Science.gov

Sample records for neutron deficient nucleus

  1. Rotation induced octupole correlations in the neutron-deficient 109Te nucleus

    NASA Astrophysics Data System (ADS)

    de Angelis, G.; Fahlander, C.; Gadea, A.; Farnea, E.; Bazzacco, D.; Belcari, N.; Blasi, N.; Bizzeti, P. G.; Bizzeti-Sona, A.; de Acuña, D.; de Poli, M.; Grawe, H.; Johnson, A.; Lo Bianco, G.; Lunardi, S.; Napoli, D. R.; Nyberg, J.; Pavan, P.; Persson, J.; Rossi Alvarez, C.; Rudolph, D.; Schubart, R.; Spolaore, P.; Wyss, R.; Xu, F.

    1998-10-01

    High spin states in the neutron deficient nucleus 109Te have been populated with the 58Ni+54Fe reaction at 220 MeV and investigated through γ-spectroscopy methods at the GASP spectrometer making use of reaction channel selection with the ISIS Si-ball. The level scheme has been extended up to an excitation energy of ~12.1 MeV. The spins and parities of the observed levels are assigned tentatively supporting the identification of two bands of opposite parity connected by strong dipole transitions inferred to be of E1 character. Octupole correlations in 109Te induced by rotation are suggested as the cause of this effect.

  2. First direct mass measurement of the neutron-deficient nucleus 24Al

    NASA Astrophysics Data System (ADS)

    Chowdhury, U.; Leach, K. G.; Andreoiu, C.; Bader, A.; Brodeur, M.; Chaudhuri, A.; Gallant, A. T.; Grossheim, A.; Gwinner, G.; Klawitter, R.; Kwiatkowski, A. A.; Lennarz, A.; Macdonald, T. D.; Pearkes, J.; Schultz, B. E.; Dilling, J.

    2015-10-01

    The first direct mass measurement of the neutron-deficient nucleus 24Al was performed via Penning-Trap Mass Spectrometry (PTMS) using TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). This measurement was facilitated by the use of TRIUMF's new Ion-Guide Laser Ion Source (IG-LIS), which reduced A =24 isobaric contamination in the delivered beam by nearly six orders of magnitude. The measured mass excess was found to be Δ =-48.86 (23 ) keV, which is five times more precise than the value quoted in the most recent atomic mass evaluation. When combined with the relevant 24Al excitation energy, and a recent measurement of the 23Mg mass, the astrophysical 23Mg(p,γ ) 24Al reaction resonance energy is extracted as Er=480.8 (14 ) keV. The presented value shows a 2 σ disagreement with the direct measurement of this quantity by the DRAGON recoil spectrometer.

  3. Spectroscopy of the neutron-deficient nucleus {sup 167}Os{sub 91}

    SciTech Connect

    O'Donnell, D.; Simpson, J.; Hornillos, M. B. Gomez; Labiche, M.; Grahn, T.; Joss, D. T.; Bianco, L.; Judson, D. S.; Page, R. D.; Paul, E. S.; Petri, M.; Petts, A.; Sapple, P. J.; Thomson, J.; Watkins, H. V.; Scholey, C.; Greenlees, P. T.; Jakobsson, U.; Jones, P.; Julin, R.

    2009-06-15

    Excited states of the nucleus {sup 167}Os have been populated by the reaction {sup 92}Mo({sup 78}Kr,2pn). The JUROGAM {gamma}-ray detector array has been used in conjunction with the RITU gas-filled separator and the GREAT spectrometer to observe prompt {gamma} rays in coincidence with recoiling fusion-evaporation residues and their subsequent decay by {alpha} particle emission. By correlating prompt {gamma} radiation with the characteristic {alpha} radioactivity of {sup 167}Os, it has been possible to extend the level scheme for this nucleus significantly. In particular, an extension of the yrast band and four previously unobserved bands are reported. In addition, the recoil distance Doppler-shift method was used to determine a lifetime of {tau}=20(4) ps for The I{sup {pi}}=17/2{sup +} state in {sup 167}Os. Hence, the level of collectivity and magnitude of deformation of the low spin yrast band of this nucleus is established.

  4. The Onset of Deformation in Neutron-Deficient At Nuclei

    SciTech Connect

    Smith, M.B.; Chapman, R.; Cocks, J.F.C.; Dorvaux, O.; Helariutta, K.; Jones, P.M.; Julin, R.; Juutinen, S.; Kankaanpaa, H.; Kettunen, H.; Kuusiniemi, P.; Le Coz, Y.; Leino, M.; Middleton, D.J.; Muikku, M.; Nieminen, P.; Rahkila, P.; Savelius, A.; Spohr, K.-M.

    1999-12-31

    Excited states in the {sup 197}At nucleus have been identified for the first time using the recoil-decay-tagging technique. The excitation energy of these states is found to be consistent with the systematics of neutron-deficient At nuclei and with calculations indicating that the nucleus may be deformed in its ground state. A more recent experiment, to study states in {sup 195}At, is discussed.

  5. The onset of deformation in neutron-deficient At nuclei

    SciTech Connect

    Smith, M. B.; Chapman, R.; Middleton, D. J.; Spohr, K.-M.; Cocks, J. F. C.; Dorvaux, O.; Helariutta, K.; Jones, P. M.; Julin, R.; Juutinen, S.; Kankaanpaeae, H.; Kettunen, H.; Kuusiniemi, P.; Leino, M.; Muikku, M.; Nieminen, P.; Rahkila, P.; Savelius, A.; Coz, Y. Le

    1999-11-16

    Excited states in the {sup 197}At nucleus have been identified for the first time using the recoil-decay-tagging technique. The excitation energy of these states is found to be consistent with the systematics of neutron-deficient. At nuclei and with calculations indicating that the nucleus may be deformed in its ground state. A more recent experiment, to study states in {sup 195}At, is discussed.

  6. Neutron and weak-charge distributions of the 48Ca nucleus

    DOE PAGES

    Hagen, Gaute; Forssen, Christian; Nazarewicz, Witold; ...

    2015-11-02

    What is the size of the atomic nucleus? This deceivably simple question is difficult to answer. Although the electric charge distributions in atomic nuclei were measured accurately already half a century ago, our knowledge of the distribution of neutrons is still deficient. In addition to constraining the size of atomic nuclei, the neutron distribution also impacts the number of nuclei that can exist and the size of neutron stars. We present an ab initio calculation of the neutron distribution of the neutron-rich nucleus 48Ca. We show that the neutron skin (difference between the radii of the neutron and proton distributions)more » is significantly smaller than previously thought. We also make predictions for the electric dipole polarizability and the weak form factor; both quantities that are at present targeted by precision measurements. Here, based on ab initio results for 48Ca, we provide a constraint on the size of a neutron star.« less

  7. Magnetic moments of neutron deficient yttrium nuclei

    SciTech Connect

    Berks; El Hajjaji, O.; Fahad, M.; Hassani, R.; Giroux, J.; Marest, G.; Marguier, G.; Stone, N.J.; Rikovska, J.; Green, V.R.; and others

    1987-12-10

    This paper describes recent low temperature nulcear orientation (LTNO) work on neutron deficient /sup 85m,86,86m/Y nuclei. Results are compared with experimental systematics of neighbouring nuclei and particle core coupling calculations.

  8. A new opportunity: coincident spectroscopy in neutron-deficient actinides

    NASA Astrophysics Data System (ADS)

    Gothe, Oliver; Gates, J. M.; Gregorich, K. E.; Baartman, B.; Fallon, P.; Esker, N. E.; Kwarsick, J.; Machiavelli, A. O.; Mudder, P. R.; Olive, D. T.; Pang, G.; Rissanen, J.; Nitsche, H.

    2014-09-01

    Due to high γ-ray background rates heavy element production facilities are usually not sensitive to the electron capture decay of neutron deficient actinides. We have developed new capabilities at the Berkeley Gas Filled Separator (BGS) that allow us to study these isotopes. The highly selective and efficient separation of compound nucleus evaporation residue products using the BGS couple with a rapid delivery to a low-background detector facility, opens up many new possibilities for nuclear decay and structure studies in the neutron deficient actinides. The decay of these actinides produces vacancies in the K-shell resulting in x-rays uniquely identifying the Z of the decay products. We present the first results of this new methodology in studying the nuclear structure of fermium-254 by observing the gamma rays in coincidence with fermium x-rays. Coincident gamma-decay spectroscopy gives us a new tool to study the nuclear structure of previously inaccessible systems.

  9. Neutron and weak-charge distributions of the 48Ca nucleus

    SciTech Connect

    Hagen, Gaute; Forssen, Christian; Nazarewicz, Witold; Papenbrock, Thomas F.; Bacca, S.; Barnea, Nir; Carlsson, Boris; Drischler, Christian; Hebeler, Kai; Hjorth-Jensen, M.; Miorelli, Mirko; Orlandini, Giuseppina; Schwenk, Achim; Simonis, Johannes; Jansen, Gustav R.; Ekstrom, A.; Wendt, K. A.

    2015-11-02

    What is the size of the atomic nucleus? This deceivably simple question is difficult to answer. Although the electric charge distributions in atomic nuclei were measured accurately already half a century ago, our knowledge of the distribution of neutrons is still deficient. In addition to constraining the size of atomic nuclei, the neutron distribution also impacts the number of nuclei that can exist and the size of neutron stars. We present an ab initio calculation of the neutron distribution of the neutron-rich nucleus 48Ca. We show that the neutron skin (difference between the radii of the neutron and proton distributions) is significantly smaller than previously thought. We also make predictions for the electric dipole polarizability and the weak form factor; both quantities that are at present targeted by precision measurements. Here, based on ab initio results for 48Ca, we provide a constraint on the size of a neutron star.

  10. Leading neutrons from polarized proton-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2017-03-01

    Leading neutron production on protons is known to be subject to strong absorptive corrections, which have been under debate for a long time. On nuclear targets these corrections are significantly enhanced and push the partial cross sections of neutron production to the very periphery of the nucleus. As a result, the A-dependences of inclusive and diffractive neutron production turn out to be similar. The mechanism of π-a1 interference, which successfully explained the observed single-spin asymmetry of neutrons in polarized pp interactions, is extended here to polarized pA collisions. Corrected for nuclear effects it explains quite well the magnitude and sign of the asymmetry AN observed in inelastic events, resulting in a violent break up of the nucleus. However the excessive magnitude of AN observed in the diffractive sample, remains a challenge.

  11. γ-ray spectroscopy of neutron-deficient 123Ce

    NASA Astrophysics Data System (ADS)

    Smith, J. F.; Angus, L. J.; Paul, E. S.; Chiara, C. J.; Carpenter, M. P.; Chantler, H. J.; Choy, P. T. W.; Davids, C. N.; Devlin, M.; Fossan, D. B.; Freeman, S. J.; Janssens, R. V. F.; Kelsall, N. S.; Koike, T.; LaFosse, D. R.; Sarantites, D. G.; Seweryniak, D.; Starosta, K.; Wadsworth, R.; Wilson, A. N.

    2012-09-01

    Excited states have been identified in the very neutron-deficient Z=58 nucleus 123Ce. This is the most neutron-deficient odd-A cerium isotope in which excited states have been identified. The states have been unambiguously assigned to 123Ce by detecting de-excitation γ rays in coincidence with evaporated charged particles and neutrons. Three rotational bands, each consisting of at least eight E2 transitions, have been observed. The bands have tentatively been assigned to be based on neutrons in g7/2 and h11/2 orbitals. Two of the bands have been assigned to be signature partners, although no interband transitions have been observed. The aligned angular momenta of the bands have been studied in comparison with neighboring nuclei and with the results of Woods-Saxon cranking calculations. Observation of the deformation-dependent π(h11/2)2 quasiparticle alignment at 0.36 MeV/ℏ in each of the bands suggests a quadrupole deformation of β2≃0.3, in good agreement with theoretical predictions for the suggested possible configuration assignments.

  12. Determination of electron-nucleus collisions geometry with forward neutrons

    DOE PAGES

    Zheng, L.; Aschenauer, E.; Lee, J. H.

    2014-12-29

    There are a large number of physics programs one can explore in electron-nucleus collisions at a future electron-ion collider. Collision geometry is very important in these studies, while the measurement for an event-by-event geometric control is rarely discussed in the prior deep-inelastic scattering experiments off a nucleus. This paper seeks to provide some detailed studies on the potential of tagging collision geometries through forward neutron multiplicity measurements with a zero degree calorimeter. As a result, this type of geometry handle, if achieved, can be extremely beneficial in constraining nuclear effects for the electron-nucleus program at an electron-ion collider.

  13. Charge radii of neutron-deficient 52,53Fe

    NASA Astrophysics Data System (ADS)

    Minamisono, K.; Brown, B. A.; Miller, A. J.; Rossi, D. M.; Maa, B.; Nörtershäuser, W.; Garand, D.; Sumithrarachchi, C.; Mantica, P. F.; Beerwerth, R.; Fritzsche, S.; Klose, A.; Liu, Y.; Müller, P.; Pearson, M. R.

    2016-09-01

    Shell closures can be identified as ``kinks'' in the chain of charge radii, , which can be seen for the N = 28 neutron shell closure up to 25 Mn. The trends in the vicinity of 56Ni is of particular interest, since the 56Ni nucleus is known to be soft. The of neutron-deficient 52,53Fe were determined in the present study using the bunched beam collinear laser spectroscopy at BEam COoling and LAser spectroscopy (BECOLA) facility at NSCL/MSU. The presence of a kink in the chain of at N = 28 for the Fe isotopes was confirmed. The global behavior of the of Fe, and Ca thorough Ni isotopes, will be discussed. Work supported in part by NSF Grant PHY-11-02511 and U.S. DOE Grant DE-NA0002924.

  14. Spectroscopy of neutron-deficient nuclei around 36Ca

    SciTech Connect

    Buerger, A.; Azaiez, F.; Bourgeois, Ch.; Franchoo, S.; Ibrahim, F.; Verney, D.; Dombradi, Zs.; Algora, A.; Fueloep, Zs.; Sohler, D.; Al-Khatib, A.; Bringel, P.; Engelhardt, C.; Huebel, H.; Bastin, B.; Benzoni, G.; Borcea, R.; Rotaru, F.; Sorlin, O.

    2006-04-26

    An experiment was performed to extend the knowledge of excited states in neutron-deficient Ca isotopes. In particular, excited states in 36Ca were searched for to allow for a comparison with its stable mirror nucleus, 36S. Secondary beams of 37Ca and 36Ca were produced by fragmentation of a primary 40Ca beam with an energy of 95 {center_dot} A MeV on the SISSI target at GANIL. A variety of nuclei around 36Ca has been produced in a secondary Be target by neutron and proton-removal at beam energies around 61 {center_dot} A MeV. The produced nuclei were identified using the spectrometer SPEG, and prompt {gamma} rays were measured with the Chateau de Cristal. A preliminary value for the energy of the first 2+ state of 36Ca has been determined.

  15. Mass Study of the Neutron Deficient Nulceus ^68Se

    NASA Astrophysics Data System (ADS)

    Brown, T.; Davids, C.; Penttila, H.; Blumenthal, D.; Lister, C.; Busse, B.; Batchelder, J.; Walters, W.; Conticchio, L.; Mustillo, D.; Ramayya, A. V.

    1998-10-01

    For the last few decades, many groups have made innovative attempts to study the properties of the neutron deficient nucleus ^68Se. Due to the small production cross section and the inability to quickly and definitely separate ^68Se from other reaction products, the search has thus far been incomplete. With the Fragment Mass Analyzer at Argonne National Lab, the halflife and β+ decay scheme were measured and found to agree with that of a previous work (P. Baumann et al., Phys. Rev. C50 R1180(1994)). A mass measurement was also performed. The latter piece of information is critical for nuclear synthesis models in regard to the rp process. This work was supported by the US Department of Energy, Nuclear Physics Division, under contract W-31-109-ENG-38 and by the NSF.

  16. Halo Nucleus 11Be: A Spectroscopic Study via Neutron Transfer

    SciTech Connect

    Schmitt, Kyle; Jones, K. L.; Bey, A.; Ahn, S.H.; Bardayan, Daniel W; Blackmon, Jeffery C; Brown, S.; Chae, Kyung Yuk; Chipps, K.; Cizewski, J. A.; Kozub, R. L.; Liang, J Felix; Matei, Catalin; Matos, M.; Moazen, Brian H; Nesaraja, Caroline D; Nunes, F. M.; O'Malley, Patrick; Pain, Steven D; Peters, W. A.; Pittman, S. T.; Wilson, G.

    2012-01-01

    The best examples of halo nuclei, exotic systems with a diffuse nuclear cloud surrounding a tightly bound core, are found in the light, neutron-rich region, where the halo neutrons experience only weak binding and a weak, or no, potential barrier. Modern direct-reaction measurement techniques provide powerful probes of the structure of exotic nuclei. Despite more than four decades of these studies on the benchmark one-neutron halo nucleus 11Be, the spectroscopic factors for the two bound states remain poorly constrained. In the present work, the 10Be d;p reaction has been used in inverse kinematics at four beam energies to study the structure of 11Be. The spectroscopic factors extracted using the adiabatic model were found to be consistent across the four measurements and were largely insensitive to the optical potential used. The extracted spectroscopic factor for a neutron in an n j 2s1=2 state coupled to the ground state of 10Be is 0.71(5). For the first excited state at 0.32 MeV, a spectroscopic factor of 0.62(4) is found for the halo neutron in a 1p1=2 state.

  17. Quadrupole Collectivity in Neutron Deficient Sn Isotopes

    NASA Astrophysics Data System (ADS)

    Gade, Alexandra

    2014-03-01

    One of the overarching goals of nuclear physics is the development of a comprehensive model of the atomic nucleus with predictive power across the nuclear chart. Of particular importance for the development of nuclear models is experimental data that consistently track the effect of isospin and changed binding, for example. The chain of Sn isotopes has been a formidable testing ground for nuclear models as some spectroscopic data is available from N = Z = 50 100Sn in the proximity of the proton dripline to 134Sn, beyond the very neutron-rich doubly magic nucleus 132Sn. In even-even nuclei, the electromagnetic quadrupole excitation strength is a measure of quadrupole collectivity, sensitive to the presence of shell gaps, nuclear deformation, and nucleon-nucleon correlations, for example. In the Sn isotopes, this transition strength has been reported from 104Sn to 130Sn, spanning a chain of 14 even-even Sn isotopes. The trend is asymmetric with respect to midshell and not even the largest-scale shell-model calculations have been able to describe the evolution of transition strength across the isotopic chain without varying effective charges. Implications will be discussed. This work was supported by the National Science Foundation under Grant No. PHY-1102511.

  18. Elastic and inelastic scattering of neutrons on 238U nucleus

    NASA Astrophysics Data System (ADS)

    Capote, R.; Trkov, A.; Sin, M.; Herman, M. W.; Soukhovitskiĩ, E. Sh.

    2014-04-01

    Advanced modelling of neutron induced reactions on the 238U nucleus is aimed at improving our knowledge of neutron scattering. Capture and fission channels are well constrained by available experimental data and neutron standard evaluation. A focus of this contribution is on elastic and inelastic scattering cross sections. The employed nuclear reaction model includes - a new rotational-vibrational dispersive optical model potential coupling the low-lying collective bands of vibrational character observed in even-even actinides; - the Engelbrecht-Weidenmüller transformation allowing for inclusion of compound-direct interference effects; - and a multi-humped fission barrier with absorption in the secondary well described within the optical model for fission. Impact of the advanced modelling on elastic and inelastic scattering cross sections including angular distributions and emission spectra is assessed both by comparison with selected microscopic experimental data and integral criticality benchmarks including measured reaction rates (e.g. JEMIMA, FLAPTOP and BIG TEN). Benchmark calculations provided feedback to improve the reaction modelling. Improvement of existing libraries will be discussed.

  19. New systematic features in the neutron-deficient Au isotopes

    NASA Astrophysics Data System (ADS)

    Venhart, M.; Wood, J. L.; Sedlák, M.; Balogh, M.; Bírová, M.; Boston, A. J.; Cocolios, T. E.; Harkness-Brennan, L. J.; Herzberg, R.-D.; Holub, L.; Joss, D. T.; Judson, D. S.; Kliman, J.; Klimo, J.; Krupa, L.; Lušnák, J.; Makhathini, L.; Matoušek, V.; Motyčák, Š.; Page, R. D.; Patel, A.; Petrík, K.; Podshibyakin, A. V.; Prajapati, P. M.; Rodin, A. M.; Špaček, A.; Urban, R.; Unsworth, C.; Veselský, M.

    2017-07-01

    A recently developed portable, on-line capability for γ-ray and conversion-electron spectroscopy, HIGH-TATRA is demonstrated with its application to the study of 183Hg \\to 183Au at ISOLDE. Key details of the low-energy level scheme of the neutron-deficient nuclide 183Au populated in this decay are presented. A broad energy germanium detector is employed to achieve this (the first-ever use of such a device in decay-scheme spectroscopy), by way of a combination of high-gain γ-ray singles spectroscopy and γ–γ coincidence spectroscopy. Further, by combining the γ-ray detectors with a liquid-nitrogen-cooled Si(Li) detector operated under high vacuum, conversion-electron singles and e–γ coincidences are obtained. These data lead to the determination of transition multipolarities and the location of a highly converted (E0 + M1 + E2) transition in the 183Au decay scheme, suggesting a possible new shape coexisting structure in this nucleus. Identification of new intruder and normal states fixes their relative energies in 183Au for the first time. New systematic features in the odd-Au isotopes are presented.

  20. First observation of very neutron-deficient ^1^2^2Ce [rapid communication

    NASA Astrophysics Data System (ADS)

    Smith, J. F.; Chiara, C. J.; Carpenter, M. P.; Chantler, H. J.; Choy, P. T. W.; Davids, C. N.; Devlin, M.; Durell, J. L.; Fossan, D. B.; Freeman, S. J.; Janssens, R. V. F.; Kelsall, N. S.; Koike, T.; LaFosse, D. R.; Paul, E. S.; Reiter, P.; Sarantites, D. G.; Seweryniak, D.; Starosta, K.; Wadsworth, R.; Wilson, A. N.; Heenen, P.-H.

    2005-10-01

    Excited states have been identified in the very neutron-deficient 122Ce nucleus. This is the first observation of this nucleus and its excited states. The ground-state rotational band has been observed up to spin 14 ℏ. The band has been assigned to 122Ce by detecting gamma rays in coincidence with evaporated charged particles and neutrons. The E (21+) value suggests a rather large ground-state deformation of β2 = 0.35, in good agreement with Hartree-Fock-Bogoliubov (HFB) mean-field calculations. The aligned angular momentum of the band has been studied and is compared with those of the neighboring even-even cerium isotopes, and to Woods-Saxon cranking calculations. The non-observation of the π(h11 / 2) 2 alignment until at least 0.4 MeV/ℏ is consistent with the extracted value of β2.

  1. Possibilities of production of neutron-deficient isotopes of U, Np, Pu, Am, Cm, and Cf in complete fusion reactions

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.; Scheid, W.

    2008-10-15

    Within the dinuclear system model we analyze the production of yet unknown neutron-deficient isotopes of U, Np, Pu, Am, Cm, and Cf in various complete fusion reactions. Different deexcitation channels of the excited compound nucleus are treated. The results are obtained without special adjustment to the selected evaporation channel. The fusion probability is an important ingredient of the excitation function. The results are in good agreement with the available experimental data. The alpha decay half-life times in the neutron-deficient actinides are discussed.

  2. Multiquasiparticle states in the neutron-rich nucleus 174Tm

    NASA Astrophysics Data System (ADS)

    Hughes, R. O.; Lane, G. J.; Dracoulis, G. D.; Byrne, A. P.; Nieminen, P.; Watanabe, H.; Carpenter, M. P.; Chowdhury, P.; Janssens, R. V. F.; Kondev, F. G.; Lauritsen, T.; Seweryniak, D.; Zhu, S.

    2013-07-01

    Deep inelastic and transfer reactions with an 820-MeV, 136Xe beam and various ytterbium and lutetium targets have been employed to study high-spin structures in the neutron-rich thulium isotopes beyond 171Tm. Results in the doubly odd nucleus, 174Tm, include the identification of numerous new two- and four-quasiparticle intrinsic states including several isomers below 1 MeV, and the observation of the Kπ=4- ground state rotational band populated via direct decay from a τ=153(10)-μs, Kπ=14- isomer at 2092 keV. The 398-keV, M1 transition linking the isomer and ground state band is abnormally fast for a highly forbidden, ΔK=10 decay. This relative enhancement is explained in terms of mixing of the 13- level with the nearby 13- member of a Kπ=8- rotational band, with an interaction strength of V ≈ 1.4 keV. Multiquasiparticle calculations are compared with the observed states.

  3. IBM-1 calculations towards the neutron-rich nucleus {sup 106}Zr

    SciTech Connect

    Lalkovski, Stefan

    2009-04-15

    The neutron-rich N=66 isotonic and A=106 isobaric chains, covering regions with varying types of collectivity, are interpreted in the framework of the interacting boson model. Level energies and electric quadrupole transition probabilities are compared with available experimental information. The calculations for the known nuclei in the two chains are extrapolated toward the neutron-rich nucleus {sup 106}Zr.

  4. Nuclear moments and charge radii of neutron-deficient francium isotopes and isomers

    NASA Astrophysics Data System (ADS)

    Voss, A.; Buchinger, F.; Cheal, B.; Crawford, J. E.; Dilling, J.; Kortelainen, M.; Kwiatkowski, A. A.; Leary, A.; Levy, C. D. P.; Mooshammer, F.; Ojeda, M. L.; Pearson, M. R.; Procter, T. J.; Tamimi, W. Al

    2015-04-01

    Collinear laser fluorescence spectroscopy has been performed on the ground and isomeric states of Fr,206204 in order to determine their spins, nuclear moments, and changes in mean-squared charge radii. A new experimental technique has been developed as part of this work which much enhances the data collection rate while maintaining the high resolution. This has permitted the extension of this study to the two isomeric states in each nucleus. The investigation of nuclear g factors and mean-squared charge radii indicates that the neutron-deficient Fr isotopes lie in a transitional region from spherical towards more collective structures.

  5. Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture

    SciTech Connect

    Cieplicka-Oryńczak, N.; Fornal, B.; Szpak, B.; Leoni, S.; Bottoni, S.; Bazzacco, D.; Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T.; Bocchi, G.; France, G. de; Simpson, G.; Urban, W.

    2015-10-15

    The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility of testing the calculations involving the core excitations.

  6. Prospects for using coherent elastic neutrino-nucleus scattering to measure the nuclear neutron form factor

    NASA Astrophysics Data System (ADS)

    Patton, Kelly; McLaughlin, Gail; Scholberg, Kate; Engel, Jon; Schunck, Nicolas

    2017-01-01

    Coherent elastic neutrino-nucleus scattering is a potential probe of nuclear neutron form factors. We show that the neutron root-mean-square (RMS) radius can be measured with tonne-scale detectors of argon, germanium, or xenon. In addition, the fourth moment of the neutron distribution can be studied experimentally using this method. The impacts of both detector size and detector shape uncertainty on such a measurement were considered. The important limiting factor was found to be the detector shape uncertainty. In order to measure the neutron RMS radius to 5%, comparable to current experimental uncertainties, the detector shape uncertainty needs to be known to 1% or better.

  7. Study of parity and time reversal violation in neutron-nucleus interactions

    SciTech Connect

    Yen, Yi-Fen; Bowman, J.D.; Frankle, C.M.; Crawford, B.E. |

    1994-12-31

    The parity and time-reversal symmetries can be studies in neutron-nucleus interactions. Parity non-conserving asymmetries have been observed for many p-wave resonances in a compound nucleus and measurements were performed on several nuclei in the mass region of A{approximately}100 and A{approximately}230. The statistical model of the compound nucleus provides a theoretical basis for extracting mean-squared matrix elements from the experimental asymmetry data, and for interpreting the mean-squared matrix elements. The constraints on the weak meson-exchange couplings calculated from the compound-nucleus asymmetry data agree qualitatively with the results from few-body and light-nuclei experiments. The tests of time-reversal invariance in various experiments using thermal, epithermal and MeV neutrons are being developed.

  8. Single-charge-exchange reactions and the neutron density at the surface of the nucleus

    NASA Astrophysics Data System (ADS)

    Loc, Bui Minh; Auerbach, Naftali; Khoa, Dao T.

    2017-07-01

    In this paper, we study the charge-exchange reaction to the isobaric analog state using two types of transition densities. One transition density is equal to the difference of the total neutron density minus the total proton density and the other one is the density of the excess neutrons only. We show that for projectiles that do not probe the interior of the nucleus but mostly the surface of this nucleus, distinct differences in the cross section arise when two types of transition densities are employed. We demonstrate this by considering the (3He,t ) reaction.

  9. Decay-Assisted Laser Spectroscopy of Neutron-Deficient Francium

    NASA Astrophysics Data System (ADS)

    Lynch, K. M.; Billowes, J.; Bissell, M. L.; Budinčević, I.; Cocolios, T. E.; De Groote, R. P.; De Schepper, S.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Heylen, H.; Marsh, B. A.; Neyens, G.; Procter, T. J.; Rossel, R. E.; Rothe, S.; Strashnov, I.; Stroke, H. H.; Wendt, K. D. A.

    2014-01-01

    This paper reports on the hyperfine-structure and radioactive-decay studies of the neutron-deficient francium isotopes Fr202-206 performed with the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at the ISOLDE facility, CERN. The high resolution innate to collinear laser spectroscopy is combined with the high efficiency of ion detection to provide a highly sensitive technique to probe the hyperfine structure of exotic isotopes. The technique of decay-assisted laser spectroscopy is presented, whereby the isomeric ion beam is deflected to a decay-spectroscopy station for alpha-decay tagging of the hyperfine components. Here, we present the first hyperfine-structure measurements of the neutron-deficient francium isotopes Fr202-206, in addition to the identification of the low-lying states of Fr202,204 performed at the CRIS experiment.

  10. One-neutron removal measurement reveals 24O as a new doubly magic nucleus.

    PubMed

    Kanungo, R; Nociforo, C; Prochazka, A; Aumann, T; Boutin, D; Cortina-Gil, D; Davids, B; Diakaki, M; Farinon, F; Geissel, H; Gernhäuser, R; Gerl, J; Janik, R; Jonson, B; Kindler, B; Knöbel, R; Krücken, R; Lantz, M; Lenske, H; Litvinov, Y; Lommel, B; Mahata, K; Maierbeck, P; Musumarra, A; Nilsson, T; Otsuka, T; Perro, C; Scheidenberger, C; Sitar, B; Strmen, P; Sun, B; Szarka, I; Tanihata, I; Utsuno, Y; Weick, H; Winkler, M

    2009-04-17

    The first measurement of the momentum distribution for one-neutron removal from (24)O at 920A MeV performed at GSI, Darmstadt is reported. The observed distribution has a width (FWHM) of 99 +/- 4 MeV/c in the projectile rest frame and a one-neutron removal cross section of 63 +/- 7 mb. The results are well explained with a nearly pure 2s_{1/2} neutron spectroscopic factor of 1.74 +/- 0.19 within the eikonal model. This large s-wave probability shows a spherical shell closure thereby confirming earlier suggestions that (24)O is a new doubly magic nucleus.

  11. Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS

    NASA Astrophysics Data System (ADS)

    Markoff, Diane; Coherent Collaboration

    2015-10-01

    The COHERENT collaboration has proposed to measure coherent, elastic neutrino-nucleus scattering (CE νNS) cross sections on several nuclear targets using neutrinos produced at the Spallation Neutron Source (SNS) located at the Oak Ridge National Laboratory. The largest background of concern arises from beam-induced, fast neutrons that can mimic a nuclear recoil signal event in the detector. Multiple technologies of neutron detection have been employed at prospective experiment sites at the SNS. Analysis of these data have produced a consistent picture of the backgrounds expected for a CE νNS measurement. These background studies show that at suitable locations, the fast neutrons of concern arrive mainly in the prompt 1.3 μs window and the neutrons in the delayed window are primarily of lower energies that are relatively easier to shield.

  12. BARYON LOADING OF ACTIVE GALACTIC NUCLEUS JETS MEDIATED BY NEUTRONS

    SciTech Connect

    Toma, K.; Takahara, F.

    2012-08-01

    Plasmas of geometrically thick, black hole (BH) accretion flows in active galactic nuclei (AGNs) are generally collisionless for protons, and involve magnetic field turbulence. Under such conditions a fraction of protons can be accelerated stochastically and create relativistic neutrons via nuclear collisions. These neutrons can freely escape from the accretion flow and decay into protons in the dilute polar region above the rotating BH to form relativistic jets. We calculate geometric efficiencies of the neutron energy and mass injections into the polar region, and show that this process can deposit luminosity as high as L{sub j}{approx}2 Multiplication-Sign 10{sup -3} M-dot c{sup 2} and mass loading M-dot{sub j}{approx}6 Multiplication-Sign 10{sup -4} M-dot for the case of the BH mass M {approx} 10{sup 8} M{sub Sun }, where M-dot is the mass accretion rate. The terminal Lorentz factors of the jets are {Gamma} {approx} 3, and they may explain the AGN jets having low luminosities. For higher luminosity jets, which can be produced by additional energy inputs such as Poynting flux, the neutron decay still can be a dominant mass loading process, leading to, e.g., {Gamma} {approx} 50 for L{sub j,tot}{approx}3 Multiplication-Sign 10{sup -2} M-dot c{sup 2}.

  13. Probe of Triple Shape Coexistence In Neutron Deficient Polonium Nuclei

    SciTech Connect

    Wiseman, D. R.; Page, R. D.; Darby, I. G.; Andreyev, A. N.; Eeckhaudt, S.; Grahn, T.; Greenlees, P. T.; Jones, P.; Julin, R.; Juutinen, S.; Kettunen, H.; Leino, M.; Leppaenen, A.-P.; Nyman, M.; Pakarinen, J.; Rahkila, P.; Saren, J.; Scholey, C.; Uusitalo, J.; Sandzelius, M.

    2006-04-26

    {gamma}-ray transitions in the neutron deficient 190,197Po nuclei have been identified. The yrast band of 190Po has been extended up to a spin and parity of 14+ and is found to display similar systematic behaviour to isotones 186Hg and 188Pb above the 4+ level, thus confirming its prolate nature. In 197Po the band built upon the 13/2+ isomer has been extended up to a spin and parity of 33/2+, while the non-yrast side-band has been observed for the first time. The behaviour of 197Po is found to be similar to that of the nearby even-mass isotopes, which is consistent with the model in which the i13/2 neutron is weakly coupled to the states in the even-even core.

  14. Neutron resonances in the compound nucleus: Parity nonconservation to dynamic temperature measurements

    SciTech Connect

    Yuan, V.W.

    1997-08-01

    Experiments using epithermal neutrons that interact to form compound-nuclear resonances serve a wide range of scientific applications. Changes in transmission which are correlated to polarization reversal in incident neutrons have been used to study parity nonconservation in the compound nucleus for a wide range of targets. The ensemble of measured parity asymmetries provides statistical information for the extraction of the rms parity-violating mean-square matrix element as a function of mass. Parity nonconservation in neutron resonances can also be used to determine the polarization of neutron beams. Finally the motion of target atoms results in an observed temperature-dependent Doppler broadening of resonance line widths. This broadening can be used to determine temperatures on a fast time scale of one microsecond or less.

  15. α decay of the very neutron-deficient isotopes 197-199Fr

    NASA Astrophysics Data System (ADS)

    Kalaninová, Z.; Andreyev, A. N.; Antalic, S.; Heßberger, F. P.; Ackermann, D.; Andel, B.; Drummond, M. C.; Hofmann, S.; Huyse, M.; Kindler, B.; Lane, J. F. W.; Liberati, V.; Lommel, B.; Page, R. D.; Rapisarda, E.; Sandhu, K.; Šáro, Š.; Thornthwaite, A.; Van Duppen, P.

    2013-04-01

    Decay properties of the very neutron-deficient isotopes 197-199Fr were studied at the velocity filter Separator for Heavy Ion reaction Products (SHIP) at GSI in Darmstadt. The isotopes were produced in the 2n-4n evaporation channels of the fusion-evaporation reaction 60Ni+141Pr → 201Fr*. Improved α-decay properties of 199Fr were determined and the possible existence of two α-decaying states in this nucleus is discussed. For the isotope 198Fr a broad α-decay energy distribution was detected in the range of (7470-7930) keV and two α-decaying states were observed with half-lives of 1.1(7) and 15(3) ms. The new isotope 197Fr was identified based on the observation of one α-decay chain yielding Eα=7728(15) keV and T1/2=0.6-0.3+3.0 ms. The systematics of reduced α-decay widths are presented for neutron-deficient francium, radon, and astatine isotopes.

  16. Collinear resonance ionization spectroscopy of neutron-deficient francium isotopes.

    PubMed

    Flanagan, K T; Lynch, K M; Billowes, J; Bissell, M L; Budinčević, I; Cocolios, T E; de Groote, R P; De Schepper, S; Fedosseev, V N; Franchoo, S; Garcia Ruiz, R F; Heylen, H; Marsh, B A; Neyens, G; Procter, T J; Rossel, R E; Rothe, S; Strashnov, I; Stroke, H H; Wendt, K D A

    2013-11-22

    The magnetic moments and isotope shifts of the neutron-deficient francium isotopes (202-205)Fr were measured at ISOLDE-CERN with use of collinear resonance ionization spectroscopy. A production-to-detection efficiency of 1% was measured for (202)Fr. The background from nonresonant and collisional ionization was maintained below one ion in 10(5) beam particles. Through a comparison of the measured charge radii with predictions from the spherical droplet model, it is concluded that the ground-state wave function remains spherical down to (205)Fr, with a departure observed in (203)Fr (N=116).

  17. Collinear Resonance Ionization Spectroscopy of Neutron-Deficient Francium Isotopes

    NASA Astrophysics Data System (ADS)

    Flanagan, K. T.; Lynch, K. M.; Billowes, J.; Bissell, M. L.; Budinčević, I.; Cocolios, T. E.; de Groote, R. P.; De Schepper, S.; Fedosseev, V. N.; Franchoo, S.; Garcia Ruiz, R. F.; Heylen, H.; Marsh, B. A.; Neyens, G.; Procter, T. J.; Rossel, R. E.; Rothe, S.; Strashnov, I.; Stroke, H. H.; Wendt, K. D. A.

    2013-11-01

    The magnetic moments and isotope shifts of the neutron-deficient francium isotopes Fr202-205 were measured at ISOLDE-CERN with use of collinear resonance ionization spectroscopy. A production-to-detection efficiency of 1% was measured for Fr202. The background from nonresonant and collisional ionization was maintained below one ion in 105 beam particles. Through a comparison of the measured charge radii with predictions from the spherical droplet model, it is concluded that the ground-state wave function remains spherical down to Fr205, with a departure observed in Fr203 (N=116).

  18. Evidence for octupole excitations in the odd-odd neutron-rich nucleus {sup 142}Cs

    SciTech Connect

    Liu, S. H.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.; Ma, W. C.; Daniel, A. V.; Ter-Akopian, G. M.

    2010-05-15

    High-spin states in the neutron-rich nucleus {sup 142}Cs are reinvestigated from a study of the spontaneous fission of {sup 252}Cf with the Gammasphere detector array. A new level scheme is built and spin-parities are assigned to levels based on angular correlation measurements and systematics. The new structure of {sup 142}Cs is proposed to be related to octupole correlations. The electric dipole moment of {sup 142}Cs is measured and a dramatic decrease of the dipole moments with increasing neutron numbers in the Cs isotopic chain is found.

  19. Ultraviolet laser spectroscopy of the neutron-deficient bismuth isotopes

    NASA Astrophysics Data System (ADS)

    Xu, Fei

    1997-12-01

    The isotope shifts and nuclear moments of the neutron deficient bismuth isotopes 201-204Bi have been measured at Stony Brook with a highly sensitive gas cell technique. The isotopes were populated with the nuclear reactions 197Au(10B,6n)201Po and 197Au(11B,xn)208-xPo, with boron beams from the SUNY Stony Brook tandem-linac accelerator. The bismuth samples that accumulated from the Po decay were evaporated from the target material and illuminated with 1-2mW of 306.7nm radiation from an intra-cavity frequency doubled ring dye laser. By measuring and analyzing the fluorescence spectra of the bismuth isotopes, the isotope shifts and hyperfine constants were obtained and the nuclear moments were extracted. The systematic behaviour of isotope shifts of the neutron-deficient bismuth isotopes is discussed and compared with the Po, Pb, Tl and Fr isotope shifts. It was found that the isotonic and isotopic trends, around the doubly magic core of 208Pb, are nearly identical. This implies that the h9/2 valence proton in the bismuth isotopes does not have a strong effect on the deformation of the core.

  20. Nuclear fission of neutron-deficient protactinium nuclides

    SciTech Connect

    Nishinaka, I.; Nagame, Y.; Tsukada, K.; Ikezoe, H.; Sueki, K.; Nakahara, H.; Tanikawa, M.; Ohtsuki, T.

    1997-08-01

    Fragment velocity, kinetic energy, mass yield, and element yield distributions in the fission of neutron-deficient Pa isotopes produced in the reactions of {sup 16}O and {sup 18}O on {sup 209}Bi have been measured at incident beam energies near and above the Coulomb barriers by the time-of-flight and radiochemical methods. An asymmetric mass-division component has been observed. Measured fission cross sections were compared with the results of statistical model calculations which take into account two fission barrier heights for symmetric and asymmetric yields. The fission barrier height deduced for the asymmetric fission is found slightly lower than that for the symmetric one. The difference between the two barrier heights in the fission of the present protactinium nuclides (N{approximately}135) is considerably smaller than that in the neutron-rich nuclide of {sup 233}Pa (N{approximately}142), indicating that the difference sensitively depends on the neutron number of the fissioning nuclide. {copyright} {ital 1997} {ital The American Physical Society}

  1. Preliminary study of the 10Li nucleus via one-neutron transfer

    NASA Astrophysics Data System (ADS)

    Cavallaro, M.; De Napoli, M.; Cappuzzello, F.; Agodi, C.; Bondí, M.; Carbone, D.; Cunsolo, A.; Davids, B.; Davinson, T.; Foti, A.; Galinski, N.; Kanungo, R.; Lenske, H.; Orrigo, S. E. A.; Ruiz, C.; Sanetullaev, A.

    2016-05-01

    The structure of the 10Li unbound nucleus is a subject of large interest and its description is nowadays a matter of debate. We have investigated this system using the d(9Li,p)10 Li one-neutron transfer reaction at 100 MeV in inverse kinematics. The experiment was performed at the ISACII facility at TRIUMF laboratory. The excitation energy spectrum has been reconstructed by measuring the emitted protons at backward angles and the 9Li at forward angles.

  2. Measurements of parity violation in neutron-nucleus reactions

    SciTech Connect

    Seestrom, S.J.; Bowman, C.D.; Bowman, J.D.; Knudson, J.; Mortensen, R.; Penttila, S.; Szymanski, J.J.; Wender, S.A.; Yoo, S.H.; Yuan, V.W. ); Frankle, C.M.; Gould, C.R.; Haase, D.G.; Mitchell, G.E. Triangle Universities Nuclear Lab., Durham, NC ); Roberson, N.R.; Zhu, X. (Duke Univ., Durham, NC

    1991-01-01

    In this talk I describe a new generation of experiments studying the weak interaction between nucleons. Measurements of the effect of this interaction are few in number and the significance of the observed effects are generally small. It is well known that the weak interaction violates parity. This was first experimentally established by C. S. Wu through measurement of an asymmetry of electrons emitted in the beta-decay of polarized {sup 60}Co. The measured asymmetry was large because beta decay is a weak interaction process. For a process in which the strong interaction can contribute, we expect much smaller asymmetries, of order 10{sup {minus}7}. In the work I will describe here we study the effects of the weak interaction through the signal of the parity violation associated with that interaction. There are two basic classes of experiment used to detect parity violation. The first relies on the measurement of a cross section or width that would vanish if parity were conserved. One example of this type of experiment in nuclear physics is the decay of an unnatural parity state to a 0+ nucleus and an {alpha}-particle. Such measurements have been made for two nuclei: {sup 16}O(2{sup {minus}}) {implies} {sup 12} C(g.s) + {alpha} and {sup 20}N{var epsilon}(1{sup +}) {implies} {sup 16} O(g.s) + {alpha}. Parity-violating widths as small as of 10{sup {minus}10} eV have been measured in these experiments. The second class of experiments involves a measurement of pseudo-scalar observables which are odd under parity inversion. These involve correlations between spin and linear angular momenta, for example circular polarization of {gamma}-rays ({sigma}{sub {gamma}} {center dot} {kappa}{sub {gamma}}) or longitudinal analyzing power ({sigma}{sub p} {center dot} {kappa}{sub p}). 20 refs., 6 figs.

  3. Pitx3 deficiency in mice affects cholinergic modulation of GABAergic synapses in the nucleus accumbens.

    PubMed

    de Rover, Mischa; Lodder, Johannes C; Smidt, Marten P; Brussaard, Arjen B

    2006-10-01

    We investigated to what extent Pitx3 deficiency, causing hyperdopaminergic transmission in the nucleus accumbens microcircuitry, may lead to developmental changes. First, spontaneous firing activity of cholinergic interneurons in the nucleus accumbens was recorded in vitro. Firing patterns in the Pitx3-deficient mice were more variable and intrinsically different from those observed in wild-type mice. Next, to test whether the irregular firing patterns observed in mutant mice affected the endogenous nicotinic modulation of the GABAergic input of medium spiny neurons, we recorded spontaneous GABAergic inputs to these cells before and after the application of the nicotinic receptor blocker mecamylamine. Effects of mecamylamine were found in slices of either genotype, but in a rather inconsistent manner. Possibly this was attributable to heterogeneity in firing of nearby cholinergic interneurons. Thus paired recordings of cholinergic interneurons and medium spiny neurons were performed to more precisely control the experimental conditions of the cholinergic modulation of GABAergic synaptic transmission. We found that controlling action potential firing in cholinergic neurons leads to a conditional increase in GABAergic input frequency in wild-type mice but not in Pitx3-deficient mice. We conclude that Pitx3-deficient mice have neural adaptations at the level of the nucleus accumbens microcircuitry that in turn may have behavioral consequences. It is discussed to what extent dopamine release in the nucleus accumbens may be a long-term gating mechanism leading to alterations in cholinergic transmission in the nucleus accumbens, in line with previously reported neural adaptations found as consequences of repeated drug treatment in rodents.

  4. One-Neutron Removal Measurement Reveals {sup 24}O as a New Doubly Magic Nucleus

    SciTech Connect

    Kanungo, R.; Perro, C.; Nociforo, C.; Aumann, T.; Geissel, H.; Gerl, J.; Kindler, B.; Litvinov, Y.; Lommel, B.; Mahata, K.; Scheidenberger, C.; Sun, B.; Weick, H.; Winkler, M.; Prochazka, A.; Farinon, F.; Knoebel, R.; Boutin, D.; Lenske, H.; Cortina-Gil, D.

    2009-04-17

    The first measurement of the momentum distribution for one-neutron removal from {sup 24}O at 920A MeV performed at GSI, Darmstadt is reported. The observed distribution has a width (FWHM) of 99{+-}4 MeV/c in the projectile rest frame and a one-neutron removal cross section of 63{+-}7 mb. The results are well explained with a nearly pure 2s{sub 1/2} neutron spectroscopic factor of 1.74{+-}0.19 within the eikonal model. This large s-wave probability shows a spherical shell closure thereby confirming earlier suggestions that {sup 24}O is a new doubly magic nucleus.

  5. Beta Decay Measurements of Neutron Deficient Cesium Isotopes.

    NASA Astrophysics Data System (ADS)

    Parry, Roger Franklin

    The study of nuclei far from beta stability provides information on nuclear binding energies and nuclear structure. However, as one progresses away from the valley of stability, the associated half-lives and production cross sections decrease with increasing interference from the decays of adjacent nuclei. An experimental solution to these problems was the use of the He-jet fed on-line mass separator, RAMA. This instrument provided a fast and selective technique for the mass separation necessary for the investigation of exotic nuclei. Using this device, a beta decay Q-value study of the neutron deficient cesium isotopes, ('119-123)Cs, was conducted. Beta decay endpoint energy measurements of the neutron deficient cesium isotopes were done using an energy spectrum shape fitting technique. This was a departure from the typical method of endpoint energy analysis, the Fermi-Kurie plot. A discussion of the shape fitting procedure and its improved features are discussed. These beta endpoint measurements have led to total decay energies (Q(,EC)) of the neutron deficient ('119 -123)Cs isotopes. The total decay energies of ('122m)Cs (Q(,EC) = 6.95 (+OR-) 0.25 MeV) and ('119)Cs (Q(,EC) = 6.26 (+OR-) 0.29 MeV) were new measurements. The total decay energies of ('123)Cs (Q(,EC) = 4.05 (+OR-) 0.18 MeV), ('122g)Cs (Q(,EC) = 7.05 (+OR-) 0.18 MeV), ('121)Cs (Q(,EC) = 5.21 (+OR-) 0.22 MeV), and ('120)Cs (Q(,EC) = 7.38 (+OR -) 0.23 MeV) were measurements with significantly improved uncertainties as compared to the literature. Further, a combination of the energy levels derived from previous literature gamma-gamma coincident measurements and the experimental beta-coincident gamma decay energies has supported an improved level scheme for ('121)Xe and the proposal of three new energy levels in ('119)Xe. Comparison of the experimental cesium mass excesses (determined with our Q(,EC) values and known xenon mass excesses) with both the literature and theoretical predicted values showed

  6. Experiment for synthesis of neutron-deficient protactinium isotopes

    NASA Astrophysics Data System (ADS)

    Yang, Huabin; Ma, Long; Zhang, Zhiyuan; Yu, Lin; Jia, Guobin; Huang, Minghui; Gan, Zaiguo; Huang, Tianheng; Li, Guangshun; Wu, Xiaolei; Fang, Yongde; Wang, Zhigang; Gao, Bingshui; Hua, Wei

    2014-10-01

    The complete fusion reaction 40Ca+175Lu was studied at a beam energy of 5.1 MeV u-1. Evaporation residues recoiled from the target were separated from the primary beam by the gas-filled recoil separator SHANS and then implanted into the focal plane detection system. Based on the energy-position-time correlation measurement, neutron-deficient nuclei 208-213Ac, 212Pa and 211Th produced in this reaction were identified. Previously reported decay properties of the ground state in 212Pa were confirmed and improved values of 5.1_{-1.7}^{+5.1} ms and 8.250(20) MeV for the half-life and α-particle energy of 212Pa were obtained. No correlated decay chain arising from 211Pa was observed and an upper limit for the cross section of 211Pa was estimated.

  7. Beta-decay measurements of neutron-deficient cesium isotopes

    SciTech Connect

    Parry, R.F.

    1983-03-01

    Beta decay endpoint energy measurements of the neutron deficient cesium isotopes were done using an energy spectrum shape fitting technique. This was a departure from the typical method of endpoint energy analysis, the Fermi-Kurie plot. A discussion of the shape fitting procedure and its improved features are discussed. These beta endpoint measurements have led to total decay energies (Q/sub EC/) of the neutron deficient /sup 119/ /sup 123/Cs isotopes. The total decay energies of /sup 122m/Cs (Q/sub EC/ = 6.95 +- 0.25 MeV) and /sup 119/Cs (Q/sub EC/ = 6.26 +- 0.29 MeV) were new measurements. The total decay energies of /sup 123/Cs (Q/sub EC/ = 4.05 +- 0.18 MeV), /sup 122g/Cs (Q/sub EC/ = 7.05 +- 0.18 MeV), /sup 121/Cs (Q/sub EC/ = 5.21 +- 0.22 MeV), and /sup 120/Cs (Q/sub EC/ = 7.38 +- 0.23 MeV) were measurements with significantly improved uncertainties as compared to the literature. Further, a combination of the energy levels derived from previous literature gamma-gamma coincident measurements and the experimental beta-coincident gamma decay energies has supported an improved level scheme for /sup 121/Xe and the proposal of three new energy levels in /sup 119/Xe. Comparison of the experimental cesium mass excesses (determined with our Q/sub EC/ values and known xenon mass excesses) with both the literature and theoretical predicted values showed general agreement except for /sup 120/Cs. Possible explanations for this deviation are discussed.

  8. Neutron-halo nuclei in cold synthesis and cluster decay of heavy nuclei: {ital Z}=104 nucleus as an example

    SciTech Connect

    Gupta, R.K.; Singh, S.; Muenzenberg, G.; Scheid, W. ||

    1995-05-01

    Nuclei at the neutron-drip line are studied. The light neutron-halo nuclei are found to play an important role for both cold fusion reactions and exotic cluster decay studies of heavy nuclei at the neutron-drip line. For cold fusion reactions, beams of neutron-halo nuclei are shown to occur as natural extensions of the conventional lighter beams but with the corresponding target nuclei as the heavy neutron-rich radioactive nuclei. Thus, in synthesizing the various isotopes of a neutron-rich cool compound nucleus, both the target and projectile nuclei have to be richer in neutrons, with their proton numbers remaining the same. On the other hand, neutron-halo (cluster) decays are favored for a relatively less neutron-rich parent nucleus. Possible consequences of this work for the shell structure effects in neutron-rich heavy nuclei are also pointed out. This follows from the fact that the so far observed phenomena of both cold fusion and cluster radioactivity are associated with closed or nearly closed shell nuclei. Calculations are made for {sup 274,288}104, using the quantum mechanical fragmentation theory for cold fusion reaction studies and a performed cluster model for cluster decay studies.

  9. β and β -n decay of the neutron-rich nucleus

    NASA Astrophysics Data System (ADS)

    Korgul, A.; Rykaczewski, K. P.; Grzywacz, R. K.; Bingham, C. R.; Brewer, N. T.; Gross, C. J.; Ciemny, A. A.; Jost, C.; Karny, M.; Madurga, M.; Mazzocchi, C.; Mendez, A. J.; Miernik, K.; Miller, D.; Padgett, S.; Paulauskas, S. V.; Piersa, M.; Stracener, D. W.; Stryjczyk, M.; Wolińska-Cichocka, M.; Zganjar, E. F.

    2016-06-01

    The β -decay properties of the very neutron-rich nucleus were studied at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. Several new γ -transitions and levels were added to its decay scheme and the order of the two lowest-lying levels in the daughter neutron emission was observed. The shell-model calculations and apparent β transition intensities were used to guide the spin assignment to the

  10. Systematic structure of the neutron drip-line {sup 22}C nucleus

    SciTech Connect

    Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana; Tammam, M.

    2014-10-24

    In the present work we systematically discuss the nuclear structure of the the heaviest particle-bound carbon isotope, {sup 22}C. The ground state wave function of the carbon isotope is calculated using the {sup 20}C core plus two-valence neutron based on a phenomenological mean-field MF potential. We apply the deduced wave function to provide the nuclear matter density which is necessary in the calculations of the total reaction cross section. Calculations show that there is a reasonable good description of the experimental binding energy BE and root-mean square RMS radius. The exotic structure and configuration of the ground state carbon isotope is explained and a consistent explanation on the two-neutron halo (Borromean) nucleus is given.

  11. Experimental study of the β decay of the very neutron-rich nucleus 85Ge

    NASA Astrophysics Data System (ADS)

    Korgul, A.; Rykaczewski, K. P.; Grzywacz, R. K.; Bingham, C. R.; Brewer, N. T.; Gross, C. J.; Jost, C.; Karny, M.; Madurga, M.; Mazzocchi, C.; Mendez, A. J.; Miernik, K.; Miller, D.; Padgett, S.; Paulauskas, S. V.; Piersa, M.; Stracener, D. W.; Stryjczyk, M.; Wolińska-Cichocka, M.; Zganjar, E. F.

    2017-04-01

    The β -decay properties of the very neutron-rich nucleus 85Ge, produced in the proton-induced fission of 238U, were studied at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. The level scheme of 52 33 85As populated in 85Geβ γ decay was reconstructed and compared to shell-model calculations. The investigation of the systematics of low-energy levels in N =52 isotones together with shell-model analysis allowed us to provide an estimate of the low-energy structure of the more exotic N =52 isotone 81Cu.

  12. Target correlation effects on neutron-nucleus total, absorption, and abrasion cross sections

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.

    1991-01-01

    Second order optical model solutions to the elastic scattering amplitude were used to evaluate total, absorption, and abrasion cross sections for neutron nucleus scattering. Improved agreement with experimental data for total and absorption cross sections is found when compared with first order (coherent approximation) solutions, especially below several hundred MeV. At higher energies, the first and second order solutions are similar. There are also large differences in abrasion cross section calculations; these differences indicate a crucial role for cluster knockout in the abrasion step.

  13. Nuclear structure of the odd-odd N=85 neutron-rich nucleus {sup 140}Cs

    SciTech Connect

    Liu, S. H.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Luo, Y. X.; Rasmussen, J. O.; Daniel, A. V.; Ter-Akopian, G. M.; Zhu, S. J.; Ma, W. C.

    2010-03-15

    High-spin excited states in the neutron-rich nucleus {sup 140}Cs were re-investigated from the spontaneous fission of {sup 252}Cf with the Gammasphere detector array. Seven new transitions at low and moderate spin and 13 at high spin were observed in {sup 140}Cs and the level scheme of {sup 140}Cs was extended to 3794 keV with a new sideband. Spins and parities were assigned to levels based on angular correlation measurements and the systematics in the N=85 isotones.

  14. Experimental study of the β decay of the very neutron-rich nucleus Ge85

    DOE PAGES

    Korgul, A.; Rykaczewski, Krzysztof Piotr; Grzywacz, Robert Kazimierz; ...

    2017-04-04

    The β -decay properties of the very neutron-rich nucleus 85Ge, produced in the proton-induced fission of 238U, were studied at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. The level scheme of 33 85As52 populated in 85Geβ γ decay was reconstructed and compared to shell-model calculations. The investigation of the systematics of low-energy levels in N =52 isotones together with shell-model analysis allowed us to provide an estimate of the low-energy structure of the more exotic N =52 isotone 81Cu.

  15. Investigation of the structure of neutron-deficient Cd isotopes

    NASA Astrophysics Data System (ADS)

    Simon, Anna; Humby, P.; Beausang, C. W.; Burke, J. T.; Casperson, R. J.; McCleskey, M.; Saastamoinen, A.; Allmond, J. M.; Chyzh, R.; Dag, M.; Koglin, J.; Ota, S.; Ross, T. J.

    2014-03-01

    The STARLITER setup at Texas A&M University consists of an array of six Compton suppressed HPGe clover γ-ray detectors coupled with a segmented Si ΔE-E charged particle telescope. The combination allows for coincident γ ray and particle spectroscopy and provides a powerful tool for precise determination of the nuclear level structure. A recent experiment conducted using STARLITER aimed at the investigation of structures of neutron-deficient Cd isotopes (A = 104, 105, 106) using an enriched 106Cd target and 35 MeV proton beam supplied by the K-150 Cyclotron at TAMU. Low mass cadmium isotopes are a great environment for analysis of the evolution from vibrational to rotational sequences in A ~100-110 region and provide insight into the structure phenomena around Z = 50 shell closure. Here, the first results of the experiment will be presented. This work was partly supported by the US Department of Energy Grants No. DE-FG52-06NA26206 and No. DE-FG02-05ER41379.

  16. Shape-coexisting rotation in neutron-deficient Hg and Pb nuclei

    NASA Astrophysics Data System (ADS)

    Jiao, C. F.; Shi, Yue; Liu, H. L.; Xu, F. R.; Walker, P. M.

    2015-03-01

    For a shape-soft nucleus, the deformation change with increasing angular momentum of rotation can be significant. Total-Routhian-surface (TRS) calculations include the shape changes, but angular momentum is not conserved (neither is it a good quantum number, nor is it kept unchanged in the whole TRS mesh). In the projected shell model (PSM), the angular momentum appears as a good quantum number, but calculations have usually been performed with fixed deformation. In the present work, by performing angular-momentum projection on the mean-field potential-energy surface (PES), we can obtain an angular-momentum-conserved PES which gives deformation for a rotational state at a given spin. In order to investigate the shape-changing effect, we have chosen neutron-deficient Hg and Pb isotopes in which shape coexistence occurs. We interpret the irregular rotational behavior of the oblate bands at low spin as arising from deformation changes which are induced by collective rotation. At higher spin, the oblate rotational spectrum can also be influenced by the crossing between the K =0 ground-state band and a low-K two-quasineutron band. Calculated g factors for the states of oblate bands are given for future experimental testing, and the intrinsic structures of high-K oblate states are investigated.

  17. Interplay of direct and compound-nucleus mechanisms in neutron capture by light nuclides

    SciTech Connect

    Raman, S.; Kahane, S.; Lynn, J.E.

    1988-01-01

    The authors discuss the direct-capture theory pertaining to primary electric-dipole (E1) transitions following slow-neutron capture. For approximately 20 light nuclides that we have studied, estimates of direct-capture cross sections using optical-model potentials with physically realistic parameters are in reasonable agreement with the data. Minor disagreements that exist are consistent with extrapolations to light nuclides of generally accepted formulations of compound-nucleus capture. In dealing with nuclei soft to vibrations, we have considered the possible effects of coupling of the collective motion with the optical potential in the framework of R-matrix theory. In such cases, we find that the inclusion of inelastic channels results in systematic changes in the calculated cross sections.

  18. Effect of intermittent hypoxia on arcuate nucleus in the leptin-deficient rat.

    PubMed

    Ciriello, John; Moreau, Jason M; McCoy, Aaron; Jones, Douglas L

    2016-07-28

    Intermittent hypoxia (IH) is a major pathophysiological consequence of obstructive sleep apnea. Recently, it has been shown that IH results in changes in body energy balance, leptin secretion and concomitant alterations in arcuate nucleus (ARC). In this study, the role of leptin on these changes was investigated in leptin-deficient rats exposed to IH or normoxic control conditions. Body weights, consumatory and locomotor behaviours, and protein signaling in ARC were assessed immediately after IH exposure. Compared to normoxia, IH altered body weight, food intake, locomotor pattern, and the plasma concentration of leptin and angiotensin II in the wild-type rat. However, these changes were not observed in the leptin-deficient rat. Within ARC of wild-type animals, IH increased phosphorylated signal transducer and activator of transcription 3 and pro-opiomelanocortin protein expression, but not in the leptin-deficient rat. The long-form leptin receptor protein expression was not altered following IH in either rat strain. These data suggest that leptin is involved in mediating the alterations to body energy balance and ARC activity following IH. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Lesions of the entopeduncular nucleus in rats prevent apomorphine-induced deficient sensorimotor gating.

    PubMed

    Lütjens, Götz; Krauss, Joachim K; Schwabe, Kerstin

    2011-07-07

    Dopamine-induced hyperactivity and deficient sensorimotor gating, measured as prepulse inhibition (PPI) of the acoustic startle response (ASR), are used as animal models for neuropsychiatric disorders such as schizophrenia and Tourette's syndrome. We here investigated whether excitotoxic lesions of the rat entopeduncular nucleus (EPN), the equivalent to the human globus pallidus internus (GPi), would improve apomorphine-induced PPI-deficits and hyperactivity. Additionally, we investigated the effect of EPN lesions on cognition, motivation and motor skills. In male Sprague Dawley rats bilateral EPN lesions were induced by stereotactic injection of ibotenate (4 μg in 0.4 μl phosphate buffered saline, PBS) or sham-lesions by injection of vehicle PBS. After one week, rats were tested for learning and memory (continuous and delayed alternation, T-maze), for motivation (progressive ratio test with breakpoint of 3 min inactivity, Skinner box), and for motor skills (rotating rod). Thereafter, rats were tested for PPI of ASR (startle response system) after subcutaneous injection of apomorphine (1.0mg/kg and vehicle) and for locomotor activity (0.5mg/kg and vehicle). Ibotenate-induced EPN lesions did not affect learning and memory, motivation or motor skills. Basal locomotor activity and PPI was also not affected, but EPN lesions ameliorated apomorphine-induced hyperlocomotion and deficient PPI. This work indicates an important role of the EPN for the modulation of dopamine agonist-induced deficient sensorimotor gating and hyperlocomotion, without affecting normal behavioral function.

  20. Configuration assignments to isomers in the neutron-rich 186Ta (Z =73 ) nucleus

    NASA Astrophysics Data System (ADS)

    Sood, P. C.; Gowrishankar, R.

    2014-12-01

    Though the neutron-rich odd-odd nucleus Ta18673113 was first produced in 1955, even after 60 years its ground state (g.s.) and both of its two other isomers remain undefined. We use the well-tested two-quasiparticle rotor model, which explicitly includes residual neutron-proton n -p interaction and other contributing factors, to evaluate the bandhead energies of the physically admissible low-lying two-particle structures in 186Ta with inputs from experimentally observed structures in neighboring isotopes and isotones to characterize these levels. Our analysis assigns Kπ = 5-{p :7 /2 [404 ]⊗n :3 /2 [512 ]} configuration to the 10.5 min 186Ta (g.s.) and the antiparallel-spin Kπ=2- of the same configuration to the 1.54 min isomer with Ex = 90(10) keV. We further assign Kπ=8-{p :7 /2 [404 ]⊗n :9 /2 [505 ]} configuration to the recently identified 3.0 min isomer with Ex=336 (20) keV. These assignments are shown to be consistent with all the available experimental data. Further, they are seen to fit nicely as another instance of highly hindered Δ I =3 isomeric transitions, and also of low-lying long-lived isomer triplets, frequently observed in numerous odd-odd Z =61 (2 )75 nuclides.

  1. Measurement of the isoscalar monopole response in the neutron-rich nucleus 68Ni.

    PubMed

    Vandebrouck, M; Gibelin, J; Khan, E; Achouri, N L; Baba, H; Beaumel, D; Blumenfeld, Y; Caamaño, M; Càceres, L; Colò, G; Delaunay, F; Fernandez-Dominguez, B; Garg, U; Grinyer, G F; Harakeh, M N; Kalantar-Nayestanaki, N; Keeley, N; Mittig, W; Pancin, J; Raabe, R; Roger, T; Roussel-Chomaz, P; Savajols, H; Sorlin, O; Stodel, C; Suzuki, D; Thomas, J C

    2014-07-18

    The isoscalar monopole response has been measured in the unstable nucleus (68)Ni using inelastic alpha scattering at 50A  MeV in inverse kinematics with the active target MAYA at GANIL. The isoscalar giant monopole resonance (ISGMR) centroid was determined to be 21.1 ± 1.9 MeV and indications for a soft monopole mode are provided for the first time at 12.9 ± 1.0 MeV. Analysis of the corresponding angular distributions using distorted-wave-born approximation with random-phase approximation transition densities indicates that the L = 0 multipolarity dominates the cross section for the ISGMR and significantly contributes to the low-energy mode. The L=0 part of this low-energy mode, the soft monopole mode, is dominated by neutron excitations. This demonstrates the relevance of inelastic alpha scattering in inverse kinematics in order to probe both the ISGMR and isoscalar soft modes in neutron-rich nuclei.

  2. Measurement of the Isoscalar Monopole Response in the Neutron-Rich Nucleus Ni68

    NASA Astrophysics Data System (ADS)

    Vandebrouck, M.; Gibelin, J.; Khan, E.; Achouri, N. L.; Baba, H.; Beaumel, D.; Blumenfeld, Y.; Caamaño, M.; Càceres, L.; Colò, G.; Delaunay, F.; Fernandez-Dominguez, B.; Garg, U.; Grinyer, G. F.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Keeley, N.; Mittig, W.; Pancin, J.; Raabe, R.; Roger, T.; Roussel-Chomaz, P.; Savajols, H.; Sorlin, O.; Stodel, C.; Suzuki, D.; Thomas, J. C.

    2014-07-01

    The isoscalar monopole response has been measured in the unstable nucleus Ni68 using inelastic alpha scattering at 50A MeV in inverse kinematics with the active target MAYA at GANIL. The isoscalar giant monopole resonance (ISGMR) centroid was determined to be 21.1±1.9 MeV and indications for a soft monopole mode are provided for the first time at 12.9±1.0 MeV. Analysis of the corresponding angular distributions using distorted-wave-born approximation with random-phase approximation transition densities indicates that the L =0 multipolarity dominates the cross section for the ISGMR and significantly contributes to the low-energy mode. The L=0 part of this low-energy mode, the soft monopole mode, is dominated by neutron excitations. This demonstrates the relevance of inelastic alpha scattering in inverse kinematics in order to probe both the ISGMR and isoscalar soft modes in neutron-rich nuclei.

  3. Characterization of isomers in the neutron-rich odd-odd nucleus {sup 156}Pm

    SciTech Connect

    Sood, P. C.; Gowrishankar, R; Sai, K. Vijay; Sainath, M.

    2011-02-15

    Critical examination of the experimental data from {sup 156}Nd and {sup 156}Pm {beta} decays and the observed location of relevant neutron and proton orbitals in the neighboring odd-A isotones and isotopes, taken together with the low-lying two-quasiparticle (2qp) structures expected in {sup 156}Pm from the rotor-particle model, lead to the conclusion that a consistent description of all the available data is achieved with the I{sup {pi}}=4{sup +} spin-parity assignment to the 26.7s {sup 156}Pm ground state (g.s.) and assignment of I{sup {pi}}=1{sup +} to its 150.3-keV isomer with the 2qp configuration 4{sub g.s.}{sup +}{l_brace}p{sub o}:5/2[532{up_arrow}]{+-}n{sub o}:3/2[521{up_arrow}]{r_brace}1{sub 150}{sup +}. In the process, a two-neutron configuration is also suggested for the 1509-keV 4{sup +} level in the daughter nucleus {sup 156}Sm. The present analysis reiterates the important question of whether the {beta}-decay log ft value, by itself, can be employed to deduce the relative parity of the {beta}-connected states.

  4. Fluorescent atom coincidence spectroscopy of extremely neutron-deficient barium isotopes

    NASA Astrophysics Data System (ADS)

    Wells, S. A.; Evans, D. E.; Griffith, J. A. R.; Eastham, D. A.; Groves, J.; Smith, J. R. H.; Tolfree, D. W. L.; Warner, D. D.; Billowes, J.; Grant, I. S.; Walker, P. M.

    1988-09-01

    Fluorescent atom coincidence spectroscopy (FACS) has been used to measure the nuclear mean square radii and moments of the extremely neutron-deficient isotopes 120-124Ba. At N=65 an abrupt change in nuclear mean square charge radii is observed which can be understood in terms of the occupation of the spin-orbit partner g7/25/2[413] neutron and g9/29/2[404] proton orbitals and the consequent enhancement of the n-p interaction.

  5. Shape coexistence in the neutron-deficient Pt isotopes in a configuration mixing IBM

    SciTech Connect

    Morales, Irving O.; Vargas, Carlos E.; Frank, Alejandro

    2004-09-13

    The recently proposed matrix-coherent state approach for configuration mixing IBM is used to describe the evolving geometry of the neutron deficient Pt isotopes. It is found that the Potential Energy Surface (PES) of the Platinum isotopes evolves, when the number of neutrons decreases, from spherical to oblate and then to prolate shapes, in agreement with experimental measurements. Oblate-Prolate shape coexistence is observed in 194,192Pt isotopes.

  6. Quadrupole transition strength in the (74)Ni nucleus and core polarization effects in the neutron-rich Ni isotopes.

    PubMed

    Marchi, T; de Angelis, G; Valiente-Dobón, J J; Bader, V M; Baugher, T; Bazin, D; Berryman, J; Bonaccorso, A; Clark, R; Coraggio, L; Crawford, H L; Doncel, M; Farnea, E; Gade, A; Gadea, A; Gargano, A; Glasmacher, T; Gottardo, A; Gramegna, F; Itaco, N; John, P R; Kumar, R; Lenzi, S M; Lunardi, S; McDaniel, S; Michelagnoli, C; Mengoni, D; Modamio, V; Napoli, D R; Quintana, B; Ratkiewicz, A; Recchia, F; Sahin, E; Stroberg, R; Weisshaar, D; Wimmer, K; Winkler, R

    2014-10-31

    The reduced transition probability B(E2;0(+)→2(+)) has been measured for the neutron-rich nucleus (74)Ni in an intermediate energy Coulomb excitation experiment performed at the National Superconducting Cyclotron Laboratory at Michigan State University. The obtained B(E2;0(+)→2(+))=642(-226)(+216)  e(2) fm(4) value defines a trend which is unexpectedly small if referred to (70)Ni and to a previous indirect determination of the transition strength in (74)Ni. This indicates a reduced polarization of the Z=28 core by the valence neutrons. Calculations in the pfgd model space reproduce well the experimental result indicating that the B(E2) strength predominantly corresponds to neutron excitations. The ratio of the neutron and proton multipole matrix elements supports such an interpretation.

  7. Search for long-lived isomeric states in neutron-deficient thorium isotopes

    SciTech Connect

    Lachner, J.; Dillmann, I.; Faestermann, T.; Korschinek, G.; Poutivtsev, M.; Rugel, G.

    2008-12-15

    The discovery of naturally occurring long-lived isomeric states (t{sub 1/2}>10{sup 8} yr) in the neutron-deficient isotopes {sup 211,213,217,218}Th[A. Marinov et al., Phys. Rev. C 76, 021303(R) (2007)] was reexamined using accelerator mass spectrometry (AMS). Because AMS does not suffer from molecular isobaric background in the detection system, it is an extremely sensitive technique. Despite our up to two orders of magnitude higher sensitivity we cannot confirm the discoveries of neutron-deficient thorium isotopes and provide upper limits for their abundances.

  8. Study of asymmetric fission yield behavior from neutron-deficient Hg isotope

    SciTech Connect

    Perkasa, Y. S.; Waris, A. Kurniadi, R. Su'ud, Z.

    2014-09-30

    A study of asymmetric fission yield behavior from a neutron-deficient Hg isotope has been conducted. The fission yield calculation of the neutron-deficient Hg isotope using Brownian Metropolis shape had showed unusual result at decreasing energy. In this paper, this interesting feature will be validated by using nine degree of scission shapes parameterization from Brosa model that had been implemented in TALYS nuclear reaction code. This validation is intended to show agreement between both model and the experiment result. The expected result from these models considered to be different due to dynamical properties that implemented in both models.

  9. Theoretical predictions on production of neutron-deficient nuclei with Z ≥ 93 in multinucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Su, Jun; Zhang, Feng-Shou

    2017-08-01

    Within the framework of dinuclear system model, the transfer reactions 58Ni + 233U, 58Ni + 238U, and 64Ni + 238U are investigated. The influences of projectile and target neutron numbers on cross sections of producing neutron-deficient actinide nuclei in transfer reactions are studied. It is found that the system 58Ni + 233U with smaller neutron excess is favorable to produce neutron-deficient nuclei. We predict the production cross sections of neutron-deficient nuclei with Z = 93- 98 in transfer reactions 58Ni + 233U and 40Ca + 245Cm with different incident energies. We find the transfer reactions 58Ni + 233U and 40Ca + 245Cm are feasible for producing neutron-deficient actinide nuclei in future experiments.

  10. On-Line Nuclear Orientation Studies of Neutron Deficient Tellurium, Iodine and Cesium Isotopes.

    NASA Astrophysics Data System (ADS)

    Shaw, Timothy Lee

    Available from UMI in association with The British Library. Requires signed TDF. On-line nuclear orientation at low temperature has become an important technique for the study of nuclei far from stability, through measurements of nuclear moments and other quantities of spectroscopic interest. The theory of low temperature nuclear orientation and its application to the study of nuclear structure are reviewed. Of particular importance to the on-line measurement, in which a wide range of short-lived nuclei are available for study, is the question of how fast these nuclei can be cooled to the lattice temperature, and thus oriented. To address this, the theory of nuclear spin-lattice relaxation, relevant to the on-line technique, is outlined. In particular, quantitative methods to deal with cases in which the spin -lattice relaxation time is comparable with the isotope half-life have been developed and applied. One of the major current interests in nuclear structure physics is to investigate how the neutron-proton interaction influences the structure of nuclei that are transitional, between well established regions of spherical and deformed nuclei. In such nuclei, intruder excitations, which signal the onset of deformation, are observed low in energy. Using the Daresbury on-line isotope separator, an extensive study of the decay of ^{118 }I to ^{118}Te has been performed using nuclear orientation techniques, combined with gamma - gamma and conversion electron spectroscopy measurements. Interpretation of the results obtained for ^{118}Te within the framework of IBM-2, gives strong evidence for the existence of such an intruder configuration in this nucleus. On-line experiments have also been performed in which a range of neutron-deficient Cs nuclei has been oriented for the first time. In these measurements the hyperfine field of CsFe has been determined as (+)40.8(7) T, and also the Korringa constant for the system ^ {121}Cs^{m}Fe has been measured (using a new

  11. Shape coexistence in the neutron-deficient Pt isotopes in the configuration-mixed IBM

    SciTech Connect

    Vargas, Carlos E.; Campuzano, Cuauhtemoc; Morales, Irving O.; Frank, Alejandro; Van Isacker, Piet

    2008-05-12

    The matrix-coherent state approach in the IBM with configuration mixing is used to describe the geometry of neutron-deficient Pt isotopes. Employing a parameter set for all isotopes determined previously, it is found that the lowest minimum goes from spherical to oblate and finally acquires a prolate shape when approaching the mid-shell Pt isotopes.

  12. Fast neutron radiation induced Glu-B1 deficient lines of an elite bread wheat variety

    USDA-ARS?s Scientific Manuscript database

    Five isogenic wheat lines deficient in high-molecular weight subunit (HMW-GS) proteins encoded by the B-genome were identified from a fast-neutron radiation-mutagenized population of Summit, an elite variety of bread wheat (Triticum aestivum L.). The mutant lines differ from the wild-type progenit...

  13. Decay properties of neutron-deficient isotopes of elements from Z = 101 to Z = 108

    NASA Astrophysics Data System (ADS)

    Heßberger, F. P.; Hofmann, S.; Streicher, B.; Sulignano, B.; Antalic, S.; Ackermann, D.; Heinz, S.; Kindler, B.; Kojouharov, I.; Kuusiniemi, P.; Leino, M.; Lommel, B.; Mann, R.; Popeko, A. G.; Šáro, Š.; Uusitalo, J.; Yeremin, A. V.

    2009-08-01

    In a series of experiments performed at the velocity filter SHIP, new or improved decay data of neutron-deficient isotopes of elements from mendelevium ( Z = 101) to hassium ( Z = 108) were obtained. In particular, evidence for α -decay or electron capture from isomeric states in 265Hs and 258Db was found.

  14. Unique decay process: {beta}-delayed emission of a proton and a neutron by the {sup 11}Li halo nucleus

    SciTech Connect

    Baye, D.; Descouvemont, P.; Tursunov, E. M.

    2010-11-15

    The neutron-rich {sup 11}Li halo nucleus is unique among nuclei with known separation energies in its ability to emit a proton and a neutron in a {beta}-decay process. The branching ratio toward this rare decay mode is evaluated within a three-body model for the initial bound state and with Coulomb three-body final scattering states. The branching ratio should be comprised between two extreme cases, i.e., a lower bound 6x10{sup -12} obtained with a pure Coulomb wave and an upper bound 5x10{sup -10} obtained with a plane wave. A simple model with modified Coulomb waves provides plausible values between 0.8x10{sup -10} and 2.2x10{sup -10}, with most probable total energies of the proton and neutron between 0.15 and 0.3 MeV.

  15. Spectroscopy of low-lying states in neutron-deficient astatine and francium nuclei

    NASA Astrophysics Data System (ADS)

    Jakobsson, U.; Uusitalo, J.; Auranen, K.; Badran, H.; Cederwall, B.; Cox, D. M.; Grahn, T.; Greenlees, P. T.; Julin, R.; Juutinen, S.; HerzáÅ, A.; Konki, J.; Leino, M.; Mallaburn, M.; Pakarinen, J.; Papadakis, P.; Partanen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Sorri, J.; Stolze, S.

    2015-10-01

    Low-lying states in neutron-deficient astatine and francium nuclei have been studied by means of in-beam and delayed spectroscopy. The 13/2+ state has been observed in francium nuclei with a similar down-sloping trend as in neighbouring astatine and bismuth isotopes, as a function of decreasing neutron number. A systematic trend can also now be seen for the 1/2+ state both in astatine and francium nuclei, where the level energy decreases steeply as a function of neutron number when moving further away from the neutron shell closure. This trend is very similar between astatine nuclei and their francium isotones. Moreover, shape coexistence has been observed between the 13/2+ state and the spherical 9/2- ground state in 203Fr and 205Fr.

  16. Spectroscopy of low-lying states in neutron-deficient astatine and francium nuclei

    SciTech Connect

    Jakobsson, U. Cederwall, B.; Uusitalo, J.; Auranen, K.; Badran, H.; Cox, D. M.; Grahn, T.; Greenlees, P. T.; Julin, R.; Juutinen, S.; Herzáň, A.; Konki, J.; Leino, M.; Mallaburn, M.; Pakarinen, J.; Papadakis, P.; Partanen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; and others

    2015-10-15

    Low-lying states in neutron-deficient astatine and francium nuclei have been studied by means of in-beam and delayed spectroscopy. The 13/2{sup +} state has been observed in francium nuclei with a similar down-sloping trend as in neighbouring astatine and bismuth isotopes, as a function of decreasing neutron number. A systematic trend can also now be seen for the 1/2{sup +} state both in astatine and francium nuclei, where the level energy decreases steeply as a function of neutron number when moving further away from the neutron shell closure. This trend is very similar between astatine nuclei and their francium isotones. Moreover, shape coexistence has been observed between the 13/2{sup +} state and the spherical 9/2{sup −} ground state in {sup 203}Fr and {sup 205}Fr.

  17. Decay studies of the highly neutron-deficient indium isotopes

    SciTech Connect

    Wouters, J.M.

    1982-02-01

    An extension of the experimentally known nuclidic mass surface to nuclei far from the region of beta-stability is of fundamental interest in providing a better determination of the input parameters for the various nuclear mass formulae, allowing a more accurate prediction of the ultimate limits of nuclear stability. In addition, a study of the shape of the mass surface in the vicinity of the doubly-closed nuclide /sup 100/Sn provides initial information on the behavior of the shell closure to be expected when Z = N = 50. Experiments measuring the decay energies of /sup 103/ /sup 105/In by ..beta..-endpoint measurements are described with special attention focused on the development of a plastic scintillator ..beta..-telescope coupled to the on-line mass separator RAMA (Recoil Atom Mass Analyzer). An attempt to measure the ..beta..-endpoint energy of /sup 102/In is also briefly described. The experimentally determined decay energies and derived masses for /sup 103/ /sup 105/In are compared with the predictions of different mass models to identify which models are more successful in this region. Furthermore, the inclusion in these comparisons of the available data on the neutron-rich indium nuclei permits a systematic study of their ground state mass behavior as a function of the neutron number between the shell closures at N = 50 and N = 82. These analyses indicate that the binding energy of /sup 103/In is 1 MeV larger than predicted by the majority of the mass models. An examination of the Q/sub EC/ surface and the single- and two-neutron separation energies in the vicinity of /sup 103/ /sup 105/In is also performed to investigate further the deviation and other possible systematic variations in the mass surface in a model-independent way.

  18. Probing collectivity in the vicinity of neutron deficient Pb nuclei

    SciTech Connect

    Grahn, T.; Page, R. D.; Petts, A.; Dewald, A.; Jolie, J.; Melon, B.; Pissulla, Th.; Hornillos, M. B. Gomez; Greenlees, P. T.; Jones, P.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Nyman, M.; Rahkila, P.; Saren, J.; Scholey, C.; Sorri, J.; Uusitalo, J.

    2008-05-12

    A series of recoil distance Doppler-shift lifetime measurements have been carried out to probe collectivity and configuration mixing of different shapes in the vicinity of neutron mid-shell Pb nuclei. Lifetime measurements of {sup 186}Pb and {sup 194}Po, the first ever utilizing the recoil-decay tagging method, probed the collectivity of coexisting prolate and oblate shapes in this region. Futher lifetime measurements of excited states in {sup 180}Hg, {sup 182}Hg and {sup 196}Po have been carried out.

  19. Scheduled Feeding Alters the Timing of the Suprachiasmatic Nucleus Circadian Clock in Dexras 1-Deficient Mice

    PubMed Central

    Bouchard-Cannon, Pascale; Cheng, Hai-Ying M.

    2013-01-01

    Restricted feeding (RF) schedules are potent zeitgebers capable of entraining metabolic and hormonal rhythms in peripheral oscillators in anticipation of food. Behaviorally, this manifests in the form of food anticipatory activity (FAA) in the hours preceding food availability. Circadian rhythms of FAA are thought to be controlled by a food-entrainable oscillator (FEO) outside of the suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals. Although evidence suggests that the FEO and the SCN are capable of interacting functionally under RF conditions, the genetic basis of these interactions remains to be defined. In this study, using dexras1-deficient (dexras1−/−) mice, the authors examined whether Dexras1, a modulator of multiple inputs to the SCN, plays a role in regulating the effects of RF on activity rhythms and gene expression in the SCN. Daytime RF under 12L:12D or constant darkness (DD) resulted in potentiated (but less stable) FAA expression in dexras1−/− mice compared with wild-type (WT) controls. Under these conditions, the magnitude and phase of the SCN-driven activity component were greatly perturbed in the mutants. Restoration to ad libitum (AL) feeding revealed a stable phase displacement of the SCN-driven activity component of dexras1−/− mice by ~2 h in advance of the expected time. RF in the late night/early morning induced a long-lasting increase in the period of the SCN-driven activity component in the mutants but not the WT. At the molecular level, daytime RF advanced the rhythm of PER1, PER2, and pERK expression in the mutant SCN without having any effect in the WT. Collectively, these results indicate that the absence of Dexras1 sensitizes the SCN to perturbations resulting from restricted feeding. PMID:22928915

  20. β-decay properties of neutron-deficient Pt, Hg, and Pb isotopes

    SciTech Connect

    Sarriguren, P.; Boillos, J. M.; Moreno, O.; Moya de Guerra, E.

    2015-10-15

    Neutron-deficient isotopes in the lead region are well established examples of the shape coexistence phenomenon in nuclei. In this work, bulk and decay properties, including deformation energy curves, charge mean square radii, Gamow-Teller (GT) strength distributions, and β-decay half-lives, are studied in neutron-deficient Pt, Hg, and Pb isotopes. The nuclear structure involved is described microscopically from deformed quasiparticle random-phase approximation calculations with residual interactions in both particle-hole and particle-particle channels, performed on top of a self-consistent deformed quasiparticle Skyrme Hartree-Fock basis. The sensitivity to deformation of the GT strength distributions in those isotopes is proposed as an additional complementary signature of the nuclear shape. The β-decay half-lives resulting from the GT strength distributions are compared to experiment to demonstrate the ability of the method.

  1. Four-Quasiparticle High-K States in Neutron-Deficient Lead and Polonium Nuclei

    NASA Astrophysics Data System (ADS)

    Shi, Yue; Xu, Furong

    2012-06-01

    Configuration-constrained potential energy surface calculations have been performed to investigate four-quasiparticle high-K configurations in neutron-deficient lead and polonium isotopes. A good agreement between the calculations and the experimental data has been found for the excitation energy of the observed Kπ = 19- state in 188Pb. Several lowly excited high-K states are predicted, and the large oblate deformation and low energy indicate high-K isomerism in these nuclei.

  2. Spectroscopy of the neutron-rich actinide nucleus 240U following multinucleon-transfer reactions

    NASA Astrophysics Data System (ADS)

    Birkenbach, B.; Vogt, A.; Geibel, K.; Recchia, F.; Reiter, P.; Valiente-Dobón, J. J.; Bazzacco, D.; Bowry, M.; Bracco, A.; Bruyneel, B.; Corradi, L.; Crespi, F. C. L.; de Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Fioretto, E.; Gadea, A.; Gengelbach, A.; Giaz, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Hess, H.; John, P. R.; Jolie, J.; Judson, D. S.; Jungclaus, A.; Korten, W.; Lenzi, S.; Leoni, S.; Lunardi, S.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Mijatović, T.; Montagnoli, G.; Montanari, D.; Napoli, D.; Pellegri, L.; Pollarolo, G.; Pullia, A.; Quintana, B.; Radeck, F.; Rosso, D.; Şahin, E.; Salsac, M. D.; Scarlassara, F.; Söderström, P.-A.; Stefanini, A. M.; Steinbach, T.; Stezowski, O.; Szilner, S.; Szpak, B.; Theisen, Ch.; Ur, C.; Vandone, V.; Wiens, A.

    2015-10-01

    Background: Nuclear structure information for the neutron-rich actinide nuclei is important since it is the benchmark for theoretical models that provide predictions for the heaviest nuclei. Purpose: γ -ray spectroscopy of neutron-rich heavy nuclei in the actinide region.

  3. A possible structure of the (11)Li neutron-halo nucleus

    NASA Astrophysics Data System (ADS)

    Najmeddine, Mohamed

    Nuclei with an excess number of neutrons are called neutron-halo nuclei. They lie on the neutron drip line and have the characteristic of low binding (compared to 6-8 MeV for stable nuclei) and large spatial extension. This study aims to contribute to the understanding of the structure of 11Li, one of the neutron-halo nuclei. 11Li is treated as a three-body system made from 9Li and two neutrons. Two binary interactions must then be known: that between 9Li and a neutron, and that between the two neutrons. For the n-9Li interaction, the latest experimental data of Abramovich et al. and Zinser et al. are used to construct the potentials. The structure of 10Li appears to have a ground state that is unbound and an s-wave scattering length of ~[-]20 fm. In addition, the data appear to show two p-wave resonances and one d-wave resonance for n-9Li. For the n-n interaction, the study uses a simple rank - 1 separable potential that reproduces the low-energy scattering parameters, that is, the scattering length and the effective range. The three-body, bound- state equations are solved numerically using the Power Method. A binding energy of 0.30 MeV for 11Li can be obtained for an n-9Li s-wave scattering length of -25 fm with careful treatment of the Pauli Principle.

  4. Calculations of the β-decay half-lives of neutron-deficient nuclei

    NASA Astrophysics Data System (ADS)

    Tan, Wenjin; Ni, Dongdong; Ren, Zhongzhou

    2017-05-01

    In this work, β+/EC decays of some medium-mass nuclei are investigated within the extended quasiparticle random-phase approximation (QRPA), where neutron-neutron, proton-proton and neutron-proton (np) pairing correlations are taken into consideration in the specialized Hartree-Fock-Bogoliubov (HFB) transformation. In addition to the pairing interaction, the Brückner G-matrix obtained with the charge-dependent Bonn nucleon-nucleon force is used for the residual particle-particle and particle-hole interactions. Calculations are performed for even-even proton-rich isotopes ranging from Z=24 to Z=34. It is found that the np pairing interaction plays a significant role in β-decay for some nuclei far from stability. Compared with other theoretical calculations, our calculations show good agreement with the available experimental data. Predictions of β-decay half-lives for some very neutron-deficient nuclei are made for reference. Supported by National Nature Science Foundation of China (11535004, 11375086, 11120101005, 11175085 and 11235001), 973 Nation Major State Basic Research and Development of China (2013CB834400) and Science and Technology Development Fund of Macau (020/2014/A1 and 039/2013/A2)

  5. {beta}-decay in neutron-deficient Hg, Pb, and Po isotopes

    SciTech Connect

    Moreno, O.; Sarriguren, P.; Alvarez-Rodriguez, R.; Guerra, E. Moya de

    2006-05-15

    The effect of nuclear deformation on the energy distributions of the Gamow-Teller strength is studied in neutron-deficient Hg, Pb, and Po even isotopes. The theoretical framework is based on a self-consistent deformed Skyrme Hartree-Fock mean field with pairing correlations between like nucleons in BCS approximation and residual spin-isospin interactions treated in the proton-neutron quasiparticle random-phase approximation. After a systematic study of the Gamow-Teller strength distributions in the low-excitation-energy region, relevant for {beta}{sup +} decay, we have identified the best candidates to look for deformation signatures in their {beta}{sup +}-decay patterns. {beta}{sup +} half-lives and total Gamow-Teller strengths B(GT{sup {+-}}) are analyzed as well.

  6. Multi-quasiparticle excitation: Extending shape coexistence in A~190 neutron-deficient nuclei

    NASA Astrophysics Data System (ADS)

    Shi, Yue; Xu, F. R.; Liu, H. L.; Walker, P. M.

    2010-10-01

    Multi-quasiparticle high-K states in neutron-deficient mercury, lead, and polonium isotopes have been investigated systematically by means of configuration-constrained potential-energy-surface calculations. An abundance of high-K states is predicted with both prolate and oblate shapes, which extends the shape coexistence of the mass region. Well-deformed shapes provide good conditions for the formation of isomers, as exemplified in Pb188. Of particular interest is the prediction of low-lying 10- states in polonium isotopes, which indicate long-lived isomers.

  7. β Decay in the Region of Neutron-deficient {sup 69,70,71}Kr

    SciTech Connect

    Rogers, A.M.; Giovinazzo, J.; Blank, B.; Canchel, G.; France, G. de; Grévy, S.; Oliveira Santos, F. de; Stefan, I.; Thomas, J.-C.

    2014-06-15

    Decay spectroscopy was performed for neutron-deficient nuclei ranging from zinc to krypton with isospin −3/2 ≤T{sub z}≤0. Measurements of correlated β-delayed protons allowed us to determine the isobaric analog states fed from the decay of {sup 65}Se and {sup 69}Kr, constraining the spin of the {sup 69}Kr ground state. Preliminary results regarding the half lives for the T{sub z}=−1 systems, relevant to the rapid proton capture (rp) process, are discussed.

  8. Projected shell model study of yrast states of neutron-deficient odd-mass Pr nuclei

    SciTech Connect

    Ibanez-Sandoval, A.; Ortiz, M. E.; Velazquez, V.; Galindo-Uribarri, A.; Hess, P. O.; Sun, Y.

    2011-03-15

    A wide variety of modern instruments allow us to study neutron-deficient nuclei in the A=130 mass region. Highly deformed nuclei have been found in this region, providing opportunities to study the deformed rotational bands. The description of the {sup 125,127,129,131,133}Pr isotopes with the projected shell model is presented in this paper. Good agreement between theory and experiment is obtained and some characteristics are discussed, including the dynamic moment of inertia J{sup (2)}, kinetic moment of inertia J{sup (1)}, the crossing of rotational bands, and backbending effects.

  9. Observation of new neutron-deficient isotopes with Z ≥ 92 in multinucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Devaraja, H. M.; Heinz, S.; Beliuskina, O.; Comas, V.; Hofmann, S.; Hornung, C.; Münzenberg, G.; Nishio, K.; Ackermann, D.; Gambhir, Y. K.; Gupta, M.; Henderson, R. A.; Heßberger, F. P.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Moody, K. J.; Maurer, J.; Mann, R.; Popeko, A. G.; Shaughnessy, D. A.; Stoyer, M. A.; Yeremin, A. V.

    2015-09-01

    In deep inelastic multinucleon transfer reactions of 48Ca + 248Cm we observed about 100 residual nuclei with proton numbers between Z = 82 and Z = 100. Among them, there are five new neutron-deficient isotopes: 216U, 219Np, 223Am, 229Am and 233Bk. As separator for the transfer products we used the velocity filter SHIP of GSI while the isotope identification was performed via the α decay chains of the nuclei. These first results reveal that multinucleon transfer reactions together with here applied fast and sensitive separation and detection techniques are promising for the synthesis of new isotopes in the region of heaviest nuclei.

  10. Projected Shell Model Study of Yrast States of Neutron-Deficient Odd-Mass Pr Nuclei

    SciTech Connect

    Ibanes, A.; Ortiz, Mark E; Velazquez, V.; Galindo-Uribarri, Alfredo {nmn}; Hess, P. O.; Sun, Y.

    2011-01-01

    A wide variety of modern instruments allow us to study neutron-deficient nuclei in the A = 130 mass region. Highly deformed nuclei have been found in this region, providing opportunities to study the deformed rotational bands. The description of the 125,127,129,131,133Pr isotopes with the projected shell model is presented in this paper. Good agreement between theory and experiment is obtained and some characteristics are discussed, including the dynamic moment of inertia J (2), kinetic moment of inertia J (1), the crossing of rotational bands, and backbending effects.

  11. Multi-quasiparticle excitation: Extending shape coexistence in A{approx}190 neutron-deficient nuclei

    SciTech Connect

    Shi Yue; Liu, H. L.; Xu, F. R.; Walker, P. M.

    2010-10-15

    Multi-quasiparticle high-K states in neutron-deficient mercury, lead, and polonium isotopes have been investigated systematically by means of configuration-constrained potential-energy-surface calculations. An abundance of high-K states is predicted with both prolate and oblate shapes, which extends the shape coexistence of the mass region. Well-deformed shapes provide good conditions for the formation of isomers, as exemplified in {sup 188}Pb. Of particular interest is the prediction of low-lying 10{sup -} states in polonium isotopes, which indicate long-lived isomers.

  12. Existence of long-lived isomeric states in naturally-occurring neutron-deficient Th isotopes

    SciTech Connect

    Marinov, A.; Kashiv, Y.; Rodushkin, I.; Halicz, L.; Segal, I.; Pape, A.; Miller, H. W.; Kolb, D.; Brandt, R.

    2007-08-15

    Four long-lived neutron-deficient Th isotopes with atomic mass numbers 211 to 218 and abundances of (1-10)x10{sup -11} relative to {sup 232}Th have been found in a study of naturally-occurring Th using inductively coupled plasma-sector field mass spectrometry. It is deduced that long-lived isomeric states exist in these isotopes. The hypothesis that they might belong to a new class of long-lived high spin super- and hyperdeformed isomeric states is discussed.

  13. Coupled-Channels Predictions of the Fine Structure in the α Decay of Neutron-Deficient Ds, Cn, and 114 Isotopes

    NASA Astrophysics Data System (ADS)

    Ni, Dongdong; Ren, Zhongzhou

    2013-11-01

    The fine structure in the α decay of neutron-deficient Ds, Cn, and 114 isotopes have been systematically predicted using the multi-channel cluster model (MCCM). The theoretical α-decay energy Qα is deduced from the local formula of Qα values for heavy and superheavy nuclei. The ground-state rotational states in a daughter nucleus are established based on the macroscopic- microscopic model with some improved ingredients. Exact five-channels microscopic calculations are performed, and the branching ratios to various daughter states and total α-decay half-lives are evaluated. Any adjustable parameter is not introduced in our calculations. It is expected that the present coupled- channel predictions would provide a reference for future structure researches of superheavy nuclei.

  14. Mechanical properties of the cell nucleus and the effect of emerin deficiency.

    PubMed

    Rowat, A C; Lammerding, J; Ipsen, J H

    2006-12-15

    Nuclear structure and mechanics are gaining recognition as important factors that affect gene expression, development, and differentiation in normal function and disease, yet the physical mechanisms that govern nuclear mechanical stability remain unclear. Here we examined the physical properties of the cell nucleus by imaging fluorescently labeled components of the inner nucleus (chromatin and nucleoli) and the nuclear envelope (lamins and membranes) in nuclei deformed by micropipette aspiration (confocal imaged microdeformation). We investigated nuclei, both isolated and in intact, living cells, and found that nuclear volume significantly decreased by 60-70% during aspiration. While nuclear membranes exhibited blebbing and fluid characteristics during aspiration, the nuclear lamina exhibited behavior of a solid-elastic shell. Under large deformations of GFP-lamin A-labeled nuclei, we observed a decay of fluorescence intensity into the tip of the deformed tongue that we interpreted in terms of nonlinear, two-dimensional elasticity theory. Here we applied this method to study nuclear envelope stability in disease and found that mouse embryo fibroblasts lacking the inner nuclear membrane protein, emerin, had a significantly decreased ratio of the area expansion to shear moduli (K/mu) compared to wild-type cells (2.1 +/- 0.2 versus 5.1 +/- 1.3). These data suggest that altered nuclear envelope elasticity caused by loss of emerin could contribute to increased nuclear fragility in Emery-Dreifuss muscular dystrophy patients with mutations in the emerin gene. Based on our experimental results and theoretical considerations, we present a model describing how the nucleus is stabilized in the pipette. Such a model is essential for interpreting the results of any micropipette study of the nucleus and porous materials in general.

  15. Mechanical Properties of the Cell Nucleus and the Effect of Emerin Deficiency

    PubMed Central

    Rowat, A. C.; Lammerding, J.; Ipsen, J. H.

    2006-01-01

    Nuclear structure and mechanics are gaining recognition as important factors that affect gene expression, development, and differentiation in normal function and disease, yet the physical mechanisms that govern nuclear mechanical stability remain unclear. Here we examined the physical properties of the cell nucleus by imaging fluorescently labeled components of the inner nucleus (chromatin and nucleoli) and the nuclear envelope (lamins and membranes) in nuclei deformed by micropipette aspiration (confocal imaged microdeformation). We investigated nuclei, both isolated and in intact, living cells, and found that nuclear volume significantly decreased by 60–70% during aspiration. While nuclear membranes exhibited blebbing and fluid characteristics during aspiration, the nuclear lamina exhibited behavior of a solid-elastic shell. Under large deformations of GFP-lamin A-labeled nuclei, we observed a decay of fluorescence intensity into the tip of the deformed tongue that we interpreted in terms of nonlinear, two-dimensional elasticity theory. Here we applied this method to study nuclear envelope stability in disease and found that mouse embryo fibroblasts lacking the inner nuclear membrane protein, emerin, had a significantly decreased ratio of the area expansion to shear moduli (K/μ) compared to wild-type cells (2.1 ± 0.2 versus 5.1 ± 1.3). These data suggest that altered nuclear envelope elasticity caused by loss of emerin could contribute to increased nuclear fragility in Emery-Dreifuss muscular dystrophy patients with mutations in the emerin gene. Based on our experimental results and theoretical considerations, we present a model describing how the nucleus is stabilized in the pipette. Such a model is essential for interpreting the results of any micropipette study of the nucleus and porous materials in general. PMID:16997877

  16. Failure of the gross theory of beta decay in neutron deficient nuclei

    DOE PAGES

    Firestone, R. B.; Schwengner, R.; Zuber, K.

    2015-05-28

    The neutron deficient isotopes 117-121Xe, 117-124Cs, and 122-124Ba were produced by a beam of 28Si from the LBNL SuperHILAC on a target of natMo. The isotopes were mass separated and their beta decay schemes were measured with a Total Absorption Spectrometer (TAS). The beta strengths derived from these data decreased dramatically to levels above ≈1 MeV for the even-even decays; 3–4 MeV for even-Z, odd-N decays; 4–5 MeV for the odd-Z, even-N decays; and 7–8 MeV for the odd-Z, odd-N decays. The decreasing strength to higher excitation energies in the daughters contradicts the predictions of the Gross Theory of Betamore » Decay. The integrated beta strengths are instead found to be consistent with shell model predictions where the single-particle beta strengths are divided amoung many low-lying levels. The experimental beta strengths determined here have been used calculate the half-lives of 143 neutron deficient nuclei with Z=51–64 to a precision of 20% with respect to the measured values.« less

  17. Failure of the gross theory of beta decay in neutron deficient nuclei

    SciTech Connect

    Firestone, R. B.; Schwengner, R.; Zuber, K.

    2015-05-28

    The neutron deficient isotopes 117-121Xe, 117-124Cs, and 122-124Ba were produced by a beam of 28Si from the LBNL SuperHILAC on a target of natMo. The isotopes were mass separated and their beta decay schemes were measured with a Total Absorption Spectrometer (TAS). The beta strengths derived from these data decreased dramatically to levels above ≈1 MeV for the even-even decays; 3–4 MeV for even-Z, odd-N decays; 4–5 MeV for the odd-Z, even-N decays; and 7–8 MeV for the odd-Z, odd-N decays. The decreasing strength to higher excitation energies in the daughters contradicts the predictions of the Gross Theory of Beta Decay. The integrated beta strengths are instead found to be consistent with shell model predictions where the single-particle beta strengths are divided amoung many low-lying levels. The experimental beta strengths determined here have been used calculate the half-lives of 143 neutron deficient nuclei with Z=51–64 to a precision of 20% with respect to the measured values.

  18. {alpha} decay studies of very neutron-deficient francium and radium isotopes

    SciTech Connect

    Uusitalo, J.; Leino, M.; Enqvist, T.; Grahn, T.; Greenlees, P.T.; Jones, P.; Julin, R.; Juutinen, S.; Keenan, A.; Kettunen, H.; Koivisto, H.; Kuusiniemi, P.; Leppaenen, A.-P.; Nieminen, P.; Pakarinen, J.; Rahkila, P.; Scholey, C.; Eskola, K.

    2005-02-01

    Very neutron-deficient francium and radium isotopes have been produced in fusion evaporation reactions using {sup 63}Cu and {sup 65}Cu ions on {sup 141}Pr targets and {sup 36}Ar ions on {sup 170}Yb targets. The gas-filled recoil separator RITU was employed to collect the fusion products and to separate them from the scattered beam. The activities were implanted into a position-sensitive silicon detector after passing through a gas-counter system. The isotopes were identified using spatial and time correlations between the implants and decays. Two new {alpha} decaying radium isotopes, {sup 201}Ra and {sup 202}Ra, were identified. The {alpha} decay energy and half-life of {sup 203}Ra were measured with improved precision. The {alpha} decay properties measured for the francium isotopes {sup 201}Fr,{sup 202}Fr,{sup 203}Fr, and {sup 204}Fr were confirmed, in many cases with improved precision. For the first time, a ({pi}s{sub 1/2}{sup -1})1/2{sup +} proton intruder state was identified in francium isotopes, namely in {sup 201}Fr and tentatively in {sup 203}Fr. The measured decay properties for the neutron-deficient odd-mass Fr isotopes suggest an onset of substantial deformation at N=112.

  19. Neutron-proton multiplets in the odd-odd nucleus 53 37 90Rb

    NASA Astrophysics Data System (ADS)

    Czerwiński, M.; RzÄ ca-Urban, T.; Urban, W.; BÄ czyk, P.; Sieja, K.; Timár, J.; Nyakó, B. M.; Kuti, I.; Tornyi, T. G.; Atanasova, L.; Blanc, A.; Jentschel, M.; Mutti, P.; Köster, U.; Soldner, T.; de France, G.; Simpson, G. S.; Ur, C. A.

    2016-03-01

    Medium-spin excited levels in 90Rb, populated in the fission of 235U induced by neutrons, have been observed for the first time. γ radiation from fission has been measured by using the EXILL array of Ge detectors at the cold-neutron-beam facility PF1B of the Institut Laue-Langevin, Grenoble. Low-energy levels are interpreted as members of the π p3/2 -1ν (d5/2) 3 , π f5/2 -1ν (d5/2) 3 , and π g9 /2ν (d5/2) 3 multiplets with the 0- ground state due to the seniority-3 coupling in the ν d5 /2 shell. Analogous anomalous coupling within the π g9 /2ν (d5/2) 3 configuration explains the 5+, 6+, and 7+ triplet of states, observed at medium spins, similar to the triplet seen in the N =53 isotone, 88Br. Shell-model calculations reproduce well the proposed structures in Rb,9088 and support the seniority-3 coupling in N =53 isotones and its absence in N =51 isotones. The structure of the odd-odd 88Rb and 90Rb nuclei provides an argument in favor of the collectivity building up at the neutron number N =53 .

  20. Evolution of deformation in the neutron-rich krypton isotopes: The Kr96 nucleus

    NASA Astrophysics Data System (ADS)

    Mărginean, N.; Bucurescu, D.; Ur, C. A.; Mihai, C.; Corradi, L.; Farnea, E.; Filipescu, D.; Fioretto, E.; Ghiţă, D.; Guiot, B.; Górska, M.; Ionescu-Bujor, M.; Iordăchescu, A.; Jelavić-Malenica, D.; Lenzi, S. M.; Mason, P.; Mărginean, R.; Mengoni, D.; Montagnoli, G.; Napoli, D. R.; Pascu, S.; Pollarolo, G.; Recchia, F.; Stefanini, A. M.; Silvestri, R.; Sava, T.; Scarlassara, F.; Szilner, S.; Zamfir, N. V.

    2009-08-01

    The energy of the first excited 2+ state in Kr96 was measured as 241 keV. The nucleus was produced in the fission of U238 induced by a 954-MeV Xe136 beam and prompt γ rays were observed using the clover array CLARA in coincidence with fission products identified with the PRISMA spectrometer. The evolution of the quadrupole collectivity in the Kr isotopes with N⩾50 is discussed by comparison with that from the Rb to Mo isotones and with predictions of various theoretical calculations.

  1. Pairing phenomenon in doubly odd neutron rich {sup 136}Sb nucleus

    SciTech Connect

    Laouet, N.; Benrachi, F.

    2012-06-27

    Based on p-n and n-n pairing gap energies giving by K. Kaneko et al. (2003), we make modifications on the kh5082 interaction. Calculations and study of some nuclear properties for {sup 136}Sb nucleus are developed in the framework of the nuclear shell model by means of OXBASH structure code. We get the same energetic sequence as the recent experimental values of single particle energies. The effective charge values e{sub p}=1.35e and e{sub n}=0.9e, and factors given by V. I. Isakov are used to evaluate multipole electromagnetic moments.

  2. High-precision masses of neutron-deficient rubidium isotopes using a Penning trap mass spectrometer

    SciTech Connect

    Kellerbauer, A.; Audi, G.; Guenaut, C.; Lunney, D.; Beck, D.; Herfurth, F.; Kluge, H.-J.; Weber, C.; Yazidjian, C.; Blaum, K.; Bollen, G.; Schwarz, S.; Herlert, A.; Schweikhard, L.

    2007-10-15

    The atomic masses of the neutron-deficient radioactive rubidium isotopes {sup 74-77,79,80,83}Rb have been measured with the Penning trap mass spectrometer ISOLTRAP. Using the time-of-flight cyclotron resonance technique, relative mass uncertainties ranging from 1.6x10{sup -8} to 5.6x10{sup -8} were achieved. In all cases, the mass precision was significantly improved as compared with the prior Atomic-Mass Evaluation; no significant deviations from the literature values were observed. The exotic nuclide {sup 74}Rb, with a half-life of only 65 ms, is the shortest-lived nuclide on which a high-precision mass measurement in a Penning trap has been carried out. The significance of these measurements for a check of the conserved-vector-current hypothesis of the weak interaction and the unitarity of the Cabibbo-Kobayashi-Maskawa matrix is discussed.

  3. Changes in the mean square charge radii and electromagnetic moments of neutron-deficient Bi isotopes

    SciTech Connect

    Barzakh, A. E. Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Panteleev, V. N.; Seliverstov, M. D.; Volkov, Yu. M.

    2015-10-15

    In-source laser spectroscopy experiments for neutron deficient bismuth isotopes at the 306.77 nm atomic transition were carried out at the IRIS (Investigation of Radioactive Isotopes on Synchrocyclotron) facility of Petersburg Nuclear Physics Institute (PNPI). New data on isotope shifts and hyperfine structure for {sup 189–198,} {sup 211}Bi isotopes and isomers were obtained. The changes in the mean-square charge radii and the magnetic moment values were deduced. Marked deviation from the nearly spherical behavior for ground states of bismuth isotopes at N < 109 is demonstrated, in contrast to the lead and thallium isotopic chains. The big isomer shift between I = 1/2 (intruder) and I = 9/2 (normal) states for odd Bi isotopes (A = 193, 195, 197) was found.

  4. Changes in the mean square charge radii and electromagnetic moments of neutron-deficient Bi isotopes

    NASA Astrophysics Data System (ADS)

    Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Panteleev, V. N.; Seliverstov, M. D.; Volkov, Yu. M.

    2015-10-01

    In-source laser spectroscopy experiments for neutron deficient bismuth isotopes at the 306.77 nm atomic transition were carried out at the IRIS (Investigation of Radioactive Isotopes on Synchrocyclotron) facility of Petersburg Nuclear Physics Institute (PNPI). New data on isotope shifts and hyperfine structure for 189-198, 211Bi isotopes and isomers were obtained. The changes in the mean-square charge radii and the magnetic moment values were deduced. Marked deviation from the nearly spherical behavior for ground states of bismuth isotopes at N < 109 is demonstrated, in contrast to the lead and thallium isotopic chains. The big isomer shift between I = 1/2 (intruder) and I = 9/2 (normal) states for odd Bi isotopes (A = 193, 195, 197) was found.

  5. Decay and In-Beam Studies of Neutron-Deficient Po and Ra Isotopes at JYFL

    NASA Astrophysics Data System (ADS)

    Leino, M.; Allatt, R. G.; Andreyev, A. N.; Cocks, J. F. C.; Dorvaux, O.; Enqvist, T.; Eskola, K.; Helariutta, K.; Huyse, M.; Jones, P. M.; Julin, R.; Juutinen, S.; Kankaanpaeae, H.; Keenan, A.; Kettunen, H.; Kuusiniemi, P.; Muikku, M.; Rahkila, P.; Savelius, A.; Trzaska, W. H.; Uusitalo, J.; van Duppen, P.

    1999-05-01

    An extensive program to study the production, decay properties, and nuclear structure of very neutron-deficient polonium and radium nuclei is underway at the Department of Physics, University of Jyvaeskylae, Finland (JYFL). The main tools used in these studies are the gas-filled recoil separator RITU and various germanium gamma-ray arrays. In the course of these studies, among others the following new isotopes have been produced: 204Ra, 203Ra, and 202Ra. Isomeric alpha decaying states have been discovered in 203Ra and 191Po. Fine structure in the decay of 192Po to the oblate and prolate band heads in 188Pb has been observed. In-beam gamma-ray spectra have been, for the first time, measured for 192Po, 206Ra, 208Ra, and 210Ra. Development of collectivity in nuclei in the Po-Ra region and the systematics of reduced alpha widths will be discussed.

  6. Charge Radii of Neutron Deficient Fe,5352 Produced by Projectile Fragmentation

    NASA Astrophysics Data System (ADS)

    Minamisono, K.; Rossi, D. M.; Beerwerth, R.; Fritzsche, S.; Garand, D.; Klose, A.; Liu, Y.; Maaß, B.; Mantica, P. F.; Miller, A. J.; Müller, P.; Nazarewicz, W.; Nörtershäuser, W.; Olsen, E.; Pearson, M. R.; Reinhard, P.-G.; Saperstein, E. E.; Sumithrarachchi, C.; Tolokonnikov, S. V.

    2016-12-01

    Bunched-beam collinear laser spectroscopy is performed on neutron deficient Fe,5352 prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δ ⟨r2⟩ of Fe,5352 are determined relative to stable 56Fe as δ ⟨r2⟩56 ,52=-0.034 (13 ) fm2 and δ ⟨r2⟩56 ,53=-0.218 (13 ) fm2 , respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ ⟨r2⟩. The values of δ ⟨r2⟩ exhibit a minimum at the N =28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. The trend of δ ⟨r2⟩ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ ⟨r2⟩ of closed-shell Ca isotopes.

  7. Electron-capture delayed fission properties of neutron-deficient einsteinium nuclei

    SciTech Connect

    Shaughnessy, Dawn A.

    2000-01-01

    Electron-capture delayed fission (ECDF) properties of neutron-deficient einsteinium isotopes were investigated using a combination of chemical separations and on-line radiation detection methods. 242Es was produced via the 233U(14N,5n)242Es reaction at a beam energy of 87 MeV (on target) in the lab system, and was found to decay with a half-life of 11 ± 3 seconds. The ECDF of 242Es showed a highly asymmetric mass distribution with an average pre-neutron emission total kinetic energy (TKE) of 183 ± 18 MeV. The probability of delayed fission (PDF) was measured to be 0.006 ± 0.002. In conjunction with this experiment, the excitation functions of the 233U(14N,xn)247-xEs and 233U(15N,xn)248-xEs reactions were measured for 243Es, 244Es and 245Es at projectile energies between 80 MeV and 100 MeV.

  8. Charge radii of neutron deficient Fe52,53 produced by projectile fragmentation

    DOE PAGES

    Minamisono, K.; Rossi, D. M.; Beerwerth, R.; ...

    2016-12-15

    Bunched-beam collinear laser spectroscopy is performed on neutron deficient 52,53Fe prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δmore » $$\\langle$$r2$$\\rangle$$ of 52,53Fe are determined relative to stable 56Fe as δ$$\\langle$$r2$$\\rangle$$56,52=$-$0.034(13) fm2 and δ$$\\langle$$r2$$\\rangle$$56,53=$-$0.218(13) fm2, respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ$$\\langle$$r2$$\\rangle$$. The values of δ$$\\langle$$r2$$\\rangle$$ exhibit a minimum at the N=28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. As a result, the trend of δ$$\\langle$$r2$$\\rangle$$ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ$$\\langle$$r2$$\\rangle$$ of closed-shell Ca isotopes« less

  9. Competition between α decay and proton radioactivity of neutron-deficient nuclei

    NASA Astrophysics Data System (ADS)

    Wang, Y. Z.; Cui, J. P.; Zhang, Y. L.; Zhang, S.; Gu, J. Z.

    2017-01-01

    The α decay and proton radioactivity half-lives of some neutron-deficient nuclei are calculated using an effective liquid drop model (ELDM). It is found that the experimental half-lives of the two decay modes and the dominant decay mode can be well reproduced by the ELDM. Moreover, the predicted penetration probabilities (P ) of proton radioactivity by the ELDM are in agreement with those by a microscopic model (MM). This allows us to make predictions on the competition of the two decay modes for nuclei whose experimental data are not available, which are useful for future measurements. In addition, the comparison between the predicted reduced proton radioactivity half-lives by the ELDM and the ones by a standard formula suggests that one is unlikely to observe large angular momentum transfers for nuclei with a very large Coulomb parameter χ . Last, we find that in most isotope chains the proton radioactivity is the dominant decay mode for nuclei that are very close to the proton drip line. But with increasing neutron number N the main decay mode is changed into α decay. With the decay energies the decay mode anomaly of 184Bi is discussed.

  10. Charge Radii of Neutron Deficient ^{52,53}Fe Produced by Projectile Fragmentation.

    PubMed

    Minamisono, K; Rossi, D M; Beerwerth, R; Fritzsche, S; Garand, D; Klose, A; Liu, Y; Maaß, B; Mantica, P F; Miller, A J; Müller, P; Nazarewicz, W; Nörtershäuser, W; Olsen, E; Pearson, M R; Reinhard, P-G; Saperstein, E E; Sumithrarachchi, C; Tolokonnikov, S V

    2016-12-16

    Bunched-beam collinear laser spectroscopy is performed on neutron deficient ^{52,53}Fe prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δ⟨r^{2}⟩ of ^{52,53}Fe are determined relative to stable ^{56}Fe as δ⟨r^{2}⟩^{56,52}=-0.034(13)  fm^{2} and δ⟨r^{2}⟩^{56,53}=-0.218(13)  fm^{2}, respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ⟨r^{2}⟩. The values of δ⟨r^{2}⟩ exhibit a minimum at the N=28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. The trend of δ⟨r^{2}⟩ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ⟨r^{2}⟩ of closed-shell Ca isotopes.

  11. β--Decay Study of the Deformed, Neutron-Rich Nucleus 160Eu

    NASA Astrophysics Data System (ADS)

    Hartley, D. J.; Kondev, F. G.; Savard, G.; Ayangeakaa, A. D.; Bottoni, S.; Carpenter, M. P.; Clark, J. A.; Hoffman, C. R.; Janssens, R. V. F.; Lauritsen, T.; Zhu, S.; Copp, P.; Hu, C.; Zhang, H.; Zhu, Y.; Nystrom, A.; Orford, R.; Sethi, J.

    2017-01-01

    A new experimental program at Argonne National Laboratory has been initiated in the pursuit of understanding the structure of deformed nuclei in the A 160 region. Of particular interest is the evolution of collectivity towards mid shell (N = 104). In addition, these results will provide valuable information for understanding the rare-earth ``pygmy peak'' in the r-process abundance distribution. A high-purity beam of 160Eu from the CARIBU facility was directed onto the SATURN moving tape system. The X-Array spectrometer (with multiple Ge clover detectors and plastic scintillators) was placed around the tape system for γ and β detection. Two β-decaying states in 160Eu were observed, and the decay scheme of the 160Gd daughter nucleus was greatly extended. Multi-quasiparticle blocking calculations were performed to help interpret the structure of the parent and daughter states. This work is funded by the NSF (PHY-1502092) and the US DOE, Office of Science (DE-AC02-06CH11357). This research used resources of Argonne National Laboratory's ATLAS facility, which is a DOE, Office of Science User Facility.

  12. Core excitation contributions to the breakup of the one-neutron halo nucleus {sup 11}Be on a proton

    SciTech Connect

    Crespo, R.; Deltuva, A.; Moro, A. M.

    2011-04-15

    The effect of the core excitation in the breakup of a one-neutron halo nucleus is studied within two different reaction formalisms, namely, the core excited model and the single-scattering approximation of the three-body Faddeev-Alt-Grassberger-Sandhas equations with target-core potential allowing for the core excitation. As an example, we consider the breakup of {sup 11}Be on a proton target at 63.7 MeV/nucleon incident energy and calculate the semi-inclusive cross section in the excitation energy interval E{sub x}=3.0-5.5 MeV (E{sub rel}=2.5-5 MeV) containing the 3/2{sup +} resonance with dominant contribution of the {sup 10}Be(2{sup +}) core excited state. The effect of the core excitation to the breakup cross section integrated around this resonance is found to be very significant. Moreover, when resonant and nonresonant contributions are added, the resulting semi-inclusive cross section is in reasonable agreement with the existing data, demonstrating the relevance of the core excitation mechanism for this observable. The present calculations also show the importance of incorporating the energy dependence of the core-target transition operators in the reaction formalism.

  13. Disruption of the Suprachiasmatic Nucleus in Fibroblast Growth Factor Signaling-Deficient Mice

    PubMed Central

    Miller, Ann V.; Kavanaugh, Scott I.; Tsai, Pei-San

    2016-01-01

    Fibroblast growth factor (Fgf) 8 is essential for the development of multiple brain regions. Previous studies from our laboratory showed that reduced Fgf8 signaling led to the developmental alterations of neuroendocrine nuclei that originated within the diencephalon, including the paraventricular (PVN) and supraoptic (SON) nuclei. To further understand the role of Fgf8 in the development of other hypothalamic nuclei, we examined if Fgf8 and its cognate receptor, Fgfr1, also impact the integrity of the suprachiasmatic nuclei (SCN). The SCN control an organism’s circadian rhythm and contain vasoactive intestinal peptide (VIP)-producing neurons as the main input neurons. Mice hypomorphic for Fgf8, Fgfr1, or both were examined for their SCN volume and the number of VIP neurons on postnatal day (PN) 0; adult hypomorphic mice were further examined for SCN function by quantifying SCN neuronal activation using cFos as a marker. On PN0, mice homozygous for Fgf8 hypomorphy displayed the most severe reduction of the SCN volume and VIP neurons. Those heterozygous for Fgf8 hypomorphy alone or Fgf8 combined with Fgfr1 hypomorphy, called double heterozygotes (DH), showed normal SCN volume but significantly reduced VIP neurons, albeit less severely than the homozygotes. Adult wild type, heterozygous Fgf8 hypomorphs (F8 Het), and DH mice were also examined for SCN cFos activation at three time points: 1 h (morning), 6 h (afternoon), and 11 h (evening) after light onset. In F8 Het mice, a significant change in the pattern of cFos immunostaining that may reflect delayed morning SCN activation was observed. Overall, our studies provide evidence supporting that deficiencies in Fgf8 not only impact the structural integrity of the SCN but also the pattern of SCN activation in response to light. PMID:26903947

  14. Shape coexistence in the N = 19 neutron-rich nucleus 31Mg explored by β-γ spectroscopy of spin-polarized 31Na

    NASA Astrophysics Data System (ADS)

    Nishibata, H.; Shimoda, T.; Odahara, A.; Morimoto, S.; Kanaya, S.; Yagi, A.; Kanaoka, H.; Pearson, M. R.; Levy, C. D. P.; Kimura, M.

    2017-04-01

    The structure of excited states in the neutron-rich nucleus 31Mg, which is in the region of the "island of inversion" associated with the neutron magic number N = 20, is studied by β-γ spectroscopy of spin-polarized 31Na. Among the 31Mg levels below the one neutron separation energy of 2.3 MeV, the spin values of all five positive-parity levels are unambiguously determined by observing the anisotropic β decay. Two rotational bands with Kπ = 1 /2+ and 1 /2- are proposed based on the spins and energies of the levels. Comparison on a level-by-level basis is performed between the experimental results and theoretical calculations by the antisymmetrized molecular dynamics (AMD) plus generator coordinate method (GCM). It is found that various nuclear structures coexist in the low excitation energy region in 31Mg.

  15. Charge radii and nuclear moments of neutron-deficient potassium isotopes

    NASA Astrophysics Data System (ADS)

    Minamisono, K.; Barquest, B. R.; Bollen, G.; Hughes, M.; Strum, R.; Tarazona, D.; Asberry, H. B.; Cooper, K.; Hammerton, K.; Klose, A.; Mantica, P. F.; Morrissey, D. J.; Geppert, Ch.; Harris, J.; Ringle, R.; Rodriguez, J. A.; Rossi, D. M.; Ryder, C. A.; Smith, A.; Schwarz, S.; Sumithrarachchi, C.

    2014-09-01

    The monotonic change of charge radii of K isotopes across N = 20 suggests a reduction of the shell gap. A systematic study of the charge radii and ground state magnetic and quadrupole moments of neutron-deficient 35-37K isotopes is underway at the BEam COoling and LAser spectroscopy (BECOLA) facility at NSCL/MSU to investigate the anomalous trend in charge radii. The K isotopes were produced by fragmentation of a 40Ca beam, thermalized in a linear gas cell, extracted at an energy of 30 keV, and transported to BECOLA. The K ion beam was cooled and bunched, and neutralized in a Na vapor cell. Laser-induced fluorescence was detected as a function of the Doppler-tuned laser frequency and time relative to the release of the beam bunch. The beta-NMR technique was used to determine ground-state nuclear moments, where hyperfine splittings are too small to resolve using collinear laser spectroscopy. The monotonic change of charge radii of K isotopes across N = 20 suggests a reduction of the shell gap. A systematic study of the charge radii and ground state magnetic and quadrupole moments of neutron-deficient 35-37K isotopes is underway at the BEam COoling and LAser spectroscopy (BECOLA) facility at NSCL/MSU to investigate the anomalous trend in charge radii. The K isotopes were produced by fragmentation of a 40Ca beam, thermalized in a linear gas cell, extracted at an energy of 30 keV, and transported to BECOLA. The K ion beam was cooled and bunched, and neutralized in a Na vapor cell. Laser-induced fluorescence was detected as a function of the Doppler-tuned laser frequency and time relative to the release of the beam bunch. The beta-NMR technique was used to determine ground-state nuclear moments, where hyperfine splittings are too small to resolve using collinear laser spectroscopy. This work was supported in part by NSF Grant No. PHY-11-02511.

  16. Description of the neutron deficient Sr and Zr isotopes in the interacting boson model

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Cǎta, G.; Cutoiu, D.; Constantinescu, G.; Ivaşcu, M.; Zamfir, N. V.

    1983-05-01

    The available experimental data for the neutron deficient isotopes of Sr (78 to 86) and Zr (80 to 86) are collected and compared to the predictions of IBA-1 model calculations. The variations of the collectivity along these two isotopic chains is well reproduced with a set of smoothly varying parameters of the model. The description of both the energy levels and the B(E2) transition probabilities improves with decreasing N, the hamiltonian evolving towards an SU(3) dynamical symmetry. Both the large B(E2) value of the 2 1+ → 0 g.s.+ transition and the predicted prolate shape for the very light isotopes, agree well with the recent findings of superdeformed nuclei around Z, N ≈ 38. Transition strengths for the (p, t) reaction are calculated and compared to experimental observations for 0 + states, and a discussion is made about the possible intruder character of the 0 2+ state. The interacting boson-fermion approximation (IBFA) model is used to extend the calculations to some odd nuclei. Two shell (1g {9}/{2}, 2d {5}/{2}) calculations are performed for the positive-parity states in 83Sr, 81Sr and 85Y and they compare well with the experimental level scheme of these nuclei below 3 MeV excitation.

  17. Deformation and mixing of coexisting shapes in neutron-deficient polonium isotopes

    NASA Astrophysics Data System (ADS)

    Kesteloot, N.; Bastin, B.; Gaffney, L. P.; Wrzosek-Lipska, K.; Auranen, K.; Bauer, C.; Bender, M.; Bildstein, V.; Blazhev, A.; Bönig, S.; Bree, N.; Clément, E.; Cocolios, T. E.; Damyanova, A.; Darby, I.; De Witte, H.; Di Julio, D.; Diriken, J.; Fransen, C.; García-Ramos, J. E.; Gernhäuser, R.; Grahn, T.; Heenen, P.-H.; Hess, H.; Heyde, K.; Huyse, M.; Iwanicki, J.; Jakobsson, U.; Konki, J.; Kröll, T.; Laurent, B.; Lecesne, N.; Lutter, R.; Pakarinen, J.; Peura, P.; Piselli, E.; Próchniak, L.; Rahkila, P.; Rapisarda, E.; Reiter, P.; Scheck, M.; Seidlitz, M.; Sferrazza, M.; Siebeck, B.; Sjodin, M.; Tornqvist, H.; Traykov, E.; Van De Walle, J.; Van Duppen, P.; Vermeulen, M.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.; Zielińska, M.

    2015-11-01

    Coulomb-excitation experiments are performed with postaccelerated beams of neutron-deficient Po 196 ,198 ,200 ,202 isotopes at the REX-ISOLDE facility. A set of matrix elements, coupling the low-lying states in these isotopes, is extracted. In the two heaviest isotopes, Po,202200, the transitional and diagonal matrix elements of the 21+ state are determined. In Po,198196 multistep Coulomb excitation is observed, populating the 41+,02+ , and 22+ states. The experimental results are compared to the results from the measurement of mean-square charge radii in polonium isotopes, confirming the onset of deformation from 196Po onwards. Three model descriptions are used to compare to the data. Calculations with the beyond-mean-field model, the interacting boson model, and the general Bohr Hamiltonian model show partial agreement with the experimental data. Finally, calculations with a phenomenological two-level mixing model hint at the mixing of a spherical structure with a weakly deformed rotational structure.

  18. Deformation studies in the extremely neutron-deficient praseodymium, neodymium and promethium isotopes

    SciTech Connect

    Breitenbach, J.; Braga, R.A.; Wood, J.L.; Semmes, P.B.; Kormicki, J.

    1992-12-31

    Several experiments were performed at the UNISOR isotope separator facility at HHIRF at the Oak Ridge National Laboratory on the {beta}{sup +}/EC decay of neutron-deficient rare earth isotopes. Data for the three decay chains {sup 137}Eu {yields} {sup 137}Sm {yields} {sup 137}Pm {yields} {sup 137}Nd, {sup 135}Sm {yields} {sup 135}Pm {yields} {sup 135}Nd and {sup 133}Sm {yields} {sup 133}Pm {yields} {sup 133}Nd were obtained consisting of multiscaled spectra of {gamma} rays, x rays, and conversion electrons, as well as {gamma}{gamma}t, X{gamma}t, e{gamma}t and eXt coincidences. Gamma rays associated with the decay of {sup 133}Sm and {sup 133}Pm were observed for the first time. The decay of a new low-spin (1/2,3/2) isomeric state, with a half life around 70 sec was seen in {sup 133}Nd. Systematics and particle-rotor calculations are discussed.

  19. Deformation studies in the extremely neutron-deficient praseodymium, neodymium and promethium isotopes

    SciTech Connect

    Breitenbach, J.; Braga, R.A.; Wood, J.L. ); Semmes, P.B. . Dept. of Physics); Kormicki, J. . Dept. of Physics)

    1992-01-01

    Several experiments were performed at the UNISOR isotope separator facility at HHIRF at the Oak Ridge National Laboratory on the [beta][sup +]/EC decay of neutron-deficient rare earth isotopes. Data for the three decay chains [sup 137]Eu [yields] [sup 137]Sm [yields] [sup 137]Pm [yields] [sup 137]Nd, [sup 135]Sm [yields] [sup 135]Pm [yields] [sup 135]Nd and [sup 133]Sm [yields] [sup 133]Pm [yields] [sup 133]Nd were obtained consisting of multiscaled spectra of [gamma] rays, x rays, and conversion electrons, as well as [gamma][gamma]t, X[gamma]t, e[gamma]t and eXt coincidences. Gamma rays associated with the decay of [sup 133]Sm and [sup 133]Pm were observed for the first time. The decay of a new low-spin (1/2,3/2) isomeric state, with a half life around 70 sec was seen in [sup 133]Nd. Systematics and particle-rotor calculations are discussed.

  20. c-Fos expression in the parabrachial nucleus following intraoral bitter stimulation in the rat with dietary-induced zinc deficiency.

    PubMed

    Kawano, Akiyo; Honma, Shiho; Inui-Yamamoto, Chizuko; Ito, Akira; Niwa, Hitoshi; Wakisaka, Satoshi

    2017-03-15

    Zinc deficiency causes various symptoms including taste disorders. In the present study, changes in expression of c-Fos immunoreactivity in neurons of the parabrachial nucleus (PBN), one of the relay nuclei for transmission of gustatory information, after bitter stimulation to the dorsal surface of the tongue were examined in zinc-deficient rats. Experimental zinc-deficient animals were created by feeding a low-zinc diet for 4weeks, and showed the following symptoms of zinc deficiency: low body weight, low serum zinc content and behavioral changes to avoid bitter stimulation. In normal control animals, intraoral application of 1mM quinine caused increased numbers of c-Fos-immunoreactive (c-Fos-IR) neurons in the external lateral subnucleus and external medial subnucleus of the PBN (elPBN and emPBN, respectively) compared with application of distilled water. However, in the zinc-deficient animals, the numbers of c-Fos-IR neurons in the elPBN and emPBN did not differ significantly between application of quinine and distilled water. After feeding the zinc-deficient animals a normal diet for 4weeks, the symptoms of zinc deficiency recovered, and the expression of c-Fos-IR neurons following intraoral bitter stimulation became identical to that in the normal control animals. The present results indicate that dietary zinc deficiency causes alterations to neuronal activities in the gustatory neural circuit, and that these neuronal alterations can be reversed by changing to a normal diet. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Particle-Hole Symmetries Near Closed Shells:. General Structure and Applications in Neutron-Deficient Nuclei in the PB Region

    NASA Astrophysics Data System (ADS)

    Heyde, K.; de Coster, C.; Decroix, B.; Wood, J. L.

    2001-11-01

    We discuss the recent observation of low-lying collective bands built on 0+ intruder states in the neutron-deficient Pb region. Next to an interpretation making use of a deformed mean-field, we also discuss thes excitations within the context of 2p-2h and 4p-4h proton excitations across the Z = 82 proton shell closure. Possibilities to embed this shell-model description within the context of interacting particle and hole pairs, or within an extended Interacting Boson Model (EIBM), is put forward. We also indicate the presence of symmetries within this EIBM.

  2. Beta delayed alpha emission from the neutron deficient rare earth isotopes {sup 152}Tm and {sup 150}Ho

    SciTech Connect

    Nacher, E.; Tain, J. L.; Rubio, B.; Algora, A.; Estevez Aguado, M. E.; Gadea, A.; Batist, L.; Briz, J. A.; Cano-Ott, D.; Doering, J.; Mukha, I.; Plettner, C.; Roeckl, E.; Gierlik, M.; Janas, Z.

    2011-11-30

    The study of beta-delayed proton emission is a well known method to aid the determination of the beta strength distribution in nuclei far from the stability line. At the neutron deficient side of the nuclear chart the process of proton or alpha emission from excited states is energetically allowed when one goes far enough from stability. However, beta-delayed alphas have seldom been measured for nuclei heavier than A = 20. Here we present a study of the beta-delayed alpha-particle emission from {sup 152}Tm and {sup 150}Ho and their importance in the full B(GT) distribution.

  3. [Characteristic of serotoninergic neurons of medullary nucleus raphe obscurus in norm and in serotoninergic system deficiency during the prenatal period of development in rats].

    PubMed

    Khozhaĭ, L I

    2013-01-01

    Morphological characteristics of the serotoninergic neurons forming nucleus raphe obscurus (NRO), were studied in rats at the early stages (days 5, 10, 12 and 14) of the postnatal period in normal rats and in animals whose prenatal development took place under the conditions of serotonin deficiency. NRO was found to contain three subpopulations serotonin-producing neurons (large, medium and small), which had different sensitivity to serotonin level during development. The results have shown that serotoninergic system deficiency during the prenatal period resulted in the changes of NRO structural organization and in the decrease of the rate of this nucleus formation, serotonin-producing neurons differentiation and the reduction of their total number by approximately a factor of 1.6. At the same time, the significant changes of the dimensions of serotoninergic neurons of all types took place. In control animals, the size of large, medium and small neurons was 1.8, 1.4 and 1.5 times greater than that in experimental animals, respectively. Reduction of the neuron dimensions was associated with the changes of a nucleo-cytoplasmic ratio. The volume of the cytoplasm and of Nissl bodies was significantly decreased. Along with it, the cell destruction was noted that increased with age. Synchronously with it, the marked astrocytic reaction developed, which could further lead to gliosis.

  4. Cranking study of low lying yrast spectra and deformation systematics in some even-even neutron-deficient 130-136Nd

    NASA Astrophysics Data System (ADS)

    Sharma, Arun; Bharti, Arun; Khosa, S. K.

    2013-04-01

    In the present work, the results of calculations on various nuclear structure quantities in even-even neutron-deficient 130-136Nd using Cranked Hartree-Fock Bogoliubov (CHFB) technique have been presented. The various nuclear structure quantities that have been calculated in 130-136Nd isotopes are the yrast spectra, subshell occupation probabilities of various valence orbits and intrinsic quadrupole moments. Besides this, a comparative study of the calculated yrast spectra with the available experimental data as well as with the results of calculations obtained by using Variation-After-Projection (VAP) technique on these neutron - deficient 130-136Nd isotopes has also been presented.

  5. Deformation of the very neutron-deficient rare-earth nuclei produced with the SPIRAL 76Kr radioactive beam and studied with EXOGAM + DIAMANT

    SciTech Connect

    Redon, N.; Guinet, D.; Lautesse, Ph.; Meyer, M.; Rosse, B.; Stezowski, O.; France, G. de; Casandjian, J. M.

    2004-02-27

    The structure of the very neutron-deficient rare-earth nuclei has been investigated in the first experiment with the EXOGAM gamma array coupled to the DIAMANT light charged particle detector using radioactive beam of 76Kr delivered by the SPIRAL facility. Very neutron-deficient Pr, Nd and Pm isotopes have been populated at rather high spin by the reaction 76Kr + 58Ni at a beam energy of 328 MeV. We report here the first results of this experiment.

  6. Neutron-proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon-nucleus scattering data within an isospin dependent optical model

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hua; Guo, Wen-Jun; Li, Bao-An; Chen, Lie-Wen; Fattoyev, Farrukh J.; Newton, William G.

    2015-04-01

    The neutron-proton effective mass splitting in asymmetric nucleonic matter of isospin asymmetry δ and normal density is found to be mn-p* ≡ (mn* - mp*) / m = (0.41 ± 0.15) δ from analyzing globally 1088 sets of reaction and angular differential cross sections of proton elastic scattering on 130 targets with beam energies from 0.783 MeV to 200 MeV, and 1161 sets of data of neutron elastic scattering on 104 targets with beam energies from 0.05 MeV to 200 MeV within an isospin dependent non-relativistic optical potential model. It sets a useful reference for testing model predictions on the momentum dependence of the nucleon isovector potential necessary for understanding novel structures and reactions of rare isotopes.

  7. Isomeric states in neutron-deficient A~80-90 nuclei populated in the fragmentation of Ag107

    NASA Astrophysics Data System (ADS)

    Garnsworthy, A. B.; Regan, P. H.; Pietri, S.; Sun, Y.; Xu, F. R.; Rudolph, D.; Górska, M.; Cáceres, L.; Podolyák, Zs.; Steer, S. J.; Hoischen, R.; Heinz, A.; Becker, F.; Bednarczyk, P.; Doornenbal, P.; Geissel, H.; Gerl, J.; Grawe, H.; Grebosz, J.; Kelic, A.; Kojouharov, I.; Kurz, N.; Montes, F.; Prokopwicz, W.; Saito, T.; Schaffner, H.; Tachenov, S.; Werner-Malento, E.; Wollersheim, H. J.; Benzoni, G.; Blank, B.; Brandau, C.; Bruce, A. M.; Camera, F.; Catford, W. N.; Cullen, I. J.; Dombrádi, Zs.; Estevez, E.; Gelletly, W.; Ilie, G.; Jolie, J.; Jones, G. A.; Jungclaus, A.; Kmiecik, M.; Kondev, F. G.; Kurtukian-Nieto, T.; Lalkovski, S.; Liu, Z.; Maj, A.; Myalski, S.; Pfützner, M.; Schwertel, S.; Shizuma, T.; Simons, A. J.; Walker, P. M.; Wieland, O.

    2009-12-01

    The relativistic projectile fragmentation of a 750 MeV per nucleon beam of Ag107 was used to populate isomeric states in neutron-deficient nuclei around A=80-90. Reaction products were separated and unambiguously identified using the GSI FRagment Separator (FRS) and its ancillary detectors. At the final focal plane, the fragments were slowed from relativistic energies by means of an aluminium degrader and implanted in a passive stopper in the center of the high-efficiency, high-granularity Stopped Rare Isotope Spectroscopic INvestigation at GSI (RISING) germanium array. This allowed the identification of excited states in the N=Z nuclei 4386Tc and, for the first time, 4182Nb. Isomeric states have also been identified for the first time in Tc87,88, and a previously unreported isomer was observed in Nb84. Experimental results are presented along with a discussion on the structure of these nuclei based on interpretations provided by several theoretical models.

  8. Mass Measurements of Very Neutron-Deficient Mo and Tc Isotopes and Their Impact on rp Process Nucleosynthesis

    SciTech Connect

    Haettner, E.; Plass, W. R.; Scheidenberger, C.; Ackermann, D.; Block, M.; Eliseev, S.; Herfurth, F.; Hessberger, F. P.; Hofmann, S.; Kluge, H.-J.; Audi, G.; Blaum, K.; Ketter, J.; Fleckenstein, T.; Ketelaer, J.; Marx, G.; Schweikhard, L.; Mazzocco, M.; Novikov, Yu. N.; Vorobjev, G.

    2011-03-25

    The masses of ten proton-rich nuclides, including the N=Z+1 nuclides {sup 85}Mo and {sup 87}Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical x-ray bursts. Surprisingly low {alpha} separation energies for neutron-deficient Mo and Tc are found, making the formation of a ZrNb cycle in the rp process possible. Such a cycle would impose an upper temperature limit for the synthesis of elements beyond Nb in the rp process.

  9. Low energy E0 transitions in odd-mass nuclei of the neutron deficient 180 < A < 200 region

    SciTech Connect

    Zganjar, E.F.; Kortelahti, M.O.; Wood, J.L.; Papanicolopulos, C.D.

    1987-01-01

    The region of neutron-deficient nuclei near Z = 82 and N = 104 provides the most extensive example of low-energy shape coexistence anywhere on the mass surface. It is shown that E0 and E0 admixed transitions may be used as a fingerprint to identify shape coexistence in odd-mass nuclei. It is also shown that all the known cases of low energy E0 and E0 admixed transitions in odd-mass nuclei occur where equally low-lying O/sup +/ states occur in neighboring even-even nuclei. A discussion of these and other relevant data as well as suggestions for new studies which may help to clarify and, more importantly, quantify the connection between E0 transitions and shape coexistence are presented. 60 refs., 7 figs., 4 tabs.

  10. Mass measurements of very neutron-deficient Mo and Tc isotopes and their impact on rp process nucleosynthesis.

    PubMed

    Haettner, E; Ackermann, D; Audi, G; Blaum, K; Block, M; Eliseev, S; Fleckenstein, T; Herfurth, F; Hessberger, F P; Hofmann, S; Ketelaer, J; Ketter, J; Kluge, H-J; Marx, G; Mazzocco, M; Novikov, Yu N; Plass, W R; Rahaman, S; Rauscher, T; Rodríguez, D; Schatz, H; Scheidenberger, C; Schweikhard, L; Sun, B; Thirolf, P G; Vorobjev, G; Wang, M; Weber, C

    2011-03-25

    The masses of ten proton-rich nuclides, including the N=Z+1 nuclides ⁸⁵Mo and ⁸⁷Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical x-ray bursts. Surprisingly low α separation energies for neutron-deficient Mo and Tc are found, making the formation of a ZrNb cycle in the rp process possible. Such a cycle would impose an upper temperature limit for the synthesis of elements beyond Nb in the rp process.

  11. Nuclear structure investigations of neutron deficient nuclei in the region Z=103 to 105

    SciTech Connect

    Hessberger, F. P.; Hofmann, S.; Armbruster, P.; Muenzenberg, G.; Stodel, Ch.; Ackermann, D.; Lavrentev, A. Yu.; Popeko, A. G.; Yeremin, A. V.; Saro, S.; Leino, M.

    1999-11-16

    The isotopes {sup 257,255}Rf, {sup 257,256}Db, {sup 253,252}Lr have been produced in bombardments of {sup 207,208}Pb and {sup 209}Bi target nuclei with {sup 50}Ti and identified by their {alpha}-decay. New or improved decay data could be obtained. Analysis of the fine structure of the {alpha}-decay pattern of {sup 257}Rf allowed the construction of a first tentative level scheme for the daughter nucleus {sup 253}No and also the identification of a low lying high spin isomeric state, while from {alpha}-{gamma}- coincidence measurements for {sup 255}Rf a first tentative level scheme of the daughter nucleus {sup 251}No was derived. For {sup 257}Db we found that two nuclear levels decay by {alpha}-emission and populate also different levels in the daughter nucleus {sup 253}Lr. The levels are produced by the reaction process. In bombardments of {sup 209}Bi with {sup 50}Ti at E{sub CN}*=26.4 MeV and 30.8 MeV the previously unknown isotopes {sup 256}Db and {sup 252}Lr were identified.

  12. Nuclear Structure Investigations of Neutron Deficient Nuclei in the Region Z = 103 to 105

    SciTech Connect

    Heberger, F.P.; Hofmann, S.; Ackermann, D.; Armbruster, P.; Munzenberg, G.; Stodel, Ch.; Lavrentev, A.Yu.; Popeko, A.G.; Yeremin, A.V.; Saro, S.; Leino, M.

    1999-12-31

    The isotopes {sup 257,255}Rf, {sup 257,256}Db, {sup 253,252}Lr have been produced in bombardments of {sup 207,208}Pb and {sup 209}Bi target nuclei with {sup 50}Ti and identified by their {alpha}-decay. New or improved decay data could be obtained. Analysis of the fine structure of the {alpha}-decay pattern of {sup 257}Rf allowed the construction of a first tentative level scheme for the daughter nucleus {sup 253}No and also the identification of a low lying high spin isomeric state, while from {alpha}-{gamma} coincidence measurements for {sup 255}Rf a first tentative level scheme of the daughter nucleus {sup 251}No was derived. For {sup 257}Db we found that two nuclear levels decay by {alpha}-emission and populate also different levels in the daughter nucleus {sup 253}Lr. The levels are produced by the reaction process. In bombardments of {sup 209}Bi with {sup 50}Ti at E*{sub cn} = 26.4 MeV and 30.8 MeV the previously unknown isotopes {sup 256}Db and {sup 22}Lr were identified.

  13. Changes in the mean-square charge radii and magnetic moments of neutron-deficient Tl isotopes

    NASA Astrophysics Data System (ADS)

    Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Mezilev, K. A.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Panteleev, V. N.; Volkov, Yu. M.

    2013-08-01

    In-source laser spectroscopy experiments for neutron-deficient thallium isotopes at the 276.9-nm atomic transition have been carried out at the Investigation of Radioactive Isotopes on Synchrocyclotron facility of Petersburg Nuclear Physics Institute. New data on isotope shifts and the hyperfine structure for 183-207Tl isotopes and isomers are presented. The changes in the mean-square charge radii and magnetic-moment values are deduced. It is shown that nuclear properties of Tl isotopes and isomers smoothly change at the neutron midshell and beyond without development of strong deformation in contrast to the adjacent Hg nuclei. A rather great isomer shift between I = 1/2 and I = 9/2 states for odd Tl isotopes is preserved for both sides of the previously investigated mass range. For the first time, a similar isomer shift is found for the odd-odd isotope 186Tl. The close resemblance of the charge radii isotopic behavior for the Tl and Pb ground states is demonstrated.

  14. Competition between α and β decays for heavy deformed neutron-deficient Pa, U, Np, and Pu isotopes

    NASA Astrophysics Data System (ADS)

    Ni, Dongdong; Ren, Zhongzhou

    2017-01-01

    The competition between α and β decays is investigated for neutron-deficient Pa, U, Np, and Pu isotopes. β+/electron-capture (EC) decay rates are calculated within the deformed quasiparticle random-phase approximation with realistic nucleon-nucleon (N N ) interactions. Contributions from allowed Gamow-Teller and Fermi transitions as well as first-forbidden transitions are considered. α -decay calculations are performed within the generalized density-dependent cluster model. Effects of differences between neutron and proton distributions and nuclear deformation are taken into account. In the calculations, Reid-93 N N interactions are used for β+/EC decays, while Michigan three-range Yukawa effective interactions, based on the G -matrix elements of Reid N N potentials, are used for α decay. The calculated β -decay half-lives show good agreement with the experimental data over a range of magnitude from 102 to 105 s. The resulting total half-lives including α and β contributions are found to be in good agreement with the experimental data, together with the α /β -decay branching ratios.

  15. Spectroscopic studies of neutron-deficient light nuclei: decay properties of 21Mg, 25Si and 26P

    NASA Astrophysics Data System (ADS)

    Thomas, J.-C.; Achouri, L.; ńystö, J.; Béraud, R.; Blank, B.; Canchel, G.; Czajkowski, S.; Dendooven, P.; Ensallem, A.; Giovinazzo, J.; Guillet, N.; Honkanen, J.; Jokinen, A.; Laird, A.; Lewitowicz, M.; Longour, C.; de Oliveira Santos, F.; Stanoiu, M.

    2003-09-01

    Neutron-deficient nuclei with Tz equals to -3/2 and -2 have been produced at the GANIL/LISE3 facility in fragmentation reactions of a 95 MeV/u 36Ar primary beam in a 12C target. For the first time, β-delayed proton and β-γ emission has been simultaneously observed in the decay of 21Mg, 25Si and 26P. The decay scheme of the latter is proposed and the Gamow-Teller strength distribution in its β decay is compared to shell-model calculations based on the USD interaction. The B(GT) values derived from the absolute measurement of the β-branching ratios are in agreement with the quenching factor of about 60% obtained for allowed Gamow-Teller transitions in this mass region. A precise half-life of 43.7 (6) ms was determined for 26P, the β-2p emission of which was studied. The expected contribution of spectroscopic studies of neutron-rich nuclei is discussed with respect to the mirror asymmetry phenomenon occuring in analogous β decays.

  16. Probing astrophysically important states in the 26Mg nucleus to study neutron sources for the s process

    NASA Astrophysics Data System (ADS)

    Talwar, R.; Adachi, T.; Berg, G. P. A.; Bin, L.; Bisterzo, S.; Couder, M.; deBoer, R. J.; Fang, X.; Fujita, H.; Fujita, Y.; Görres, J.; Hatanaka, K.; Itoh, T.; Kadoya, T.; Long, A.; Miki, K.; Patel, D.; Pignatari, M.; Shimbara, Y.; Tamii, A.; Wiescher, M.; Yamamoto, T.; Yosoi, M.

    2016-05-01

    Background: The 22Ne(α ,n )25Mg reaction is the dominant neutron source for the slow neutron capture process (s process) in massive stars, and contributes, together with 13C (α ,n )16O, to the production of neutrons for the s process in asymptotic giant branch (AGB) stars. However, the reaction is endothermic and competes directly with 22Ne(α ,γ )26Mg radiative capture. The uncertainties for both reactions are large owing to the uncertainty in the level structure of 26Mg near the α and neutron separation energies. These uncertainties affect the s -process nucleosynthesis calculations in theoretical stellar models. Purpose: Indirect studies in the past have been successful in determining the energies and the γ -ray and neutron widths of the 26Mg states in the energy region of interest. But, the high Coulomb barrier hinders a direct measurement of the resonance strengths, which are determined by the α widths for these states. The goal of the present experiments is to identify the critical resonance states and to precisely measure the α widths by α -transfer techniques. Methods: The α -inelastic scattering and α -transfer measurements were performed on a solid 26Mg target and a 22Ne gas target, respectively, using the Grand Raiden Spectrometer at the Research Center for Nuclear Physics in Osaka, Japan. The (α ,α') measurements were performed at 0 .45∘ , 4 .1∘ , 8 .6∘ , and 11 .1∘ and the (6Li,d ) measurements at 0∘ and 10∘. The scattered α particles and deuterons were detected by the focal plane detection system consisting of multiwire drift chambers and plastic scintillators. The focal plane energy calibration allowed the study of 26Mg levels from Ex = 7.69-12.06 MeV in the (α ,α') measurement and Ex = 7.36-11.32 MeV in the (6Li,d ) measurement. Results: Six levels (Ex = 10717, 10822, 10951, 11085, 11167, and 11317 keV) were observed above the α threshold in the region of interest (10.61-11.32 MeV). The α widths were calculated for these

  17. Dipole response of the odd-proton nucleus 205Tl up to the neutron-separation energy

    DOE PAGES

    Benouaret, N.; Beller, J.; Pai, H.; ...

    2016-10-17

    The low-lying electromagnetic dipole strength of the odd-proton nuclide 205Tl has been investigated up to the neutron separation energy exploiting the method of nuclear resonance fluorescence. In total, 61 levels of 205Tl have been identified. Lastly, the measured strength distribution of 205Tl were discussed and compared to those of even–even and even–odd mass nuclei in the same mass region as well as to calculations that have been performed within the quasi-particle phonon model.

  18. Dipole response of the odd-proton nucleus 205Tl up to the neutron-separation energy

    SciTech Connect

    Benouaret, N.; Beller, J.; Pai, H.; Pietralla, N.; Ponomarev, V. Yu; Romig, C.; Schnorrenberger, L.; Zweidinger, M.; Scheck, M.; Isaak, J.; Savran, D.; Sonnabend, K.; Raut, R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Kelley, J. H.

    2016-10-17

    The low-lying electromagnetic dipole strength of the odd-proton nuclide 205Tl has been investigated up to the neutron separation energy exploiting the method of nuclear resonance fluorescence. In total, 61 levels of 205Tl have been identified. Lastly, the measured strength distribution of 205Tl were discussed and compared to those of even–even and even–odd mass nuclei in the same mass region as well as to calculations that have been performed within the quasi-particle phonon model.

  19. Dipole response of the odd-proton nucleus 205 Tl up to the neutron-separation energy

    SciTech Connect

    Benouaret, N.; Beller, J.; Pai, H.; Pietralla, N.; Ponomarev, V. Yu; Romig, C.; Schnorrenberger, L.; Zweidinger, M.; Scheck, M.; Isaak, J.; Savran, D.; Sonnabend, K.; Raut, R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Kelley, J. H.

    2016-10-17

    The low-lying electromagnetic dipole strength of the odd-proton nuclide 205Tl has been investigated up to the neutron separation energy exploiting the method of nuclear resonance fluorescence. In total, 61 levels of 205Tl have been identified. The measured strength distribution of 205Tl is discussed and compared to those of even–even and even–odd mass nuclei in the same mass region as well as to calculations that have been performed within the quasi-particle phonon model.

  20. Measurement of the Isoscalar Monopole Response in the Neutron-Rich Nucleus 68Ni using the Active Target MAYA

    NASA Astrophysics Data System (ADS)

    Vandebrouck, M.; Gibelin, J.; Khan, E.; Achouri, N. L.; Baba, H.; Beaumel, D.; Blumenfeld, Y.; Caamaño, M.; Càceres, L.; Colò, G.; Delaunay, F.; Fernandez-Dominguez, B.; Garg, U.; Grinyer, G. F.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Keeley, N.; Mittig, W.; Pancin, J.; Raabe, R.; Roger, T.; Roussel-Chomaz, P.; Savajols, H.; Sorlin, O.; Stodel, C.; Suzuki, D.; Thomas, J. C.

    We report the measurement of the isoscalar monopole strength in the unstable nucleus 68Ni using inelastic alpha scattering at 50A MeV in inverse kinematics. This experiment has been performed at GANIL with LISE spectrometer using a dedicated detector: the active target MAYA. A part of the isoscalar giant monopole resonance (ISGMR) has been measured at 21.1 ± 1.9 MeV and indications for a soft monopole mode are provided for the first time at 12.9 ± 1.0 MeV. Distorted-wave born approximation (DWBA) with random-phase approximation (RPA) transition densities have been used to study angular distribution and indicate that the L = 0 multipolarity dominates the cross-section for the ISGMR, and significantly contributes to the soft mode.

  1. Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study.

    PubMed

    Loong, C K; Rey, C; Kuhn, L T; Combes, C; Wu, Y; Chen, S; Glimcher, M J

    2000-06-01

    The novelty of very large neutron-scattering intensity from the nuclear-spin incoherence in hydrogen has permitted the determination of atomic motion of hydrogen in synthetic hydroxyapatite and in deproteinated isolated apatite crystals of bovine and rat bone without the interference of vibrational modes from other structural units. From an inelastic neutron-scattering experiment, we found no sharp excitations characteristic of the vibrational mode and stretch vibrations of OH ions around 80 and 450 meV (645 and 3630 cm(-1)), respectively, in the isolated, deproteinated crystals of bone apatites; such salient features were clearly seen in micron- and nanometer-size crystals of pure hydroxyapatite powders. Thus, the data provide additional definitive evidence for the lack of OH(-) ions in the crystals of bone apatite. Weak features at 160-180 and 376 meV, which are clearly observed in the apatite crystals of rat bone and possibly in adult mature bovine bone, but to a much lesser degree, but not in the synthetic hydroxyapatite, are assigned to the deformation and stretch modes of OH ions belonging to HPO(4)-like species.

  2. Nucleus-nucleus potentials

    SciTech Connect

    Satchler, G.R.

    1983-01-01

    The significance of a nucleus-nucleus potential is discussed. Information about such potentials obtained from scattering experiments is reviewed, including recent examples of so-called rainbow scattering that probe the potential at smaller distances. The evidence for interactions involving the nuclear spins is summarized, and their possible origin in couplings to non-elastic channels. Various models of the potentials are discussed.

  3. Early Onset of Ground State Deformation in Neutron Deficient Polonium Isotopes

    NASA Astrophysics Data System (ADS)

    Cocolios, T. E.; Dexters, W.; Seliverstov, M. D.; Andreyev, A. N.; Antalic, S.; Barzakh, A. E.; Bastin, B.; Büscher, J.; Darby, I. G.; Fedorov, D. V.; Fedosseyev, V. N.; Flanagan, K. T.; Franchoo, S.; Fritzsche, S.; Huber, G.; Huyse, M.; Keupers, M.; Köster, U.; Kudryavtsev, Yu.; Mané, E.; Marsh, B. A.; Molkanov, P. L.; Page, R. D.; Sjoedin, A. M.; Stefan, I.; van de Walle, J.; van Duppen, P.; Venhart, M.; Zemlyanoy, S. G.; Bender, M.; Heenen, P.-H.

    2011-02-01

    In-source resonant ionization laser spectroscopy of the even-A polonium isotopes Po192-210,216,218 has been performed using the 6p37s S25 to 6p37p P25 (λ=843.38nm) transition in the polonium atom (Po-I) at the CERN ISOLDE facility. The comparison of the measured isotope shifts in Po200-210 with a previous data set allows us to test for the first time recent large-scale atomic calculations that are essential to extract the changes in the mean-square charge radius of the atomic nucleus. When going to lighter masses, a surprisingly large and early departure from sphericity is observed, which is only partly reproduced by beyond mean field calculations.

  4. Early Onset of Ground State Deformation in Neutron Deficient Polonium Isotopes

    SciTech Connect

    Cocolios, T. E.; Van de Walle, J.; Dexters, W.; Bastin, B.; Buescher, J.; Darby, I. G.; Huyse, M.; Keupers, M.; Kudryavtsev, Yu.; Van Duppen, P.; Seliverstov, M. D.; Andreyev, A. N.; Antalic, S.; Barzakh, A. E.; Fedorov, D. V.; Molkanov, P. L.; Fedosseyev, V. N.; Marsh, B. A.; Flanagan, K. T.; Franchoo, S.

    2011-02-04

    In-source resonant ionization laser spectroscopy of the even-A polonium isotopes {sup 192-210,216,218}Po has been performed using the 6p{sup 3}7s {sup 5}S{sub 2} to 6p{sup 3}7p {sup 5}P{sub 2} ({lambda}=843.38 nm) transition in the polonium atom (Po-I) at the CERN ISOLDE facility. The comparison of the measured isotope shifts in {sup 200-210}Po with a previous data set allows us to test for the first time recent large-scale atomic calculations that are essential to extract the changes in the mean-square charge radius of the atomic nucleus. When going to lighter masses, a surprisingly large and early departure from sphericity is observed, which is only partly reproduced by beyond mean field calculations.

  5. The Onset of Collectivity in Neutron-Deficient POLONIUM-200,198,196

    NASA Astrophysics Data System (ADS)

    Bernstein, Lee Allen

    This dissertation concerns the study of discrete, low spin and high spin states in the three even-mass polonium (Z = 84) isotopes; ^{200}Po, ^{198}Po and ^{196}Po. The reactions used to study the nuclei were: ^{172} Yb(^{28}Si,4n) ^{196}Po at beam energies of 141 and 145 MeV; ^{174}Yb( ^{29}Si,5n)^ {198}Po at beam energies of 141 and 146 MeV; ^{176}Yb( ^{29}Si,5n)^{200 }Po at a beam energy of 146 MeV. The experiment studying ^{196}Po was performed at Argonne National Laboratory using the Argonne -Notre Dame array, which consists of 12 Compton-suppressed Ge detectors and a 50 element BGO inner ball of detectors. The other two nuclei were studied at Lawrence Berkeley Laboratory using the High Energy Resolution Array, which consisted of 20 Compton suppressed Ge detectors and a 40 element BGO inner ball. Decay schemes of yrast and near-yrast states, including probable spin and parity assignments, were built in spite of sizable backgrounds from fission, Coulomb excitation, and transfer reactions. The purpose of the present work was to study the transition from single-particle to collective behavior in the low-lying states. The systematic behavior of the low-lying states, including ratios of the yrast state energies and branching ratios of transitions depopulating the 2 _sp{2}{+} and 4_sp{2}{+} states, were studied. The transition was described using a composite of the shell model and the vibrational limit of the liquid drop model. It was determined that the yrast 2 ^+ and 4^+ states are collective for ^{208-196} Po. However, the yrast 6^+ state remains predominantly a non-collective excitation until ^{196}Po, where it becomes an excellent example of vibrational behavior. This can be attributed to the opening of the neutron i _{13/2} orbital near ^ {198}Po (N = 114), which causes larger overlap between the valence protons and neutrons. In addition to the transitional behavior of the low-lying states, high spin level schemes were established for all three nuclei

  6. Neutron Pairing Correlations in an {α}-{n}-{n} Three-Cluster Model of the {6}He Nucleus

    NASA Astrophysics Data System (ADS)

    Kamada, H.; Furuya, J.; Yamaguchi, M.; Oryu, S.

    2016-04-01

    An {α}- n- n three-cluster model of the {^6}He nucleus is studied by solving the Faddeev equations, where the cluster potential between {α} and n takes into account the Pauli exclusion correction, using the Fish-Bone Optical Model (Schmid in Z Phys A 297:105, 1980). The resulting binding energy of the ground state ({0^+}) is 0.831 MeV and the resonance energy of the first excited state ({2^+}), 0.60-i0.012 MeV, is extracted from the three-cluster break-up threshold. These theoretical values are in reasonable agreement with the experimental data: 0.973 MeV and 0.824-i0.056 MeV, respectively. In order to investigate the structure of these states, we calculate the angle density matrix for the {angle n_1 α n_2} angle in the triangle formed by the three clusters. The angle density matrix of the ground state has two peaks and the configuration of {0^+} wave function corresponding to the peaks constitutes a mixture of an acute-angled triangle structure and an obtuse-angled one. This finding is consistent with the former result from a variational approach (Hagino and Sagawa in Phys Rev C 72:044321, 2005). On the other hand, in the case of {2^+} state only a single peak is obtained.

  7. The COHERENT collaboration: an effort to observe coherent, elastic, neutral-current neutrino-nucleus scattering at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Rich, Grayson; Coherent Collaboration

    2014-09-01

    The phenomenon of coherent, neutral-current scattering of neutrinos from nuclei was first proposed by D.Z. Freedman in 1974, who posited that an effort to observe this effect experimentally ``may be an act of hubris'' owing to extreme experimental difficulties. Taking advantage of technologies which have come to maturity and new experience gained in the intervening 40 years, the newly-formed COHERENT collaboration seeks to measure for the first time coherent, elastic neutrino-nucleus scattering (CE ν NS). Using neutrinos created by stopped pions at the Spallation Neutron Source (SNS) of Oak Ridge National Laboratory, several detector systems will be deployed to limit systematic uncertainties and unambiguously observe the N2 -dependence on the cross section. The current status of the efforts of the collaboration will be addressed, focusing on detector technologies and calibration of these detectors for low-energy nuclear recoils. We will also discuss the longer-term physics goals of the collaboration, including astrophysical implications of the measurements and the use CE ν NS as a probe to search for non-standard neutrino interactions and as a way to measure the weak mixing angle.

  8. Unexpected doubly-magic nucleus.

    SciTech Connect

    Janssens, R. V. F.; Physics

    2009-01-01

    Nuclei with a 'magic' number of both protons and neutrons, dubbed doubly magic, are particularly stable. The oxygen isotope {sup 24}O has been found to be one such nucleus - yet it lies just at the limit of stability.

  9. Replication-deficient adenovirus vector transfer of gfp reporter gene into supraoptic nucleus and subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Vasquez, E. C.; Johnson, R. F.; Beltz, T. G.; Haskell, R. E.; Davidson, B. L.; Johnson, A. K.

    1998-01-01

    The present studies used defined cells of the subfornical organ (SFO) and supraoptic nuclei (SON) as model systems to demonstrate the efficacy of replication-deficient adenovirus (Ad) encoding green fluorescent protein (GFP) for gene transfer. The studies investigated the effects of both direct transfection of the SON and indirect transfection (i.e., via retrograde transport) of SFO neurons. The SON of rats were injected with Ad (2 x 10(6) pfu) and sacrificed 1-7 days later for cell culture of the SON and of the SFO. In the SON, GFP fluorescence was visualized in both neuronal and nonneuronal cells while only neurons in the SFO expressed GFP. Successful in vitro transfection of cultured cells from the SON and SFO was also achieved with Ad (2 x 10(6) to 2 x 10(8) pfu). The expression of GFP in in vitro transfected cells was higher in nonneuronal (approximately 28% in SON and SFO) than neuronal (approximately 4% in SON and 10% in SFO) cells. The expression of GFP was time and viral concentration related. No apparent alterations in cellular morphology of transfected cells were detected and electrophysiological characterization of transfected cells was similar between GFP-expressing and nonexpressing neurons. We conclude that (1) GFP is an effective marker for gene transfer in living SON and SFO cells, (2) Ad infects both neuronal and nonneuronal cells, (3) Ad is taken up by axonal projections from the SON and retrogradely transported to the SFO where it is expressed at detectable levels, and (4) Ad does not adversely affect neuronal viability. These results demonstrate the feasibility of using adenoviral vectors to deliver genes to the SFO-SON axis. Copyright 1998 Academic Press.

  10. Replication-deficient adenovirus vector transfer of gfp reporter gene into supraoptic nucleus and subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Vasquez, E. C.; Johnson, R. F.; Beltz, T. G.; Haskell, R. E.; Davidson, B. L.; Johnson, A. K.

    1998-01-01

    The present studies used defined cells of the subfornical organ (SFO) and supraoptic nuclei (SON) as model systems to demonstrate the efficacy of replication-deficient adenovirus (Ad) encoding green fluorescent protein (GFP) for gene transfer. The studies investigated the effects of both direct transfection of the SON and indirect transfection (i.e., via retrograde transport) of SFO neurons. The SON of rats were injected with Ad (2 x 10(6) pfu) and sacrificed 1-7 days later for cell culture of the SON and of the SFO. In the SON, GFP fluorescence was visualized in both neuronal and nonneuronal cells while only neurons in the SFO expressed GFP. Successful in vitro transfection of cultured cells from the SON and SFO was also achieved with Ad (2 x 10(6) to 2 x 10(8) pfu). The expression of GFP in in vitro transfected cells was higher in nonneuronal (approximately 28% in SON and SFO) than neuronal (approximately 4% in SON and 10% in SFO) cells. The expression of GFP was time and viral concentration related. No apparent alterations in cellular morphology of transfected cells were detected and electrophysiological characterization of transfected cells was similar between GFP-expressing and nonexpressing neurons. We conclude that (1) GFP is an effective marker for gene transfer in living SON and SFO cells, (2) Ad infects both neuronal and nonneuronal cells, (3) Ad is taken up by axonal projections from the SON and retrogradely transported to the SFO where it is expressed at detectable levels, and (4) Ad does not adversely affect neuronal viability. These results demonstrate the feasibility of using adenoviral vectors to deliver genes to the SFO-SON axis. Copyright 1998 Academic Press.

  11. Systematical study of high-spin rotational bands in neutron-deficient Kr isotopes by the extended projected shell model

    NASA Astrophysics Data System (ADS)

    Wu, Xin-Yi; Ghorui, S. K.; Wang, Long-Jun; Kaneko, K.; Sun, Yang

    2017-01-01

    We analyze the high-spin structure of the even-even 72-80Kr isotopes using the Projected Shell Model (PSM). With the help of the Pfaffian formulas, we have vigorously extended the quasi-particle (qp) basis of the PSM code and applied in this mass region for the first time. We consider a sufficiently large multi-qp configuration space in order to describe high-spin rotational behavior. The results show that the calculation can reproduce most of the known rotational bands with positive- or negative-parity. Moreover, some side bands appearing in the near-yrast region are predicted. The main structure for each band is discussed in terms of multi-qp configurations. The variations in moment of inertia with spin are explained in terms of successive band crossings among the 2-qp, 4-qp, 6-qp, and 8-qp states. The B (E 2) transition probabilities in these bands are also calculated. To further understand the high-spin behavior of these neutron-deficient nuclei and to confirm predictions of the present work, good high-spin data, especially for B (E 2) transitions, are called for.

  12. Deformation in the neutron-deficient rare earth isotopes: Radioactive decay scheme studies in the neodymium, promethium, and samarium isotopes

    SciTech Connect

    Breitenbach, J.B.

    1993-12-31

    Several experiments were performed at the UNISOR isotope separator facility at HHIRF at the Oak Ridge National Laboratory on the {beta}{sup +}/EC decay of neutron-deficient rare earth isotopes. Data for the decay chain {sup 133}Sm {yields} {sup 133}Pm {yields} {sup 133}Nd was obtained, consisting of multiscaled spectra of {gamma} rays, X rays, and conversion electrons, as well as {gamma}{gamma}t, X{gamma}t, e{gamma}t and eXt coincidences. Gamma rays associated with the decay of {sup 133}Sm and {sup 133}Pm were observed for the first time. The decay of a new low-spin (1/2) isomeric state, with a half life of about 70 sec was established for {sup 133}Nd. The level schemes for {sup 133}Nd and {sup 133}Pr were constructed. An M3 and two E1 isomers are established in {sup 133}Nd and an E3 isomer is confirmed in {sup 133}Pr. The energy level systematics for the nuclear region bounded by Z {ge} 58 and N {le} 78 is discussed. Theoretical interpretations are based on the particle-plus-triaxial rotor model calculations. In the framework of these calculations, the {beta}{sub 2} deformation is moderate for these nuclei ({beta}{sub 2} {approx} 0.20-0.25). A sudden onset of strong deformation is not observed, in contrast with the theoretical predictions by Leander and Moeller [Lea82].

  13. Translocation of amyloid precursor protein C-terminal fragment(s) to the nucleus precedes neuronal death due to thiamine deficiency-induced mild impairment of oxidative metabolism.

    PubMed

    Karuppagounder, Saravanan S; Xu, Hui; Pechman, David; Chen, Lian H; DeGiorgio, Lorraine A; Gibson, Gary E

    2008-07-01

    Thiamine deficiency (TD) is a model of neurodegeneration induced by mild impairment of oxidative metabolism. TD produces time-dependent glial activation, inflammation, oxidative stress, altered metabolism of amyloid precursor protein (APP), exacerbation of plaque formation from APP, and finally, selective neuron death in specific brain regions. The sub-medial thalamic nucleus (SmTN) is the most sensitive region to TD. Alteration in APP metabolism and nuclear translocation of carboxy-terminal fragments (CTF) of APP has been implicated in neuron death in other models of neurodegeneration. These experiments tested whether TD causes translocation of CTF into the nucleus of neurons in the SmTN that are destined to die after 9 days of TD by examining overlapping immunoreactivity (IR) of antibody APP 369 with either Alz90, 6E10 or 4G8 epitopes in the nuclei of the neurons in the SmTN. TD caused the accumulation of the CTF of APP in nuclei of SmTN neurons within 3 days of TD. These changes did not occur in the cortex which is spared in TD. Western blot analysis of nuclear fractions revealed a significant (61%; P < 0.026) increase in CTF 12 levels in TD SmTN (2.08 +/- 0.56) compared to control SmTN (1.29 +/- 0.41). Although TD increased CTF 15 levels in TD SmTN (1.95 +/- 0.73) compared to control SmTN (0.62 +/- 0.52) by 214%; P < 0.665 and decreased the full-length holo-APP levels in TD SmTN (0.32 +/- 0.30) compared to control SmTN (0.47 +/- 0.18) by 34%; P < 0.753, the differences were statistically insignificant. TD did not alter CTF 15 or CTF 12 levels in cortex. These findings demonstrate that changes in APP metabolism occur in early stages of TD, and they may play an important role in TD-induced selective neuronal loss.

  14. Neutron distribution, electric dipole polarizability and weak form factor of 48Ca from chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Wendt, Kyle

    2016-03-01

    How large is the 48Ca nucleus? While the electric charge distribution of this nucleus was accurately measured decades ago, both experimental and ab initio descriptions of the neutron distribution are deficient. We address this question using ab initio calculations of the electric charge, neutron, and weak distributions of 48Ca based on chiral effective field theory. Historically, chiral effective field theory calculations of systems larger than 4 nucleons have been plagued by strong systematic errors which result in theoretical descriptions that are too dense and over bound. We address these errors using a novel approach that permits us to accurately reproduce binding energy and charge radius of 48Ca, and to constrain electroweak observables such as the neutron radius, electric dipole polarizability, and the weak form factor. For a full list of contributors to this work, please see ``Neutron and weak-charge distributions of the 48Ca nucleus,'' Nature Physics (2015) doi:10.1038/nphys3529.

  15. Calculation of two-neutron multiplicity in photonuclear reactions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.

    1990-01-01

    The most important particle emission processes for electromagnetic excitations in nucleus-nucleus collisions are the ejection of single neutrons and protons and also pairs of neutrons and protons. Methods are presented for calculating two-neutron emission cross sections in photonuclear reactions. The results are in a form suitable for application to nucleus-nucleus reactions.

  16. Structure of Sn107 studied through single-neutron knockout reactions

    DOE PAGES

    Cerizza, G.; Ayres, A.; Jones, K. L.; ...

    2016-02-04

    The neutron-deficient nucleus Sn-107 has been studied by using the one-neutron knockout reaction. By measuring the decay gamma rays and momentum distributions of reaction residues, the spins of the ground, 5/2+, and first-excited, 7/2+, states of Sn-107 have been assigned by comparisons to eikonal-model reaction calculations. We also observed limits on the inclusive and exclusive cross sections and transitions due to neutron removals from below the N = 50 closed shell have been observed. New excited states up to 5.5 MeV in Sn-107 have been identified.

  17. Structural evolution across the insulator-metal transition in oxygen-deficient BaTiO3-δ studied using neutron total scattering and Rietveld analysis

    DOE PAGES

    Jeong, I.-K.; Lee, Seunghun; Jeong, Se-Young; ...

    2011-08-29

    Oxygen-deficient BaTiO3-δ exhibits an insulator-metal transition with increasing δ. We performed neutron total scattering measurements to study structural evolution across an insulator-metal transition in BaTiO3-δ. Despite its significant impact on resistivity, slight oxygen reduction (δ=0.09) caused only a small disturbance on the local doublet splitting of Ti-O bond. This finding implies that local polarization is well preserved under marginal electric conduction. In the highly oxygen-deficient metallic state (δ=0.25), however, doublet splitting of the Ti-O bond became smeared. The smearing of the local Ti-O doublet is complemented with long-range structural analysis and demonstrates that the metallic conduction in the highly oxygen-reducedmore » BaTiO3-δ is due to the appearance of nonferroelectric cubic lattice.« less

  18. Penning-trap mass spectrometry and mean-field study of nuclear shape coexistence in the neutron-deficient lead region

    NASA Astrophysics Data System (ADS)

    Manea, V.; Ascher, P.; Atanasov, D.; Barzakh, A. E.; Beck, D.; Blaum, K.; Borgmann, Ch.; Breitenfeldt, M.; Cakirli, R. B.; Cocolios, T. E.; Day Goodacre, T.; Fedorov, D. V.; Fedosseev, V. N.; George, S.; Herfurth, F.; Kowalska, M.; Kreim, S.; Litvinov, Yu. A.; Lunney, D.; Marsh, B.; Neidherr, D.; Rosenbusch, M.; Rossel, R. E.; Rothe, S.; Schweikhard, L.; Wienholtz, F.; Wolf, R. N.; Zuber, K.

    2017-05-01

    We present a study of nuclear shape coexistence in the region of neutron-deficient lead isotopes. The midshell gold isotopes 180,185,188,190Au (Z =79 ), the two long-lived nuclear states in 197At (Z =85 ), and the neutron-rich nuclide 219At were produced by the ISOLDE facility at CERN and their masses were determined with the high-precision Penning-trap mass spectrometer ISOLTRAP. The studied gold isotopes address the trend of binding energies in a region of the nuclear chart where the nuclear charge radii show pronounced discontinuities. Significant deviations from the atomic-mass evaluation were found for Au,190188. The new trend of two-neutron separation energies is smoother, although it does reveal the onset of deformation. The origin of this effect is interpreted in connection to the odd-even staggering of binding energies, as well as theoretically by Hartree-Fock-Bogoliubov calculations including quasiparticle blocking. The role of blocking for reproducing the large odd-even staggering of charge radii in the mercury isotopic chain is illustrated.

  19. Direct proton decay of 0.56-s147Tm and search for this decay mode among very neutron-deficient isotopes with 53≦Z≦67

    NASA Astrophysics Data System (ADS)

    Larsson, P. O.; Batsch, T.; Kirchner, R.; Klepper, O.; Kurcewicz, W.; Roeckl, E.; Schardt, D.; Feix, W. F.; Nyman, G.; Tidemand-Petersson, P.

    1983-02-01

    The earlier preliminary assignment of a 1,055±6 keV proton line to direct proton decay of147Tm is supported by cross bombardment measurements and by a negative result from a positron-proton coincidence experiment. The half-life was remeasured to be 0.56 ±0.04s. For two types of thermal ion sources, overall efficiencies were estimated for on-line mass separation of known short-lived isotopes of promethium, europium, terbium, and holmium. Direct proton decay was searched for among very neutron-deficient isotopes of these elements, and of iodine and caesium. No evidence for direct proton decay was found. Based on estimated overall efficiencies, on calculated cross-sections, and on predictions from the gross-theory of β decay, half-life limits for direct proton decay were deduced.

  20. Glucose-6-phosphate isomerase deficiency results in mTOR activation, failed translocation of lipin 1α to the nucleus and hypersensitivity to glucose: Implications for the inherited glycolytic disease.

    PubMed

    Haller, Jorge F; Krawczyk, Sarah A; Gostilovitch, Lubov; Corkey, Barbara E; Zoeller, Raphael A

    2011-11-01

    Inherited glucose-6-phosphate isomerase (GPI) deficiency is the second most frequent glycolytic erythroenzymopathy in humans. Patients present with non-spherocytic anemia of variable severity and with neuromuscular dysfunction. We previously described Chinese hamster (CHO) cell lines with mutations in GPI and loss of GPI activity. This resulted in a temperature sensitivity and severe reduction in the synthesis of glycerolipids due to a reduction in phosphatidate phosphatase (PAP). In the current article we attempt to describe the nature of this pleiotropic effect. We cloned and sequenced the CHO lipin 1 cDNA, a gene that codes for PAP activity. Overexpression of lipin 1 in the GPI-deficient cell line, GroD1 resulted in increased PAP activity, however it failed to restore glycerolipid biosynthesis. Fluorescence microscopy showed a failure of GPI-deficient cells to localize lipin 1α to the nucleus. We also found that glucose-6-phosphate levels in GroD1 cells were 10-fold over normal. Lowering glucose levels in the growth medium partially restored glycerolipid biosynthesis and nuclear localization of lipin 1α. Western blot analysis of the elements within the mTOR pathway, which influences lipin 1 activity, was consistent with an abnormal activation of this system. Combined, these data suggest that GPI deficiency results in an accumulation of glucose-6-phosphate, and possibly other glucose-derived metabolites, leading to activation of mTOR and sequestration of lipin 1 to the cytosol, preventing its proper functioning. These results shed light on the mechanism underlying the pathologies associated with inherited GPI deficiency and the variability in the severity of the symptoms observed in these patients.

  1. Intruder states and the onset of deformation in the neutron-deficient even-even polonium isotopes

    SciTech Connect

    The ISOLDE Collaboration

    1995-12-01

    Alpha- and beta-decay studies of mass-separated Rn and At nuclei reveal the existence of a low-lying 0{sup +} state in {sup 196,198,200,202}Po. The excited 0{sup +} states are interpreted as proton-pair excitations across the {ital Z}=82 shell gap leading to a deformed state, coexisting with the spherical ground state. It is shown that with decreasing neutron number the deformed configuration intrudes to lower excitation energy, increasingly mixing into the ground state. {copyright} {ital 1995 The American Physical Society.}

  2. Structure of Sn107 studied through single-neutron knockout reactions

    SciTech Connect

    Cerizza, G.; Ayres, A.; Jones, K. L.; Grzywacz, R.; Bey, A.; Bingham, C.; Cartegni, L.; Miller, D.; Padgett, S.; Baugher, T.; Bazin, D.; Berryman, J. S.; Gade, A.; McDaniel, S.; Ratkiewicz, A.; Shore, A.; Stroberg, S. R.; Weisshaar, D.; Wimmer, K.; Winkler, R.; Pain, S. D.; Chae, K. Y.; Cizewski, J. A.; Howard, M. E.; Tostevin, J. A.

    2016-02-04

    The neutron-deficient nucleus Sn-107 has been studied by using the one-neutron knockout reaction. By measuring the decay gamma rays and momentum distributions of reaction residues, the spins of the ground, 5/2+, and first-excited, 7/2+, states of Sn-107 have been assigned by comparisons to eikonal-model reaction calculations. We also observed limits on the inclusive and exclusive cross sections and transitions due to neutron removals from below the N = 50 closed shell have been observed. New excited states up to 5.5 MeV in Sn-107 have been identified.

  3. Hepatitis B virus HBx protein localized to the nucleus restores HBx-deficient virus replication in HepG2 cells and in vivo in hydrodynamically-injected mice

    SciTech Connect

    Keasler, Victor V.; Hodgson, Amanda J.; Madden, Charles R.; Slagle, Betty L.

    2009-07-20

    Identifying the requirements for the regulatory HBx protein in hepatitis B virus (HBV) replication is an important goal. A plasmid-based HBV replication assay was used to evaluate whether HBx subcellular localization influences its ability to promote virus replication, as measured by real time PCR quantitation of viral capsid-associated DNA. HBx targeted to the nucleus by a nuclear localization signal (NLS-HBx) was able to restore HBx-deficient HBV replication, while HBx containing a nuclear export signal (NES-HBx) was not. Both NLS-HBx and NES-HBx were expressed at similar levels (by immunoprecipitation and Western blotting), and proper localization of the signal sequence-tagged proteins was confirmed by deconvolution microscopy using HBx, NLS-HBx, and NES-HBx proteins fused to GFP. Importantly, these findings were confirmed in vivo by hydrodynamic injection into mice. Our results demonstrate that in these HBV replication assays, at least one function of HBx requires its localization to the nucleus.

  4. Heavy rotation – evolution of quadrupole collectivity centred at the neutron-rich doubly mid-shell nucleus {sup 170}Dy

    SciTech Connect

    Söderström, P.-A. Doornenbal, P.; Nishimura, S.; Baba, H.; Fukuda, N.; Inabe, N.; Isobe, T.; Kubo, T.; Kubono, S.; Suzuki, H.; Takeda, H.; Regan, P. H.; Walker, P. M.; Carroll, R.; Lalkovski, S.; Lotay, G.; Patel, Z.; Podolyák, Zs.; Shand, C. M.; Watanabe, H.; and others

    2015-10-15

    In this contribution the low-excitation structural properties of the doubly mid-shell nucleus {sup 170}Dy are discussed, with a special empasis on the evolution of the ground state rotational band within the dysprosium isotopic chain. Recent results from an experiment with the EURICA setup at RIKEN are shown in the context of previous measurements at the PRISMA+CLARA as well as the PRISMA+AGATA setups at Laboratori Nazionali di Legnaro. A brief outlook on future planned measurements is also given.

  5. [EXPRESSION OF SEROTONIN TRANSPORTER IN THE DORSAL RAPHE NUCLEUS DURING THE EARLY POSTNATAL PERIOD IN NORMAL STATE AND UNDER PRENATAL DEFICIENCY OF THE SEROTONERGIC SYSTEM IN RATS].

    PubMed

    Khozhai, L I

    2016-01-01

    The expression of the serotonin transport membrane protein (5-NTT) in the dorsal raphe nucleus (DNR) was investigated in laboratory Wistar rats during the early postnatal period. The results of the immunocytochemical study using primary antibodies--anti-Serotonin transporter antibody (AbCam, UK)--showed that during the first 3 postnatal weeks the intensity of 5-NTT expression in DNR of control animals changes. At the earliest postnatal times the main part of subnuclear neurons (dorsal, ventral and lateral ones) of the dorsal raphe nucleus (DNR-d, DNR-v, DNR-lat) was shown to intensely express 5-NTT. Sites of 5-NTT localization are found on the membrane surface of neuron bodies and processes in neuropile. The reduction in the number of neurons expressing 5-NTT and of its binding sites was observed on P10. At this time a redistribution of 5-NTT localization sites occurs: they are very few on neuron bodies and dendrites but are located rather densely on the plasma membrane of axons. The number of neurons expressing 5-NTT gradually increases with age and in neuropile the density of 5-NTT localization sites rises. It is shown that during the prenatal development the reduction of serotonin level in all parts of the DNR leads to a reduction in both the number of neurons expressing 5-NTT and sites of its localization in the early postnatal period, this trend continuing with age.

  6. A triplet of differently shaped spin-zero states in the atomic nucleus 186Pb

    PubMed

    Andreyev; Huyse; Van Duppen P; Weissman; Ackermann; Gerl; Hessberger; Hofmann; Kleinbohl; Munzenberg; Reshitko; Schlegel; Schaffner; Cagarda; Matos; Saro; Keenan; Moore; O'Leary; Page; Taylor; Kettunen; Leino; Lavrentiev; Wyss; Heyde

    2000-05-25

    Understanding the fundamental excitations of many-fermion systems is of significant current interest. In atomic nuclei with even numbers of neutrons and protons, the low-lying excitation spectrum is generally formed by nucleon pair breaking and nuclear vibrations or rotations. However, for certain numbers of protons and neutrons, a subtle rearrangement of only a few nucleons among the orbitals at the Fermi surface can result in a different elementary mode: a macroscopic shape change. The first experimental evidence for this phenomenon came from the observation of shape coexistence in 16O (ref. 4). Other unexpected examples came with the discovery of fission isomers and super-deformed nuclei. Here we find experimentally that the lowest three states in the energy spectrum of the neutron deficient nucleus 186Pb are spherical, oblate and prolate. The states are populated by the alpha-decay of a parent nucleus; to identify them, we combine knowledge of the particular features of this decay with sensitive measurement techniques (a highly efficient velocity filters with strong background reduction, and an extremely selective recoil-alpha-electron coincidence tagging methods). The existence of this apparently unique shape triplet is permitted only by the specific conditions that are met around this particular nucleus.

  7. Long-lived K isomer and enhanced γ vibration in the neutron-rich nucleus 172 Dy: Collectivity beyond double midshell

    SciTech Connect

    Watanabe, H.; Zhang, G. X.; Yoshida, K.; Walker, P. M.; Liu, J. J.; Wu, J.; Regan, P. H.; Söderström, P. -A.; Kanaoka, H.; Korkulu, Z.; Lee, P. S.; Nishimura, S.; Yagi, A.; Ahn, D. S.; Alharbi, T.; Baba, H.; Browne, F.; Bruce, A. M.; Carroll, R. J.; Chae, K. Y.; Dombradi, Zs.; Doornenbal, P.; Estrade, A.; Fukuda, N.; Griffin, C.; Ideguchi, E.; Inabe, N.; Isobe, T.; Kanaya, S.; Kojouharov, I.; Kondev, F. G.; Kubo, T.; Kubono, S.; Kurz, N.; Kuti, I.; Lalkovski, S.; Lane, G. J.; Lee, C. S.; Lee, E. J.; Lorusso, G.; Lotay, G.; Moon, C. -B.; Nishizuka, I.; Nita, C. R.; Odahara, A.; Patel, Z.; Phong, V. H.; Podolyák, Zs.; Roberts, O. J.; Sakurai, H.; Schaffner, H.; Shand, C. M.; Shimizu, Y.; Sumikama, T.; Suzuki, H.; Takeda, H.; Terashima, S.; Vajta, Zs.; Valiente-Dóbon, J. J.; Xu, Z. Y.

    2016-09-01

    The level structure of 172Dy has been investigated for the first time by means of decay spectroscopy following in-flight fission of a 238U beam. A long-lived isomeric state with T1/2 = 0.71(5) s and Kπ = 8- has been identified at 1278 keV, which decays to the ground-state and γ -vibrational bands through hindered electromagnetic transitions, as well as to the daughter nucleus 172Ho via allowed β decays. The robust nature of the Kπ = 8- isomer and the ground-state rotational band reveals an axially-symmetric structure for this nucleus. Meanwhile, the γ -vibrational levels have been identified at unusually low excitation energy compared to the neighboring well-deformed nuclei, indicating the significance of the microscopic effect on the non-axial collectivity in this doubly mid-shell region. The underlying mechanism of enhanced γ vibration is discussed in comparison with the deformed Quasiparticle Random-Phase Approximation based on a Skyrme energy-density functional.

  8. Long-lived K isomer and enhanced γ vibration in the neutron-rich nucleus 172Dy: Collectivity beyond double midshell

    NASA Astrophysics Data System (ADS)

    Watanabe, H.; Zhang, G. X.; Yoshida, K.; Walker, P. M.; Liu, J. J.; Wu, J.; Regan, P. H.; Söderström, P.-A.; Kanaoka, H.; Korkulu, Z.; Lee, P. S.; Nishimura, S.; Yagi, A.; Ahn, D. S.; Alharbi, T.; Baba, H.; Browne, F.; Bruce, A. M.; Carroll, R. J.; Chae, K. Y.; Dombradi, Zs.; Doornenbal, P.; Estrade, A.; Fukuda, N.; Griffin, C.; Ideguchi, E.; Inabe, N.; Isobe, T.; Kanaya, S.; Kojouharov, I.; Kondev, F. G.; Kubo, T.; Kubono, S.; Kurz, N.; Kuti, I.; Lalkovski, S.; Lane, G. J.; Lee, C. S.; Lee, E. J.; Lorusso, G.; Lotay, G.; Moon, C.-B.; Nishizuka, I.; Nita, C. R.; Odahara, A.; Patel, Z.; Phong, V. H.; Podolyák, Zs.; Roberts, O. J.; Sakurai, H.; Schaffner, H.; Shand, C. M.; Shimizu, Y.; Sumikama, T.; Suzuki, H.; Takeda, H.; Terashima, S.; Vajta, Zs.; Valiente-Dóbon, J. J.; Xu, Z. Y.

    2016-09-01

    The level structure of 172Dy has been investigated for the first time by means of decay spectroscopy following in-flight fission of a 238U beam. A long-lived isomeric state with T1/2 = 0.71 (5) s and Kπ =8- has been identified at 1278 keV, which decays to the ground-state and γ-vibrational bands through hindered electromagnetic transitions, as well as to the daughter nucleus 172Ho via allowed β decays. The robust nature of the Kπ =8- isomer and the ground-state rotational band reveals an axially-symmetric structure for this nucleus. Meanwhile, the γ-vibrational levels have been identified at unusually low excitation energy compared to the neighboring well-deformed nuclei, indicating the significance of the microscopic effect on the non-axial collectivity in this doubly mid-shell region. The underlying mechanism of enhanced γ vibration is discussed in comparison with the deformed Quasiparticle Random-Phase Approximation based on a Skyrme energy-density functional.

  9. Nuclear Charge Radii of Neutron-Deficient Lead Isotopes Beyond N=104 Midshell Investigated by In-Source Laser Spectroscopy

    SciTech Connect

    Witte, H. de; Cocolios, T. E.; Dean, S.; Huyse, M.; Lesher, S. R.; Mukha, I.; Stefanescu, I.; Vel, K. van de; Walle, J. van de; Duppen, P. van; Andreyev, A. N.; Barre, N.; Roussiere, B.; Sauvage, J.; Bender, M.; Fedoseyev, V. N.; Fraile, L. M.; Jeppessen, H.

    2007-03-16

    The shape of exotic even-mass {sup 182-190}Pb isotopes was probed by measurement of optical isotope shifts providing mean square charge radii ({delta}). The experiment was carried out at the isolde (cern) on-line mass separator, using in-source laser spectroscopy. Small deviations from the spherical droplet model are observed, but when compared to model calculations, those are explained by high sensitivity of {delta} to beyond mean-field correlations and small admixtures of intruder configurations in the ground state. The data support the predominantly spherical shape of the ground state of the proton-magic Z=82 lead isotopes near neutron midshell (N=104)

  10. Identification of the g{sub (9/2)} proton and neutron band crossing in the N=Z nucleus {sup 76}Sr

    SciTech Connect

    Davies, P. J.; Wadsworth, R.; Jenkins, D. G.; Johnston-Theasby, F. L.; Joshi, P.; Afanasjev, A. V.; Andreoiu, C.; Austin, R. A. E.; Carpenter, M. P.; Greene, J.; Moore, F.; Mukherjee, G.; Seweryniak, D.; Dashdorj, D.; Freeman, S. J.; Garrett, P. E.; Goergen, A.; Reviol, W.

    2007-01-15

    High-spin states in {sup 76}Sr have been studied using Gammasphere plus Microball detector arrays. The known yrast band has been extended beyond the first band crossing, which involves the simultaneous alignment of pairs of g{sub (9/2)} protons and neutrons, to a tentative spin of 24({Dirac_h}/2{pi}). The data are compared with the results of cranked relativistic mean-field (CRMF) and cranked relativistic Hartree-Bogoliubov (CRHB) calculations. The properties of the band, including the g{sub (9/2)} proton/neutron band crossing frequency and moments of inertia, are found to be well reproduced by the CRHB calculations. Furthermore, the unpaired CRMF calculations show quite good agreement with the data beyond the band crossing region, indicating that pairing is weak at these frequencies. The high spin results suggest that there is little evidence for an isoscalar (t=0) np pair field. Moreover, a systematic study of the band crossings in even-even N=Z nuclei for the first time reveals that there is no evidence to support the existence of the Coulomb antipairing effect caused by the Coulomb exchange term.

  11. Neutron measurements

    SciTech Connect

    McCall, R.C.

    1981-01-01

    Methods of neutron detection and measurement are discussed. Topics include sources of neutrons, neutrons in medicine, interactions of neutrons with matter, neutron shielding, neutron measurement units, measurement methods, and neutron spectroscopy. (ACR)

  12. Probing nucleon-nucleon interactions in breakup of the one-neutron halo nucleus {sup 11}Be on a proton target

    SciTech Connect

    Cravo, E.; Deltuva, A.; Crespo, R.; Moro, A. M.

    2010-03-15

    A comparison between full few-body Faddeev/Alt-Grassberger-Sandhas (Faddeev/AGS) and continuum-discretized coupled-channels calculations is made for the resonant and nonresonant breakup of {sup 11}Be on proton target at 63.7 MeV/u incident energy. A simplified two-body model is used for {sup 11}Be which involves an inert {sup 10}Be(0{sup +}) core and a valence neutron. The sensitivity of the calculated observables to the nucleon-nucleon potential dynamical input is analyzed. We show that with the present NN and N-core dynamics the results remain a puzzle for the few-body problem of scattering from light exotic halo nuclei.

  13. Neutron–proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon–nucleus scattering data within an isospin dependent optical model

    DOE PAGES

    Li, Xiao -Hua; Guo, Wen -Jun; Li, Bao -An; ...

    2015-04-01

    The neutron–proton effective mass splitting in asymmetric nucleonic matter of isospin asymmetry δ and normal density is found to be m*n-p≡(m*n – m*p)/m = (0.41 ± 0.15)δ from analyzing globally 1088 sets of reaction and angular differential cross sections of proton elastic scattering on 130 targets with beam energies from 0.783 MeV to 200 MeV, and 1161 sets of data of neutron elastic scattering on 104 targets with beam energies from 0.05 MeV to 200 MeV within an isospin dependent non-relativistic optical potential model. It sets a useful reference for testing model predictions on the momentum dependence of the nucleonmore » isovector potential necessary for understanding novel structures and reactions of rare isotopes.« less

  14. Influence of oxygen deficiency and of neutron-induced defects on flux pinning in melt textured bulk YBa 2Cu 3O 7- x samples

    NASA Astrophysics Data System (ADS)

    Wisniewski, A.; Czurda, C.; Weber, H. W.; Baran, M.; Reissner, M.; Steiner, W.; Zhang, P. X.; Zhou, L.

    1996-02-01

    Critical current densities ( Jc), irreversibility lines (IL) and the time dependence of magnetic moments in melt-textured YBa 2Cu 3O 7- x with different oxygen contents (92.4 K < Tc < 27.4 K) were investigated. The samples show an increasing tendency towards two-dimensional pinning with decreasing oxygen content. The values of Jc and the effective activation energy decrease systematically and all the ILs shift to lower magnetic fields and temperatures with decreasing oxygen content. The ILs show a crossover from a power law dependence Hirr = β(1 - Tirr/ Tc) α with α ∼ {3}/{2} to a more rapid temperature dependence at higher fields. The field Hcr, at which the crossover occurs, is lower for samples with higher oxygen deficiency. After neutron irradiation Jc increases in all cases except for the material with Tc = 27.4 K, and the temperature dependence of Jc becomes flatter than in the unirradiated state. After irradiation the ILs change differently depending on oxygen content, i.e. they shift markedly to higher fields and temperature at intermediate oxygen content, change only slightly or shift to lower fields and temperatures at high and low oxygen contents. For all the samples the crossover field Hcr increases after irradiation.

  15. Study of neutron-deficient isotopes of Fl in the 239Pu, 240Pu + 48Ca reactions

    NASA Astrophysics Data System (ADS)

    Voinov, A. A.; Utyonkov, V. K.; Brewer, N. T.; Oganessian, Yu Ts; Rykaczewski, K. P.; Abdullin, F. Sh; Dmitriev, S. N.; Grzywacz, R. K.; Itkis, M. G.; Miernik, K.; Polyakov, A. N.; Roberto, J. B.; Sagaidak, R. N.; Shirokovsky, I. V.; Shumeiko, M. V.; Tsyganov, Yu S.; Subbotin, V. G.; Sukhov, A. M.; Sabelnikov, A. V.; Vostokin, G. K.; Hamilton, J. H.; Stoyer, M. A.; Strauss, S. Y.

    2016-07-01

    The results of the experiments aimed at the synthesis of Fl isotopes in the 239Pu + 48Ca and 240Pu + 48Ca reactions are presented. The experiment was performed using the Dubna gas-filled recoil separator at the U400 cyclotron. In the 239Pu+48Ca experiment one decay of spontaneously fissioning 284Fl was detected at 245-MeV beam energy. In the 240Pu+48Ca experiment three decay chains of 285Fl were detected at 245 MeV and four decays were assigned to 284Fl at the higher 48Ca beam energy of 250 MeV. The α-decay energy of 285Fl was measured for the first time and decay properties of its descendants 281Cn, 277Ds, 273Hs, 269Sg, and 265Rf were determined more precisely. The cross section of the 239Pu(48Ca,3n)284Fl reaction was observed to be about 20 times lower than those predicted by theoretical models and 50 times less than the value measured in the 244Pu+48Ca reaction. The cross sections of the 240Pu(48Ca,4-3n)284,285Fl at both 48Ca energies are similar and exceed that observed in the reaction with lighter isotope 239Pu by a factor of 10. The decay properties of the synthesized nuclei and their production cross sections indicate rapid decrease of stability of superheavy nuclei with departing from the neutron number N=184 predicted to be the next magic number.

  16. Neutron radioactivity-Lifetime measurements of neutron-unbound states

    NASA Astrophysics Data System (ADS)

    Kahlbow, J.; Caesar, C.; Aumann, T.; Panin, V.; Paschalis, S.; Scheit, H.; Simon, H.

    2017-09-01

    A new technique to measure the lifetime τ of a neutron-radioactive nucleus that decays in-flight via neutron emission is presented and demonstrated utilizing MonteCarlo simulations. The method is based on the production of the neutron-unbound nucleus in a target, which at the same time slows down the produced nucleus and the residual nucleus after (multi-) neutron emission. The spectrum of the velocity difference of neutron(s) and the residual nucleus has a characteristic shape, that allows to extract the lifetime. If the decay happens outside the target there will be a peak in the spectrum, while events where the decay is in the target show a broad flat distribution due to the continuous slowing down of the residual nucleus. The method itself and the analysis procedure are discussed in detail for the specific candidate 26O. A stack of targets with decreasing target thicknesses can expand the measurable lifetime range and improve the sensitivity by increasing the ratio between decays outside and inside the target. The simulations indicate a lower limit of measurable lifetime τ ∼ 0 . 2 ps for the given conditions.

  17. Self-consistent quasiparticle formulation of a multiphonon method and its application to the neutron-rich O20 nucleus

    NASA Astrophysics Data System (ADS)

    De Gregorio, G.; Knapp, F.; Lo Iudice, N.; Vesely, P.

    2016-04-01

    A Bogoliubov quasiparticle formulation of an equation-of-motion phonon method, suited for open-shell nuclei, is derived. Like its particle-hole version, it consists of deriving a set of equations of motions whose iterative solution generates an orthonormal basis of n -phonon states (n =0 ,1 ,2 ,... ), built of quasiparticle Tamm-Dancoff phonons, which simplifies the solution of the eigenvalue problem. The method is applied to the open-shell neutron-rich O20 for illustrative purposes. A Hartree-Fock-Bogoliubov canonical basis, derived from an intrinsic two-body optimized chiral Hamiltonian, is used to derive and solve the eigenvalue equations in a space encompassing a truncated two-phonon basis. The spurious admixtures induced by the violation of the particle number and the center-of-mass motion are eliminated to a large extent by a Gram-Schmidt orthogonalization procedure. The calculation takes into account the Pauli principle, is self-consistent, and is parameter free except for the energy cutoff used to truncate the two-phonon basis, which induces an increasing depression of the ground state through its strong coupling to the quasiparticle vacuum. Such a cutoff is fixed so as to reproduce the first 1- level. The two-phonon states are shown to enhance the level density of the low-energy spectrum, consistently with the data, and to induce a fragmentation of the E 1 strength which, while accounting for the very low E 1 transitions, is not sufficient to reproduce the experimental cross section in the intermediate energy region. This and other discrepancies suggest the need of including the three-phonon states. These are also expected to offset the action of the two phonons on the quasiparticle vacuum and, therefore, free the calculation from any parameter.

  18. Leukocyte nucleus segmentation and nucleus lobe counting.

    PubMed

    Chan, Yung-Kuan; Tsai, Meng-Hsiun; Huang, Der-Chen; Zheng, Zong-Han; Hung, Kun-Ding

    2010-11-12

    Leukocytes play an important role in the human immune system. The family of leukocytes is comprised of lymphocytes, monocytes, eosinophils, basophils, and neutrophils. Any infection or acute stress may increase or decrease the number of leukocytes. An increased percentage of neutrophils may be caused by an acute infection, while an increased percentage of lymphocytes can be caused by a chronic bacterial infection. It is important to realize an abnormal variation in the leukocytes. The five types of leukocytes can be distinguished by their cytoplasmic granules, staining properties of the granules, size of cell, the proportion of the nuclear to the cytoplasmic material, and the type of nucleolar lobes. The number of lobes increased when leukemia, chronic nephritis, liver disease, cancer, sepsis, and vitamin B12 or folate deficiency occurred. Clinical neutrophil hypersegmentation has been widely used as an indicator of B12 or folate deficiency.Biomedical technologists can currently recognize abnormal leukocytes using human eyes. However, the quality and efficiency of diagnosis may be compromised due to the limitations of the biomedical technologists' eyesight, strength, and medical knowledge. Therefore, the development of an automatic leukocyte recognition system is feasible and necessary. It is essential to extract the leukocyte region from a blood smear image in order to develop an automatic leukocyte recognition system. The number of lobes increased when leukemia, chronic nephritis, liver disease, cancer, sepsis, and vitamin B12 or folate deficiency occurred. Clinical neutrophil hypersegmentation has been widely used as an indicator of B12 or folate deficiency. The purpose of this paper is to contribute an automatic leukocyte nuclei image segmentation method for such recognition technology. The other goal of this paper is to develop the method of counting the number of lobes in a cell nucleus. The experimental results demonstrated impressive segmentation accuracy

  19. Structural evolution across the insulator-metal transition in oxygen-deficient BaTiO3-δ studied using neutron total scattering and Rietveld analysis

    SciTech Connect

    Jeong, I.-K.; Lee, Seunghun; Jeong, Se-Young; Won, C. J.; Hur, N.; Llobet, A.

    2011-08-29

    Oxygen-deficient BaTiO3-δ exhibits an insulator-metal transition with increasing δ. We performed neutron total scattering measurements to study structural evolution across an insulator-metal transition in BaTiO3-δ. Despite its significant impact on resistivity, slight oxygen reduction (δ=0.09) caused only a small disturbance on the local doublet splitting of Ti-O bond. This finding implies that local polarization is well preserved under marginal electric conduction. In the highly oxygen-deficient metallic state (δ=0.25), however, doublet splitting of the Ti-O bond became smeared. The smearing of the local Ti-O doublet is complemented with long-range structural analysis and demonstrates that the metallic conduction in the highly oxygen-reduced BaTiO3-δ is due to the appearance of nonferroelectric cubic lattice.

  20. Cluster emissions with ? daughter from neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Kumar, Satish; Batra, J. S.; Gupta, Raj K.

    1996-02-01

    Cluster emissions from neutron-rich 0954-3899/22/2/006/img2, and 0954-3899/22/2/006/img3 nuclei are studied within the preformed cluster model of Malik and Gupta. Q-value estimates of the decays selected on the basis of shell effects in binding energies and their relative preformation probabilities show that these nuclei are stable (Q<0) against 0954-3899/22/2/006/img4 and 0954-3899/22/2/006/img5 decays and all the metastable (Q>0) decays are of non-alpha-like heavy clusters. The most probable decays (minimum half-life times) are the ones with a doubly magic 0954-3899/22/2/006/img6 nucleus as the daughter nucleus, arising due to the WKB penetrability. Compared to the presently measurable alpha-like cluster decays of the corresponding neutron-deficient parents into a 0954-3899/22/2/006/img7 daughter nucleus, these decays are suppressed by many orders of magnitude.

  1. Is {sup 276}U a doubly magic nucleus?

    SciTech Connect

    Liliani, N. Sulaksono, A.

    2016-04-19

    We investigate a possible new doubly magic heavy nucleus by using a relativistic mean-field (RMF) model with the addition of a cross interaction term of omega-rho mesons and an electromagnetic exchange term. We propose that {sup 276}U is a doubly magic nucleus. The evidence for {sup 276}U being a doubly magic nucleus is shown through the two-nucleon gaps, the single-particle energies, and the neutron skin thickness of the nucleus. We have also found that the prediction of {sup 276}U as a doubly magic nucleus by the RMF model is not affected by the inclusion of isoscalar-isovector and electromagnetic exchange couplings.

  2. Single nucleon emission in relativistic nucleus-nucleus reactions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.

    1992-01-01

    Significant discrepancies between theory and experiment have previously been noted for nucleon emission via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work investigates the hypothesis that these discrepancies have arisen due to uncertainties about how to deduce the experimental electromagnetic cross section from the total measured cross section. An optical-model calculation of single neutron removal is added to electromagnetic cross sections and compared to the total experimental cross sections. Good agreement is found thereby resolving some of the earlier noted discrepancies. A detailed comparison to the recent work of Benesh, Cook, and Vary is made for both the impact parameter and the nuclear cross section. Good agreement is obtained giving an independent confirmation of the parameterized formulas developed by those authors.

  3. Basic results of investigations of scission neutrons in nuclear fission at low excitation energies

    SciTech Connect

    Petrov, G. A. Gagarski, A. M.; Guseva, I. S.; Sokolov, V. E.; Val'ski, G. V.; Vorobiev, A. S.; Krinitcin, D. O.; Shcherbakov, O. A.; Nikolaev, D. V.; Pleva, Yu. S.; Petrova, V. I.; Zavarukhina, T. A.

    2008-07-15

    To estimate the main characteristics of neutrons emitted shortly before the scission of a fissioning nucleus, various experiments sensitive to the presence of these scission neutrons in thermal-neutron-induced fission of {sup 235}U and spontaneous fission of {sup 252}Cf were performed. The results of the experiments were analyzed within theoretical calculations allowing for various possible neutron-emission mechanisms, including the possibility of the emergence of neutrons from the scission of a nucleus.

  4. Neutron-$$\\gamma$$ competition for β-delayed neutron emission

    DOE PAGES

    Mumpower, Matthew Ryan; Kawano, Toshihiko; Moller, Peter

    2016-12-19

    Here we present a coupled quasiparticle random phase approximation and Hauser-Feshbach (QRPA+HF) model for calculating delayed particle emission. This approach uses microscopic nuclear structure information, which starts with Gamow-Teller strength distributions in the daughter nucleus and then follows the statistical decay until the initial available excitation energy is exhausted. Explicitly included at each particle emission stage is γ-ray competition. We explore this model in the context of neutron emission of neutron-rich nuclei and find that neutron-γ competition can lead to both increases and decreases in neutron emission probabilities, depending on the system considered. Finally, a second consequence of this formalismmore » is a prediction of more neutrons on average being emitted after β decay for nuclei near the neutron drip line compared to models that do not consider the statistical decay.« less

  5. Neutron-$\\gamma$ competition for β-delayed neutron emission

    SciTech Connect

    Mumpower, Matthew Ryan; Kawano, Toshihiko; Moller, Peter

    2016-12-19

    Here we present a coupled quasiparticle random phase approximation and Hauser-Feshbach (QRPA+HF) model for calculating delayed particle emission. This approach uses microscopic nuclear structure information, which starts with Gamow-Teller strength distributions in the daughter nucleus and then follows the statistical decay until the initial available excitation energy is exhausted. Explicitly included at each particle emission stage is γ-ray competition. We explore this model in the context of neutron emission of neutron-rich nuclei and find that neutron-γ competition can lead to both increases and decreases in neutron emission probabilities, depending on the system considered. Finally, a second consequence of this formalism is a prediction of more neutrons on average being emitted after β decay for nuclei near the neutron drip line compared to models that do not consider the statistical decay.

  6. Origin of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    1999-12-01

    The origin of the concept of neutron stars can be traced to two brief, incredibly insightful publications. Work on the earlier paper by Lev Landau (Phys. Z. Sowjetunion, 1, 285, 1932) actually predated the discovery of neutrons. Nonetheless, Landau arrived at the notion of a collapsed star with the density of a nucleus (really a "nucleus star") and demonstrated (at about the same time as, and independent of, Chandrasekhar) that there is an upper mass limit for dense stellar objects of about 1.5 solar masses. Perhaps even more remarkable is the abstract of a talk presented at the December 1933 meeting of the American Physical Society published by Walter Baade and Fritz Zwicky in 1934 (Phys. Rev. 45, 138). It followed the discovery of the neutron by just over a year. Their report, which was about the same length as the present abstract: (1) invented the concept and word supernova; (2) suggested that cosmic rays are produced by supernovae; and (3) in the authors own words, proposed "with all reserve ... the view that supernovae represent the transitions from ordinary stars to neutron stars (italics), which in their final stages consist of extremely closely packed neutrons." The abstract by Baade and Zwicky probably contains the highest density of new, important (and correct) ideas in high energy astrophysics ever published in a single paper. In this talk, we will discuss some of the facts and myths surrounding these two publications.

  7. Thermal Neutron Capture and Thermal Neutron Burn-up of K isomeric state of 177mLu: a way to the Neutron Super-Elastic Scattering cross section

    SciTech Connect

    Roig, O.; Belier, G.; Meot, V.; Daugas, J.-M.; Romain, P.

    2006-03-13

    Thermal neutron radiative capture and burn-up measurements of the K isomeric state in 177Lu form part of an original method to indirectly obtain the neutron super-elastic scattering cross section at thermal energy. Neutron super-elastic scattering, also called neutron inelastic acceleration, occurs during the neutron collisions with an excited nuclear level. In this reaction, the nucleus could partly transfer its excitation energy to the scattered neutron.

  8. Compound Nucleus Contributions to the Optical Potential

    SciTech Connect

    Thompson, I. J.; Dietrich, F. S.; Escher, J. E.; Dupuis, M.

    2008-04-17

    An ab-initio calculation of the optical potential for neutron-nucleus scattering has been performed by explicitly coupling the elastic channel to all the particle-hole (p-h) excitation states in the target. These p-h states may be regarded as doorway states through which the flux flows to more complicated configurations, and (in the end) to long-lived compound nucleus resonances. The random-phase approximation (RPA) provides the linear combinations of p-h states that include the residual interactions within the target, and we show preliminary results for elastic flux loss using both p-h and RPA descriptions of target excitations.

  9. Charge radii of neon isotopes across the sd neutron shell

    SciTech Connect

    Marinova, K.; Geithner, W.; Kappertz, S.; Kloos, S.; Kotrotsios, G.; Neugart, R.; Wilbert, S.; Kowalska, M.; Keim, M.; Blaum, K.; Lievens, P.; Simon, H.

    2011-09-15

    We report on the changes in mean square charge radii of unstable neon nuclei relative to the stable {sup 20}Ne, based on the measurement of optical isotope shifts. The studies were carried out using collinear laser spectroscopy on a fast beam of neutral neon atoms. High sensitivity on short-lived isotopes was achieved thanks to nonoptical detection based on optical pumping and state-selective collisional ionization, which was complemented by an accurate determination of the beam kinetic energy. The new results provide information on the structural changes in the sequence of neon isotopes all across the neutron sd shell, ranging from the proton drip line nucleus and halo candidate {sup 17}Ne up to the neutron-rich {sup 28}Ne in the vicinity of the ''island of inversion.'' Within this range the charge radius is smallest for {sup 24}Ne with N=14 corresponding to the closure of the neutron d{sub 5/2} shell, while it increases toward both neutron shell closures, N=8 and N=20. The general trend of the charge radii correlates well with the deformation effects which are known to be large for several neon isotopes. In the neutron-deficient isotopes, structural changes arise from the onset of proton-halo formation for {sup 17}Ne, shell closure in {sup 18}Ne, and clustering effects in {sup 20,21}Ne. On the neutron-rich side the transition to the island of inversion plays an important role, with the radii in the upper part of the sd shell confirming the weakening of the N=20 magic number. The results add new information to the radii systematics of light nuclei where data are scarce because of the small contribution of nuclear-size effects to the isotope shifts which are dominated by the finite-mass effect.

  10. Alpha decay of neutron-deficient isotopes with 52 ≦ Z ≦ 55, including the new isotopes 106Te (T {1}/{2} = 60 μ s) and 110Xe

    NASA Astrophysics Data System (ADS)

    Schardt, D.; Batsch, T.; Kirchner, R.; Klepper, O.; Kurcewicz, W.; Roeckl, E.; Tidemand-Petersson, P.

    1981-09-01

    Using 58Ni( 58Ni,. xpγn) reactions and on-line mass separation, the α-decays of very neutron-deficient isotopes of tellurium, iodine, xenon and cesium were studied. The new isotopes 106Te (T {1}/{2} = 60 -+μ s) and 110Xe were identified by their α-lines of 4160 ± 30 keV and 3737 ± 30 keV energy, respectively, with the genetic relationship between the two successive α-decays being verified experimentally, while for several other α-decaying isotopes more precise data were obtained. The observed α-decay properties are discussed within the systematics of energy and reduced width.

  11. Checkerboard Theory of the Nucleus.

    NASA Astrophysics Data System (ADS)

    Lach, Theodore

    2006-04-01

    The Checker Board Model (CBM) is a 2D model of the nucleus that proposes that the synchronization of the 2 outer rotating quarks in the nucleons accounts for magnetic moment of the nucleons and that the magnetic flux from the nucleons couples (weaves) into the 2D checker board array structures and this magnetic coupling in addition to electrostatic forces of the rotating and stationary quarks accounts for the apparent strong nuclear force. The symmetry of the He nucleus helps explain why this 2D structure is so stable. This model explain the mass of the proton and neutron, along with their magnetic moments and their absolute and relative sizes in terms of the above structure and predict the masses of two newly proposed quarks ^(1): the ``up'' and the ``dn'' quarks. Since the masses of the ``up'' and ``dn'' quark determined by the CBM (237.31 MeV and 42.392 MeV respectively) did not fit within the standard model as candidates for u and d, a new model (New Physics) had to be invented. This new particle physics model predicts that nature has 5 generations not 3. (1). T.M. Lach, Checkerboard Structure of the Nucleus, Infinite Energy, Vol. 5, issue 30, (2000). (2). T.M. Lach, Masses of the Sub-Nuclear Particles, nucl-th/0008026, @http://xxx.lanl.gov/

  12. Coherent and semi-coherent neutron transfer reactions

    SciTech Connect

    Hagelstein, P.L.

    1992-01-01

    Neutron transfer reactions are proposed to account for anomalies reported in Pons-Fleischmann experiments. The prototypical reaction involves the transfer of a neutron (mediated by low frequency electric or magnetic fields) from a donor nucleus to virtual continuum states, followed by the capture of the virtual neutron by an acceptor nucleus. In this work we summarize basic principles, recent results and the ultimate goals of the theoretical effort.

  13. Coherent and semi-coherent neutron transfer reactions

    SciTech Connect

    Hagelstein, P.L.

    1992-12-31

    Neutron transfer reactions are proposed to account for anomalies reported in Pons-Fleischmann experiments. The prototypical reaction involves the transfer of a neutron (mediated by low frequency electric or magnetic fields) from a donor nucleus to virtual continuum states, followed by the capture of the virtual neutron by an acceptor nucleus. In this work we summarize basic principles, recent results and the ultimate goals of the theoretical effort.

  14. High energy nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Wosiek, B.

    1986-01-01

    Experimental results on high energy nucleus-nucleus interactions are presented. The data are discussed within the framework of standard super-position models and from the point-of-view of the possible formation of new states of matter in heavy ion collisions.

  15. Charge radii of neutron deficient Fe52,53 produced by projectile fragmentation

    SciTech Connect

    Minamisono, K.; Rossi, D. M.; Beerwerth, R.; Fritzsche, S.; Garand, D.; Klose, A.; Liu, Y.; MaaB, B.; Mantica, P. F.; Miller, A. J.; Muller, P.; Nazarewicz, W.; Nortershauser, W.; Olsen, E.; Pearson, M. R.; Reinhard, P. -G.; Saperstein, E. E.; Sumithrarachchi, C.; Tolokonnikov, S. V.

    2016-12-15

    Bunched-beam collinear laser spectroscopy is performed on neutron deficient 52,53Fe prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δ$\\langle$r2$\\rangle$ of 52,53Fe are determined relative to stable 56Fe as δ$\\langle$r2$\\rangle$56,52=$-$0.034(13) fm2 and δ$\\langle$r2$\\rangle$56,53=$-$0.218(13) fm2, respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ$\\langle$r2$\\rangle$. The values of δ$\\langle$r2$\\rangle$ exhibit a minimum at the N=28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. As a result, the trend of δ$\\langle$r2$\\rangle$ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ$\\langle$r2$\\rangle$ of closed-shell Ca isotopes

  16. Time reversal tests in polarized neutron reactions

    SciTech Connect

    Asahi, Koichiro; Bowman, J.D.; Crawford, B.

    1998-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). In recent years the nuclear weak interaction has been studied in the compound nucleus via parity violation. The observed parity-violating effects are strongly enhanced by nuclear structure. The predictions are that the interaction of polarized neutrons with polarized nuclear targets could be also used to perform sensitive tests of time-reversal-violation because of the nuclear enhancements. The author has designed experiments to search for time-reversal violation in neutron-nucleus interactions. He has also developed techniques to polarize neutrons with laser-polarized {sup 3}He gas targets. Using the polarized {sup 3}He neutron spin filter, he has performed two experiments at LANSCE: an absolute neutron beam polarization measurement with an accuracy of 0.2--0.3% and a neutron spin-rotation measurement on a {sup 139}La sample.

  17. Polarized neutrons in RHIC

    SciTech Connect

    Courant, E.D.

    1998-04-20

    There does not appear to be any obvious way to accelerate neutrons, polarized or otherwise, to high energies by themselves. To investigate the behavior of polarized neutrons the authors therefore have to obtain them by accelerating them as components of heavier nuclei, and then sorting out the contribution of the neutrons in the analysis of the reactions produced by the heavy ion beams. The best neutron carriers for this purpose are probably {sup 3}He nuclei and deuterons. A polarized deuteron is primarily a combination of a proton and a neutron with their spins pointing in the same direction; in the {sup 3}He nucleus the spins of the two protons are opposite and the net spin (and magnetic moment) is almost the same as that of a free neutron. Polarized ions other than protons may be accelerated, stored and collided in a ring such as RHIC provided the techniques proposed for polarized proton operation can be adapted (or replaced by other strategies) for these ions. This paper discusses techniques for accelerating polarized {sup 3}He nuclei and deuterons.

  18. Neutron multiplicity in the fission of 238U and 235U with neutrons up to 200 MeV.

    PubMed

    Ethvignot, T; Devlin, M; Duarte, H; Granier, T; Haight, R C; Morillon, B; Nelson, R O; O'Donnell, J M; Rochman, D

    2005-02-11

    Prompt-fission-neutron multiplicities were measured for 238U(n,f) and 235U(n,f) from 0.4 to 200 MeV. The data are of great importance in connection with accelerator-coupled nuclear reactor systems incinerating actinides. We report that fission induced by 200 MeV neutrons produces approximately 10 more prompt neutrons than fission induced by reactor neutrons. Most neutrons are evaporated from the fission fragments and the prefission compound nucleus, as the preequilibrium emission of energetic neutrons accounts for a maximum of 15% of the prompt neutrons at 200 MeV.

  19. Probing neutron rich matter with parity violation

    NASA Astrophysics Data System (ADS)

    Horowitz, Charles

    2016-03-01

    Many compact and energetic astrophysical systems are made of neutron rich matter. In contrast, most terrestrial nuclei involve approximately symmetric nuclear matter with more equal numbers of neutrons and protons. However, heavy nuclei have a surface region that contains many extra neutrons. Precision measurements of this neutron rich skin can determine properties of neutron rich matter. Parity violating electron scattering provides a uniquely clean probe of neutrons, because the weak charge of a neutron is much larger than that of a proton. We describe first results and future plans for the Jefferson Laboratory experiment PREX that measures the thickness of the neutron skin in 208Pb. Another JLAB experiment CREX will measure the neutron radius of 48Ca and test recent microscopic calculations of this neutron rich 48 nucleon system. Finally, we show how measuring parity violation at multiple momentum transfers can determine not just the neutron radius but the full radial structure of the neutron density in 48Ca. A neutron star is eighteen orders of magnitude larger than a nucleus (km vs fm) but both the star and the neutron rich nuclear skin are made of the same neutrons, with the same strong interactions, and the same equation of state. A large pressure pushes neutrons out against surface tension and gives a thick neutron skin. Therefore, PREX will constrain the equation of state of neutron rich matter and improve predictions for the structure of neutron stars. Supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  20. Neutron-neutron correlations in ^6He

    NASA Astrophysics Data System (ADS)

    Atramentov, Oleksiy; Vary, James; Navrátil, Petr

    2004-05-01

    We evaluate 2-neutron correlations in ^6He within the ab initio no-core nuclear shell model using a realistic effective 2-body Hamiltonian. The distribution of relative separation between neutrons, including spin dependence, is obtained for the ground, and lowest 2^+ and 1^- states. We compare angular distributions and relative kinetic energy distributions of neutron-pairs in these ^6He states directly with 2-neutron correlation measurements from dissociation experiments (Aumann, Phys. Rev. C 59, 1252 (1999); Wang, Phys. Rev. C 65,034306 (2002)). The reasonable agreement between these theoretical 1^- and experimental distributions supports an interpretation of the experiment as a simple process: Coulomb excitation of the 1^- followed by dissociation without significant final state interactions. We argue that such a simple picture may be reasonable for the breakup of this halo nucleus. We present predictions for additional spin-dependent correlation experiments that will sensitively test this simple picture. Work supported in part by USDOE grant DE-FG02-87ER40371 and was performed, in part, under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  1. Radii of neutron drops probed via the neutron skin thickness of nuclei

    DOE PAGES

    Zhao, P. W.; Gandolfi, S.

    2016-10-10

    Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less

  2. Radii of neutron drops probed via the neutron skin thickness of nuclei

    SciTech Connect

    Zhao, P. W.; Gandolfi, S.

    2016-10-10

    Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops from the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.

  3. Local magnetic structure determination using polarized neutron holography

    NASA Astrophysics Data System (ADS)

    Szakál, Alex; Markó, Márton; Cser, László

    2015-05-01

    A unique and important property of the neutron is that it possesses magnetic moment. This property is widely used for determination of magnetic structure of crystalline samples observing the magnetic components of the diffraction peaks. Investigations of diffraction patterns give information only about the averaged structure of a crystal but for discovering of local spin arrangement around a specific (e.g., impurity) nucleus remains still a challenging problem. Neutron holography is a useful tool to investigate the local structure around a specific nucleus embedded in a crystal lattice. The method has been successfully applied experimentally in several cases using non-magnetic short range interaction of the neutron and the nucleus. A mathematical model of the hologram using interaction between magnetic moment of the atom and the neutron spin for polarized neutron holography is provided. Validity of a polarized neutron holographic experiment is demonstrated by applying the proposed method on model systems.

  4. Local magnetic structure determination using polarized neutron holography

    SciTech Connect

    Szakál, Alex Markó, Márton Cser, László

    2015-05-07

    A unique and important property of the neutron is that it possesses magnetic moment. This property is widely used for determination of magnetic structure of crystalline samples observing the magnetic components of the diffraction peaks. Investigations of diffraction patterns give information only about the averaged structure of a crystal but for discovering of local spin arrangement around a specific (e.g., impurity) nucleus remains still a challenging problem. Neutron holography is a useful tool to investigate the local structure around a specific nucleus embedded in a crystal lattice. The method has been successfully applied experimentally in several cases using non-magnetic short range interaction of the neutron and the nucleus. A mathematical model of the hologram using interaction between magnetic moment of the atom and the neutron spin for polarized neutron holography is provided. Validity of a polarized neutron holographic experiment is demonstrated by applying the proposed method on model systems.

  5. Measurement of delayed-neutron yield from {sup 237}Np fission induced by thermal neutrons

    SciTech Connect

    Gundorin, N. A.; Zhdanova, K. V.; Zhuchko, V. E.; Pikelner, L. B. Rebrova, N. V.; Salamatin, I. M.; Smirnov, V. I.; Furman, V. I.

    2007-06-15

    The delayed-neutron yield from thermal-neutron-induced fission of the {sup 237}Np nucleus was measured using a sample periodically exposed to a pulsed neutron beam with subsequent detection of neutrons during the time intervals between pulses. The experiment was realized on an Isomer-M setup mounted in the IBR-2 pulsed reactor channel equipped with a mirror neutron guide. The setup and the experimental procedure are described, the background sources are thoroughly analyzed, and the experimental data are presented. The total delayed-neutron yield from {sup 237}Np fission induced by thermal neutrons is {nu}{sub d} = 0.0110 {+-} 0.0009. This study was performed at the Frank Laboratory of Neutron Physics (JINR, Dubna)

  6. Beta-Delayed Neutron Emission in Neutron-Rich Nuclei

    NASA Astrophysics Data System (ADS)

    Marketin, Tomislav; Sieverding, André; Wu, Meng-Ru; Paar, Nils; Martínez-Pinedo, Gabriel

    β-delayed neutron emission is the process of emission of one or more neutrons, after β-decay, from the excited daughter nucleus. The probabilities of emission are an important physical quantity in a variety of nuclear physics applications, from the simulations of heavy element nucleosynthesis to control of reactor power levels and nuclear waste management. However, it is relatively difficult to measure and much less data is available than for β-decay, particularly for nuclei that are expected to take part in the r-process. In this work we will present a calculation of β-decay half-lives and β-delayed neutron emission probabilities in neutron-rich nuclei using the transition strength obtained with a microscopic model combined with a statistical calculation of level densities. We explore the effect of altered emission probabilities, with respect to the simple calculation, on the r-process.

  7. Nucleus Z=126 with magic neutron number N=184 may be related to the measured Maruhn-Greiner maximum at A/2=155 from compound nuclei at low energy nuclear reactions

    NASA Astrophysics Data System (ADS)

    Prelas, M. A.; Hora, H.; Miley, G. H.

    2014-07-01

    Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Qα, arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn-Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation.

  8. Neutron skins and neutron stars

    SciTech Connect

    Piekarewicz, J.

    2013-11-07

    The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ('PREX') at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in {sup 208}Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron beams may impact the physics of neutron stars.

  9. Separable Representation of Nucleon-Nucleus Optical Potentials as Input to (d; p) Reaction Calculations

    NASA Astrophysics Data System (ADS)

    Hlophe, Linda D.

    The three-body description of deuteron-induced nuclear reactions requires the nucleon-nucleon (NN) and effective nucleon-nucleus interactions as input. The latter are given by Optical Model Potentials (OMPs), which are complex as well as energy-dependent. While a lot of effort has been dedicated to creating separable NN potentials, the same is not true for the nucleon-nucleus OMPs. In this work, separable representations of nucleon-nucleus OMPs are presented. To construct separable representations of neutron-nucleus OMPs, a scheme due to Ernst, Shakin, and Thaler (EST) is adopted as a starting point. It is shown that, by including both incoming and outgoing scattering states in the EST scheme, separable expansions for complex neutron-nucleus potentials that partially obey reciprocity are obtained. For the application to neutron-nucleus potentials that are complex as well as energy-dependent, a further generalization is carried out leading to an energy-dependent separable expansion that exactly fulfills reciprocity. By working exclusively with half-shell transition matrices in momentum space, the implementation of these separable representation schemes is straightforward. The proton-nucleus interaction consists of a short-ranged nuclear piece as well as the long-ranged point-Coulomb potential. After separating the point-Coulomb piece via the Gell-Mann-Goldberger relation, one is left with the short-ranged potential in the Coulomb basis. An extension of the separable representation schemes for neutron-nucleus OMPs to proton-nucleus systems thus requires scattering solutions in the Coulomb basis. This complicates a momentum space implementation of the aforementioned separable expansions. However, by employing the techniques first suggested by Elster, Liu, and Thaler, the separable representation schemes generalized for proton-nucleus OMPs are implemented in a similar manner to neutron-nucleus OMPs. Taking into account the internal structure of the nucleus leads to

  10. Measuring Neutron-Induced Reaction Cross Sections without Neutrons

    NASA Astrophysics Data System (ADS)

    Bernstein, L. A.; Schiller, A.; Cooper, J. R.; Hoffman, R. D.; McMahan, M. A.; Fallon, P.; Macchiavelli, A. O.; Mitchell, G.; Tavukcu, E.; Guttormsen, M.

    2003-04-01

    Neutron-induced reactions on radioactive nuclei play a significant role in nuclear astrophysics and many other applied nuclear physics topics. However, the majority of these cross sections are impossible to measure due to the high-background of the targets and the low-intensity of neutron beams. We have explored the possibility of using charged-particle transfer reactions to form the same "pre-compound" nucleus as one formed in a neutron-induced reaction in order to measure the relative decay probabilities of the nucleus as a function of energy. Multiplying these decay probabilities by the neutron absorption cross section will then produce the equivalent neutron-induced reaction cross section. In this presentation I will explore the validity of this "surrogate reaction" technique by comparing results from the recent 157Gd(3He,axng)156-xGd experiment using STARS (Silicon Telescope Array for Reaction Studies) at GAMMASPHERE with reaction model calculations for the 155Gd(n,xng)156-xGd. This work was funded by the US Department of Energy under contracts number W-7405-ENG-48 (LLNL), AC03-76SF00098 (LBNL) and the Norwegian Research Council (Oslo).

  11. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Korff, S. A.; Mendell, R. B.; Merker, M.; Light, E. S.; Verschell, H. J.; Sandie, W. S.

    1979-01-01

    Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made.

  12. Neutron Scattering Stiudies

    SciTech Connect

    Kegel, Gunter H.R.; Egan, James J

    2007-04-18

    This project covers four principal areas of research: Elastic and inelastic neutron scattering studies in odd-A terbium, thulium and other highly deformed nuclei near A=160 with special regard to interband transitions and to the investigation of the direct-interaction versus the compound-nucleus excitation process in these nuclei. Examination of new, fast photomultiplier tubes suitable for use in a miniaturized neutron-time-of-flight spectrometer. Measurement of certain inelastic cross sections of 238U. Determination of the multiplicity of prompt fission gamma rays in even-A fissile actinides. Energies and mean lives of fission isomers produced by fast fission of even-Z, even-A actinides. Study of the mean life of 7Be in different host matrices and its possible astro-physical significance.

  13. Neutron dosimetry

    DOEpatents

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  14. Neutron guide

    DOEpatents

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  15. POLARIZED NEUTRONS IN RHIC

    SciTech Connect

    COURANT,E.D.

    1998-04-27

    There does not appear to be any obvious way to accelerate neutrons, polarized or otherwise, to high energies by themselves. To investigate the behavior of polarized neutrons the authors therefore have to obtain them by accelerating them as components of heavier nuclei, and then sorting out the contribution of the neutrons in the analysis of the reactions produced by the heavy ion beams. The best neutron carriers for this purpose are probably {sup 3}He nuclei and deuterons. A polarized deuteron is primarily a combination of a proton and a neutron with their spins pointing in the same direction; in the {sup 3}He nucleus the spins of the two protons are opposite and the net spin (and magnetic moment) is almost the same as that of a free neutron. Polarized ions other than protons may be accelerated, stored and collided in a ring such as RHIC provided the techniques proposed for polarized proton operation can be adapted (or replaced by other strategies) for these ions. To accelerate polarized particles in a ring, one must make provisions for overcoming the depolarizing resonances that occur at certain energies. These resonances arise when the spin tune (ratio of spin precession frequency to orbit frequency) resonates with a component present in the horizontal field. The horizontal field oscillates with the vertical motion of the particles (due to vertical focusing); its frequency spectrum is dominated by the vertical oscillation frequency and its modulation by the periodic structure of the accelerator ring. In addition, the magnet imperfections that distort the closed orbit vertically contain all integral Fourier harmonics of the orbit frequency.

  16. Two-neutron decay of excited states of 11Li

    NASA Astrophysics Data System (ADS)

    Smith, Jenna; MoNA Collaboration

    2013-10-01

    One prominent example of a Borromean nucleus is the two-neutron halo nucleus, 11Li. All excited states of this nucleus are unbound to two-neutron decay. Many theories propose that the two valence neutrons exhibit dineutron behavior in the ground state, but it is unclear what effect such a structure would have on the decay of the excited states. We have recently completed an experiment designed to study the decay of one of these excited states. Unbound 11Li was populated via a two-proton knockout from 13B. The two emitted neutrons were detected with the Modular Neutron Array (MoNA) and the Large-area multi-Institutional Scintillator Array (LISA) in coincidence with the daughter fragment, 9Li. Preliminary results will be discussed.

  17. Experimental Neutron Capture Rate Constraint Far from Stability

    NASA Astrophysics Data System (ADS)

    Liddick, S. N.; Spyrou, A.; Crider, B. P.; Naqvi, F.; Larsen, A. C.; Guttormsen, M.; Mumpower, M.; Surman, R.; Perdikakis, G.; Bleuel, D. L.; Couture, A.; Crespo Campo, L.; Dombos, A. C.; Lewis, R.; Mosby, S.; Nikas, S.; Prokop, C. J.; Renstrom, T.; Rubio, B.; Siem, S.; Quinn, S. J.

    2016-06-01

    Nuclear reactions where an exotic nucleus captures a neutron are critical for a wide variety of applications, from energy production and national security, to astrophysical processes, and nucleosynthesis. Neutron capture rates are well constrained near stable isotopes where experimental data are available; however, moving far from the valley of stability, uncertainties grow by orders of magnitude. This is due to the complete lack of experimental constraints, as the direct measurement of a neutron-capture reaction on a short-lived nucleus is extremely challenging. Here, we report on the first experimental extraction of a neutron capture reaction rate on 69Ni, a nucleus that is five neutrons away from the last stable isotope of Ni. The implications of this measurement on nucleosynthesis around mass 70 are discussed, and the impact of similar future measurements on the understanding of the origin of the heavy elements in the cosmos is presented.

  18. Experimental Neutron Capture Rate Constraint Far from Stability.

    PubMed

    Liddick, S N; Spyrou, A; Crider, B P; Naqvi, F; Larsen, A C; Guttormsen, M; Mumpower, M; Surman, R; Perdikakis, G; Bleuel, D L; Couture, A; Crespo Campo, L; Dombos, A C; Lewis, R; Mosby, S; Nikas, S; Prokop, C J; Renstrom, T; Rubio, B; Siem, S; Quinn, S J

    2016-06-17

    Nuclear reactions where an exotic nucleus captures a neutron are critical for a wide variety of applications, from energy production and national security, to astrophysical processes, and nucleosynthesis. Neutron capture rates are well constrained near stable isotopes where experimental data are available; however, moving far from the valley of stability, uncertainties grow by orders of magnitude. This is due to the complete lack of experimental constraints, as the direct measurement of a neutron-capture reaction on a short-lived nucleus is extremely challenging. Here, we report on the first experimental extraction of a neutron capture reaction rate on ^{69}Ni, a nucleus that is five neutrons away from the last stable isotope of Ni. The implications of this measurement on nucleosynthesis around mass 70 are discussed, and the impact of similar future measurements on the understanding of the origin of the heavy elements in the cosmos is presented.

  19. The Checkerboard Model of the Nucleus

    NASA Astrophysics Data System (ADS)

    Lach, Theodore

    2015-04-01

    The Checker Board Model (CBM) of the nucleus and the associated extended standard model predicts that nature has 5 generations of quarks not 3 and that Nucleus is 2 dimensional. The CBM theory began with an insight into the structure of the He nucleus around the year 1989. Details of how this theory evolved which took many years, and is found on my web site (http://checkerboard.dnsalias.net) or in the following references One independent check of this model is that the wavelength of the ``up'' quark orbiting inside the proton at 84.8123% the speed of light (around the ``dn'' quark in the center of the proton) turns out to be exactly one de Broglie wavelength something determined after the mass and speed of the up quark were determined by other means. This theory explains the mass of the proton and neutron and their magnetic moments and this along with the beautiful symmetric 2D structure of the He nucleus led to the evolution of this theory. When this theory was first presented at Argonne in 1996, it was the first time that anyone had predicted the quarks orbited inside the proton at relativistic speeds and it was met with skepticism.

  20. The decompression of cold neutron star matter

    NASA Technical Reports Server (NTRS)

    Lattimer, J. M.; Mackie, F.; Ravenhall, D. G.; Schramm, D. N.

    1977-01-01

    The ejection of cold neutron-star matter is examined, and an attempt is made to determine whether the final composition of this matter may be similar to that normally associated with the hot high-neutron-flux r-process. A semiempirical liquid-drop model is used for the nucleus, and the equilibrium composition of the matter is determined by assuming it to be in its absolute ground state at a given density. Physical mechanisms operating during the expansion are analyzed, and the composition of the ejected matter is found as a function of its density during expansion. The results indicate that it is virtually impossible for deuterium to form, that neutrons can be captured only after beta decay increases the atomic numbers of nuclei, and that no free neutrons can escape. It is concluded that neutron-star ejecta can produce heavy neutron-rich nuclei and may produce somewhat heavier nuclei than a standard r-process.

  1. The decompression of cold neutron star matter

    NASA Technical Reports Server (NTRS)

    Lattimer, J. M.; Mackie, F.; Ravenhall, D. G.; Schramm, D. N.

    1977-01-01

    The ejection of cold neutron-star matter is examined, and an attempt is made to determine whether the final composition of this matter may be similar to that normally associated with the hot high-neutron-flux r-process. A semiempirical liquid-drop model is used for the nucleus, and the equilibrium composition of the matter is determined by assuming it to be in its absolute ground state at a given density. Physical mechanisms operating during the expansion are analyzed, and the composition of the ejected matter is found as a function of its density during expansion. The results indicate that it is virtually impossible for deuterium to form, that neutrons can be captured only after beta decay increases the atomic numbers of nuclei, and that no free neutrons can escape. It is concluded that neutron-star ejecta can produce heavy neutron-rich nuclei and may produce somewhat heavier nuclei than a standard r-process.

  2. The Nucleus Introduced

    PubMed Central

    Pederson, Thoru

    2011-01-01

    Now is an opportune moment to address the confluence of cell biological form and function that is the nucleus. Its arrival is especially timely because the recognition that the nucleus is extremely dynamic has now been solidly established as a paradigm shift over the past two decades, and also because we now see on the horizon numerous ways in which organization itself, including gene location and possibly self-organizing bodies, underlies nuclear functions. PMID:20660024

  3. Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Heller, A. K.; Brenizer, J. S.

    Neutron radiography and its related two-dimensional (2D) neutron imaging techniques have been established as invaluable nondestructive inspection methods and quantitative measurement tools. They have been used in a wide variety of applications ranging from inspection of aircraft engine turbine blades to study of two-phase fluid flow in operating proton exchange membrane fuel cells. Neutron radiography is similar to X-ray radiography in that the method produces a 2D attenuation map of neutron radiation that has penetrated the object being examined. However, the images produced differ and are often complementary due to the differences between X-ray and neutron interaction mechanisms. The uses and types of 2D neutron imaging have expanded over the past 15 years as a result of advances in imaging technology and improvements in neutron generators/sources and computers. Still, high-intensity sources such as those from reactors and spallation neutron sources, together with conventional film radiography, remain the mainstay of high-resolution, large field-of-view neutron imaging. This chapter presents a summary of the history, methods, and related variations of neutron radiography techniques.

  4. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  5. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Preszler, A. M.; Moon, S.; White, R. S.

    1976-01-01

    Additional calibrations of the University of California double-scatter neutron detector and additional analysis corrections lead to slightly changed neutron fluxes. The theoretical angular distributions of Merker (1975) are in general agreement with the reported experimental fluxes but do not give the peaks for vertical upward and downward moving neutrons. The theoretical neutron escape current is in agreement with the experimental values from 10 to 100 MeV. The experimental fluxes obtained agree with those of Kanbach et al. (1974) in the overlap region from 70 to 100 MeV.

  6. Neutron Stars

    NASA Technical Reports Server (NTRS)

    Cottam, J.

    2007-01-01

    Neutron stars were discovered almost 40 years ago, and yet many of their most fundamental properties remain mysteries. There have been many attempts to measure the mass and radius of a neutron star and thereby constrain the equation of state of the dense nuclear matter at their cores. These have been complicated by unknown parameters such as the source distance and burning fractions. A clean, straightforward way to access the neutron star parameters is with high-resolution spectroscopy. I will present the results of searches for gravitationally red-shifted absorption lines from the neutron star atmosphere using XMM-Newton and Chandra.

  7. Neutron radiography

    SciTech Connect

    Berger, H.; Iddings, F.

    1998-08-01

    Neutron radiography is becoming a well established nondestructive testing (NDT) method. The American Society for Nondestructive Testing (ASNT) has recognized the method through its recommended practice SNT-TCIA which outlines training, knowledge, and experience necessary to obtain levels of competency in the method. Certification of nondestructive testing personnel is also covered in a military standard. Technical publications in the field of NDT and nuclear technology carry articles on neutron radiography and technical meetings include papers or even entire sessions on neutron radiography. There is an on-going series of international conferences on neutron radiography. Many books are available to provide introductory and advanced material on neutron radiographic techniques and applications. Neutron radiography as a service for hire is available, similar to that offered for other NDT services. The method is being adopted to solve NDT problems in specialty areas. The objective of this report is to provide a brief survey of the current state of the art in the use of neutron radiography. The survey will include information on the technique including principles of the method, sources of neutrons, detection methodology, standards and image quality indicators, and representative applications. An extensive reference list provides additional information for those who wish to investigate further and a Glossary is included which provides definitions for terms used in Neutron Radiography.

  8. Neutron-proton bremsstrahlung experiments

    SciTech Connect

    Koster, J.E.; Nelson, R.O.; Schillaci, M.E.; Wender, S.A.; Mayo, D.; Brady, F.P.; Romero, J.; Krofcheck, D.; Blann, M.; Anthony, P.; Brown, V.R.; Hansen, L.; Pohl, B.; Sangster, T.C.; Nifenecker, H.; Pinston, J.A.

    1992-12-01

    It is well known that charged particles emit bremsstrahlung radiation when they are accelerated. Classical electron bremsstrahlung occurs when a photon is emitted by an electron accelerated in the field of a nucleus. The bremsstrahlung process also occurs in the scattering of nucleons, for which it is the lowest energy inelastic process that can occur. Like electron bremsstrahlung, nucleon-nucleon bremsstrahlung also requires the exchange of a virtual particle to conserve energy and momentum. In electron bremsstrahlung a virtual photon is exchanged but with two nucleons a meson can be exchanged. Unlike electron bremsstrahlung, in nucleon-nucleon bremsstrahlung the photon can originate from the exchanged meson. This exchange contribution has been shown in calculations to be a significant fraction of bremsstrahlung events. Thus bremsstrahlung serves as a probe of exchange currents in the nucleon-nucleon interaction. Because of a lack of a free neutron target or an intense neutron beam, few measurements of neutron-proton bremsstrahlung exist, each having poor statistical accuracy and poor energy resolution. The white neutron source at the Weapons Neutron Research (WNR) target area at the Los Alamos Meson Physics Facility (LAMPF) produces neutrons with energies from below 50 to above 400 MeV. Using time-of-flight techniques and a liquid hydrogen target, we are measuring the outgoing photons of energies up to 250 MeV at gamma ray angles of around 90{degree} relative to the incident beam. Protons scattered at very forward angles are also detected in coincidence with the gamma rays.

  9. Kaon-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Hong, Byungsik; Maung, Khin Maung; Wilson, John W.; Buck, Warren W.

    1989-01-01

    The derivations of the Lippmann-Schwinger equation and Watson multiple scattering are given. A simple optical potential is found to be the first term of that series. The number density distribution models of the nucleus, harmonic well, and Woods-Saxon are used without t-matrix taken from the scattering experiments. The parameterized two-body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to the imaginary part of the forward elastic scattering amplitude, are presented. The eikonal approximation was chosen as our solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.

  10. Kaon-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Hong, Byungsik; Buck, Warren W.; Maung, Khin M.

    1989-01-01

    Two kinds of number density distributions of the nucleus, harmonic well and Woods-Saxon models, are used with the t-matrix that is taken from the scattering experiments to find a simple optical potential. The parameterized two body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to imaginary part of the forward elastic scattering amplitude, are shown. The eikonal approximation was chosen as the solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.

  11. Measuring neutrino-nucleus interactions with MINERνA

    SciTech Connect

    Rodrigues, P. A.

    2015-07-15

    We present results from the MINERνA experiment for neutrino-nucleus scattering in the few-GeV energy region. These measurements cover a range of processes that must be modeled correctly in neutrino oscillation experiments, and in which recent results from other experiments have suggested deficiencies in the models currently used.

  12. Reexamination of the neutron skin thickness using neutron removal cross sections

    SciTech Connect

    Ma Chunwang; Wei Huiling; Yu Mian

    2010-11-15

    The neutron removal cross section [{sigma}{sub -N}(Z)] is defined for the projectile-like fragment isotopes and extended to the lower Z isotopes in the projectile fragmentation reaction. The cross sections of fragments in 1 A GeV even {sup 42-52}Ca+{sup 12}C projectile fragmentation reactions are calculated using the statistical abrasion-ablation model. The correlations between {sigma}{sub -N}(Z) of different fragment isotopes and neutron skin thickness (S{sub n}) for finite neutron-rich nuclei are revisited. Good linear {sigma}{sub -N}(Z)-S{sub n} correlations are observed in fragment isotopes, and it is suggested that {sigma}{sub -N}(Z) be used as an observable to determine S{sub n} of neutron-rich nucleus in addition to {sigma}{sub -N} for isotopes of the projectile nucleus.

  13. Neutron transfer and flow in reactions between heavy neutron-rich nuclei.

    NASA Astrophysics Data System (ADS)

    Shapira, Dan; Liang, Felix J.; Gross, Carl J.; Varner, Robert L.; Beene, James R.

    2006-10-01

    Two Step WKB calcualtions of nucleus nucleus capture were carried out. In our calcualtions we nvestigate the possibility of enhanced capture cross sectins for neutron rich heavy nuclei. The model calculation uses a systematic potential [1] that incorporates the effect of barrier distributions due to excitation and deformation in the entrance channel. Neutron transfer is treated in a semiclassical approximation [2][3]. The transfer form factor used in neutron transfer saturates at an internuclear distance where where neutron can flow freely between the two nuclear centers [4]. [1] K. Siwek-Wilczynska and J. Wilczynski Phys. Rev. C69, 024611 (2004). [2] V. Yu. Denisov Eur. Phys. A7, 87 (2000). [3] V. I. Zagrebaev Phys. Rev. C7, 061601R (2003). [4] P.H. Stelson Phys. Lett. B205, 190 (1988).

  14. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  15. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  16. One- and two neutron decay of light neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Thoennessen, Michael

    2014-09-01

    Direct reactions with radioactive beams have been used very successfully to populate and measure nuclei beyond the neutron dripline and neutron unbound excited states of nuclei close to the neutron dripline. The use of different reactions (for example neutron removal and proton removal) to populate the same final nucleus can be used to selectively populate different states. Recent results from the MoNA-LISA setup at the NSCL, including 10He, 10,11Li, and 12,13Be will be presented. Direct reactions with radioactive beams have been used very successfully to populate and measure nuclei beyond the neutron dripline and neutron unbound excited states of nuclei close to the neutron dripline. The use of different reactions (for example neutron removal and proton removal) to populate the same final nucleus can be used to selectively populate different states. Recent results from the MoNA-LISA setup at the NSCL, including 10He, 10,11Li, and 12,13Be will be presented. This work was supported in part by the NSF, Grant PHY-11-02511.

  17. Neutron source

    DOEpatents

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  18. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  19. Study of Neutron Deficient 13O

    NASA Astrophysics Data System (ADS)

    Belarge, Joseph; Rogachev, G. V.; Blackmon, J.; Wiedenhover, I.; Baby, L.; Johnson, E. D.; Kuchera, A. N.; Koshchiy, E.; Lai, J.; Linhardt, L.; Macon, K.; Matos, M.; Santiago-Gonzalez, D.

    2013-10-01

    Development of theoretical framework that allows the combination of nuclear structure calculations with the continuum is an important objective of modern nuclear theory [A. Volya, PRC 79, 044308 (2009), S. Quaglioni and P. Navratil, PRL 101092501 (2008)]. Due to the low binding energy of exotic isotopes even the lowest excited states are unbound and therefore it is essential to take the continuum into account. We studied the structure of the lightest bound oxygen isotope, 13O, through 12N+p resonance scattering using the new active target detector ANASEN [M. Matos et al., Proc. Intern. Symp. on Nuclei in the Cosmos, July 19-23, Heidelberg, Germany, p. 226 (2010)]. The experiment was performed at the John D. Fox Superconducting Accelerator Laboratory at Florida State University. A rare isotope beam of 12N ions was produced using the radioactive nuclear beam facility RESOLUT. Methane gas was used as a target and also as an active medium for the gas proportional counters of the ANASEN detector. The analysis of the p+12N excitation functions was performed using the R-Matrix approach. The preliminary results of the experiment will be presented.

  20. Study of Neutron Deficient ^9C

    NASA Astrophysics Data System (ADS)

    Belarge, Joseph; Rogachev, G. V.; Blackmon, J.; Wiedenhover, I.; Baby, L.; Johnson, E. D.; Kuchera, A. N.; Koshchiy, E.; Lai, J.; Linhardt, L.; Macon, K.; Matos, M.; Santiago-Gonzalez, D.

    2012-10-01

    Development of theoretical framework that allows the combination of nuclear structure calculations with the continuum is an important objective of modern nuclear theory [1,2]. Due to the low binding energy of exotic isotopes even the lowest excited states are unbound and therefore it is essential to take the continuum into account. We studied the structure of the lightest bound carbon isotope, ^9C, through ^8B+p resonance scattering using the new active target detector ANASEN [3]. The experiment was performed at the John D. Fox Superconducting Accelerator Laboratory at FSU. A rare isotope beam of ^8B ions was produced using the radioactive nuclear beam facility RESOLUT. Pure hydrogen gas was used as a target and also as an active medium for the gas proportional counters of the ANASEN detector. The analysis of the p+^8B excitation functions was performed using the R-Matrix approach. The preliminary results will be presented.[4pt] [1] A. Volya, Phys. Rev. C 79, 044308 (2009).[0pt] [2] S. Quaglioni and P. Navr'atil, PRL 101, 092501 (2008).[0pt] [3] M. Matos, et al.,Proc. Intern. Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.226(2010).

  1. Shape coexistence in neutron deficient Po nuclei

    SciTech Connect

    Helariutta, K.; Cocks, J. F. C.; Enqvist, T.; Greenlees, P. T.; Jones, P.; Julin, R.; Juutinen, S.; Jaemsen, P.; Kankaanpaeae, H.; Kettunen, H.; Kuusiniemi, P.; Leino, M.; Muikku, M.; Piiparinen, M.; Rahkila, P.; Savelius, A.; Trzaska, W. H.; Toermaenen, S.; Uusitalo, J.; Allatt, R. G.

    1999-11-16

    The excited levels in {sup 192-195}Po have been studied using the recoil-decay tagging method. New levels have been identified. The data are in accordance with the scheme of the coexisting spherical and deformed intruder structures crossing each other with N<112.

  2. Shape Coexistence in Neutron Deficient Po Nuclei

    SciTech Connect

    Helariutta, K.; Cocks, J.F.C.; Enqvist, T.; Greenlees, P.T.; Jones, P.; Julin, R.; Juutinen, S.; Jamsen, P.; Kankaanpaa, H.; Kettunen, H.; Kuiusiniemi, P.; Leino, M.; Muikkui, M.; Piiparinen, M.; Rahkila, P.; Savelius, A.; Trzaska, W.H.; Tormanen, S.; Uusitalo, J.; Allatt, R.G.; Butler, P.A.; Page, R.D.; Kapusta, M.

    1999-12-31

    The excited levels in {sup 192-195}Po have been studied using the recoil-decay tagging method. New levels have been identified. The data are in accordance with the scheme of the coexisting spherical and deformed intruder structures crossing each other with N<112.

  3. Onset of deconfinement in nucleus-nucleus collisions

    SciTech Connect

    Gazdzicki, M.; Gorenstein, M. I.; Seyboth, P.

    2012-05-15

    The energy dependence of hadron production in relativistic nucleus-nucleus collisions reveals anomalies-the kink, horn, and step. They were predicted as signals of the deconfinement phase transition and observed by the NA49 Collaboration in central PbPb collisions at the CERN SPS. This indicates the onset of the deconfinement in nucleus-nucleus collisions at about 30 A GeV.

  4. Experiments on parity violation in the compound nucleus

    SciTech Connect

    Bowman, J.D.

    1996-09-01

    Results from experiments that measure parity-violating longitudinal asymmetries in the scattering of epithermal neutrons from compound-nuclear resonances at the Manuel Lujan Neutron Scattering Center at Los Alamos are discussed. Parity non-conserving asymmetries have been observed for many p-wave resonances in a single target. Measurements were performed on several nuclei in the mass region of A-100 and A-230. The statistical model of the compound nucleus provides a theoretical basis for extracting mean-squared matrix elements from the experimental asymmetry data, and for interpreting the mean-squared matrix elements. The constraints on the weak meson-exchange couplings calculated from the compound-nucleus asymmetry data agree qualitatively with the results from few-body and light-nuclei experiments. For all nuclei but {sup 232}Th measured asymmetries have random signs. For {sup 232}Th eight of eight measured asymmetries are positive. This phenomenon is discussed in terms or doorway models.

  5. Deformations and magnetic rotations in the Ni60 nucleus

    NASA Astrophysics Data System (ADS)

    Torres, D. A.; Cristancho, F.; Andersson, L.-L.; Johansson, E. K.; Rudolph, D.; Fahlander, C.; Ekman, J.; Du Rietz, R.; Andreoiu, C.; Carpenter, M. P.; Seweryniak, D.; Zhu, S.; Charity, R. J.; Chiara, C. J.; Hoel, C.; Pechenaya, O. L.; Reviol, W.; Sarantites, D. G.; Sobotka, L. G.; Baktash, C.; Yu, C.-H.; Carlsson, B. G.; Ragnarsson, I.

    2008-11-01

    Data from three experiments using the heavy-ion fusion evaporation-reaction 36Ar+28Si have been combined to study high-spin states in the residual nucleus Ni60, which is populated via the evaporation of four protons from the compound nucleus Ge64. The GAMMASPHERE array was used for all the experiments in conjunction with a 4π charged-particle detector arrays (MICROBALL, LUWUSIA) and neutron detectors (NEUTRON SHELL) to allow for the detection of γ rays in coincidence with the evaporated particles. An extended Ni60 level scheme is presented, comprising more than 270γ-ray transitions and 110 excited states. Their spins and parities have been assigned via directional correlations of γ rays emitted from oriented states. Spherical shell-model calculations in the fp-shell characterize some of the low-spin states, while the experimental results of the rotational bands are analyzed with configuration-dependent cranked Nilsson-Strutinsky calculations.

  6. Electromagnetic properties of the Beryllium-11 nucleus in Halo EFT

    NASA Astrophysics Data System (ADS)

    Phillips, D. R.; Hammer, H.-W.

    2010-04-01

    We compute electromagnetic properties of the Beryllium-11 nucleus using an effective field theory that exploits the separation of scales in this halo system. We fix the parameters of the EFT from measured data on levels and scattering lengths in the 10Be plus neutron system. We then obtain predictions for the B(E1) strength of the 1/2+ to 1/2- transition in the 11Be nucleus. We also compute the charge radius of the ground state of 11Be. Agreement with experiment within the expected accuracy of a leading-order computation in this EFT is obtained. We also indicate how higher-order corrections that affect both s-wave and p-wave 10 Be-neutron interactions will affect our results.

  7. Disaccharidase deficiency.

    PubMed

    Bayless, T M; Christopher, N L

    1969-02-01

    This review of the literature and current knowledge concerning a nutritional disorder of disaccharidase deficiency discusses the following topics: 1) a description of disorders of disaccharide digestion; 2) some historical perspective on the laboratory and bedside advances in the past 10 years that have helped define a group of these digestive disorders; 3) a classification of conditions causing disaccharide intolerance; and 4) a discussion of some of the specific clinical syndromes emphasizing nutritional consequences of these syndromes. The syndromes described include congenital lactase deficiency, acquired lactase deficiency in teenagers and adults, acquired generalized disaccharidase deficiency secondary to diffuse mucosal damage, acquired lactose intolerance secondary to alterations in the intestinal transit, sucrase-isomaltase deficiencies, and other disease associations connected with lactase deficiency such as colitis.

  8. Pituitary deficiencies.

    PubMed

    Greco, Deborah S

    2012-02-01

    Diabetes insipidus, arising from damage to or congenital abnormalities of the neurohypophysis, is the most common pituitary deficiency in animals. Hypopituitarism and isolated growth hormone or thyrotropin deficiency may result in growth abnormalities in puppies and kittens. In addition, treatment of associated hormone deficiencies, such as hypothyroidism and hypoadrenocorticism, in patients with panhypopituitarism is vital to restore adequate growth in dwarfed animals. Secondary hypoadrenocorticism is an uncommon clinical entity; however differentiation of primary versus secondary adrenal insufficiency is of utmost importance in determining optimal therapy. This article will focus on the pathogenesis, diagnosis and treatment of hormone deficiencies of the pituitary gland and neurohypophysis. Copyright © 2012. Published by Elsevier Inc.

  9. Thermal neutron detection system

    DOEpatents

    Peurrung, Anthony J.; Stromswold, David C.

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  10. NEUTRON SOURCE

    DOEpatents

    Bernander, N.K. et al.

    1960-10-18

    An apparatus is described for producing neutrons through target bombardment with deuterons. Deuterium gas is ionized by electron bombardment and the deuteron ions are accelerated through a magnetic field to collimate them into a continuous high intensity beam. The ion beam is directed against a deuteron pervious metal target of substantially the same nnaterial throughout to embed the deuterous therein and react them to produce neutrons. A large quantity of neutrons is produced in this manner due to the increased energy and quantity of ions bombarding the target.

  11. Theory and phenomenology of coherent neutrino-nucleus scattering

    SciTech Connect

    McLaughlin, Gail

    2015-07-15

    We review the theory and phenomenology of coherent elastic neutrino-nucleus scattering (CEνNS). After a brief introduction, we summarize the places where CEνNS is already in use and then turn to future physics opportunities from CEνNS. CEνNS has been proposed as a way to limit or discover beyond the standard model physics, measure the nuclear-neutron radius and constrain the Weinberg angle.

  12. Isospin effects in elastic proton-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Chinn, C. R.; Elster, Ch.; Thaler, R. M.

    1993-05-01

    Isovector effects in proton-nucleus elastic scattering at medium energies are studied. The accuracy of the Kerman-McManus-Thaler isospin averaging procedure is found to be very good for nuclei larger than 4He. Studies of 40Ca and 208Pb suggest that the surface neutrons may be pulled in somewhat relative to the protons, although uncertainties in the detailed applicability of the present truncation of the multiple scattering treatment render firm conclusions premature.

  13. Surrogate reactions for neutron capture with radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Cizewski, Jolie A.

    2012-10-01

    Neutron capture reactions are responsible for most of the elements heavier than iron, through either the slow or rapid processes of nucleosynthesis. The r process in particular proceeds through very short-lived nuclei on which neutron capture reaction measurements will never be possible. Knowledge of neutron capture cross sections on short-lived nuclei is also important for applications such as nuclear energy, nuclear forensics, and stockpile stewardship science. When the level density at the neutron separation energy is relatively low, for example near closed neutron shells, direct neutron capture often dominates and direct neutron transfer reactions can provide the spectroscopic information needed to calculate the direct capture. However, when the level density is higher, a compound nucleus is formed and statistical mechanisms dominate the decay. While the formation of the compound nucleus can be calculated with optical models, modeling of the decay is less robust. Because of the importance of neutron capture on nuclei away from stability, there have been efforts to validate surrogate reactions for neutron capture that exploit the availability of beams of radioactive nuclei that interact with light targets where reaction products are measured in coincidence with gamma radiation. This talk would summarize efforts to validate a surrogate for neutron capture and the techniques being developed to measure these reactions with beams of radioactive ions.

  14. Antinucleon-nucleus interactions

    SciTech Connect

    Dover, C.B.

    1987-01-01

    Recent experimental and theoretical results on anti p-nucleus interactions are reviewed. We focus on determinations of the anti p optical potential from elastic scattering, the use of (anti p, anti p') inelastic scattering to reveal aspects of the spin-isospin dependence of N anti N amplitudes, and some puzzling features of (anti p, anti n) charge exchange reactions on nuclei. 47 refs., 7 figs.

  15. Quantum calculation of vortices in the inner crust of neutron stars

    SciTech Connect

    Avogadro, P.; Barranco, F.; Vigezzi, E.

    2007-01-15

    The self-consistent mean-field quantum mechanical solution of a vortex and a nucleus immersed in a sea of free neutrons, a scenario representative of the inner crust of neutron stars, is presented for the first time. Because of quantal size effects the phase space for vortices inside the nucleus is essentially zero, so that the vortex core opens up and surrounds the nucleus. As a consequence, pinned configurations (in which a vortex becomes anchored to the nucleus) are favored at low and high densities in the inner crust. This result is qualitatively different from that obtained in all previous models, which predict pinning at intermediate densities.

  16. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.

    1960-11-22

    A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.

  17. NEUTRONIC REACTOR

    DOEpatents

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  18. Neutron reflectivity

    NASA Astrophysics Data System (ADS)

    Cousin, Fabrice; Menelle, Alain

    2015-10-01

    The specular neutron reflectivity is a technique enabling the measurement of neutron scattering length density profile perpendicular to the plane of a surface or an interface, and thereby the profile of chemical composition. The characteristic sizes that are probed range from around 5 Å up 5000 Å. It is a scattering technique that averages information on the entire surface and it is therefore not possible to obtain information within the plane of the interface. The specific properties of neutrons (possibility of tuning the contrast by isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons) makes it particularly interesting in the fields of soft matter, biophysics and magnetic thin films. This course is a basic introduction to the technique and does not address the magnetic reflectivity. It is composed of three parts describing respectively its principle and its formalism, the experimental aspects of the method (spectrometers, samples) and two examples related to the materials for energy.

  19. NEUTRON SOURCES

    DOEpatents

    Richmond, J.L.; Wells, C.E.

    1963-01-15

    A neutron source is obtained without employing any separate beryllia receptacle, as was formerly required. The new method is safer and faster, and affords a source with both improved yield and symmetry of neutron emission. A Be container is used to hold and react with Pu. This container has a thin isolating layer that does not obstruct the desired Pu--Be reaction and obviates procedures previously employed to disassemble and remove a beryllia receptacle. (AEC)

  20. NEUTRONIC REACTOR

    DOEpatents

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  1. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  2. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear

  3. Neutron-Proton Asymmetry Dependence of Spectroscopic Factors in Ar Isotopes

    SciTech Connect

    Lee, Jenny; Tsang, Betty; Shapira, Dan

    2010-01-01

    Spectroscopic factors have been extracted for proton-rich 34Ar and neutron-rich 46Ar using the (p, d) neutron transfer reaction. The experimental results show little reduction of the ground state neutron spectroscopic factor of the proton-rich nucleus 34Ar compared to that of 46Ar. The results suggest that correlations, which generally reduce such spectroscopic factors, do not depend strongly on the neutron-proton asymmetry of the nucleus in this isotopic region as was reported in knockout reactions. The present results are consistent with results from systematic studies of transfer reactions but inconsistent with the trends observed in knockout reaction measurements.

  4. Estimation of neutron energy for first resonance from absorption cross section for thermal neutrons

    NASA Technical Reports Server (NTRS)

    Bogart, Donald

    1951-01-01

    Examination of published data for some 52 isotopes indicates that the neutron energy for which the first resonance occurs is related to the magnitude of the thermal absorption cross section. The empirical relation obtained is in qualitative agreement with the results of a simplified version of the resonance theory of the nucleus of Breit-Wigner.

  5. Zinc deficiency.

    PubMed

    Tuerk, Melanie J; Fazel, Nasim

    2009-03-01

    Zinc plays an essential role in numerous biochemical pathways. Zinc deficiency affects many organ systems, including the integumentary, gastrointestinal, central nervous system, immune, skeletal, and reproductive systems. This article aims to discuss zinc metabolism and highlights a few of the diseases associated with zinc deficiency. Zinc deficiency results in dysfunction of both humoral and cell-mediated immunity and increases the susceptibility to infection. Supplementation of zinc has been shown to reduce the incidence of infection as well as cellular damage from increased oxidative stress. Zinc deficiency is also associated with acute and chronic liver disease. Zinc supplementation protects against toxin-induced liver damage and is used as a therapy for hepatic encephalopathy in patients refractory to standard treatment. Zinc deficiency has also been implicated in diarrheal disease, and supplementation has been effective in both prophylaxis and treatment of acute diarrhea. This article is not meant to review all of the disease states associated with zinc deficiency. Rather, it is an introduction to the influence of the many roles of zinc in the body, with an extensive discussion of the influence of zinc deficiency in selected diseases. Zinc supplementation may be beneficial as an adjunct to treatment of many disease states.

  6. Nucleus from string theory

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Morita, Takeshi

    2011-08-01

    In generic holographic QCD, we find that baryons are bound to form a nucleus, and that its radius obeys the empirically-known mass-number (A) dependence r∝A1/3 for large A. Our result is robust, since we use only a generic property of D-brane actions in string theory. We also show that nucleons are bound completely in a finite volume. Furthermore, employing a concrete holographic model (derived by Hashimoto, Iizuka, and Yi, describing a multibaryon system in the Sakai-Sugimoto model), the nuclear radius is evaluated as O(1)×A1/3[fm], which is consistent with experiments.

  7. Reality of comet nucleus.

    NASA Technical Reports Server (NTRS)

    Lyttleton, R. A.

    1972-01-01

    The prime problem of a comet mission must be to settle whether the cometary nucleus has an actual tangible material existence, or whether it arises from some optical effect present only at times within comets. The absence of any large particles in a comet seems to be demonstrated by certain meteor showers. A feature that would seem to indicate that a comet consists primarily of a swarm of particles is that the coma in general contracts as the comet approaches the sun, roughly in proportion within the distance, and then expands again as it recedes.

  8. Neutrino-nucleus interactions

    SciTech Connect

    Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  9. Electroweak Measurements of Neutron Densities in CREX and PREX at JLab, USA

    SciTech Connect

    Horowitz, Charles J.; Kumar, Krishna S.; Michaels, Robert W.

    2014-02-01

    Measurement of the parity-violating electron scattering asymmetry is an established technique at Jefferson Lab and provides a new opportunity to measure the weak charge distribution and hence pin down the neutron radius in nuclei in a relatively clean and model-independent way. This is because the Z boson of the weak interaction couples primarily to neutrons. We will describe the PREX and CREX experiments on ${}^{208}$Pb and ${}^{48}$Ca respectively; these are both doubly-magic nuclei whose first excited state can be discriminated by the high resolution spectrometers at JLab. The heavier lead nucleus, with a neutron excess, provides an interpretation of the neutron skin thickness in terms of properties of bulk neutron matter. For the lighter ${}^{48}$Ca nucleus, which is also rich in neutrons, microscopic nuclear theory calculations are feasible and are sensitive to poorly constrained 3-neutron forces.

  10. Introduction to neutron stimulated emission computed tomography.

    PubMed

    Floyd, Carey E; Bender, Janelle E; Sharma, Amy C; Kapadia, Anuj; Xia, Jessie; Harrawood, Brian; Tourassi, Georgia D; Lo, Joseph Y; Crowell, Alexander; Howell, Calvin

    2006-07-21

    Neutron stimulated emission computed tomography (NSECT) is presented as a new technique for in vivo tomographic spectroscopic imaging. A full implementation of NSECT is intended to provide an elemental spectrum of the body or part of the body being interrogated at each voxel of a three-dimensional computed tomographic image. An external neutron beam illuminates the sample and some of these neutrons scatter inelastically, producing characteristic gamma emission from the scattering nuclei. These characteristic gamma rays are acquired by a gamma spectrometer and the emitting nucleus is identified by the emitted gamma energy. The neutron beam is scanned over the body in a geometry that allows for tomographic reconstruction. Tomographic images of each element in the spectrum can be reconstructed to represent the spatial distribution of elements within the sample. Here we offer proof of concept for the NSECT method, present the first single projection spectra acquired from multi-element phantoms, and discuss potential biomedical applications.

  11. Higgs-boson production in nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Cross-section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two-photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two-photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  12. Higgs-Boson Production in Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  13. Higgs-Boson Production in Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  14. Higgs-boson production in nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Cross-section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two-photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two-photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  15. Nuclear Sturcture Along the Neutron Dripline: MoNa-LISA and the dinueutron system

    SciTech Connect

    Spyou, Artemis

    2012-09-05

    Nuclei with extreme neutron-to-proton ratios were found to present different structures from what was known for the stable ones. With the current facilities we can now study nuclei that lie even beyond the neutron drip line. At the National Superconducting Cyclotron Laboratory at Michigan State University we use the MoNA/Sweeper setup to perform such studies of neutron unbound nuclei. In a typical experiment, a radioactive beam is employed to produce the nucleus of interest. This unbound nucleus immediately decays into a neutron and a remaining charged fragment, both of which are detected and used to reconstruct the original nucleus and study its properties. In this Colloquium, new exciting findings from recent experiments will be presented. These include the first observation of a dineutron decay from 16Be, the exploration of the “south shore” of the Island of Inversion and the first evidence of the decay of the troubling nucleus 26O.

  16. /sup 18/O as a core plus two valence neutrons: A three-body Faddeev calculation

    SciTech Connect

    Ueta, K.; Miyake, H.; Mizukami, A.

    1983-01-01

    The nucleus /sup 18/O is studied assuming a three-body model: two neutrons outside an inert core of /sup 16/O: and solving the Faddeev equations. The calculated spectrum is in good agreement with experiment.

  17. Neutron therapy of cancer

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.; Nellans, H. N.; Shaw, M. J.

    1969-01-01

    Reports relate applications of neutrons to the problem of cancer therapy. The biochemical and biophysical aspects of fast-neutron therapy, neutron-capture and neutron-conversion therapy with intermediate-range neutrons are presented. Also included is a computer program for neutron-gamma radiobiology.

  18. Neutron halo in deformed nuclei

    SciTech Connect

    Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang

    2010-07-15

    Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus {sup 44}Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.

  19. Networking the nucleus

    PubMed Central

    Rajapakse, Indika; Scalzo, David; Tapscott, Stephen J; Kosak, Steven T; Groudine, Mark

    2010-01-01

    The nuclei of differentiating cells exhibit several fundamental principles of self-organization. They are composed of many dynamical units connected physically and functionally to each other—a complex network—and the different parts of the system are mutually adapted and produce a characteristic end state. A unique cell-specific signature emerges over time from complex interactions among constituent elements that delineate coordinate gene expression and chromosome topology. Each element itself consists of many interacting components, all dynamical in nature. Self-organizing systems can be simplified while retaining complex information using approaches that examine the relationship between elements, such as spatial relationships and transcriptional information. These relationships can be represented using well-defined networks. We hypothesize that during the process of differentiation, networks within the cell nucleus rewire according to simple rules, from which a higher level of order emerges. Studying the interaction within and among networks provides a useful framework for investigating the complex organization and dynamic function of the nucleus. PMID:20664641

  20. NEUTRONIC REACTOR

    DOEpatents

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  1. NEUTRON SOURCE

    DOEpatents

    Foster, J.S. Jr.

    1960-04-19

    A compact electronic device capable of providing short time high density outputs of neutrons is described. The device of the invention includes an evacuated vacuum housing adapted to be supplied with a deuterium, tritium, or other atmosphere and means for establishing an electrical discharge along a path through the gas. An energized solenoid is arranged to constrain the ionized gas (plasma) along the path. An anode bearing adsorbed or adherent target material is arranged to enclose the constrained plasma. To produce neutrons a high voltage is applied from appropriate supply means between the plasma and anode to accelerate ions from the plasma to impinge upcn the target material, e.g., comprising deuterium.

  2. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Szilard, L.

    1957-09-24

    Reactors of the type employing plates of natural uranium in a moderator are discussed wherein the plates are um-formly disposed in parallel relationship to each other thereby separating the moderator material into distinct and individual layers. Each plate has an uninterrupted sunface area substantially equal to the cross-sectional area of the active portion of the reactor, the particular size of the plates and the volume ratio of moderator to uranium required to sustain a chain reaction being determinable from the known purity of these materials and other characteristics such as the predictable neutron losses due to the formation of radioactive elements of extremely high neutron capture cross section.

  3. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  4. The Checkerboard Model of the Nucleus

    NASA Astrophysics Data System (ADS)

    Lach, Theodore

    2014-03-01

    The Lach Checker Board Model (CBM) of the nucleus and the associated ESM predicts that nature has 5 generations of quarks not 3. The heaviest generation in the Extended Standard Model (ESM) has a t' quark of mass 65 GeV and a b' quark of 42.4 GeV. The lepton in this generation has a mass of 27 GeV. Part of this theory evolved because it appears that the quarks and lepton of each generation have masses related by the geometric mean. The Geometric mean of 65 and 27 is 42. Charge is conserved (+2/3 and -1 is -1/3). Details of how this theory evolved is found on my web site (http://checkerboard.dnsalias.net) or in the following references [T.M. Lach, Checkerboard Structure of the Nucleus, Infinite Energy, Vol. 5, issue 30, (2000); T.M. Lach, Masses of the Sub-Nuclear Particles, nucl-th/0008026, @http://xxx.lanl.gov/] One independent check of this CB model is that the wavelength of the ``up'' quark orbiting inside the proton at 84.8123% the speed of light around the ``dn'' quark in the center turns out to be exactly one DeBroglie wavelength. This explains the mass of the proton and neutron and their magnetic moments. This along with the beautiful symmetric 2D structure of the He nucleus led to the evolution of this theory. One would expect a t'-anti t' meson of mass of about 130 GeV.

  5. New Parameterization of Neutron Absorption Cross Sections

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Wilson, John W.; Cucinotta, Francis A.

    1997-01-01

    Recent parameterization of absorption cross sections for any system of charged ion collisions, including proton-nucleus collisions, is extended for neutron-nucleus collisions valid from approx. 1 MeV to a few GeV, thus providing a comprehensive picture of absorption cross sections for any system of collision pairs (charged or uncharged). The parameters are associated with the physics of the problem. At lower energies, optical potential at the surface is important, and the Pauli operator plays an increasingly important role at intermediate energies. The agreement between the calculated and experimental data is better than earlier published results.

  6. New Parameterization of Neutron Absorption Cross Sections

    NASA Astrophysics Data System (ADS)

    Tripathi, Ram K.; Wilson, John W.; Cucinotta, Francis A.

    1997-06-01

    Recent parameterization of absorption cross sections for any system of charged ion collisions, including proton-nucleus collisions, is extended for neutron-nucleus collisions valid from approx. 1 MeV to a few GeV, thus providing a comprehensive picture of absorption cross sections for any system of collision pairs (charged or uncharged). The parameters are associated with the physics of the problem. At lower energies, optical potential at the surface is important, and the Pauli operator plays an increasingly important role at intermediate energies. The agreement between the calculated and experimental data is better than earlier published results.

  7. Meson multiplicity versus energy in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Atwater, T. W.; Freier, P. S.

    1986-01-01

    A systematic study of meson multiplicity as a function of energy at energies up to 100 GeV/u in nucleus-nucleus collisions has been made, using cosmic-ray data in nuclear emulsion. The data are consistent with simple nucleon-nucleon superposition models. Multiplicity per interacting nucleon in AA collisions does not appear to differ significantly from pp collisions.

  8. Neutron moderation theory with thermal motion of the moderator nuclei

    NASA Astrophysics Data System (ADS)

    Rusov, V. D.; Tarasov, V. A.; Chernezhenko, S. A.; Kakaev, A. A.; Smolyar, V. P.

    2017-09-01

    In this paper we present the analytical expression for the neutron scattering law for an isotropic source of neutrons, obtained within the framework of the gas model with the temperature of the moderating medium as a parameter. The obtained scattering law is based on the solution of the general kinematic problem of elastic scattering of neutrons on nuclei in the L-system. Both the neutron and the nucleus possess arbitrary velocities in the L-system. For the new scattering law we obtain the flux densities and neutron moderation spectra as functions of temperature for the reactor fissile medium. The expressions for the moderating neutrons spectra allow reinterpreting the physical nature of the underlying processes in the thermal region.

  9. Neutron damage studies of organic materials with NQR spectroscopy

    SciTech Connect

    Hintenlang, D.E.; Jamil, K. )

    1992-01-01

    Noninvasive techniques for the evaluation of radiation damage to materials exposed to neutrons provide valuable methods for monitoring neutron-induced radiation damage. Radiation damage to many organic materials is difficult to monitor without destructive testing. The authors present a new technique for the evaluation of neutron-induced radiation damage based on nuclear quadrupole resonance (NQR) techniques. This demonstrates the NQR response to neutron damage in two organic materials and provides quantitative estimates of microdosimetry and damage sites associated with neutron-induced damage in these materials. They have used {sup 14}N as a probe nucleus to detect molecular bonding changes induced by neutron irradiation. For these studies, two simple, nitrogen containing, organic materials known to provide strong NQR signals were chosen: urea (CO(NH{sub 2}){sub 2}) and thiourea (CS(NH{sub 2}){sub 2}).

  10. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Khan, Ferdous; Townsend, Lawrence W.

    1993-01-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies.

  11. Compound-Nucleus Formation Following Direct Interactions to Highly-Excited Final States

    SciTech Connect

    Dietrich, F. S.

    2008-04-17

    When direct reactions populate highly excited, unbound configurations in the residual nucleus, the nucleus may further evolve into a compound nucleus. Alternatively, the residual system may decay by emitting particles into the continuum. Understanding the relative weights of these two processes as a function of the angular momentum and parity deposited in the nucleus is important for the surrogate-reaction technique. A particularly interesting case is compound-nucleus formation via the (d,p) reaction, which may be a useful tool for forming compound nuclei off the valley of stability in inverse-kinematics experiments. We present here a study of the compound formation probability for a closely-related direct reaction, direct-semidirect radiative neutron capture.

  12. The Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio

    Exciting new broadband observations of the galactic nucleus have placed the heart of the Milky Way under intense scrutiny in recent years. This has been due in part to the growing interest from theorists motivated to study the physics of black hole accretion, magnetized gas dynamics, and unusual star formation. The center of our Galaxy is now known to harbor the most compelling supermassive black hole candidate, weighing in at 3-4 million solar masses. Its nearby environment is comprised of a molecular dusty ring, clusters of evolved and young stars, diffuse hot gas, ionized gas streamers, and several supernova remnants. This chapter will focus on the physical makeup of this dynamic region and the feasibility of actually imaging the black hole's shadow in the coming decade with mm interferometry.

  13. Neutronic reactor

    DOEpatents

    Carleton, John T.

    1977-01-25

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.

  14. NEUTRONIC REACTORS

    DOEpatents

    Anderson, H.L.

    1958-10-01

    The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

  15. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  16. Recent Advances in Neutron Physics

    ERIC Educational Resources Information Center

    Feshbach, Herman; Sheldon, Eric

    1977-01-01

    Discusses new studies in neutron physics within the last decade, such as ultracold neutrons, neutron bottles, resonance behavior, subthreshold fission, doubly radiative capture, and neutron stars. (MLH)

  17. Recent Advances in Neutron Physics

    ERIC Educational Resources Information Center

    Feshbach, Herman; Sheldon, Eric

    1977-01-01

    Discusses new studies in neutron physics within the last decade, such as ultracold neutrons, neutron bottles, resonance behavior, subthreshold fission, doubly radiative capture, and neutron stars. (MLH)

  18. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  19. Neutron reflecting supermirror structure

    DOEpatents

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  20. Structure and reactions of light neutron rich nuclei

    SciTech Connect

    Esbensen, H.

    1993-01-01

    Radioactive beam experiments have made it possible to study the structure of nuclei at the neutron drip line. Pair correlations play a crucial role in such nuclei and characteristic features include an extended neutron halo density and a large dipole strength near threshold. The most detailed studies have been performed for [sup 11]Li. I will present a 3-body model that explains the main features of the data obtained for this nucleus.

  1. Structure and reactions of light neutron rich nuclei

    SciTech Connect

    Esbensen, H.

    1993-04-01

    Radioactive beam experiments have made it possible to study the structure of nuclei at the neutron drip line. Pair correlations play a crucial role in such nuclei and characteristic features include an extended neutron halo density and a large dipole strength near threshold. The most detailed studies have been performed for {sup 11}Li. I will present a 3-body model that explains the main features of the data obtained for this nucleus.

  2. Measurements of neutron skin in calcium and lead

    NASA Astrophysics Data System (ADS)

    Michaels, Robert

    2017-01-01

    Measurement of the parity-violating electron scattering asymmetry from 208Pb has demonstrated a new opportunity at Jefferson Lab to measure the weak charge form factor and hence pin down the neutron radius in nuclei in a relatively clean and model-independent way. This is because the Z boson of the weak interaction couples primarily to neutrons. We will describe the PREX and CREX experiments on 208Pb and 48Ca respectively. PREX-I ran in 2010, and CREX and a second run of PREX are currently in preparation. These are both doubly-magic nuclei whose first excited state can be discriminated by the high resolution spectrometers at JLab. The heavier lead nucleus, with a neutron excess, provides an interpretation of the neutron skin thickness in terms of properties of bulk neutron matter. For the lighter 48Ca nucleus, which is also rich in neutrons, microscopic nuclear theory calculations are feasible and are sensitive to poorly constrained 3-neutron forces. The measuements are a fundamental test of nuclear structure with applications to heavy ion research and neutron stars. Jefferson Science Associates, LLC, which operates Jefferson Lab for the U.S. DOE under U.S. DOE contract DE-AC05-060R23177.

  3. The intercalatus nucleus of Staderini.

    PubMed

    Cascella, Marco

    2016-01-01

    Rutilio Staderini was one of the leading Italian anatomists of the twentieth century, together with some scientists, such as Giulio Chiarugi, Giovanni Vitali, and others. He was also a member of a new generation of anatomists. They had continued the tradition of the most famous Italian scientists, which started from the Renaissance up until the nineteenth century. Although he carried out important studies of neuroanatomy and comparative anatomy, as well as embryology, his name is rarely remembered by most medical historians. His name is linked to the nucleus he discovered: the Staderini nucleus or intercalated nucleus, a collection of nerve cells in the medulla oblongata located lateral to the hypoglossal nucleus. This article focuses on the biography of the neuroanatomist as well as the nucleus that carries his name and his other research, especially on comparative anatomy and embryology.

  4. Cobalamin deficiency.

    PubMed

    Herrmann, Wolfgang; Obeid, Rima

    2012-01-01

    Cobalamin (Cbl, vitamin B12) consists of a corrinoid structure with cobalt in the centre of the molecule. Neither humans nor animals are able to synthesize this vitamin. Foods of animal source are the only natural source of cobalamin in human diet. There are only two enzymatic reactions in mammalian cells that require cobalamin as cofactor. Methylcobolamin is a cofactor for methionine synthase. The enzyme methylmalonyl-CoA-mutase requires adenosylcobalamin as a cofactor. Therefore, serum concentrations of homocysteine (tHcy) and methylmalonic acid (MMA) will increase in cobalamin deficiency. The cobalamin absorption from diet is a complex process that involves different proteins: haptocorrin, intrinsic factor and transcobalamin (TC). Cobalamin that is bound to TC is called holotranscobalamin (holoTC) which is the metabolically active vitamin B12 fraction. HoloTC consists 6 and 20% of total cobalamin whereas 80% of total serum cobalamin is bound to another binding protein, haptocorrin. Cobalamin deficiency is common worldwide. Cobalamin malabsorption is common in elderly subjects which might explain low vitamin status. Subjects who ingest low amount of cobalamin like vegetarians develop vitamin deficiency. No single parameter can be used to diagnose cobalamin deficiency. Total serum cobalamin is neither sensitive nor it is specific for cobalamin deficiency. This might explain why many deficient subjects would be overlooked by utilizing total cobalamin as status marker. Concentration of holotranscobalamin (holoTC) in serum is an earlier marker that becomes decreased before total serum cobalamin. Concentrations of MMA and tHcy increase in blood of cobalamin deficient subjects. Despite limitations of these markers in patients with renal dysfunction, concentrations of MMA and tHcy are useful functional markers of cobalamin status. The combined use of holoTC and MMA assays may better indicate cobalamin status than either of them. Because Cbl deficiency is a risk factor

  5. COHERENT at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Scholberg, Kate; Coherent Collaboration

    2016-03-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense isotropic flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure which is beneficial for background rejection. This talk will describe aspects of COHERENT, the experimental program underway to measure CEvNS (Coherent Elastic Neutrino-Nucleus Scattering) using low-energy nuclear recoil detectors.

  6. Measurement of the neutron capture cross section of 99Tc using ANNRI at J-PARC

    NASA Astrophysics Data System (ADS)

    Katabuchi, Tatsuya; Mizumoto, Motoharu; Igashira, Masayuki; Terada, Kazushi; Kimura, Atsushi; Nakamura, Shoji; Nakao, Taro; Iwamoto, Osamu; Iwamoto, Nobuyuki; Mizuyama, Kazuhito; Harada, Hideo; Hori, Jun-ich; Kino, Koichi

    2017-09-01

    The neutron capture cross section of 99Tc was measured using NaI(Tl) detectors of the Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI) at the Japan Proton Accelerator Research Complex (J-PARC) in the energy range from thermal to the keV energy region. Preliminary results were presented and compared with previous measurements and evaluations.

  7. Monte Carlo based dosimetry for neutron capture therapy of brain tumors

    NASA Astrophysics Data System (ADS)

    Zaidi, Lilia; Belgaid, Mohamed; Khelifi, Rachid

    2016-11-01

    Boron Neutron Capture Therapy (BNCT) is a biologically targeted, radiation therapy for cancer which combines neutron irradiation with a tumor targeting agent labeled with a boron10 having a high thermal neutron capture cross section. The tumor area is subjected to the neutron irradiation. After a thermal neutron capture, the excited 11B nucleus fissions into an alpha particle and lithium recoil nucleus. The high Linear Energy Transfer (LET) emitted particles deposit their energy in a range of about 10μm, which is of the same order of cell diameter [1], at the same time other reactions due to neutron activation with body component are produced. In-phantom measurement of physical dose distribution is very important for BNCT planning validation. Determination of total absorbed dose requires complex calculations which were carried out using the Monte Carlo MCNP code [2].

  8. Mechanics of the Nucleus

    PubMed Central

    Lammerding, Jan

    2015-01-01

    The nucleus is the distinguishing feature of eukaryotic cells. Until recently, it was often considered simply as a unique compartment containing the genetic information of the cell and associated machinery, without much attention to its structure and mechanical properties. This article provides compelling examples that illustrate how specific nuclear structures are associated with important cellular functions, and how defects in nuclear mechanics can cause a multitude of human diseases. During differentiation, embryonic stem cells modify their nuclear envelope composition and chromatin structure, resulting in stiffer nuclei that reflect decreased transcriptional plasticity. In contrast, neutrophils have evolved characteristic lobulated nuclei that increase their physical plasticity, enabling passage through narrow tissue spaces in their response to inflammation. Research on diverse cell types further demonstrates how induced nuclear deformations during cellular compression or stretch can modulate cellular function. Pathological examples of disturbed nuclear mechanics include the many diseases caused by mutations in the nuclear envelope proteins lamin A/C and associated proteins, as well as cancer cells that are often characterized by abnormal nuclear morphology. In this article, we will focus on determining the functional relationship between nuclear mechanics and cellular (dys-)function, describing the molecular changes associated with physiological and pathological examples, the resulting defects in nuclear mechanics, and the effects on cellular function. New insights into the close relationship between nuclear mechanics and cellular organization and function will yield a better understanding of normal biology and will offer new clues into therapeutic approaches to the various diseases associated with defective nuclear mechanics. PMID:23737203

  9. NEUTRONIC REACTORS

    DOEpatents

    Vernon, H.C.

    1959-01-13

    A neutronic reactor of the heterogeneous, fluid cooled tvpe is described. The reactor is comprised of a pressure vessel containing the moderator and a plurality of vertically disposed channels extending in spaced relationship through the moderator. Fissionable fuel material is placed within the channels in spaced relationship thereto to permit circulation of the coolant fluid. Separate means are provided for cooling the moderator and for circulating a fluid coolant thru the channel elements to cool the fuel material.

  10. Dual-sided microstructured semiconductor neutron detectors (DSMSNDs)

    NASA Astrophysics Data System (ADS)

    Fronk, Ryan G.; Bellinger, Steven L.; Henson, Luke C.; Ochs, Taylor R.; Smith, Colten T.; Kenneth Shultis, J.; McGregor, Douglas S.

    2015-12-01

    Microstructured semiconductor neutron detectors (MSNDs) have in recent years received much interest as high-efficiency replacements for thin-film-coated thermal neutron detectors. The basic device structure of the MSND involves micro-sized trenches that are etched into a vertically-oriented pvn-junction diode that are backfilled with a neutron converting material. Neutrons absorbed within the converting material induce fission of the parent nucleus, producing a pair of energetic charged-particle reaction products that can be counted by the diode. The MSND deep-etched microstructures produce good neutron-absorption and reaction-product counting efficiencies, offering a 10× improvement in intrinsic thermal neutron detection efficiency over thin-film-coated devices. Performance of present-day MSNDs are nearing theoretical limits; streaming paths between the conversion-material backfilled trenches, allow a considerable fraction of neutrons to pass undetected through the device. Dual-sided microstructured semiconductor neutron detectors (DSMSNDs) have been developed that utilize a complementary second set of trenches on the back-side of the device to count streaming neutrons. DSMSND devices are theoretically capable of greater than 80% intrinsic thermal neutron detection efficiency for a 1-mm thick device. The first such prototype DSMSNDs, presented here, have achieved 29.48±0.29% nearly 2× better than MSNDs with similar microstructure dimensions.

  11. A proton density bubble in the doubly magic 34Si nucleus

    NASA Astrophysics Data System (ADS)

    Mutschler, A.; Lemasson, A.; Sorlin, O.; Bazin, D.; Borcea, C.; Borcea, R.; Dombrádi, Z.; Ebran, J.-P.; Gade, A.; Iwasaki, H.; Khan, E.; Lepailleur, A.; Recchia, F.; Roger, T.; Rotaru, F.; Sohler, D.; Stanoiu, M.; Stroberg, S. R.; Tostevin, J. A.; Vandebrouck, M.; Weisshaar, D.; Wimmer, K.

    2016-10-01

    Many properties of the atomic nucleus, such as vibrations, rotations and incompressibility, can be interpreted as due to a two-component quantum liquid of protons and neutrons. Electron scattering measurements on stable nuclei demonstrate that their central densities are saturated, as for liquid drops. In exotic nuclei near the limits of mass and charge, with large imbalances in their proton and neutron numbers, the possibility of a depleted central density, or a `bubble’ structure, has been discussed in a recurrent manner since the 1970s. Here we report first experimental evidence that points to a depletion of the central density of protons in the short-lived nucleus 34Si. The proton-to-neutron density asymmetry in 34Si offers the possibility to place constraints on the density and isospin dependence of the spin-orbit force--on which nuclear models have disagreed for decades--and on its stabilizing effect towards limits of nuclear existence.

  12. A proton density bubble in the doubly magic 34Si nucleus

    NASA Astrophysics Data System (ADS)

    Mutschler, A.; Lemasson, A.; Sorlin, O.; Bazin, D.; Borcea, C.; Borcea, R.; Dombrádi, Z.; Ebran, J.-P.; Gade, A.; Iwasaki, H.; Khan, E.; Lepailleur, A.; Recchia, F.; Roger, T.; Rotaru, F.; Sohler, D.; Stanoiu, M.; Stroberg, S. R.; Tostevin, J. A.; Vandebrouck, M.; Weisshaar, D.; Wimmer, K.

    2017-02-01

    Many properties of the atomic nucleus, such as vibrations, rotations and incompressibility, can be interpreted as due to a two-component quantum liquid of protons and neutrons. Electron scattering measurements on stable nuclei demonstrate that their central densities are saturated, as for liquid drops. In exotic nuclei near the limits of mass and charge, with large imbalances in their proton and neutron numbers, the possibility of a depleted central density, or a `bubble’ structure, has been discussed in a recurrent manner since the 1970s. Here we report first experimental evidence that points to a depletion of the central density of protons in the short-lived nucleus 34Si. The proton-to-neutron density asymmetry in 34Si offers the possibility to place constraints on the density and isospin dependence of the spin-orbit force--on which nuclear models have disagreed for decades--and on its stabilizing effect towards limits of nuclear existence.

  13. Thermal Neutron Capture Cross Section of {sup 22}Ne

    SciTech Connect

    Belgya, T.; Uberseder, E.; Petrich, D.; Kaeppeler, F.

    2009-01-28

    The radiative thermal neutron capture cross section of the astrophysically important {sup 22}Ne nucleus has been measured at the guided cold neutron beam of the Budapest Research Reactor. High-pressure gas-bottles filled with mixtures of enriched {sup 22}Ne and CH{sub 4} were used. The cross section was determined by means of the comparator method, and an improved decay-scheme obtained in this work. The new value for the thermal neutron cross section is 52.7{+-}0.7 mb, 18% larger than the accepted value. The influence of the new cross section on the astrophysical reaction rate is under investigation.

  14. Hyperon-nucleus potentials

    NASA Astrophysics Data System (ADS)

    Dover, C. B.; Gal, A.

    We review models for the interaction of baryons ( N, Λ, Σ and Ξ) with nuclei, emphasizing the underlying meson exchange picture. Starting from a phenomenological one boson exchange model (the Nijmegen potential, as an example) which accounts for the available NN, ΛN and ΣN two-body scattering data, we show how to construct the effective baryon-nucleon interaction ( G-matrix). Employing the folding model, we then obtain the many-body potentials for bound states in terms of the nuclear density and the appropriate spin-isospin weighted G-matrices. The models we emphasize most impose SU(3) constraints on baryon-baryon coupling constants SU(3) is broken through the use of physical masses), although we also compare with rough estimates based on quark model relations between coupling constants. We stress the essential unity and economy of such models, in which nucleon and hyperon-nucleus potentials are intimately related via SU(3), and the connection between the two-body and many-body potentials is preserved. We decompose the nuclear potentials into central and spin-orbit parts, each of which is isospin dependent. For nucleons, the microscopic origin of the isospin dependent Lane potential V1 N is clarified. For Λ and Σ hyperons, the one boson exchange model with SU(3) constraints leads to one-body spin-orbit strengths VLSB which are relatively weak ( VLSΛ ≈ 1.5-2 MeV, VLSΣ ≈ 2.5-;3 MeV, compared to VLSN ≈ 7-9 MeV). We demonstrate the interplay between symmetric and antisymmetric two-body spin-orbit forces which give rise to these results, as well as the special role of K and K ∗ exchange for hyperons. We contrast these results with predictions based on the naive quark model. From S and P-wave two-body interactions, a Lane potential for the Σ of depth V1 Σ ≈ 50-60 MeV is predicted although this result is somewhat uncertain. For the Ξ, the nuclear potential is very different in various models for the two-body interaction based on SU(3) or the quark

  15. Coulomb Excitation of the N = 50 nucleus 80Zn

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Ames, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Nilsson, T.; Pantea, M.; Perru, O.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; van Duppen, P.; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2008-05-01

    Neutron rich Zinc isotopes, including the N = 50 nucleus 80Zn, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2+ states. For the first time, an excited state in 80Zn was observed and the 21+ state in 78Zn was established. The measured B(E2,21+-->01+) values are compared to two sets of large scale shell model calculations. Both calculations reproduce the observed B(E2) systematics for the full Zinc isotopic chain. The results for N = 50 isotones indicate a good N = 50 shell closure and a strong Z = 28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78Ni.

  16. Separable representation of multichannel nucleon-nucleus optical potentials

    NASA Astrophysics Data System (ADS)

    Hlophe, L.; Elster, Ch.

    2017-05-01

    Background: One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship is cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g., (d ,p ) reactions, should be used. Those (d ,p ) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy dependent. Including excitations of the nucleus in the calculation requires a multichannel optical potential. The purpose of this paper is to introduce a separable, energy-dependent multichannel representation of complex, energy-dependent optical potentials that contain excitations of the nucleus and that fulfill reciprocity exactly. Methods: Momentum space Lippmann-Schwinger integral equations are solved with standard techniques to obtain the form factors for the separable representation. Results: Starting from energy-dependent multichannel optical potentials for neutron and proton scattering from 12C, separable representations based on a generalization of the Ernst-Shakin-Thaler (EST) scheme are constructed which fulfill reciprocity exactly. Applications to n +12C and p +12C scattering are investigated for energies from 0 to 50 MeV. Conclusions: We find that the energy-dependent separable representation of complex, energy-dependent phenomenological multichannel optical potentials describes scattering data with the same quality as the original potential.

  17. Diversity of neutron star properties at the fixed neutron-skin thickness of 208Pb

    NASA Astrophysics Data System (ADS)

    Alam, N.; Sulaksono, A.; Agrawal, B. K.

    2015-07-01

    We study the diversities in the properties of the neutron stars arising due to the different choices for the cross coupling between various mesons, which governs the density dependence of the nuclear symmetry energy in the extended relativistic mean-field (RMF) model. For this purpose, we obtain two different families of the extended RMF model corresponding to different nonlinear cross-coupling terms in the isovector part of the effective Lagrangian density. The lowest-order contributions for the δ mesons are also included. The different models within the same family yield wide variation in the value of neutron-skin thickness in the 208Pb nucleus. These models are employed to compute the neutron-star properties such as core-crust transition density, radius and red shift at canonical mass ( 1.4 M⊙) , tidal polarizability parameter, and threshold mass required for the enhanced cooling through the direct Urca process. Most of the neutron-star properties considered are significantly different(10-40%) for the different families of models at a smaller neutron-skin thickness (˜0.15 fm ) in the 208Pb nucleus.

  18. Finite-size effects and collective vibrations in the inner crust of neutron stars

    SciTech Connect

    Baroni, S.; Pastore, A.; Raimondi, F.; Barranco, F.; Vigezzi, E.

    2010-07-15

    We study the linear response of the inner crust of neutron stars within the random phase approximation, employing a Skyrme-type interaction as effective interaction. We adopt the Wigner-Seitz approximation, and consider a single unit cell of the Coulomb lattice that constitutes the inner crust, with a nucleus at its center, surrounded by a sea of free neutrons. With the use of an appropriate operator, it is possible to analyze in detail the properties of the vibrations of the surface of the nucleus and their interaction with the modes of the sea of free neutrons, and to investigate the roles of shell effects and of resonant states.

  19. High energy neutron radiography

    SciTech Connect

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-06-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos.

  20. Accelerator-driven boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Edgecock, Rob

    2014-05-01

    Boron Neutron Capture Therapy is a binary treatment for certain types of cancer. It works by loading the cancerous cells with a boron-10 carrying compound. This isotope has a large cross-section for thermal neutrons, the reaction producing a lithium nucleus and alpha particle that kill the cell in which they are produced. Recent studies of the boron carrier compound indicate that the uptake process works best in particularly aggressive cancers. Most studied is glioblastoma multiforme and a trial using a combination of BNCT and X-ray radiotherapy has shown an increase of nearly a factor of two in mean survival over the state of the art. However, the main technical problem with BNCT remains producing a sufficient flux of neutrons for a reasonable treatment duration in a hospital environment. This paper discusses this issue.

  1. [Thyrotropic deficiency].

    PubMed

    Chanson, P

    1998-11-15

    Central hypothyroidism (thyrotropic deficiency) is due to a defect in TSH secretion by thyrotrophs (or alternatively to an altered bioactivity of TSH). Central hypothyroidism is rare and is often associated with other pituitary deficiencies as it is generally encountered in case of hypothalamo-pituitary tumoral process. Clinical symptoms are milder than those of primary thyroid failure. Diagnosis is based on free T4 measurement whose level is decreased while TSH concentration is normal or minimally increased, reflecting an alteration in the bioactivity of TSH. Replacement therapy is monitored by T4 level measurement: the objective is to obtain normal T4 levels. TSH concentration must not be taken into account for the adjustment of the thyroxine doses.

  2. Reactions with the double-Borromean nucleus {sup 8}He

    SciTech Connect

    Lemasson, A.; Navin, A.; Rejmund, M.; France, G. de; Jacquot, B.; Raabe, R.; Stefan, I.; Bhattacharyya, S.; Bazin, D.; Beaumel, D.; Blumenfeld, Y.; Gupta, D.; Scarpaci, J. A.; Labiche, M.; Lemmon, R.; Nanal, V.

    2010-10-15

    Differential cross sections for elastic-scattering and neutron-transfer reactions along with cross sections for fusion in the {sup 8}He+{sup 65}Cu system are reported at energies above the Coulomb barrier (E{sub lab}= 19.9 and 30.6 MeV). The present work demonstrates the feasibility of using inclusive measurements of characteristic in-beam {gamma} rays with low-intensity ({approx}10{sup 5} pps) radioactive ion beams to obtain the residue cross sections for fusion and neutron transfer. Exclusive measurements of {gamma} rays in coincidence with light charged particles have been used to further characterize the direct reactions induced by this double-Borromean nucleus. Coupled reaction channels calculations are used to illustrate the important role played by the transfer channels and to help in understanding the influence of the structure of {sup 8}He on the reaction mechanism.

  3. Total absorption spectroscopy of N = 51 nucleus 85Se

    NASA Astrophysics Data System (ADS)

    Goetz, K. C.; Grzywacz, R. K.; Rykaczewski, K. P.; Karny, M.; Fialkowska, A.; Wolinska-Cichocka, M.; Rasco, B. C.; Zganjar, E. F.; Johnson, J. W.; Gross, C. J.

    2014-09-01

    An experimental campaign utilizing the Modular Total Absorption Spectrometer (MTAS) was conducted at the HRIBF facility in January of 2012. The campaign studied 22 isotopes, many of which were identified as the highest priority for decay heat analysis during a nuclear fuel cycle, see the report by the OECD-IAEA Nuclear Energy Agency in 2007. The case of 85Se will be discussed. 85Se is a Z = 34, N = 51 nucleus with the valence neutron located in the positive parity sd single particle state. Therefore, its decay properties are determined by interplay between first forbidden decays of the valence neutron and Gamow-Teller decay of a 78Ni core. Analysis of the data obtained during the January 2012 run indicates a significant increase of the beta strength function when compared with previous measurements, see Ref..

  4. Reactions with the double-Borromean nucleus He8

    NASA Astrophysics Data System (ADS)

    Lemasson, A.; Navin, A.; Keeley, N.; Rejmund, M.; Bhattacharyya, S.; Shrivastava, A.; Bazin, D.; Beaumel, D.; Blumenfeld, Y.; Chatterjee, A.; Gupta, D.; de France, G.; Jacquot, B.; Labiche, M.; Lemmon, R.; Nanal, V.; Nyberg, J.; Pillay, R. G.; Raabe, R.; Ramachandran, K.; Scarpaci, J. A.; Simenel, C.; Stefan, I.; Timis, C. N.

    2010-10-01

    Differential cross sections for elastic-scattering and neutron-transfer reactions along with cross sections for fusion in the He8+Cu65 system are reported at energies above the Coulomb barrier (Elab= 19.9 and 30.6 MeV). The present work demonstrates the feasibility of using inclusive measurements of characteristic in-beam γ rays with low-intensity (~105 pps) radioactive ion beams to obtain the residue cross sections for fusion and neutron transfer. Exclusive measurements of γ rays in coincidence with light charged particles have been used to further characterize the direct reactions induced by this double-Borromean nucleus. Coupled reaction channels calculations are used to illustrate the important role played by the transfer channels and to help in understanding the influence of the structure of He8 on the reaction mechanism.

  5. Quantum Monte Carlo Calculations of Nucleon-Nucleus Scattering

    NASA Astrophysics Data System (ADS)

    Wiringa, R. B.; Nollett, Kenneth M.; Pieper, Steven C.; Brida, I.

    2009-10-01

    We report recent quantum Monte Carlo (variational and Green's function) calculations of elastic nucleon-nucleus scattering. We are adding the cases of proton-^4He, neutron-^3H and proton-^3He scattering to a previous GFMC study of neutron-^4He scattering [1]. To do this requires generalizing our methods to include long-range Coulomb forces and to treat coupled channels. The two four-body cases can be compared to other accurate four-body calculational methods such as the AGS equations and hyperspherical harmonic expansions. We will present results for the Argonne v18 interaction alone and with Urbana and Illinois three-nucleon potentials. [4pt] [1] K.M. Nollett, S. C. Pieper, R.B. Wiringa, J. Carlson, and G.M. Hale, Phys. Rev. Lett. 99, 022502 (2007)

  6. Evaluation of the Prompt Fission Neutron Spectrum of Thermal-neutron Induced Fission in U-235

    NASA Astrophysics Data System (ADS)

    Trkov, A.; Capote, R.

    A new evaluation of the prompt fission neutron spectra (PFNS) for the neutron-induced fission of the U-235 nucleus is presented. By using differential data as "shape data" good consistency was achieved between selected sets of differential data. A fit of differential PFNS data with the generalised least-squares method using the GANDR code allowed the estimation of the uncertainties and correlations. All experimental data were consistently fitted in a model independent way giving a PFNS average energy of2.000 MeV with an estimated 9 keV uncertainty.

  7. Workshop on Analysis of Returned Comet Nucleus Samples

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This volume contains abstracts that were accepted by the Program Committee for presentation at the workshop on the analysis of returned comet nucleus samples held in Milpitas, California, January 16 to 18, 1989. The abstracts deal with the nature of cometary ices, cryogenic handling and sampling equipment, origin and composition of samples, and spectroscopic, thermal and chemical processing methods of cometary nuclei. Laboratory simulation experimental results on dust samples are reported. Some results obtained from Halley's comet are also included. Microanalytic techniques for examining trace elements of cometary particles, synchrotron x ray fluorescence and instrument neutron activation analysis (INAA), are presented.

  8. Neutron-neutron and neutron-photon correlations with FREYA

    NASA Astrophysics Data System (ADS)

    Vogt, R.; Randrup, J.

    2017-09-01

    For many years, the state of the art for modeling fission in radiation transport codes has involved sampling from average distributions. However, in a true fission event, the energies, momenta and multiplicities of emitted particles are correlated. The FREYA (Fission Reaction Event Yield Algorithm) code generates complete fission events. Event-by-event techniques such as those of FREYA are particularly useful because it is possible to obtain complete kinematic information on the prompt neutrons and photons emitted during the fission process. It is therefore possible to extract any desired correlation observables. We describe FREYA and compare our results with neutron-neutron, neutron-light fragment and neutron-photon correlation data.

  9. Surface albedo of cometary nucleus

    NASA Astrophysics Data System (ADS)

    Mukai, T.; Mukai, S.

    A variation of the albedo on the illuminated disk of a comet nucleus is estimated, taking into account the multiple reflection of incident light due to small scale roughness. The dependences of the average albedo over the illuminated disk on the degree of roughness and on the complex refractive index of the surface materials are examined. The variation estimates are compared with measurements of the nucleus albedo of Comet Halley (Reitsema et al., 1987).

  10. Nucleus-nucleus cold fusion reactions analyzed with the l-dependent ``fusion by diffusion'' model

    NASA Astrophysics Data System (ADS)

    Cap, T.; Siwek-Wilczyńska, K.; Wilczyński, J.

    2011-05-01

    We present a modified version of the Fusion by Diffusion (FBD) model aimed at describing the synthesis of superheavy nuclei in cold fusion reactions, in which a low excited compound nucleus emits only one neutron. The modified FBD model accounts for the angular momentum dependence of three basic factors determining the evaporation residue cross section: the capture cross section σcap(l), the fusion probability Pfus(l), and the survival probability Psurv(l). The fusion hindrance factor, the inverse of Pfus(l), is treated in terms of thermal fluctuations in the shape degrees of freedom and is expressed as a solution of the Smoluchowski diffusion equation. The l dependence of Pfus(l) results from the l-dependent potential energy surface of the colliding system. A new parametrization of the distance of starting point of the diffusion process is introduced. An analysis of a complete set of 27 excitation functions for production of superheavy nuclei in cold fusion reactions, studied in experiments at GSI Darmstadt, RIKEN Tokyo, and LBNL Berkeley, is presented. The FBD model satisfactorily reproduces shapes and absolute cross sections of all the cold fusion excitation functions. It is shown that the peak position of the excitation function for a given 1n reaction is determined by the Q value of the reaction and the height of the fission barrier of the final nucleus. This fact could possibly be used in future experiments (with well-defined beam energy) for experimental determination of the fission barrier heights.

  11. Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS)

    SciTech Connect

    Efremenko, Yuri; Hix, William Raphael

    2009-01-01

    In this paper we discuss opportunities for a neutrino program at the Spallation Neutrons Source (SNS) being commissioning at ORNL. Possible investigations can include study of neutrino-nuclear cross sections in the energy rage important for supernova dynamics and neutrino nucleosynthesis, search for neutrino-nucleus coherent scattering, and various tests of the standard model of electro-weak interactions.

  12. NEUTRON COUNTER

    DOEpatents

    Curtis, C.D.; Carlson, R.L.; Tubinis, M.P.

    1958-07-29

    An ionization chamber instrument is described for cylindrical electrodes with an ionizing gag filling the channber. The inner electrode is held in place by a hermetic insulating seal at one end of the outer electrode, the other end of the outer electrode being closed by a gas filling tube. The outer surface of the inner electrode is coated with an active material which is responsive to neutron bombardment, such as uranium235 or boron-10, to produce ionizing radiations in the gas. The transverse cross sectional area of the inner electrode is small in relation to that of the channber whereby substantially all of the radiations are directed toward the outer electrode.

  13. NEUTRON SOURCE

    DOEpatents

    Reardon, W.A.; Lennox, D.H.; Nobles, R.G.

    1959-01-13

    A neutron source of the antimony--beryllium type is presented. The source is comprised of a solid mass of beryllium having a cylindrical recess extending therein and a cylinder containing antimony-124 slidably disposed within the cylindrical recess. The antimony cylinder is encased in aluminum. A berylliunn plug is removably inserted in the open end of the cylindrical recess to completely enclose the antimony cylinder in bsryllium. The plug and antimony cylinder are each provided with a stud on their upper ends to facilitate handling remotely.

  14. Boron deficiency and transcript level changes.

    PubMed

    Camacho-Cristóbal, Juan J; Rexach, Jesús; Herrera-Rodríguez, M Begoña; Navarro-Gochicoa, M Teresa; González-Fontes, Agustín

    2011-08-01

    Boron (B) is an essential element for plant growth whose deficiency causes an alteration in the expression of a wide range of genes involved in several physiological processes. However, our understanding of the signal transduction pathways that trigger the B-deficiency responses in plants is still poor. The aims of this review are (i) to summarize the genes whose transcript levels are affected by B deficiency and (ii) to provide an update on recent findings that could help to understand how the signal(s) triggered by B deficiency is transferred to the nucleus to modulate gene expression. In this contribution we review the effects of B deficiency on the transcript level of genes related to B uptake and translocation, maintenance of cell wall and membrane function, nitrogen assimilation and stress response. In addition, we discuss the possible mediation of calcium, arabinogalactan-proteins and other cis-diol containing compounds in the signaling mechanisms that transfer the signal of B deficiency to nuclei. Finally, we conclude that the advance in the knowledge of the molecular basis of B deficiency response in plants will allow improving the tolerance of crops to B deficiency stress. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Sensitivity of cross sections for elastic nucleus-nucleus scattering to halo nucleus density distributions

    SciTech Connect

    Alkhazov, G. D.; Sarantsev, V. V.

    2012-12-15

    In order to clear up the sensitivity of the nucleus-nucleus scattering to the nuclear matter distributions in exotic halo nuclei, we have calculated differential cross sections for elastic scattering of the {sup 6}He and {sup 11}Li nuclei on several nuclear targets at the energy of 0.8 GeV/nucleon with different assumed nuclear density distributions in {sup 6}He and {sup 11}Li.

  16. Neutron Stars

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Ed

    Radio pulsars are unique laboratories for a wide range of physics and astrophysics. Understanding how they are created, how they evolve and where we find them in the Galaxy, with or without binary companions, is highly constraining of theories of stellar and binary evolution. Pulsars' relationship with a recently discovered variety of apparently different classes of neutron stars is an interesting modern astrophysical puzzle which we consider in Part I of this review. Radio pulsars are also famous for allowing us to probe the laws of nature at a fundamental level. They act as precise cosmic clocks and, when in a binary system with a companion star, provide indispensable venues for precision tests of gravity. The different applications of radio pulsars for fundamental physics will be discussed in Part II. We finish by making mention of the newly discovered class of astrophysical objects, the Fast Radio Bursts, which may or may not be related to radio pulsars or neutron stars, but which were discovered in observations of the latter.

  17. {alpha}-decay of the new isotope {sup 187}Po: Probing prolate structures beyond the neutron mid-shell at N = 104

    SciTech Connect

    Andreyev, A.N.; Antalic, S.

    2006-04-15

    The new neutron-deficient isotope {sup 187}Po has been identified in the complete fusion reaction {sup 46}Ti+{sup 144}Sm{yields}{sup 187}Po+3n at the velocity filter SHIP. Striking features of the {sup 187}Po {alpha} decay are the strongly-hindered decay to the spherical ground state and unhindered decay to a surprisingly low-lying deformed excited state at 286 keV in the daughter nucleus {sup 183}Pb. Based on the potential energy surface calculations, the {sup 187}Po ground state and the 286 keV excited state in {sup 183}Pb were interpreted as being of prolate origin. The systematic deviation of the {alpha}-decay properties in the lightest odd-A Po isotopes relative to the smooth behavior in the even-A neighbors is discussed. Improved data for the decay of {sup 187}Bi{sup m,g} were also obtained.

  18. Lev Landau and the concept of neutron stars

    NASA Astrophysics Data System (ADS)

    Yakovlev, Dmitrii G.; Haensel, Pawel; Baym, Gordon; Pethick, Christopher

    2013-03-01

    We review Lev Landau's role in the history of neutron star physics in the 1930s. According to the recollections of Rosenfeld (Proc. 16th Solvay Conference on Physics, 1974, p. 174), Landau improvised the concept of neutron stars in a discussion with Bohr and Rosenfeld just after the news of the discovery of the neutron reached Copenhagen in February 1932. We present arguments that the discussion must have taken place in March 1931, before the discovery of the neutron, and that they, in fact, discussed the paper written by Landau in Zurich in February 1931 but not published until February 1932 (Phys. Z. Sowjetunion 1, 285). In this paper, Landau mentioned the possible existence of dense stars that look like one giant nucleus; this could be regarded as an early theoretical prediction or anticipation of neutron stars, albeit prior to the discovery of the neutron. The coincidence of the dates of the neutron discovery and the publication of the paper has led to an erroneous association of Landau's paper with the discovery of the neutron. In passing, we outline Landau's contribution to the theory of white dwarfs and to the hypothesis of stars with neutron cores.

  19. Plasminogen deficiency.

    PubMed

    Celkan, Tiraje

    2017-01-01

    Plasminogen plays an important role in fibrinolysis as well as wound healing, cell migration, tissue modeling and angiogenesis. Congenital plasminogen deficiency is a rare autosomal recessive disorder that leads to the development of thick, wood-like pseudomembranes on mucosal surfaces, mostly seen in conjunctivas named as ''ligneous conjunctivitis''. Local conjunctival use of fresh frozen plazma (FFP) in combination with other eye medications such as cyclosporin and artificial tear drops may relieve the symptoms. Topical treatment with plasminogen eye drops is the most promising treatment that is not yet available in Turkey.

  20. Neutron Capture Reactions for Stockpile Stewardship and Basic Science

    SciTech Connect

    Parker, W; Agvaanluvsan, U; Becker, J; Wilk, P; Wu, C; Bredeweg, T; Couture, A; Haight, R; Jandel, M; O'Donnell, J; Reifarth, R; Rundberg, R; Ullmann, J; Vieira, D; Wouters, J; Sheets, S; Mitchell, G; Becvar, F; Krticka, M

    2007-08-04

    The capture process is a nuclear reaction in which a target atom captures an incident projectile, e.g. a neutron. The excited-state compound nucleus de-excites by emitting photons. This process creates an atom that has one more neutron than the target atom, so it is a different isotope of the same element. With low energy (slow) neutron projectiles, capture is the dominant reaction, other than elastic scattering. However, with very heavy nuclei, fission competes with capture as a method of de-excitation of the compound nucleus. With higher energy (faster) incident neutrons, additional reactions are also possible, such as emission of protons or emission of multiple neutrons. The probability of a particular reaction occurring (such as capture) is referred to as the cross section for that reaction. Cross sections are very dependent on the incoming neutron's energy. Capture reactions can be studied either using monoenergetic neutron sources or 'white' neutron sources. A 'white' neutron source has a wide range of neutron energies in one neutron beam. The advantage to the white neutron source is that it allows the study of cross sections as they depend on neutron energies. The Los Alamos Neutron Science Center, located at Los Alamos National Laboratory, provides an intense white neutron source. Neutrons there are created by a high-energy proton beam from a linear accelerator striking a heavy metal (tungsten) target. The neutrons range in energy from subthermal up to very fast - over 100 MeV in energy. Low-energy neutron reaction cross sections fluctuate dramatically from one target to another, and they are very difficult to predict by theoretical modeling. The cross sections for particular capture reactions are important for defense sciences, advanced reactor concepts, transmutation of radioactive wastes and nuclear astrophysics. We now have a strong collaboration between Lawrence Livermore National Laboratory, Los Alamos National Laboratory, North Carolina State

  1. Proton Transfer Reactions Studied Using the VANDLE Neutron Detector Array

    NASA Astrophysics Data System (ADS)

    Thornsberry, C. R.; Burcher, S.; Gryzwacz, R.; Jones, K. L.; Paulauskas, S. V.; Smith, K.; Vostinar, M.; Allen, J.; Bardayan, D. W.; Blankstein, D.; Deboer, J.; Hall, M.; O'Malley, P. D.; Reingold, C.; Tan, W.; Cizewski, J. A.; Lepailleur, A.; Walter, D.; Febbraro, M.; Pain, S. D.; Marley, S. T.

    2016-09-01

    Proton transfer reactions, such as (d,n), are powerful tools for the study of single particle proton states of exotic nuclei. Measuring the outgoing neutron allows for the extraction of spectroscopic information from the recoil nucleus. With the development of new radioactive ion beam facilities, such as FRIB in the U.S., comes the need for new tools for the study of reactions involving radioactive nuclei. Neutron detectors, such as VANDLE, are sensitive to gamma rays in addition to neutrons. This results in high background rates for measurements with high external trigger rates. The use of discriminating recoil particle detectors, such as phoswich detectors, allow for the selection of a clean recoil tag by separating the recoil nucleus of interest from unreacted RIB components. Developments of low energy proton transfer measurements in inverse kinematics and recent (d,n) results will be presented. This work supported in part by the U.S. Department of Energy and the National Science Foundation.

  2. Observables for polarized neutrons transmitted through polarized targets

    SciTech Connect

    Hnizdo, V. )

    1994-11-01

    A general and concise formalism is presented for the identification and evaluation of observables, including those that would indicate parity-conservation and/or time-reversal violation by the neutron-nucleus interaction, of experiments on the transmission of polarized neutrons through polarized nuclear targets. Statistical tensors are used for the description of the polarization states of the projectile and target, and the neutron-nucleus total cross section is decomposed into partial cross sections so that each corresponds to different ranks of the projectile and target statistical tensors and to a specific transfer of the orbital angular momentum. Each such partial cross section is associated with a correlation factor'' of particular parity-conservation and time-reversal symmetries, and is measurable by polarizing the projectile and target in states in which the statistical tensors have specific geometries, suggested by the simple geometric properties of the correlation factors.

  3. Neutron matter, symmetry energy and neutron stars

    SciTech Connect

    Stefano, Gandolfi; Steiner, Andrew W

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  4. Neutron matter, symmetry energy and neutron stars

    NASA Astrophysics Data System (ADS)

    Gandolfi, S.; Steiner, A. W.

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron- rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  5. Neutron standard data

    SciTech Connect

    Peelle, R.; Conde, H.

    1988-01-01

    The neutron standards are reviewed with emphasis on the evaluation for ENDFB-VI. Also discussed are the neutron spectrum of /sup 252/Cf spontaneous fission, activation cross sections for neutron flux measurement, and standards for neutron energies greater than 20 MeV. Recommendations are made for future work. 21 refs., 6 figs., 3 tabs.

  6. Borner Ball Neutron Detector

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Bonner Ball Neutron Detector measures neutron radiation. Neutrons are uncharged atomic particles that have the ability to penetrate living tissues, harming human beings in space. The Bonner Ball Neutron Detector is one of three radiation experiments during Expedition Two. The others are the Phantom Torso and Dosimetric Mapping.

  7. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  8. Neutrons in cancer therapy

    NASA Astrophysics Data System (ADS)

    Allen, Barry J.

    1995-03-01

    The role of neutrons in the management of cancer has a long history. However, it is only in recent years that neutrons are beginning to find an accepted place as an efficacious radiation modality. Fast neutron therapy is already well established for the treatment of certain cancers, and clinical trials are ongoing. Californium neutron sources are being used in brachytherapy. Boron neutron capture therapy has been well tested with thermal neutrons and epithermal neutron dose escalation studies are about to commence in the USA and Europe. Possibilities of neutron induced auger electron therapy are also discussed. With respect to chemotherapy, prompt neutron capture analysis is being used to study the dose optimization of chemotherapy in the management of breast cancer. The rationales behind these applications of neutrons in the management of cancer are examined.

  9. Nuclear reactor neutron shielding

    DOEpatents

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  10. Abrasion-ablation model for neutron production in heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Townsend, L. W.

    1997-01-01

    In intermediate energy nucleus-nucleus collisions, neutron production at forward angles is observed to occur with a Gaussian shape that is centered near the beam energy and extends to energies well above that of the beam. This paper presents an abrasion-ablation model for making quantitative predictions of the neutron spectrum. To describe neutrons produced from the abrasion step of the reaction where the projectile and target overlap, we use the Glauber model and include effects of final-state interactions. We then use the prefragment mass distribution from abrasion with a statistical evaporation model to estimate the neutron spectrum resulting from ablation. Measurements of neutron production from Ne and Nb beams are compared with calculations, and good agreement is found.

  11. NEUTRONIC REACTOR

    DOEpatents

    Stewart, H.B.

    1958-12-23

    A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.

  12. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  13. Development of a compact neutron source by a high voltage ring electrode discharge

    NASA Astrophysics Data System (ADS)

    Watanabe, Masayuki; Shuhei Nezu Team; Akihiro Takeuchi Team

    2016-10-01

    Neutron is one of the particles in atomic nucleus. Neutron beam has many physical characteristics as follows; (a) the transmittance in a matter is high and (b) the interaction with atomic nuclei is dominant. For these reasons, the development of the neutron beam source is expected in many engineering and medical applications. However, it is still under development, because there is no compact neutron beam source. The purpose of this research is to develop the compact neutron beam source. The neutron is generated by using the inertial electrostatic confinement fusion. In this experiment, a ring-shaped electrode (cathode) is used for the convergence of the deuterium nucleus. To product the neutron by a D-D nuclear reaction, it is necessary to apply a high voltage into the glow discharge plasma. The neutron production rate is approximately 105 n/s under the condition that the cathode voltage is -15kV and discharge current is 10 mA. The neutron production rate increases with increasing the ring cathode voltage or discharge current. It will be possible to increase the number of neutrons by the stabilizing of the high voltage and high current discharge.

  14. Neutron reactions in accreting neutron stars: a new pathway to efficient crust heating.

    PubMed

    Gupta, Sanjib S; Kawano, Toshihiko; Möller, Peter

    2008-12-05

    In our calculation of neutron star crust heating we include several key new model features. In earlier work electron capture (EC) only allowed neutron emission from the daughter ground state; here we calculate, in a deformed quasi-random-phase approximation (QRPA) model, EC decay rates to all states in the daughter that are allowed by Gamow-Teller selection rules and energetics. The subsequent branching ratios between the 1n,...,xn channels and the competing gamma decay are calculated in a Hauser-Feshbach model. In our multicomponent plasma model a single (EC, xn) reaction step can produce several neutron-deficient nuclei, each of which can further decay by (EC, xn). Hence, the neutron emission occurs more continuously with increasing depth as compared to that in a one-component plasma model.

  15. Deformations and magnetic rotations in the {sup 60}Ni nucleus

    SciTech Connect

    Torres, D. A.; Cristancho, F.; Andersson, L.-L.; Johansson, E. K.; Rudolph, D.; Fahlander, C.; Ekman, J.; Rietz, R. du; Andreoiu, C.; Carpenter, M. P.; Seweryniak, D.; Zhu, S.; Charity, R. J.; Chiara, C. J.; Hoel, C.; Pechenaya, O. L.; Reviol, W.; Sarantites, D. G.; Sobotka, L. G.; Baktash, C.

    2008-11-15

    Data from three experiments using the heavy-ion fusion evaporation-reaction {sup 36}Ar+{sup 28}Si have been combined to study high-spin states in the residual nucleus {sup 60}Ni, which is populated via the evaporation of four protons from the compound nucleus {sup 64}Ge. The GAMMASPHERE array was used for all the experiments in conjunction with a 4{pi} charged-particle detector arrays (MICROBALL, LUWUSIA) and neutron detectors (NEUTRON SHELL) to allow for the detection of {gamma} rays in coincidence with the evaporated particles. An extended {sup 60}Ni level scheme is presented, comprising more than 270{gamma}-ray transitions and 110 excited states. Their spins and parities have been assigned via directional correlations of {gamma} rays emitted from oriented states. Spherical shell-model calculations in the fp-shell characterize some of the low-spin states, while the experimental results of the rotational bands are analyzed with configuration-dependent cranked Nilsson-Strutinsky calculations.

  16. Neutron computed tomography of rat lungs.

    PubMed

    Metzke, R W; Runck, H; Stahl, C A; Schillinger, B; Calzada, E; Mühlbauer, M; Schulz, M; Schneider, M; Priebe, H-J; Wall, W A; Guttmann, J

    2011-01-07

    Using conventional methods, three-dimensional imaging of the lung is challenging because of the low contrast between air and tissue and the large differences in dimensions between various pulmonary structures. The small distal airway structures and the high air-to-tissue ratio of lung tissue require an imaging technique which reliably discriminates between air and water. The objective of this study was to assess whether neutron computed tomography would satisfy such a requirement. This method utilizes the unique characteristic of neutrons of directly interacting with the atomic nucleus rather than being scattered by the atomic shell. Neutron computed tomography was tested in rats and allowed differentiation of larger lung structures (e.g., lobes) and distal airways. Airways could be identified reliably down to the sixth bronchial generation, in some cases even down to the tenth generation. The lung could be stabilized for sufficiently long exposure times to achieve an image resolution of 50-60 µm, which is the current physical resolution limit of the neutron computed tomography facility. Neutron computed tomography allowed excellent lung imaging without the need for additional tissue preparation or contrast media. The enhanced structural resolution obtained by applying this new research technique may improve understanding of lung physiology and respiratory therapy.

  17. Semiconductor neutron detectors using depleted uranium oxide

    NASA Astrophysics Data System (ADS)

    Kruschwitz, Craig A.; Mukhopadhyay, Sanjoy; Schwellenbach, David; Meek, Thomas; Shaver, Brandon; Cunningham, Taylor; Auxier, Jerrad Philip

    2014-09-01

    This paper reports on recent attempts to develop and test a new type of solid-state neutron detector fabricated from uranium compounds. It has been known for many years that uranium oxide (UO2), triuranium octoxide (U3O8) and other uranium compounds exhibit semiconducting characteristics with a broad range of electrical properties. We seek to exploit these characteristics to make a direct-conversion semiconductor neutron detector. In such a device a neutron interacts with a uranium nucleus, inducing fission. The fission products deposit energy-producing, detectable electron-hole pairs. The high energy released in the fission reaction indicates that noise discrimination in such a device has the potential to be excellent. Schottky devices were fabricated using a chemical deposition coating technique to deposit UO2 layers a few microns thick on a sapphire substrate. Schottky devices have also been made using a single crystal from UO2 samples approximately 500 microns thick. Neutron sensitivity simulations have been performed using GEANT4. Neutron sensitivity for the Schottky devices was tested experimentally using a 252Cf source.

  18. Geometry Survey of the Time-of-Flight Neutron-Elastic Scattering (Antonella) Experiment

    SciTech Connect

    Oshinowo, Babatunde O.; Izraelevitch, Federico

    2016-10-17

    The Antonella experiment is a measurement of the ionization efficiency of nuclear recoils in silicon at low energies [1]. It is a neutron elastic scattering experiment motivated by the search for dark matter particles. In this experiment, a proton beam hits a lithium target and neutrons are produced. The neutron shower passes through a collimator that produces a neutron beam. The beam illuminates a silicon detector. With a certain probability, a neutron interacts with a silicon nucleus of the detector producing elastic scattering. After the interaction, a fraction of the neutron energy is transferred to the silicon nucleus which acquires kinetic energy and recoils. This kinetic energy is then dissipated in the detector producing ionization and thermal energy. The ionization produced is measured with the silicon detector electronics. On the other hand, the neutron is scattered out of the beam. A neutron-detector array (made of scintillator bars) registers the neutron arrival time and the scattering angle to reconstruct the kinematics of the neutron-nucleus interaction with the time-of-flight technique [2]. In the reconstruction equations, the energy of the nuclear recoil is a function of the scattering angle with respect to the beam direction, the time-of-flight of the neutron and the geometric distances between components of the setup (neutron-production target, silicon detector, scintillator bars). This paper summarizes the survey of the different components of the experiment that made possible the off-line analysis of the collected data. Measurements were made with the API Radian Laser Tracker and I-360 Probe Wireless. The survey was completed at the University of Notre Dame, Indiana, USA in February 2015.

  19. Swelling of nuclei embedded in neutron-gas and consequences for fusion

    NASA Astrophysics Data System (ADS)

    Umar, A. S.; Oberacker, V. E.; Horowitz, C. J.; Reinhard, P.-G.; Maruhn, J. A.

    2015-08-01

    Fusion of very neutron rich nuclei may be important to determine the composition and heating of the crust of accreting neutron stars. We present an exploratory study of the effect of the neutron-gas environment on the structure of nuclei and the consequences for pycnonuclear fusion cross sections in the neutron drip region. We studied the formation and properties of oxygen and calcium isotopes embedded in varying neutron-gas densities. We observe that the formed isotope is the drip-line nucleus for the given effective interaction. Increasing the neutron-gas density leads to the swelling of the nuclear density. We have used these densities to study the effect of this swelling on the fusion cross sections using the São Paulo potential. At high neutron-gas densities the cross section is substantially increased but at lower densities the modification is minimal.

  20. Toward a cancer therapy with boron-rich oligomeric phosphate diesters that target the cell nucleus

    PubMed Central

    Nakanishi, Akira; Guan, Lufeng; Kane, Robert R.; Kasamatsu, Harumi; Hawthorne, M. Frederick

    1999-01-01

    The viability of boron neutron capture therapy depends on the development of tumor-targeting agents that contain large numbers of boron-10 (10B) atoms and are readily taken up by cells. Here we report on the selective uptake of homogeneous fluorescein-labeled nido-carboranyl oligomeric phosphate diesters (nido-OPDs) by the cell nucleus and their long-term retention after their delivery into the cytoplasm of TC7 cells by microinjection. All nido-OPDs accumulated in the cell nucleus within 2 h after microinjection. However, nido-OPDs in which the carborane cage was located on a side chain attached to the oligomeric backbone were redistributed between both the cytoplasm and nucleus after 24 h of incubation, whereas nido-OPDs in which the carborane cage was located along the oligomeric backbone remained primarily in the nucleus. Furthermore, cell-free incubation of digitonin-permeabilized TC7 cells with the nido-OPDs resulted in nuclear accumulation of the compounds, thus corroborating the microinjection studies. Our observation of fluorescence primarily located in the cell nucleus indicates that nuclear-specific uptake of sufficient amounts of 10B for effective boron neutron capture therapy (≈108–109 10B atoms/tumor cell) via nido-OPDs is achievable. PMID:9874802

  1. Formin' actin in the nucleus.

    PubMed

    Baarlink, Christian; Grosse, Robert

    2014-01-01

    Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner.

  2. Tissue plasminogen activator in the bed nucleus of stria terminalis regulates acoustic startle.

    PubMed

    Matys, T; Pawlak, R; Strickland, S

    2005-01-01

    The bed nucleus of stria terminalis is a basal forebrain region involved in regulation of hormonal and behavioral responses to stress. In this report we demonstrate that bed nucleus of stria terminalis has a high and localized expression of tissue plasminogen activator, a serine protease with neuromodulatory properties and implicated in neuronal plasticity. Tissue plasminogen activator activity in the bed nucleus of stria terminalis is transiently increased in response to acute restraint stress or i.c.v. administration of a major stress mediator, corticotropin-releasing factor. We show that tissue plasminogen activator is important in bed nucleus of stria terminalis function using two criteria: 1, Neuronal activation in this region as measured by c-fos induction is reduced in tissue plasminogen activator-deficient mice; and 2, a bed nucleus of stria terminalis-dependent behavior, potentiation of acoustic startle by corticotropin-releasing factor, is attenuated in tissue plasminogen activator-deficient mice. These studies identify a novel site of tissue plasminogen activator expression in the mouse brain and demonstrate a functional role for this protease in the bed nucleus of stria terminalis.

  3. Beta-Decay and Delayed Neutron Emission of Very Neutron-Rich Nuclei

    NASA Astrophysics Data System (ADS)

    Borzov, I. N.

    2014-09-01

    Extended self-consistent beta-decay model has been applied for beta-decay rates and delayed multi-neutron emission probabilities of quasi-spherical neutron-rich isotopes. The Gamow-Teller and first-forbidden decays are treated within the coordinate-space formalism of the continuum QRPA based on the density functional theory description of the ground state. A new set of the Fayans density functional parameters (DF3a) have been employed giving a better spin-orbit splitting due to a stronger tensor term. A provision has been included to fix the odd particle in the proper orbit (before variation). This accounts for ground-state spin inversion effect which has been shown to exist in the region of the most neutron-rich doubly-magic nucleus 78Ni.

  4. Neutron field for boron neutron capture therapy

    SciTech Connect

    Kanda, K.; Kobayashi, T.

    1986-01-01

    Recently, the development of an epithermal neutron source has been required by medical doctors for deeper neutron penetrations, which is to be used for deep tumor treatment and diagnosis of metastasis. Several attempts have already been made to realize an epithermal neutron field, such as the undermoderated neutron beam, the filtered neutron beam, and the use of a fission plate. At present, these facilities can not be used for actual therapy. For the treatment of deep tumor, another method has been also proposed in normal water in the body is replaced by heavy water to attain a deeper neutron penetration. At Kyoto University's Research Reactor Institute, almost all physics problems have been settled relative to thermal neutron capture therapy that has been used for treating brain tumors and for biological experiments on malignant melanoma. Very recently feasibility studies to use heavy water have been started both theoretically and experimentally. The calculation shows the deeper penetration of neutrons as expected. Two kinds of experiments were done by using the KUR guide tube: 1. Thermal neutron penetration measurement. 2. Heavy water uptake in vitro sample. In addition to the above experiment using heavy water, the development of a new epithermal neutron source using a large fission plate is in progress, which is part of a mockup experiment of an atomic bomb field newly estimated.

  5. Functionalized active-nucleus complex sensor

    DOEpatents

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  6. Propagator modifications in elastic nucleon-nucleus scattering within the spectator expansion

    NASA Astrophysics Data System (ADS)

    Chinn, C. R.; Elster, Ch.; Thaler, R. M.; Weppner, S. P.

    1995-10-01

    The theory of the elastic scattering of a nucleon from a nucleus is presented in the form of a spectator expansion of the optical potential. Particular attention is paid to the treatment of the free projectile-nucleus propagator when the coupling of the struck target nucleon to the residual target must be taken into consideration. First order calculations within this framework are shown for neutron total cross sections and for proton scattering for a number of target nuclides at a variety of energies. The calculated values of these observables are in very good agreement with measurement.

  7. Calculation of delayed-neutron energy spectra in a QRPA-Hauser-Feshbach model

    SciTech Connect

    Kawano, Toshihiko; Moller, Peter; Wilson, William B

    2008-01-01

    Theoretical {beta}-delayed-neutron spectra are calculated based on the Quasiparticle Random-Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after {beta} decay to the granddaughter residual are more accurately calculated than in previous evaluations, including all the microscopic nuclear structure information, such as a Gamow-Teller strength distribution and discrete states in the granddaughter. The calculated delayed-neutron spectra agree reasonably well with those evaluations in the ENDF decay library, which are based on experimental data. The model was adopted to generate the delayed-neutron spectra for all 271 precursors.

  8. Nuclear proton and neutron distributions in the detection of weak interacting massive particles

    SciTech Connect

    Co', G.; Donno, V. De; Anguiano, M.; Lallena, A.M. E-mail: viviana.de.donno@le.infn.it E-mail: lallena@ugr.es

    2012-11-01

    In the evaluation of weak interacting massive particles (WIMPs) detection rates, the WIMP-nucleus cross section is commonly described by using form factors extracted from charge distributions. In this work, we use different proton and neutron distributions taken from Hartree-Fock calculations. We study the effects of this choice on the total detection rates for six nuclei having different neutron excess, and taken from different regions of the nuclear chart. The use of different distributions for protons and neutrons becomes more important if isospin-dependent WIMP-nucleon interactions are considered. The need for distinct descriptions of proton and neutron densities decreases with the lowering of detection energy thresholds.

  9. Measurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron Scattering

    DOE PAGES

    Abrahamyan, Sergey; Albataineh, Hisham; Aniol, Konrad; ...

    2012-03-15

    We report the first measurement of the parity-violating asymmetry APV in the elastic scattering of polarized electrons from 208Pb. APV is sensitive to the radius of the neutron distribution (Rn). The result APV = 0.656 ± 0.060 (stat) ± 0.013 (syst) corresponds to a difference between the radii of the neutron and proton distributions Rn-Rp = 0.33-0.18+0.16 fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus.

  10. Structures of the cation-deficient perovskite Nd(0.7)Ti(0.9)Al(0.1)O3 from high-resolution neutron powder diffraction in combination with group-theoretical analysis.

    PubMed

    Zhang, Zhaoming; Howard, Christopher J; Knight, Kevin S; Lumpkin, Gregory R

    2006-02-01

    The crystal structures of Nd(0.7)Ti(0.9)Al(0.1)O3, taken to represent the ideal Nd(2/3)TiO3, have been elucidated from 4 to 1273 K using high-resolution neutron powder diffraction in combination with group-theoretical analysis. The room-temperature structure is monoclinic in C2/m, on a cell with a = 7.6764 (1), b = 7.6430 (1), c = 7.7114 (1) A, beta = 90.042 (2) degrees . Pertinent features are the layered ordering of the A-site Nd cations/vacancies along the z axis and out-of-phase tilting of the (Ti/Al)O6 octahedra around both the x and z axes. From about 750 to 1273 K, the octahedra are tilted around just one axis (x axis) perpendicular to the direction of the cation ordering, giving rise to an orthorhombic structure with space-group symmetry Cmmm.

  11. Structure of Tz = 3 / 2 , 33P Nucleus

    NASA Astrophysics Data System (ADS)

    Lubna, Rebeka Sultana; Tripathi, Vandana; Tabor, Samuel; Tai, Pei-Laun; Bender, Peter

    2016-03-01

    The excited states of the nucleus 33P were populated by the 18O(18O, p-2n γ)33P fusion evaporation reaction at Elab = 25 MeV.Gammasphere was used along with the particle detector Microball to detect the γ emissions in coincidence with the emitted charged particles from the compound nucleus 36S. The auxiliary detector Microball was used to select the charged particle channel and to determine the exact position and the energy of the emitted proton. The purpose of finding the position and energy of proton was to determine a more precise angle between the recoil nucleus and the emitted γ which was later employed to get a better Doppler correction. Along with the selection of the proton channel, the γ- γ coincidence technique helped to isolate 33P from the other phosphorus isotopes and also reduced the contaminations from the dominant pure neutron channels. A number of transitions and states was identified that were not observed before. The 4 π arrangement of Gammasphere offered an excellent opportunity to measure the angular distribution of the electromagnetic emissions leading to the assignment of the spins for most of the new states. The experimental observations were compared to the shell model calculation using Work supported by the U.S. National Science Foundation under Grant No. 1401574.

  12. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  13. Low energy antiproton nucleus interactions

    SciTech Connect

    Sainio, M.E.; Ashford, V.; Sakitt, M.; Skelly, J.; Debbe, R.; Fickinger, W.; Marino, R.; Robinson, D.K.

    1984-05-01

    We have studied antiproton quasielastic scattering on Al, Cu, and Pb for two incident momenta, 514 and 633 MeV/c. Combining these data with other existing anti p nucleus data, we have performed a global analysis using a nonrelativistic optical potential of the Woods-Saxon form.

  14. Comet Odyssey: Comet Nucleus Orbiter

    NASA Astrophysics Data System (ADS)

    Weissman, P. R.; Smythe, W. D.; Spitz, S. J.; Bernard, D. E.; Bailey, R. W.

    2004-11-01

    Comet Odyssey is a comet nucleus orbiter mission, proposed to NASA's Discovery program in 2004. The goal of the mission is to completely characterize a cometary nucleus, both physically and compositionally, as can only be done during an extended rendezvous and not with a fast flyby. Comet Odyssey will launch in October 2009 on a Delta II 7925 and use a solar-electric powered spacecraft to effect a rendezvous with periodic comet 46P/Wirtanen in October 2013. Arrival is 96 days after perihelion at a heliocentric distance of 1.61 AU. Comet Odyssey's science payload includes narrow- and wide-angle CCD cameras, an infrared thermal imager, a gas chromatograph/mass spectrometer, an XRD/XRF dust compositional analyzer, and a dust counter and accumulation sensors. The Comet Odyssey spacecraft implementation uses a high heritage approach of flight proven and redundant hardware. The 3-engine ion propulsion subsystem is derived from that on Dawn but includes the capability for multi-engine thrusting. Comet Odyssey will approach the Wirtanen nucleus and make repeated slow flybys through the active cometary coma for a period of three months. It will then be placed in a ˜100-km radius orbit around the nucleus, with a plan to eventually orbit at 40-km altitude or less. From that altitude the narrow-angle camera will map the entire nucleus surface at 1 meter/pixel and the thermal imager will map at 19 meter/pixel. The orbital portion of the nominal mission will last 4.5 months, following the comet outward from the Sun to 3.3 AU as the comet evolves from an active to a quiescent state. En route to P/Wirtanen, the Comet Odyssey spacecraft will perform a close flyby of the 200-km diameter, G-type, main belt asteroid 19 Fortuna in January 2012 and make appropriate remote sensing observations.

  15. NEUTRONIC REACTOR

    DOEpatents

    Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

    1958-09-01

    This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

  16. Higgs and Particle Production in Nucleus-Nucleus Collisions

    NASA Astrophysics Data System (ADS)

    Liu, Zhe

    We apply a diagrammatic approach to study Higgs boson, a color-neutral heavy particle, pro- duction in nucleus-nucleus collisions in the saturation framework without quantum evolution. We assume the strong coupling constant much smaller than one. Due to the heavy mass and colorless nature of Higgs particle, final state interactions are absent in our calculation. In order to treat the two nuclei dynamically symmetric, we use the Coulomb gauge which gives the appropriate light cone gauge for each nucleus. To further eliminate initial state interactions we choose specific prescriptions in the light cone propagators. We start the calculation from only two nucleons in each nucleus and then demonstrate how to generalize the calculation to higher orders diagrammatically. We simplify the diagrams by the Slavnov-Taylor-Ward identities. The resulting cross section is factorized into a product of two Weizsacker-Williams gluon distributions of the two nuclei when the transverse momentum of the produced scalar particle is around the saturation momentum. To our knowledge this is the first process where an exact analytic formula has been formed for a physical process, involving momenta on the order of the saturation momentum, in nucleus-nucleus collisions in the quasi-classical approximation. Since we have performed the calculation in an unconventional gauge choice, we further confirm our results in Feynman gauge where the Weizsacker-Williams gluon distribution is interpreted as a transverse momentum broadening of a hard gluons traversing a nuclear medium. The transverse momentum factorization manifests itself in light cone gauge but not so clearly in Feynman gauge. In saturation physics there are two different unintegrated gluon distributions usually encountered in the literature: the Weizsacker-Williams gluon distribution and the dipole gluon distribution. The first gluon distribution is constructed by solving classical Yang-Mills equation of motion in the Mc

  17. Neutron streak camera

    DOEpatents

    Wang, Ching L.

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  18. Neutron streak camera

    DOEpatents

    Wang, C.L.

    1981-05-14

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  19. Neutron streak camera

    DOEpatents

    Wang, C.L.

    1983-09-13

    Disclosed is an apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon. 4 figs.

  20. Organic metal neutron detector

    DOEpatents

    Butler, M.A.; Ginley, D.S.

    1984-11-21

    A device for detection of neutrons comprises: as an active neutron sensing element, a conductive organic polymer having an electrical conductivity and a cross-section for said neutrons whereby a detectable change in said conductivity is caused by impingement of said neutrons on the conductive organic polymer which is responsive to a property of said polymer which is altered by impingement of said neutrons on the polymer; and means for associating a change in said alterable property with the presence of neutrons at the location of said device.

  1. Layered semiconductor neutron detectors

    DOEpatents

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  2. Development and Characterization of a High Sensitivity Segmented Fast Neutron Spectrometer (FaNS-2)

    PubMed Central

    Langford, T.J.; Beise, E.J.; Breuer, H.; Heimbach, C.R.; Ji, G.; Nico, J.S.

    2016-01-01

    We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and 3He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a 3He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated 252Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra are unfolded using a Singular Value Decomposition method, demonstrating a 5% energy resolution at 14 MeV. Finally, we discuss plans for measuring the surface and underground cosmogenic neutron spectra with FaNS-2. PMID:27226807

  3. Development and characterization of a high sensitivity segmented Fast Neutron Spectrometer (FaNS-2)

    NASA Astrophysics Data System (ADS)

    Langford, T. J.; Beise, E. J.; Breuer, H.; Heimbach, C. R.; Ji, G.; Nico, J. S.

    2016-01-01

    We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and 3He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a 3He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated 252Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra are unfolded using a Singular Value Decomposition method, demonstrating a 5% energy resolution at 14 MeV. Finally, we discuss plans for measuring the surface and underground cosmogenic neutron spectra with FaNS-2.

  4. Neutronic Reactor Design to Reduce Neutron Loss

    DOEpatents

    Miles, F. T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall. The wall is surrounded by successive layers of pure fertile material and moderator containing fertile material. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. Since the steel has a smaller capture cross section for the fast neutrons, greater nunnbers of neutrons will pass into the blanket, thereby increasing the over-all efficiency of the reactor. (AEC)

  5. NEUTRONIC REACTOR DESIGN TO REDUCE NEUTRON LOSS

    DOEpatents

    Mills, F.T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall which is surrounded by successive layers of pure fertile material and fertile material having moderator. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. As the steel has a smaller capture cross-section for the fast neutrons, then greater numbers of the neutrons will pass into the blanket thereby increasing the over-all efficiency of the reactor.

  6. Dynamical nucleus-nucleus potential at short distances

    SciTech Connect

    Jiang Yongying; Wang Ning; Li Zhuxia; Scheid, Werner

    2010-04-15

    The dynamical nucleus-nucleus potentials for fusion reactions {sup 40}Ca+{sup 40}Ca, {sup 48}Ca+{sup 208}Pb, and {sup 126}Sn+{sup 130}Te are studied with the improved quantum molecular dynamics model together with the extended Thomas-Fermi approximation for the kinetic energies of nuclei. The obtained fusion barrier for {sup 40}Ca+{sup 40}Ca is in good agreement with the extracted fusion barrier from the measured fusion excitation function, and the depths of the fusion pockets are close to the results of time-dependent Hartree-Fock calculations. The energy dependence of the fusion barrier is also investigated. The fusion pocket becomes shallow for a heavy fusion system and almost disappears for heavy nearly symmetric systems, and the obtained potential at short distances is higher than the adiabatic potential.

  7. Azimuthal correlation and collective behavior in nucleus-nucleus collisions

    SciTech Connect

    Mali, P.; Mukhopadhyay, A. Sarkar, S.; Singh, G.

    2015-03-15

    Various flow effects of nuclear and hadronic origin are investigated in nucleus-nucleus collisions. Nuclear emulsion data collected from {sup 84}Kr + Ag/Br interaction at an incident energy of 1.52 GeV per nucleon and from {sup 28}Si + Ag/Br interaction at an incident energy of 14.5 GeV per nucleon are used in the investigation. The transverse momentum distribution and the flow angle analysis show that collective behavior, like a bounce-off effect of the projectile spectators and a sidesplash effect of the target spectators, are present in our event samples. From an azimuthal angle analysis of the data we also see a direct flow of the projectile fragments and of the produced charged particles. On the other hand, for both data samples the target fragments exhibit a reverse flow, while the projectile fragments exhibit an elliptic flow. Relevant flow parameters are measured.

  8. Analysis of relativistic nucleus-nucleus interactions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1987-01-01

    The development of a computer-assisted method is reported for the determination of the angular distribution data for secondary particles produced in relativistic nucleus-nucleus collisions in emulsions. The method is applied to emulsion detectors that were placed in a constant, uniform magnetic field and exposed to beams of 60 and 200 GeV/nucleon O-16 ions at the Super Proton Synchrotron (SPS) of the European Center for Nuclear Research (CERN). Linear regression analysis is used to determine the azimuthal and polar emission angles from measured track coordinate data. The software, written in BASIC, is designed to be machine independent, and adaptable to an automated system for acquiring the track coordinates. The fitting algorithm is deterministic, and takes into account the experimental uncertainty in the measured points. Further, a procedure for using the track data to estimate the linear momenta of the charged particles observed in the detectors is included.

  9. Nucleus-nucleus cold fusion reactions analyzed with the l-dependent 'fusion by diffusion' model

    SciTech Connect

    Cap, T.; Siwek-Wilczynska, K.; Wilczynski, J.

    2011-05-15

    We present a modified version of the Fusion by Diffusion (FBD) model aimed at describing the synthesis of superheavy nuclei in cold fusion reactions, in which a low excited compound nucleus emits only one neutron. The modified FBD model accounts for the angular momentum dependence of three basic factors determining the evaporation residue cross section: the capture cross section {sigma}{sub cap}(l), the fusion probability P{sub fus}(l), and the survival probability P{sub surv}(l). The fusion hindrance factor, the inverse of P{sub fus}(l), is treated in terms of thermal fluctuations in the shape degrees of freedom and is expressed as a solution of the Smoluchowski diffusion equation. The l dependence of P{sub fus}(l) results from the l-dependent potential energy surface of the colliding system. A new parametrization of the distance of starting point of the diffusion process is introduced. An analysis of a complete set of 27 excitation functions for production of superheavy nuclei in cold fusion reactions, studied in experiments at GSI Darmstadt, RIKEN Tokyo, and LBNL Berkeley, is presented. The FBD model satisfactorily reproduces shapes and absolute cross sections of all the cold fusion excitation functions. It is shown that the peak position of the excitation function for a given 1n reaction is determined by the Q value of the reaction and the height of the fission barrier of the final nucleus. This fact could possibly be used in future experiments (with well-defined beam energy) for experimental determination of the fission barrier heights.

  10. Pairing gap in the inner crust of neutron stars

    SciTech Connect

    Esbensen, H.; Broglia, R.A.; Vigezzi, E.; Barranco, F.

    1995-08-01

    The pairing gap in the inner crust of a neutron star can be strongly affected by the presence of heavy nuclei. The effect is commonly estimated in a semiclassical description, using the local density approximation. It was found that the nuclear specific heat can become comparable to the electronic specific heat at certain densities and temperatures. The quantitative result depends critically upon the magnitude of the pairing gap. We therefore decided to assess the validity of the semiclassical approach. This is done by solving the quantal BCS pairing gap equation for neutrons that are confined to the Wigner-Seitz cell that surrounds a heavy nucleus. We performed calculations that are based on the Gogny pairing force. They are feasible for realistic densities of neutrons and heavy nuclei that are expected to be found in the inner crust of neutron stars. The results will be compared to the semiclassical predictions. This work is in progress.

  11. Cadmium mass measurements between the neutron shell closures at N = 50 and 82

    SciTech Connect

    Borgmann, Ch.; Blaum, K.; Boehm, Ch.; George, S.; Kreim, S.; Breitenfeldt, M.; Audi, G.; Lunney, D.; Naimi, S.; Baruah, S.; Rosenbusch, M.; Schweikhard, L.; Beck, D.; Dworschak, M.; Herfurth, F.; Minaya-Ramirez, E.; Savreux, R.; Yazidjian, C.; Cakirli, R. B.; Casten, R. F.

    2011-10-28

    The mass values of the neutron-deficient cadmium isotopes {sup 99-109}Cd and of the neutron-rich isotopes {sup 114,120,122-124,126,128}Cd have been measured using ISOLTRAP. The behavior of the separation energies of the cadmium isotopes from N = 50 to 82 is discussed.

  12. Neutron anatomy

    SciTech Connect

    Bacon, G.E.

    1994-12-31

    The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content - the crystals of the hexagonal hydroxyapatite - and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilizing distances ranging from 1mm to 10mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals - including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighboring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction for a sample of bone.

  13. Neutron detection by scintillation of noble-gas excimers

    NASA Astrophysics Data System (ADS)

    McComb, Jacob Collin

    Neutron detection is a technique essential to homeland security, nuclear reactor instrumentation, neutron diffraction science, oil-well logging, particle physics and radiation safety. The current shortage of helium-3, the neutron absorber used in most gas-filled proportional counters, has created a strong incentive to develop alternate methods of neutron detection. Excimer-based neutron detection (END) provides an alternative with many attractive properties. Like proportional counters, END relies on the conversion of a neutron into energetic charged particles, through an exothermic capture reaction with a neutron absorbing nucleus (10B, 6Li, 3He). As charged particles from these reactions lose energy in a surrounding gas, they cause electron excitation and ionization. Whereas most gas-filled detectors collect ionized charge to form a signal, END depends on the formation of diatomic noble-gas excimers (Ar*2, Kr*2,Xe* 2) . Upon decaying, excimers emit far-ultraviolet (FUV) photons, which may be collected by a photomultiplier tube or other photon detector. This phenomenon provides a means of neutron detection with a number of advantages over traditional methods. This thesis investigates excimer scintillation yield from the heavy noble gases following the boron-neutron capture reaction in 10B thin-film targets. Additionally, the thesis examines noble-gas excimer lifetimes with relationship to gas type and gas pressure. Experimental data were collected both at the National Institute of Standards and Technology (NIST) Center for Neutron Research, and on a newly developed neutron beamline at the Maryland University Training Reactor. The components of the experiment were calibrated at NIST and the University of Maryland, using FUV synchrotron radiation, neutron imaging, and foil activation techniques, among others. Computer modeling was employed to simulate charged-particle transport and excimer photon emission within the experimental apparatus. The observed excimer

  14. α and 2 p 2 n emission in fast neutron-induced reactions on 60Ni

    NASA Astrophysics Data System (ADS)

    Fotiades, N.; Devlin, M.; Haight, R. C.; Nelson, R. O.; Kunieda, S.; Kawano, T.

    2015-06-01

    Background: The cross sections for populating the residual nucleus in the reaction ZAX(n,x) Z -2 A -4Y exhibit peaks as a function of incident neutron energy corresponding to the (n ,n'α ) reaction and, at higher energy, to the (n ,2 p 3 n ) reaction. The relative magnitudes of these peaks vary with the Z of the target nucleus. Purpose: Study fast neutron-induced reactions on 60Ni. Locate experimentally the nuclear charge region along the line of stability where the cross sections for α emission and for 2 p 2 n emission in fast neutron-induced reactions are comparable as a further test of reaction models. Methods: Data were taken by using the Germanium Array for Neutron-Induced Excitations. The broad-spectrum pulsed neutron beam of the Los Alamos Neutron Science Center's Weapons Neutron Research facility provided neutrons in the energy range from 1 to 250 MeV. The time-of-flight technique was used to determine the incident-neutron energies. Results: Absolute partial cross sections for production of seven discrete Fe γ rays populated in 60Ni (n ,α /2 p x n γ ) reactions with 2 ≤x ≤5 were measured for neutron energies 1 MeVneutron energies while discrepancies appear at higher neutron energies. The cross section for producing an isotope in fast neutron-induced reactions on stable targets via α emission at the peak of the (n ,α ) and (n ,n'α ) reactions is comparable to that for 2 p 2 n and 2 p 3 n emission at higher incident energies in the nuclear charge region around Fe.

  15. Pulsed-neutron monochromator

    DOEpatents

    Mook, Jr., Herbert A.

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  16. Pulsed-neutron monochromator

    DOEpatents

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  17. Dose equivalent neutron dosimeter

    DOEpatents

    Griffith, Richard V.; Hankins, Dale E.; Tomasino, Luigi; Gomaa, Mohamed A. M.

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  18. On neutron surface waves

    SciTech Connect

    Ignatovich, V. K.

    2009-01-15

    It is shown that neutron surface waves do not exist. The difference between the neutron wave mechanics and the wave physics of electromagnetic and acoustic processes, which allows the existence of surface waves, is analyzed.

  19. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  20. Neutron Lifetime Measurements

    NASA Astrophysics Data System (ADS)

    Nico, J. S.

    2006-11-01

    Precision measurements of neutron beta decay address basic questions in nuclear and particle physics, astrophysics, and cosmology. As the simplest semileptonic decay system, the free neutron plays an important role in understanding the physics of the weak interaction, and improving the precision of the neutron lifetime is fundamental to testing the validity of the theory. The neutron lifetime also directly affects the relative abundance of primordial helium in big bang nucleosynthesis. There are two distinct strategies for measuring the lifetime. Experiments using cold neutrons measure the absolute specific activity of a beam of neutrons by counting decay protons; experiments using confined, ultracold neutrons determine the lifetime by counting neutrons that remain after some elapsed time. The status of the recent lifetime measurements using both of these techniques is discussed.

  1. Neutron Lifetime Measurements

    SciTech Connect

    Nico, J. S.

    2006-11-17

    Precision measurements of neutron beta decay address basic questions in nuclear and particle physics, astrophysics, and cosmology. As the simplest semileptonic decay system, the free neutron plays an important role in understanding the physics of the weak interaction, and improving the precision of the neutron lifetime is fundamental to testing the validity of the theory. The neutron lifetime also directly affects the relative abundance of primordial helium in big bang nucleosynthesis. There are two distinct strategies for measuring the lifetime. Experiments using cold neutrons measure the absolute specific activity of a beam of neutrons by counting decay protons; experiments using confined, ultracold neutrons determine the lifetime by counting neutrons that remain after some elapsed time. The status of the recent lifetime measurements using both of these techniques is discussed.

  2. ULTRASONIC NEUTRON DOSIMETER

    DOEpatents

    Truell, R.; de Klerk, J.; Levy, P.W.

    1960-02-23

    A neutron dosimeter is described which utilizes ultrasonic waves in the megacycle region for determination of the extent of neutron damage in a borosilicate glass through ultrasonic wave velocity and attenuation measurements before and after damage.

  3. Ultrafast neutron detector

    DOEpatents

    Wang, C.L.

    1985-06-19

    A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

  4. Dibaryons in neutron stars

    NASA Technical Reports Server (NTRS)

    Olinto, Angela V.; Haensel, Pawel; Frieman, Joshua A.

    1991-01-01

    The effects are studied of H-dibaryons on the structure of neutron stars. It was found that H particles could be present in neutron stars for a wide range of dibaryon masses. The appearance of dibaryons softens the equations of state, lowers the maximum neutron star mass, and affects the transport properties of dense matter. The parameter space is constrained for dibaryons by requiring that a 1.44 solar mass neutron star be gravitationally stable.

  5. Intense fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  6. Neutron removal cross section as a measure of neutron skin

    SciTech Connect

    Fang, D. Q.; Ma, Y. G.; Cai, X. Z.; Tian, W. D.; Wang, H. W.

    2010-04-15

    We study the relation between neutron removal cross section (sigma{sub -N}) and neutron skin thickness for finite neutron-rich nuclei using the statistical abrasion ablation model. Different sizes of neutron skin are obtained by adjusting the diffuseness parameter of neutrons in the Fermi distribution. It is demonstrated that there is a good linear correlation between sigma{sub -N} and the neutron skin thickness for neutron-rich nuclei. Further analysis suggests that the relative increase of neutron removal cross section could be used as a quantitative measure for neutron skin thickness in neutron-rich nuclei.

  7. Hummingbird Comet Nucleus Analysis Mission

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.

    2000-01-01

    Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.

  8. r-Process nucleosynthesis without excess neutrons.

    PubMed

    Meyer, Bradley S

    2002-12-02

    Matter expanding sufficiently rapidly and at high enough entropy per nucleon can enter a heavy-element synthesis regime heretofore unexplored. In this extreme regime, more similar to nucleosynthesis in the early universe than to that typical in stellar explosive environments, there is a persistent disequilibrium between free nucleons and abundant alpha particles, which allows heavy r-process nucleus production even in matter with more protons than neutrons. This observation bears on the issue of the site of the r process, on the variability of abundance yields from r-process events, and on constraints on neutrino physics derived from nucleosynthesis.

  9. PREFACE: Fundamental Neutron Physics: Introduction and Overview Fundamental Neutron Physics: Introduction and Overview

    NASA Astrophysics Data System (ADS)

    Holstein, Barry R.

    2009-10-01

    In the 77 years since its discovery by Chadwick in 1932, the neutron has come to play an increasingly important role in contemporary physics. As the next to lightest baryon, it is, of course, one of the two primary components of the atomic nucleus and studies of isotopes (nuclei with varying numbers of neutrons but the same proton number) and of the neutron drip line are one of the important focuses of the recently approved radioactive beam machine to be built at Michigan State University. Precise knowledge of its ~900 second lifetime is crucial to determination of the time at which nucleosynthesis occurs in the early universe. Because it is electrically neutral, the neutron can penetrate the atomic cloud and neutron scattering has become a powerful tool in the study of the structure of materials in condensed matter and biophysics. These are all important issues, but will not be addressed in the articles presented below. Rather, in the set of manuscripts published herein, we show various ways in which the neutron has come to probe fundamental questions in physics. We present six such articles: Because of its simple structure, neutron beta decay has served as a laboratory for the study of possible symmetry violations, including search for possible Script T-violation via measurement of the D coefficient, search for second class currents and/or possible CVC violation via examination of recoil terms, search for right-handed currents via examination of correlations, search for S, T couplings via measurement of the b parameter, etc. The study of neutron decay is reviewed in the article by Jeff Nico. The use of the neutron as a probe of possible Script T-violation via the existence of a non-zero electric dipole moment is discussed in the article by Steve Lamoreaux. The neutron is a prime player in the experimental study of hadronic parity violation, via experiments involving radiative capture and spin rotation, as examined in the article by Barry Holstein. Because of its

  10. LGB neutron detector

    NASA Astrophysics Data System (ADS)

    Quist, Nicole

    2012-10-01

    The double pulse signature of the Gadolinium Lithium Borate Cerium doped plastic detector suggests its effectiveness for analyzing neutrons while providing gamma ray insensitivity. To better understand this detector, a californium gamma/neutron time of flight facility was constructed in our lab. Reported here are efforts to understand the properties and applications of the LGB detector with regards to neutron spectroscopy.

  11. Perforated diode neutron sensors

    NASA Astrophysics Data System (ADS)

    McNeil, Walter J.

    A novel design of neutron sensor was investigated and developed. The perforated, or micro-structured, diode neutron sensor is a concept that has the potential to enhance neutron sensitivity of a common solid-state sensor configuration. The common thin-film coated diode neutron sensor is the only semiconductor-based neutron sensor that has proven feasible for commercial use. However, the thin-film coating restricts neutron counting efficiency and severely limits the usefulness of the sensor. This research has shown that the perforated design, when properly implemented, can increase the neutron counting efficiency by greater than a factor of 4. Methods developed in this work enable detectors to be fabricated to meet needs such as miniaturization, portability, ruggedness, and adaptability. The new detectors may be used for unique applications such as neutron imaging or the search for special nuclear materials. The research and developments described in the work include the successful fabrication of variant perforated diode neutron detector designs, general explanations of fundamental radiation detector design (with added focus on neutron detection and compactness), as well as descriptive theory and sensor design modeling useful in predicting performance of these unique solid-state radiation sensors. Several aspects in design, fabrication, and operational performance have been considered and tested including neutron counting efficiency, gamma-ray response, perforation shapes and depths, and silicon processing variations. Finally, the successfully proven technology was applied to a 1-dimensional neutron sensor array system.

  12. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  13. Arsenic activation neutron detector

    DOEpatents

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  14. Arsenic activation neutron detector

    DOEpatents

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  15. Targeted delivery to the nucleus.

    PubMed

    Pouton, Colin W; Wagstaff, Kylie M; Roth, Daniela M; Moseley, Gregory W; Jans, David A

    2007-08-10

    Macromolecules and supramolecular complexes are frequently required to enter and exit the nucleus during normal cell function, but access is restricted and exchange to and from the nucleus is tightly controlled. We describe the mechanisms which regulate nuclear import of endogenous molecules and indicate how viruses exploit these mechanisms during their life cycle. Opportunities exist to make use of natural pathways for delivery of therapeutic entities, in particular to develop safe and effective methods for gene therapy, although past attempts to design non-viral nuclear delivery systems have met with limited success. To increase the likelihood of success scientists will need an appreciation of the mechanisms by which viruses deliver their genomes to the nucleus, and will need a commitment to control the architecture of non-viral delivery systems at the molecular level. Effective delivery systems will require several attributes to facilitate endosomal escape, microtubular transport and uptake through the nuclear pore complex. The published literature provides a strong foundation for design of nuclear targeting systems. The challenge faced by delivery scientists is to assemble a system which is as effective as, for example, the adenovirus but which lacks its immunogenicity. This article reviews the relevant literature and indicates key areas for future research.

  16. Superallowed Gamow-Teller decay of the doubly magic nucleus 100Sn.

    PubMed

    Hinke, C B; Böhmer, M; Boutachkov, P; Faestermann, T; Geissel, H; Gerl, J; Gernhäuser, R; Górska, M; Gottardo, A; Grawe, H; Grębosz, J L; Krücken, R; Kurz, N; Liu, Z; Maier, L; Nowacki, F; Pietri, S; Podolyák, Zs; Sieja, K; Steiger, K; Straub, K; Weick, H; Wollersheim, H-J; Woods, P J; Al-Dahan, N; Alkhomashi, N; Ataç, A; Blazhev, A; Braun, N F; Čeliković, I T; Davinson, T; Dillmann, I; Domingo-Pardo, C; Doornenbal, P C; de France, G; Farrelly, G F; Farinon, F; Goel, N; Habermann, T C; Hoischen, R; Janik, R; Karny, M; Kaşkaş, A; Kojouharov, I M; Kröll, Th; Litvinov, Y; Myalski, S; Nebel, F; Nishimura, S; Nociforo, C; Nyberg, J; Parikh, A R; Procházka, A; Regan, P H; Rigollet, C; Schaffner, H; Scheidenberger, C; Schwertel, S; Söderström, P-A; Steer, S J; Stolz, A; Strmeň, P

    2012-06-20

    The shell structure of atomic nuclei is associated with 'magic numbers' and originates in the nearly independent motion of neutrons and protons in a mean potential generated by all nucleons. During β(+)-decay, a proton transforms into a neutron in a previously not fully occupied orbital, emitting a positron-neutrino pair with either parallel or antiparallel spins, in a Gamow-Teller or Fermi transition, respectively. The transition probability, or strength, of a Gamow-Teller transition depends sensitively on the underlying shell structure and is usually distributed among many states in the neighbouring nucleus. Here we report measurements of the half-life and decay energy for the decay of (100)Sn, the heaviest doubly magic nucleus with equal numbers of protons and neutrons. In the β-decay of (100)Sn, a large fraction of the strength is observable because of the large decay energy. We determine the largest Gamow-Teller strength so far measured in allowed nuclear β-decay, establishing the 'superallowed' nature of this Gamow-Teller transition. The large strength and the low-energy states in the daughter nucleus, (100)In, are well reproduced by modern, large-scale shell model calculations.

  17. Visibility Estimation for Neutron Resonance Absorption Radiography using a Pulsed Neutron Source

    NASA Astrophysics Data System (ADS)

    Kai, Tetsuya; Maekawa, Fujio; Oshita, Hidetoshi; Sato, Hirotaka; Shinohara, Takenao; Ooi, Motoki; Harada, Masahide; Uno, Shoji; Otomo, Toshiya; Kamiyama, Takashi; Kiyanagi, Yoshiaki

    Neutron resonance absorption radiography is a technique to enhance neutron transmission images of specific nucleus at neutron resonance energies. Demonstration measurements by using a lithium-glass pixel type scintillator and a gas electron multiplication (GEM) neutron detector were carried out at NOBORU beam line in MLF/J-PARC for sodium, manganese, cobalt, copper, zinc, molybdenum, cadmium, indium, tantalum and gold. To discuss advantages of the resonance absorption radiography the mass attenuation coefficient at resonance energy of each element was compared to that at 25 meV. In addition a visibility index derived by a resonance peak cross section and a relative width (full width at half maximum divided by its resonance energy) was proposed to summarize visibility of the neutron resonance absorption radiography for natural elements. The values of visibility index and the resonance energy indicated that large advantages of the resonance absorption radiography were obtainable for the following elements: sodium (Na), manganese (Mn), cobalt (Co), rhodium (Rh), silver (Ag), cadmium (Cd), indium (In), xenon (Xe), cesium (Cs), samarium (Sm), europium (Eu), dysprosium (Dy), erbium (Er), thulium (Tm), hafnium (Hf), tantalum (Ta), tungsten (W), rhenium (Re), iridium (Ir) and gold (Au).

  18. Dynamic temperature and velocity measurements using neutron resonance spectroscopy

    SciTech Connect

    Yuan, V.W.; Asay, B.W.; Boat, R.

    1997-08-01

    The use of Doppler broadening in neutron resonances as a quantitative way to measure temperatures has been proposed and investigated for cases of static or quasi-static temperature measurements. Neutrons are temperature probes that can penetrate a sample to view its interior. At the same time products that may shield a sample optically are not opaque to neutrons so that temperature measurements can be made in their presence. When neutrons are attenuated by a sample material, the time-of-flight (TOF) spectrum of the transmitted neutrons exhibits a series of characteristic dips or resonances. These resonances appear when neutrons are captured from the beam in the formation of excited states in the A + 1 nucleus (n + A {ge} (A + 1){sup *}). Subsequent de-excitation of these states, by gamma emission or particle emission into 4{pi} steradians, effectively eliminates the captured neutrons from the transmitted beam. The resonance locations and lineshapes which appear in the TOF spectrum are unique to each isotopic element, and temperature determinations can be localized through the positioning of resonant tags.

  19. Unexpected neutron/proton ratio and isospin effect in low-energy antiproton-induced reactions

    NASA Astrophysics Data System (ADS)

    Feng, Zhao-Qing

    2017-09-01

    The inclusive spectra of pre-equilibrium nucleons produced in low-energy antiproton-nucleus collisions are thoroughly investigated within the the Lanzhou quantum molecular dynamics transport approach for the first time. The reaction channels of elastic scattering, annihilation, charge exchange, and inelastic processes in antibaryon-baryon, baryon-baryon, and meson-baryon collisions have been implemented in the model. The unexpected neutron to proton yield ratios are caused from the isospin effects of pion-nucleon collisions and the symmetry energy. It is found that the π--neutron collisions enhance the neutron emission in the antiproton annihilation in a nucleus. A soft symmetry energy with the stiffness of γs=0.5 at subsaturation densities is constrained from the available data of the neutron/proton spectra.

  20. Exploration of direct neutron capture with covariant density functional theory inputs

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Sheng; Peng, Jin-Peng; Smith, M. S.; Arbanas, G.; Kozub, R. L.

    2015-04-01

    Predictions of direct neutron capture are of vital importance for simulations of nucleosynthesis in supernovae, merging neutron stars, and other astrophysical environments. We calculated direct capture cross sections using nuclear structure information obtained from a covariant density functional theory as input for the fresco coupled reaction channels code. We investigated the impact of pairing, spectroscopic factors, and optical potentials on our results to determine a robust method to calculate cross sections of direct neutron capture on exotic nuclei. Our predictions agree reasonably well with experimental cross section data for the closed shell nuclei 16O and 48Ca, and for the exotic nucleus 36S . We then used this approach to calculate the direct neutron capture cross section on the doubly magic unstable nucleus 132Sn which is of interest for the astrophysical r-process.

  1. Early clinical experience of boron neutron capture therapy for glioblastoma multiforme

    SciTech Connect

    Joel, D.D.; Bergland, R.; Capala, J.

    1995-12-31

    Boron neutron capture therapy (BNCT) is a binary treatment modality that can selectively irradiate tumor tissue. BNCT uses drugs containing a stable isotope of boron. {sup 10}B, to sensitize tumor cells to irradiation by low energy (thermal) neutrons. The interaction of the {sup 10}B with a thermal neutron (neutron capture) causes the {sup 10}B nucleus to split, releasing an alpha particle and a lithium nucleus. These products of the {sup 10}B(n, {alpha}){sup 7}Li reaction are very damaging to cells but have a combined path length in tissue of approximately 14 {mu}m, or roughly the diameter of one or two cells. Thus, most of the ionizing energy imparted to tissue is localized to {sup 10}B-loaded cells.

  2. Neutron computed tomography.

    PubMed

    Koeppe, R A; Brugger, R M; Schlapper, G A; Larsen, G N; Jost, R J

    1981-02-01

    A neutron-transmission computed tomography scanning system has been built for scanning biological materials. An oxygen filtered beam of 2.35 MeV neutrons was used for the measurements. The studies to date show that the interactions of these energy neutrons with samples simulating biological materials are more sensitive than X-rays to variations in the content of the material, thus providing the ability to produce high quality images. The neutron scans suggest that neutrons can be an effective radiation for the imaging of biological materials.

  3. PERSONNEL NEUTRON DOSIMETER

    DOEpatents

    Fitzgerald, J.J.; Detwiler, C.G. Jr.

    1960-05-24

    A description is given of a personnel neutron dosimeter capable of indicating the complete spectrum of the neutron dose received as well as the dose for each neutron energy range therein. The device consists of three sets of indium foils supported in an aluminum case. The first set consists of three foils of indium, the second set consists of a similar set of indium foils sandwiched between layers of cadmium, whereas the third set is similar to the second set but is sandwiched between layers of polyethylene. By analysis of all the foils the neutron spectrum and the total dose from neutrons of all energy levels can be ascertained.

  4. Organic metal neutron detector

    DOEpatents

    Butler, Michael A.; Ginley, David S.

    1987-01-01

    A device for detecting neutrons comprises a layer of conductive polymer sandwiched between electrodes, which may be covered on each face with a neutron transmissive insulating material layer. Conventional electrodes are used for a non-imaging integrating total neutron fluence-measuring embodiment, while wire grids are used in an imaging version of the device. The change in conductivity of the polymer after exposure to a neutron flux is determined in either case to provide the desired data. Alternatively, the exposed conductive polymer layer may be treated with a chemical reagent which selectively binds to the sites altered by neutrons to produce an image of the flux detected.

  5. Neutron activation analysis system

    DOEpatents

    Taylor, M.C.; Rhodes, J.R.

    1973-12-25

    A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)

  6. Grazing Incidence Neutron Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2013-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  7. Grazing incidence neutron optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2012-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20 .ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  8. High energy neutron dosimeter

    DOEpatents

    Sun, Rai Ko S.F.

    1994-01-01

    A device for measuring dose equivalents in neutron radiation fields. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning.

  9. Neutron scatter camera

    DOEpatents

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  10. Semiconductor neutron detector

    DOEpatents

    Ianakiev, Kiril D.; Littlewood, Peter B.; Blagoev, Krastan B.; Swinhoe, Martyn T.; Smith, James L.; Sullivan, Clair J.; Alexandrov, Boian S.; Lashley, Jason Charles

    2011-03-08

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  11. α and 2p2n emission in fast neutron-induced reactions on Ni60

    DOE PAGES

    Fotiades, N.; Devlin, M.; Haight, R. C.; ...

    2015-06-19

    The cross sections for populating the residual nucleus in the reaction AZX(n,x)A-4Z-2Y exhibit peaks as a function of incident neutron energy corresponding to the (n,n'α) reaction and, at higher energy, to the (n,2p3n) reaction. In addition, the relative magnitudes of these peaks vary with the Z of the target nucleus.

  12. Classifiers for centrality determination in proton-nucleus and nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Altsybeev, Igor; Kovalenko, Vladimir

    2017-03-01

    Centrality, as a geometrical property of the collision, is crucial for the physical interpretation of nucleus-nucleus and proton-nucleus experimental data. However, it cannot be directly accessed in event-by-event data analysis. Common methods for centrality estimation in A-A and p-A collisions usually rely on a single detector (either on the signal in zero-degree calorimeters or on the multiplicity in some semi-central rapidity range). In the present work, we made an attempt to develop an approach for centrality determination that is based on machine-learning techniques and utilizes information from several detector subsystems simultaneously. Different event classifiers are suggested and evaluated for their selectivity power in terms of the number of nucleons-participants and the impact parameter of the collision. Finer centrality resolution may allow to reduce impact from so-called volume fluctuations on physical observables being studied in heavy-ion experiments like ALICE at the LHC and fixed target experiment NA61/SHINE on SPS.

  13. Photoproduction of lepton pairs in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies

    SciTech Connect

    Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T.

    2013-03-25

    In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons. As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.

  14. Neutron-proton effective mass splitting in neutron-rich matter and its impacts on nuclear reactions

    NASA Astrophysics Data System (ADS)

    Li, Bao-An; Chen, Lie-Wen

    2015-04-01

    The neutron-proton effective mass splitting in neutron-rich nucleonic matter reflects the spacetime nonlocality of the isovector nuclear interaction. It affects the neutron/proton ratio during the earlier evolution of the Universe, cooling of proto-neutron stars, structure of rare isotopes and dynamics of heavy-ion collisions. While there is still no consensus on whether the neutron-proton effective mass splitting is negative, zero or positive and how it depends on the density as well as the isospin-asymmetry of the medium, significant progress has been made in recent years in addressing these issues. There are different kinds of nucleon effective masses. In this mini-review, we focus on the total effective masses often used in the non-relativistic description of nuclear dynamics. We first recall the connections among the neutron-proton effective mass splitting, the momentum dependence of the isovector potential and the density dependence of the symmetry energy. We then make a few observations about the progress in calculating the neutron-proton effective mass splitting using various nuclear many-body theories and its effects on the isospin-dependence of in-medium nucleon-nucleon cross-sections. Perhaps, our most reliable knowledge so far about the neutron-proton effective mass splitting at saturation density of nuclear matter comes from optical model analyses of huge sets of nucleon-nucleus scattering data accumulated over the last five decades. The momentum dependence of the symmetry potential from these analyses provide a useful boundary condition at saturation density for calibrating nuclear many-body calculations. Several observables in heavy-ion collisions have been identified as sensitive probes of the neutron-proton effective mass splitting in dense neutron-rich matter based on transport model simulations. We review these observables and comment on the latest experimental findings.

  15. Development of a new method for measurement of neutron detector efficiency up to 20 MeV

    SciTech Connect

    Kornilov, N. V.; Grimes, S. M.; Massey, T. N.; Brient, C. E.; Carter, D. E.; O'Donnell, J. E.; Bateman, F. B.; Carlson, A. D.; Haight, R. C.; Boukharouba, N.

    2014-09-03

    A new approach to neutron detector efficiency has been taken. A neutron detector has been calibrated with a 252Cf source at low energy. The calibration can be extended to energies above 8 MeV based on the 252Cf results. The techniques uses the fact that the cross section for a symmetric reaction with nucleus of atomic number A yielding a final nucleus with atomic number (2A-1) and a neutron A + A → (2A – 1) + n. This reaction must be symmetric about 90° in the center-of-mass system. Furthermore, the laboratory energies for the neutrons at the paired energies differ substantially. Thus, an efficiency known at one of the two angles can be used to determine the efficiency to higher energies or, for a negative Q, to lower neutron energies.

  16. Development of a new method for measurement of neutron detector efficiency up to 20 MeV

    DOE PAGES

    Kornilov, N. V.; Grimes, S. M.; Massey, T. N.; ...

    2014-09-03

    A new approach to neutron detector efficiency has been taken. A neutron detector has been calibrated with a 252Cf source at low energy. The calibration can be extended to energies above 8 MeV based on the 252Cf results. The techniques uses the fact that the cross section for a symmetric reaction with nucleus of atomic number A yielding a final nucleus with atomic number (2A-1) and a neutron A + A → (2A – 1) + n. This reaction must be symmetric about 90° in the center-of-mass system. Furthermore, the laboratory energies for the neutrons at the paired energies differmore » substantially. Thus, an efficiency known at one of the two angles can be used to determine the efficiency to higher energies or, for a negative Q, to lower neutron energies.« less

  17. Neutron capture measurement on {sup 173}Lu at LANSCE with DANCE detector

    SciTech Connect

    Theroine, C.; Ebran, A.; Meot, V.; Roig, O.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Nortier, F. M.; O'Donnell, J. M.; Rundberg, R. S.; Taylor, W. A.; Ullmann, J. L.; Viera, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2013-06-10

    The (n,{gamma}) cross section on the unstable {sup 173}Lu(t{sub 1/2} = 1.37y) has been measured from thermal energy up to 200 eV at Los Alamos Neutron Science Center (LANSCE) with The Detector for Advanced Neutron Capture Experiements (DANCE). The main aim of this study is to validate and optimize reaction models for unstable nucleus. A preliminary capture yield will be presented in this paper.

  18. Nominal effective radiation doses delivered during clinical trials of boron neutron capture therapy

    SciTech Connect

    Capala, J.; Diaz, A.Z.; Chanana, A.D.

    1997-12-31

    Boron neutron capture therapy (BNCT) is a binary system that, in theory, should selectively deliver lethal, high linear energy transfer (LET) radiation to tumor cells dispersed within normal tissues. It is based on the nuclear reaction 10-B(n, {alpha})7-Li, which occurs when the stable nucleus of boron-10 captures a thermal neutron. Due to the relatively high cross-section of the 10-B nucleus for thermal neutron capture and short ranges of the products of this reaction, tumor cells in the volume exposed to thermal neutrons and containing sufficiently high concentration of 10-B would receive a much higher radiation dose than the normal cells contained within the exposed volume. Nevertheless, radiation dose deposited in normal tissue by gamma and fast neutron contamination of the neutron beam, as well as neutron capture in nitrogen, 14-N(n,p)14-C, hydrogen, 1-H(n,{gamma})2-H, and in boron present in blood and normal cells, limits the dose that can be delivered to tumor cells. It is, therefore, imperative for the success of the BNCT the dosed delivered to normal tissues be accurately determined in order to optimize the irradiation geometry and to limit the volume of normal tissue exposed to thermal neutrons. These are the major objectives of BNCT treatment planning.

  19. Gamma Decay of Unbound Neutron-Hole States in ^{133}Sn.

    PubMed

    Vaquero, V; Jungclaus, A; Doornenbal, P; Wimmer, K; Gargano, A; Tostevin, J A; Chen, S; Nácher, E; Sahin, E; Shiga, Y; Steppenbeck, D; Taniuchi, R; Xu, Z Y; Ando, T; Baba, H; Garrote, F L Bello; Franchoo, S; Hadynska-Klek, K; Kusoglu, A; Liu, J; Lokotko, T; Momiyama, S; Motobayashi, T; Nagamine, S; Nakatsuka, N; Niikura, M; Orlandi, R; Saito, T; Sakurai, H; Söderström, P A; Tveten, G M; Vajta, Zs; Yalcinkaya, M

    2017-05-19

    Excited states in the nucleus ^{133}Sn, with one neutron outside the double magic ^{132}Sn core, were populated following one-neutron knockout from a ^{134}Sn beam on a carbon target at relativistic energies at the Radioactive Isotope Beam Factory at RIKEN. Besides the γ rays emitted in the decay of the known neutron single-particle states in ^{133}Sn additional γ strength in the energy range 3.5-5.5 MeV was observed for the first time. Since the neutron-separation energy of ^{133}Sn is low, S_{n}=2.402(4)  MeV, this observation provides direct evidence for the radiative decay of neutron-unbound states in this nucleus. The ability of electromagnetic decay to compete successfully with neutron emission at energies as high as 3 MeV above threshold is attributed to a mismatch between the wave functions of the initial and final states in the latter case. These findings suggest that in the region southeast of ^{132}Sn nuclear structure effects may play a significant role in the neutron versus γ competition in the decay of unbound states. As a consequence, the common neglect of such effects in the evaluation of the neutron-emission probabilities in calculations of global β-decay properties for astrophysical simulations may have to be reconsidered.

  20. Gamma Decay of Unbound Neutron-Hole States in 133Sn

    NASA Astrophysics Data System (ADS)

    Vaquero, V.; Jungclaus, A.; Doornenbal, P.; Wimmer, K.; Gargano, A.; Tostevin, J. A.; Chen, S.; Nácher, E.; Sahin, E.; Shiga, Y.; Steppenbeck, D.; Taniuchi, R.; Xu, Z. Y.; Ando, T.; Baba, H.; Garrote, F. L. Bello; Franchoo, S.; Hadynska-Klek, K.; Kusoglu, A.; Liu, J.; Lokotko, T.; Momiyama, S.; Motobayashi, T.; Nagamine, S.; Nakatsuka, N.; Niikura, M.; Orlandi, R.; Saito, T.; Sakurai, H.; Söderström, P. A.; Tveten, G. M.; Vajta, Zs.; Yalcinkaya, M.

    2017-05-01

    Excited states in the nucleus 133Sn, with one neutron outside the double magic 132Sn core, were populated following one-neutron knockout from a 134Sn beam on a carbon target at relativistic energies at the Radioactive Isotope Beam Factory at RIKEN. Besides the γ rays emitted in the decay of the known neutron single-particle states in 133Sn additional γ strength in the energy range 3.5-5.5 MeV was observed for the first time. Since the neutron-separation energy of 133Sn is low, Sn=2.402 (4 ) MeV , this observation provides direct evidence for the radiative decay of neutron-unbound states in this nucleus. The ability of electromagnetic decay to compete successfully with neutron emission at energies as high as 3 MeV above threshold is attributed to a mismatch between the wave functions of the initial and final states in the latter case. These findings suggest that in the region southeast of 132Sn nuclear structure effects may play a significant role in the neutron versus γ competition in the decay of unbound states. As a consequence, the common neglect of such effects in the evaluation of the neutron-emission probabilities in calculations of global β -decay properties for astrophysical simulations may have to be reconsidered.

  1. NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR

    DOEpatents

    Young, G.J.

    1959-06-30

    The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.

  2. Ultracold neutron detector for neutron lifetime measurements

    NASA Astrophysics Data System (ADS)

    Andreev, V.; Vassiljev, A.; Ivanov, E.; Ilyin, D.; Krivshich, A.; Serebrov, A.

    2017-02-01

    The gas-filled detector of ultracold neutrons has been designed and constructed for the spectrometer of the neutron lifetime measurements at the ILL, Grenoble, France. The detector has been successfully tested and is currently being used at this spectrometer. We could show that minimization of the ;wall; effect is a key factor to ensure efficient background suppression and to maximize the detection efficiency. This effect is primarily related to the composition of the gas mixture, which crucially depends on the neutron velocity spectrum.

  3. Nucleus-nucleus collisions and the nuclear equation of state

    NASA Astrophysics Data System (ADS)

    Keane, Declan

    An analysis was made of existing experimental data from the Bevalac streamer chamber and from the Kent state neutron flow experiment 848H; transport model were compared with these data and with published results from other experiments. Future Bevelac experiment were developed, with particular emphasis on the EOS Time Projection Chamber (TPC). The PI is spokesperson for one of three beam-time proposals for the first round of experiments at the EOS TPC, to be considered by the Bevalac PAC in June 1990. Planned activities for the coming budget period include a continuation of strong emphasis on the TPC, and the initiation of participation in a planned RHIC experiment.

  4. Absence of jet quenching in peripheral nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Loizides, Constantin; Morsch, Andreas

    2017-10-01

    Medium effects on the production of high-pT particles in nucleus-nucleus (AA) collisions are generally quantified by the nuclear modification factor (RAA), defined to be unity in absence of nuclear effects. Modeling particle production including a nucleon-nucleon impact parameter dependence, we demonstrate that RAA at midrapidity in peripheral AA collisions can be significantly affected by event selection and geometry biases. Even without jet quenching and shadowing, these biases cause an apparent suppression for RAA in peripheral collisions, and are relevant for all types of hard probes and all collision energies. Our studies indicate that calculations of jet quenching in peripheral AA collisions should account for the biases, or else they will overestimate the relevance of parton energy loss. Similarly, expectations of parton energy loss in light-heavy collision systems based on comparison with apparent suppression seen in peripheral RAA should be revised. Our interpretation of the peripheral RAA data would unify observations for lighter collision systems or lower energies where significant values of elliptic flow are observed despite the absence of strong jet quenching.

  5. Pauli-blocking effects in neutron-alpha reactions

    SciTech Connect

    Avrigeanu, M. |; Avrigeanu, V.; Antonov, A.N.; Chadwick, M.B.; Hodgson, P.E.; Stoitsov, M.V.

    1994-06-01

    We present a knockout model for direct (n,{alpha}) reactions in which the residual nucleus is left in a continuum excited state. The interaction of the neutron with a preformed alpha particle inside the nucleus is related to the free neutron-alpha scattering cross-section, with modifications to account for nuclear medium effects, including Fermi motion, Pauli-blocking, and barrier penetration. Phase space restrictions for the four nucleons of the alpha-particle after the knockout are imposed by a Pauli-blocking function. We apply this model, along with evaporation contributions, to analyze excitation functions of (n,{alpha} reactions on {sup 48}Ti, {sup 51}V, {sup 52}Cr, {sup 54}Fe, {sup 55}Mn, and {sup 59}Co. Good agreement is obtained between our calculations and experimental measurements. Values for the local Fermi energy in the region from where knockout occurs indicate a surface reaction.

  6. Scissors Mode of 162 Dy Studied from Resonance Neutron Capture

    DOE PAGES

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; ...

    2015-05-28

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions,more » (n,γ) experiments on Gd isotopes, and (γ,γ’) reactions.« less

  7. Scissors Mode of 162Dy Studied from Resonance Neutron Capture

    NASA Astrophysics Data System (ADS)

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; Haight, R. C.; Jandel, M.; Kroll, J.; Krtička, M.; Mitchell, G. E.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Wilhelmy, J. B.

    2015-05-01

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions, (n,γ) experiments on Gd isotopes, and (γ,γ') reactions.

  8. Neutron beam design, development, and performance for neutron capture therapy

    SciTech Connect

    Harling, O.K.; Bernard, J.A. ); Zamenhof, R.G. )

    1990-01-01

    The report presents topics presented at a workshop on neutron beams and neutron capture therapy. Topics include: neutron beam design; reactor-based neutron beams; accelerator-based neutron beams; and dosimetry and treatment planning. Individual projects are processed separately for the databases. (CBS)

  9. Replica neutron guides for experiments with ultracold neutrons

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Vasil'ev, A. V.; Lasakov, M. S.; Siber, E. V.; Murashkin, A. N.; Egorov, A. I.; Fomin, A. K.; Sbitnev, S. V.; Geltenbort, P.; Zimmer, O.

    2017-01-01

    The method for producing neutron guides for ultracold neutrons based on the replica method has been described. A comparative analysis of the quality of replica neutron guides, neutron guides made from polished anode-mechanical steel tubes, and neutron guides from electropolished tubes has been given.

  10. Nucleus morphology of Comet Halley

    NASA Technical Reports Server (NTRS)

    Reitsema, H. J.; Delamere, W. A.; Huebner, W. F.; Keller, H. U.; Schmidt, W. K. H.; Wilhelm, K.; Schmidt, H. U.; Whipple, Fred L.

    1986-01-01

    Images obtained by the Halley multicolor camera were used to determine the projected size and shape of the nucleus. The location of the terminator and numerous surface features were determined. There is good correlation between the brightest surface features and the dust jets; however, many bright features are seen which are not associated with jets. Most of the observed features are circular and appear to be related to surface elevation. The angularity of the terminator gives an indication of the three-dimensional structure of the face which was observed.

  11. Exceptionally bright, compact starburst nucleus

    SciTech Connect

    Margon, B.; Anderson, S.F.; Mateo, M.; Fich, M.; Massey, P.

    1988-11-01

    Observations are reported of a remarkably bright (V about 13) starburst nucleus, 0833 + 652, which has been detected at radio, infrared, optical, ultraviolet, and X-ray wavelengths. Despite an observed flux at each of these wavelengths which is comparable to that of NGC 7714, often considered the 'prototypical' example of the starburst phenomenon, 0833 + 652 appears to be a previously uncataloged object. Its ease of detectability throughout the electromagnetic spectrum should make it useful for a variety of problems in the study of compact emission-line galaxies. 30 references.

  12. Fast Neutron Inelastic Scattering Cross Sections in THORIUM-232.

    NASA Astrophysics Data System (ADS)

    Ciarcia, Christopher Albert

    Fast neutron inelastic scattering cross sections for levels between 700-1550-keV excitation energy in the actinide nucleus, ('232)Th, have been measured using the (n,n') time-of-flight technique. Two series of measurements were undertaken using neutrons with a typical energy spread of 8-10 keV, generated by the ('7)Li(p,n)('7)Be reaction. These measurments for 125(DEGREES)-differential scattering cross sections were performed over the incident neutron energy regions of (i) 0.950-1.550 MeV, in 50-keV intervals with the time-of-flight spectrometer optimized to detect 0.200 -0.400-MeV scattered neutrons and (ii) 1.200-2.000 MeV, in 100-keV intervals with the time-of-flight spectrometer optimized to detect 0.400-0.800-MeV scattered neutrons. Over these scattered energy regions, an overall energy resolution of less than 15 keV was maintained. The relative neutron fluence was determined for each individual measurement, by positioning the main detector at 0(DEGREES) to view the primary neutron flux. Relative normalization was achieved by measuring the direct neutron flux from the lithium target with a fixed overhead monitor detector in both measurements. Main detector response was determined by comparison with a ('235)U fission chamber of known efficiency. Techniques for unfolding the complicated spectra obtained from these (n,n') studies were developed, employing user interactive computer codes to (i) generate simulated scattered neutron group response functions, (ii) subtract background effects from the measured spectra, (iii) approximate the background subtracted spectra in a weighted least-squares fashion by a superposition of response functions and (iv) make corrections for neutron absorption, finite scatterer size effects and multiple neutron scattering. Support codes consisting of graphics interaction packages, data file manipulation and transfer utility routines were created to assist in the spectral analysis procedure. Excitation function and angular distribution

  13. Probing the weakly-bound neutron orbit of {sup 31}Ne with total reaction and one-neutron removal cross sections

    SciTech Connect

    Horiuchi, W.; Suzuki, Y.; Capel, P.; Baye, D.

    2010-02-15

    A candidate of a neutron-halo nucleus, {sup 31}Ne, contains a single neutron in the pf shell. Within the Glauber and eikonal models, we analyze reactions used to study {sup 31}Ne. We show in a {sup 30}Ne+n model that the magnitudes of the total reaction and above all of the one-neutron removal cross sections of {sup 31}Ne on {sup 12}C and {sup 208}Pb targets strongly depend on the orbital angular momentum of the neutron, thereby providing us with efficient ways to determine both the spin-parity and structure of the ground state of {sup 31}Ne. Besides these inclusive observables, we also calculate energy and parallel-momentum distributions for the breakup of {sup 31}Ne and show their strong dependence on the orbital of the valence neutron in the bound state of {sup 31}Ne.

  14. Overview of neutron radiology

    SciTech Connect

    Berger, H.

    1993-12-31

    Neutron radiography is a recognized method for nondestructive testing (NDT). It is one of eight established NDT methods offered for certification by ASNT. There are ASTM standards describing selected characteristics associated with neutron radiography, as discussed later in this session. Neutron radiography standards are proceeding in the international community (International Organization for Standardization, ISO). A primary advantage of using neutrons for radiologic inspection follows from the fact that the attenuation of thermal neutrons is very different from that of X-rays. A comparison of the attenuation of the elements for thermal neutrons (small dots) and 125 kV X-rays (solid line) is shown. As opposed to the increasing attenuation with increasing atomic number (Z) for X-rays, the neutron attenuation pattern is scattered. If there is a pattern for the neutrons, it tends to be the reverse of the X-ray case, namely, high neutron attenuation for light materials, such as hydrogen, lithium, and boron (H, Li, and B) and low attenuation for the heavy materials, such as lead, bismuth, and uranium (Pb, Bi, and U). The capability of thermal neutrons to image low-Z material, particularly hydrogen, in metal assemblies is in sharp contrast to that of X-rays. This opens up many practical inspection applications involving, for example, explosives, adhesives, corrosion, water intrusion, and hydriding of metals.

  15. Nucleus Accumbens Invulnerability to Methamphetamine Neurotoxicity

    PubMed Central

    Kuhn, Donald M.; Angoa-Pérez, Mariana; Thomas, David M.

    2016-01-01

    Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure. PMID:23382149

  16. Nucleus accumbens invulnerability to methamphetamine neurotoxicity.

    PubMed

    Kuhn, Donald M; Angoa-Pérez, Mariana; Thomas, David M

    2011-01-01

    Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure.

  17. Neutron metrology laboratory facility simulation.

    PubMed

    Pereira, Mariana; Salgado, Ana P; Filho, Aidano S; Pereira, Walsan W; Patrão, Karla C S; Fonseca, Evaldo S

    2014-10-01

    The Neutron Low Scattering Laboratory in Brazil has been completely rebuilt. Evaluation of air attenuation parameters and neutron component scattering in the room was done using Monte Carlo simulation code. Neutron fields produced by referenced neutron source were used to calculate neutron scattering and air attenuation.

  18. Neutron chopper development at LANSCE

    SciTech Connect

    Nutter, M.; Lewis, L.; Tepper, S.; Silver, R.N.; Heffner, R.H.

    1985-01-01

    Progress is reported on neutron chopper systems for the Los Alamos Neutron Scattering Center pulsed spallation neutron source. This includes the development of 600+ Hz active magnetic bearing neutron chopper and a high speed control system designed to operate with the Proton Storage Ring to phase the chopper to the neutron source. 5 refs., 3 figs.

  19. Isomer spectroscopy of neutron-rich 168Tb103

    DOE PAGES

    Gurgi, L. A.; Regan, P. H.; Söderström, P. -A.; ...

    2016-12-29

    In-flight fission of a 345 MeV per nucleon 238U primary beam on a 2 mm thick 9Be target has been used to produce and study the decays of a range of neutron-rich nuclei centred around the doubly mid-shell nucleus 170Dy at the RIBF Facility, RIKEN, Japan. The produced secondary fragments of interest were identified event-by-event using the BigRIPS separator. The fragments were implanted into the WAS3ABI position sensitive silicon active stopper which allowed pixelated correlations between implants and their subsequent β-decay. Discrete γ-ray transitions emitted following decays from either metastable states or excited states populated following beta decay were identifiedmore » using the 84 coaxial high-purity germanium (HPGe) detectors of the EURICA spectrometer, which was complemented by 18 additional cerium-doped lanthanum bromide (LaBr3) fast-timing scintillation detectors from the FATIMA collaboration. This paper presents the internal decay of a metastable isomeric excited state in the odd-odd nucleus 168Tb, which corresponds to a single proton-neutron hole configuration in the valence maximum nucleus 170Dy. These data represent the first information on excited states in this nucleus, which is the most neutron-rich odd-odd isotope of terbium (Z = 65) studied to date. Here, Nilsson configurations associated with an axially symmetric, prolate-deformed nucleus are proposed for the 168Tb ground state the observed isomeric state by comparison with Blocked BCS-Nilsson calculations.« less

  20. How viruses access the nucleus.

    PubMed

    Cohen, Sarah; Au, Shelly; Panté, Nelly

    2011-09-01

    Many viruses depend on nuclear proteins for replication. Therefore, their viral genome must enter the nucleus of the host cell. In this review we briefly summarize the principles of nucleocytoplasmic transport, and then describe the diverse strategies used by viruses to deliver their genomes into the host nucleus. Some of the emerging mechanisms include: (1) nuclear entry during mitosis, when the nuclear envelope is disassembled, (2) viral genome release in the cytoplasm followed by entry of the genome through the nuclear pore complex (NPC), (3) capsid docking at the cytoplasmic side of the NPC, followed by genome release, (4) nuclear entry of intact capsids through the NPC, followed by genome release, and (5) nuclear entry via virus-induced disruption of the nuclear envelope. Which mechanism a particular virus uses depends on the size and structure of the virus, as well as the cellular cues used by the virus to trigger capsid disassembly and genome release. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import. 2010 Elsevier B.V. All rights reserved.

  1. Comet nucleus sample return mission

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A comet nucleus sample return mission in terms of its relevant science objectives, candidate mission concepts, key design/technology requirements, and programmatic issues is discussed. The primary objective was to collect a sample of undisturbed comet material from beneath the surface of an active comet and to preserve its chemical and, if possible, its physical integrity and return it to Earth in a minimally altered state. The secondary objectives are to: (1) characterize the comet to a level consistent with a rendezvous mission; (2) monitor the comet dynamics through perihelion and aphelion with a long lived lander; and (3) determine the subsurface properties of the nucleus in an area local to the sampled core. A set of candidate comets is discussed. The hazards which the spacecraft would encounter in the vicinity of the comet are also discussed. The encounter strategy, the sampling hardware, the thermal control of the pristine comet material during the return to Earth, and the flight performance of various spacecraft systems and the cost estimates of such a mission are presented.

  2. Experimental study of the β - γ and β - nγ decay of the neutron-rich nucleus 85Ga

    SciTech Connect

    Korgul, A.; Rykaczewski, K. P.; Grzywacz, R.; Śliwińska, H.; Batchelder, J. C.; Bingham, C.; Borzov, I. N.; Brewer, N.; Cartegni, L.; Fijałkowska, A.; Gross, C. J.; Hamilton, J. H.; Jost, C.; Karny, M.; Królas, W.; Liu, S.; Mazzocchi, C.; Madurga, M.; Mendez, A. J.; Miernik, K.; Miller, D.; Padgett, S.; Paulauskas, S.; Shapira, D.; Stracener, D.; Sieja, K.; Winger, J. A.; Wolińska-Cichocka, M.; Zganjar, E. F.

    2013-10-28

    We studied the β-decay properties of neutron-rich 85Ga produced in proton-induced fission of 238U at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. Data consisted of β-γ and β-γ-γ coincidences were collected at the Low-energy Radioactive Ion Beam Spectroscopy Station after high-resolution on-line mass separation. For the first time, the excited states in the N=53 isotone 85Ge were established from β-delayed γ decay of 85Ga. The level scheme of the N=52 isotone 84Ge was improved and includes now 0+, 2+, (2)+, 4+, and (0)+ states populated in the β-delayed-neutron-γ decay of 85Ga. Advanced shell-model calculations were used to analyze experimental data on 85Ge and 84Ge.

  3. Neutron radiography using neutron imaging plate.

    PubMed

    Chankow, Nares; Punnachaiya, Suvit; Wonglee, Sarinrat

    2010-01-01

    The aims of this research are to study properties of a neutron imaging plate (NIP) and to test it for use in nondestructive testing (NDT) of materials. The experiments were carried out by using a BAS-ND 2040 Fuji NIP and a neutron beam from the Thai Research Reactor TRR-1/M1. The neutron intensity and Cd ratio at the specimen position were approximately 9x10(5) ns/cm(2) s and 100 respectively. It was found that the photostimulated luminescence (PSL) readout of the imaging plate was directly proportional to the exposure time and approximately 40 times faster than the conventional NR using Gd converter screen/X-ray film technique. The sensitivities of the imaging plate to slow neutron and to Ir-192 gamma-rays were found to be approximately 4.2x10(-3) PSL/mm(2) per neutron and 6.7x10(-5) PSL/mm(2) per gamma-ray photon respectively. Finally, some specimens containing light elements were selected to be radiographed with neutrons using the NIP and the Gd converter screen/X-ray film technique. The image quality obtained from the two recording media was found to be comparable. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  4. Starquakes, Heating Anomalies, and Nuclear Reactions in the Neutron Star Crust

    NASA Astrophysics Data System (ADS)

    Deibel, Alex Thomas

    When the most massive stars perish, their cores may remain intact in the form of extremely dense and compact stars. These stellar remnants, called neutron stars, are on the cusp of becoming black holes and reach mass densities greater than an atomic nucleus in their centers. Although the interiors of neutron stars were difficult to investigate at the time of their discovery, the advent of modern space-based telescopes (e.g., Chandra X-ray Observatory) has pushed our understanding of the neutron star interior into exciting new realms. It has been shown that the neutron star interior spans an enormous range of densities and contains many phases of matter, and further theoretical progress must rely on numerical calculations of neutron star phenomena built with detailed nuclear physics input. To further investigate the properties of the neutron star interior, this dissertation constructs numerical models of neutron stars, applies models to various observations of neutron star high-energy phenomena, and draws new conclusions about the neutron star interior from these analyses. In particular, we model the neutron star's outermost ? 1 km that encompasses the neutron star's envelope, ocean, and crust. The model must implement detailed nuclear physics to properly simulate the hydrostatic and thermal structure of the neutron star. We then apply our model to phenomena that occur in these layers, such as: thermonuclear bursts in the envelope, g-modes in the ocean, torsional oscillations of the crust, and crust cooling of neutron star transients. A comparison of models to observations provides new insights on the properties of dense matter that are often difficult to probe through terrestrial experiments. For example, models of the quiescent cooling of neutron stars, such as the accreting transient MAXI J0556-332, at late times into quiescence probe the thermal transport properties of the deep neutron star crust. This modeling provides independent data from astronomical

  5. Neutron sources and applications

    SciTech Connect

    Price, D.L.; Rush, J.J.

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  6. Italian neutron sources

    NASA Astrophysics Data System (ADS)

    Prata, M.; Alloni, D.; De Felice, P.; Palomba, M.; Pietropaolo, A.; Pillon, M.; Quintieri, L.; Santagata, A.; Valente, P.

    2014-11-01

    Many research activities, instrumental analysis, studies of radiation damage, etc., require neutron sources. The main neutron sources present in Italy are described in three different sections: nuclear research reactors, accelerator driven, and metrology stations. The nuclear research reactors of LENA (University of Pavia) and ENEA Casaccia are described in terms of irradiation facilities available, neutron flux for each of them and the main activities carried out by each research centre. In the second section, the Frascati Neutron Generator (FNG), the Frascati Beam-Test Facility (BTF) and their main features are reported. In the last section there is a detailed description of the institutional role and the main activities carried out in the field of neutron metrology by the National Institute for Metrology of Ionizing Radiation (INMRI) with a brief description of neutron sources of which the institute is endowed.

  7. Prototype Stilbene Neutron Collar

    SciTech Connect

    Prasad, M. K.; Shumaker, D.; Snyderman, N.; Verbeke, J.; Wong, J.

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  8. Theoretical antideuteron-nucleus absorptive cross sections

    NASA Technical Reports Server (NTRS)

    Buck, W. W.; Norbury, J. W.; Townsend, L. W.; Wilson, J. W.

    1993-01-01

    Antideuteron-nucleus absorptive cross sections for intermediate to high energies are calculated using an ion-ion optical model. Good agreement with experiment (within 15 percent) is obtained in this same model for (bar p)-nucleus cross sections at laboratory energies up to 15 GeV. We describe a technique for estimating antinucleus-nucleus cross sections from NN data and suggest that further cosmic ray studies to search for antideuterons and other antinuclei be undertaken.

  9. The advanced neutron source

    SciTech Connect

    Raman, S.; Hayter, J.B.

    1990-01-01

    The Advanced Neutron Source (ANS) is a new user experimental facility planned to be operational at Oak Ridge in the late 1990's. The centerpiece of the ANS will be a steady-state research reactor of unprecedented thermal neutron flux ({phi}{sub th} {approx} 8 {times} 10{sup 19} m{sup {minus}2} {center dot}s{sup {minus}1}) accompanied by extensive and comprehensive equipment and facilities for neutron-based research.

  10. The Advanced Neutron Source

    SciTech Connect

    Hayter, J.B.

    1989-01-01

    The Advanced Neutron Source (ANS) is a new user experimental facility planned to be operational at Oak Ridge in the late 1990's. The centerpiece of the ANS will be a steady-state research reactor of unprecedented thermal neutron flux ({phi}{sub th} {approx} 9{center dot}10{sup 19} m{sup -2}{center dot}s{sup -1}) accompanied by extensive and comprehensive equipment and facilities for neutron-based research. 5 refs., 5 figs.

  11. The DIORAMA Neutron Emitter

    SciTech Connect

    Terry, James Russell

    2016-05-05

    Emission of neutrons in a given event is modeled by the DioramaEmitterNeutron object, a subclass of the abstract DioramaEmitterModule object. The GenerateEmission method of this object is the entry point for generation of a neutron population for a given event. Shown in table 1, this method requires a number of parameters to be defined in the event definition.

  12. Portable Neutron Source

    DTIC Science & Technology

    2008-05-30

    distribution were studied as a function of peak laser intensity, laser pulse duration and primary target thickness. The proposed scheme for neutron ...Fig. 2. The next step is to calculate the neutron yield from the ion beam-target deposition model. The secondary target is a thick (~ 1mm) slab of...specific directions of observations. Figure 4 displays a typical angular distribution function of neutrons from a CD2 target. In Fig. 4 we plot the

  13. Neutron radiographic viewing system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design, development and application of a neutron radiographic viewing system for use in nondestructive testing applications is considered. The system consists of a SEC vidicon camera, neutron image intensifier system, disc recorder, and TV readout. Neutron bombardment of the subject is recorded by an image converter and passed through an optical system into the SEC vidicon. The vidicon output may be stored, or processed for visual readout.

  14. Neutron absorptiometric titration.

    PubMed

    Tölgyessy, J; Varga, S; Dillinger, P

    1967-03-01

    A method is outlined for detection of two-phase titration end-points by means of an abrupt change in the neutron-absorption characteristics of one of the phases. One of the components of the precipitate must have a large neutron absorption cross-section, and the disappearance or appearance of neutron absorption by the supernatant liquid from the precipitation reaction then marks the completion of precipitation.

  15. Neutron cross sections

    SciTech Connect

    Not Available

    1988-01-01

    This handbook displays curves of neutron cross sections in the energy range of 0.01 eV to 200 MeV (and associated information) as a function of incident neutron energy. Tables include reference to all data. Information on isomeric state production is also included. This book represents the fourth edition of what was previously known as BNL-325, Neutron Cross Sections, Volume 2, the third edition of which was published in 1976.

  16. ATR neutron spectral characterization

    SciTech Connect

    Rogers, J.W.; Anderl, R.A.

    1995-11-01

    The Advanced Test Reactor (ATR) at INEL provides intense neutron fields for irradiation-effects testing of reactor material samples, for production of radionuclides used in industrial and medical applications, and for scientific research. Characterization of the neutron environments in the irradiation locations of the ATR has been done by means of neutronics calculations and by means of neutron dosimetry based on the use of neutron activation monitors that are placed in the various irradiation locations. The primary purpose of this report is to present the results of an extensive characterization of several ATR irradiation locations based on neutron dosimetry measurements and on least-squares-adjustment analyses that utilize both neutron dosimetry measurements and neutronics calculations. This report builds upon the previous publications, especially the reference 4 paper. Section 2 provides a brief description of the ATR and it tabulates neutron spectral information for typical irradiation locations, as derived from the more historical neutron dosimetry measurements. Relevant details that pertain to the multigroup neutron spectral characterization are covered in section 3. This discussion includes a presentation on the dosimeter irradiation and analyses and a development of the least-squares adjustment methodology, along with a summary of the results of these analyses. Spectrum-averaged cross sections for neutron monitoring and for displacement-damage prediction in Fe, Cr, and Ni are given in section 4. In addition, section4 includes estimates of damage generation rates for these materials in selected ATR irradiation locations. In section 5, the authors present a brief discussion of the most significant conclusions of this work and comment on its relevance to the present ATR core configuration. Finally, detailed numerical and graphical results for the spectrum-characterization analyses in each irradiation location are provided in the Appendix.

  17. Oocyte nucleus controls progression through meiotic maturation.

    PubMed

    Polanski, Zbigniew; Hoffmann, Steffen; Tsurumi, Chizuko

    2005-05-15

    We analyzed progression through the meiotic maturation in oocytes manipulated to replace the prophase oocyte nucleus with the nucleus from a cumulus cell, a pachytene spermatocyte or the pronucleus from a fertilized egg. Removal of the oocyte nucleus led to a significant reduction in histone H1 kinase activity. Replacement of the oocyte nucleus by a pronucleus followed by culture resulted in premature pseudomeiotic division and occasional abnormal cytokinesis; however, histone H1 kinase activity was rescued, microtubules formed a bipolar spindle, and chromosomes were condensed. In addition to the anomalies observed after pronuclear transfer, those after transfer of the nucleus from a cumulus cell or spermatocyte included a dramatically impaired ability to form the bipolar spindle or to condense chromosomes, and histone H1 kinase activity was not rescued. Expression of a cyclin B-YFP in enucleated oocytes receiving the cumulus cell nucleus rescued histone H1 kinase activity, but spindle formation and chromosome condensation remained impaired, indicating a pleiotropic effect of oocyte nucleus removal. However, when the cumulus cell nucleus was first transformed into pronuclei (transfer into a metaphase II oocyte followed by activation), such pronuclei supported maturation after transfer into the oocyte in a manner similar to that of normal pronuclei. These results show that the oocyte nucleus contains specific components required for the control of progression through the meiotic maturation and that some of these components are also present in pronuclei.

  18. Pyruvate kinase deficiency

    MedlinePlus

    ... the second most common cause, after glucose-6-phosphate dehydrogenase (G6PD) deficiency . PKD is found in people ... Read More Anemia Autosomal recessive Enzyme Glucose-6-phosphate dehydrogenase deficiency Hemolytic anemia Review Date 10/27/ ...

  19. Introduction to neutron stars

    SciTech Connect

    Lattimer, James M.

    2015-02-24

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  20. Neutron-emission measurements at a white neutron source

    SciTech Connect

    Haight, Robert C

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  1. Fast Neutron Detection using Pixelated CdZnTe Spectrometers

    DOE PAGES

    Streicher, Michael; Goodman, David; Zhu, Yuefeng; ...

    2017-05-29

    One important important signature of special nuclear materials (SNM) are fast neutrons. Fast neutrons have a low natural background rate and readily penetrate high atomic number materials which easily shield gamma-ray signatures. Thus, fast neutrons provide a complementary signal to gamma rays for detecting shielded SNM. Scattering kinematics dictate that a large nucleus (such as Cd or Te) will recoil with small kinetic energy after an elastic collision with a fast neutron. Charge carrier recombination and quenching further reduce the recorded energy deposited. Thus, the energy threshold of CdZnTe detectors must be very low in order to sense the smallmore » signals from these recoils. Here, the threshold was reduced to less than 5 keVee to demonstrate that the 5.9 keV x-ray line from 55Fe could be separated from electronic noise. Elastic scattering neutron interactions were observed as small energy depositions (less than 20 keVee) using digitally-sampled pulse waveforms from pixelated CdZnTe detectors. Characteristic gamma-ray lines from inelastic neutron scattering were also observed.« less

  2. Neutron Scattering Structure and Dynamics in Hydrazine

    NASA Astrophysics Data System (ADS)

    Acatrinei, Alice; Hartl, Monika; Daemen, Luke; Forster, Diana; Kickbusch, Rainer; Luger, Peter; Lentz, Dieter

    2007-10-01

    The Lewis Acid Base theory is a fundamental concept in chemistry. One way of describing a chemical bond is to look at the charge distribution within a molecule. By studying the charge densities in electron-deficient compounds such as hydrazine borane, a more detailed view of the bonding situations is achieved. Our interest in hydrazine borane comes from many reasons. First of all it allows examining the experimental charge density of a so called donor acceptor bond on one of the simplest molecules. N2H4BH3 is a potential hydrogen storage material which has not been studied in detail so far. Finally, it contains N-N bonds that are of interest due to their torsional vibrations. We performed neutron powder diffraction on the powder diffractometer NPDF at 15K and 95K and determined the hydrogen positions in N2H4BH3. We synthesized the completely labelled compound N2D4(11BD3)2. We investigated the hydrogen bonding and the N-N torsional dynamics by using incoherent inelastic neutron scattering on the Filter Difference Spectrometer FDS. While IR and RAMAN spectroscopy only show weak signal for torsional and librational modes, these modes are quite strong in neutron vibrational spectroscopy. We present neutron diffraction data and vibrational spectra and their interpretation using molecular modelling calculations.

  3. Direct Neutron Capture Calculations with Covariant Density Functional Theory Inputs

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Sheng; Peng, Jin-Peng; Smith, Michael S.; Arbanas, Goran; Kozub, Ray L.

    2014-09-01

    Predictions of direct neutron capture are of vital importance for simulations of nucleosynthesis in supernovae, merging neutron stars, and other astrophysical environments. We calculate the direct capture cross sections for E1 transitions using nuclear structure information from a covariant density functional theory as input for the FRESCO coupled-channels reaction code. We find good agreement of our predictions with experimental cross section data on the double closed-shell targets 16O, 48Ca, and 90Zr, and the exotic nucleus 36S. Extensions of the technique for unstable nuclei and for large-scale calculations will be discussed. Predictions of direct neutron capture are of vital importance for simulations of nucleosynthesis in supernovae, merging neutron stars, and other astrophysical environments. We calculate the direct capture cross sections for E1 transitions using nuclear structure information from a covariant density functional theory as input for the FRESCO coupled-channels reaction code. We find good agreement of our predictions with experimental cross section data on the double closed-shell targets 16O, 48Ca, and 90Zr, and the exotic nucleus 36S. Extensions of the technique for unstable nuclei and for large-scale calculations will be discussed. Supported by the U.S. Dept. of Energy, Office of Nuclear Physics.

  4. Projections from the cochlear nucleus to the superior paraolivary nucleus in guinea pigs.

    PubMed

    Schofield, B R

    1995-09-11

    Axonal tracing techniques were used to study the projection from the cochlear nucleus to the superior paraolivary nucleus in guinea pigs. Different tracers were used to identify the cell types that give rise to the projections, the morphology of their axons, and the cell types that they contact in the superior paraolivary nucleus. Injections of Fluoro-Gold or peroxidase-labeled-WGA and HRP into the superior paraolivary nucleus labeled multipolar cells and octopus cells bilaterally in the ventral cochlear nucleus, mainly on the contralateral side. Injections of PHAL into the ventral cochlear nucleus labeled two types of axons in the superior paraolivary nucleus. Thin axons branch infrequently and give rise primarily to small, en passant boutons. Thick axons have larger boutons, many of which are terminal boutons that arise from short collaterals. Thin axons appear to originate from multipolar cells, whereas thick axons probably originate from octopus cells. Both types are found bilaterally after an injection into the ventral cochlear nucleus on one side. Individual thick or thin axons may contact multiple cell types in the superior paraolivary nucleus. Individual cells in the superior paraolivary nucleus can receive convergent input from both thick and thin axons. Combined anterograde and retrograde transport of different fluorescent tracers was used to identify the projections of the cells in the superior paraolivary nucleus that receive inputs from the ventral cochlear nucleus. Cells in the superior paraolivary nucleus that projected to the ipsilateral cochlear nucleus or to the ipsilateral inferior colliculus appeared to be contacted by axons that were labeled by anterograde transport from the contralateral ventral cochlear nucleus. Thus the projections to the superior paraolivary nucleus are in a position to affect the activity in both ascending and descending auditory pathways.

  5. Projections from the central amygdaloid nucleus to the precuneiform nucleus in the mouse.

    PubMed

    Liang, Huazheng; Watson, Charles; Paxinos, George

    2015-01-01

    The mouse precuneiform nucleus has been proposed as the midbrain locomotion center, a function ascribed to its caudal neighbor, cuneiform nucleus, in the rat, cat and other species. The present study investigated the projections from the central amygdaloid nucleus to the precuneiform nucleus in the mouse using retrograde tracer injections (fluoro-gold) into the precuneiform nucleus and anterograde tracer injections (biotinylated dextran amine) into the central amygdaloid nucleus. The entire central amygdaloid nucleus except the rostral pole had retrogradely labeled neurons, especially in the middle portion where labeled neurons were densely packed. Anterogradely labeled amygdaloid fibers approached the precuneiform nucleus from the area ventrolateral to it and terminated in the entire precuneiform nucleus. Labeled fibers were also found in laminae 5 and 6 in the upper cervical cord on the ipsilateral side. The present study is the first demonstration of projections from the central amygdaloid nucleus to the precuneiform nucleus. This projection may underpin the role of the precuneiform nucleus in the modulation of the cardiovascular activity.

  6. Measuring planetary neutron albedo fluxes by remote gamma-ray sensing

    NASA Astrophysics Data System (ADS)

    Haines, E. L.; Metzger, A. E.

    In order to measure the planetary neutron albedo fluxes, a neutron-absorbing shield which emits gamma rays of characteristic energy and serves as a neutron detector, is added to a gamma-ray spectrometer (GRS). The gamma rays representing the neutron flux are observed against interference consisting of cosmic gamma rays, planetary continuum and line emission, and gamma rays arising from the interaction of cosmic rays with the GRS and the spacecraft. The uncertainty and minimum detection limits in neutron albedo fluxes are calculated for two missions, a lunar orbiter and a comet nucleus rendezvous. A GRS on a lunar orbiter at 100 km altitude detects a thermal neutron albedo flux as low as 0.002/sq cm/s and an expected flux of about 0.6/sq cm/s is measured with an uncertainty of 0.001/sq cm/s, for a 100 h observation period. For the comet nucleus, again in a 100 h observing period, a thermal neutron albedo flux is detected at a level of 0.006/sq cm/s and an expected flux of about 0.4/sq cm/s is measured with an uncertainty of 0.004/sq cm/s. The expanded geological capabilities made possible by this technique include improvements in H sensitivity, spatial resolution, and measurement depth; and an improved model of induced gamma-ray emission.

  7. Epidemiology of iodine deficiency.

    PubMed

    Vanderpump, Mark P

    2017-04-01

    Iodine is an essential component of the thyroid hormones thyroxine (T4) and triiodothyronine (T3) produced by the thyroid gland. Iodine deficiency impairs thyroid hormone production and has adverse effects throughout life, particularly early in life as it impairs cognition and growth. Iodine deficiency remains a significant problem despite major national and international efforts to increase iodine intake, primarily through the voluntary or mandatory iodization of salt. Recent epidemiological data suggest that iodine deficiency is an emerging issue in industrialized countries, previously thought of as iodine-sufficient. International efforts to control iodine deficiency are slowing, and reaching the third of the worldwide population that remains deficient poses major challenges.

  8. A Clean Measurement of the Neutron Skin of 208Pb Through Parity Violating Electron Scattering

    SciTech Connect

    Riad Suleiman

    2003-07-01

    The difference between the neutron radius Rn of a heavy nucleus and the proton radius Rp is believed to be on the order of several percent. This qualitative feature of nuclei, which is essentially a neutron skin, has proven to be elusive to pin down experimentally in a rigorous fashion. A new Jefferson Lab experiment will measure the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from 208Pb. Since the Z-boson couples mainly to neutrons, this asymmetry provides a measure of the size of Rn that can be interpreted with as much confidence as the traditional electron scattering data. The projected experimental precision corresponds to a 1% determination of Rn, which will have a big impact on nuclear theory and its application to neutron rich matter such as neutron stars.

  9. Analysis of Muon Induced Neutrons in Detecting High Z Nuclear Materials

    DTIC Science & Technology

    2015-03-01

    eventually reaches the end of its lifetime. When this occurs, the negative muon will decay into a muon neutrino , an electron, and an electron neutrino , and...resulting in a neutron and a muon neutrino . This process yields an average nucleus excitation energy of 15-20 MeV which is much greater than the

  10. Microscopic [ital T]-Violating Optical Potential: Implications for Neutron-Transmission Experiments

    SciTech Connect

    Engel, J.; Gould, C.R.; Hnizdo, V. Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 Department of Physics and Schonland Research Centre for Nuclear Sciences, University of the Witwatersrand, Johannesburg, 2050 )

    1994-12-26

    We derive a [ital T]-violating [ital P]-conserving optical potential for neutron-nucleus scattering, starting from a uniquely determined two-body [rho]-exchange interaction with the same symmetry. We then obtain limits on the [ital T]-violating [rho]-nucleon coupling [ital [bar g

  11. The nature of the cometary nucleus

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1985-01-01

    The basic properties of the cometary nucleus are reviewed. Consideration is given to the absence of depth differentiation, the icy conglomerate nature, the possible existence of a halo of icy grains around the nuclear region, the nucleus size and albedo, the mass, the rotation rate, and the chemical composition (elemental and molecular).

  12. PREFACE: 11th International Conference on Nucleus-Nucleus Collisions (NN2012)

    NASA Astrophysics Data System (ADS)

    Li, Bao-An; Natowitz, Joseph B.

    2013-03-01

    The 11th International Conference on Nucleus-Nucleus Collisions (NN2012) was held from 27 May to 1 June 2012, in San Antonio, Texas, USA. It was jointly organized and hosted by The Cyclotron Institute at Texas A&M University, College Station and The Department of Physics and Astronomy at Texas A&M University-Commerce. Among the approximately 300 participants were a large number of graduate students and post-doctoral fellows. The Keynote Talk of the conference, 'The State of Affairs of Present and Future Nucleus-Nucleus Collision Science', was given by Dr Robert Tribble, University Distinguished Professor and Director of the TAMU Cyclotron Institute. During the conference a very well-received public lecture on neutrino astronomy, 'The ICEcube project', was given by Dr Francis Halzen, Hilldale and Gregory Breit Distinguished Professor at the University of Wisconsin, Madison. The Scientific program continued in the general spirit and intention of this conference series. As is typical of this conference a broad range of topics including fundamental areas of nuclear dynamics, structure, and applications were addressed in 42 plenary session talks, 150 parallel session talks, and 21 posters. The high quality of the work presented emphasized the vitality and relevance of the subject matter of this conference. Following the tradition, the NN2012 International Advisory Committee selected the host and site of the next conference in this series. The 12th International Conference on Nucleus-Nucleus Collisions (NN2015) will be held 21-26 June 2015 in Catania, Italy. It will be hosted by The INFN, Laboratori Nazionali del Sud, INFN, Catania and the Dipartimento di Fisica e Astronomia of the University of Catania. The NN2012 Proceedings contains the conference program and 165 articles organized into the following 10 sections 1. Heavy and Superheavy Elements 2. QCD and Hadron Physics 3. Relativistic Heavy-Ion Collisions 4. Nuclear Structure 5. Nuclear Energy and Applications of

  13. Neutron radiographic viewing system

    NASA Technical Reports Server (NTRS)

    Leysath, W.; Brown, R. L.

    1972-01-01

    Neutron radiographic viewing system consisting of camera head and control processor is developed for use in nondestructive testing applications. Camera head consists of neutron-sensitive image intensifier system, power supply, and SEC vidicon camera head. Both systems, with their optics, are housed on test mount.

  14. Neutron capture therapies

    SciTech Connect

    Yanch, Jacquelyn C.; Shefer, Ruth E.; Klinkowstein, Robert E.

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  15. Neutron capture therapies

    SciTech Connect

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.

    1999-11-02

    In one embodiment there is provided an application of the {sup 10}B(n,{alpha}){sup 7}Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  16. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  17. Hyperons in neutron stars

    SciTech Connect

    Glendenning, N.K.

    1986-04-01

    Generalized beta equilibrium involving nucleons, hyperons, and isobars is examined for neutron star matter. The hyperons produce a considerable softening of the equation of state. It is shown that the observed masses of neutron stars can be used to settle a recent controversy concerning the nuclear compressibility. Compressibilities less than 200 MeV are incompatible with observed masses. 7 refs., 9 figs.

  18. Shielding for thermal neutrons.

    PubMed

    McCall, R C

    1997-01-01

    The problem of calculating the neutron capture gamma-ray dose rate due to thermal neutron capture in a boron or cadmium rectangular shield is considered. An example is given for shielding for a door at the exit of medical accelerator room maze in order to determine the optimum location of lead relative to the borated polyethylene.

  19. NEUTRONIC REACTOR CONTROL

    DOEpatents

    Untermyer, S.; Hutter, E.

    1959-08-01

    This patent relates to "shadow" control of a nuclear reactor. The control means comprises a plurality ot elongated rods disposed adjacent and parallel to each other, The morphology and effects of gases generated within sections of neutron absorbing materials and equal length sections of neutron permeable materials together with means for longitudinally pcsitioning the rcds relative to each other.

  20. Neutron filters for producing monoenergetic neutron beams

    SciTech Connect

    Harvey, J.A.; Hill, N.W.; Harvey, J.R.

    1982-01-01

    Neutron transmission measurements have been made on high-purity, highly-enriched samples of /sup 58/Ni (99.9%), /sup 60/Ni (99.7%), /sup 64/Zn (97.9%) and /sup 184/W (94.5%) to measure their neutron windows and to assess their potential usefulness for producing monoenergetic beams of intermediate energies from a reactor. Transmission measurements on the Los Alamos Sc filter (44.26 cm Sc and 1.0 cm Ti) have been made to determine the characteristics of the transmitted neutron beam and to measure the total cross section of Sc at the 2.0 keV minimum. When corrected for the Ti and impurities, a value of 0.35 +- 0.03 b was obtained for this minimum.