as well as fixed source problems. Forwardmore » and adjoint solutions are available. Reflective, vacumn, and source boundary conditions are available. ATTILA can perform charged particle transport calculations using slowing down (CSD) terms. ATTILA can also be used to peform infra-red steady-state calculations for radiative transfer purposes.« less

  4. The Supernova Impostor SN 2010da

    NASA Astrophysics Data System (ADS)

    Binder, Breanna A.; Williams, Benjamin F.; Kong, Albert K. H.; Plucinsky, Paul P.; Gaetz, Terrance J.; Skillman, Evan D.; Dolphin, Andrew E.

    2016-01-01

    Supernova impostors are optical transients that, despite being assigned a supernova designation, do not signal the death of a massive star or accreting white dwarf. Instead, many impostors are thought to be major eruptions from luminous blue variables. Although the physical cause of these eruptions is still debated, tidal interactions from a binary companion has recently gained traction as a possible explanation for observations of some supernova impostors. In this talk, I will discuss the particularly interesting impostor SN 2010da, which exhibits high-luminosity, variable X-ray emission. The X-ray emission is consistent with accretion onto a neutron star, making SN 2010da a likely high mass X-ray binary in addition to a supernova impostor. SN 2010da is a unique laboratory for understanding both binary interactions as drivers of massive star eruptions and the evolutionary processes that create high mass X-ray binaries.

  5. Informing Neutron-Capture Rates through (d,p) Reactions on Neutron-Rich Tin Isotopes

    NASA Astrophysics Data System (ADS)

    Manning, B.; Cizewski, J. A.; Kozub, R. L.; Ahn, S.; Allmond, J. M.; Bardayan, D. W.; Chae, K. Y.; Chipps, K. A.; Howard, M. E.; Jones, K. L.; Liang, J. F.; Matos, M.; Nunes, F. M.; Nesaraja, C. D.; O'Malley, P. D.; Pain, S. D.; Peters, W. A.; Pittman, S. T.; Ratkiewicz, A.; Schmitt, K. T.; Shapira, D.; Smith, M. S.; Titus, L.

    2014-03-01

    Level energies and spectroscopic information for neutron-rich nuclei provide important input for r-process nucleosynthesis calculations; specifically, the location and strength of single-neutron l = 1 states when calculating neutron-capture rates. Surman and collaborators have performed sensitivity studies to show that varying neutron-capture rates can significantly alter final r-process abundances. However, there are many nuclei important to the r-process that cannot be studied. Extending studies to more neutron-rich nuclei will help constrain the nuclear shell-model in extrapolating to nuclei even further from stability. The (d,p) reaction has been measured with radioactive ion beams of 126Sn and 128Sn to complete the set of (d,p) studies on even mass tin isotopes from doubly-magic 132 to stable 124Sn. Work supported in part by the U.S. Department of Energy and National Science Foundation.

  6. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach.

    PubMed

    Tan, Gangjian; Zhao, Li-Dong; Shi, Fengyuan; Doak, Jeff W; Lo, Shih-Han; Sun, Hui; Wolverton, Chris; Dravid, Vinayak P; Uher, Ctirad; Kanatzidis, Mercouri G

    2014-05-14

    SnTe is a potentially attractive thermoelectric because it is the lead-free rock-salt analogue of PbTe. However, SnTe is a poor thermoelectric material because of its high hole concentration arising from inherent Sn vacancies in the lattice and its very high electrical and thermal conductivity. In this study, we demonstrate that SnTe-based materials can be controlled to become excellent thermoelectrics for power generation via the successful application of several key concepts that obviate the well-known disadvantages of SnTe. First, we show that Sn self-compensation can effectively reduce the Sn vacancies and decrease the hole carrier density. For example, a 3 mol % self-compensation of Sn results in a 50% improvement in the figure of merit ZT. In addition, we reveal that Cd, nominally isoelectronic with Sn, favorably impacts the electronic band structure by (a) diminishing the energy separation between the light-hole and heavy-hole valence bands in the material, leading to an enhanced Seebeck coefficient, and (b) enlarging the energy band gap. Thus, alloying with Cd atoms enables a form of valence band engineering that improves the high-temperature thermoelectric performance, where p-type samples of SnCd(0.03)Te exhibit ZT values of ~0.96 at 823 K, a 60% improvement over the Cd-free sample. Finally, we introduce endotaxial CdS or ZnS nanoscale precipitates that reduce the lattice thermal conductivity of SnCd(0.03)Te with no effect on the power factor. We report that SnCd(0.03)Te that are endotaxially nanostructured with CdS and ZnS have a maximum ZTs of ~1.3 and ~1.1 at 873 K, respectively. Therefore, SnTe-based materials could be ideal alternatives for p-type lead chalcogenides for high temperature thermoelectric power generation.

  7. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach.

    PubMed

    Tan, Gangjian; Zhao, Li-Dong; Shi, Fengyuan; Doak, Jeff W; Lo, Shih-Han; Sun, Hui; Wolverton, Chris; Dravid, Vinayak P; Uher, Ctirad; Kanatzidis, Mercouri G

    2014-05-14

    SnTe is a potentially attractive thermoelectric because it is the lead-free rock-salt analogue of PbTe. However, SnTe is a poor thermoelectric material because of its high hole concentration arising from inherent Sn vacancies in the lattice and its very high electrical and thermal conductivity. In this study, we demonstrate that SnTe-based materials can be controlled to become excellent thermoelectrics for power generation via the successful application of several key concepts that obviate the well-known disadvantages of SnTe. First, we show that Sn self-compensation can effectively reduce the Sn vacancies and decrease the hole carrier density. For example, a 3 mol % self-compensation of Sn results in a 50% improvement in the figure of merit ZT. In addition, we reveal that Cd, nominally isoelectronic with Sn, favorably impacts the electronic band structure by (a) diminishing the energy separation between the light-hole and heavy-hole valence bands in the material, leading to an enhanced Seebeck coefficient, and (b) enlarging the energy band gap. Thus, alloying with Cd atoms enables a form of valence band engineering that improves the high-temperature thermoelectric performance, where p-type samples of SnCd(0.03)Te exhibit ZT values of ~0.96 at 823 K, a 60% improvement over the Cd-free sample. Finally, we introduce endotaxial CdS or ZnS nanoscale precipitates that reduce the lattice thermal conductivity of SnCd(0.03)Te with no effect on the power factor. We report that SnCd(0.03)Te that are endotaxially nanostructured with CdS and ZnS have a maximum ZTs of ~1.3 and ~1.1 at 873 K, respectively. Therefore, SnTe-based materials could be ideal alternatives for p-type lead chalcogenides for high temperature thermoelectric power generation. PMID:24785377

  8. The structure of 100Sn and neighbouring nuclei

    NASA Astrophysics Data System (ADS)

    Faestermann, T.; Górska, M.; Grawe, H.

    2013-03-01

    The nuclear structure in the 100Sn region is reviewed. State-of-the-art experimental techniques involving stable and radioactive beam facilities have enabled access to exotic nuclei in its next neighbourhood. The analysis of experimental data has established the shell structure and its evolution towards N=Z=50, seniority conservation and proton-neutron interaction in the g9/2 orbit, the super-allowed Gamow-Teller decay of 100Sn, masses and half lives along the rp-path, and super-allowed α decay beyond 100Sn. The status of theoretical approaches in shell model and mean-field investigations is described and their predictive power assessed. Structure features of 100Sn and its doubly-magic neighbours 56Ni at N=Z, 132Sn and 78Ni at N≫Z are compared. An outlook is given on future developments of experimental and theoretical methods.

  9. Magnetic susceptibility of SnCr, SnMn, SnFe, SnCo and SnNi

    NASA Astrophysics Data System (ADS)

    Henger, U.; Korn, D.

    1984-11-01

    The initial ac susceptibility χ of vapour condensed Sn films with 3d transition metals is measured in situ. SnMn is a spin glass at concentrations up to 36 at% Mn. Spin glass behaviour in SnCr is only observed after annealing to temperatures between 220 and 300 K. This can be related to crystallization in the amorphous and disordered SnCr. SnFe and SnCo exhibit either temperature independent χ or χ below experimental detection. Above the percolation limit χ is getting large and temperature dependent. That is valid for Sn with 30 at% Fe or Co. In Sn films with 50 at% Ni the susceptibility is below the experimental limit.

  10. Penning trap mass measurements of {sup 99-109}Cd with the ISOLTRAP mass spectrometer, and implications for the rp process

    SciTech Connect

    Breitenfeldt, M.; Schweikhard, L.; Audi, G.; Lunney, D.; Naimi, S.; Beck, D.; Herfurth, F.; Blaum, K.; George, S.; Herlert, A.; Kowalska, M.; Kellerbauer, A.; Kluge, H.-J.; Neidherr, D.; Schatz, H.; Schwarz, S.

    2009-09-15

    Penning trap mass measurements of neutron-deficient Cd isotopes {sup 99-109}Cd have been performed with the ISOLTRAP mass spectrometer at ISOLDE/CERN, all with relative mass uncertainties below 3{center_dot}10{sup -8}. A new mass evaluation has been performed. The mass of {sup 99}Cd has been determined for the first time, which extends the region of accurately known mass values toward the doubly magic nucleus {sup 100}Sn. The implication of the results on the reaction path of the rp process in stellar x-ray bursts is discussed. In particular, the uncertainty of the abundance and the overproduction created by the rp-process for the mass A=99 are demonstrated by reducing the uncertainty of the proton-separation energy of {sup 100}InS{sub p}({sup 100}In) by a factor of 2.5.

  11. Experimental study of fusion neutron and proton yields produced by petawatt-laser-irradiated D2-3He or CD4-3He clustering gases

    NASA Astrophysics Data System (ADS)

    Bang, W.; Barbui, M.; Bonasera, A.; Quevedo, H. J.; Dyer, G.; Bernstein, A. C.; Hagel, K.; Schmidt, K.; Gaul, E.; Donovan, M. E.; Consoli, F.; De Angelis, R.; Andreoli, P.; Barbarino, M.; Kimura, S.; Mazzocco, M.; Natowitz, J. B.; Ditmire, T.

    2013-09-01

    We report on experiments in which the Texas Petawatt laser irradiated a mixture of deuterium or deuterated methane clusters and helium-3 gas, generating three types of nuclear fusion reactions: D(d,3He)n, D(d,t)p, and 3He(d,p)4He. We measured the yields of fusion neutrons and protons from these reactions and found them to agree with yields based on a simple cylindrical plasma model using known cross sections and measured plasma parameters. Within our measurement errors, the fusion products were isotropically distributed. Plasma temperatures, important for the cross sections, were determined by two independent methods: (1) deuterium ion time of flight and (2) utilizing the ratio of neutron yield to proton yield from D(d,3He)n and 3He(d,p)4He reactions, respectively. This experiment produced the highest ion temperature ever achieved with laser-irradiated deuterium clusters.

  12. Probing Shell Closures in Neutron-Rich Nuclei

    NASA Astrophysics Data System (ADS)

    Krücken, R.

    2008-08-01

    Results of two experimental campaigns are presented investigating shell structure in neutron-rich nuclei near 54Ca and 132Sn, respectively. In the first experiment excited states in 55Ti were investigated at the middle focus of the GSI FRS via one-neutron knock-out from 56Ti. Longitudinal momentum distributions were measured inclusively and in coincidence with a newly discovered gamma-ray at 955 keV detected by the MINIBALL gamma-ray detector array. From the momentum distributions the νp1/2 single-particle structure of the ground state was determined for the first time while the excited state at 955 keV is identified as the νp3/2 single-particle state. Secondly, results from the Coulomb excitation of neutron-rich nuclei 122,124,126Cd, 138,140,142,144Xe are presented. These experiments were performed at the REX-ISOLDE accelerator at CERN also using the MINIBALL array. The obtained B(E2)-values follow the expected systematic behavior that correlates the energy of the first excited 2+ state with the B(E2)-values and also agree well with the results of theoretical predictions.

  13. Approaching the N=82 shell closure with mass measurements of Ag and Cd isotopes

    SciTech Connect

    Breitenfeldt, M.; Baruah, S.; Rosenbusch, M.; Schweikhard, L.; Borgmann, Ch.; Boehm, Ch.; George, S.; Audi, G.; Lunney, D.; Minaya-Ramirez, E.; Naimi, S.; Beck, D.; Dworschak, M.; Herfurth, F.; Savreux, R.; Yazidjian, C.; Blaum, K.; Cakirli, R. B.; Casten, R. F.; Delahaye, P.

    2010-03-15

    Mass measurements of neutron-rich Cd and Ag isotopes were performed with the Penning trap mass spectrometer ISOLTRAP. The masses of {sup 112,114-124}Ag and {sup 114,120,122-124,126,128}Cd, determined with relative uncertainties between 2x10{sup -8} and 2x10{sup -7}, resulted in significant corrections and improvements of the mass surface. In particular, the mass of {sup 124}Ag was previously unknown. In addition, other masses that had to be inferred from Q values of nuclear decays and reactions have now been measured directly. The analysis includes various mass differences, namely the two-neutron separation energies, the applicability of the Garvey-Kelson relations, double differences of masses deltaV{sub pn}, which give empirical proton-neutron interaction strengths, as well as a comparison with recent microscopic calculations. The deltaV{sub pn} results reveal that for even-even nuclides around {sup 132}Sn the trends are similar to those in the {sup 208}Pb region.

  14. Electric quadrupole moments of the 21+ states in Cd100,102,104

    NASA Astrophysics Data System (ADS)

    Ekström, A.; Cederkäll, J.; Dijulio, D. D.; Fahlander, C.; Hjorth-Jensen, M.; Blazhev, A.; Bruyneel, B.; Butler, P. A.; Davinson, T.; Eberth, J.; Fransen, C.; Geibel, K.; Hess, H.; Ivanov, O.; Iwanicki, J.; Kester, O.; Kownacki, J.; Köster, U.; Marsh, B. A.; Reiter, P.; Scheck, M.; Siebeck, B.; Siem, S.; Stefanescu, I.; Toft, H. K.; Tveten, G. M.; van de Walle, J.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wrzosek, K.; Zielińska, M.

    2009-11-01

    Using the REX-ISOLDE facility at CERN the Coulomb excitation cross sections for the 0gs+→21+ transition in the β-unstable isotopes Cd100,102,104 have been measured for the first time. Two different targets were used, which allows for the first extraction of the static electric quadrupole moments Q(21+) in Cd102,104. In addition to the B(E2) values in Cd102,104, a first experimental limit for the B(E2) value in Cd100 is presented. The data was analyzed using the maximum likelihood method. The provided probability distributions impose a test for theoretical predictions of the static and dynamic moments. The data are interpreted within the shell-model using realistic matrix elements obtained from a G-matrix renormalized CD-Bonn interaction. In view of recent results for the light Sn isotopes the data are discussed in the context of a renormalization of the neutron effective charge. This study is the first to use the reorientation effect for post-accelerated short-lived radioactive isotopes to simultaneously determine the B(E2) and the Q(21+) values.

  15. Axions and SN1987A

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Turner, Michael S.; Brinkmann, R. P.

    1988-01-01

    The effect of free-streaming axion emission on numerical models for the cooling of the newly born neutron star associated with SN1987A is considered. It is found that for an axion mass of greater than approximately 10 to the -3 eV, axion emission shortens the duration of the expected neutrino burst so significantly that it would be inconsistent with the neutrino observations made by the Kamiokande II and Irvine-Michigan-Brookhaven detectors. However, the possibility has not been investigated that axion trapping (which should occur for masses greater than or equal to 0.02 eV) sufficiently reduces axion emission so that axion masses greater than approximately 2 eV would be consistent with the neutrino observations.

  16. Neutron Skin and Equation of State in Asymmetric Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Yoshida, Satoshi; Sagawa, Hiroyuki

    2005-12-01

    Neutron skin thickness of stable and unstable nuclei are studied by using Skyrme Hartree-Fock (SHF) models and relativistic mean field (RMF) models in relation with the pressure of EOS in neutron matter. We found a clear linear correlation between the neutron skin sizes in heavy nuclei, 132Sn and 208Pb and the pressure of neutron matter in both SHF and RMF, while the correlation is weak in unstable nuclei 32Mg and 44Ar.

  17. Band structure in 113Sn

    NASA Astrophysics Data System (ADS)

    Banerjee, P.; Ganguly, S.; Pradhan, M. K.; Sharma, H. P.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.

    2016-07-01

    The structure of collective bands in 113Sn, populated in the reaction 100Mo(19F,p 5 n ) at a beam energy of 105 MeV, has been studied. A new positive-parity sequence of eight states extending up to 7764.9 keV and spin (39 /2+) has been observed. The band is explained as arising from the coupling of the odd valence neutron in the g7 /2 or the d5 /2 orbital to the deformed 2p-2h proton configuration of the neighboring even-A Sn isotope. Lifetimes of six states up to an excitation energy of 9934.9 keV and spin 47 /2-belonging to a Δ I =2 intruder band have been measured for the first time, including an upper limit for the last state, from Doppler-shift-attenuation data. A moderate average quadrupole deformation β2=0.22 ±0.02 is deduced from these results for the five states up to spin 43 /2- . The transition quadrupole moments decrease with increase in rotational frequency, indicating a reduction of collectivity with spin, a feature common for terminating bands. The behavior of the kinematic and dynamic moments of inertia as a function of rotational frequency has been studied and total Routhian surface calculations have been performed in an attempt to obtain an insight into the nature of the states near termination.

  18. Neutron Transfer Reactions: Surrogates for Neutron Capture for Basic and Applied Nuclear Science

    NASA Astrophysics Data System (ADS)

    Cizewski, J. A.; Jones, K. L.; Kozub, R. L.; Pain, S. D.; Peters, W. A.; Adekola, A.; Allen, J.; Bardayan, D. W.; Becker, J. A.; Blackmon, J. C.; Chae, K. Y.; Chipps, K. A.; Erikson, L.; Gaddis, A.; Harlin, C.; Hatarik, R.; Howard, J.; Jandel, M.; Johnson, M. S.; Kapler, R.; Krolas, W.; Liang, F.; Livesay, R. J.; Ma, Z.; Matei, C.; Matthews, C.; Moazen, B.; Nesaraja, C. D.; O'Malley, P.; Patterson, N.; Paulauskas, S. V.; Pelham, T.; Pittman, S. T.; Radford, D.; Rogers, J.; Schmitt, K.; Shapira, D.; Shriner, J. F.; Sissom, D. J.; Smith, M. S.; Swan, T.; Thomas, J. S.; Vieira, D. J.; Wilhelmy, J. B.; Wilson, G. L.

    2009-03-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on 130,132Sn, 134Te and 75As are discussed.

  19. Neutron transfer reactions: Surrogates for neutron capture for basic and applied nuclear science

    SciTech Connect

    Cizewski, J. A.; Jones, K. L.; Kozub, R. L.; Pain, Steven D; Peters, W. A.; Adekola, Aderemi S; Allen, J.; Bardayan, Daniel W; Becker, J.; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Erikson, Luke; Gaddis, A. L.; Harlin, Christopher W; Hatarik, Robert; Howard, Joshua A; Jandel, M.; Johnson, Micah; Kapler, R.; Krolas, W.; Liang, J Felix; Livesay, Jake; Ma, Zhanwen; Matei, Catalin; Matthews, C.; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Patterson, N. P.; Paulauskas, Stanley; Pelham, T.; Pittman, S. T.; Radford, David C; Rogers, J.; Schmitt, Kyle; Shapira, Dan; ShrinerJr., J. F.; Sissom, D. J.; Smith, Michael Scott; Swan, T. P.; Thomas, J. S.; Vieira, D. J.; Wilhelmy, J. B.; Wilson, Gemma L

    2009-04-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  20. Real time wide area radiation surveillance system (REWARD) based on 3d silicon and (CD,ZN)Te for neutron and gamma-ray detection

    NASA Astrophysics Data System (ADS)

    Disch, C.

    2014-09-01

    Mobile surveillance systems are used to find lost radioactive sources and possible nuclear threats in urban areas. The REWARD collaboration [1] aims to develop such a complete radiation monitoring system that can be installed in mobile or stationary setups across a wide area. The scenarios include nuclear terrorism threats, lost radioactive sources, radioactive contamination and nuclear accidents. This paper will show the performance capabilities of the REWARD system in different scnarios. The results include both Monte Carlo simulations as well as neutron and gamma-ray detection performances in terms of efficiency and nuclide identification. The outcomes of several radiation mapping survey with the entire REWARD system will also be presented.

  1. The magic nature of (132)Sn explored through the single-particle states of (133)Sn.

    PubMed

    Jones, K L; Adekola, A S; Bardayan, D W; Blackmon, J C; Chae, K Y; Chipps, K A; Cizewski, J A; Erikson, L; Harlin, C; Hatarik, R; Kapler, R; Kozub, R L; Liang, J F; Livesay, R; Ma, Z; Moazen, B H; Nesaraja, C D; Nunes, F M; Pain, S D; Patterson, N P; Shapira, D; Shriner, J F; Smith, M S; Swan, T P; Thomas, J S

    2010-05-27

    Atomic nuclei have a shell structure in which nuclei with 'magic numbers' of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in (133)Sn that lie outside the double shell closure present at the short-lived nucleus (132)Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of (132)Sn. PMID:20505723

  2. The magic nature of 132Sn explored through the single-particle states of 133Sn

    SciTech Connect

    Jones, K. L.; Adekola, Aderemi S; Bardayan, Daniel W; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Cizewski, J. A.; Erikson, Luke; Harlin, Christopher W; Hatarik, Robert; Kapler, R.; Kozub, R. L.; Liang, J Felix; Livesay, Jake; Ma, Zhanwen; Moazen, Brian; Nesaraja, Caroline D; Nunes, F. M.; Pain, S. D.; Patterson, N. P.; Shapira, Dan; ShrinerJr., J. F.; Smith, Michael Scott; Swan, T. P.; Thomas, J. S.

    2010-05-01

    Atomic nuclei have a shell structure1 in which nuclei with magic numbers of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important2 5 for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in 133Sn that lies outside the double shell closure present at the short-lived nucleus 132Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of 132Sn.

  3. Double-magic nature of 132Sn and 208Pb through lifetime and cross-section measurements

    SciTech Connect

    Allmond, James M; Stuchbery, Andrew E; Beene, James R; Galindo-Uribarri, Alfredo {nmn}; Liang, J Felix; Padilla-Rodal, Elizabeth; Radford, David C; Varner Jr, Robert L; Ayres, A.; Batchelder, J. C.; Bey, A.; Bingham, C. R.; Howard, Meredith E; Jones, K. L.; Manning, Brett M; Mueller, Paul Edward; Nesaraja, Caroline D; Pain, Steven D; Peters, William A; Ratkiewicz, Andrew J; Schmitt, Kyle; Shapira, Dan; Smith, Michael Scott; Stone, N. J.; Stracener, Daniel W; Yu, Chang-Hong

    2014-01-01

    Single-neutron states in 133Sn and 209Pb, which are analogous to single electrons outside of closed atomic shells in alkali metals, were populated by the (9Be,8Be) one-neutron transfer reaction in inverse kinematics using particle-gamma coincidence spectroscopy. In addition, the s1/2 single-neutron hole-state candidate in 131Sn was populated by (9Be,10Be). Doubly closed-shell 132Sn (radioactive) and 208Pb (stable) beams were used at sub-Coulomb barrier energies of 3 MeV per nucleon. Level energies, gamma-ray transitions, absolute cross sections, spectroscopic factors, asymptotic normalization coefficients, and excited-state lifetimes are reported and compared to shell-model expectations. The results include a new transition and precise level energy for the 3p1/2 candidate in 133Sn, new absolute cross sections for the 1h9/2 candidate in 133Sn and 3s1/2 candidate in 131Sn, and new lifetimes for excited states in 133Sn and 209Pb. This is the first report on excited-state lifetimes of 133Sn, which provide a unique signature of the single-neutron states and 132Sn double-shell closure.

  4. Gyromagnetic ratios of excited states and nuclear structure near {sup 132}Sn

    SciTech Connect

    Stuchbery, Andrew E.

    2014-11-11

    Several g-factor measurements have been performed recently on nuclei near the neutron-rich, double-magic nucleus {sup 132}Sn. The focus here is on {sup 134}Te, the N = 82 isotone which has two protons added to {sup 132}Sn. The electromagnetic properties of {sup 134}Te are examined. Comparisons are made with other nuclei that have two protons outside a double-magic core. The extent to which {sup 132}Sn is an inert core is discussed based on these comparisons. The electromagnetic properties of the N = 82 isotones from {sup 132}Sn to {sup 146}Gd are also discussed.

  5. Ternary Phases (Heusler) in the System Ti-Co-Sn

    NASA Astrophysics Data System (ADS)

    Kosinskiy, Andrey; Karlsen, Ole Bjørn; Sørby, Magnus H.; Prytz, Øystein

    2016-09-01

    Some of the Heusler-phases (XY 2 Z and XYZ) are known to have large homogeneity ranges which can be useful for tuning material properties. In this work, we have revised the isothermal section of the Ti-Co-Sn system at 973 K (700 °C). A total of 29 ternary compositions, mostly in the regions TiCo2-x Sn for 0 ≤ x ≤ 1 and Ti1+y Co2Sn1-y for 0 ≤ y ≤ 1, were prepared by arc-melting, then ball-milled and annealed. The resulting annealed powder samples were studied by applying the Rietveld method to X-ray and neutron powder diffraction data. Half-Heusler TiCoSn was not observed. The Heusler phase observed in TiCo2-x Sn has compositions ranging from TiCo1.52Sn to TiCo2Sn and has the half-Heusler structure where the excess of Co is located on the semi-filled tetrahedral site 4d (¾, ¾, ¾) in the space group F-43m. At 1273 K (1000 °C), this solid solubility is expanded from TiCo2Sn to TiCo with full solid solubility where Ti is gradually replacing Sn (Ti1+y Co2Sn1-y for 0 ≤ y ≤ 1), while at 973 K (700 °C) there is a small solubility gap for 0.0 ≤ y ≤ 0.2.

  6. Neutron transfer measurements on neutron-rich N=82 nuclei

    SciTech Connect

    Pain, Steven D; Jones, K. L.; Bardayan, Daniel W; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Cizewski, J. A.; Hatarik, Robert; Kapler, R.; Kozub, R. L.; Liang, J Felix; Moazen, Brian; Nesaraja, Caroline D; Shapira, Dan; ShrinerJr., J. F.; Smith, Michael Scott

    2009-01-01

    Calculations of r-process nucleosynthesis rely significantly on nuclear structure models as input, which are not well tested in the neutron-rich regime, due to the paucity of experimental data on the majority of these nuclei. High quality radioactive beams have recently made possible the measurement of (d,p) reactions on unstable nuclei in inverse kinematics, which can yield information on the development of single-neutron structure away from stability in close proximity to suggested r-process paths. The Oak Ridge Rutgers University Barrel Array (ORRUBA) has been developed for the measurement of such reactions. An early partial implementation of ORRUBA has been utilized to measure the {sup 132}Sn(d,p){sup 133}Sn and {sup 134}Te(d,p){sup 135}Te reactions for the first time.

  7. Proton-Neutron Pairing Interaction in Neutron Rich A = 132 Nuclei

    SciTech Connect

    Laouet, N.; Benrachi, F.; Khiter, M.; Benmicia, N.; Saifi, H.

    2010-10-31

    In infinite nuclear systems, such as neutron stars, pairing phenomena have a particular interest in the study of nuclear structure properties. Thus, pairing lies at the heart of quantum many body problems, and nuclear process connecting to nucleosynthesis. In this work, we are interested on the contribution of this aspect, for neutron rich nuclei far from stability in the vicinity of doubly magic {sup 132}Sn. The study of A = 134 isobar, which presents a proton-neutron mixing in valence space, based on the proton-neutron correlation properties. Our results, using the P{sub d} pairing gap calculations, are in a good agreement with the experimental data.

  8. Continuum quasiparticle random-phase approximation for astrophysical direct neutron capture reactions on neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Matsuo, Masayuki

    2015-03-01

    I formulate a many-body theory to calculate the cross section of direct radiative neutron capture reaction by means of the Hartree-Fock-Bogoliubov mean-field model and the continuum quasiparticle random-phase approximation (QRPA). A focus is put on very-neutron-rich nuclei and low-energy neutron kinetic energy in the range from 1 keV to several MeV, which is relevant to the rapid neutron capture process of nucleosynthesis. I begin with the photoabsorption cross section and the E 1 strength function. Next, in order to apply the reciprocity theorem, I decompose the cross section into partial cross sections corresponding to different channels of one- and two-neutron emission decays of photo-excited states. A numerical example is shown for the photo-absorption of 142Sn and the neutron capture of 141Sn .

  9. ALLOY COMPOSITION FOR NEUTRONIC REACTOR CONTROL RODS

    DOEpatents

    Lustman, B.; Losco, E.F.; Snyder, H.J.; Eggleston, R.R.

    1963-01-22

    This invention relates to alloy compositons suitable as cortrol rod material consisting of, by weight, from 85% to 85% Ag, from 2% to 20% In, from up to 10% of Cd, from up to 5% Sn, and from up to 1.5% Al, the amount of each element employed being determined by the equation X + 2Y + 3Z + 3W + 4V = 1.4 and less, where X, Y, Z, W, and V represent the atom fractions of the elements Ag, Cd, In, Al and Sn. (AEC)

  10. Measurement of the lunar neutron density profile

    NASA Technical Reports Server (NTRS)

    Woolum, D. S.; Burnett, D. S.; Furst, M.; Weiss, J. R.

    1975-01-01

    Relatively small discrepancies between Apollo 17 lunar neutron probe experiment (LNPE) data and theoretical calculations by Lingenfelter, Canfield, and Hampel in the effect of Cd absorption on the neutron density, and in the relative Sm-149 to Gd-157 capture rates reported previously, imply that the true lunar Gd-157 capture rate is about one-half of that derived theoretically.

  11. Neutron Detection with Cryogenics and Semiconductors

    SciTech Connect

    bell, Z.W.; Carpenter, D.A.; Cristy, S.S.; Lamberti, V.E.

    2005-03-10

    The common methods of neutron detection are reviewed with special attention paid to the application of cryogenics and semiconductors to the problem. The authors' work with LiF- and boron-based cryogenic instruments is described as well as the use of CdTe and HgI{sub 2} for direct detection of neutrons.

  12. Bifacial solar cell with SnS absorber by vapor transport deposition

    SciTech Connect

    Wangperawong, Artit; Hsu, Po-Chun; Yee, Yesheng; Herron, Steven M.; Clemens, Bruce M.; Cui, Yi; Bent, Stacey F.

    2014-10-27

    The SnS absorber layer in solar cell devices was produced by vapor transport deposition (VTD), which is a low-cost manufacturing method for solar modules. The performance of solar cells consisting of Si/Mo/SnS/ZnO/indium tin oxide (ITO) was limited by the SnS layer's surface texture and field-dependent carrier collection. For improved performance, a fluorine doped tin oxide (FTO) substrate was used in place of the Mo to smooth the topography of the VTD SnS and to make bifacial solar cells, which are potentially useful for multijunction applications. A bifacial SnS solar cell consisting of glass/FTO/SnS/CdS/ZnO/ITO demonstrated front- and back-side power conversion efficiencies of 1.2% and 0.2%, respectively.

  13. Neutron stars: A cosmic hadron physics laboratory

    NASA Technical Reports Server (NTRS)

    Pines, David

    1989-01-01

    A progress report is given on neutron stars as a cosmic hadron physics laboratory. Particular attention is paid to the crustal neutron superfluid, and to the information concerning its properties which may be deduced from observations of pulsar glitches and postglitch behavior. Current observational evidence concerning the softness or stiffness of the high density neutron matter equation of state is reviewed briefly, and the (revolutionary) implications of a confirmation of the existence of a 0.5 ms pulsar at the core of (Supernova) SN1987A are discussed.

  14. Neutron stars - A cosmic hadron physics laboratory

    NASA Technical Reports Server (NTRS)

    Pines, David

    1989-01-01

    A progress report is given on neutron stars as a cosmic hadron physics laboratory. Particular attention is paid to the crustal neutron superfluid, and to the information concerning its properties which may be deduced from observations of pulsar glitches and postglitch behavior. Current observational evidence concerning the softness or stiffness of the high density neutron matter equation of state is reviewed briefly, and the (revolutionary) implications of a confirmation of the existence of a 0.5 ms pulsar at the core of (Supernova) SN1987A are discussed.

  15. Pirquitasite, Ag2ZnSnS4

    PubMed Central

    Schumer, Benjamin N.; Downs, Robert T.; Domanik, Kenneth J.; Andrade, Marcelo B; Origlieri, Marcus J.

    2013-01-01

    Pirquitasite, ideally Ag2ZnSnS4 (disilver zinc tin tetra­sulfide), exhibits tetra­gonal symmetry and is a member of the stannite group that has the general formula A2BCX 4, with A = Ag, Cu; B = Zn, Cd, Fe, Cu, Hg; C = Sn, Ge, Sb, As; and X = S, Se. In this study, single-crystal X-ray diffraction data are used to determine the structure of pirquitasite from a twinned crystal from the type locality, the Pirquitas deposit, Jujuy Province, Argentina, with anisotropic displacement parameters for all atoms, and a measured composition of (Ag1.87Cu0.13)(Zn0.61Fe0.36Cd0.03)SnS4. One Ag atom is located on Wyckoff site Wyckoff 2a (symmetry -4..), the other Ag atom is statistically disordered with minor amounts of Cu and is located on 2c (-4..), the (Zn, Fe, Cd) site on 2d (-4..), Sn on 2b (-4..), and S on general site 8g. This is the first determination of the crystal structure of pirquitasite, and our data indicate that the space group of pirquitasite is I-4, rather than I-42m as previously suggested. The structure was refined under consideration of twinning by inversion [twin ratio of the components 0.91 (6):0.09 (6)]. PMID:23424398

  16. First-principles investigations of phonon anharmonicity and electronic instability in thermoelectric SnSe

    NASA Astrophysics Data System (ADS)

    Hong, Jiawang; Li, Chen W.; May, A. F.; Bansal, D.; Chi, S.; Hong, T.; Ehlers, G.; Delaire, Olivier

    The promising thermoelectric material SnSe exhibits ultra-low and strongly anisotropic thermal conductivity. By combining first-principles calculations and inelastic neutron scattering measurements, we have investigated the phonon dispersions and phonon scattering mechanisms, and probed the origin of the large anharmonicity in SnSe. We will discuss the connection between the phonon properties and the high-temperature structural phase transition, and how the electronic structure leads to large anharmonic phonon interactions in SnSe. The present results provide a microscopic picture connecting electronic structure and phonon anharmonicity in SnSe, which could help design materials with ultralow thermal conductivity. Computations were performed using the OLCF at ORNL. Modeling of neutron data was performed in CAMM, measurements were funded by the US DOE, BES, Materials Science and Engineering Division.

  17. Interfacial reaction of Sn(II) on mackinawite (FeS).

    PubMed

    Dulnee, Siriwan; Scheinost, Andreas C

    2015-01-01

    The interaction of Sn(II) with metastable, highly reactive mackinawite is a complex process due to transient changes of the mackinawite surface in the sorption process. In this work, we show that tin redox state and local structure as investigated by Sn-K X-ray absorption spectroscopy (XAS) change with pH. We observe at pH<7 that divalent Sn forms two short (2.38 Å) Sn-S bonds to the S-terminated surface of mackinawite, and two longer (2.59 Å) Sn-S bonds pointing most likely towards the solution phase, in line with a SnS4 innersphere sorption complex. Precipitation of SnS or formation of a solid solution with mackinawite could be excluded. At pH>9, Sn(II) is completely oxidized to Sn(IV) by an Fe(II)/Fe(III) (hydr)oxide, most likely green rust, forming on the surface of mackinawite. Six O atoms at 2.04 Å and 6 Fe atoms at 3.29 Å indicate a structural incorporation by green rust, with Sn(IV) substituting for Fe in the crystal structure. The transition between Sn(II) and Sn(IV) and between sulfur and oxygen coordination takes place at a pH of 7 to 8 and an Eh of -250 mV, close to the thermodynamically predicted transitions from mackinawite to Fe (hydr)oxide and from sulfide to sulfate. The uptake processes of Sn(II) by mackinawite are largely in line with the uptake processes of divalent cations with soft Lewis-acid character like Cd, Hg and Pb, and lead to a strong retention of Sn with logRd values from 5 to 7 across the investigated pH range of 5 to 11. PMID:25957569

  18. Interfacial reaction of Sn(II) on mackinawite (FeS).

    PubMed

    Dulnee, Siriwan; Scheinost, Andreas C

    2015-01-01

    The interaction of Sn(II) with metastable, highly reactive mackinawite is a complex process due to transient changes of the mackinawite surface in the sorption process. In this work, we show that tin redox state and local structure as investigated by Sn-K X-ray absorption spectroscopy (XAS) change with pH. We observe at pH<7 that divalent Sn forms two short (2.38 Å) Sn-S bonds to the S-terminated surface of mackinawite, and two longer (2.59 Å) Sn-S bonds pointing most likely towards the solution phase, in line with a SnS4 innersphere sorption complex. Precipitation of SnS or formation of a solid solution with mackinawite could be excluded. At pH>9, Sn(II) is completely oxidized to Sn(IV) by an Fe(II)/Fe(III) (hydr)oxide, most likely green rust, forming on the surface of mackinawite. Six O atoms at 2.04 Å and 6 Fe atoms at 3.29 Å indicate a structural incorporation by green rust, with Sn(IV) substituting for Fe in the crystal structure. The transition between Sn(II) and Sn(IV) and between sulfur and oxygen coordination takes place at a pH of 7 to 8 and an Eh of -250 mV, close to the thermodynamically predicted transitions from mackinawite to Fe (hydr)oxide and from sulfide to sulfate. The uptake processes of Sn(II) by mackinawite are largely in line with the uptake processes of divalent cations with soft Lewis-acid character like Cd, Hg and Pb, and lead to a strong retention of Sn with logRd values from 5 to 7 across the investigated pH range of 5 to 11.

  19. Interfacial reaction of SnII on mackinawite (FeS)

    NASA Astrophysics Data System (ADS)

    Dulnee, Siriwan; Scheinost, Andreas C.

    2015-06-01

    The interaction of SnII with metastable, highly reactive mackinawite is a complex process due to transient changes of the mackinawite surface in the sorption process. In this work, we show that tin redox state and local structure as investigated by Sn-K X-ray absorption spectroscopy (XAS) change with pH. We observe at pH < 7 that divalent Sn forms two short (2.38 Å) Sn-S bonds to the S-terminated surface of mackinawite, and two longer (2.59 Å) Sn-S bonds pointing most likely towards the solution phase, in line with a SnS4 innersphere sorption complex. Precipitation of SnS or formation of a solid solution with mackinawite could be excluded. At pH > 9, SnII is completely oxidized to SnIV by an FeII/FeIII (hydr)oxide, most likely green rust, forming on the surface of mackinawite. Six O atoms at 2.04 Å and 6 Fe atoms at 3.29 Å indicate a structural incorporation by green rust, with SnIV substituting for Fe in the crystal structure. The transition between SnII and SnIV and between sulfur and oxygen coordination takes place at a pH of 7 to 8 and an Eh of - 250 mV, close to the thermodynamically predicted transitions from mackinawite to Fe (hydr)oxide and from sulfide to sulfate. The uptake processes of SnII by mackinawite are largely in line with the uptake processes of divalent cations with soft Lewis-acid character like Cd, Hg and Pb, and lead to a strong retention of Sn with logRd values from 5 to 7 across the investigated pH range of 5 to 11.

  20. Sub-barrier Coulomb excitation of 107Sn

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Cederkall, J.; Ekström, A.; Fahlander, C.; Hjorth-Jensen, M.; Is459 Collaboration

    2012-09-01

    A Coulomb excitation experiment in inverse kinematics has been carried out at the REX-ISOLDE facility in order to study the properties of low-lying excited states in 107Sn. The measured γ ray spectrum has been compared with predicted γ ray spectra from a combined shell-model and GOSIA analysis. In this approach, a set of matrix elements, generated within the shell-model framework, based on a realistic nucleon-nucleon interaction and a set of single-particle energies relative to 100Sn, is used as input. Comparison between the calculated and predicted spectra can be used to help identify the placement of the single-neutron states in 101Sn. In particular, the results can potentially provide clues on the ordering of the two lowest-lying orbits; the g7/2 and d5/2 states.

  1. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Korff, S. A.; Mendell, R. B.; Merker, M.; Light, E. S.; Verschell, H. J.; Sandie, W. S.

    1979-01-01

    Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made.

  2. Examining the role of transfer coupling in sub-barrier fusion of Ti46,50+Sn124

    DOE PAGESBeta

    Liang, J. Felix; Allmond, J. M.; Gross, C. J.; Mueller, Paul E.; Shapira, Dan; Varner, R. L.; Dasgupta, M.; Hinde, David J.; Simenel, C.; Williams, E.; et al

    2016-08-24

    In this study, the presence of neutron transfer channels with positive Q values can enhance sub-barrier fusion cross sections. Recent measurements of the fusion excitation functions for 58Ni+132,124Sn found that the fusion enhancement due to the influence of neutron transfer is smaller than that in 40Ca +132,124Sn although the Q values for multineutron transfer are comparable. The purpose of this study is to investigate the differences observed between the fusion of Sn + Ni and Sn + Ca. Methods: Fusion excitation functions for 46,50Ti +124Sn have been measured at energies near the Coulomb barrier. As a result, a comparison ofmore » the barrier distributions for 46Ti+124Sn and 40Ca+124Sn shows that the 40Ca+124Sn system has a barrier strength resulting from the coupling to the very collective octupole state in 40Ca at an energy significantly lower than the uncoupled barrier. In conclusion, the large sub-barrier fusion enhancement in 40Ca induced reactions is attributed to both couplings to neutron transfer and inelastic excitation, with the octupole vibration of 40Ca playing a major role.« less

  3. Neutron guide

    DOEpatents

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  4. Neutron dosimetry

    DOEpatents

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  5. Phase Stability and Electronic Structure of In-Free Photovoltaic Materials Cu2IISnSe4 (II: Zn, Cd, Hg)

    NASA Astrophysics Data System (ADS)

    Nakamura, Satoshi; Maeda, Tsuyoshi; Wada, Takahiro

    2011-05-01

    We have theoretically evaluated the phase stability and electronic structure of Cu2CdSnSe4 and Cu2HgSnSe4 and compared the results with those of Cu2ZnSnSe4. The enthalpies of formation for kesterite (KS), stannite (ST), and wurtz-stannite (WST) phases of Cu2ZnSnSe4 (CZTSe), Cu2CdSnSe4, and Cu2HgSnSe4 were calculated by first-principles calculations. In Cu2CdSnSe4 and Cu2HgSnSe4, the stannite (ST) phase is the most stable among these phases. The valence band maximum (VBM) of ST-type Cu2CdSnSe4 consists of antibonding orbitals of Cu 3d and Se 4p, while the conduction band minimum (CBM) consists of antibonding orbitals of Sn 5s and Se 4p. The VBM of Cu2HgSnSe4 also consist of antibonding orbitals of Cu 3d and Se 4p. However, the CBM of Cu2HgSnSe4 consists of antibonding orbitals of Hg 6s, Sn 5s, and Se 4p.

  6. Axions and SN 1987A: Axion trapping

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Ressell, M. Ted; Turner, Michael S.

    1990-01-01

    If an axion of mass between about 10(exp -3) and 10 eV exists, axion emission would have significantly affected the cooling of the nascent neutron star associated with SN 1987A. For an axion of mass greater than about 10(exp -2) eV axions would, like neutrinos, have a mean-free path that is smaller than the size of a neutron star, and thus would become trapped and radiated from an axion sphere. The trapping regime is treated by using numerical models of the initial cooling of a hot neutron star that incorporate a diffusion approximation for axion-energy transport. The axion opacity due to inverse nucleon-nucleon, axion bremsstrahlung is computed; and then the numerical models are used to calculate the integrated axion luminosity, the temperature of the axion sphere, and the effect of axion emission on the neutrino bursts detected by the Kamiokande II (KII) and Irvine-Michigan-Brookhaven (IMB) water-Cherenkov detectors. The larger the axion mass, the stronger the trapping and the smaller the axion luminosity. The estimate of the axion mass is confirmed above which trapping is so strong that axion emission does not significantly affect the neutrino burst. Based upon the neutrino-burst duration - the most sensitive barometer of axion cooling - it is concluded that for an axion mass greater than about 3 eV axion emission would not have had a significant effect on the neutrino bursts detected by KII and IMB. It is strongly suggested that an axion with mass in the interval 10(exp -3) to 3 eV is excluded by the observation of neutrinos from SN 1987A.

  7. Neutronization During Carbon Simmering In Type Ia Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Martínez-Rodríguez, Héctor; Piro, Anthony L.; Schwab, Josiah; Badenes, Carles

    2016-07-01

    When a Type Ia supernova (SN Ia) progenitor first ignites carbon in its core, it undergoes ˜103-104 years of convective burning prior to the onset of thermonuclear runaway. This carbon simmering phase is important for setting the thermal profile and composition of the white dwarf. Using the MESA stellar evolution code, we follow this convective burning and examine the production of neutron-rich isotopes. The neutron content of the SN fuel has important consequences for the ensuing nucleosynthesis, and in particular, for the production of secondary Fe-peak nuclei like Mn and stable Ni. These elements have been observed in the X-ray spectra of SN remnants like Tycho, Kepler, and 3C 397, and their yields can provide valuable insights into the physics of SNe Ia and the properties of their progenitors. We find that weak reactions during simmering can at most generate a neutron excess of ≈ 3 × 10-4. This is ≈ 70% lower than that found in previous studies that do not take the full density and temperature profile of the simmering region into account. Our results imply that the progenitor metallicity is the main contributor to the neutron excess in SN Ia fuel for Z ≳ 1/3 Z ⊙. Alternatively, at lower metallicities, this neutron excess provides a floor that should be present in any centrally-ignited SN Ia scenario.

  8. Neutronization During Carbon Simmering In Type Ia Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Martínez-Rodríguez, Héctor; Piro, Anthony L.; Schwab, Josiah; Badenes, Carles

    2016-07-01

    When a Type Ia supernova (SN Ia) progenitor first ignites carbon in its core, it undergoes ˜103–104 years of convective burning prior to the onset of thermonuclear runaway. This carbon simmering phase is important for setting the thermal profile and composition of the white dwarf. Using the MESA stellar evolution code, we follow this convective burning and examine the production of neutron-rich isotopes. The neutron content of the SN fuel has important consequences for the ensuing nucleosynthesis, and in particular, for the production of secondary Fe-peak nuclei like Mn and stable Ni. These elements have been observed in the X-ray spectra of SN remnants like Tycho, Kepler, and 3C 397, and their yields can provide valuable insights into the physics of SNe Ia and the properties of their progenitors. We find that weak reactions during simmering can at most generate a neutron excess of ≈ 3 × 10‑4. This is ≈ 70% lower than that found in previous studies that do not take the full density and temperature profile of the simmering region into account. Our results imply that the progenitor metallicity is the main contributor to the neutron excess in SN Ia fuel for Z ≳ 1/3 Z ⊙. Alternatively, at lower metallicities, this neutron excess provides a floor that should be present in any centrally-ignited SN Ia scenario.

  9. Study of the CdS/CdTe interface and its relevance to solar cell properties

    NASA Astrophysics Data System (ADS)

    Dhere, Ramesh Gurupad

    CdTe based devices have shown significant progress over the last decade. CdS/CdTe devices fabricated by close-spaced sublimation have resulted in 15.8% efficiency. To understand the effect of CdS/CdTe interface properties on device properties, a detailed investigation of the dependence of properties of CdS, CdTe and CdS/CdTe interface on various processing parameters is reported. Analysis of CdS/CdTe devices fabricated under identical conditions, was carried out to determine any correlation between the interface properties and device characteristics. Possible mechanisms to explain the correlation are presented. The CdS layers were deposited by chemical bath deposition (CBD) on glass/SnOsb2 substrates. The CdTe layers were grown by close-spaced sublimation (CSS) on glass/SnOsb2/CdS substrates. Post-deposition CdClsb2 heat-treatment was carried out using different concentrations of CdClsb2/methanol solution. CBD CdS gives conformal coverage on rough SnOsb2 layers at a thickness as low as 30 nm. Under optimal conditions, CdS films with refractive index close to bulk index are obtained indicating that the layers are void-free. The grain-size of CBD CdS films is independent of film thickness and is established during the early part of growth. AFM analysis of CSS CdTe shows that the films are faceted for the entire temperature range (475sp°C-625sp°C) investigated, the grain-size increases with substrate temperature, and the films are free of voids. X-ray diffraction analysis reveals that CdTe films grown at substrate temperatures ≥525sp°C have <111> preferred orientation and the orientation is not affected by the CdClsb2 heat-treatment, indicating that the films deposited at these temperatures are more compact. TEM analysis of CdS/CdTe structures suggests that the majority of structural defects in the CdTe layers are generated at the interface and are caused by lattice mismatch and growth conditions. Cathodoluminescence and photoluminescence analysis shows that Cd

  10. Texture in state-of-the-art Nb3Sn multifilamentary superconducting wires

    NASA Astrophysics Data System (ADS)

    Scheuerlein, C.; Arnau, G.; Alknes, P.; Jimenez, N.; Bordini, B.; Ballarino, A.; Di Michiel, M.; Thilly, L.; Besara, T.; Siegrist, T.

    2014-02-01

    The texture of Nb3Sn in recent multifilamentary composite wires has been studied by neutron diffraction, synchrotron x-ray diffraction and electron backscatter diffraction. In powder-in-tube (PIT) type superconductors the Nb precursor filaments exhibit a strong <110> fiber texture as a consequence of the severe cold drawing process, and a <110> texture is also observed in the Nb3Sn. In the Nb-Ta precursor of the restacked rod process (RRP) strand there is an additional texture component, and in both Ta-alloyed and Ti-alloyed RRP type conductors the Nb3Sn grains grow with a preferential <100> orientation.

  11. Degradation and Capacitance-Voltage Hysteresis in CdTe Devices: Preprint

    SciTech Connect

    Albin, D. S.; Dhere, R. G.; Glynn, S. C.; DelCueto, J.; Metzger W. K.

    2009-07-01

    CdS/CdTe cells on CTO/ZTO TCO show greater intial performance than SnO2-gased substrates due to superior optical and electrical properties of the oxide layers and more rigorous CdCl2 processing. Performance unfiormity was a problem.

  12. Isospin transport in 84Kr+112,124Sn collisions at Fermi energies

    NASA Astrophysics Data System (ADS)

    Barlini, S.; Piantelli, S.; Casini, G.; Maurenzig, P. R.; Olmi, A.; Bini, M.; Carboni, S.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Bougault, R.; Bonnet, E.; Borderie, B.; Chbihi, A.; Frankland, J. D.; Gruyer, D.; Lopez, O.; Le Neindre, N.; Pârlog, M.; Rivet, M. F.; Vient, E.; Rosato, E.; Spadaccini, G.; Vigilante, M.; Bruno, M.; Marchi, T.; Morelli, L.; Cinausero, M.; Degerlier, M.; Gramegna, F.; Kozik, T.; Twaróg, T.; Alba, R.; Maiolino, C.; Santonocito, D.

    2013-05-01

    Isotopically resolved fragments with Z≲20 have been studied with a high-resolution telescope in a test run for the FAZIA Collaboration. The fragments were produced by the collision of a 84Kr beam at 35 MeV/nucleon with a neutron-rich (124Sn) and a neutron-poor (112Sn) target. The fragments, detected close to the grazing angle, are mainly emitted from the phase-space region of the projectile. The fragment isotopic content clearly depends on the neutron richness of the target and this is direct evidence of isospin diffusion between projectile and target. The observed enhanced neutron richness of light fragments emitted from the phase-space region close to the center of mass of the system can be interpreted as an effect of isospin drift in the diluted neck region.

  13. Internal oxidation of sp-Impurities in silver studied by119Sn Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Andreasen, H.; Damgaard, S.; Nielsen, H. L.; Petersen, J. W.; Weyer, G.

    1983-12-01

    The internal oxidation of the ion-implanted radioactive precursors119Cd and119Sb to the Mössbauer isotope119Sn in silver has been investigated. The oxidation is monitored by the intensity of a line in the Mössbauer spectra, which is characteristic of SnO2 (δ=(0 0.23)mm/s relative to CaSnO3, ΔEQ ≈ 0.5 mm/s, ϑ ≈ 220 K). This line is attributed to an internal oxidation of the implanted impurities by interstitially diffusing oxygen pairs. The formation and annealing kinetics of the impurity-oxygen complexes are interpreted in terms of the diffusion coefficients of oxygen and the sp-impurities in silver, respectively, and the reactivity between them. Comparison is made to Mössbauer experiments on SnAg alloys and to PAC measurements on111cd in silver.

  14. CD Recorders.

    ERIC Educational Resources Information Center

    Falk, Howard

    1998-01-01

    Discussion of CD (compact disc) recorders describes recording applications, including storing large graphic files, creating audio CDs, and storing material downloaded from the Internet; backing up files; lifespan; CD recording formats; continuous recording; recording software; recorder media; vulnerability of CDs; basic computer requirements; and…

  15. CD Rainbows

    ERIC Educational Resources Information Center

    Ouseph, P. J.

    2007-01-01

    Several papers have been published on the use of a CD as a grating for undergraduate laboratories and/or for high school and college class demonstrations. Four years ago "The Physics Teacher" had a spectacular cover picture showing emission spectrum as viewed through a CD with no coating. That picture gave the impetus to develop a system that can…

  16. High Efficiency Ultra-thin CdS/CdTe Solar Cells

    NASA Astrophysics Data System (ADS)

    Paudel, Naba; Wieland, Kristopher; Compaan, Alvin

    2011-04-01

    Polycrystalline thin-film CdTe is currently the dominant thin-film technology in world-wide PV manufacturing. Typically a 2-8 μm thick CdTe layer is used for large scale CdS/CdTe based solar cells and modules. With finite Te resources, it is appropriate to limit the utilization of Te by reducing the thickness of the CdTe layer in these devices. But thinning the CdTe in solar cells and modules often decreases the conversion efficiency due to incomplete photon absorption and increased probability of shunting. In this study, ultra-thin CdTe devices were prepared by magnetron sputtering which appears to be well suited to control growth rate, grain size, and film stress. 0.25 -- 2.1 μm CdTe was sputtered on Pilkington TEC15 SnO2:F-coated soda-lime glass substrates with a high resistivity transparent interfacial layer after 60-80 nm of sputtered CdS. With optimum cell post-deposition processing, we obtained cells with efficiencies of 8%, 10.3%, 12.0% for CdTe thicknesses, respectively, of 0.25, 0.50, 0.75 μm. We believe that these represent the highest efficiencies yet obtained for CdS/CdTe cells with these submicron absorber-layer thicknesses.

  17. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  18. Neutron detector

    SciTech Connect

    Stephan, Andrew C; Jardret, Vincent D

    2009-04-07

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  19. Z=50 Shell Gap near {sup 100}Sn from Intermediate-Energy Coulomb Excitations in Even-Mass {sup 106-112}Sn Isotopes

    SciTech Connect

    Vaman, C.; Bazin, D.; Galaviz, D.; Mueller, W. F.; Schiller, A.; Stolz, A.; Andreoiu, C.; Becerril, A.; Brown, B. A.; Campbell, C. M.; Chester, A.; Cook, J. M.; Dinca, D. C.; Gade, A.; Glasmacher, T.; Miller, D.; Moeller, V.; Starosta, K.; Terry, J. R.; Zelevinsky, V.

    2007-10-19

    Rare isotope beams of neutron-deficient {sup 106,108,110}Sn from the fragmentation of {sup 124}Xe were employed in an intermediate-energy Coulomb excitation experiment. The measured B(E2,0{sub 1}{sup +}{yields}2{sub 1}{sup +}) values for {sup 108}Sn and {sup 110}Sn and the results obtained for the {sup 106}Sn show that the transition strengths for these nuclei are larger than predicted by current state-of-the-art shell-model calculations. This discrepancy might be explained by contributions of the protons from within the Z=50 shell to the structure of low-energy excited states in this region.

  20. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Preszler, A. M.; Moon, S.; White, R. S.

    1976-01-01

    Additional calibrations of the University of California double-scatter neutron detector and additional analysis corrections lead to slightly changed neutron fluxes. The theoretical angular distributions of Merker (1975) are in general agreement with the reported experimental fluxes but do not give the peaks for vertical upward and downward moving neutrons. The theoretical neutron escape current is in agreement with the experimental values from 10 to 100 MeV. The experimental fluxes obtained agree with those of Kanbach et al. (1974) in the overlap region from 70 to 100 MeV.

  1. Axions and SN 1987A: Axion trapping

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Ressell, M. Ted; Turner, Michael S.

    1990-01-01

    If an axion of mass between about 10(exp -3) eV and 1 eV exists, axion emission would have significantly affected the cooling of the nascent neutron star associated with SN 1987A. For an axion of mass less than about 10(exp -2) eV, axions produced deep inside the neutron star simply stream out; in a previous paper this case has been addressed. Remarkably, for an axion of mass greater than about 10(exp -2) eV axions would, like neutrinos, have a mean-free path that is smaller than the size of a neutron star, and thus would become 'trapped' and radiated from an axion sphere. In this paper the trapping regime is treated by using numerical models of the initial cooling of a hot neutron star that incorporate a leakage approximation scheme for axion-energy transport. The axion opacity is computed due to inverse nucleon-nucleon, axion bremsstrahlung, and numerical models are used to calculate the integrated axion luminosity, the temperature of the axion sphere, and the effect of axion emission on the neutrino bursts detected by the Kamiokande 2 (K2) and Irvine-Michigan-Brookhaven (IMB) water-Cherenkov detectors. The larger the axion mass, the stronger the trapping and the smaller the axion luminosity. The earlier estimate is confirmed and refined of the axion mass above which trapping is so strong that axion emission does not significantly affect the neutrino burst. Based upon the neutrino-burst duration--the most sensitive barometer of axion cooling--it is concluded that for an axion mass of greater than about 0.3 eV, axion emission would not have had a significant effect on the neutrino bursts detected by K2 and IMB. The present work, together with the previous work, strongly suggests that an axion with mass in the interval 10(exp -3) eV to 0.3 eV is excluded by SN 1987A.

  2. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  3. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  4. CD Rom.

    PubMed

    1996-02-01

    A new CD-Rom has been launched by Guy's and St Thomas' Trust's poisonous unit to help health professionals discover which species have been involved in cases of plant poisoning. The unit says thousands of people are poisoned every year by eating or touching plants - the majority of those people affected being under the age of seven. The CD-Rom covers several thousand species of plant, and has been jointly researched with Kew Gardens.

  5. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  6. Neutron source

    DOEpatents

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  7. Sialoadhesin Ligand Expression Identifies a Subset of CD4+Foxp3− T Cells with a Distinct Activation and Glycosylation Profile

    PubMed Central

    Kidder, Dana; Richards, Hannah E.; Ziltener, Hermann J.; Garden, Oliver A.

    2013-01-01

    Sialoadhesin (Sn) is a sialic acid–binding Ig-like lectin expressed selectively on macrophage subsets. In a model of experimental autoimmune encephalomyelitis, Sn interacted with sialylated ligands expressed selectively on CD4+Foxp3+ regulatory T cells (Tregs) and inhibited their proliferation. In this study, we examined the induction of Sn ligands (SnL) on all splenic CD4+ T cells following in vitro activation. Most CD4+ Tregs strongly upregulated SnL, whereas only a small subset of ∼20% CD4+Foxp3− T cells (effector T cells [Teffs]) upregulated SnL. SnL+ Teffs displayed higher levels of activation markers CD25 and CD69, exhibited increased proliferation, and produced higher amounts of IL-2 and IFN-γ than corresponding SnL− Teffs. Coculture of activated Teffs with Sn+ macrophages or Sn+ Chinese hamster ovary cells resulted in increased cell death, suggesting a regulatory role for Sn–SnL interactions. The key importance of α2,3-sialylation in SnL expression was demonstrated by increased binding of α2,3-linkage–specific Maackia amurensis lectin, increased expression of α2,3-sialyltransferase ST3GalVI, and loss of SnL following treatment with an α2,3-linkage–specific sialidase. The induction of SnL on activated CD4+ T cells was dependent on N-glycan rather than O-glycan biosynthesis and independent of the mucin-like molecules CD43 and P-selectin glycoprotein ligand-1, previously implicated in Sn interactions. Induction of ligands on CD4+Foxp3− Teffs was also observed in vivo using the New Zealand Black × New Zealand White F1 murine model of spontaneous lupus and SnL levels on Teffs correlated strongly with the degree of proteinuria. Collectively, these data indicate that SnL is a novel marker of activated CD4+ Teffs that are implicated in the pathogenesis of autoimmune diseases. PMID:23408841

  8. Standardization of Sn-113.

    PubMed

    Roteta, Miguel; Peyres, Virginia; García-Toraño, Eduardo

    2014-05-01

    The radionuclide (113)Sn is a quasi-monoenergetic gamma emitter often used in the efficiency calibration of gamma spectrometers in the energy region around 390keV. This paper presents the results of the standardization of this radionuclide by three methods: integral (4π-γ) counting with a well-type NaI(Tl) detector, liquid scintillation counting applying the CIEMAT-NIST method and 4π coincidence counting (conversion electron-X) with a digital coincidence system. PMID:24365465

  9. Probing the neutron skin thickness in collective modes of excitation

    NASA Astrophysics Data System (ADS)

    Paar, N.; Horvat, A.

    2014-03-01

    Nuclear collective motion provides valuable constraint on the size of neutron-skin thickness and the properties of nuclear matter symmetry energy. By employing relativistic nuclear energy density functional (RNEDF) and covariance analysis related to χ2 fitting of the model parameters, relevant observables are identified for dipole excitations, which strongly correlate with the neutron-skin thickness (rnp), symmetry energy at saturation density (J) and slope of the symmetry energy (L). Using the RNEDF framework and experimental data on pygmy dipole strength (68Ni, 132Sn, 208Pb) and dipole polarizability (208Pb), it is shown how the values of J, and L, and rnp are constrained. The isotopic dependence of moments associated to dipole excitations in 116-136Sn shows that the low-energy dipole strength and polarizability in neutron-rich nuclei display strong sensitivity to the symmetry energy parameter J, more pronounced than in isotopes with moderate neutron-to-proton number ratios.

  10. Inelastic proton scattering of Sn isotopes studied with GRETINA

    NASA Astrophysics Data System (ADS)

    Campbell, Christopher

    2014-03-01

    The chain of semi-magic Sn nuclei, with many stable isotopes, has been a fertile ground for experimental and theoretical studies. Encompassing a major neutron shell from N = 50 to 82, the properties and structure of these nuclei provided important data for the development of the pairing-plus-quadrupole model. Recent experimental information on B(E2) for 106,108,110,112Sn came as a surprise as it indicated a larger collectivity than the predicted parabolic trend of quadrupole collectivity. These data, instead, show an unexpectedly flat trend even as the number of valence particles is reduced from 12 to 6. To fully understand how collectivity is evolving in these isotopes, 108,110,112Sn have been studied using thick-target, inelastic proton scattering with GRETINA tagging inelastic scattering events by detecting gamma-rays from the prompt decay of states excited in the reaction. We will present the trend of 2 + excitation cross-sections, the deduced quadrupole deformation parameters, and observations of other low-lying collective states. Comparison of these (p,p') quadrupole deformation parameters with B(E2) data will provide new insights into the relative importance of proton and neutron contributions to collectivity in these nuclei. GRETINA was funded by the US DOE - Office of Science. Operation of the array at NSCL is supported by NSF under Cooperative Agreement PHY-1102511(NSCL) and DOE under grant DE-AC02-05CH11231(LBNL).

  11. Fission and Properties of Neutron-Rich Nuclei

    NASA Astrophysics Data System (ADS)

    Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.

    2008-08-01

    near A= 120 / M. A. Stoyer and W. B. Walters -- Nuclear structure IV. First observation of new neutron-rich magnesium, aluminum and silicon isotopes / A. Stolz ... [et al.]. Spectroscopy of [symbol]Na revolution of shell structure with isospin / V. Tripathi ... [et al.]. Rearrangement of proton single particle orbitals in neutron-rich potassium isotopes - spectroscopy of [symbol]K / W. Królas ... [et al.]. Laser spectroscopy and the nature of the shape transition at N [symbol] 60 / B. Cheal ... [et al.]. Study of nuclei near stability as fission fragments following heavy-ion reactions / N. Fotiadis. [symbol]C and [symbol]N: lifetime measurements of their first-excited states / M. Wiedeking ... [et al.] -- Nuclear astrophysics. Isomer spectroscopy near [symbol]Sn - first observation of excited states in [symbol]Cd / M. Pfitzner ... [et al.]. Nuclear masses and what they imply for the structures of neutron rich nuclei / A. Awahamian and A. Teymurazyan. Multiple nucleosynthesis processes in the early universe / F. Montes. Single-neutron structure of neutron-rich nuclei near N = 50 and N = 82 / J. A. Cizewski ... [et al.]. [symbol]Cadmium: ugly duckling or young swan / W. B. Walters ... [et al.] -- Nuclear structure V. Evidence for chiral doublet bands in [symbol]Ru / Y. X. Luo ... [et al.]. Unusual octupole shape deformation terms and K-mixing / J. O. Rasmussen ... [et al.]. Spin assignments, mixing ratios, and g-factors in neutron rich [symbol]Cf fission products / C. Goodin ... [et al.]. Level structures and double [symbol]-bands in [symbol]Mo, [symbol]Mo and [symbol]Ru / S. J. Zhu ... [et al.] -- Nuclear theory. Microscopic dynamics of shape coexistence phenomena around [symbol]Se and [symbol]Kr / N. Hinohara ... [et al.]. Nuclear structure, double beta decay and test of physics beyond the standard model / A. Faessler. Collective modes in elastic nuclear matter / Ş. Mişicu and S. Bastrukov. From N = Z to neutron rich: magnetic moments of Cu isotopes at and above the

  12. NEUTRON SOURCE

    DOEpatents

    Bernander, N.K. et al.

    1960-10-18

    An apparatus is described for producing neutrons through target bombardment with deuterons. Deuterium gas is ionized by electron bombardment and the deuteron ions are accelerated through a magnetic field to collimate them into a continuous high intensity beam. The ion beam is directed against a deuteron pervious metal target of substantially the same nnaterial throughout to embed the deuterous therein and react them to produce neutrons. A large quantity of neutrons is produced in this manner due to the increased energy and quantity of ions bombarding the target.

  13. Orbitally-driven giant phonon anharmonicity in SnSe

    SciTech Connect

    Li, Chen W.; Hong, Jiawang; May, Andrew F.; Bansal, Dipanshu; Chi, Songxue; Hong, Tao; Ehlers, Georg; Delaire, Olivier A.

    2015-10-19

    We understand that elementary excitations and their couplings in condensed matter systems is critical to develop better energy-conversion devices. In thermoelectric materials, the heat-to-electricity conversion efficiency is directly improved by suppressing the propagation of phonon quasiparticles responsible for macroscopic thermal transport. The material with the current record for thermoelectric conversion efficiency, SnSe, achieves an ultra-low thermal conductivity, but the mechanism enabling this strong phonon scattering remains largely unknown. Using inelastic neutron scattering measurements and first-principles simulations, we mapped the four-dimensional phonon dispersion surfaces of SnSe, and revealed the origin of ionic-potential anharmonicity responsible for the unique properties of SnSe. We show that the giant phonon scattering arises from an unstable electronic structure, with orbital interactions leading to a ferroelectric-like lattice instability. Our results provide a microscopic picture connecting electronic structure and phonon anharmonicity in SnSe, and offers precious insights on how electron-phonon and phononphonon interactions may lead to the realization of ultra-low thermal conductivity.

  14. Orbitally-driven giant phonon anharmonicity in SnSe

    DOE PAGESBeta

    Li, Chen W.; Hong, Jiawang; May, Andrew F.; Bansal, Dipanshu; Chi, Songxue; Hong, Tao; Ehlers, Georg; Delaire, Olivier A.

    2015-10-19

    We understand that elementary excitations and their couplings in condensed matter systems is critical to develop better energy-conversion devices. In thermoelectric materials, the heat-to-electricity conversion efficiency is directly improved by suppressing the propagation of phonon quasiparticles responsible for macroscopic thermal transport. The material with the current record for thermoelectric conversion efficiency, SnSe, achieves an ultra-low thermal conductivity, but the mechanism enabling this strong phonon scattering remains largely unknown. Using inelastic neutron scattering measurements and first-principles simulations, we mapped the four-dimensional phonon dispersion surfaces of SnSe, and revealed the origin of ionic-potential anharmonicity responsible for the unique properties of SnSe. Wemore » show that the giant phonon scattering arises from an unstable electronic structure, with orbital interactions leading to a ferroelectric-like lattice instability. Our results provide a microscopic picture connecting electronic structure and phonon anharmonicity in SnSe, and offers precious insights on how electron-phonon and phononphonon interactions may lead to the realization of ultra-low thermal conductivity.« less

  15. Thermal neutron detection system

    DOEpatents

    Peurrung, Anthony J.; Stromswold, David C.

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  16. In situ oxygen incorporation and related issues in CdTe /CdS photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Emziane, M.; Durose, K.; Halliday, D. P.; Bosio, A.; Romeo, N.

    2006-07-01

    CdTe /CdS/SnO2/ITO:F solar cell devices were investigated using quantitative secondary ion mass spectrometry (SIMS) depth profiling. They were grown on sapphire substrates and potentially active impurity species were analyzed. The SIMS data were calibrated for both CdS window layer (grown by sputtering) and CdTe absorber layer (deposited by close-space sublimation). For comparison, some of the samples were grown with and without oxygen incorporation into the CdTe layer during its deposition, and with and without postgrowth cadmium chloride (CdCl2) annealing in air and chemical etching. These devices were back contacted using Mo /Sb2Te3 sputtered layers. It was shown that for CdTe and CdS layers there was a correlation between the concentrations of oxygen and chlorine. In situ oxygen incorporation in the CdTe layer yielded a substantial improvement in the device parameters and achieved an efficiency of 14% compared to 11.5% for devices fabricated in the same conditions without oxygen incorporation in CdTe. In light of our previous reports, this study also led to a clear determination of the origin of Na and Si traces found in these devices.

  17. NEUTRONIC REACTOR

    DOEpatents

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  18. Electronic Structure and Defect Physics of Tin Sulfides: SnS, Sn2S3 , and Sn S2

    NASA Astrophysics Data System (ADS)

    Kumagai, Yu; Burton, Lee A.; Walsh, Aron; Oba, Fumiyasu

    2016-07-01

    The tin sulfides SnS, Sn2S3 , and Sn S2 are investigated for a wide variety of applications such as photovoltaics, thermoelectrics, two-dimensional electronic devices, Li ion battery electrodes, and photocatalysts. For these applications, native point defects play important roles, but only those of SnS have been investigated theoretically in the literature. In this study, we consider the band structures, band-edge positions, and thermodynamical stability of the tin sulfides using a density functional that accounts for van der Waals corrections and the G W0 approximation. We revisit the point-defect properties, namely, electronic and atomic structures and energetics of defects, in SnS and newly examine those in Sn S2 and Sn2S3 with a comparison to those in SnS. We find that Sn S2 shows contrasting defect properties to SnS: Undoped SnS shows p -type behavior, whereas Sn S2 shows n type, which are mainly attributed to the tin vacancies and tin interstitials, respectively. We also find that the defect features in Sn2S3 can be described as a combination of those in SnS and Sn S2 , intrinsically Sn2S3 showing n -type behavior. However, the conversion to p type can be attained by doping with a large monovalent cation, namely, potassium. The ambipolar dopability, coupled with the earth abundance of its constituents, indicates great potential for electronic applications, including photovoltaics.

  19. NEUTRONIC REACTOR

    DOEpatents

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  20. NEUTRON SOURCES

    DOEpatents

    Richmond, J.L.; Wells, C.E.

    1963-01-15

    A neutron source is obtained without employing any separate beryllia receptacle, as was formerly required. The new method is safer and faster, and affords a source with both improved yield and symmetry of neutron emission. A Be container is used to hold and react with Pu. This container has a thin isolating layer that does not obstruct the desired Pu--Be reaction and obviates procedures previously employed to disassemble and remove a beryllia receptacle. (AEC)

  1. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  2. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear

  3. Cadmium mass measurements between the neutron shell closures at N = 50 and 82

    SciTech Connect

    Borgmann, Ch.; Blaum, K.; Boehm, Ch.; George, S.; Kreim, S.; Breitenfeldt, M.; Audi, G.; Lunney, D.; Naimi, S.; Baruah, S.; Rosenbusch, M.; Schweikhard, L.; Beck, D.; Dworschak, M.; Herfurth, F.; Minaya-Ramirez, E.; Savreux, R.; Yazidjian, C.; Cakirli, R. B.; Casten, R. F.

    2011-10-28

    The mass values of the neutron-deficient cadmium isotopes {sup 99-109}Cd and of the neutron-rich isotopes {sup 114,120,122-124,126,128}Cd have been measured using ISOLTRAP. The behavior of the separation energies of the cadmium isotopes from N = 50 to 82 is discussed.

  4. Neutron skin thickness and equation of state in asymmetric nuclear matter

    NASA Astrophysics Data System (ADS)

    Yoshida, Satoshi; Sagawa, Hiroyuki

    2004-02-01

    The neutron skin thickness of stable and unstable nuclei is studied in Skyrme Hartree-Fock (SHF) and relativistic mean field (RMF) models to investigate the relation between the pressure and the equation of state in neutron matter. We found a clear linear correlation between the neutron skin thickness in heavy nuclei 132 Sn and 208 Pb and the pressure of neutron matter in both SHF and RMF models, while the correlation is weak in the unstable nuclei 32 Mg and 44 Ar . Relations between the neutron skin thickness and other nuclear matter properties such as the symmetry energy coefficients and the nuclear incompressibility are discussed.

  5. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear

  6. Collection of Neutronic VVER Reactor Benchmarks.

    2002-01-30

    Version 00 A system of computational neutronic benchmarks has been developed. In this CD-ROM report, the data generated in the course of the project are reproduced in their integrity with minor corrections. The editing that was performed on the various documents comprising this report was primarily meant to facilitate the production of the CD-ROM and to enable electronic retrieval of the information. The files are electronically navigable.

  7. High-energy excited states in 98Cd

    NASA Astrophysics Data System (ADS)

    Blazhev, A.; Braun, N.; Grawe, H.; Boutachkov, P.; Nara Singh, B. S.; Brock, T.; Liu, Zh; Wadsworth, R.; Górska, M.; Jolie, J.; Nowacki, F.; Pietri, S.; Domingo-Pardo, C.; Kojouharov, I.; Caceres, L.; Engert, T.; Farinon, F.; Gerl, J.; Goel, N.; Grȩbosz, J.; Hoischen, R.; Kurz, N.; Nociforo, C.; Prochazka, A.; Schaffner, H.; Steer, S.; Weick, H.; Wollersheim, H.-J.; Ataç, A.; Bettermann, L.; Eppinger, K.; Faestermann, T.; Finke, F.; Geibel, K.; Hinke, C.; Gottardo, A.; Ilie, G.; Iwasaki, H.; Krücken, R.; Merchan, E.; Nyberg, J.; Pfützner, M.; Podolyák, Zs; Regan, P.; Reiter, P.; Rinta-Antila, S.; Rudolph, D.; Scholl, C.; Söderström, P.-A.; Warr, N.; Woods, P.

    2010-01-01

    In 98Cd a new high-energy isomeric γ-ray transition was identified, which confirms previous spin-parity assignments and enables for the first time the measurement of the E2 and E4 strength for the two decay branches of the isomer. Preliminary results on the 98Cd high-excitation level scheme are presented. A comparison to shell-model calculations as well as implications for the nuclear structure around 100Sn are discussed.

  8. Degradation and capacitance: voltage hysteresis in CdTe devices

    NASA Astrophysics Data System (ADS)

    Albin, D. S.; Dhere, R. G.; Glynn, S. C.; del Cueto, J. A.; Metzger, W. K.

    2009-08-01

    CdS/CdTe photovoltaic solar cells were made on two different transparent conducting oxide (TCO) structures in order to identify differences in fabrication, performance, and reliability. In one set of cells, chemical vapor deposition (CVD) was used to deposit a bi-layer TCO on Corning 7059 borosilicate glass consisting of a F-doped, conductive tin-oxide (cSnO2) layer capped by an insulating (undoped), buffer (iSnO2) layer. In the other set, a more advanced bi-layer structure consisting of sputtered cadmium stannate (Cd2SnO4; CTO) as the conducting layer and zinc stannate (Zn2SnO4; ZTO) as the buffer layer was used. CTO/ZTO substrates yielded higher performance devices however performance uniformity was worse due to possible strain effects associated with TCO layer fabrication. Cells using the SnO2-based structure were only slightly lower in performance, but exhibited considerably greater performance uniformity. When subjected to accelerated lifetime testing (ALT) at 85 - 100 °C under 1-sun illumination and open-circuit bias, more degradation was observed in CdTe cells deposited on the CTO/ZTO substrates. Considerable C-V hysteresis, defined as the depletion width difference between reverse and forward direction scans, was observed in all Cu-doped CdTe cells. These same effects can also be observed in thin-film modules. Hysteresis was observed to increase with increasing stress and degradation. The mechanism for hysteresis is discussed in terms of both an ionic-drift model and one involving majority carrier emission in the space-charge region (SCR). The increased generation of hysteresis observed in CdTe cells deposited on CTO/ZTO substrates suggests potential decomposition of these latter oxides when subjected to stress testing.

  9. Single-particle states in ^112Cd probed with the ^111Cd(d,p) reaction

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Jamieson, D.; Demand, G. A.; Finlay, P.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wong, J.; Ball, G. C.; Hertenberger, R.; Wirth, H.-F.; Kr"Ucken, R.; Faestermann, T.

    2009-10-01

    As part of a program of detailed spectroscopy of the Cd isotopes, the single-particle neutron states in ^112Cd have been probed with the ^111Cd(d,p) reaction. Beams of polarized 22 MeV deuterons, obtained from the LMU/TUM Tandem Accelerator, bombarded a target of ^111Cd. The protons from the reaction, corresponding to excitation energies up to 3 MeV in ^112Cd, were momentum analyzed with the Q3D spectrograph. Cross sections and analyzing powers were fit to results of DWBA calculations, and spectroscopic factors were determined. The results from the experiment, and implications for the structure of ^112Cd, will be presented.

  10. Probing neutron-proton dynamics by pions

    NASA Astrophysics Data System (ADS)

    Ikeno, Natsumi; Ono, Akira; Nara, Yasushi; Ohnishi, Akira

    2016-04-01

    In order to investigate the nuclear symmetry energy at high density, we study the pion production in central collisions of neutron-rich nuclei 132Sn+124Sn at 300 MeV/nucleon using a new approach that combines antisymmetrized molecular dynamics (AMD) and a hadronic cascade model (JAM). The dynamics of neutrons and protons is solved by AMD, and then pions and Δ resonances in the reaction process are handled by JAM. We see the mechanism by which the Δ resonance and pions are produced, reflecting the dynamics of neutrons and protons. We also investigate the impacts of cluster correlations as well as of the high-density symmetry energy on the nucleon dynamics and consequently on the pion ratio. We find that the Δ-/Δ++ production ratio agrees very well with the neutron-proton squared ratio (N/Z ) 2 in the high-density and high-momentum region. We show quantitatively that the Δ production ratio, and therefore (N/Z ) 2, are directly reflected in the π-/π+ ratio, with modification in the final stage of the reaction.

  11. Effect of nanoscale tin-dioxide layers on the efficiency of CdS/CdTe-based film solar elements

    SciTech Connect

    Khrypunov, G. S. Pirohov, O. V.; Gorstka, T. A.; Novikov, V. A.; Kovtun, N. A.

    2015-03-15

    Comparative investigations of the output parameters and optical diode characteristics of ITO/CdS/CdTe/Cu/Au and SnO{sub 2}: F/CdS/CdTe/Cu/Au film solar cells are carried out with the aim of optimizing the design of the front electrodes. It is established that the high voltage and large filling factor of the solar elements with SnO{sub 2}: F films are caused by a lower diode saturation current density and series resistance due to the stability of the crystal structure and electrical properties of these films against chloride treatment of the base layer during device fabrication. At the same time, solar elements with an ITO front electrode exhibit a higher short-circuit current density due to the larger average light transmittance of the ITO layers. The use of nanoscale SnO{sub 2} layers in the ITO front contacts allows the efficiency of the CdS/CdTe-based solar elements to be enhanced to 11.4% on account of stabilization of the crystal structure and electrical properties of the ITO films and a possible reduction in the cadmium-sulphide-layer thickness without shunting the device structure.

  12. Neutron therapy of cancer

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.; Nellans, H. N.; Shaw, M. J.

    1969-01-01

    Reports relate applications of neutrons to the problem of cancer therapy. The biochemical and biophysical aspects of fast-neutron therapy, neutron-capture and neutron-conversion therapy with intermediate-range neutrons are presented. Also included is a computer program for neutron-gamma radiobiology.

  13. The single-particle structure around ^132Sn explored through the (d,p) reaction

    NASA Astrophysics Data System (ADS)

    Jones, Kate

    2007-04-01

    The nuclear shell model^1, originally developed by Maria Geoppert Mayer in 1949 (Nobel Prize 1963) has been used extensively to explain the structure of nuclei. The atomic shell model describes the increased stability observed when an electron shell is filled. Correspondingly, nuclei with magic numbers of protons or neutrons (2, 8, 20, 28, 50, 82, 126) display additional stability. Only ten nuclei to date have been observed which have these standard magic numbers for both neutrons and protons, of these, half are stable or very long-lived. Many changes have been observed in nuclei as we move away from the valley of stability and it is important, both to nuclear structure physics and to understanding the synthesis of nuclei in the cosmos, to understand how these changes affect single-particle states.One exotic doubly-magic nucleus which can be produced with sufficient intensity to perform reactions on it is ^132Sn. Recent calculations^2 have shown that the structure around ^132Sn may affect the freeze out of the rapid neutron capture (r-)process, believed to occur in supernovae, which is responsible for the production of about half the nuclear species heavier than iron. By adding a neutron to a beam of ^132Sn via a transfer reaction, it is possible to study single-particle states beyond the double-shell closure. I will present results from a recent measurement of ^133Sn via the ^132Sn(d,p) reaction in inverse kinematics. [1] Maria Goeppert Mayer, Science 145 999 (1964). [2] R. Surman and J. Engel, Phys. Rev. C 64, 035801 (2001).

  14. NEUTRONIC REACTOR

    DOEpatents

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  15. ANITA-2000 activation code package - updating of the decay data libraries and validation on the experimental data of the 14 MeV Frascati Neutron Generator

    NASA Astrophysics Data System (ADS)

    Frisoni, Manuela

    2016-03-01

    ANITA-2000 is a code package for the activation characterization of materials exposed to neutron irradiation released by ENEA to OECD-NEADB and ORNL-RSICC. The main component of the package is the activation code ANITA-4M that computes the radioactive inventory of a material exposed to neutron irradiation. The code requires the decay data library (file fl1) containing the quantities describing the decay properties of the unstable nuclides and the library (file fl2) containing the gamma ray spectra emitted by the radioactive nuclei. The fl1 and fl2 files of the ANITA-2000 code package, originally based on the evaluated nuclear data library FENDL/D-2.0, were recently updated on the basis of the JEFF-3.1.1 Radioactive Decay Data Library. This paper presents the results of the validation of the new fl1 decay data library through the comparison of the ANITA-4M calculated values with the measured electron and photon decay heats and activities of fusion material samples irradiated at the 14 MeV Frascati Neutron Generator (FNG) of the NEA-Frascati Research Centre. Twelve material samples were considered, namely: Mo, Cu, Hf, Mg, Ni, Cd, Sn, Re, Ti, W, Ag and Al. The ratios between calculated and experimental values (C/E) are shown and discussed in this paper.

  16. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Szilard, L.

    1957-09-24

    Reactors of the type employing plates of natural uranium in a moderator are discussed wherein the plates are um-formly disposed in parallel relationship to each other thereby separating the moderator material into distinct and individual layers. Each plate has an uninterrupted sunface area substantially equal to the cross-sectional area of the active portion of the reactor, the particular size of the plates and the volume ratio of moderator to uranium required to sustain a chain reaction being determinable from the known purity of these materials and other characteristics such as the predictable neutron losses due to the formation of radioactive elements of extremely high neutron capture cross section.

  17. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  18. Delivery of antigen to sialoadhesin or CD163 improves the specific immune response in pigs.

    PubMed

    Poderoso, Teresa; Martínez, Paloma; Álvarez, Belén; Handler, Ana; Moreno, Sara; Alonso, Fernando; Ezquerra, Ángel; Domínguez, Javier; Revilla, Concepción

    2011-06-24

    Delivery of antigens to antigen presenting cell surface receptors represents a promising strategy to improve immune response to weak immunogenic antigens. We have analyzed the potential of porcine sialoadhesin (Sn) and CD163 as antigen targeting receptors using mouse Igs as surrogate antigens. Sn and CD163 are two endocytic receptors mainly expressed on macrophages located in antigen-sampling zones of secondary lymphoid organs. MAbs to CD163 induced in vitro PBMC proliferation at concentrations 50-80 fold lower than the control mAb when using, as responder cells, cells from pigs immunized with mouse serum IgGs. To evaluate in vivo targeting, pigs were immunized s.c. with anti-Sn, anti-CD163 or control mAbs, and the immune response induced to mouse Ig was analyzed. Two weeks after the first immunization, pigs receiving either anti-Sn or anti-CD163 mAbs started to show higher anti-mouse-IgG serum titres than controls. Boosting 6 weeks later, further increased the anti-IgG titres up to 15-60 fold those of controls. In addition, differences in the relative predominance of IgG1 or IgG2 subclasses in the response depending on Sn or CD163 targeting were observed. Peripheral blood mononuclear cells from pigs immunized with anti-Sn mAb showed a higher proliferative response to mouse IgG than cells from pigs immunized with control mAb. These results show that targeting antigen to Sn or CD163 can enhance the immune response in pigs.

  19. Neutron star cooling: effects of envelope physics

    SciTech Connect

    Van Riper, K.A.

    1982-01-01

    Neutron star cooling calculations are reported which employ improved physics in the calculation of the temperature drop through the atmosphere. The atmosphere microphysics is discussed briefly. The predicted neutron star surface temperatures, in the interesting interval 200 less than or equal to t (yr) less than or equal to 10/sup 5/, do not differ appreciably from the earlier results of Van Riper and Lamb (1981) for a non-magnetic star; for a magnetic star, the surface temperature is lower than in the previous work. Comparison with observational limits show that an exotic cooling mechanism, such as neutrino emission from a pion condensate or in the presence of percolating quarks, is not required unless the existence of a neutron star in the Tycho or SN1006 SNRs is established.

  20. Fusion reactions in collisions induced by Li isotopes on Sn targets

    SciTech Connect

    Fisichella, M.; Shotter, A. C.; Di Pietro, A.; Figuera, P.; Lattuada, M.; Marchetta, C.; Musumarra, A.; Pellegriti, M. G.; Ruiz, C.; Scuderi, V.; Strano, E.; Torresi, D.; Zadro, M.

    2012-10-20

    Fusion cross sections for the {sup 6}Li+{sup 120}Sn and {sup 7}Li+{sup 119}Sn systems have been measured. We aim to search for possible effects due to the different neutron transfer Q-values, by comparing the fusion cross sections for the two systems below the barrier. This experiment is the first step of a wider systematic aiming to study the above problems in collisions induced by stable and unstable Li isotopes on tin all forming the same compound nucleus.

  1. Z = 50 core stability in 110Sn from magnetic-moment and lifetime measurements

    DOE PAGESBeta

    Kumbartzki, G. J.; Benczer-Koller, N.; Speidel, K. -H.; Torres, D. A.; Allmond, James M.; Fallon, P.; Abramovic, I.; L. A. Bernstein; Bevins, J. E.; Crawford, H. L.; et al

    2016-04-18

    In this study, the structure of the semimagic Sn50 isotopes were previously studied via measurements of B(E2;21+ → 01+) and g factors of 21+ states. The values of the B(E2;21+) in the isotopes below midshell at N = 66 show an enhancement in collectivity, contrary to predictions from shell-model calculations. This work presents the first measurement of the 21+ and 41+ states' magnetic moments in the unstable neutron-deficient 110Sn. The g factors provide complementary structure information to the interpretation of the observed B(E2) values.

  2. CD56+ T Cells Inhibit Hepatitis C Virus Replication in Human Hepatocytes

    PubMed Central

    Ye, Li; Wang, Xu; Wang, Shihong; Wang, Yanjian; Song, Li; Hou, Wei; Zhou, Lin; Li, He; Ho, Wenzhe

    2009-01-01

    CD56+ T cells are abundant in liver and play an important role in defense against viral infections. However, the role of CD56+ T cells in control of HCV infection remains to be determined. We investigated the noncytolytic anti-HCV activity of primary CD56+ T cells in human hepatocytes. When HCV JFH-1-infected hepatocytes were co-cultured with CD56+ T cells or incubated in media conditioned with CD56+ T cell culture supernatants (SN), HCV infectivity and replication were significantly inhibited. The antibodies to interferon (IFN)-γ or IFN-γ receptor could largely block CD56+ T cell-mediated anti-HCV activity. Investigation of mechanism(s) responsible for CD56+ T cell-mediated noncytolytic anti-HCV activity showed that CD56+ T SN activated the multiple elements of janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway and enhanced the expression of IFN regulatory factors (IRFs) 1, 3, 7, 8 and 9, resulting in the induction of endogenous IFN-α/β expression in hepatocytes. Moreover, CD56+ T SN treatment inhibited the expression of HCV-supportive miRNA-122 and enhanced the levels of anti-HCV miRNA-196a in human hepatocytes. Conclusion: These findings provide direct in vitro evidence at cellular and molecular levels that CD56+ T cells may have an essential role in innate immune cell-mediated defense against HCV infection. PMID:19085952

  3. Multi-neutron transfer reactions at sub-barrier energies.

    SciTech Connect

    Rehm, K. E.

    1998-01-20

    The optimum conditions for multi-neutron transfer have been studied in the system {sup 58}Ni + {sup 124}Sn at bombarding energies at and below the Coulomb barrier. The experiments were performed in inverse kinematics with a {sup 124}Sn beam bombarding a {sup 58}Ni target. The particles were identified with respect to mass and Z in the split-pole spectrograph with a hybrid focal plane detector with mass and Z-resolutions of A/{Delta}A = 150 and Z/{Delta}Z = 70. At all energies the transfer of up to 6 neutrons was observed. The yields for these transfer reactions are found to decrease by about a factor of four for each transferred neutron.

  4. Crystal structure and phonon softening in Ca3Ir4Sn13

    NASA Astrophysics Data System (ADS)

    Mazzone, D. G.; Gerber, S.; Gavilano, J. L.; Sibille, R.; Medarde, M.; Delley, B.; Ramakrishnan, M.; Neugebauer, M.; Regnault, L. P.; Chernyshov, D.; Piovano, A.; Fernández-Díaz, T. M.; Keller, L.; Cervellino, A.; Pomjakushina, E.; Conder, K.; Kenzelmann, M.

    2015-07-01

    We investigated the crystal structure and lattice excitations of the ternary intermetallic stannide Ca3Ir4Sn13 using neutron and x-ray scattering techniques. For T >T*≈38 K, the x-ray diffraction data can be satisfactorily refined using the space group P m 3 ¯n . Below T*, the crystal structure is modulated with a propagation vector of q ⃗=(1 /2 ,1 /2 ,0 ) . This may arise from a merohedral twinning in which three tetragonal domains overlap to mimic a higher symmetry, or from a doubling of the cubic unit cell. Neutron diffraction and neutron spectroscopy results show that the structural transition at T* is of a second-order, and that it is well described by mean-field theory. Inelastic neutron scattering data point towards a displacive structural transition at T* arising from the softening of a low-energy phonon mode with an energy gap of Δ (120 K)=1.05 meV. Using density functional theory, the soft phonon mode is identified as a "breathing" mode of the Sn12 icosahedra and is consistent with the thermal ellipsoids of the Sn2 atoms found by single-crystal diffraction data.

  5. SN 2009E: a faint clone of SN 1987A

    NASA Astrophysics Data System (ADS)

    Pastorello, A.; Pumo, M. L.; Navasardyan, H.; Zampieri, L.; Turatto, M.; Sollerman, J.; Taddia, F.; Kankare, E.; Mattila, S.; Nicolas, J.; Prosperi, E.; San Segundo Delgado, A.; Taubenberger, S.; Boles, T.; Bachini, M.; Benetti, S.; Bufano, F.; Cappellaro, E.; Cason, A. D.; Cetrulo, G.; Ergon, M.; Germany, L.; Harutyunyan, A.; Howerton, S.; Hurst, G. M.; Patat, F.; Stritzinger, M.; Strolger, L.-G.; Wells, W.

    2012-01-01

    Context.1987A-like events form a rare sub-group of hydrogen-rich core-collapse supernovae that are thought to originate from the explosion of blue supergiant stars. Although SN 1987A is the best known supernova, very few objects of this group have been discovered and, hence, studied. Aims: In this paper we investigate the properties of SN 2009E, which exploded in a relatively nearby spiral galaxy (NGC 4141) and that is probably the faintest 1987A-like supernova discovered so far. We also attempt to characterize this subgroup of core-collapse supernovae with the help of the literature and present new data for a few additional objects. Methods: The lack of early-time observations from professional telescopes is compensated by frequent follow-up observations performed by a number of amateur astronomers. This allows us to reconstruct a well-sampled light curve for SN 2009E. Spectroscopic observations which started about 2 months after the supernova explosion, highlight significant differences between SN 2009E and the prototypical SN 1987A. Modelling the data of SN 2009E allows us to constrain the explosion parameters and the properties of the progenitor star, and compare the inferred estimates with those available for the similar SNe 1987A and 1998A. Results: The light curve of SN 2009E is less luminous than that of SN 1987A and the other members of this class, and the maximum light curve peak is reached at a slightly later epoch than in SN 1987A. Late-time photometric observations suggest that SN 2009E ejected about 0.04 M⊙ of 56Ni, which is the smallest 56Ni mass in our sample of 1987A-like events. Modelling the observations with a radiation hydrodynamics code, we infer for SN 2009E a kinetic plus thermal energy of about 0.6 foe, an initial radius of ~7 × 1012 cm and an ejected mass of ~19 M⊙. The photospheric spectra show a number of narrow (v ≈ 1800 km s-1) metal lines, with unusually strong Ba II lines. The nebular spectrum displays narrow emission lines of

  6. Assessment of ideal neutron beams for neutron capture therapy.

    PubMed

    Storr, G J

    1992-09-01

    The discrete-ordinates transport computer code DORT has been used to develop a two-dimensional cylindrical phantom model for use as a tool to assess beam design and dose distributions for boron neutron capture therapy. The model uses an S8 approximation for angular fluxes and a P3 Legendre approximation for scattering cross sections. A one-dimensional discrete-ordinates model utilizing the computer code ANISN was used to validate the energy-group structure used in the two-dimensional calculations. In the two-dimensional model the effects of varying basic parameters such as aperture width, neutron source energy, and tissue composition have been studied. Identical results were obtained when comparing narrow beam calculations to fine-mesh higher-order Sn treatments (up to S32), and with P5 cross sections. It is shown that, when the correct assessment volume is used, narrow beams will give little or no advantage for therapy even with an optimum-energy ideal neutron beam.

  7. Structures of tin cluster cations Sn3+ to Sn15+

    NASA Astrophysics Data System (ADS)

    Drebov, Nedko; Oger, Esther; Rapps, Thomas; Kelting, Rebecca; Schooss, Detlef; Weis, Patrick; Kappes, Manfred M.; Ahlrichs, Reinhart

    2010-12-01

    We employ a combination of ion mobility measurements and an unbiased systematic structure search with density functional theory methods to study structure and energetics of gas phase tin cluster cations, {Snn}^+, in the range of n = 3-15. For {Sn_{13}}^+ we also carry out trapped ion electron diffraction measurements to ascertain the results obtained by the other procedures. The structures for the smaller systems are most easily described by idealized point group symmetries, although they are all Jahn-Teller distorted: D_{3h} (trigonal bipyramid), D_{4h} (octahedron), D_{5h} (pentagonal bipyramid) for n = 5, 6, and 7. For the larger systems we find capped D_{5h} for {Sn8}^+ and {Sn9}^+, D_{3h} (tricapped trigonal prism) and D_{4d} (bicapped squared antiprism) plus adatoms for n = 10, 11, 14, and 15. A centered icosahedron with a peripheral atom removed is the dominant motif in {Sn_{12}}^+. For {Sn_{13}}^+ the calculations predict a family of virtually isoenergetic isomers, an icosahedron and slightly distorted icosahedra, which are about 0.25 eV below two C_1 structures. The experiments indicate the presence of two structures, one from the I_h family and a prolate C_1 isomer based on fused deltahedral moieties.

  8. Pulsed laser deposition of Mn doped CdSe quantum dots for improved solar cell performance

    SciTech Connect

    Dai, Qilin; Wang, Wenyong E-mail: jtang2@uwyo.edu; Tang, Jinke E-mail: jtang2@uwyo.edu; Sabio, Erwin M.

    2014-05-05

    In this work, we demonstrate (1) a facile method to prepare Mn doped CdSe quantum dots (QDs) on Zn{sub 2}SnO{sub 4} photoanodes by pulsed laser deposition and (2) improved device performance of quantum dot sensitized solar cells of the Mn doped QDs (CdSe:Mn) compared to the undoped QDs (CdSe). The band diagram of photoanode Zn{sub 2}SnO{sub 4} and sensitizer CdSe:Mn QD is proposed based on the incident-photon-to-electron conversion efficiency (IPCE) data. Mn-modified band structure leads to absorption at longer wavelengths than the undoped CdSe QDs, which is due to the exchange splitting of the CdSe:Mn conduction band by the Mn dopant. Three-fold increase in the IPCE efficiency has also been observed for the Mn doped samples.

  9. Neutronic reactor

    DOEpatents

    Carleton, John T.

    1977-01-25

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.

  10. NEUTRONIC REACTORS

    DOEpatents

    Anderson, H.L.

    1958-10-01

    The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

  11. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1960-09-27

    A unit assembly is described for a neutronic reactor comprising a tube and plurality of spaced parallel sandwiches in the tube extending lengthwise thereof, each sandwich including a middle plate having a central opening for plutonium and other openings for fertile material at opposite ends of the plate.

  12. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  13. Quark nova imprint in the extreme supernova explosion SN 2006gy

    NASA Astrophysics Data System (ADS)

    Ouyed, R.; Kostka, M.; Koning, N.; Leahy, D. A.; Steffen, W.

    2012-06-01

    The extremely luminous supernova 2006gy (SN 2006gy) is among the most energetic ever observed. The peak brightness was 100 times that of a typical supernova and it spent an unheard of 250 d at magnitude -19 or brighter. Efforts to describe SN 2006gy have pushed the boundaries of current supernova theory. In this work we aspire to simultaneously reproduce the photometric and spectroscopic observations of SN 2006gy using a quark nova (QN) model. This analysis considers the supernova explosion of a massive star followed days later by the QN detonation of a neutron star. We lay out a detailed model of the interaction between the supernova envelope and the QN ejecta paying special attention to a mixing region which forms at the inner edge of the supernova envelope. This model is then fitted to photometric and spectroscopic observations of SN 2006gy. This QN model naturally describes several features of SN 2006gy including the late-stage light-curve plateau, the broad Hα line and the peculiar blue Hα absorption. We find that a progenitor mass between 20 and 40 M⊙ provides ample energy to power SN 2006gy in the context of a QN.

  14. Recent Advances in Neutron Physics

    ERIC Educational Resources Information Center

    Feshbach, Herman; Sheldon, Eric

    1977-01-01

    Discusses new studies in neutron physics within the last decade, such as ultracold neutrons, neutron bottles, resonance behavior, subthreshold fission, doubly radiative capture, and neutron stars. (MLH)

  15. Neutron reflecting supermirror structure

    DOEpatents

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  16. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  17. Average and local structure of the Pb-free ferroelectric perovskites (Sr,Sn)TiO3 and (Ba,Ca,Sn)TiO3

    DOE PAGESBeta

    Laurita, Geneva; Page, Katharine; Suzuki, Shoichiro; Seshadri, Ram

    2015-12-16

    The characteristic structural off -centering of Pb2+ in oxides, associated with its 6s2 lone pair, allows it to play a dominant role in polar materials, and makes it a somewhat ubiquitous component of ferroelectrics. In this work, we examine the compounds Sr0.9Sn0.1TiO3 and Ba0.79Ca0.16Sn0.05TiO3 using neutron total scattering techniques with data acquired at di erent temperatures. In these compounds, previously reported as ferroelectrics, Sn2+ appears to display some of the characteristics of Pb2+. We compare the local and long-range structures of the Sn2+-substituted compositions to the unsubstituted parent compounds SrTiO3 and BaTiO3. Lastly, we find that even at these smallmore » substitution levels, the Sn2+ lone pairs drive the local ordering behavior, with the local structure of both compounds more similar to the structure of PbTiO3 rather than the parent compounds.« less

  18. Neutron Stars and NuSTAR

    NASA Astrophysics Data System (ADS)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  19. THE SUPERNOVA IMPOSTOR IMPOSTOR SN 1961V: SPITZER SHOWS THAT ZWICKY WAS RIGHT (AGAIN)

    SciTech Connect

    Kochanek, C. S.; Szczygiel, D. M.; Stanek, K. Z.

    2011-08-20

    SN 1961V, one of Zwicky's defining Type V supernovae (SNe), was a peculiar transient in NGC 1058 that has variously been categorized as either a true core-collapse SN leaving a black hole (BH) or neutron star (NS) remnant, or an eruption of a luminous blue variable star. The former case is suggested by its possible association with a decaying non-thermal radio source, while the latter is suggested by its peculiar transient light curve and its low initial expansion velocities. The crucial difference is that the star survives a transient eruption but not an SN. All stars identified as possible survivors are significantly fainter, L{sub opt} {approx} 10{sup 5} L{sub sun}, than the L{sub opt} {approx_equal} 3 x 10{sup 6} L{sub sun} progenitor star at optical wavelengths. While this can be explained by dust absorption in a shell of material ejected during the transient, the survivor must then be present as an L{sub IR} {approx_equal} 3 x 10{sup 6} L{sub sun} mid-infrared source. Using archival Spitzer observations of the region, we show that such a luminous mid-IR source is not present. The brightest source of dust emission is only L{sub IR} {approx_equal} 10{sup 5} L{sub sun} and does not correspond to the previously identified candidates for the surviving star. The dust cannot be made sufficiently distant and cold to avoid detection unless the ejection energy, mass, and velocity scales are those of an SN or greater. We conclude that SN 1961V was a peculiar, but real, SN. Its peculiarities are probably due to enhanced mass loss just prior to the SN, followed by the interactions of the SN blast wave with this ejecta. This adds to the evidence that there is a population of SN progenitors that have major mass-loss episodes shortly before core collapse. The progenitor is a low metallicity, {approx}1/3 solar, high-mass, M{sub ZAMS} {approx}> 80 M{sub sun}, star, which means either that BH formation can be accompanied by an SN or that surprisingly high-mass stars can form an

  20. Neutron production from flattening filter free high energy medical linac: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Najem, M. A.; Abolaban, F. A.; Podolyák, Z.; Spyrou, N. M.

    2015-11-01

    One of the problems arising from using a conventional linac at high energy (>8 MV) is the production of neutrons. One way to reduce neutron production is to remove the flattening filter (FF). The main purpose of this work was to study the effect of FF removal on neutron fluence and neutron dose equivalent inside the treatment room at different photon beam energies. Several simulations based on Monte Carlo techniques were carried out in order to calculate the neutron fluence at different locations in the treatment room from different linac energies with and without a FF. In addition, a step-and-shoot intensity modulated radiotherapy (SnS IMRT) for prostate cancer was modelled using the 15 MV photon beam with and without a FF on a water phantom to calculate the neutron dose received in a full treatment. The results obtained show a significant drop-off in neutrons fluence and dose equivalent when the FF was removed. For example, the neutron fluence was decreased by 54%, 76% and 75% for 10, 15 and 18 MV, respectively. This can decrease the neutron dose to the patient as well as reduce the shielding cost of the treatment room. The neutron dose equivalent of the SnS IMRT for prostate cancer was reduced significantly by 71.3% when the FF was removed. It can be concluded that the flattening filter removal from the head of the linac could reduce the risk of causing secondary cancers and the shielding cost of radiotherapy treatment rooms.

  1. LSND, SN1987A, and CPT violation

    SciTech Connect

    Murayama, Hitoshi; Yanagida, T.

    2000-10-17

    We point out that neutrino events observed at Kamiokande andIMB from SN1987A disfavor the neutrino oscillation parameters preferredby the LSND experiment. For Delta m2>0 (the light side), theelectron neutrinos from the neutronization burst would be lost, while thefirst event at Kamiokande is quite likely to be due to an electronneutrino. For Delta m2<0 (the dark side), the average energy of thedominantly bar nu e events is already lower than the theoreticalexpectations, which would get aggravated by a complete conversion frombar nu mu to bar nu e. If taken seriously, the LSND data are disfavoredindependent of the existence of a sterile neutrino. A possible remedy isCPT violation, which allows different mass spectra for neutrinos andanti-neutrinos and hence can accommodate atmospheric, solar and LSND datawithout a sterile neutrino. If this is the case, Mini-BooNE must run inbar nu rather than the planned nu mode to test the LSND signal. Wespeculate on a possible origin of CPT violation.

  2. Cadmium Subtraction Method for the Active Albedo Neutron Interrogation of Uranium

    SciTech Connect

    Worrall, Louise G.; Croft, Stephen

    2015-02-01

    This report describes work performed under the Next Generation Safeguards Initiative (NGSI) Cadmium Subtraction Project. The project objective was to explore the difference between the traditional cadmium (Cd) ratio signature and a proposed alternative Cd subtraction (or Cd difference) approach. The thinking behind the project was that a Cd subtraction method would provide a more direct measure of multiplication than the existing Cd ratio method. At the same time, it would be relatively insensitive to changes in neutron detection efficiency when properly calibrated. This is the first published experimental comparison and evaluation of the Cd ratio and Cd subtraction methods.

  3. Tuning the Band Gap of Cu₂ZnSn(S,Se)₄ Thin Films via Lithium Alloying.

    PubMed

    Yang, Yanchun; Kang, Xiaojiao; Huang, Lijian; Pan, Daocheng

    2016-03-01

    Alkali metal doping plays a crucial role in fabricating high-performance Cu(In,Ga)(S,Se)2 and Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells. In this study, we report the first experimental observation and characterizations of the alloyed Li(x)Cu(2-x)ZnSn(S,Se)4 thin films. It is found that Cu(+) ions in Cu2ZnSn(S,Se)4 thin films can be substituted with Li(+) ions, forming homogeneous Li(x)Cu(2-x)ZnSn(S,Se)4 (0 ≤ x ≤ 0.29) alloyed thin films. Consequently, the band gap, conduction band minimum, and valence band maximum of Li(x)Cu(2-x)ZnSn(S,Se)4 thin films are profoundly affected by Li/Cu ratios. The band alignment at the Li(x)Cu(2-x)ZnSn(S,Se)4/CdS interface can be tuned by changing the Li/Cu ratio. We found that the photovoltaic parameters of the Li(x)Cu(2-x)ZnSn(S,Se)4 solar cell devices are strongly influenced by the Li/Cu ratios. Besides, the lattice constant, carrier concentration, and crystal growth of Li(x)Cu(2-x)ZnSn(S,Se)4 thin films were studied in detail. PMID:26837657

  4. NEUTRONIC REACTORS

    DOEpatents

    Vernon, H.C.

    1959-01-13

    A neutronic reactor of the heterogeneous, fluid cooled tvpe is described. The reactor is comprised of a pressure vessel containing the moderator and a plurality of vertically disposed channels extending in spaced relationship through the moderator. Fissionable fuel material is placed within the channels in spaced relationship thereto to permit circulation of the coolant fluid. Separate means are provided for cooling the moderator and for circulating a fluid coolant thru the channel elements to cool the fuel material.

  5. Atom-probe tomographic study of interfaces of Cu{sub 2}ZnSnS{sub 4} photovoltaic cells

    SciTech Connect

    Tajima, S. Asahi, R.; Itoh, T.; Hasegawa, M.; Ohishi, K.; Isheim, D.; Seidman, D. N.

    2014-09-01

    The heterophase interfaces between the CdS buffer layer and the Cu{sub 2}ZnSnS{sub 4} (CZTS) absorption layers are one of the main factors affecting photovoltaic performance of CZTS cells. We have studied the compositional distributions at heterophase interfaces in CZTS cells using three-dimensional atom-probe tomography. The results demonstrate: (a) diffusion of Cd into the CZTS layer; (b) segregation of Zn at the CdS/CZTS interface; and (c) a change of oxygen and hydrogen concentrations in the CdS layer depending on the heat treatment. Annealing at 573 K after deposition of CdS improves the photovoltaic properties of CZTS cells probably because of the formation of a heterophase epitaxial junction at the CdS/CZTS interface. Conversely, segregation of Zn at the CdS/CZTS interface after annealing at a higher temperature deteriorates the photovoltaic properties.

  6. New Isotopes and Proton Emitters-Crossing the Drip Line in the Vicinity of 100Sn

    NASA Astrophysics Data System (ADS)

    Čeliković, I.; Lewitowicz, M.; Gernhäuser, R.; Krücken, R.; Nishimura, S.; Sakurai, H.; Ahn, D. S.; Baba, H.; Blank, B.; Blazhev, A.; Boutachkov, P.; Browne, F.; de France, G.; Doornenbal, P.; Faestermann, T.; Fang, Y.; Fukuda, N.; Giovinazzo, J.; Goel, N.; Górska, M.; Ilieva, S.; Inabe, N.; Isobe, T.; Jungclaus, A.; Kameda, D.; Kim, Y.-K.; Kwon, Y. K.; Kojouharov, I.; Kubo, T.; Kurz, N.; Lorusso, G.; Lubos, D.; Moschner, K.; Murai, D.; Nishizuka, I.; Park, J.; Patel, Z.; Rajabali, M.; Rice, S.; Schaffner, H.; Shimizu, Y.; Sinclair, L.; Söderström, P.-A.; Steiger, K.; Sumikama, T.; Suzuki, H.; Takeda, H.; Wang, Z.; Watanabe, H.; Wu, J.; Xu, Z.

    2016-04-01

    Several new isotopes, 96In, 94Cd, 92Ag, and 90Pd, have been identified at the RIKEN Nishina Center. The study of proton drip-line nuclei in the vicinity of 93Ag and 89Rh with half-lives in the submicrosecond range. The systematics of the half-lives of odd-Z nuclei with Tz=-1 /2 toward 99Sn shows a stabilizing effect of the Z =50 shell closure. Production cross sections for nuclei in the vicinity of 100Sn measured at different energies and target thicknesses were compared to the cross sections calculated by epax taking into account contributions of secondary reactions in the primary target.

  7. Electronic properties of U{sub 2}Pt{sub 2}Sn

    SciTech Connect

    Prokes, K.; de Boer, F.R.; Nakotte, H.

    1995-09-01

    U{sub 2}Pt{sub 2}Sn is crystallizing in an ordered version (space group P4{sub 2}/mnm) of the tetragonal U{sub 3}Si{sub 2}-type of structure. Clear anomalies in the magnetic susceptibility, specific heat and electrical resistivity around 15 K indicate that U{sub 2}Pt{sub 2}-Sn orders antiferromagnetically below this temperature. As expected for an antiferromagnet, the susceptibility and specific heat anomalies are shifted to lower temperatures upon application of external magnetic field. The specific-heat coefficient {gamma} = 327 mJ/mol f.u. K{sup 2} remains unchanged in fields up to 5T. The antiferromagnetic ground state of U{sub 2}Pt{sub 2}Sn can be concluded also from the metamagnetic transition around 22 T in the magnetization at 4.2 K and from magnetic reflections in the neutron-diffraction pattern at low temperatures.

  8. Nanoscale structural heterogeneity in Ni-rich half-Heusler TiNiSn

    SciTech Connect

    Douglas, Jason E. Pollock, Tresa M.; Chater, Philip A.; Brown, Craig M.; Seshadri, Ram

    2014-10-28

    The structural implications of excess Ni in the TiNiSn half-Heusler compound are examined through a combination of synchrotron x-ray and neutron scattering studies, in conjunction with first principles density functional theory calculations on supercells. Despite the phase diagram suggesting that TiNiSn is a line compound with no solid solution, for small x in TiNi{sub 1+x}Sn there is indeed an appearance—from careful analysis of the scattering—of some solubility, with the excess Ni occupying the interstitial tetrahedral site in the half-Heusler structure. The analysis performed here would point to the excess Ni not being statistically distributed, but rather occurring as coherent nanoclusters. First principles calculations of energetics, carried out using supercells, support a scenario of Ni interstitials clustering, rather than a statistical distribution.

  9. SrZn2Sn2 and Ca2Zn3Sn6 — two new Ae-Zn-Sn polar intermetallic compounds (Ae: alkaline earth metal)

    NASA Astrophysics Data System (ADS)

    Stegmaier, Saskia; Fässler, Thomas F.

    2012-08-01

    SrZn2Sn2 and Ca2Zn3Sn6, two closely related new polar intermetallic compounds, were obtained by high temperature reactions of the elements. Their crystal structures were determined with single crystal XRD methods, and their electronic structures were analyzed by means of DFT calculations. The Zn-Sn structure part of SrZn2Sn2 comprises (anti-)PbO-like {ZnSn4/4} and {SnZn4/4} layers. Ca2Zn3Sn6 shows similar {ZnSn4/4} layers and {Sn4Zn} slabs constructed of a covalently bonded Sn scaffold capped by Zn atoms. For both phases, the two types of layers are alternatingly stacked and interconnected via Zn-Sn bonds. SrZn2Sn2 adopts the SrPd2Bi2 structure type, and Ca2Zn3Sn6 is isotypic to the R2Zn3Ge6 compounds (R=La, Ce, Pr, Nd). Band structure calculations indicate that both SrZn2Sn2 and Ca2Zn3Sn6 are metallic. Analyses of the chemical bonding with the electron localization function (ELF) show lone pair like basins at Sn atoms and Zn-Sn bonding interactions between the layers for both title phases, and covalent Sn-Sn bonding within the {Sn4Zn} layers of Ca2Zn3Sn6.

  10. Low-energy electric dipole response of Sn isotopes

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, P.; Hergert, H.; Ponomarev, V. Yu.; Roth, R.

    2014-03-01

    We study the low-energy dipole (LED) strength distribution along the Sn isotopic chain in both the isoscalar (IS) and the isovector (IV, or E1) electric channels, to provide testable predictions and guidance for new experiments with stable targets and radioactive beams. We use the self-consistent quasi-particle random-phase approximation (QRPA) with finite-range interactions and mainly the Gogny D1S force. We analyze also the performance of a realistic two-body interaction supplemented by a phenomenological three-body contact term. We find that from N =50 and up to the N =82 shell closure (132Sn) the lowest-energy part of the IS-LED spectrum is dominated by a collective transition whose properties vary smoothly with neutron number and which cannot be interpreted as a neutron-skin oscillation. For the neutron-rich species this state contributes to the E1 strength below particle threshold, but much more E1 strength is carried by other, weak but numerous transitions around or above threshold. We find that strong structural changes in the spectrum take effect beyond N =82, namely increased LED strength and lower excitation energies. Our results with the Gogny interaction are compatible with existing data. On this basis we predict that (a) the summed IS strength below particle threshold shall be of the same order of magnitude for N =50-82, (b) the summed E1 strength up to approximately 12 MeV shall be similar for N =50-82 MeV, while (c) the summed E1 strength below threshold shall be of the same order of magnitude for N ≈64-82 and much weaker for the lighter, more-symmetric isotopes. We point out a general agreement of our results with other nonrelativistic studies, the absence of a collective IS mode in some of those studies, and a possibly radical disagreement with relativistic models.

  11. First observation of γ rays emitted from excited states south-east of 132Sn: The π g9/2 -1⊗ν f7 /2 multiplet of In13283

    NASA Astrophysics Data System (ADS)

    Jungclaus, A.; Gargano, A.; Grawe, H.; Taprogge, J.; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Shimizu, Y.; Simpson, G. S.; Söderström, P.-A.; Sumikama, T.; Xu, Z. Y.; Baba, H.; Browne, F.; Fukuda, N.; Gernhäuser, R.; Gey, G.; Inabe, N.; Isobe, T.; Jung, H. S.; Kameda, D.; Kim, G. D.; Kim, Y.-K.; Kojouharov, I.; Kubo, T.; Kurz, N.; Kwon, Y. K.; Li, Z.; Sakurai, H.; Schaffner, H.; Steiger, K.; Suzuki, H.; Takeda, H.; Vajta, Zs.; Watanabe, H.; Wu, J.; Yagi, A.; Yoshinaga, K.; Bönig, S.; Coraggio, L.; Daugas, J.-M.; Drouet, F.; Gadea, A.; Ilieva, S.; Itaco, N.; Kröll, T.; Montaner-Pizá, A.; Moschner, K.; Mücher, D.; Nishibata, H.; Odahara, A.; Orlandi, R.; Wendt, A.

    2016-04-01

    For the first time, the γ decay of excited states has been observed in a nucleus situated in the quadrant south-east of doubly magic 132Sn, a region in which experimental information so far is limited to ground-state properties. Six γ rays with energies of 50, 86, 103, 227, 357, and 602 keV were observed following the β -delayed neutron emission from Cd13385, populated in the projectile fission of a 238U beam at the Radioactive Isotope Beam Factory at RIKEN within the EURICA project. The new experimental information is compared to the results of a modern realistic shell-model calculation, the first one in this region very far from stability, focusing in particular on the π 0 g9/2 -1⊗ν 1 f7 /2 particle-hole multiplet in In13283. In addition, theoretical estimates based on a scaling of the two-body matrix elements for the π h11/2 -1⊗ν g9 /2 analog multiplet in Tl208127, one major proton and one major neutron shell above, are presented.

  12. SAO RAS SN candidates classifications

    NASA Astrophysics Data System (ADS)

    Fatkhullin, T. A.; Moskvitin, A. S.

    2016-08-01

    We observed SN candidates (AT 2016eow, AT 2016enu and AT 2016enf) with the BTA/Scorpio-I on August, 4. Direct images in the R band and long-slit spectra in the range of 3600-7600AA (resolution FWHM = 10A) were obtained.

  13. Target Neutron Skin Effect on Projectile Fragmentation

    NASA Astrophysics Data System (ADS)

    Laforest, R.; Ramakrishnan, E.; Rowland, D. J.; Winchester, E.; Delafield, R.; Guzman, S. J.; Yennello, S.

    1998-04-01

    Several experimental observables have concluded that projectile fragmentation occurs as a two step process, excitation followed by the sequential decay of the quasi-projectile. However, recent measurements [1] have shown that neutron rich fragments are emitted with smaller velocities than what is expected from the decay of the projectile. A direct breakup mechanism for projectile fragmentation was suggested to explain the data. This direct breakup component depends on the number of neutrons at the zone of contact between the target and the projectile. Experimental data from the reactions of ^28Si on ^112,124Sn targets at 50A MeV were used to study the effect of the neutron skin of the target on projectile fragmentation and on energy dissipation in peripheral collisions. The FAUST forward array was used to detect fragments in the angular range between 1.6 to 33.6 degrees. It is composed of 68 high resolution Si-Csi(Tl) telescopes that allows for isotope identification. It is seen that the neutron rich target yields more neutron rich fragments and a lower fragment multiplicity. This confirms the importance of the direct breakup component. Proton kinetic energy spectra were also different for the two targets. This experimental information can shed some light on the isospin dependence of the equation of state. [1] R. Charity et al., Phys. Rev. C52 (1995) 1.

  14. Performance Boost in Industrial Multifilamentary Nb3Sn Wires due to Radiation Induced Pinning Centers

    PubMed Central

    Baumgartner, T.; Eisterer, M.; Weber, H. W.; Flükiger, R.; Scheuerlein, C.; Bottura, L.

    2015-01-01

    We report non-Cu critical current densities of 4 . 09 ⋅ 109 A/m2 at 12 T and 2.27 ⋅ 109 A/m2 at 15 T obtained from transport measurements on a Ti-alloyed RRP Nb3Sn wire after irradiation to a fast neutron fluence of 8.9 ⋅ 1021 m−2. These values are to our knowledge unprecedented in multifilamentary Nb3Sn, and they correspond to a Jc enhancement of approximately 60% relative to the unirradiated state. Our magnetometry data obtained on short wire samples irradiated to fast neutron fluences of up to 2.5 ⋅ 1022 m−2 indicate the possibility of an even better performance, whereas earlier irradiation studies on bronze-processed Nb3Sn wires with a Sn content further from stoichiometry attested a decline of the critical current density at such high fluences. We show that radiation induced point-pinning centers rather than an increase of the upper critical field are responsible for this Jc enhancement, and argue that these results call for further research on pinning landscape engineering. PMID:26030255

  15. Geochemistry of tin (Sn) in Chinese coals.

    PubMed

    Qu, Qinyuan; Liu, Guijian; Sun, Ruoyu; Kang, Yu

    2016-02-01

    Based on 1625 data collected from the published literature, the geochemistry of tin (Sn) in Chinese coals, including the abundance, distribution, modes of occurrence, genetic types and combustion behavior, was discussed to make a better understanding. Our statistic showed the average Sn of Chinese coal was 3.38 mg/kg, almost two times higher than the world. Among all the samples collected, Guangxi coals occupied an extremely high Sn enrichment (10.46 mg/kg), making sharp contrast to Xinjiang coals (0.49 mg/kg). Two modes of occurrence of Sn in Chinese coals were found, including sulfide-bounded Sn and clay-bounded Sn. In some coalfields, such as Liupanshui, Huayingshan and Haerwusu, a response between REEs distribution and Sn content was found which may caused by the transportation of Sn including clay minerals between coal seams. According to the responses reflecting on REEs patterns of each coalfield, several genetic types of Sn in coalfields were discussed. The enrichment of Sn in Guangxi coals probably caused by Sn-rich source rocks and multiple-stage hydrothermal fluids. The enriched Sn in western Guizhou coals was probably caused by volcanic ashes and sulfide-fixing mechanism. The depletion of Sn in Shengli coalfield, Inner Mongolia, may attribute to hardly terrigenous input and fluids erosion. As a relative easily volatilized element, the Sn-containing combustion by-products tended to be absorbed on the fine particles of fly ash. In 2012, the emission flux of Sn by Chinese coal combustion was estimated to be 0.90 × 10(9) g. PMID:25686909

  16. Radio Observations of SN 2006fo

    NASA Astrophysics Data System (ADS)

    Soderberg, Alicia

    2006-09-01

    "I observed the Type Ibc SN 2006fo (IAUC 8750, CBET 643) with the Very Large Array on Sep 26.2 UT as part of an ongoing program to study the radio properties of SNe Ibc discovered through the SDSS SN survey. SN 2006fo is not detected at 8.5 or 22.5 GHz. At a distance of 88 Mpc, the radio luminosity of SN 2006fo is at least a factor of 100 lower than that of SN 1998bw at a similar epoch (Kulkarni et al., 1998, Nature, 395, 663).

  17. The measurements of parity violation in resonant neutron-capture reactions

    SciTech Connect

    Sharapov, E.I.; Popov, Y.P. ); Wender, S.A.; Seestrom, S.J.; Bowman, C.D. ); Postma, H. ); Gould, C.R. ); Wasson, A. )

    1990-01-01

    The study of parity violation in total (n,{gamma}) cross sections on {sup 139}La and {sup 117}Sn targets was performed at the LANSCE pulsed neutron source using longitudinally polarized neutrons and a BaF{sub 2} detector. The effect of parity nonconservation in the {sup 139}La(n,{gamma}) reaction for the resonance at E{sub n}=0.73 eV was confirmed. New results for p-wave resonances in the {sup 117}Sn(n, {gamma}) reaction were obtained. A comparison between the capture and transmission techniques is presented. 12 refs., 5 figs., 1 tab.

  18. Strontium environment transition in tin silicate glasses by neutron and x-ray diffraction.

    SciTech Connect

    Johnson, J. A.; Urquidi, D.; Holland, D.; Johnson, C. E.; Appelyard, P. G.; New Mexico State Univ.; LANL; Warwick Univ.; Northern Illinois Univ.; Cranfield Univ.

    2007-11-15

    The effect of Sr modifier atoms on the structure of stannosilicate glasses of composition (Sr0){sub x}(SnO){sub 0.5-x}(SiO{sub 2}){sub 0.5}, with 0 {le} x {le} 0.15, has been studied using Moessbauer spectroscopy and neutron and X-ray diffraction. The tin is mostly in the Sn{sup 2+} state. The Sr-O bond length undergoes a step decrease from (2.640 {+-} 0.005) {angstrom} to (2.585 {+-} 0.005) {angstrom} as x increases from 0.10 to 0.15, indicating a decrease in co-ordination number from 8 to 7. A Sn-Sn distance of 3.507 {+-} 0.005 {angstrom} is revealed by a first-order difference calculation from the x = 0 sample. This is too short to be consistent with significant edge sharing of [SnO{sub 3}] trigonal pyramids.

  19. Proposal of a directly measurable parameter quantifying the halo nature of one-neutron nuclei

    NASA Astrophysics Data System (ADS)

    Yahiro, Masanobu; Watanabe, Shin; Toyokawa, Masakazu; Matsumoto, Takuma

    2016-06-01

    We propose a measurable parameter H quantifying the halo nature of one-neutron halo nuclei (a ) and investigate the properties of H , assuming the core + neutron (c +n ) model for a . The parameter H is defined by H =[σabs(a ) -σabs(c ) ] /σabs(n ) with directly measurable absorption cross sections σabs of a , c , and n scattering at the same incident energy per nucleon. It varies with the one-neutron separation energy Sn in a range of 0 ≤H ≤1 , and the halo structure is most developed when H =1 . This situation is realized only for s -wave halo nuclei in the Sn=0 limit. We consider 11Be and C,1915 as s -wave halo nuclei, 31Ne and 37Mg as p -wave halo nuclei, and 17C as an example of d -wave nonhalo nuclei. For each of halo nuclei, the value of H is deduced at a measured Sn from measured total reaction cross sections for c , n , and a scattering at intermediate and high incident energies where projectile breakup effects are negligible. The location of the resulting (Sn,H ) is plotted in the Sn-H plane. The empirical values of H at the measured Sn are extrapolated to small Sn with model calculations based on the eikonal + adiabatic approximation. In the Sn-H plane, the model lines are well separated into three groups of s -wave halo, p -wave halo, and d -wave nonhalo particularly in the vicinity of Sn=0 , and the s -wave halo lines are always above the other lines, since only the s -wave halo lines can reach a point (Sn,H ) =(0 ,1 ) independently of the concrete form of the interaction between c and n . The relation among the three kinds of lines may be universal for any halo nucleus with small Sn. The point (Sn,H ) =(0 ,1 ) can be regarded as a scale-invariant point in the sense that the z -integrated neutron density characterizing halo structure is invariant under the scale

  20. Orthorhombic-tetragonal phase coexistence and enhanced piezo-response at room temperature in Zr, Sn, and Hf modified BaTiO{sub 3}

    SciTech Connect

    Kalyani, Ajay Kumar; Brajesh, Kumar; Ranjan, Rajeev; Senyshyn, Anatoliy

    2014-06-23

    The effect of Zr, Hf, and Sn in BaTiO{sub 3} has been investigated at close composition intervals in the dilute concentration limit. Detailed structural analysis by x-ray and neutron powder diffraction revealed that merely 2 mol. % of Zr, Sn, and Hf stabilizes a coexistence of orthorhombic (Amm2) and tetragonal (P4mm) phases at room temperature. As a consequence, all the three systems show substantial enhancement in the longitudinal piezoelectric coefficient (d{sub 33}), with Sn modification exhibiting the highest value ∼425 pC/N.

  1. Lunar neutron capture as a tracer for regolith dynamics

    NASA Technical Reports Server (NTRS)

    Burnett, D. S.; Woolum, D. S.

    1974-01-01

    The Apollo 17 Lunar Neutron Probe Experiment measured both the boron-10 neutron capture rate and the uranium-235 neutron-induced fission rate as a function of depth. Cd absorption gave a measure of the neutron energy spectrum. Comparisons of the results are made with theory, and good agreement is obtained for the magnitudes and depth dependences of the capture rates. While the low-energy neutron spectrum at depth agrees with theory, the spectrum near the peak of the flux profile is harder than predicted. In light of these results, several alternatives for interpreting the magnitude and uniformity of the neutron capture data from lunar surface soil samples are outlined. While none of the alternatives can be unquestionably defended or discarded, a surface layer mixing model is discussed in detail.

  2. NEUTRON COUNTER

    DOEpatents

    Curtis, C.D.; Carlson, R.L.; Tubinis, M.P.

    1958-07-29

    An ionization chamber instrument is described for cylindrical electrodes with an ionizing gag filling the channber. The inner electrode is held in place by a hermetic insulating seal at one end of the outer electrode, the other end of the outer electrode being closed by a gas filling tube. The outer surface of the inner electrode is coated with an active material which is responsive to neutron bombardment, such as uranium235 or boron-10, to produce ionizing radiations in the gas. The transverse cross sectional area of the inner electrode is small in relation to that of the channber whereby substantially all of the radiations are directed toward the outer electrode.

  3. NEUTRON SOURCE

    DOEpatents

    Reardon, W.A.; Lennox, D.H.; Nobles, R.G.

    1959-01-13

    A neutron source of the antimony--beryllium type is presented. The source is comprised of a solid mass of beryllium having a cylindrical recess extending therein and a cylinder containing antimony-124 slidably disposed within the cylindrical recess. The antimony cylinder is encased in aluminum. A berylliunn plug is removably inserted in the open end of the cylindrical recess to completely enclose the antimony cylinder in bsryllium. The plug and antimony cylinder are each provided with a stud on their upper ends to facilitate handling remotely.

  4. SN 1961V: From Alpha to Omega?

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler D.; Filippenko, Alexei V.; Cenko, Bradley S.; Shields, Joseph C.

    2013-06-01

    The extraordinary object SN 1961V in NGC 1058 remains controversial to this day. It has long been considered the prototypical "supernova impostor," i.e., the giant eruption of a highly massive star with energetics that rival true supernovae. However, a number of arguments have been put forward that SN 1961V actually was a true SN, and that the explosion followed a sustained powerful outburst from its precursor star, much like the amazing SN 2009ip and other recent events. We will briefly discuss the debate that has roiled over SN 1961V, and we will also present evidence, including from new observations, which may indicate that the precursor has survived. Determining the true nature of SN 1961V will inform our understanding of the late stages of pre-SN evolution for the most massive stars.

  5. Signatures of neutrino cooling in the SN1987A scenario

    NASA Astrophysics Data System (ADS)

    Fraija, N.; Bernal, C. G.; Hidalgo-Gaméz, A. M.

    2014-07-01

    The neutrino signal from SN1987A confirmed the core-collapse scenario and the possible formation of a neutron star. Although this compact object has eluded all observations, theoretical and numerical developments have allowed a glimpse of the fate of it. In particular, a hypercritical accretion model has been proposed to forecast the accretion of ˜0.15 M⊙ in two hours and the subsequent submergence of the magnetic field in the newborn neutron star. In this paper, we revisit Chevalier's model in a numerical framework, focusing on the neutrino cooling effect on the supernova fall-back dynamics. For that, using a customized version of the FLASH code, we carry out numerical simulations of the accretion of matter on to the newborn neutron star in order to estimate the size of the neutrino-sphere, the emissivity and luminosity of neutrinos. As a signature of this phase, we estimate the neutrinos expected on SK neutrino experiment and their flavour ratios. This is academically important because, although currently it was very difficult to detect 1.46 thermal neutrinos and their oscillations, these fingerprints are the only viable and reliable way to confirm the hypercritical phase. Perhaps new techniques for detecting neutrino oscillations will arise in the near future allowing us to confirm our estimates.

  6. Are the nuclei beyond 132Sn very exotic?

    NASA Astrophysics Data System (ADS)

    Lozeva, R.; Naïdja, H.; Nowacki, F.; Odahara, A.; Moon, C.-B.; NP1112-RIBF87 Collaboration

    2016-06-01

    The term exotic nucleus is used for nuclei that have different from normal behavior. However, it turns out that the term normal is valid only for nuclei close to stability and more particularly for regions close to double-shell closures. As long as one drives away in the neutron-rich nuclei, especially at intermediate mass number, interplay between normal single-particle and many collective particle-hole excitations compete. In some cases with the addition of neutrons, these may turn to evolve as a skin, acting against the core nucleus that may also influence its shell evolution. Knowledge of these nuclear ingredients is especially interesting beyond the doubly-magic 132Sn, however a little is known on how the excitations modes develop with the addition of both protons and neutrons. Especially for the Sb nuclei, where one gradually increases these valence particles, the orbital evolution and its impact on exoticness is very intriguing. Experimental studies were conducted on several such isotopes using isomer and, β-decay spectroscopy at RIBF within EURICA. In particular, new data on 140Sb and 136Sb are examined and investigated in the framework of shell model calculations.

  7. Direct reaction measurements with a 132Sn radioactive ion beam

    SciTech Connect

    Jones, Katherine L.; Nunes, Filomena M.; Adekola, Aderemi S.; Bardayan, Dan W.; Blackmon, Jeff; Chae, K. Y.; Chipps, Kelly A.; Cizewski, Jolie A.; Erikson, Luke E.; Harlin, C.; Hatarik, R.; Kapler, R.; Kozub, Raymond L.; Liang, J. F.; Livesay, Ronald J.; Ma, Zhongguo J.; Moazen, B. H.; Nesaraja, Caroline D.; Pain, Steven D.; Patterson, N. P.; Shapira, Dan; Shriner, Jr., John F.; Smith, Michael S.; Swan, Thomas P.; Thomas, Jeff S.

    2011-09-01

    The (d,p) neutron transfer and (d,d) elastic scattering reactions were measured in inverse kinematics using a radioactive ion beam of 132Sn at 630 MeV. The elastic scattering data were taken in a region where Rutherford scattering dominated the reaction, and nuclear effects account for less than 8% of the elastic scattering cross section. The magnitude of the nuclear effects, in the angular range studied, was found to be independent of the optical potential used, allowing the transfer data to be normalized in a reliable manner. The neutron-transfer reaction populated a previously unmeasured state at 1363 keV, which is most likely the single-particle 3p1/2 state expected above the N = 82 shell closure. The data were analyzed using finite-range adiabatic-wave calculations and the results compared with the previous analysis using the distorted-wave Born approximation. Angular distributions for the ground and first-excited states are consistent with the previous tentative spin and parity assignments. Spectroscopic factors extracted from the differential cross sections are similar to those found for the one-neutron states beyond the benchmark doubly magic nucleus 208Pb.

  8. Direct reaction measurements with a (132)Sn radioactive ion beam

    SciTech Connect

    Jones, K. L.; Chae, K. Y.; Kapler, R.; Ma, Zhanwen; Moazen, Brian; Cizewski, J. A.; Hatarik, Robert; Pain, S. D.; Swan, T. P.; Nunes, F. M.; Adekola, Aderemi S; Bardayan, Daniel W; Blackmon, Jeff C; Chae, Kyung Yuk; Liang, J Felix; Nesaraja, Caroline D; Pain, Steven D; Shapira, Dan; Smith, Michael Scott; Chipps, Kelly A; Erikson, Luke; Livesay, R. J.; Harlin, Christopher W; Patterson, N. P.; Thomas, J. S.; Kozub, R. L.; Shriner, Jr., John F

    2011-01-01

    The (d,p) neutron transfer and (d,d) elastic scattering reactions were measured in inverse kinematics using a radioactive ion beam of {sup 132}Sn at 630 MeV. The elastic scattering data were taken in a region where Rutherford scattering dominated the reaction, and nuclear effects account for less than 8% of the elastic scattering cross section. The magnitude of the nuclear effects, in the angular range studied, was found to be independent of the optical potential used, allowing the transfer data to be normalized in a reliable manner. The neutron-transfer reaction populated a previously unmeasured state at 1363 keV, which is most likely the single-particle 3p{sub 1/2} state expected above the N=82 shell closure. The data were analyzed using finite-range adiabatic-wave calculations and the results compared with the previous analysis using the distorted-wave Born approximation. Angular distributions for the ground and first-excited states are consistent with the previous tentative spin and parity assignments. Spectroscopic factors extracted from the differential cross sections are similar to those found for the one-neutron states beyond the benchmark doubly magic nucleus {sup 208}Pb.

  9. Influence of thermal and resonance neutron on fast neutron flux measurement by 239Pu fission chamber

    NASA Astrophysics Data System (ADS)

    Zeng, Li-Na; Wang, Qiang; Song, Ling-Li; Zheng, Chun

    2015-01-01

    The 239Pu fission chambers are widely used to measure fission spectrum neutron flux due to a flat response to fast neutrons. However, in the meantime the resonance and thermal neutrons can cause a significant influence on the measurement if they are moderated, which could be eliminated by using 10B and Cd covers. At a column enriched uranium fast neutron critical assembly, the fission reaction rates of 239Pu are measured as 1.791×10-16, 2.350×10-16 and 1.385×10-15 per second for 15 mm thick 10B cover, 0.5 mm thick Cd cover, and no cover respectively, while the fission reaction rate of 239Pu is rapidly increased to 2.569×10-14 for a 20 mm thick polythene covering fission chamber. The average 239Pu fission cross-section of thermal and resonance neutrons is calculated to be 500 b and 24.95 b with the assumption of 1/v and 1/E spectra respectively, then thermal, resonance and fast neutron flux are achieved to be 2.30×106, 2.24×106 and 1.04×108 cm-2·s-1.

  10. New Isotopes and Proton Emitters-Crossing the Drip Line in the Vicinity of ^{100}Sn.

    PubMed

    Čeliković, I; Lewitowicz, M; Gernhäuser, R; Krücken, R; Nishimura, S; Sakurai, H; Ahn, D S; Baba, H; Blank, B; Blazhev, A; Boutachkov, P; Browne, F; de France, G; Doornenbal, P; Faestermann, T; Fang, Y; Fukuda, N; Giovinazzo, J; Goel, N; Górska, M; Ilieva, S; Inabe, N; Isobe, T; Jungclaus, A; Kameda, D; Kim, Y-K; Kwon, Y K; Kojouharov, I; Kubo, T; Kurz, N; Lorusso, G; Lubos, D; Moschner, K; Murai, D; Nishizuka, I; Park, J; Patel, Z; Rajabali, M; Rice, S; Schaffner, H; Shimizu, Y; Sinclair, L; Söderström, P-A; Steiger, K; Sumikama, T; Suzuki, H; Takeda, H; Wang, Z; Watanabe, H; Wu, J; Xu, Z

    2016-04-22

    Several new isotopes, ^{96}In, ^{94}Cd, ^{92}Ag, and ^{90}Pd, have been identified at the RIKEN Nishina Center. The study of proton drip-line nuclei in the vicinity of ^{100}Sn led to the discovery of new proton emitters ^{93}Ag and ^{89}Rh with half-lives in the submicrosecond range. The systematics of the half-lives of odd-Z nuclei with T_{z}=-1/2 toward ^{99}Sn shows a stabilizing effect of the Z=50 shell closure. Production cross sections for nuclei in the vicinity of ^{100}Sn measured at different energies and target thicknesses were compared to the cross sections calculated by epax taking into account contributions of secondary reactions in the primary target. PMID:27152796

  11. A p → n transition for Sn-doped Cu(In,Ga)Se{sub 2} bulk materials

    SciTech Connect

    Monsefi, Mehrdad; Kuo, Dong-Hau

    2013-08-15

    Cu(In,Ga)Se{sub 2} (CIGSe) pellets at different Sn contents were fabricated by reactive liquid-phase sintering at 600–700 °C with the help of sintering aids of Sb{sub 2}S{sub 3} and Te. Powder preparation was based upon the molecular formula of Cu{sub 0.9}[(In{sub 0.7−x}Sn{sub x}Ga{sub 0.3}){sub 0.9}Sb{sub 0.1}](S{sub 0.15}Te{sub 0.2}Se{sub 1.65}) or Sn-x-CIGSe. Morphology, structure, and electrical property of Sn-doped CIGSe bulks were investigated. The composition of Sn-doped CIGSe is purposely designed for studying the doping effect on the CIGSe performance. The unexpected increase in hole concentration of CIGSe due to the donor doping is rationalized. A controllable n-type semiconductor is deliberately achieved for Sn-0.15-CIGSe and important for making a p/n homojunction in CIGSe solar cells. - Graphical abstract: The controls in defect type and electrical properties of Cu(In,Ga)Se{sub 2} by doping Sn{sup 4+} on the In{sup 3+} site. Highlights: • n-type Sn-CIGSe with n{sub e} of 6.4×10{sup 16} cm{sup −3} and μ{sub e} of 2.3 cm{sup 2}/V s was obtained. • This n-type Sn-CIGSe was obtained by material design and composition control. • The reported n-type CIGSe was obtained from the Zn/CIGSe and CdS/CIGSe bilayers. • Extrinsic donor doping was explored through the results of electrical properties. • A n/p homojunction with Sn-CIGSe and undoped one can be used for solar cell devices.

  12. Producing CD-ROMs.

    ERIC Educational Resources Information Center

    Hyams, Peter, Ed.

    1992-01-01

    This issue presents 11 articles that address issues relating to the production of CD-ROMs. Highlights include current uses of CD-ROM; standards; steps involved in producing CD-ROMs, including data capture, conversion, and tagging, product design, and indexing; authoring; selecting indexing and retrieval software; costs; multimedia CD-ROMs; and…

  13. Neutron matter, symmetry energy and neutron stars

    SciTech Connect

    Stefano, Gandolfi; Steiner, Andrew W

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  14. SN X-ray Progenitor?

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Identifying stars that explode, right before they explode, is a tricky proposition since the end of starlife comes swiftly: in thermonuclear deflagrations, in nuclear exhaustion, or maybe in a rapid swirling merger of two dead stellar cores. On the right in the image above is an image of the galaxy NGC 1404 taken by the UV/optical Telescope (UVOT) on the Swift observatory. The circle surrounds SN 2007on, a supernova of Type Ia produced by the explosion of a white dwarf star in a binary system. These types of supernovae are important since they are believed to be 'standard candles', events which have the same intrinsic brightness which can serve as an important yardstick to measure cosmic distances. On the left is an image of the same galaxy taken by the Chandra X-ray observatory four years before the supernova. Conspicuous in the SN source circle is a bright source in the Chandra image, believed to be emission from a compact object+normal star companion: a similar system to the supposed precursor of SN 2007on. If true this would be the first time a Type Ia supernova precursor has ever been seen. But astronomers are still debating whether the Chandra source really is the precursor or not; it seems there's a slight but significant difference in the location of the Chandra source and the supernova. Stay tuned for more developments.

  15. Research into the microstructure and mechanical behavior of eutectic Bi-Sn and In-Sn

    SciTech Connect

    Goldstein, J.L.F.; Mei, Z.; Morris, J.W. Jr. |

    1993-08-01

    This manuscript reports on research into two low-melting, lead-free solder alloys, eutectic Bi-Sn and eutectic In-Sn. The microstructures were found to depend on both cooling rate and substrate, with the greatest variability in the In-Sn alloy. The nature of the intermetallic layer formed at the solder-substrate interface depends on both the solder and the substrate (Cu versus Ni). Also, the microstructure of the Bi-Sn can recrystallize during deformation, which is not the case with In-Sn. Data from creep and constant strain rate tests are given for slowly cooled samples. The creep behavior of In-Sn is constant with temperature, but the creep seems to be controlled by the In-rich phase in In-Sn on Cu and by the Sn-rich phase in In-Sn on Ni. Bi-Sn exhibits different creep behavior at temperatures above 40 {degrees}C than at 20 {degrees}C or lower. Stress-strain curves of Bi-Sn on Cu and In-Sn on Cu are similar, while In-Sn on Ni behaves differently. This is explained in terms of the deformation patterns in the alloys.

  16. Evaporation Residue Yields in Reactions of Heavy Neutron-Rich Radioactive Ion Beams with 64Ni and 96Zr Targets

    SciTech Connect

    Shapira, Dan; Liang, J Felix; Gross, Carl J; Varner Jr, Robert L; Beene, James R; Stracener, Daniel W; Mueller, Paul Edward; Kolata, Jim J; Roberts, Amy; Loveland, Walter; Vinodkumar, A. M.; Prisbrey, Landon; Sprunger, Peter H; Grzywacz-Jones, Kate L; Caraley, Anne L

    2009-01-01

    As hindrance sets in for the fusion of heavier systems, the effect of large neutron excess in the colliding nuclei on their probability to fuse is still an open question. The detection of evaporation residues (ERs), however, provides indisputable evidence for the fusion (complete and incomplete) in the reaction. We therefore devised a system with which we could measure ERs using low intensity neutron-rich radioactive ion beams with an efficiency close to 100%. We report on measurements of the production of ERs in collisions of {sup 132,134}Sn, {sup 134}Te and {sup 134}Sb ion beams with medium mass, neutron-rich targets. The data taken with {sup 132,134}Sn bombarding a {sup 64}Ni target are compared to available data (ERs and fusion) taken with stable Sn isotopes. Preliminary data on the fusion of {sup 132}Sn with {sup 96}Zr target are also presented.

  17. A Luminous Peculiar Type Ia Supernova SN 2011hr: More Like SN 1991T or SN 2007if?

    NASA Astrophysics Data System (ADS)

    Zhang, Ju-Jia; Wang, Xiao-Feng; Sasdelli, Michele; Zhang, Tian-Meng; Liu, Zheng-Wei; Mazzali, Paolo A.; Meng, Xiang-Cun; Maeda, Keiichi; Chen, Jun-Cheng; Huang, Fang; Zhao, Xu-Lin; Zhang, Kai-Cheng; Zhai, Qian; Pian, Elena; Wang, Bo; Chang, Liang; Yi, Wei-Min; Wang, Chuan-Jun; Wang, Xue-Li; Xin, Yu-Xin; Wang, Jian-Guo; Lun, Bao-Li; Zheng, Xiang-Ming; Zhang, Xi-Liang; Fan, Yu-Feng; Bai, Jin-Ming

    2016-02-01

    Photometric and spectroscopic observations of a slowly declining, luminous Type Ia supernova (SN Ia) SN 2011hr in the starburst galaxy NGC 2691 are presented. SN 2011hr is found to peak at {M}B\\=\\-19.84+/- 0.40 {mag}, with a postmaximum decline rate Δm15(B) = 0.92 ± 0.03 mag. From the maximum-light bolometric luminosity, L\\=\\(2.30+/- 0.90)× {10}43 {erg} {{{s}}}-1, we estimate the mass of synthesized 56Ni in SN 2011hr to be M{(}56{Ni})\\=\\1.11+/- 0.43 {M}⊙ . SN 2011hr appears more luminous than SN 1991T at around maximum light, and the absorption features from its intermediate-mass elements (IMEs) are noticeably weaker than those of the latter at similar phases. Spectral modeling suggests that SN 2011hr has IMEs of ˜0.07 {M}⊙ in the outer ejecta, which is much lower than the typical value of normal SNe Ia (i.e., 0.3-0.4 {M}⊙ ) and is also lower than the value of SN 1991T (i.e., ˜0.18 {M}⊙ ). These results indicate that SN 2011hr may arise from a Chandrasekhar-mass white dwarf progenitor that experienced a more efficient burning process in the explosion. Nevertheless, it is still possible that SN 2011hr may serve as a transitional object connecting the SN 1991T-like SNe Ia with a superluminous subclass like SN 2007if given that the latter also shows very weak IMEs at all phases.

  18. A Luminous Peculiar Type Ia Supernova SN 2011hr: More Like SN 1991T or SN 2007if?

    NASA Astrophysics Data System (ADS)

    Zhang, Ju-Jia; Wang, Xiao-Feng; Sasdelli, Michele; Zhang, Tian-Meng; Liu, Zheng-Wei; Mazzali, Paolo A.; Meng, Xiang-Cun; Maeda, Keiichi; Chen, Jun-Cheng; Huang, Fang; Zhao, Xu-Lin; Zhang, Kai-Cheng; Zhai, Qian; Pian, Elena; Wang, Bo; Chang, Liang; Yi, Wei-Min; Wang, Chuan-Jun; Wang, Xue-Li; Xin, Yu-Xin; Wang, Jian-Guo; Lun, Bao-Li; Zheng, Xiang-Ming; Zhang, Xi-Liang; Fan, Yu-Feng; Bai, Jin-Ming

    2016-02-01

    Photometric and spectroscopic observations of a slowly declining, luminous Type Ia supernova (SN Ia) SN 2011hr in the starburst galaxy NGC 2691 are presented. SN 2011hr is found to peak at {M}B\\=\\-19.84+/- 0.40 {mag}, with a postmaximum decline rate Δm15(B) = 0.92 ± 0.03 mag. From the maximum-light bolometric luminosity, L\\=\\(2.30+/- 0.90)× {10}43 {erg} {{{s}}}-1, we estimate the mass of synthesized 56Ni in SN 2011hr to be M{(}56{Ni})\\=\\1.11+/- 0.43 {M}ȯ . SN 2011hr appears more luminous than SN 1991T at around maximum light, and the absorption features from its intermediate-mass elements (IMEs) are noticeably weaker than those of the latter at similar phases. Spectral modeling suggests that SN 2011hr has IMEs of ∼0.07 {M}ȯ in the outer ejecta, which is much lower than the typical value of normal SNe Ia (i.e., 0.3–0.4 {M}ȯ ) and is also lower than the value of SN 1991T (i.e., ∼0.18 {M}ȯ ). These results indicate that SN 2011hr may arise from a Chandrasekhar-mass white dwarf progenitor that experienced a more efficient burning process in the explosion. Nevertheless, it is still possible that SN 2011hr may serve as a transitional object connecting the SN 1991T-like SNe Ia with a superluminous subclass like SN 2007if given that the latter also shows very weak IMEs at all phases.

  19. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  20. NEUTRONIC REACTOR

    DOEpatents

    Stewart, H.B.

    1958-12-23

    A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.

  1. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  2. Investigation of the Phase Equilibria of Sn-Cu-Au Ternary and Ag-Sn-Cu-Au Quaternary Systems and Interfacial Reactions in Sn-Cu/Au Couples

    NASA Astrophysics Data System (ADS)

    Yen, Yee-Wen; Jao, Chien-Chung; Hsiao, Hsien-Ming; Lin, Chung-Yung; Lee, Chiapyng

    2007-02-01

    The phase equilibria of the Sn-Cu-Au ternary, Ag-Sn-Cu-Au quaternary systems and interfacial reactions between Sn-Cu alloys and Au were experimentally investigated at specific temperatures in this study. The experimental results indicated that there existed three ternary intermetallic compounds (IMCs) and a complete solid solubility between AuSn and Cu6Sn5 phases in the Sn-Cu-Au ternary system at 200°C. No quaternary IMC was found in the isoplethal section of the Ag-Sn-Cu-Au quaternary system. Three IMCs, AuSn, AuSn2, and AuSn4, were found in all couples. The same three IMCs and (Au,Cu)Sn/(Cu,Au)6Sn5 phases were found in all Sn-Cu/Au couples. The thickness of these reaction layers increased with increasing temperature and time. The mechanism of IMC growth can be described by using the parabolic law. In addition, when the reaction time was extended and the Cu content of the alloy was increased, the AuSn4 phase disappeared gradually. The (Au, Cu)Sn and (Cu,Au)6Sn5 layers played roles as diffusion barriers against Sn in Sn-Cu/Au reaction couple systems.

  3. Direct Measurement of Neutron-Neutron Scattering

    SciTech Connect

    Sharapov, E.I.; Furman, W.I.; Lychagin, W.I.; Muzichka, G.V.; Nekhaev, G.V.; Safronov, Yu.V.; Shvetsov, V.N.; Strelkov, A.V.; Bowman, C.D.; Crawford, B.E.; Stephenson, S.L.; Howell, C.R.; Tornow, W.; Levakov, B.G.; Litvin, V.I.; Lyzhin, A.E.; Magda, E.P.; Mitchell, G.E.

    2003-08-26

    In order to resolve long-standing discrepancies in indirect measurements of the neutron-neutron scattering length ann and contribute to solving the problem of the charge symmetry of the nuclear force, the collaboration DIANNA (Direct Investigation of ann Association) plans to measure the neutron-neutron scattering cross section {sigma}nn. The key issue of our approach is the use of the through-channel in the Russia reactor YAGUAR with a peak neutron flux of 10{sup 18} /cm2/s. The proposed experimental setup is described. Results of calculations are presented to connect {sigma}nn with the nn-collision detector count rate and the neutron flux density in the reactor channel. Measurements of the thermal neutron fields inside polyethylene converters show excellent prospects for the realization of the direct nn-experiment.

  4. Neutron Transfer Reactions on Neutron-Rich N=50 and N=82 Nuclei Near the r-Process Path

    SciTech Connect

    Cizewski, J. A.; Jones, K. L.; Kozub, R. L.; Pain, S. D.; Thomas, J. S.; Arbanas, Goran; Adekola, Aderemi S; Bardayan, Daniel W; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Dean, David Jarvis; Erikson, Luke; Gaddis, A. L.; Harlin, Christopher W; Hatarik, Robert; Howard, Joshua A; Johnson, Micah; Kapler, R.; Krolas, W.; Liang, J Felix; Livesay, Jake; Ma, Zhanwen; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Paulauskas, Stanley V; Shapira, Dan; ShrinerJr., J. F.; Sissom, D. J.; Smith, Michael Scott; Swan, T. P.; Wilson, Gemma L

    2009-01-01

    Neutron transfer (d,p) reaction studies on the N = 50 isotones, 82Ge and 84Se, and A{approx}130 nuclei, 130,132Sn and 134Te, have been measured. Direct neutron capture cross sections for 82Ge and 84Se (n,?) have been calculated and are combined with Hauser-Feshbach expectations to estimate total (n,?) cross sections. The A{approx}130 studies used an early implementation of the ORRUBA array of position-sensitive silicon strip detectors for reaction proton measurements. Preliminary excitation energy and angular distribution results from the A{approx}130 measurements are reported.

  5. Parallel deterministic neutronics with AMR in 3D

    SciTech Connect

    Clouse, C.; Ferguson, J.; Hendrickson, C.

    1997-12-31

    AMTRAN, a three dimensional Sn neutronics code with adaptive mesh refinement (AMR) has been parallelized over spatial domains and energy groups and runs on the Meiko CS-2 with MPI message passing. Block refined AMR is used with linear finite element representations for the fluxes, which allows for a straight forward interpretation of fluxes at block interfaces with zoning differences. The load balancing algorithm assumes 8 spatial domains, which minimizes idle time among processors.

  6. Study of the muon-induced neutron background with the LVD detector

    SciTech Connect

    Menghetti, H.; Selvi, M.

    2005-09-08

    High energy neutrons, generated as a product of cosmic muon interaction in the rock or in the detector passive material, represent the most dangerous background for a large list of topics like reactor neutrino studies, the search for SN relic neutrinos, solar antineutrinos, etc.Up to now there are few measurements of the muon-produced neutron flux at large depth underground. Moreover it is difficult to reproduce the measured data with Monte Carlo simulation because of the large uncertainties in the neutron production and propagation models.We present here the results of such a measurement with the LVD detector, which is well suited for the detection of neutrons produced by cosmic-ray muons, reporting the neutron flux at various distances from the muon track, for different neutron energies (E > 20 MeV) and as a function of the muon track length in scintillator.

  7. LETTER TO THE EDITOR: Magnetic ordering in Gd2Sn2O7: the archetypal Heisenberg pyrochlore antiferromagnet

    NASA Astrophysics Data System (ADS)

    Wills, A. S.; Zhitomirsky, M. E.; Canals, B.; Sanchez, J. P.; Bonville, P.; Dalmas de Réotier, P.; Yaouanc, A.

    2006-01-01

    Low-temperature powder neutron diffraction measurements are performed in the ordered magnetic state of the pyrochlore antiferromagnet Gd2Sn2O7. Symmetry analysis of the diffraction data indicates that this compound has the ground state predicted theoretically for a Heisenberg pyrochlore antiferromagnet with dipolar interactions. The difference in the magnetic structure of Gd2Sn2O7 andof nominally analogous Gd2Ti2O7 is found to be determined by a specific type of third-neighbour superexchange interaction on the pyrochlore lattice between spins across empty hexagons.

  8. Synthesis and Optical Properties of Colloidal CdS/CdSe/CdS Quantum Wells

    NASA Astrophysics Data System (ADS)

    Hai, Le Ba; Nghia, Nguyen Xuan; Nga, Pham Thu; Chinh, Vu Duc; Linh, Pham Thuy; Trang, Nguyen Thi Thu

    Colloidal CdS/CdSe/CdS quantum wells were synthesized from TOPSe and cadmium oleate in octadecene, a non-coordinating solvent. Absorption, emission, and Raman scattering spectra of colloidal CdS/CdSe/CdS quantum wells with different thickness of CdSe well were investigated. The effect of thickness of CdSe well on the optical and vibrational properties of colloidal CdS/CdSe/CdS quantum wells was discussed. The expri-mental results provide further evidence for the existence of quantum dot-quantum well structures in CdS/CdSe/CdS type materials.

  9. Updated Physical Parameters of SN 2012cg

    NASA Astrophysics Data System (ADS)

    Marion, G. H.; Challis, P.; Hicken, M.; Mandel, K.; Meyer, S.; Kirshner, R. P.; Foley, R. J.; Friedman, A.; Irwin, J.; Wood-Vasey, W. M.; Wheeler, J. C.; Vinko, J.; Rines, K.; Wilhelmy, S.; Macri, L.

    2012-06-01

    The Harvard-Smithsonian Center for Astrophysics Supernova Group reports photometric and spectroscopic observations of SN 2012cg (ATEL #4115, #4159). We find that SN 2012cg has a slow decline rate and low expansion velocities. BayeSN fits to the data show that SN 2012cg has significant dust extinction (A_v ~ 0.67 mag). We find R_v = 2.7 +/- 0.5, which is consistent with the Milky Way value of 3.1 and mildly inconsistent with the extremely low values reported for some highly reddened SN (e.g., R_v = 1.59 +/- 0.07 for SN 2002cv; Elias-Rosa et al.

  10. Magnetic excitations in single crystal PrNiSn

    NASA Astrophysics Data System (ADS)

    Beirne, E. D.; McEwen, K. A.; Habicht, K.; Fort, D.

    Inelastic neutron scattering results from a single crystal of the rare earth intermetallic PrNiSn are presented. Crystalline electric field excitations are found at 0.5, 2.4 and around 3.5 meV. The lower modes show little dispersion over q, but the 3.5 meV splits into two excitations, most clearly seen along the c* direction. Fitting the modes with gaussian functions allows us to show the pronounced dispersion to be of the form E(q)=E0+J1cos(qπ) for the upper mode, and E(q)=E0+J1cos(qπ)+J2cos(2qπ) for the lower mode. This suggests a longer range interaction for the lower mode. The lowest excitation at 0.5 meV confirms predictions made from previous measurements on polycrystalline samples that indicate a low lying CEF level.

  11. SN1987A's Twentieth Anniversary

    NASA Astrophysics Data System (ADS)

    2007-02-01

    Looking back at 20 Years of Observations of this Supernova with ESO telescopes The unique supernova SN 1987A has been a bonanza for astrophysicists. It provided several observational 'firsts,' like the detection of neutrinos from an exploding star, the observation of the progenitor star on archival photographic plates, the signatures of a non-spherical explosion, the direct observation of the radioactive elements produced during the blast, observation of the formation of dust in the supernova, as well as the detection of circumstellar and interstellar material. ESO PR Photo 08a/07 ESO PR Photo 08a/07 SN1987A in the Large Magellanic Cloud Today, it is exactly twenty years since the explosion of Supernova 1987A in the Large Magellanic Cloud was first observed, at a distance of 163,000 light-years. It was the first naked-eye supernova to be seen for 383 years. Few events in modern astronomy have met with such an enthusiastic response by the scientists and now, after 20 years, it continues to be an extremely exciting object that is further studied by astronomers around the world, in particular using ESO's telescopes. When the first signs of Supernova 1987A, the first supernova of the year 1987, were noticed early on 24 February of that year, it was clear that this would be an unusual event. It was discovered by naked-eye and on a panoramic photographic plate taken with a 10-inch astrograph on Las Campanas in Chile by Oscar Duhalde and Ian Shelton, respectively. A few hours earlier, still on 23 February, two large underground detectors - in Japan and the USA - had registered the passage of high-energy neutrinos. Since SN 1987A exploded in the Large Magellanic Cloud (LMC), it was only accessible to telescopes in the Southern Hemisphere, more particularly in Australia, South Africa, and South America. In Chile, ESO's observatory at La Silla with its armada of telescopes with sizes between 0.5 and 3.6-m, played an important role. ESO PR Photo 08c/07 ESO PR Photo 08c/07 The

  12. Thermal neutron capture cross sections and neutron separation energies for 23Na(n,γ)

    NASA Astrophysics Data System (ADS)

    Firestone, R. B.; Revay, Zs.; Belgya, T.

    2014-01-01

    Prompt thermal neutron capture γ-ray cross sections σγ were measured for the 23Na(n,γ) reaction with guided cold neutron beams at the Budapest Reactor. The 24Na γ-ray cross sections were internally standardized with a stoichiometric NaCl target by using standard 35Cl(n,γ)36Cl γ-ray cross sections. Transitions were assigned to levels in 24Na based primarily upon the known nuclear structure information from the literature, producing a nearly complete neutron capture decay scheme. The total radiative thermal neutron cross section σ0 was determined from the sum of prompt γ-ray cross section populating the ground state as 0.540 (3) b, and from the activation γ-ray cross sections for the decay of 24Na as 0.542 (3) b. The isomer cross section σ0 (23Nam, t1/2=20.20ms)=0.501(3) b and the 24Na neutron separation energy Sn=6959.352(18) keV were also determined in these experiments. New level spins and parities were proposed on the basis of new transition assignments and the systematics of reduced transition probabilities for the primary γ rays.

  13. Hydrogen sensing under ambient conditions using SnO₂ nanowires: synergetic effect of Pd/Sn codeposition.

    PubMed

    Jeong, Seung Ho; Kim, Sol; Cha, Junho; Son, Min Soo; Park, Sang Han; Kim, Ha-Yeong; Cho, Man Ho; Whangbo, Myung-Hwan; Yoo, Kyung-Hwa; Kim, Sung-Jin

    2013-01-01

    Semiconducting SnO2 nanowires deposited with Pd and Sn nanoparticles on their surface are shown to be a highly sensitive hydrogen sensor with fast response time at room temperature. Compared with the SnO2 nanowire deposited with Pd or Sn nanoparticles alone, the Pd/Sn-deposited SnO2 nanowire exhibits a significant improvement in the sensitivity and reversibility of sensing hydrogen gas in the air at room temperature. Our investigation indicates that two factors are responsible for the synergistic effect of Pd/Sn codeposition on SnO2 nanowires. One is that in the presence of Pd the oxidation of Sn nanoparticles on the surface of the SnO2 nanowire is incomplete leading only to suboxides SnOx (1 ≤ x < 2), and the other is that the surface of the Pd/Sn-deposited SnO2 nanowire is almost perfectly hydrophobic. PMID:24224874

  14. Asiago spectroscopic classification of SN 2016eob

    NASA Astrophysics Data System (ADS)

    Ochner, P.; Tomasella, G. Terreran L.; Pastorello, A.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Turatto, M.; Yang, S.

    2016-08-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of SN 2016eob. The transient was discovered by Leonini et al. 2016, TNS Astronomical Transient Report No. 3994, Italian Supernovae Search Project (ISSP), on UT 2016-08-03.11 in the galaxy UGC00005 (2 other supernovae exploded in this host: SN 2000da, SN 2003lq).

  15. Electrodeposition of Sn-Ni Alloy Coatings for Water-Splitting Application from Alkaline Medium

    NASA Astrophysics Data System (ADS)

    Shetty, Sandhya; Hegde, A. Chitharanjan

    2016-09-01

    In this work, Sn-Ni alloy coatings were developed onto the surface of copper from a newly formulated electrolytic bath by a simple and cost-effective electrodeposition technique using gelatin as an additive. The electrocatalytic behavior of coatings deposited at different current densities (c.d.'s) for water-splitting applications, in terms of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), has been researched. The experimental results showed that the electrocatalytic activity of Sn-Ni coatings has a close relationship with its composition, surface morphology, and phase structure depending on the c.d. used, supported by scanning electron microscopy (SEM-EDX) and X-ray diffraction (XRD) analyses. Cyclic voltammetry and chronopotentiometry techniques have demonstrated that Sn-Ni alloy deposited at 4.0 A dm-2 (having 37.6 wt pct Ni) and 1.0 A dm-2 (having 19.6 wt pct Ni) exhibit, respectively, the highest electrocatalytic behavior for HER and OER in 1.0-M KOH solution. Sn-Ni alloy coatings were found to be stable under working conditions of electrolysis, confirmed by electrochemical corrosion tests. High electrocatalytic activity of Sn-Ni alloy coatings for both HER and OER is specific to their composition, surface morphology, and active surface area.

  16. Direct preparation of Cu2ZnSnSe4 films by microwave irradiation and its dependence on the Sn/(Sn + Zn) ratio

    NASA Astrophysics Data System (ADS)

    Kaigawa, Ryuji; Hashimoto, Shintaro; Irago, Tomoki; Klenk, Reiner

    2015-08-01

    Cu2ZnSnSe4 (CZTSe) films with various Sn/(Sn + Zn) ratios were directly prepared on metallic Ti foils by microwave irradiation and their properties were investigated. The Sn/(Sn + Zn) ratio and Cu/(Sn + Zn) ratio of the precursor could be preserved by using a sealed container filled with 0.15 atm of Ar. Single-phase CZTSe crystals with a kesterite (stannite) structure and without by-products were observed with Sn/(Sn + Zn) ratios between 0.4 and 0.6. The hole densities of the Cu-Zn-Sn-Se films are minimal (<1017/cm3) with Sn/(Sn + Zn) ratios ranging from 0.5 to 0.6.

  17. SN 1987A Transforms into SN Remnant 1987A

    NASA Astrophysics Data System (ADS)

    Crotts, Arlin; Heathcote, Stephen; Lawrence, Stephen

    2014-08-01

    The ejecta and circumstellar ring of SN 1987A are colliding violently. Over several years, we have seen radical changes in the circumstellar nebula as it is overrun by high-speed ejecta, giving birth to a supernova remnant (SNR). We have already discovered (and published), via this observational program, new interactions between ejecta and nebula, as several hot spots appearing every year, and see now the whole innermost nebula interacting. This means that observations, especially spectroscopy, of SNR 1987A have entered a new phase in which ground-based observations can reveal the collective behavior of the SNR, especially when combined with HST data. The collision is predicted (and observed) to produce intense IR/optical emission, in new and previously-observed lines. Depending on whether these arise in the ejecta or nebula, and whether shock or EUV-excited, they have linewidths ~10 to 15,000 km/s; frequent moderate- dispersion spectra are required. With the interaction region now enveloping the inner ring, ionizing radiation has started flooding the entire structure. SOAR/Goodman is ideal for this, covering velocity scales, wavelengths and time intervals unavailable to HST, allowing the first ever study of the creation of a nearby SNR. In particular we need timely, good-seeing Goodman spectra of the reverse shock of SN 1987A's circumstellar/ejecta interaction this semester to combine with our scheduled HST/STIS spectra and WFC3 images (in August 2014) and thereby measure of the compositon of deep layers in the SN progenitor star by studying ionic species measurements not seen by HST data alone.

  18. Radio Observations of SN 2006jc

    NASA Astrophysics Data System (ADS)

    Soderberg, Alicia

    2006-10-01

    "I observed the Type Ib SN 2006jc (CBET 666) with the Very Large Array on Oct 14.7 and Oct 15.7 UT as part of an ongoing program to study the radio properties of Type Ibc supernovae. SN 2006jc is not detected at 4.9, 8.5 or 22.5 GHz. At a distance of 24 Mpc, the radio luminosity of SN 2006jc is at least a factor of 100 lower than that of SN 1998bw at a similar epoch (Kulkarni et al., 1998, Nature, 395, 663).

  19. Pseudomorphic GeSn/Ge (001) heterostructures

    SciTech Connect

    Tonkikh, A. A.; Talalaev, V. G.; Werner, P.

    2013-11-15

    The synthesis of pseudomorphic GeSn heterostructures on a Ge (001) substrate by molecular-beam epitaxy is described. Investigations by transmission electron microscopy show that the GeSn layers are defect free and possess cubic diamondlike structure. Photoluminescence spectroscopy reveals interband radiative recombination in the GeSn quantum wells, which is identified as indirect transitions between the subbands of heavy electrons and heavy holes. On the basis of experimental data and modeling of the band structure of pseudomorphic GeSn compounds, the lower boundary of the bowing parameter for the indirect band gap is estimated as b{sub L} {>=} 1.47 eV.

  20. Kondo bahavior in antiferromagnetic NpPdSn

    NASA Astrophysics Data System (ADS)

    Shrestha, K.; Prokes, K.; Griveau, J.-C.; Jardin, R.; Colineau, E.; Caciuffo, R.; Eloirdi, R.; Gofryk, K.

    Actinide-based intermetallics show a large variety of exotic physical phenomena mainly coming from 5f hybridization with both on-site and neighboring ligand states. Depending on the strength of these process unusual behaviors such as long-range magnetic order, Kondo effect, heavy-fermion ground state, valence fluctuations, and/or superconductivity have been observed. Here we report results of our extensive studies on NpPdSn. The compound crystalizes in hexagonal ZrNiAl-type of crystal structure and is studied by means of x-ray and neutron diffraction, magnetization, heat capacity, electrical resistivity, and thermoelectric power measurements, performed over a wide range of temperatures and applied magnetic fields. All the results revealed Kondo lattice behavior and antiferromagnetic ordering below 19 K. NpPdSn can be classified as a moderately enhanced heavy-fermion system, one of very few known amidst Np-based intermetallics. Work at Idaho National Laboratory was supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division.

  1. Axions, SN 1987A, and one pion exchange

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Kang, Ho-Shik; Steigman, Gary

    1988-01-01

    Nucleon-nucleon, axion bremsstrahlung is the primary mechanism for axion emission from the nascent neutron star associated with SN 1987A, and the rate for this process has been calculated in the one pion exchange approximation (OPE). The axion mass limit which follows from SN 1987A, m sub a less than or approx equal to 10 to the -3 eV, is the most stringent astrophysical bound, and has received much scrutiny. It has been suggested that by using OPE to calculate the cross section for the analog process, pp yields pp + pi sup o, and comparing the result of the experimental data one can test the validity of this approximation, and further, that such a comparison indicates that OPE leads to a value for this cross section which is a factor of 30 to 40 too large. If true, this would suggest that the axion mass limit should be revised upward by a factor of approximately 6. The cross section for pp yields pp + pi sup o using OPE is carefully evaluated, and excellent agreement found (to better than a factor of 2) with the experimental data.

  2. Phonon anharmonicity and negative thermal expansion in SnSe

    DOE PAGESBeta

    Bansal, Dipanshu; Hong, Jiawang; Li, Chen W.; May, Andrew F.; Porter, Wallace; Hu, Michael Y.; Abernathy, Douglas L.; Delaire, Olivier

    2016-08-09

    In this paper, the anharmonic phonon properties of SnSe in the Pnma phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy,more » in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. Finally, the origin of the anharmonic phonon thermodynamics is linked to the electronic structure.« less

  3. Phonon anharmonicity and negative thermal expansion in SnSe

    NASA Astrophysics Data System (ADS)

    Bansal, Dipanshu; Hong, Jiawang; Li, Chen W.; May, Andrew F.; Porter, Wallace; Hu, Michael Y.; Abernathy, Douglas L.; Delaire, Olivier

    2016-08-01

    The anharmonic phonon properties of SnSe in the P n m a phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy, in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. The origin of the anharmonic phonon thermodynamics is linked to the electronic structure.

  4. Total and partial cross sections of the 112Sn(α ,γ ) 116Te reaction measured via in-beam γ -ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Netterdon, L.; Mayer, J.; Scholz, P.; Zilges, A.

    2015-03-01

    is found that a model using a local modification of the nuclear-physics input parameters simultaneously reproduces total cross sections of the 112Sn (α ,γ ) and 112Sn (α ,p ) reactions. The measurement of partial cross sections turns out to be very important in this case in order to apply the correct γ -ray strength function in the Hauser-Feshbach calculations. The model also reproduces cross-section values of α -induced reactions on 106Cd , as well as of (α ,n ) reactions on 115 ,116Sn , hinting at a more global character of the obtained nuclear-physics input.

  5. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  6. Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe.

    PubMed

    Tan, Gangjian; Shi, Fengyuan; Hao, Shiqiang; Chi, Hang; Bailey, Trevor P; Zhao, Li-Dong; Uher, Ctirad; Wolverton, Chris; Dravid, Vinayak P; Kanatzidis, Mercouri G

    2015-09-01

    We demonstrate a high solubility limit of >9 mol% for MnTe alloying in SnTe. The electrical conductivity of SnTe decreases gradually while the Seebeck coefficient increases remarkably with increasing MnTe content, leading to enhanced power factors. The room-temperature Seebeck coefficients of Mn-doped SnTe are significantly higher than those predicted by theoretical Pisarenko plots for pure SnTe, indicating a modified band structure. The high-temperature Hall data of Sn1-xMnxTe show strong temperature dependence, suggestive of a two-valence-band conduction behavior. Moreover, the peak temperature of the Hall plot of Sn1-xMnxTe shifts toward lower temperature as MnTe content is increased, which is clear evidence of decreased energy separation (band convergence) between the two valence bands. The first-principles electronic structure calculations based on density functional theory also support this point. The higher doping fraction (>9%) of Mn in comparison with ∼3% for Cd and Hg in SnTe gives rise to a much better valence band convergence that is responsible for the observed highest Seebeck coefficient of ∼230 μV/K at 900 K. The high doping fraction of Mn in SnTe also creates stronger point defect scattering, which when combined with ubiquitous endotaxial MnTe nanostructures when the solubility of Mn is exceeded scatters a wide spectrum of phonons for a low lattice thermal conductivity of 0.9 W m(-1) K(-1) at 800 K. The synergistic role that Mn plays in regulating the electron and phonon transport of SnTe yields a high thermoelectric figure of merit of 1.3 at 900 K. PMID:26308902

  7. Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe.

    PubMed

    Tan, Gangjian; Shi, Fengyuan; Hao, Shiqiang; Chi, Hang; Bailey, Trevor P; Zhao, Li-Dong; Uher, Ctirad; Wolverton, Chris; Dravid, Vinayak P; Kanatzidis, Mercouri G

    2015-09-01

    We demonstrate a high solubility limit of >9 mol% for MnTe alloying in SnTe. The electrical conductivity of SnTe decreases gradually while the Seebeck coefficient increases remarkably with increasing MnTe content, leading to enhanced power factors. The room-temperature Seebeck coefficients of Mn-doped SnTe are significantly higher than those predicted by theoretical Pisarenko plots for pure SnTe, indicating a modified band structure. The high-temperature Hall data of Sn1-xMnxTe show strong temperature dependence, suggestive of a two-valence-band conduction behavior. Moreover, the peak temperature of the Hall plot of Sn1-xMnxTe shifts toward lower temperature as MnTe content is increased, which is clear evidence of decreased energy separation (band convergence) between the two valence bands. The first-principles electronic structure calculations based on density functional theory also support this point. The higher doping fraction (>9%) of Mn in comparison with ∼3% for Cd and Hg in SnTe gives rise to a much better valence band convergence that is responsible for the observed highest Seebeck coefficient of ∼230 μV/K at 900 K. The high doping fraction of Mn in SnTe also creates stronger point defect scattering, which when combined with ubiquitous endotaxial MnTe nanostructures when the solubility of Mn is exceeded scatters a wide spectrum of phonons for a low lattice thermal conductivity of 0.9 W m(-1) K(-1) at 800 K. The synergistic role that Mn plays in regulating the electron and phonon transport of SnTe yields a high thermoelectric figure of merit of 1.3 at 900 K.

  8. Band Gap Variation of CdInSe and CdZnS Fabricated by High Throughput Combinatorial Growth Technique

    NASA Astrophysics Data System (ADS)

    Ma, Z. X.; Hao, H. Y.; Xiao, P.; Oehlerking, L. J.; Liu, D. F.; Zhang, X. J.; Yu, K.-M.; Walukiewicz, W.; Mao, S. S.; Yu, P. Y.; Liu, Lei; Yu, Peter Y.

    2011-12-01

    High energy radiation detector operating at room temperature requires the semiconductors having band-gap energies in the range of 1.35 ˜ 2.5 eV, high Z and high carrier mobility-lifetime (μτ) product. We report here the screening of the band-gap energies of compound semiconductor CdIn2Se4 and ZnCdS doped with Sn and In, prepared by high throughput combinatorial growth technique. It is found that the band-gap energies decrease as [Cd] decreases in Cd1-xIn2+2xSe4+2x, and as In or Sn elements are incorporated in ZnxCd1-xS. For both libraries, the μτ can reach a value on the order of 10-4 cm2/V. These results have demonstrated the strong capability of the combinatorial growth technique in rapid material discovery for room temperature radiation detector applications.

  9. Search for double beta decay of 116Cd with enriched 116CdWO4 crystal scintillators (Aurora experiment)

    NASA Astrophysics Data System (ADS)

    Danevich, F. A.; Barabash, A. S.; Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D. M.; d’Angelo, S.; Incicchitti, A.; Kobychev, V. V.; Konovalov, S. I.; Laubenstein, M.; Mokina, V. M.; Poda, D. V.; Polischuk, O. G.; Shlegel, V. N.; Tretyak, V. I.; Umatov, V. I.

    2016-05-01

    The Aurora experiment to investigate double beta decay of 116 Cd with the help of 1.162 kg cadmium tungstate crystal scintillators enriched in 116 Cd to 82% is in progress at the Gran Sasso Underground Laboratory. The half-life of 116 Cd relatively to the two neutrino double beta decay is measured with the highest up-to-date accuracy T1/2 = (2.62 ± 0.14) × 1019 yr. The sensitivity of the experiment to the neutrinoless double beta decay of 116 Cd to the ground state of 116 Sn is estimated as T1/2 ≥ 1.9 × 1023 yr at 90% CL, which corresponds to the effective Majorana neutrino mass limit (mv) ≤ (1.2 — 1.8) eV. New limits are obtained for the double beta decay of 116 Cd to the excited levels of 116 Sn, and for the neutrinoless double beta decay with emission of majorons.

  10. NEUTRONIC REACTOR

    DOEpatents

    Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

    1958-09-01

    This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

  11. Thin-film CdTe photovoltaic cells by laser deposition and rf sputtering

    NASA Astrophysics Data System (ADS)

    Compaan, A.; Bohn, R. G.; Bhat, A.; Tabory, C.; Shao, M.; Li, Y.; Savage, M. E.; Tsien, L.

    1992-12-01

    Laser-driven physical vapor deposition (LDPVD) and radio-frequency (rf) sputtering have been used to fabricate thin-film solar cells on SnO2-coated glass substrates. The laser-ablation process readily permits the use of several target materials in the same vacuum chamber and complete solar cell structures have been fabricated on SnO2-coated glass using LDPVD for the CdS, CdTe, and CdCl2. To date the best devices (˜9% AM1.5) have been obtained after a post-deposition anneal at 400 °C. In addition, cells have been fabricated with the combination of LDPVD CdS, rf-sputtered CdTe, and LDPVD CdCl2. The performance of these cells indicates considerable promise for the potential of rf sputtering for CdTe photovoltaic devices. The physical mechanisms of LDPVD have been studied by transient optical spectroscopy on the laser ablation plume. These measurements have shown that, e.g., Cd is predominantly in the neutral atomic state in the plume but with a large fraction which is highly excited internally (≥6 eV) and that the typical neutral Cd translational kinetic energies perpendicular to the target are 20 eV and greater. Quality of as-grown and annealed films has been analyzed by optical absorption. Raman scattering, photoluminescence, electrical conductivity, Hall effect, x-ray diffraction, and SEM/EDS.

  12. Position sensitive detection of neutrons in high radiation background field

    SciTech Connect

    Vavrik, D.; Jakubek, J.; Pospisil, S.; Vacik, J.

    2014-01-15

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e{sup −} radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm{sup 2}) spectroscopic Timepix detector adapted for neutron detection utilizing very thin {sup 10}B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10{sup −4}.

  13. Spectral fluence of neutrons generated by radiotherapeutic linacs.

    PubMed

    Králík, Miloslav; Šolc, Jaroslav; Vondráček, Vladimir; Šmoldasová, Jana; Farkašová, Estera; Tichá, Ivana

    2015-02-01

    Spectral fluences of neutrons generated in the heads of the radiotherapeutic linacs Varian Clinac 2100 C/D and Siemens ARTISTE were measured by means of the Bonner spheres spectrometer whose active detector of thermal neutrons was replaced by an activation detector, i.e. a tablet made of pure manganese. Measurements with different collimator settings reveal an interesting dependence of neutron fluence on the area defined by the collimator jaws. The determined neutron spectral fluences were used to derive ambient dose equivalent rate along the treatment coach. To clarify at which components of the linac neutrons are mainly created, the measurements were complemented with MCNPX calculations based on a realistic model of the Varian Clinac.

  14. A toolkit for epithermal neutron beam characterisation in BNCT.

    PubMed

    Auterinen, Iiro; Serén, Tom; Uusi-Simola, Jouni; Kosunen, Antti; Savolainen, Sauli

    2004-01-01

    Methods for dosimetry of epithermal neutron beams used in boron neutron capture therapy (BNCT) have been developed and utilised within the Finnish BNCT project as well as within a European project for a code of practise for the dosimetry of BNCT. One outcome has been a travelling toolkit for BNCT dosimetry. It consists of activation detectors and ionisation chambers. The free-beam neutron spectrum is measured with a set of activation foils of different isotopes irradiated both in a Cd-capsule and without it. Neutron flux (thermal and epithermal) distribution in phantoms is measured using activation of Mn and Au foils, and Cu wire. Ionisation chamber (IC) measurements are performed both in-free-beam and in-phantom for determination of the neutron and gamma dose components. This toolkit has also been used at other BNCT facilities in Europe, the USA, Argentina and Japan.

  15. Neutron streak camera

    DOEpatents

    Wang, Ching L.

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  16. Layered semiconductor neutron detectors

    DOEpatents

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  17. Neutron streak camera

    DOEpatents

    Wang, C.L.

    1981-05-14

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  18. Neutron streak camera

    DOEpatents

    Wang, C.L.

    1983-09-13

    Disclosed is an apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon. 4 figs.

  19. Organic metal neutron detector

    DOEpatents

    Butler, M.A.; Ginley, D.S.

    1984-11-21

    A device for detection of neutrons comprises: as an active neutron sensing element, a conductive organic polymer having an electrical conductivity and a cross-section for said neutrons whereby a detectable change in said conductivity is caused by impingement of said neutrons on the conductive organic polymer which is responsive to a property of said polymer which is altered by impingement of said neutrons on the polymer; and means for associating a change in said alterable property with the presence of neutrons at the location of said device.

  20. Neutronic Reactor Design to Reduce Neutron Loss

    DOEpatents

    Miles, F. T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall. The wall is surrounded by successive layers of pure fertile material and moderator containing fertile material. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. Since the steel has a smaller capture cross section for the fast neutrons, greater nunnbers of neutrons will pass into the blanket, thereby increasing the over-all efficiency of the reactor. (AEC)

  1. NEUTRONIC REACTOR DESIGN TO REDUCE NEUTRON LOSS

    DOEpatents

    Mills, F.T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall which is surrounded by successive layers of pure fertile material and fertile material having moderator. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. As the steel has a smaller capture cross-section for the fast neutrons, then greater numbers of the neutrons will pass into the blanket thereby increasing the over-all efficiency of the reactor.

  2. Yrast 6⁺ seniority isomers of (136,138)Sn.

    PubMed

    Simpson, G S; Gey, G; Jungclaus, A; Taprogge, J; Nishimura, S; Sieja, K; Doornenbal, P; Lorusso, G; Söderström, P-A; Sumikama, T; Xu, Z Y; Baba, H; Browne, F; Fukuda, N; Inabe, N; Isobe, T; Jung, H S; Kameda, D; Kim, G D; Kim, Y-K; Kojouharov, I; Kubo, T; Kurz, N; Kwon, Y K; Li, Z; Sakurai, H; Schaffner, H; Shimizu, Y; Suzuki, H; Takeda, H; Vajta, Z; Watanabe, H; Wu, J; Yagi, A; Yoshinaga, K; Bönig, S; Daugas, J-M; Drouet, F; Gernhäuser, R; Ilieva, S; Kröll, T; Montaner-Pizá, A; Moschner, K; Mücher, D; Naïdja, H; Nishibata, H; Nowacki, F; Odahara, A; Orlandi, R; Steiger, K; Wendt, A

    2014-09-26

    Delayed γ-ray cascades, originating from the decay of (6⁺) isomeric states, in the very neutron-rich, semimagic isotopes (136,138)Sn have been observed following the projectile fission of a ²³⁸U beam at RIBF, RIKEN. The wave functions of these isomeric states are proposed to be predominantly a fully aligned pair of f(7/2) neutrons. Shell-model calculations, performed using a realistic effective interaction, reproduce well the energies of the excited states of these nuclei and the measured transition rates, with the exception of the B(E2;6⁺→4⁺) rate of ¹³⁶Sn, which deviates from a simple seniority scheme. Empirically reducing the νf(7/2)(2) orbit matrix elements produces a 4₁⁺ state with almost equal seniority 2 and 4 components, correctly reproducing the experimental B(E2;6⁺→4⁺) rate of ¹³⁶Sn. These data provide a key benchmark for shell-model interactions far from stability. PMID:25302883

  3. Pygmy dipole resonances as a manifestation of the structure of the neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Tsoneva, N.; Lenske, H.; Stoyanov, Ch.

    2004-02-01

    Dipole excitations in neutron-rich nuclei below the neutron threshold are investigated. The method is based on Hartree-Fock-Bogoliubov (HFB) and Quasiparticle-Phonon Model (QPM) theory. Of our special interest are the properties of the low-lying 1 -Pygmy Resonance and the two-phonon quadrupole-octupole 1 - states in Sn-isotopes including exploratory investigations for the experimentally unknown mass regions. In particular we investigate the evolution of the dipole strength function with the neutron excess. The use of HFB mean-field potentials and s.p. energies is found to provide a reliable extrapolation into the region off stability.

  4. CD8+ CD28− and CD8+ CD57+ T cells and their role in health and disease

    PubMed Central

    Strioga, Marius; Pasukoniene, Vita; Characiejus, Dainius

    2011-01-01

    Chronic antigenic stimulation leads to gradual accumulation of late-differentiated, antigen-specific, oligoclonal T cells, particularly within the CD8+ T-cell compartment. They are characterized by critically shortened telomeres, loss of CD28 and/or gain of CD57 expression and are defined as either CD8+CD28− or CD8+CD57+ T lymphocytes. There is growing evidence that the CD8+CD28− (CD8+CD57+) T-cell population plays a significant role in various diseases or conditions, associated with chronic immune activation such as cancer, chronic intracellular infections, chronic alcoholism, some chronic pulmonary diseases, autoimmune diseases, allogeneic transplantation, as well as has a great influence on age-related changes in the immune system status. CD8+CD28− (CD8+CD57+) T-cell population is heterogeneous and composed of various functionally competing (cytotoxic and immunosuppressive) subsets thus the overall effect of CD8+CD28− (CD8+CD57+) T-cell-mediated immunity depends on the predominance of a particular subset. Many articles claim that CD8+CD28− (CD8+CD57+) T cells have lost their proliferative capacity during process of replicative senescence triggered by repeated antigenic stimulation. However recent data indicate that CD8+CD28− (CD8+CD57+) T cells can transiently up-regulate telomerase activity and proliferate under certain stimulation conditions. Similarly, conflicting data is provided regarding CD8+CD28− (CD8+CD57+) T-cell sensitivity to apoptosis, finally leading to the conclusion that this T-cell population is also heterogeneous in terms of its apoptotic potential. This review provides a comprehensive approach to the CD8+CD28− (CD8+CD57+) T-cell population: we describe in detail its origins, molecular and functional characteristics, subsets, role in various diseases or conditions, associated with persistent antigenic stimulation. PMID:21711350

  5. Recurring X-ray outbursts in the supernova impostor SN 2010da in NGC 300

    NASA Astrophysics Data System (ADS)

    Binder, B.; Williams, B. F.; Kong, A. K. H.; Gaetz, T. J.; Plucinsky, P. P.; Skillman, E. D.; Dolphin, A.

    2016-04-01

    We present new observations of the `supernova impostor' SN 2010da using the Chandra X-ray Observatory and the Hubble Space Telescope. During the initial 2010 outburst, the 0.3-10 keV luminosity was observed by Swift to be ˜5 × 1038 erg s-1 and faded by a factor of ˜25 in a four month period. Our two new Chandra observations show a factor of ˜10 increase in the 0.35-8 keV X-ray luminosity, from ˜4 × 1036 to 4 × 1037 erg s-1 in ˜6 months, and the X-ray spectrum is consistent in both observations with a power-law with a photon index of Γ ˜ 0. We find evidence of X-ray spectral state changes: when SN 2010da is in a high-luminosity state, the X-ray spectrum is harder (Γ ˜0) compared to the low-luminosity state (Γ ˜ 1.2 ± 0.8). Using our Hubble observations, we fit the colour-magnitude diagram of the coeval stellar population to estimate a time since formation of the SN 2010da progenitor system of ≲5 Myr. Our observations are consistent with SN 2010da being a high-mass X-ray binary (HMXB) composed of a neutron star and a luminous blue variable-like companion, although we cannot rule out the possibility that SN 2010da is an unusually X-ray bright massive star. The ≲5 Myr age is consistent with the theoretically predicted delay time between the formation of a massive binary and the onset of the HMXB phase. It is possible that the initial 2010 outburst marked the beginning of X-ray production in the system, making SN 2010da possibly the first massive progenitor binary ever observed to evolve into an HMXB.

  6. Calorimetric studies of Cu-Li, Li-Sn, and Cu-Li-Sn.

    PubMed

    Fürtauer, S; Tserenjav, E; Yakymovych, A; Flandorfer, H

    2013-06-01

    Integral molar enthalpies of mixing were determined by drop calorimetry for Cu-Li-Sn at 1073 K along five sections xCu/xSn ≈ 1:1, xCu/xSn ≈ 2:3, xCu/xSn ≈ 1:4, xLi/xSn ≈ 1:1, and xLi/xSn ≈ 1:4. The integral and partial molar mixing enthalpies of Cu-Li and Li-Sn were measured at the same temperature, for Li-Sn in addition at 773 K. All binary data could be described by Redlich-Kister-polynomials. Cu-Li shows an endothermic mixing effect with a maximum in the integral molar mixing enthalpy of ∼5300 J · mol(-1) at xCu = 0.5, Li-Sn an exothermic minimum of ∼ -37,000 J · mol(-1) at xSn ∼ 0.2. For Li-Sn no significant temperature dependence between 773 K and 1073 K could be deduced. Our measured ternary data were fitted on the basis of an extended Redlich-Kister-Muggianu model for substitutional solutions. Additionally, a comparison of these results to the extrapolation model of Chou is given.

  7. Calorimetric studies of Cu–Li, Li–Sn, and Cu–Li–Sn

    PubMed Central

    Fürtauer, S.; Tserenjav, E.; Yakymovych, A.; Flandorfer, H.

    2013-01-01

    Integral molar enthalpies of mixing were determined by drop calorimetry for Cu–Li–Sn at 1073 K along five sections xCu/xSn ≈ 1:1, xCu/xSn ≈ 2:3, xCu/xSn ≈ 1:4, xLi/xSn ≈ 1:1, and xLi/xSn ≈ 1:4. The integral and partial molar mixing enthalpies of Cu–Li and Li–Sn were measured at the same temperature, for Li–Sn in addition at 773 K. All binary data could be described by Redlich–Kister-polynomials. Cu–Li shows an endothermic mixing effect with a maximum in the integral molar mixing enthalpy of ∼5300 J · mol−1 at xCu = 0.5, Li–Sn an exothermic minimum of ∼ −37,000 J · mol−1 at xSn ∼ 0.2. For Li–Sn no significant temperature dependence between 773 K and 1073 K could be deduced. Our measured ternary data were fitted on the basis of an extended Redlich–Kister–Muggianu model for substitutional solutions. Additionally, a comparison of these results to the extrapolation model of Chou is given. PMID:23814314

  8. Structural and electronic properties of Sn overlayers and {Pd}/{Sn} surface alloys on Pd(111)

    NASA Astrophysics Data System (ADS)

    Lee, Adam F.; Baddeley, Christopher J.; Tikhov, Mintcho S.; Lambert, Richard M.

    1997-03-01

    The first two layers of Sn deposited on Pd(111) at 300 K grow in layer-by-layer fashion after which crystallite formation commences. The electronic properties of these overlayers are dependent on the size of the 3D Sn islands. The occurrence of Sn→Pd valence charge-transfer is inferred, due allowance being made for initial and final state effects in the photoemission data. Evidence is presented for a significant Pd surface core-level shift enhancement by Sn of ≈0.7 eV. Depending on the initial Sn loading, heating generates stable monolayer (Pd 2Sn) or multilayer (Pd 3Sn) surface alloys exhibiting √3 and (2 × 2) periodicities, respectively. The very different CO adsorption capacity of these two phases indicates that on {Pd}/{Sn} alloy surfaces, only pure Pd threefold hollow-sites are capable of strongly chemisorbing CO.

  9. Neutron anatomy

    SciTech Connect

    Bacon, G.E.

    1994-12-31

    The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content - the crystals of the hexagonal hydroxyapatite - and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilizing distances ranging from 1mm to 10mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals - including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighboring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction for a sample of bone.

  10. Recent neutron scattering results from Gd-based pyrochlore oxides

    NASA Astrophysics Data System (ADS)

    Gardner, Jason

    2009-03-01

    In my presentation I will present recent results that have determined the spin-spin correlations in the geometrically frustrated magnets Gd2Sn2O7 and Gd2Ti2O7. This will include polarised neutron diffraction, inelastic neutron scattering and neutron spin echo data. One sample of particular interest is Gd2Sn2O7 which is believed to be a good approximation to a Heisenberg antiferromagnet on a pyrochlore lattice with exchange and dipole-dipole interactions. Theoretically such a system is expected to enter long range ordered ground state known as the ``Palmer Chalker'' state [1]. We show conclusively, through neutron scattering data, that the system indeed enters an ordered state with the Palmer-Chalker spin configuration below Tc = 1 K [2-3]. Within this state we have also observed long range collective spin dynamics, spin waves. This work has been performed in collaboration with many research groups including G. Ehlers (SNS), R. Stewart (ISIS). [0pt] [1] S. E. Palmer and J. T. Chalker, Phys. Rev. B 62, 488 (2000). [0pt] [2] J. R. Stewart, G. Ehlers, A. S. Wills, S. T. Bramwell, and J. S. Gardner, J. Phys.: Condens. Matter 16, L321 (2004). [0pt] [3] J R Stewart, J S Gardner, Y. Qiu and G Ehlers, Phys. Rev. B. 78, 132410 (2008)

  11. Electrodeposition of nanostructured Sn-Zn coatings

    NASA Astrophysics Data System (ADS)

    Salhi, Y.; Cherrouf, S.; Cherkaoui, M.; Abdelouahdi, K.

    2016-03-01

    The electrodeposition of Sn-Zn coating at ambient temperature was investigated. The bath consists of metal salts SnCl2·2H2O and ZnSO4·7H2O and sodium citrate (NaC6H5Na3O7·2H2O) as complexing agent. To prevent precipitation, the pH is fixed at 5. Reducing tin and zinc through Sncit2- and ZnHcit- complex respectively is confirmed by the presence of two cathodic peaks on the voltammogram. The kinetic of tin (II) reduction process is limited by the SnCit2- dissociation. The SEM and TEM observations have showed that the coating consists of a uniform Sn-Zn layer composed of fine grains on which tin aggregates grow up. XRD revealed peaks corresponding to the hexagonal Zn phase and the tetragonal β-Sn phase.

  12. Characterisation of in-situ thermally evaporated {CdS}/{CdTe} thin film solar cells with NiP back contacts

    NASA Astrophysics Data System (ADS)

    Duke, S.; Miles, R. W.; Pande, P. C.; Spoor, S.; Ghosh, B.; Datta, P. K.; Carter, M. J.; Hill, R.

    1996-02-01

    {CdS}/{CdTe} thin film solar cells have been produced using the in-situ thermal evaporation of CdS followed by CdTe onto SnO 2 coated glass substrates and a novel contact material, NiP, used to make contact to the p-CdTe. The specific contact resistivity of this contact to p-CdTe was found to be reduced to 0.08-0.01 Ω · cm 2 for an optimum annealing temperature of 250°C, the behaviour corresponding to a reduction in the percent of P in the NiP contact and an increase in photocurrent for illuminated CdS/CdTe/NiP solar cells. Photocapacitance data for such solar cells depended strongly on whether or not the devices had been given a CdCl 2 heat treatment prior to contact formation, the heat treatment eliminating deep states within the CdTe. Shallow levels with depths of 0.10, 0.21 and 0.38 eV were observed for the untreated samples and shallow levels with depths of 0.04, 0.08, 0.15 and 0.21 eV for the CdCl 2 treated samples.

  13. Dose equivalent neutron dosimeter

    DOEpatents

    Griffith, Richard V.; Hankins, Dale E.; Tomasino, Luigi; Gomaa, Mohamed A. M.

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  14. Ultrafast neutron detector

    DOEpatents

    Wang, C.L.

    1985-06-19

    A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

  15. On neutron surface waves

    SciTech Connect

    Ignatovich, V. K.

    2009-01-15

    It is shown that neutron surface waves do not exist. The difference between the neutron wave mechanics and the wave physics of electromagnetic and acoustic processes, which allows the existence of surface waves, is analyzed.

  16. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  17. Pulsed-neutron monochromator

    DOEpatents

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  18. Pulsed-neutron monochromator

    DOEpatents

    Mook, Jr., Herbert A.

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  19. ULTRASONIC NEUTRON DOSIMETER

    DOEpatents

    Truell, R.; de Klerk, J.; Levy, P.W.

    1960-02-23

    A neutron dosimeter is described which utilizes ultrasonic waves in the megacycle region for determination of the extent of neutron damage in a borosilicate glass through ultrasonic wave velocity and attenuation measurements before and after damage.

  20. Restoration of the N=82 Shell Gap from Direct Mass Measurements of {sup 132,134}Sn

    SciTech Connect

    Dworschak, M.; Herfurth, F.; Yazidjian, C.; Audi, G.; Lunney, D.; Blaum, K.; Delahaye, P.; Herlert, A.; George, S.; Hager, U.; Kellerbauer, A.; Kluge, H.-J.; Schweikhard, L.

    2008-02-22

    A high-precision direct Penning trap mass measurement has revealed a 0.5-MeV deviation of the binding energy of {sup 134}Sn from the currently accepted value. The corrected mass assignment of this neutron-rich nuclide restores the neutron-shell gap at N=82, previously considered to be a case of ''shell quenching.'' In fact, the new shell gap value for the short-lived {sup 132}Sn is larger than that of the doubly magic {sup 48}Ca which is stable. The N=82 shell gap has considerable impact on fission recycling during the r process. More generally, the new finding has important consequences for microscopic mean-field theories which systematically deviate from the measured binding energies of closed-shell nuclides.

  1. Intense fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  2. Dibaryons in neutron stars

    NASA Technical Reports Server (NTRS)

    Olinto, Angela V.; Haensel, Pawel; Frieman, Joshua A.

    1991-01-01

    The effects are studied of H-dibaryons on the structure of neutron stars. It was found that H particles could be present in neutron stars for a wide range of dibaryon masses. The appearance of dibaryons softens the equations of state, lowers the maximum neutron star mass, and affects the transport properties of dense matter. The parameter space is constrained for dibaryons by requiring that a 1.44 solar mass neutron star be gravitationally stable.

  3. Non-collinearity and spin frustration in the itinerant kagome ferromagnet Fe(3)Sn(2).

    PubMed

    Fenner, L A; Dee, A A; Wills, A S

    2009-11-11

    Frustrated itinerant ferromagnets, with non-collinear static spin structures, are an exciting class of material as their spin chirality can introduce a Berry phase in the electronic scattering and lead to exotic electronic phenomena such as the anomalous Hall effect (AHE). This study presents a reexamination of the magnetic properties of Fe(3)Sn(2), a metallic ferromagnet, based on the two-dimensional kagome bilayer structure. Previously thought of as a conventional ferromagnet, we show using a combination of SQUID (superconducting quantum interference device) measurements, symmetry analysis and powder neutron diffraction that Fe(3)Sn(2) is a frustrated ferromagnet with a temperature-dependent non-collinear spin structure. The complexity of the magnetic interactions is further evidenced by a re-entrant spin glass transition ([Formula: see text] K) at temperatures far below the main ferromagnetic transition (T(C) = 640 K). Fe(3)Sn(2) therefore provides a rare example of a frustrated itinerant ferromagnet. Further, as well as being of great fundamental interest our studies highlight the potential of Fe(3)Sn(2) for practical application in spintronics technology, as the AHE arising from the ferromagnetism in this material is expected to be enhanced by the coupling between the conduction electrons and the non-trivial magnetic structure over an exceptionally wide temperature range.

  4. The application of catalyst-recovered SnO2 as an anode material for lithium secondary batteries.

    PubMed

    Ryu, Da-Jeong; Jung, Hee-Won; Lee, Sung-Hun; Park, Da-Jeong; Ryu, Kwang-Sun

    2016-08-01

    We studied the electrochemical characteristics of tin dioxide (SnO2) recovered from waste catalyst material which had been previously used in a polymer synthesis reaction. In order to improve the electrochemical performance of the SnO2 anode electrode, we synthesized a nanocomposite of recovered SnO2 and commercial iron oxide (Fe2O3) (weight ratio 95:5) using a solid state method. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) analyses revealed an additional iron oxide phase within a porous nanocomposite architecture. The electrochemical characterizations were based on galvanostatic charge-discharge (CD) curves, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). In the first discharge, the capacity of the SnO2-Fe2O3 nanocomposite was 1700 mAh g(-1), but was reduced to about 1200 mAh g(-1) in the second discharge. Thereafter, a discharge capacity of about 1000 mAh g(-1)was maintained up to the 20th cycle. The SnO2-Fe2O3 nanocomposite showed better reversible capacities and rate capabilities than either the recovered SnO2 or commercial Fe2O3 nanoparticle samples. PMID:27083904

  5. Fabrication of Cu2SnS3 solar cells by screen-printing and high-pressure sintering process

    NASA Astrophysics Data System (ADS)

    Nomura, Takeshi; Maeda, Tsuyoshi; Wada, Takahiro

    2014-01-01

    Cu-poor Cu2-xSnS3 (CTS) powders with x = 0.0-0.3 prepared by mixing the elemental powders and post-heating at 600 °C in N2 gas were analyzed by X-ray diffraction and ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy. The area of the solid solution region in the Cu-poor side of CTS was quite small in the Cu2S-SnS2 pseudo-binary system. We deposited CTS films by a screen printing and high-pressure sintering (PHS) process and post-annealing at 575 °C for 10 min under a 1% H2S/N2 gas atmosphere. The solar cells were fabricated with a device structure of Ag/indium tin oxide (ITO)/i-ZnO/CdS/Cu2SnS3 (CTS)/Mo/soda-lime glass. The CTS solar cell with x = 0.1 showed maximum efficiency of 1.03%. Then, we prepared Cu1.9SnS3 powders by mixing the elemental powders and post-heating at various temperatures. The CTS solar cell with Cu1.9SnS3 powder prepared by post-heating at 300 °C showed an efficiency of 1.38% with Voc of 182 mV, Jsc of 21.7 mA/cm2, and FF of 0.350.

  6. Beta-Delayed Neutron Spectroscopy Using VANDLE at CARIBU

    NASA Astrophysics Data System (ADS)

    Taylor, S.; Kolos, K.; Grzywacz, R.; Paulauskas, S. V.; Madurga, M.; Savard, G.; Brewer, N. T.; Vandle Collaboration

    2015-10-01

    Measurement of spectroscopic information on beta-delayed neutrons of neutron rich fission fragments is of interest to the areas of astrophysics, reactor design, nuclear structure and stockpile stewardship. Using the Time of Flight (TOF) method, the Versatile Array of Neutron Detectors at Low Energy(VANDLE)[1,2,3] measured fission fragments of 252Cf provided by CARIBU at Argonne National Lab. 135,136Sb and 85As isotopes were measured to explore the nuclear structure around doubly magic nuclei 132Sn and 78Ni. A new TOF start detector was developed for this experiment using new Silicon Photo-Multipliers from SensL to allow for a lower beta particle energy detection threshold and better timing resolution compared to previous VANDLE experiments. This work is funded by the U.S. Department of Energy NNSA under the Stewardship Science Academic Alliance program through DOE Cooperative Agreement No. DE-FG52-08NA28552.

  7. Arsenic activation neutron detector

    DOEpatents

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  8. Arsenic activation neutron detector

    DOEpatents

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  9. Perforated diode neutron sensors

    NASA Astrophysics Data System (ADS)

    McNeil, Walter J.

    A novel design of neutron sensor was investigated and developed. The perforated, or micro-structured, diode neutron sensor is a concept that has the potential to enhance neutron sensitivity of a common solid-state sensor configuration. The common thin-film coated diode neutron sensor is the only semiconductor-based neutron sensor that has proven feasible for commercial use. However, the thin-film coating restricts neutron counting efficiency and severely limits the usefulness of the sensor. This research has shown that the perforated design, when properly implemented, can increase the neutron counting efficiency by greater than a factor of 4. Methods developed in this work enable detectors to be fabricated to meet needs such as miniaturization, portability, ruggedness, and adaptability. The new detectors may be used for unique applications such as neutron imaging or the search for special nuclear materials. The research and developments described in the work include the successful fabrication of variant perforated diode neutron detector designs, general explanations of fundamental radiation detector design (with added focus on neutron detection and compactness), as well as descriptive theory and sensor design modeling useful in predicting performance of these unique solid-state radiation sensors. Several aspects in design, fabrication, and operational performance have been considered and tested including neutron counting efficiency, gamma-ray response, perforation shapes and depths, and silicon processing variations. Finally, the successfully proven technology was applied to a 1-dimensional neutron sensor array system.

  10. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  11. LGB neutron detector

    NASA Astrophysics Data System (ADS)

    Quist, Nicole

    2012-10-01

    The double pulse signature of the Gadolinium Lithium Borate Cerium doped plastic detector suggests its effectiveness for analyzing neutrons while providing gamma ray insensitivity. To better understand this detector, a californium gamma/neutron time of flight facility was constructed in our lab. Reported here are efforts to understand the properties and applications of the LGB detector with regards to neutron spectroscopy.

  12. Direct observation of Sn crystal growth during the lithiation and delithiation processes of SnO(2) nanowires.

    PubMed

    Zhang, Li Qiang; Liu, Xiao Hua; Perng, Ya-Chuan; Cho, Jea; Chang, Jane P; Mao, Scott X; Ye, Zhi Zhen; Huang, Jian Yu

    2012-11-01

    Tin (Sn) crystal growth on Sn-based anodes in lithium ion batteries is hazardous for reasons such as possible short-circuit failure by Sn whiskers and Sn-catalyzed electrolyte decomposition, but the growth mechanism of Sn crystals during battery cycling is not clear. Here we report different growth mechanisms of Sn crystal during the lithiation and delithiation processes of SnO(2) nanowires revealed by in situ transmission electron microscopy (TEM). Large spherical Sn nanoparticles with sizes of 20-200nm grew instantaneously upon lithiation of a single-crystalline SnO(2) nanowire at large current density (j>20A/cm(2)), which suppressed formation of the Li(x)Sn alloy but promoted agglomeration of Sn atoms. Control experiments of Joule-heating (j≈2400A/cm(2)) the pristine SnO(2) nanowires resulted in melting of the SnO(2) nanowires but not Sn particle growth, indicating that the abnormal Sn particle growth was induced by both chemical reduction (i.e., breaking the SnO(2) lattice to produce Sn atoms) and agglomeration of the Sn atoms assisted by Joule heating. Intriguingly, Sn crystals grew out of the nanowire surface via a different "squeeze-out" mechanism during delithiation of the lithiated SnO(2) nanowires coated with an ultra-thin solid electrolyte LiAlSiO(x) layer. It is attributed to the negative stress gradient generated by the fast Li extraction in the surface region through the Li(+)-conducting LiAlSiO(x) layer. Our previous studies showed that Sn precipitation does not occur in the carbon-coated SnO(2) nanowires, highlighting the effect of nanoengineering on tailoring the electrochemical reaction kinetics to suppress the hazardous Sn whiskers or nanoparticles formation in a lithium ion battery. PMID:22770619

  13. SN1987A's Twentieth Anniversary

    NASA Astrophysics Data System (ADS)

    2007-02-01

    Looking back at 20 Years of Observations of this Supernova with ESO telescopes The unique supernova SN 1987A has been a bonanza for astrophysicists. It provided several observational 'firsts,' like the detection of neutrinos from an exploding star, the observation of the progenitor star on archival photographic plates, the signatures of a non-spherical explosion, the direct observation of the radioactive elements produced during the blast, observation of the formation of dust in the supernova, as well as the detection of circumstellar and interstellar material. ESO PR Photo 08a/07 ESO PR Photo 08a/07 SN1987A in the Large Magellanic Cloud Today, it is exactly twenty years since the explosion of Supernova 1987A in the Large Magellanic Cloud was first observed, at a distance of 163,000 light-years. It was the first naked-eye supernova to be seen for 383 years. Few events in modern astronomy have met with such an enthusiastic response by the scientists and now, after 20 years, it continues to be an extremely exciting object that is further studied by astronomers around the world, in particular using ESO's telescopes. When the first signs of Supernova 1987A, the first supernova of the year 1987, were noticed early on 24 February of that year, it was clear that this would be an unusual event. It was discovered by naked-eye and on a panoramic photographic plate taken with a 10-inch astrograph on Las Campanas in Chile by Oscar Duhalde and Ian Shelton, respectively. A few hours earlier, still on 23 February, two large underground detectors - in Japan and the USA - had registered the passage of high-energy neutrinos. Since SN 1987A exploded in the Large Magellanic Cloud (LMC), it was only accessible to telescopes in the Southern Hemisphere, more particularly in Australia, South Africa, and South America. In Chile, ESO's observatory at La Silla with its armada of telescopes with sizes between 0.5 and 3.6-m, played an important role. ESO PR Photo 08c/07 ESO PR Photo 08c/07 The

  14. Efficient generation of fusion neutrons from cryogenically cooled heteronuclear clusters irradiated by intense femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Lu, Haiyang; Li, Song; Xu, Yi; Guo, Xiaoyang; Leng, Yuxin; Liu, Jiansheng; Shen, Baifei; Li, Ruxin; Xu, Zhizhan

    2014-02-01

    We present experimental studies on the conversion efficiency of fusion neutrons generated from Coulomb explosion of cryogenically cooled heteronuclear deuterated methane (CD4) clusters irradiated by intense femtosecond laser pulses. A stronger nonlinear relationship between the cluster size and the stagnation temperature for CD4 clusters than that for monoatomic or diatomic clusters is revealed, resulting in marked increases in the average kinetic energy of deuterons and the fusion neutron yield. Finally, a significantly enhanced conversion efficiency of 1.9 × 107 neutrons/J of incident laser energy is achieved by lowering the stagnation temperature to 217 K under a backing pressure of 80 bars.

  15. Structure and Stability of SnO2 Nanocrystals and Surface-Bound

    SciTech Connect

    Wang, Hsiu-Wen; Wesolowski, David J; Proffen, Thomas E; Vlcek, Lukas; Wang, Wei; Allard Jr, Lawrence Frederick; Kolesnikov, Alexander I; Feygenson, Mikhail; Anovitz, Lawrence {Larry} M; Paul, Dr. Rick L.

    2013-01-01

    ABSTRACT: The structure of SnO2 nanoparticles (avg. 5 nm) with a few layers of water on the surface has been elucidated by atomic pair distribution function (PDF) methods using in situ neutron total scattering data and molecular dynamics (MD) simulations. Analysis of PDF, neutron prompt gamma, and thermogravimetric data, coupled with MD-generated surface D2O/OD configurations demonstrates that the minimum concentration of OD groups required to prevent rapid growth of nanoparticles during thermal dehydration corresponds to 0.7 monolayer coverage. Surface hydration layers not only stabilize the SnO2 nanoparticles but also induce particle-size-dependent structural modifications and are likely to promote interfacial reactions through hydrogen bonds between adjacent particles. Upon heating/dehydration under vacuum above 250 C, nanoparticles start to grow with low activation energies, rapid increase of nanoparticle size, and a reduction in the a lattice dimension. This study underscores the value of neutron diffraction and prompt-gamma analysis, coupled with molecular modeling, in elucidating the influence of surface hydration on the structure and metastable persistence of oxide nanomaterials.

  16. Predicted weakening of the spin-orbit interaction with the addition of neutrons

    SciTech Connect

    Hemalatha, M.; Gambhir, Y. K.; Haider, W.; Kailas, S.

    2009-05-15

    The fully microscopic p-nucleus optical potential has been calculated in the framework of the first order Brueckner theory employing Urbana V14, soft-core internucleon interaction along with the relativistic mean field densities both for protons and neutrons. It is observed that the volume integral per nucleon, of the real part of the spin-orbit interaction calculated for Zr (A=76-110) and Sn (A=96-136) isotopes, decreases with the increase in neutron number. The present optical model calculation satisfactorily reproduces the experimental (where available) cross sections and analyzing power. Further the magnitude of the first maximum (minimum) in the calculated analyzing power decreases (increases) with the addition of neutrons both for Zr and Sn isotopes reflecting the weakening of the spin-orbit interaction.

  17. Quantitative NDA of isotopic neutron sources.

    PubMed

    Lakosi, L; Nguyen, C T; Bagi, J

    2005-01-01

    A non-destructive method for assaying transuranic neutron sources was developed, using a combination of gamma-spectrometry and neutron correlation technique. Source strength or actinide content of a number of PuBe, AmBe, AmLi, (244)Cm, and (252)Cf sources was assessed, both as a safety issue and with respect to combating illicit trafficking. A passive neutron coincidence collar was designed with (3)He counters embedded in a polyethylene moderator (lined with Cd) surrounding the sources to be measured. The electronics consist of independent channels of pulse amplifiers and discriminators as well as a shift register for coincidence counting. The neutron output of the sources was determined by gross neutron counting, and the actinide content was found out by adopting specific spontaneous fission and (alpha,n) reaction yields of individual isotopes from the literature. Identification of an unknown source type and constituents can be made by gamma-spectrometry. The coincidences are due to spontaneous fission in the case of Cm and Cf sources, while they are mostly due to neutron-induced fission of the Pu isotopes (i.e. self-multiplication) and the (9)Be(n,2n)(8)Be reaction in Be-containing sources. Recording coincidence rate offers a potential for calibration, exploiting a correlation between the Pu amount and the coincidence-to-total ratio. The method and the equipment were tested in an in-field demonstration exercise, with participation of national public authorities and foreign observers. Seizure of the illicit transport of a PuBe source was simulated in the exercise, and the Pu content of the source was determined. It is expected that the method could be used for identification and assay of illicit, found, or not documented neutron sources.

  18. CD-ROM-aided Databases

    NASA Astrophysics Data System (ADS)

    Shimbori, Susumu

    CD-ROM has recently attracted remarkable attentions as a new information media. In this feature the following points concerning CD-ROM are described: (1) Development of CD-ROM from audio CD, (2)advantages and character of CD-ROM compared with printed or online media, (3)CD-ROM specification by Philips-Sony, (4)hardware and system construction with CD-ROM, and (5)production processes of CD-ROM.

  19. Recalibrating the Sunspot Number (SN): The 3rd and 4th SN Workshops

    NASA Astrophysics Data System (ADS)

    Cliver, E. W.; Clette, F.; Svalgaard, L.; Vaquero, J. M.

    At the XIIth Hvar Astrophysical Colloquium in 2012, we reviewed the progress of an effort begun in 2011 to recalibrate the sunspot number (SN). That work is now nearing completion and we review the motivation, approach, and results of this process which was conducted via a series of four international workshops. Previously we discussed the principal results of workshops at Sunspot in 2011 and Brussels in 2012. These involved the identification of discontinuities circa 1885 in the Hoyt and Schatten Group SN and 1945 in the International SN. Subsequently, workshops were held in Tucson (2013) and Locarno (2014). Key results during the time of these two workshops included: (1) development of an independent ''backbone'' method for determining the Group sunspot number; (2) identification of post-1970 inhomogeneities in the Group SN and the International SN; (3) construction of preliminary revisions of the Group SN from 1610-present and the International SN from 1700--present; (4) reassessment (ongoing) of the Hoyt and Schatten Group SN data base from 1610-present; and (5) establishment of a SN archive at the University of Extremadura. The release of the new International and Group SN series is anticipated during the second half of 2015 and procedures are being put in place both to maintain the calibration of these two series and to produce subsequent revisions should more historical data be unearthed or new inhomogeneities in the series be uncovered or arise.

  20. Effect of complex configurations on the description of properties of {sup 132}Sn beta decay

    SciTech Connect

    Severyukhin, A. P. Sushenok, E. O.

    2015-07-15

    Gamow–Teller transitions in the beta decay of the {sup 132}Sn neutron-rich nucleus was described microscopically. The coupling of one- and two-phonon components of the wave functions was taken into account on the basis of Skyrme interactions featuring various contributions of the tensor component. A separable approximation of the particle—hole interaction made it possible tohole interaction perform calculations in a large configuration space. It was shown that an increase in the strength of the neutron—proton tensor interaction led to an increase in the energy of Gamow—Teller transitions. In addition, a decrease in the {sup 132}Sn half-life with respect to beta decay was obtained.

  1. N and Z odd-even staggering in Kr+Sn collisions at Fermi energies

    NASA Astrophysics Data System (ADS)

    Piantelli, S.; Casini, G.; Maurenzig, P. R.; Olmi, A.; Barlini, S.; Bini, M.; Carboni, S.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Valdrè, S.; Bougault, R.; Bonnet, E.; Borderie, B.; Chbihi, A.; Frankland, J. D.; Gruyer, D.; Lopez, O.; Le Neindre, N.; Pârlog, M.; Rivet, M. F.; Vient, E.; Rosato, E.; Spadaccini, G.; Vigilante, M.; Bruno, M.; Marchi, T.; Morelli, L.; Cinausero, M.; Degerlier, M.; Gramegna, F.; Kozik, T.; Twaróg, T.; Alba, R.; Maiolino, C.; Santonocito, D.

    2013-12-01

    The odd-even staggering of the yield of final reaction products has been studied as a function of proton (Z) and neutron (N) numbers for the collisions 84Kr+112Sn and 84Kr+124Sn at 35 MeV/nucleon in a wide range of elements (up to Z≈20). The experimental data show that staggering effects rapidly decrease with increasing size of the fragments. Moreover the staggering in N is definitely larger than the one in Z. Similar general features are qualitatively reproduced by the gemini code. Concerning the comparison of the two systems, the staggering in N is in general rather similar, being slightly larger only for the lightest fragments produced in the n-rich system. In contrast the staggering in Z, although smaller than that in N, is sizably larger for the n-poor system with respect to the n-rich one.

  2. X-ray characteristics of the Lupus Loop and SN 1006 supernova remnants

    SciTech Connect

    Toor, A.

    1980-01-01

    The spatial extent of the Lupus Loop and spectra for the Lupus Loop and SN1006 supernova remnants have been determined with a rocket-borne payload. The Lupus Loop is an extended source of soft X-rays (approx. 300' diam) that shows a correlation between its brightest x-ray and radio-emission regions. Its spectrum is characterized by a temperature of 350 eV. Thus, the Lupus Loop appears similar to Vela X and Cygnus Loop, although much weaker. Emission from SN1006 is spatially unresolved and exhibits a harder spectrum than that of the Lupus Loop. All spectral data (0.2 to 10 keV) from our observation and previous observations are satisfactorily fit with a power law (index = 2.15). This spectral dependence suggests the possibility that a rotating neutron star is the underlying source of the radiated energy although such an interpretation appears inconsistent with the remnant's morphology.

  3. Record Seebeck coefficient and extremely low thermal conductivity in nanostructured SnSe

    SciTech Connect

    Serrano-Sánchez, F.; Gharsallah, M.; Nemes, N. M.; Mompean, F. J.; Martínez, J. L.; Alonso, J. A.

    2015-02-23

    SnSe has been prepared by arc-melting, as mechanically robust pellets, consisting of highly oriented polycrystals. This material has been characterized by neutron powder diffraction (NPD), scanning electron microscopy, and transport measurements. A microscopic analysis from NPD data demonstrates a quite perfect stoichiometry SnSe{sub 0.98(2)} and a fair amount of anharmonicity of the chemical bonds. The Seebeck coefficient reaches a record maximum value of 668 μV K{sup −1} at 380 K; simultaneously, this highly oriented sample exhibits an extremely low thermal conductivity lower than 0.1 W m{sup −1} K{sup −1} around room temperature, which are two of the main ingredients of good thermoelectric materials. These excellent features exceed the reported values for this semiconducting compound in single crystalline form in the moderate-temperatures region and highlight its possibilities as a potential thermoelectric material.

  4. The peculiar case of the “double-humped" super-luminous supernova SN 2006oz

    NASA Astrophysics Data System (ADS)

    Ouyed, Rachid; Leahy, Denis

    2013-10-01

    SN 2006oz is a super-luminous supernova with a mysterious bright precursor that has resisted explanation in standard models. However, such a precursor has been predicted in the dual-shock quark nova model of super-luminous supernovae — the precursor is the supernova event while the main light curve of the super-luminous supernova is powered by the Quark-Nova (explosive transition of the neutron star to a quark star). As the supernova is fading, the Quark-Nova re-energizes the supernova ejecta, producing a “double-humped" light curve. We show that the quark nova model successfully reproduces the observed light curve of SN 2006oz.

  5. CD3+CD8+CD28− T Lymphocytes in Patients with Lupus Nephritis

    PubMed Central

    Krajewska, Magdalena

    2016-01-01

    The results of studies on the CD3+CD8+CD28− cells in SLE are inconsistent since several analyses describe CD3+CD8+CD28− as either immunosuppressive or cytotoxic. The aim of this study is to inquire whether the quantitative changes of CD3+CD8+CD28− T lymphocytes subpopulation are related to the clinical status of patients with lupus nephritis. Evaluation of Foxp3 expression on CD3+CD8+CD28− cells may shed some light on functional properties of these cells. 54 adult SLE patients and 19 sex and age matched healthy volunteers were enrolled in the study. There were 15 patients in inactive (SLEDAI ≤ 5) and 39 in active (SLEDAI > 5) phase of disease. We determined absolute count of CD3+CD8+CD28− and CD3+CD8+CD28−Foxp3+ subpopulations by flow cytometry. We observed a statistically significant increase in absolute count and percentage of CD3+CD8+CD28− in SLE patients compared to HC (p < 0.001). Moreover there was significant positive correlation between increasing absolute count of CD3+CD8+CD28− cells and disease activity measured by SLEDAI (rs = 0.281, p = 0.038). Active LN patients had increased absolute count of CD3+CD8+CD28− cells compared to HC. Positive correlation of CD3+CD8+CD28− number with disease activity, and lack of Foxp3 expression on these cells, suggests that CD3+CD8+CD28− lymphocytes might be responsible for an increased proinflammatory response in the exacerbation of SLE. PMID:27446964

  6. Site Dependency of the High Conductivity of Ga 2 In 6 Sn 2 O 16 : The Role of the 7-Coordinate Site

    DOE PAGESBeta

    Rickert, Karl; Huq, Ashfia; Lapidus, Saul H.; Wustrow, Allison; Ellis, Donald E.; Poeppelmeier, Kenneth R.

    2015-11-11

    In 6-coordinated cation sites, we find that it is the fundamental building block of the most effective transparent conducting oxides. Ga2In6SnO16, however, maintains 4-, 6-, 7-, and 8-coordinated cation sites and still exhibits desirable transparency and high conductivity. To investigate the potential impact of these alternative sites, we partially replace the Sn in Ga2In6Sn2O16 with Ti, Zr, or Hf and use a combined approach of density functional theory-based calculations, X-ray diffraction, and neutron diffraction to establish that the substitution occurs preferentially on the 7-coordinate site. Conversely to Sn, the empty d orbitals of Ti, Zr, and Hf promote spd covalencymore » with the surrounding oxygen, which decreases the conductivity. Pairing the substitutional site preference with the magnitude of this decrease demonstrates that the 7-coordinate site is the V major contributor to conductivity. The optical band gaps, in contrast, are shown to be site-independent and composition-dependent. After all 7-coordinate Sn has been replaced, the continued substitution of Sn results in the formation of a 7-coordinate In antisite or replacement of 6-coordinate Sn, depending on the identity of the d(0) substitute.« less

  7. Neutron scatter camera

    DOEpatents

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  8. PERSONNEL NEUTRON DOSIMETER

    DOEpatents

    Fitzgerald, J.J.; Detwiler, C.G. Jr.

    1960-05-24

    A description is given of a personnel neutron dosimeter capable of indicating the complete spectrum of the neutron dose received as well as the dose for each neutron energy range therein. The device consists of three sets of indium foils supported in an aluminum case. The first set consists of three foils of indium, the second set consists of a similar set of indium foils sandwiched between layers of cadmium, whereas the third set is similar to the second set but is sandwiched between layers of polyethylene. By analysis of all the foils the neutron spectrum and the total dose from neutrons of all energy levels can be ascertained.

  9. Organic metal neutron detector

    DOEpatents

    Butler, Michael A.; Ginley, David S.

    1987-01-01

    A device for detecting neutrons comprises a layer of conductive polymer sandwiched between electrodes, which may be covered on each face with a neutron transmissive insulating material layer. Conventional electrodes are used for a non-imaging integrating total neutron fluence-measuring embodiment, while wire grids are used in an imaging version of the device. The change in conductivity of the polymer after exposure to a neutron flux is determined in either case to provide the desired data. Alternatively, the exposed conductive polymer layer may be treated with a chemical reagent which selectively binds to the sites altered by neutrons to produce an image of the flux detected.

  10. Grazing incidence neutron optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2012-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20 .ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  11. Grazing Incidence Neutron Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2013-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  12. Neutron activation analysis system

    DOEpatents

    Taylor, M.C.; Rhodes, J.R.

    1973-12-25

    A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)

  13. Unraveling the exciton quenching mechanism of quantum dots on antimony-doped SnO₂ films by transient absorption and single dot fluorescence spectroscopy.

    PubMed

    Song, Nianhui; Zhu, Haiming; Liu, Zheng; Huang, Zhuangqun; Wu, David; Lian, Tianquan

    2013-02-26

    Integrating quantum dots (QDs) into modern optoelectronic devices requires an understanding of how a transparent conducting substrate affects the properties of QDs, especially their excited-state dynamics. Here, the exciton quenching dynamics of core/multishell (CdSe/CdS(3ML)ZnCdS(2ML)ZnS(2ML)) quantum dots deposited on glass, tin oxide (SnO₂), and antimony (Sb)-doped tin oxide (ATO) films are studied by transient absorption and single QD fluorescence spectroscopic methods. By comparing ensemble-averaged fluorescence decay and transient absorption kinetics, we show that, for QDs on SnO₂, the exciton is quenched by electron transfer from the QD to SnO₂. At the QD-ATO interface, much faster exciton quenching rates are observed and attributed to fast Auger recombination in charged QDs formed by Fermi level equilibration between the QD and n-doped ATO. Single QDs on SnO₂ and ATO show similar blinking dynamics with correlated fluctuations of emission intensities and lifetimes. Compared to QDs on SnO₂, QDs on ATO films show larger variation of average exciton quenching rates, which is attributed to a broad distribution of the number of charges and nature of charging sites on the QD surface.

  14. The Precise Determination of Cd Isotope Ratio in Geological Samples by MC-ICP-MS with Ion Exchange Separation

    NASA Astrophysics Data System (ADS)

    Du, C.; Hu, S.; Wang, D.; Jin, L.; Guo, W.

    2014-12-01

    Cadmium (Cd) is a trace element which occurs at μg g-1 level abundances in the crust. Cd isotopes have great prospects in the study of the cosmogony, the trace of anthropogenic sources, the micronutrient cycling and the ocean productivity. This study develops an optimized technique for the precise and accurate determination of Cd isotopic compositions. Cd was separated from the matrix by elution with AG-MP-1 anionic exchange chromatographic resin. The matrix elements (K, Na, Ca, Al, Fe, and Mg etc.), polyatomic interfered elements (Ge, Ga, Zr, Nb, Ru, and Mo), and isobaric interfered elements (In, Pd and most of Sn) were eluted using HCl with gradient descent concentrations (2, 0.3, 0.06, 0.012 and 0.0012 mol L-1). The same elution procedure was repeated to eliminate the residuel Sn (Sn/Cd < 0.018). The collected Cd was analyzed using MC-ICP-MS, in which the instrumental mass fractionation was controlled by a "sample-standard bracketing" technique. The recovery of Cd larger than 96.85%, and the δ114/110Cd are in the range of -1.43~+0.20‰ for ten geological reference materials (GSD-3a, GSD-5a, GSD-7a, GSD-6, GSD-9, GSD-10, GSD-11, GSD-12, GSD-23, and GSS-1). The δ114/110Cd obtained for GSS-1 soil sample relative to the NIST SRM 3108 Cd solution was 0.20, which was coherent with the literature values (0.08±0.23). This method had a precision of 0.001~0.002% (RSD), an error range of 0.06~0.14 (δ114/110Cd, 2σ), and a long-term reproducibility of 0.12 (δ114/110Cd, 2σ).

  15. Sn Attenuation in the Middle-East

    NASA Astrophysics Data System (ADS)

    Ku, W.; Kaviani, A.; Bao, X.; Sandvol, E. A.

    2015-12-01

    The Turkish-Iranian Plateau and Zagros Mountains, a dominant tectonic feature in the Middle-East, were formed as a result of the continental collision (between Arabian plate and Eurasia plates). In order to better understand the nature of the lithosphere mantle and origin of the measure seismic velocity anomalies we have made detailed measurements of the uppermost mantle attenuation using the high frequency regional phase Sn. In order to measure Sn attenuation. We have collected a large data set consisting of 18 years (1995-2012) of waveforms recorded by 305 permanent and temporary stations. We used a bandpass filter (0.1-0.5Hz) to identify efficient longer period Sn phases. In order to determine Sn Q we applied a Two Station Method (TSM) and Reverse Two Station Method (RTM) to eliminate the source effects. We have used the LSQR algorithm to tomographically map Sn attenuation tomography across the Middle-East. We also determined the Sn propagation efficiencies visually and tomographically map qualitatively assigned Sn propagation efficiencies across the Middle-East. The Sn Attenuation Tomography show moderately low Q values beneath the Turkish-Iranian Plateau (~250) and high Q values beneath the south Caspian sea (~400) and Arabian shield (~400). We also observe high Q values beneath the Zagros mountains (~450) that is consistent with the Arabian plate underthrusting beneath the Eurasia plate. The Sn Efficiency Tomography shows high attenuation within the Turkish-Iranian Plateau and low attenuation in the Arabian Plate and across the Caspian Sea. This is consistent with prior studies that suggest a hot and thin lithosphere beneath the Turkish-Iranian Plateau and it also suggests that intrinsic attenuation is the dominant component in Sn Q across the Turkish-Iranian Plateau. Due to the signal-to-noise criterion to select amplitudes and the efficiency criterion to select two-station and reverse-two-station paths for the inversion, the data are left-censored and the

  16. JVLA observations of SN2013bv

    NASA Astrophysics Data System (ADS)

    Kamble, Atish; Soderberg, Alicia

    2013-05-01

    We report radio observations with the Jansky Very Large Array of the Type Ic supernova SN2013bv discovered by Zhang et al.(CBET #3499) on April 9.51 UT and spectroscopically classified as broad-lined supernova similar to SN1998bw by Silverman et al. (CBET #3499). On 2013 April 27.0 UT, we triggered VLA observations at the position of SN2013bv at 4.8 & 7.1 GHz. No radio emission is detected in either of the frequency bands at the position of the supernova down to 3-sigma RMS level of 7 microJy.

  17. Junction and Back Contact Properties of Spray-Deposited M/SnS/In2S3/SnO2:F/Glass (M = Cu, Graphite) Devices: Considerations to Improve Photovoltaic Performance

    NASA Astrophysics Data System (ADS)

    Patel, Malkeshkumar; Ray, Abhijit

    2015-01-01

    SnS/In2S3 heterojunction devices were fabricated entirely by chemical spray pyrolysis in a superstrate configuration on SnO2:F/glass. The SnS/In2S3 junction was found to exhibit strong rectification behavior, and the Mott-Schottky characteristics showed it was abrupt. The photovoltaic behavior of the junction was investigated under air mass 1.5G illumination, showing a short-circuit current of 4.8 mA/cm2 and an open-circuit voltage of 0.29 V, reportedly the highest to date among similar devices with a Cd-free buffer layer and processed by a nonvacuum technique. However, the device suffers from low fill factor due to high series resistance originating from interface inhomogeneities. A Cu back contact was associated with a low level of inhomogeneities at the interface, as demonstrated by impedance analysis.

  18. NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR

    DOEpatents

    Young, G.J.

    1959-06-30

    The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.

  19. Changes in the structure of nuclei between the magic neutron numbers 50 and 82 as indicated by a rotating-cluster analysis of the energy values of the first 2j excited states of isotopes of cadmium

    SciTech Connect

    Pauling, L.

    1981-09-01

    Values of R, the radius of rotation of the rotating cluster, are calculated from the observed values of the energy of the lowest 2/sup +/ states of the even isotopes of Cd, Sn, and Te with the assumption that the cluster is ..cap alpha.., pb, and ..cap alpha.., respectively. R shows a maximum at approx. N = 58, a minimum at approx. N = 62, and a second maximum at approx. N = 70. The increase to the first maximum is interpreted as resulting from the overcrowding of spherons (alphas and tritons) in the mantle (outer layer) of the nuclei, causing the cluster to change from rotating in the mantle to skimming over its surface; the decrease to the minimum results from the addition of three dineutrons to the core, expanding the mantle and permitting the rotating cluster to begin to drop back into it; and the increase to the second maximum results from the overcrowding of the larger mantle surrounding the core containing the semimagic number 14 of neutrons rather than the magic numbers 8 for N = 50. The decrease after the second maximum results from the further increase in the number of core neutrons to 20, corresponding to the magic number 82. Some additional evidence for the change to an intermediate structure between N = 50 and N = 82 is also discussed.

  20. A microstructural study of creep and thermal fatigue deformation in 60Sn-40Pb solder joints

    SciTech Connect

    Tribula, D.

    1990-06-02

    Thermal fatigue failures of solder joints in electronic devices often arise from cyclic shear strains imposed by the mismatched thermal expansion coefficients of the materials that bind the joint as temperature changes are encountered. Increased solder joint reliability demands a fundamental understanding of the metallurigical mechanisms that control the fatigue to design accurate accelerated probative tests and new, more fatigue resistant solder alloys. The high temperatures and slow strain rates that pertain to thermal fatigue imply that creep is an important deformation mode in the thermal fatigue cycle. In this work, the creep behaviour of a solder joint is studied to determine the solder's microstructural response to this type of deformation and to relate this to the more complex problem of thermal fatigue. It is shown that creep failures arise from the inherent inhomogeneity and instability of the solder microstructure and suggest that small compositional changes of the binary near-eutectic Pn-Sn alloy may defeat the observed failure mechanisms. This work presents creep and thermal fatigue data for several near-eutectic Pb-Sn solder compositions and concludes that a 58Sn-40Pb-2In and a 58Sn-40Pb-2Cd alloy show significantly enhanced fatigue resistance over that of the simple binary material. 80 refs., 33 figs., 1 tab.

  1. Thin film cadmium telluride charged particle sensors for large area neutron detectors

    SciTech Connect

    Murphy, J. W.; Smith, L.; Calkins, J.; Mejia, I.; Cantley, K. D.; Chapman, R. A.; Quevedo-Lopez, M.; Gnade, B.; Kunnen, G. R.; Allee, D. R.; Sastré-Hernández, J.; Contreras-Puente, G.; Mendoza-Pérez, R.

    2014-09-15

    Thin film semiconductor neutron detectors are an attractive candidate to replace {sup 3}He neutron detectors, due to the possibility of low cost manufacturing and the potential for large areas. Polycrystalline CdTe is found to be an excellent material for thin film charged particle detectors—an integral component of a thin film neutron detector. The devices presented here are characterized in terms of their response to alpha and gamma radiation. Individual alpha particles are detected with an intrinsic efficiency of >80%, while the devices are largely insensitive to gamma rays, which is desirable so that the detector does not give false positive counts from gamma rays. The capacitance-voltage behavior of the devices is studied and correlated to the response due to alpha radiation. When coupled with a boron-based neutron converting material, the CdTe detectors are capable of detecting thermal neutrons.

  2. Dissolution and Interfacial Reactions of (Cu,Ni)6Sn5 Intermetallic Compound in Molten Sn-Cu-Ni Solders

    NASA Astrophysics Data System (ADS)

    Wang, Chao-hong; Lai, Wei-han; Chen, Sinn-wen

    2014-01-01

    (Cu,Ni)6Sn5 is an important intermetallic compound (IMC) in lead-free Sn-Ag-Cu solder joints on Ni substrate. The formation, growth, and microstructural evolution of (Cu,Ni)6Sn5 are closely correlated with the concentrations of Cu and Ni in the solder. This study reports the interfacial behaviors of (Cu,Ni)6Sn5 IMC (Sn-31 at.%Cu-24 at.%Ni) with various Sn-Cu, Sn-Ni, and Sn-Cu-Ni solders at 250°C. The (Cu,Ni)6Sn5 substrate remained intact for Sn-0.7 wt.%Cu solder. When the Cu concentration was decreased to 0.3 wt.%, (Cu,Ni)6Sn5 significantly dissolved into the molten solder. Moreover, (Cu,Ni)6Sn5 dissolution and (Ni,Cu)3Sn4 formation occurred simultaneously for the Sn-0.1 wt.%Ni solder. In Sn-0.5 wt.%Cu-0.2 wt.%Ni solder, many tiny (Cu,Ni)6Sn5 particulates were formed and dispersed in the solder matrix, while in Sn-0.3 wt.%Cu-0.2 wt.%Ni a lot of (Ni,Cu)3Sn4 grains were produced. Based on the local equilibrium hypothesis, these results are further discussed based on the liquid-(Cu, Ni)6Sn5-(Ni,Cu)3Sn4 tie-triangle, and the liquid apex is suggested to be very close to Sn-0.4 wt.%Cu-0.2 wt.%Ni.

  3. The aerosol assisted chemical vapour deposition of SnSe and Cu₂SnSe₃ thin films from molecular precursors.

    PubMed

    Kevin, Punarja; Malik, Sajid N; Malik, Mohammad A; O'Brien, Paul

    2014-11-28

    Tin selenide (SnSe) and copper tin selenide (Cu2SnSe3) thin films have been deposited onto glass substrates by AACVD using [Sn(Ph2PSe2)2] or a mixture of [Sn(Ph2PSe2)2] and [Cu(acac)2] respectively. PMID:25284472

  4. Soft X-ray emission from the Lupus Loop and Sn 1006 supernova remnants

    NASA Technical Reports Server (NTRS)

    Winkler, P. F., Jr.; Hearn, D. R.; Richardson, J. A.; Behnken, J. M.

    1979-01-01

    X-ray maps of the Lupus region have been obtained in a raster scan observation from SAS 3. These show the Lupus Loop to be a faint extended source of soft X-rays with a temperature about 2.5 million K. The most prominent feature of the region is the A.D. 1006 supernova remnant, which is unexpectedly bright at 0.2-1.0 keV. One speculative interpretation of the low-energy flux from SN 1006 is as blackbody radiation from a hot neutron star.

  5. Unexpected crystal and magnetic structures in MnCu4In and MnCu4Sn

    SciTech Connect

    Provino, A; Paudyal, D; Fornasini, ML; Dhiman, I; Dhar, SK; Das, A; Mudryk, Y; Manfrinetti, P; Pecharsky, VK

    2013-01-29

    We discovered a new compound MnCu4In with its own hexagonal structure type (hP12-P63mc, ternary ordered derivative of the hexagonal MgZn2-type) that becomes ferromagnetic at TC = 540 K. This transition temperature is higher than that found in the MnCu2In and MnCu2Sn alloys. In contrast, the homologous compound MnCu4Sn, which crystallizes in the cubic MgCu4Sn-type, orders antiferromagnetically with TN = 110 K. The neutron diffraction studies show ferromagnetic spin orientation in the {1 0 1} plane in MnCu4In with a magnetic moment of 4.5 μB/Mn at 22 K, and a corresponding value of 4.7 μB/Mn in the antiferromagnetic MnCu4Sn with propagation vector View the MathML source. The first-principles electronic structure calculations show that the unexpected difference in both magnetic and crystal structures of MnCu4In and MnCu4Sn is due to the difference in the Mn-3d bands and exchange interactions relating to different crystal anisotropy, coordination numbers, and interatomic distances.

  6. Transparent Conducting Properties of SrSnO3 and ZnSnO3

    DOE PAGESBeta

    Ong, Khuong P.; Fan, Xiaofeng; Subedi, Alaska; Sullivan, Michael B.; Singh, David J.

    2015-04-29

    We report optical properties of doped n-type SrSnO3 and ZnSnO3 in relation to potential application as transparent conductors. We find that the orthorhombic distortion of the perovskite structure in SrSnO3 leads to absorption in the visible as the doping level is increased. This arises from interband transitions. We find that strain tuning could modify this absorption, but does not eliminate it. On the other hand, we find that ZnSnO3 although also having a non-cubic structure, can retain excellent transparency when doped, making it a good candidate transparent conductor.

  7. High-velocity emission in young supernova remnants: SN 1006 and SN 1572

    SciTech Connect

    Kirshner, R.; Winkler, P.F.; Chevalier, R.A.

    1987-04-01

    The paper reports the discovery of broad H-alpha emission from the SN 1006 remnant with a FWHM velocity of 2600 + or - 100 km/s. This emission is similar to that seen in the remnant of SN 1572 which has a FWHM for H-alpha of 1800 km/s. The nonradiative model was used to interpret the line widths and the derived shock velocity was compared with proper motion measurements to derive distances of 1.4-2.1 kpc to SN 1006 and 2.0-2.8 kpc to SN 1572. 24 references.

  8. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys.

    PubMed

    Zhang, D C; Yang, S; Wei, M; Mao, Y F; Tan, C G; Lin, J G

    2012-09-01

    Ti-7.5Nb-4Mo-xSn (x=0-4at%) alloys were developed as the biomedical materials. The effect of the Sn content on the microstructure and superelasticity of the alloys was investigated. It is found that Sn is a strong stabilizer of the β phase, which is effective in suppressing the formation of α″ and ω phases in the alloys. Moreover, the Sn addition has a significant impact on the mechanical properties of the alloys. With the increase of Sn addition, the yield stress of the alloys increase, but their elastic modulus, the fracture strength and the ductility decrease, and the deformation mode of the alloys changes from (322) twining to α″ transformation and then to slip. The Ti-7.5Nb-4Mo-1Sn and Ti-7.5Nb-4Mo-3Sn alloys exhibit a good superelasticity with a high σ(SIM) due to the relatively high athermal ω phases containing or the solution hardening at room temperature. Under the maximum strain of 5%, Ti-7.5Nb-4Mo-3Sn (at%) alloy exhibits higher super elastic stability than that of Ti-7.5Nb-4Mo-1Sn alloy.

  9. Anomalous creep in Sn-rich solder joints

    SciTech Connect

    Song, Ho Geon; Morris Jr., John W.; Hua, Fay

    2002-03-15

    This paper discusses the creep behavior of example Sn-rich solders that have become candidates for use in Pb-free solder joints. The specific solders discussed are Sn-3.5Ag, Sn-3Ag-0.5Cu, Sn-0.7Cu and Sn-10In-3.1Ag, used in thin joints between Cu and Ni-Au metallized pads.

  10. Dirac neutrinos and SN 1987A

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1991-01-01

    Previous work has shown that the cooling of SN 1987A excludes a Dirac-neutrino mass greater than theta(20 keV) for nu(sub e), nu(sub mu), or nu(sub tau). The emission of wrong-helicity, Dirac neutrinos from SN 1987A, is re-examined. It is concluded that the effect of a Dirac neutrino on the cooling of SN 1987A has been underestimated due to neutrino degeneracy and additional emission processes. The limit that follows from the cooling of SN 1987A is believed to be greater (probably much greater) than 10 keV. This result is significant in light of the recent evidence for a 17 keV mass eigenstate that mixes with the electron neutrino.

  11. Asiago spectroscopic classification of SN 2016gdt

    NASA Astrophysics Data System (ADS)

    Ochner, P.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Pastorello, A.; Tomasella, L.; Turatto, M.; Terreran, G.

    2016-09-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of SN2016gdt in IC1407. The target was supplied by the Italian Supernovae Search Project (ISSP).

  12. Particle-hole states in Sn 120

    NASA Technical Reports Server (NTRS)

    Leonard, R. F.

    1972-01-01

    The 45 MeV deuteron beam from the Berkeley 88-inch cyclotron was used to study the particle-hole states in Sn-120. The present work resolved a number of individual levels and compared their strength and excitation energy with that observed in the Sn-120(d, He-3) reaction, which was also remeasured. A schematic diagram of the scattering system is given along with a description.

  13. Photocatalytic Hydrogen Generation by CdSe/CdS Nanoparticles.

    PubMed

    Qiu, Fen; Han, Zhiji; Peterson, Jeffrey J; Odoi, Michael Y; Sowers, Kelly L; Krauss, Todd D

    2016-09-14

    The photocatalytic hydrogen (H2) production activity of various CdSe semiconductor nanoparticles was compared including CdSe and CdSe/CdS quantum dots (QDs), CdSe quantum rods (QRs), and CdSe/CdS dot-in-rods (DIRs). With equivalent photons absorbed, the H2 generation activity orders as CdSe QDs ≫ CdSe QRs > CdSe/CdS QDs > CdSe/CdS DIRs, which is surprisingly the opposite of the electron-hole separation efficiency. Calculations of photoexcited surface charge densities are positively correlated with the H2 production rate and suggest the size of the nanoparticle plays a critical role in determining the relative efficiency of H2 production. PMID:27478995

  14. Beta-delayed neutron emission measurements for r-process nuclei

    NASA Astrophysics Data System (ADS)

    Dillmann, Iris

    2014-09-01

    Beta-delayed neutron- (bn-) emitters play an important, two-fold role in the stellar nucleosynthesis of heavy elements in the ``rapid neutron-capture process'' (r process). On one hand they lead to a detour of the material beta-decaying back to stability. On the other hand, the released neutrons increase the neutron-to-seed ratio, and are re-captured during the freeze-out phase and thus influence the final solar r-abundance curve. A large fraction of the isotopes for r-process nucleosynthesis are not yet experimentally accessible and are located in the ``terra incognita.'' With the next generation of fragmentation and ISOL facilities presently being built or already in operation, one of the main motivation of all projects is the investigation of very neutron-rich isotopes at and beyond the border of presently known nuclei. However, reaching more neutron-rich isotopes means also that multiple neutron-emission becomes the dominant decay mechanism. The investigation of bn-emitters has recently experienced a renaissance. I will show some recent results from a GSI campaign with the BELEN detector, and introduce the program planned for 2015/16 at RIKEN with the ``BRIKEN'' detector. ``BRIKEN'' (``Beta-delayed neutron measurements at RIKEN for nuclear structure, astrophysics, and applications'') is a worldwide effort which combines 3He-neutron counters from groups in Germany, Japan, Russia, Spain, and the USA and the implantation detector AIDA from the UK to the presently largest and most efficient neutron detection setup. Planned first experiments comprise the first-time measurements of 48 b-delayed one-neutron and 24 b-delayed two-neutron emitters in the regions around doubly-magic 78Ni and 132Sn. Even some b-delayed three-neutron emitters in the heavier mass region will be tackled for the first time.

  15. Neutron chopper development at LANSCE

    SciTech Connect

    Nutter, M.; Lewis, L.; Tepper, S.; Silver, R.N.; Heffner, R.H.

    1985-01-01

    Progress is reported on neutron chopper systems for the Los Alamos Neutron Scattering Center pulsed spallation neutron source. This includes the development of 600+ Hz active magnetic bearing neutron chopper and a high speed control system designed to operate with the Proton Storage Ring to phase the chopper to the neutron source. 5 refs., 3 figs.

  16. Neutron metrology laboratory facility simulation.

    PubMed

    Pereira, Mariana; Salgado, Ana P; Filho, Aidano S; Pereira, Walsan W; Patrão, Karla C S; Fonseca, Evaldo S

    2014-10-01

    The Neutron Low Scattering Laboratory in Brazil has been completely rebuilt. Evaluation of air attenuation parameters and neutron component scattering in the room was done using Monte Carlo simulation code. Neutron fields produced by referenced neutron source were used to calculate neutron scattering and air attenuation.

  17. Neutron metrology laboratory facility simulation.

    PubMed

    Pereira, Mariana; Salgado, Ana P; Filho, Aidano S; Pereira, Walsan W; Patrão, Karla C S; Fonseca, Evaldo S

    2014-10-01

    The Neutron Low Scattering Laboratory in Brazil has been completely rebuilt. Evaluation of air attenuation parameters and neutron component scattering in the room was done using Monte Carlo simulation code. Neutron fields produced by referenced neutron source were used to calculate neutron scattering and air attenuation. PMID:24864318

  18. Symmetry energy and surface properties of neutron-rich exotic nuclei

    SciTech Connect

    Gaidarov, M. K.; Antonov, A. N.; Sarriguren, P.; Moya de Guerra, E.

    2014-07-23

    The symmetry energy, the neutron pressure and the asymmetric compressibility of spherical Ni, Sn, and Pb and deformed Kr and Sm neutron-rich even-even nuclei are calculated within the coherent density fluctuation model using the symmetry energy as a function of density within the Brueckner energy-density functional. The correlation between the thickness of the neutron skin and the characteristics related with the density dependence of the nuclear symmetry energy is investigated for isotopic chains of these nuclei in the framework of the deformed self-consistent mean-field Skyrme HF+BCS method. The mass dependence of the nuclear symmetry energy and the neutron skin thickness are also studied together with the role of the neutron-proton asymmetry. The studied correlations reveal a smoother behavior in the case of spherical nuclei than for deformed ones. We also notice that the neutron skin thickness obtained for {sup 208}Pb with SLy4 force is found to be in a good agreement with the recent data. In addition to the interest that this study may have by itself, we give some numerical arguments in proof of the existence of peculiarities of the studied quantities in Ni and Sn isotopic chains that are not present in the Pb chain.

  19. Effects of CdTe growth conditions and techniques on the efficiency limiting defects and mechanisms in CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Rohatgi, A.; Chou, H. C.; Jokerst, N. M.; Thomas, E. W.; Ferekides, C.; Kamra, S.; Feng, Z. C.; Dugan, K. M.

    1996-01-01

    CdTe solar cells were fabricated by depositing CdTe films on CdS/SnO2/glass substrates using close-spaced sublimation (CSS) and metalorganic chemical vapor deposition (MOCVD). Te/Cd mole ratio was varied in the range of 0.02 to 6 in the MOCVD growth ambient in an attempt to vary the native defect concentration. Polycrystalline CdTe layers grown by MOCVD and CSS both showed average grain size of about 2 μm. However, the CdTe films grown by CSS were found to be less faceted and more dense compared to the CdTe grown by MOCVD. CdTe growth techniques and conditions had a significant impact on the electrical characteristics of the cells. The CdTe solar cells grown by MOCVD in the Te-rich growth condition and by the CSS technique gave high cell efficiencies of 11.5% and 12.4%, respectively, compared to 6.6% efficient MOCVD cells grown in Cd-rich conditions. This large difference in efficiency is explained on the basis of (a) XRD measurements which showed a higher degree of atomic interdiffusion at the CdS/CdTe interface in high performance devices, (b) Raman measurements which endorsed more uniform and preferred grain orientation by revealing a sharp CdTe TO mode in the high efficiency cells, and (c) carrier transport mechanism which switched from tunneling/interface recombination to depletion region recombination in the high efficiency cells. In this study, Cu/Au layers were evaporated on CdTe for the back contact. Lower efficiency of the Te-rich MOCVD cells, compared to the CSS cells, was attributed to contact related additional loss mechanisms, such as Cd pile-up near Cu/CdTe interface which can give rise to Cd-vacancy defects in the bulk, and higher Cu concentration in the CdTe layer which can cause shunts in the device. Finally, SIMS measurements on the CdTe films of different crystallinity and grain size confirmed that grain boundaries are the main conduits for Cu migration into the CdTe film. Thus larger CdTe grain size or lower grain boundary area per unit volume

  20. French comparison exercise with the rotating neutron spectrometer, 'ROSPEC'.

    PubMed

    Crovisier, P; Asselineau, B; Pelcot, G; Van-Ryckeghem, L; Cadiou, A; Truffert, H; Groetz, J E; Benmosbah, M

    2005-01-01

    The French laboratories in charge of 'neutron' dosimetry using the spectrometer 'ROSPEC', formed a working group in 2001. The participants began to study the behaviour of the instrument with a comparison exercise in broad energy neutron fields recommended by the International Organisation for Standardisation (ISO) and available at the LMDN in Cadarache. The complete version of the ROSPEC is made up of six spherical proportional counters fixed to a rotating platform. These counters cover different energy ranges which overlap each other to provide a link between the detectors, within the energy range from thermal neutrons to 4.5 MeV. The irradiation configurations chosen were ISO standard sources (252Cf, (252Cf+D2O)(/Cd), 241Am-Be) and the SIGMA facility. The results show that the 'thermal and epithermal' neutron fluence was widely overestimated by the spectrometer in all configurations.

  1. Neutron sources and applications

    SciTech Connect

    Price, D.L.; Rush, J.J.

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  2. Influence of particle size and water coverage on the thermodynamic properties of water confined on the surface of SnO2 cassiterite nanoparticles

    SciTech Connect

    Spencer, Elinor; Ross, Dr. Nancy; Parker, Stewart F.; Kolesnikov, Alexander I; Woodfield, Brian; Woodfield, K; Rytting, M; Boerio-Goates, Juliana; Navrotsky, Alexandra

    2011-01-01

    Inelastic neutron scattering (INS) data for SnO2 nanoparticles of three different sizes and varying hydration levels are presented. Data were recorded on five nanoparticle samples that had the following compositions: 2 nm SnO2*0.82H2O, 6 nm SnO2*0.055H2O, 6 nm SnO2*0.095H2O, 20 nm SnO2*0.072H2O, and 20 nm SnO2*0.092H2O. The isochoric heat capacity and vibrational entropy values at 298 K for the water confined on the surface of these nanoparticles were calculated from the vibrational density of states that were extracted from the INS data. This study has shown that the hydration level of the SnO2 nanoparticles influences the thermodynamic properties of the water layers and, most importantly, that there appears to be a critical size limit for SnO2 between 2 and 6 nm below which the particle size also affects these properties and above which it does not. These results have been compared with those for isostructural rutile-TiO2 nanoparticles [TiO2*0.22H2O and TiO2*0.37H2O], which indicated that water on the surface of TiO2 nanoparticles is more tightly bound and experiences a greater degree of restricted motion with respect to water on the surface of SnO2 nanoparticles. This is believed to be a consequence of the difference in chemical composition, and hence surface properties, of these metal oxide nanoparticles.

  3. ATR neutron spectral characterization

    SciTech Connect

    Rogers, J.W.; Anderl, R.A.

    1995-11-01

    The Advanced Test Reactor (ATR) at INEL provides intense neutron fields for irradiation-effects testing of reactor material samples, for production of radionuclides used in industrial and medical applications, and for scientific research. Characterization of the neutron environments in the irradiation locations of the ATR has been done by means of neutronics calculations and by means of neutron dosimetry based on the use of neutron activation monitors that are placed in the various irradiation locations. The primary purpose of this report is to present the results of an extensive characterization of several ATR irradiation locations based on neutron dosimetry measurements and on least-squares-adjustment analyses that utilize both neutron dosimetry measurements and neutronics calculations. This report builds upon the previous publications, especially the reference 4 paper. Section 2 provides a brief description of the ATR and it tabulates neutron spectral information for typical irradiation locations, as derived from the more historical neutron dosimetry measurements. Relevant details that pertain to the multigroup neutron spectral characterization are covered in section 3. This discussion includes a presentation on the dosimeter irradiation and analyses and a development of the least-squares adjustment methodology, along with a summary of the results of these analyses. Spectrum-averaged cross sections for neutron monitoring and for displacement-damage prediction in Fe, Cr, and Ni are given in section 4. In addition, section4 includes estimates of damage generation rates for these materials in selected ATR irradiation locations. In section 5, the authors present a brief discussion of the most significant conclusions of this work and comment on its relevance to the present ATR core configuration. Finally, detailed numerical and graphical results for the spectrum-characterization analyses in each irradiation location are provided in the Appendix.

  4. Coincidence Prompt Gamma-Ray Neutron Activation Analysis

    SciTech Connect

    R.P. gandner; C.W. Mayo; W.A. Metwally; W. Zhang; W. Guo; A. Shehata

    2002-11-10

    The normal prompt gamma-ray neutron activation analysis for either bulk or small beam samples inherently has a small signal-to-noise (S/N) ratio due primarily to the neutron source being present while the sample signal is being obtained. Coincidence counting offers the possibility of greatly reducing or eliminating the noise generated by the neutron source. The present report presents our results to date on implementing the coincidence counting PGNAA approach. We conclude that coincidence PGNAA yields: (1) a larger signal-to-noise (S/N) ratio, (2) more information (and therefore better accuracy) from essentially the same experiment when sophisticated coincidence electronics are used that can yield singles and coincidences simultaneously, and (3) a reduced (one or two orders of magnitude) signal from essentially the same experiment. In future work we will concentrate on: (1) modifying the existing CEARPGS Monte Carlo code to incorporate coincidence counting, (2) obtaining coincidence schemes for 18 or 20 of the common elements in coal and cement, and (3) optimizing the design of a PGNAA coincidence system for the bulk analysis of coal.

  5. Odd-even staggering in neutron drip line nuclei

    NASA Astrophysics Data System (ADS)

    Changizi, S. A.; Qi, Chong

    2016-07-01

    We have done systematic Hartree-Fock-Bogoliubov calculations in coordinate space on the one-quasi-particle energies and binding energy odd-even staggering (OES) in semi-magic nuclei with the zero-range volume, mixed and surface pairing forces in order to explore the influence of their density dependence. The odd-N isotopes are calculated within the blocking scheme. The strengths for the pairing forces are determined in two schemes by fitting locally to reproduce pairing gap in 120Sn and globally to all available data on the OES of semi-magic nuclei with Z ≥ 8. In the former calculations, there is a noticeable difference between the neutron mean gaps in neutron-rich O, Ca, Ni and Sn isotopes calculated with the surface pairing and those with the mixed and volume pairing. The difference gets much smaller if the globally optimized pairing strengths are employed. The heavier Pb isotopes show the opposite trend. Moreover, large differences between the mean gap and the OES may be expected in both calculations when one goes towards the neutron drip line.

  6. Analysis of the role of neutron transfer in asymmetric fusion reactions at subbarrier energies

    SciTech Connect

    Ogloblin, A. A.; Zhang, H. Q.; Lin, C. J.; Jia, H. M.; Khlebnikov, S. V.; Kuzmin, E. A.; Danilov, A. N.; Demyanova, A. S.; Trzaska, W. H.; Xu, X. X.; Yang, F.; Sargsyan, V. V. Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2015-12-15

    The excitation functions were measured for the {sup 28}Si + {sup 208}Pb complete-fusion (capture) reaction at deep subbarrier energies. The results were compared with the cross sections predicted within the quantum diffusion approach. The role of neutron transfer in the case of positive Q values in the {sup 28}Si + {sup 124}Sn, {sup 208}Pb; {sup 30}Si + {sup 124}Sn, {sup 208}Pb; {sup 20}Ne + {sup 208}Pb; {sup 40}Ca + {sup 96}Zr; and {sup 134}Te + {sup 40}Ca complete-fusion (capture) reactions is discussed.

  7. A relativistic neutron fireball from a supernova explosion as a possible source of chiral influence.

    PubMed

    Gusev, G A; Saito, T; Tsarev, V A; Uryson, A V

    2007-06-01

    We elaborate on a previously proposed idea that polarized electrons produced from neutrons, released in a supernova (SN) explosion, can cause chiral dissymmetry of molecules in interstellar gas-dust clouds. A specific physical mechanism of a relativistic neutron fireball with Lorentz factor of the order of 100 is assumed for propelling a great number of free neutrons outside the dense SN shell. A relativistic chiral electron-proton plasma, produced from neutron decays, is slowed down owing to collective effects in the interstellar plasma. As collective effects do not involve the particle spin, the electrons can carry their helicities to the cloud. The estimates show high chiral efficiency of such electrons. In addition to this mechanism, production of circularly polarized ultraviolet photons through polarized-electron bremsstrahlung at an early stage of the fireball evolution is considered. It is shown that these photons can escape from the fireball plasma. However, for an average density of neutrals in the interstellar medium of the order of 0.2 cm(-3) and at distances of the order of 10 pc from the SN, these photons will be absorbed with a factor of about 10(-7) due to the photoeffect. In this case, their chiral efficiency will be about five orders of magnitude less than that for polarized electrons.

  8. Preliminary energy-filtering neutron imaging with time-of-flight method on PKUNIFTY: A compact accelerator based neutron imaging facility at Peking University

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Zou, Yubin; Wen, Weiwei; Lu, Yuanrong; Guo, Zhiyu

    2016-07-01

    Peking University Neutron Imaging Facility (PKUNIFTY) works on an accelerator-based neutron source with a repetition period of 10 ms and pulse duration of 0.4 ms, which has a rather low Cd ratio. To improve the effective Cd ratio and thus improve the detection capability of the facility, energy-filtering neutron imaging was realized with the intensified CCD camera and time-of-flight (TOF) method. Time structure of the pulsed neutron source was firstly simulated with Geant4, and the simulation result was evaluated with experiment. Both simulation and experiment results indicated that fast neutrons and epithermal neutrons were concentrated in the first 0.8 ms of each pulse period; meanwhile in the period of 0.8-2.0 ms only thermal neutrons existed. Based on this result, neutron images with and without energy filtering were acquired respectively, and it showed that detection capability of PKUNIFTY was improved with setting the exposure interval as 0.8-2.0 ms, especially for materials with strong moderating capability.

  9. Introduction to neutron stars

    SciTech Connect

    Lattimer, James M.

    2015-02-24

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  10. Superconducting Gamma/Neutron Spectrometer Task 1 Completion Report Evaluation of Candidate Neutron-Sensitive Materials

    SciTech Connect

    Bell, Z.W.; Lamberti, V.E.

    2002-06-20

    A review of the scientific literature regarding boron- and lithium-containing compounds was completed. Information such as Debye temperature, heat capacity, superconductivity properties, physical and chemical characteristics, commercial availability, and recipes for synthesis was accumulated and evaluated to develop a list of neutron-sensitive materials likely to perform properly in the spectrometer. The best candidate borides appear to be MgB{sub 2} (a superconductor with T{sub c} = 39 K), B{sub 6}Si, B{sub 4}C, and elemental boron; all are commercially available. Among the lithium compounds are LiH, LiAl, Li{sub 12}Si{sub 7}, and Li{sub 7}Sn{sub 2}. These materials have or are expected to have high Debye temperatures and sufficiently low heat capacities at 100 mK to produce a useful signal. The responses of {sup 10}B and {sup 6}Li to a fission neutron spectrum were also estimated. These demonstrated that the contribution of scattering events is no more than 3% in a boron-based system and 1.5% in a lithium-based system. This project is concerned with the development of materials for use in a cryogenic neutron spectrometer and is complementary to work in progress by Labov at LLNL to develop a cryogenic gamma ray spectrometer. Refrigeration to 100 mK lowers the heat capacity of these materials to the point that the energy of absorbed gamma and x rays, nuclei scattered by fast neutrons, and ions from (n, {alpha}) reactions produce a measurable heat pulse, from which the energy of the incident radiation may be deduced. The objective of this project is the discovery, fabrication, and testing of candidate materials with which a cryogenic neutron spectrometer may be realized.

  11. Neutron-emission measurements at a white neutron source

    SciTech Connect

    Haight, Robert C

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  12. Mössbauer studies of heteroleptic Sn(II) derivatives

    NASA Astrophysics Data System (ADS)

    de Lima, G. M.; Pierssens, L. J.-M.; Mahieu, B.

    1999-11-01

    The heteroleptic Sn(II) derivatives, [Sn(η5-C5Me5)Cl] (1), [{Sn(η5-C5Me4SiMe2But)} {Sn(η5-C5Me4SiMe2But)(OSO2CF3)}] (2), [{Sn(η5-C5Me5)}{Sn(η5-C5Me5)(OSO2CF3)}] (3) and [(Sn{N(SiMe3)2}{OSO2CF3})2] (4), were prepared and characterized by 119Sn Mössbauer spectroscopy, as well as by other techniques such as multinuclear NMR (solution- and solid-state) spectroscopy and X-ray crystallography. The 119Sn Mössbauer spectroscopic data were in good agreement with the other solid state results rendering additional support for the elucidation of bonding and structural features of these compounds.

  13. Discover IDEA CD 2002. [CD-ROM].

    ERIC Educational Resources Information Center

    Council for Exceptional Children, Arlington, VA.

    This Macintosh and PC compatible CD-ROM includes key resources about the Individuals with Disabilities Education Act (IDEA) amendments of 1997. It is designed as a research and training tool for administrators, professors and students in higher education, families, advocates, policy makers, and service providers who strive for quality education…

  14. A CD-ROM/Internet hybrid for nuclear data dissemination

    SciTech Connect

    James, J.Z.; Vujic, J.L.

    1994-12-31

    Most neutronics and shielding calculations depend on large nuclear databases, such as the Evaluated Nuclear Data File (ENDF) and the Evaluated Nuclear Structure Data File (ENSDF). In an attempt to provide a wider user community with easy access to nuclear databases, as well as with easy-to-use tools for displaying nuclear data, we have developed a new methodology in electronic publishing, dissemination and database updates, based on the combination of compact disk read-only-memory (CD-ROM) technology and the information superhighway on Internet. This report outlines the CD-ROM/Internet hybrid system.

  15. Low temperature Sn-rich Au—Sn wafer-level bonding

    NASA Astrophysics Data System (ADS)

    Zhiqiang, Fang; Xu, Mao; Jinling, Yang; Fuhua, Yang

    2013-10-01

    Sn-rich Au—Sn solder bonding has been systematically investigated for low cost and low temperature wafer-level packaging of high-end MEMS devices. The AuSn2 phase with the highest Vickers-hardness among the four stable intermetallic compounds of the Au—Sn system makes a major contribution to the high bonding shear strength. The maximum shear strength of 64 MPa and a leak rate lower than 4.9 × 10-7 atm·cc/s have been obtained for Au46Sn54 solder bonded at 310 °C. This wafer-level low cost bonding technique with high bonding strength can be applied to MEMS devices requiring low temperature packaging.

  16. Investigation of multifilamentary Nb 3Sn strand for ITER by internal Sn process

    NASA Astrophysics Data System (ADS)

    Zhang, P. X.; Zhou, L.; Tang, X. D.; Li, C. G.; Wu, Y.; Li, K.; Yan, G.; Yang, M.; Feng, Y.; Liu, X. H.; Weng, P. D.; Lu, Y. F.

    2006-10-01

    By internal Sn process we have successfully fabricated the multifilamentary Nb3Sn strand with a diameter of 0.79 mm, which has 5616-6270 filaments. A two-step heat treatment was used for the Nb3Sn strands. The first step is related to bronzing process between Cu and Sn at a temperature range of 200-600 °C, whereas the second step for the formation of superconducting Nb3Sn phase at 600-800 °C. A non-Cu Jc (12 T, 4.2 K) value of 1087 A/mm2 has been obtained. The microstructure and transport property of strands have been discussed.

  17. A theoretical study of SnF2+, SnCl2+, and SnO2+ and their experimental search.

    PubMed

    de Lima Batista, Ana Paula; de Lima, José Carlos Barreto; Franzreb, Klaus; Ornellas, Fernando R

    2012-10-21

    We present a detailed theoretical study of the stability of the gas-phase diatomic dications SnF(2+), SnCl(2+), and SnO(2+) using ab initio computer calculations. The ground states of SnF(2+), SnCl(2+), and SnO(2+) are thermodynamically stable, respectively, with dissociation energies of 0.45, 0.30, and 0.42 eV. Whereas SnF(2+) dissociates into Sn(2+) + F, the long range behaviour of the potential energy curves of SnCl(2+) and SnO(2+) is repulsive and wide barrier heights due to avoided crossing act as a kind of effective dissociation energy. Their equilibrium internuclear distances are 4.855, 5.201, and 4.852 a(0), respectively. The double ionisation energies (T(e)) to form SnF(2+), SnCl(2+), and SnO(2+) from their respective neutral parents are 25.87, 23.71, and 25.97 eV. We combine our theoretical work with the experimental results of a search for these doubly positively charged diatomic molecules in the gas phase. SnO(2+) and SnF(2+) have been observed for prolonged oxygen ((16)O(-)) ion beam sputtering of a tin metal foil and of tin (II) fluoride (SnF(2)) powder, respectively, for ion flight times of about 10(-5) s through a magnetic-sector mass spectrometer. In addition, SnCl(2+) has been detected for (16)O(-) ion surface bombardment of stannous (tin (II)) chloride (SnCl(2)) powder. To our knowledge, SnF(2+) is a novel gas-phase molecule, whereas SnCl(2+) had been detected previously by electron-impact ionization mass spectrometry, and SnO(2+) had been observed before by spark source mass spectrometry as well as by atom probe mass spectrometry. We are not aware of any previous theoretical studies of these molecular systems.

  18. KCN Chemical Etch for Interface Engineering in Cu2ZnSnSe4 Solar Cells.

    PubMed

    Buffière, Marie; Brammertz, Guy; Sahayaraj, Sylvester; Batuk, Maria; Khelifi, Samira; Mangin, Denis; El Mel, Abdel-Aziz; Arzel, Ludovic; Hadermann, Joke; Meuris, Marc; Poortmans, Jef

    2015-07-15

    The removal of secondary phases from the surface of the kesterite crystals is one of the major challenges to improve the performances of Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells. In this contribution, the KCN/KOH chemical etching approach, originally developed for the removal of CuxSe phases in Cu(In,Ga)(S,Se)2 thin films, is applied to CZTSe absorbers exhibiting various chemical compositions. Two distinct electrical behaviors were observed on CZTSe/CdS solar cells after treatment: (i) the improvement of the fill factor (FF) after 30 s of etching for the CZTSe absorbers showing initially a distortion of the electrical characteristic; (ii) the progressive degradation of the FF after long treatment time for all Cu-poor CZTSe solar cell samples. The first effect can be attributed to the action of KCN on the absorber, that is found to clean the absorber free surface from most of the secondary phases surrounding the kesterite grains (e.g., Se0, CuxSe, SnSex, SnO2, Cu2SnSe3 phases, excepting the ZnSe-based phases). The second observation was identified as a consequence of the preferential etching of Se, Sn, and Zn from the CZTSe surface by the KOH solution, combined with the modification of the alkali content of the absorber. The formation of a Cu-rich shell at the absorber/buffer layer interface, leading to the increase of the recombination rate at the interface, and the increase in the doping of the absorber layer after etching are found to be at the origin of the deterioration of the FF of the solar cells. PMID:26039042

  19. KCN Chemical Etch for Interface Engineering in Cu2ZnSnSe4 Solar Cells.

    PubMed

    Buffière, Marie; Brammertz, Guy; Sahayaraj, Sylvester; Batuk, Maria; Khelifi, Samira; Mangin, Denis; El Mel, Abdel-Aziz; Arzel, Ludovic; Hadermann, Joke; Meuris, Marc; Poortmans, Jef

    2015-07-15

    The removal of secondary phases from the surface of the kesterite crystals is one of the major challenges to improve the performances of Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells. In this contribution, the KCN/KOH chemical etching approach, originally developed for the removal of CuxSe phases in Cu(In,Ga)(S,Se)2 thin films, is applied to CZTSe absorbers exhibiting various chemical compositions. Two distinct electrical behaviors were observed on CZTSe/CdS solar cells after treatment: (i) the improvement of the fill factor (FF) after 30 s of etching for the CZTSe absorbers showing initially a distortion of the electrical characteristic; (ii) the progressive degradation of the FF after long treatment time for all Cu-poor CZTSe solar cell samples. The first effect can be attributed to the action of KCN on the absorber, that is found to clean the absorber free surface from most of the secondary phases surrounding the kesterite grains (e.g., Se0, CuxSe, SnSex, SnO2, Cu2SnSe3 phases, excepting the ZnSe-based phases). The second observation was identified as a consequence of the preferential etching of Se, Sn, and Zn from the CZTSe surface by the KOH solution, combined with the modification of the alkali content of the absorber. The formation of a Cu-rich shell at the absorber/buffer layer interface, leading to the increase of the recombination rate at the interface, and the increase in the doping of the absorber layer after etching are found to be at the origin of the deterioration of the FF of the solar cells.

  20. Cadmium Depletion Impacts on Hardening Neutron6 Spectrum for Advanced Fuel Testing in ATR

    SciTech Connect

    Gray S. Chang

    2011-05-01

    For transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products effectively is in a fast neutron spectrum reactor. In the absence of a fast spectrum test reactor in the United States of America (USA), initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. A test region is achieved with a Cadmium (Cd) filter which can harden the neutron spectrum to a spectrum similar (although still somewhat softer) to that of the liquid metal fast breeder reactor (LMFBR). A fuel test loop with a Cd-filter has been installed within the East Flux Trap (EFT) of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). A detailed comparison analyses between the cadmium (Cd) filter hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum have been performed using MCWO. MCWO is a set of scripting tools that are used to couple the Monte Carlo transport code MCNP with the isotope depletion and buildup code ORIGEN-2.2. The MCWO-calculated results indicate that the Cd-filter can effectively flatten the Rim-Effect and reduce the linear heat rate (LHGR) to meet the advanced fuel testing project requirements at the beginning of irradiation (BOI). However, the filtering characteristics of Cd as a strong absorber quickly depletes over time, and the Cd-filter must be replaced for every two typical operating cycles within the EFT of the ATR. The designed Cd-filter can effectively depress the LHGR in experimental fuels and harden the neutron spectrum enough to adequately flatten the Rim Effect in the test region.

  1. Ferromagnetism of Fe3Sn and Alloys

    PubMed Central

    Sales, Brian C.; Saparov, Bayrammurad; McGuire, Michael A.; Singh, David J.; Parker, David S.

    2014-01-01

    Hexagonal Fe3Sn has many of the desirable properties for a new permanent magnet phase with a Curie temperature of 725 K, a saturation moment of 1.18 MA/m. and anisotropy energy, K1 of 1.8 MJ/m3. However, contrary to earlier experimental reports, we found both experimentally and theoretically that the easy magnetic axis lies in the hexagonal plane, which is undesirable for a permanent magnet material. One possibility for changing the easy axis direction is through alloying. We used first principles calculations to investigate the effect of elemental substitutions. The calculations showed that substitution on the Sn site has the potential to switch the easy axis direction. However, transition metal substitutions with Co or Mn do not have this effect. We attempted synthesis of a number of these alloys and found results in accord with the theoretical predictions for those that were formed. However, the alloys that could be readily made all showed an in-plane easy axis. The electronic structure of Fe3Sn is reported, as are some are magnetic and structural properties for the Fe3Sn2, and Fe5Sn3 compounds, which could be prepared as mm-sized single crystals. PMID:25387850

  2. Ferromagnetism of Fe3Sn and alloys

    DOE PAGESBeta

    Sales, Brian C.; Saparov, Bayrammurad; McGuire, Michael A.; Singh, David J.; Parker, David S.

    2014-11-12

    Hexagonal Fe3Sn has many of the desirable properties for a new permanent magnet phase with a Curie temperature of 725 K, a saturation moment of 1.18 MA/m. and anisotropy energy, K1 of 1.8 MJ/m3. However, contrary to earlier experimental reports, we found both experimentally and theoretically that the easy magnetic axis lies in the hexagonal plane, which is undesirable for a permanent magnet material. One possibility for changing the easy axis direction is through alloying. We used first principles calculations to investigate the effect of elemental substitutions. The calculations showed that substitution on the Sn site has the potential tomore » switch the easy axis direction. Transition metal substitutions with Co or Mn do not have this effect. We attempted synthesis of a number of these alloys and found results in accord with the theoretical predictions for those that were formed. However, the alloys that could be readily made all showed an in-plane easy axis. The electronic structure of Fe3Sn is reported, as are some are magnetic and structural properties for the Fe3Sn2, and Fe5Sn3 compounds, which could be prepared as mm-sized single crystals.« less

  3. Ferromagnetism of Fe3Sn and Alloys

    NASA Astrophysics Data System (ADS)

    Sales, Brian C.; Saparov, Bayrammurad; McGuire, Michael A.; Singh, David J.; Parker, David S.

    2014-11-01

    Hexagonal Fe3Sn has many of the desirable properties for a new permanent magnet phase with a Curie temperature of 725 K, a saturation moment of 1.18 MA/m. and anisotropy energy, K1 of 1.8 MJ/m3. However, contrary to earlier experimental reports, we found both experimentally and theoretically that the easy magnetic axis lies in the hexagonal plane, which is undesirable for a permanent magnet material. One possibility for changing the easy axis direction is through alloying. We used first principles calculations to investigate the effect of elemental substitutions. The calculations showed that substitution on the Sn site has the potential to switch the easy axis direction. However, transition metal substitutions with Co or Mn do not have this effect. We attempted synthesis of a number of these alloys and found results in accord with the theoretical predictions for those that were formed. However, the alloys that could be readily made all showed an in-plane easy axis. The electronic structure of Fe3Sn is reported, as are some are magnetic and structural properties for the Fe3Sn2, and Fe5Sn3 compounds, which could be prepared as mm-sized single crystals.

  4. Combinatorial development of Cu2SnS3 as an earth abundant photovoltaic absorber

    NASA Astrophysics Data System (ADS)

    Baranowski, Lauryn L.

    The development of high efficiency, earth abundant photovoltaic absorbers is critical if photovoltaics are to be implemented on the TW scale. Although traditional thin films absorbers such as Cu(In,Ga)Se2 and CdTe have achieved over 20% device efficiencies, the ultimately scalability of these devices may be limited by elemental scarcity and toxicity issues. To date, the most successful earth abundant thin film absorber is Cu2ZnSn(S,Se) 4, which has achieved 12.6% efficiency as of 2014. However, chemical complexity and disorder issues with this material have made the path to higher efficiency CZTSSe devices unclear. As a result, many researchers are now exploring alternative earth abundant absorber materials. In this thesis, we apply our "rapid development" methodology to the exploration of alternative photovoltaic absorbers. The rapid development (RD) methodology, consisting of exploration, research, and development stages, uses complementary theory and experiment to assess candidate materials and down-select in each stage. The overall result is that, in the time span of ~2-3 years, we are able to rapidly go from tens of possible absorber materials to 1-2 working PV device prototypes. Here, we demonstrate the RD approach as applied to the Cu-Sn-S system. We begin our investigation of the Cu-Sn-S system by evaluating the thermodynamic stability, electrical transport, electronic structure, and optical and defect properties of candidate materials using complementary theory and experiment. We find that Cu2SnS3 is the most promising absorber candidate because of its strong optical absorption, tunable doping, and wide stability range. Our other candidate compounds suffer from serious flaws that preclude them from being successful photovoltaic absorbers, including too high experimental conductivity (Cu4SnS4), or poor hole transport and low absorption coefficient (Cu4Sn7S16). Next, we investigate the doping and defect physics of Cu2SnS 3. We identify the origins of the

  5. Neutron capture therapies

    SciTech Connect

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.

    1999-11-02

    In one embodiment there is provided an application of the {sup 10}B(n,{alpha}){sup 7}Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  6. Fundamental Neutron Physics

    NASA Astrophysics Data System (ADS)

    Marciano, William J.

    A precise connection between Vud, gA ≡ GA/GV and rn is reviewed. Implications for CKM unitarity and muon capture are discussed. The neutron electric dipole moment and CP violation in H → yy are related. ΔB = 2 n oscillations are shown to probe the neutron's Majorana nature and provide a possible paradigm for dark matter behavior.

  7. NEUTRONIC REACTOR CONTROL

    DOEpatents

    Untermyer, S.; Hutter, E.

    1959-08-01

    This patent relates to "shadow" control of a nuclear reactor. The control means comprises a plurality ot elongated rods disposed adjacent and parallel to each other, The morphology and effects of gases generated within sections of neutron absorbing materials and equal length sections of neutron permeable materials together with means for longitudinally pcsitioning the rcds relative to each other.

  8. Neutron capture therapies

    DOEpatents

    Yanch, Jacquelyn C.; Shefer, Ruth E.; Klinkowstein, Robert E.

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  9. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  10. Spin fluctuations in the anisotropic Kondo insulator CeRu4 Sn6

    NASA Astrophysics Data System (ADS)

    Fuhrman, Wesley T.; Haenel, J.; Rodriguez, J.; Paschen, S.; Broholm, C. L.

    We report and model anisotropic quasi-elastic magnetic neutron scattering from single crystalline CeRu4Sn6. For T ~ 2 K the magnetic neutron scattering is broad in momentum (Q) with a persistent 1 / ℏω spectrum throughout the Brillouin zone. This indicates a lack of spatial coherence and no characteristic energy scale beyond the 0.2 meV resolution of the measurement. We find the Q-dependence of the scattering can be modeled by a Kondo-Heisenberg Hamiltonian that describes residual carriers and incompletely compensated localized electrons. These findings support the interpretation of tetragonal CeRu4Sn6 as an anisotropic or nodal Kondo insulator, markedly different from typical cubic Kondo insulators. We further discuss potential topological implications. Work at IQM was supported by the U.S. Department of Energy, office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-08ER4654. W.T.F. thanks the ARCS foundation and Lockheed Martin for additional support.

  11. Anharmonicity and atomic distribution of SnTe and PbTe thermoelectrics

    SciTech Connect

    Li, C. W.; Ma, J.; Cao, H. B.; May, A. F.; Abernathy, D. L.; Ehlers, G.; Hoffmann, C.; Wang, X.; Hong, T.; Huq, A.; Gourdon, O.; Delaire, O.

    2014-12-29

    The structure and lattice dynamics of rock-salt thermoelectric materials SnTe and PbTe are investigated with single crystal and powder neutron diffraction, inelastic neutron scattering (INS), and first-principles simulations. Our first-principles calculations of the radial distribution function (RDF) in both SnTe and PbTe show a clear asymmetry in the first nearest-neighbor (1NN) peak, which increases with temperature, in agreement with experimental reports (Ref. 1,2). We show that this peak asymmetry for the 1NN Sn–Te or Pb–Te bond results from large-amplitude anharmonic vibrations (phonons). No atomic off-centering is found in our simulations. In addition, the atomic mean square displacements derived from our diffraction data reveal stiffer bonding at the anion site, in good agreement with the partial phonon densities of states from INS, and first-principles calculations. In conclusion, these results provide clear evidence for large-amplitude anharmonic phonons associated with the resonant bonding leading to the ferroelectric instability.

  12. Nuclear Structure Studies in the 132Sn Region: Safe Coulex with Carbon Targets

    SciTech Connect

    Allmond, James M; Stuchbery, Andrew E; Galindo-Uribarri, Alfredo {nmn}; Padilla-Rodal, Elizabeth; Radford, David C; Batchelder, J. C.; Bingham, C. R.; Howard, Meredith E; Liang, J Felix; Manning, Brett M; Pain, Steven D; Stone, N. J.; Varner, Jr, Robert L; Yu, Chang-Hong

    2015-01-01

    The collective and single-particle structure of nuclei in the 132Sn region was recently studied by Coulomb excitation and heavy-ion induced transfer reactions using carbon, beryllium, and titanium targets. In particular, Coulomb excitation was used determine a complete set of electromagnetic moments for the first 2+ states and one-neutron transfer was used to probe the purity and evolution of single-neutron states. These recent experiments were conducted at the Holifield Radioactive Ion Beam Facility at ORNL using a CsI-HPGe detector array (BareBall- CLARION) to detect scattered particles and emitted gamma rays from the in-beam reactions. A Bragg-curve detector was used to measure the energy loss of the various beams through the targets and to measure the radioactive beam compositions. A sample of the Coulomb excitation results is presented here with an emphasis placed on 116Sn. In particular, the safe Coulex criterion for carbon targets will be analyzed and discussed.

  13. Multiple magnetic singlet-singlet excitations in intermetallic PrNiSn

    NASA Astrophysics Data System (ADS)

    McEwen, K. A.; Jensen, J.; Beirne, E. D.; Allen, J. P.; Habicht, K.; Adroja, D. T.; Bewley, R. I.; Fort, D.

    2006-01-01

    Inelastic neutron-scattering experiments have been carried out on a polycrystalline sample of PrNiSn, and seven of the eight excited crystal-field singlets of the Pr ions were detected. The system stays paramagnetic, at least down to 0.9K , and the three principal susceptibility components have been measured on a PrNiSn single crystal between room temperature and 1.7K . The crystal-field excitations of the single crystal at low temperatures have been studied by triple-axis neutron spectroscopy. Dispersive effects are observed for three different levels of singlet-singlet excitations. The results are analyzed in terms of a mean-field/random phase approximation model, and it is concluded that the exchange interaction is highly anisotropic and of long range. The critical ratio between the maximum of the exchange interaction and that required for inducing a magnetic ordering of the singlet ground-state system is derived to be 0.48, leading to a predicted ordering temperature of 6mK for the combined electron-nuclear magnetic system.

  14. Anharmonicity and atomic distribution of SnTe and PbTe thermoelectrics

    DOE PAGESBeta

    Li, C. W.; Ma, J.; Cao, H. B.; May, A. F.; Abernathy, D. L.; Ehlers, G.; Hoffmann, C.; Wang, X.; Hong, T.; Huq, A.; et al

    2014-12-29

    The structure and lattice dynamics of rock-salt thermoelectric materials SnTe and PbTe are investigated with single crystal and powder neutron diffraction, inelastic neutron scattering (INS), and first-principles simulations. Our first-principles calculations of the radial distribution function (RDF) in both SnTe and PbTe show a clear asymmetry in the first nearest-neighbor (1NN) peak, which increases with temperature, in agreement with experimental reports (Ref. 1,2). We show that this peak asymmetry for the 1NN Sn–Te or Pb–Te bond results from large-amplitude anharmonic vibrations (phonons). No atomic off-centering is found in our simulations. In addition, the atomic mean square displacements derived from ourmore » diffraction data reveal stiffer bonding at the anion site, in good agreement with the partial phonon densities of states from INS, and first-principles calculations. In conclusion, these results provide clear evidence for large-amplitude anharmonic phonons associated with the resonant bonding leading to the ferroelectric instability.« less

  15. Probing the shell structure near {sup 54}Ca and {sup 100}Sn

    SciTech Connect

    Kruecken, R.

    2008-11-11

    In this contribution results will be reported from two recent experiments at the GSI Fragmentseparator (FRS). The first experiment is using one-nucleon knockout with relativistic fragments from a 500 AMeV {sup 86}Kr primary beam to probe the single-particle structure in {sup 49}Ca and {sup 55}Ti. From the one-neutron knockout in the neutron-rich nuclei {sup 50}Ca and the N = 34 nucleus {sup 56}Ti cross sections and momentum distributions were deduced allowing the determination of angular momentum values and spectroscopic factors for individual states.In the second experiment decay spectroscopy of {sup 100}Sn and nuclei in its vicinity was performed. The nuclei of interest were produced using the fragmentation of a 1 AGeV {sup 124}Xe primary beam. The RISING gamma-ray detector array was used in close geometry to detect gamma-decay following isomeric as well as beta decays. Aside from the production of more that 200 {sup 100}Sn nuclei, several new isotopes and isomers were discovered.

  16. SN 1993J: A Type IIb supernova

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.; Eastman, Ronald G.; Weaver, Thomas A.; Pinto, Philip A.

    1994-07-01

    The evolution of the bright Type II supernova discovered last year in M81, SN 1993J, is consistent with that expected for the explosion of a star which on the main sequence had a mass of 13-16 Solar Mass but which, owing to mass exchange with a binary companion (a intially approximately 3-5 AU, depending upon the actual presupernova radius and the masses of the two stars) lost almost all of its hydrogen-rich envelope during late helium burning. At the time of explosion, the helium core mass was 4.0 +/- 0.5 Solar Mass and the hydrogen envelope, 0.20 +/- 0.05 Solar Mass. The envelope was helium and nitrogen-rich (carbon-deficient) and the radius of the star, 4 +/- 1 x 1013 cm. The luminosity of the presupernova star was 3 + 1 x 1038 ergs/s, with the companion star contributing an additional approximately 1038 ergs/s. The star may have been a pulsating variable at the time of the explosion. For an explosion energy near 1051 ergs (KE at infinity) and an assumed distance of 3.3 Mpc, a mass of Ni-56 in the range 0.07 +/- 0.01 Solar Mass was produced and ejected. This prescription gives a light curve which compares favorably with the bolomatric observations. Color photometry is more restrictive and requires a model in which the hydrogen-envelope mass is low and the mixing of hydrogen inward has been small, but in which appreciable Ni-56 has been mixed outward into the helium and heavy-element core. It is possible to obtain good agreement with B and V light curves during the first 50 days, but later photometry, especially in bands other than B and V, will require a non-local thermo-dynamic equilibrium (LTE) spectral calculation for comparison. Based upon our model, we predict a flux of approximately 10-5(3.3 Mpc/D)2 photons/sq cm/s in the 847 keV line of CO-56 at peak during 1993 August. It may be easier to detect the Computonized continuum which peaks at a few times 10-4 photons /s/sq cm/MeV at 40 keV a few months after the explosion (though neither of these signals were

  17. Beta delayed neutrons for nuclear structure and astrophysics

    NASA Astrophysics Data System (ADS)

    Grzywacz, Robert

    2014-09-01

    Beta-delayed neutron emission (β xn) is a significant or even dominant decay channel for the majority of very neutron-rich nuclei, especially for those on the r-process path. The recent theoretical models predicts that it may play more significant role then previously expected for astrophysics and this realization instigated a renewed experimental interest in this topic as a part of a larger scope of research on beta-decay strength distribution. Because studies of the decay strength directly probe relevant physics on the microscopic level, energy-resolved measurements of the beta-decay strength distribution is a better test of nuclear models than traditionally used experimental observables like half-lives and neutron branching ratios. A new detector system called the Versatile Array of Neutron Detectors at Low Energy (VANDLE) was constructed to directly address this issue. In its first experimental campaign at the Holifield Radioactive Ion Beam Facility neutron energy spectra in key regions of the nuclear chart were measured: near the shell closures at 78Ni and 132Sn, and for the deformed nuclei near 100Rb. In several cases, unexpectedly intense and concentrated, resonant-like, high-energy neutron structures were observed. These results were interpreted within shell model framework which clearly indicated that these neutron emission is driven by nuclear structure effects and are due to large Gamow-Teller type transition matrix elements. This research was sponsored in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement No. DE-FG52-08NA28552.

  18. Pocked surface neutron detector

    DOEpatents

    McGregor, Douglas; Klann, Raymond

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  19. Neutrons against cancer

    NASA Astrophysics Data System (ADS)

    Dovbnya, A. N.; Kuplennikov, E. L.; Kandybey, S. S.; Krasiljnikov, V. V.

    2014-09-01

    The review is devoted to the analysis and generalization of the research carried out during recent years in industrially advanced countries on the use of fast, epithermal, and thermal neutrons for therapy of malignant tumors. Basic facilities for neutron production used for cancer treatment are presented. Optimal parameters of therapeutic beams are described. Techniques using neutrons of different energy regions are discussed. Results and medical treatment efficiency are given. Comparison of the current state of neutron therapy of tumors and alternative treatments with beams of protons and carbon ions has been conducted. Main attention is given to the possibility of the practical use of accumulated experience of application of neutron beams for cancer therapy.

  20. THERMAL NEUTRON BACKSCATTER IMAGING.

    SciTech Connect

    VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

    2004-10-16

    Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.